, Simplified version of a smart grid

, Overview of our vision

, Impact of having uncertainty as a first-class language citizen on a language

. .. Ain'tea, 100 7.1 Time definition used for the knowledge formalism

, Excerpt of the knowledge metamodel

. .. Metamodel, 7.11 Results of experiments when the number of traversed or input elements increases, vol.123

. .. Aperçu-du-models@run.time, xiii 8.2 Illustration du problème causé par l'incertitude des données

, Approaches to model actions, their circumstances, and their effects (RQ1.2)

, Approaches to reason over evolving context or behaviour (RQ1.3), p.56

. .. , Categories of uncertainty addressed by the literature (RQ2.1), p.59

. .. , 64 4.7 Approaches to reason over the uncertainty of data (RQ2.3) . . . . . 64 6.1 Which distribution can be used to represent the uncertainty of which data type, Approaches to model data uncertainty (RQ2.2)

. .. Language, 10 6.3 Typing rules for arithmetic operations, vol.87

. Mouline, . Benelallam, . Hartmann, . Fouquet, M. Bourcier et al., Enabling temporal-aware contexts for adaptative distributed systems, ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, p.16, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01723451

D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic et al., A rule-based language for complex event processing and reasoning, Web Reasoning and Rule Systems RR, vol.57, p.56, 2010.

P. Arcaini, A. Gargantini, and E. Riccobene, CoMA: conformance monitoring of java programs by abstract state machines, Runtime Verification RV, vol.50, p.48, 2011.

C. Atkinson and T. Kühne, Model-driven development: A metamodeling foundation, IEEE Software, vol.22, 2003.

P. Arcaini, E. Riccobene, and P. Scandurra, Modeling and analyzing MAPE-K feedback loops for self-adaptation, p.10

, IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, vol.48, pp.50-53, 2015.

C. Charu, P. S. Aggarwal, and . Yu, A survey of uncertain data 25 algorithms and applications, IEEE Transactions on Knowledge and Data Engineering, 2009.

S. Bhat, A. Agarwal, R. W. Vuduc, and A. G. Gray, A type theory for probability density functions, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, vol.67, 2012.

G. S. Blair, N. Bencomo, and R. B. France, Mod-els@run.time, IEEE Computer, 2009.

N. Bencomo, A. Bennaceur, P. Grace, and G. S. Blair, , p.10

V. Issarny, The role of models@run.time in supporting on-thefly interoperability. Computing, vol.50, p.48, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00733338

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas et al., A 15 survey of context modelling and reasoning techniques, Pervasive and Mobile Computing, vol.20, p.19, 2010.

L. Burgueño, M. F. Bertoa, N. Moreno, and A. Vallecillo, Expressing confidence in models and in model transformation 20 elements, Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MOD-ELS, vol.64, pp.59-61, 2018.

E. Bousse, J. Corley, B. Combemale, J. G. Gray, and B. Baudry, Supporting efficient and advanced omniscient debugging for xdsmls, Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language Engineering, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182517

R. Bruni, A. Corradini, F. Gadducci, A. Lluch-lafuente, and A. Vandin, Modelling and analyzing adaptive self-assembly strategies with maude, Rewriting Logic and Its Applications WRLA 2012, vol.52, p.51, 2012.

M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in Practice, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00755006

M. Baudin, A. Dutfoy, B. Iooss, and A. Popelin, OpenTURNS: an industrial software for uncertainty quantification in simulation. Handbook of uncertainty quantification, 2017.

. Bdmm-+-17]-davi-monteiro, R. Barbosa, . Gadelha-de-moura, P. H. Lima, E. Mendes-maia et al., Lotus@runtime: A tool for runtime monitoring and verification of self-adaptive systems, 12th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, vol.10, 2017.

J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van-gael, Measure transformer semantics for bayesian machine learning, Logical Methods in Computer Science, vol.15, issue.11, 2013.

D. Barbará, H. Garcia-molina, and D. Porter, The management of probabilistic data, IEEE Transactions on Knowledge and Data Engineering, vol.61, 1992.

A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay, Neo4EMF, A scalable persistence layer for EMF models, Modelling Foundations and Applications ECMFA, p.23, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968516

E. P. George, J. S. Box, W. G. Hunter, and . Hunter, Statistics for Experiments: Design, Innovation, and Discovery, 2005.

T. Berners-lee, J. Hendler, and O. Lassila, The semantic 30 web, Scientific american, 2001.

A. Benelallam, T. Hartmann, L. Mouline, F. Fouquet, J. Bourcier et al.,

, ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, 2017.

J. Bézivin, F. Jouault, and D. Touzet, Principles, standards and tools for model engineering, 10th International Conference on Engineering of Complex Computer Systems (ICECCS), 2005.

C. Baier and J. Katoen, Principles of model checking, 2008.

B. Bartels and M. Kleine, A CSP-based framework for the specification, verification, and implementation of adaptive systems, 2011 ICSE Symposium on Software Engineering for Adaptive, p.10

, Self-Managing Systems, SEAMS, vol.49, 2011.

C. Barna, H. Khazaei, M. Fokaefs, and M. Litoiu, Delivering elastic containerized cloud applications to enable devops, 12th IEEE/ACM International Symposium on Software Engineer-15 ing for Adaptive and Self-Managing Systems, SEAMS, 2017

E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry, Omniscient debugging for executable dsls, Journal of Systems and Software, vol.27, p.23, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01662336

P. Baker, S. Loh, and F. Weil, Model-driven engineering in a large industrial context -motorola case study, Model Driven Engineering Languages and Systems, MoDELS, vol.23, p.22, 2005.

M. F. Bertoa, N. Moreno, G. Barquero, L. Burgueño, J. Troya et al., Expressing measurement uncertainty in OCL/UML datatypes, Modelling Foundations and Applications, 2018.

J. Bornholt, T. Mytkowicz, and K. S. Mckinley, Uncertain: a first-order type for uncertain data, Architectural Support for Programming Languages and Operating Systems, 2014.

J. Bornholt, Abstractions and techniques for programming with uncertain data, vol.61, p.30, 2013.

P. Bresciani, A. Perini, P. Giorgini, and F. Giunchiglia,

J. Mylopoulos, Tropos: an agent-oriented software development methodology, vol.115, 2004.

L. Baresi, L. Pasquale, and P. Spoletini, Fuzzy goals 10 for requirements-driven adaptation, RE, 18th IEEE International Requirements Engineering Conference, vol.48, p.58, 2010.

, Giovanna Di Marzo Serugendo

H. M. Giese, M. Kienle, . Litoiu, A. Hausi, M. Müller et al., Engineering self-adaptive systems through feedback loops, Software Engineering for Self-Adaptive Systems, vol.17, p.16, 2009.

O. Benjelloun, A. Sarma, A. Y. Halevy, and J. Widom, ULDBs: databases with uncertainty and lineage, Proceedings of the 32nd International Conference on Very Large Data Bases, vol.67, 2006.

N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle, Self-explanation in adaptive systems, 17th IEEE International Conference on Engineering of Complex Computer Systems, ICECCS, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00719001

H. C. Betty, J. M. Cheng, and . Atlee, Research directions in requirements engineering, Workshop on the Future of Software Engineering, FOSE, p.21, 2007.

M. Cordy, A. Classen, and P. Heymans, Axel Legay, 35 and Pierre-Yves Schobbens. Model checking adaptive software with featured transition systems, Assurances for Self-Adaptive Systems -Principles, Models, and Techniques, 2013.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-oliet et al., Maude: specification and programming in rewriting logic, 2002.

H. C. Betty, R. Cheng, H. De-lemos, J. Giese, J. Magee et al., Paola Inver-5 ardi, p.10

M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle, Software engineering for self-adaptive systems: A research roadmap, Software Engineering for Self-Adaptive Systems, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00638157

A. Charfi, T. Dinkelaker, and M. Mezini, A plug-in architecture for self-adaptive web service compositions, IEEE International Conference on Web Services, vol.54, 2009.

W. Shang, D. Cheng, and . Garlan, Stitch: A language for architect-20 ure-based self-adaptation, Journal of Systems and Software, vol.53, pp.55-57, 2012.

C. Cetina, P. Giner, J. Fons, and V. Pelechano, Autonomic computing through reuse of variability models at runtime: 25 the case of smart homes, IEEE Computer, vol.42, issue.10, p.18, 2009.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich et al., , p.30

P. Li and A. Riddell, Stan : a probabilistic programming language, Journal of Statistical Software, vol.67, 2017.

L. Cgk-+-]-radu-calinescu, M. Z. Grunske, and . Kwiatkowska, Raffaela, vol.35

G. Mirandola and . Tamburrelli, Dynamic QoS management and optimization in service-based systems, IEEE Transactions on Software Engineering, vol.17

P. Peter and . Chen, The entity-relationship model -toward a unified view of data, ACM Transactions on Database Systems, vol.22, 1976.

M. Carbin, S. Misailovic, and M. C. Rinard, Verifying quantitative reliability for programs that execute on unreliable

, Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA, vol.63, pp.59-61, 2013.

A. Cimatti, A. Micheli, and M. Roveri, Strong tem-10 poral planning with uncontrollable durations: A state-space approach, Proceedings of the AAAI Conference on Artificial Intelligence, vol.54, p.52, 2015.

A. V. Arun-tejasvi-chaganty, S. K. Nori, and . Rajamani, Effi-15 ciently sampling probabilistic programs via program analysis, Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, vol.67, 2013.

A. Computing, An architectural blueprint for autonomic computing, vol.31, 2006.

B. Chen, X. Peng, and Y. Yu, Bashar Nuseibeh, and Wenyun, p.25

. Zhao, Self-adaptation through incremental generative model transformations at runtime, 36th International Conference on Software Engineering, ICSE, vol.50, pp.54-56, 2014.

A. Cailliau and A. Van-lamsweerde, Runtime monitoring 30 and resolution of probabilistic obstacles to system goals, 12th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2017.

B. Djoudi, C. Bouanaka, and N. Zeghib, Model checking 35 pervasive context-aware systems, IEEE 23rd International WETICE Conference, WETICE, 2014.

/. Wetice, , vol.11, 2014.

T. Degueule, Composition and Interoperability for External Domain-Specific Language Engineering, p.77, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01488300

M. Beth and L. Dempster, A self-organizing systems perspective on plan-5 ning for sustainability, Citeseer, p.17, 1998.

K. Anind and . Dey, Understanding and using context. Personal and Ubiquitous Computing, 2001.

A. Diaconescu, S. Frey, C. Müller-schloer, J. Pitt, and S. Tomforde, Goal-oriented holonics for complex system (self-)integration: concepts and case studies, SASO, vol.50, p.48, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02287380

M. Mark-d'inverno and . Luck, Understanding agent systems, Second Edition, p.49, 2004.

P. David and T. Ledoux, An aspect-oriented approach for developing self-adaptive fractal components, Soft-20, vol.50, p.48, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00457130

H. Rogério-de-lemos, . Giese, A. Hausi, M. Müller, J. Shaw et al., , p.25

B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. J. Desmarais et al., Oscar Nier-30 strasz, Mauro Pezzè

D. B. Schlichting, P. Smith, L. Sousa, K. Tahvildari, J. Wong et al., Software engineering for selfadaptive systems: A second research roadmap, Software Engineering for Self-Adaptive Systems II -International Seminar, p.35
URL : https://hal.archives-ouvertes.fr/inria-00638157

. Castle, , 2010.

L. Mauro-duarte, P. H. Mendes-maia, and A. Silva, Extraction of probabilistic behaviour models based on contexts, Proceedings of the 10th International Workshop on Modelling in Software Engineering, MiSE, vol.50, p.48, 2018.

. Dsb-+-17,

G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau et al., NeoEMF: A multidatabase model persistence framework for very large models. Science of Computer Programming, p.23, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01436047

G. Daniel, G. Sunyé, and J. Cabot, Mogwaï: A framework to handle complex queries on large models, IEEE International Conference on Research Challenges in Information Science, p.23, 2016.

A. Dardenne, A. Van-lamsweerde, and S. Fickas, Goaldirected requirements acquisition, Science of Computer Programming, issue.93, p.90021, 1993.

M. Eysholdt and H. Behrens, Xtext: implement your lan-20 guage faster than the quick and dirty way, Companion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, SPLASH/OOPSLA, p.27, 2010.

A. Egyed, A scenario-driven approach to traceability, Proceedings of the 23rd International Conference on Software Engineering, vol.115, 2001.

N. Esfahani and S. Malek, Uncertainty in self-adaptive soft-30 ware systems, Software Engineering for Self-Adaptive Systems II -International Seminar, vol.60, p.59, 2010.

R. Eramo, A. Pierantonio, and G. Rosa, Uncertainty in bidirectional transformations, 6th International Workshop on, p.35

, Modeling in Software Engineering, pp.59-62, 2014.

R. Eramo, A. Pierantonio, and G. Rosa, Managing uncertainty in bidirectional model transformations, Proceedings of the 2015 ACM SIGPLAN International Conference on Software Language Engineering, pp.59-62, 2015.

P. Falcarin and G. Alonso, Software architecture evolution through dynamic AOP, Software Architecture, First European Workshop, vol.57, p.56, 2004.

H. Farhangi, The path of the smart grid. IEEE power and 10 energy magazine, 2010.

M. Famelis and M. Chechik, Managing design-time uncertainty. Software and Systems Modeling, vol.62, p.61, 2019.

J. Favre, D. Gasevic, R. Lämmel, and E. Pek, Empirical language analysis in software linguistics, Software Language Engineering, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00953537

A. Filieri, C. Ghezzi, A. Leva, and M. Maggio,

, Self-adaptive software meets control theory: A preliminary approach supporting reliability requirements, 2011.

A. Filieri, H. Hoffmann, and M. Maggio, Automated design of self-adaptive software with control-theoretical formal guarantees, 36th International Conference on Software Engineering, ICSE, p.17, 2014.

F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau et al., A dynamic component model for cyber physical systems, Proceedings of the 15th ACM SIGSOFT Symposium on Component Based Software Engineering, vol.50, pp.55-57, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713769

X. Fang, S. Misra, G. Xue, and D. Yang, Smart grid -the new and improved power grid: A survey, IEEE Communications Surveys and Tutorials, 2012.

/. Surv,

F. Fouquet, G. Nain, and B. Morin, , p.5

O. Barais, N. Plouzeau, and J. Jézéquel, An eclipse modelling framework alternative to meet the models@runtime requirements, Model Driven Engineering Languages and Systems, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00714558

F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais et al., Kevoree modeling framework (KMF): efficient modeling techniques for runtime use, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00996764

M. Fowler, Domain-specific languages. Pearson Education, p.37, 2010.

B. Robert, B. France, and . Rumpe, Model-driven development of complex software: A research roadmap, International Conference on Software Engineering, ISCE, vol.24, p.22, 2007.

M. Famelis, R. Salay, and M. Chechik, Partial models: 25 towards modeling and reasoning with uncertainty, 34th International Conference on Software Engineering, ICSE, pp.59-62, 2012.

, International Organization for Standardization (ISO)

V. Garousi, Traffic-aware stress testing of distributed real-time systems based on UML models in the presence of time uncertainty, First International Conference on Software Testing, Verification, and Validation, vol.7, p.61, 2008.

P. Greenwood and L. Blair, A framework for policy driven auto-adaptive systems using dynamic framed aspects, vol.57, p.56

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of things (IoT): A vision, architectural el-5 ements, and future directions. Future Generation Computer Systems, p.25, 2013.

A. Sánchez-guinea, A. Boytsov, L. Mouline, and Y. L. Traon, Continuous identification in smart environments 10 using wrist-worn inertial sensors, Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous, 2018.

D. Garlan, . Shang-wen, A. Cheng, . Huang, and R. Bradley,

P. Schmerl and . Steenkiste, Rainbow: architecture-based selfadaptation with reusable infrastructure, IEEE Computer, vol.48, pp.50-52, 2004.

A. D. Gordon, T. A. Henzinger, and A. V. Nori, , p.20

K. Sriram and . Rajamani, Probabilistic programming, Proceedings of the on Future of Software Engineering, FOSE, 2014.

P. Grace, D. Hughes, B. Porter, G. S. Blair, G. Coulson et al., Experiences with open overlays: a 25 middleware approach to network heterogeneity, Proceedings of the 2008 EuroSys Conference, vol.52, p.55, 2008.

M. Glinz, On non-functional requirements, 15th IEEE International Requirements Engineering Conference, RE, p.21, 2007.

C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli, Managing non-functional uncertainty via model-driven adaptivity, 35th International Conference on Software Engineering, ICSE, 2013.

, Object Constraint Language (OCL), 2014.

, XML Metadata Interchange (XMI), version 2, 2015.

, Meta Object Facility (MOF), version 2.5.1, vol.25, p.24, 2016.

, Query/View/Transformation (OCL), vol.10, 2016.

T. R. Gruber, Toward principles for the design of ontologies used for knowledge sharing?, International Journal of Human-Computer Studies, p.22, 1995.

C. Ghezzi, . Amir-molzam, and . Sharifloo, Dealing with non-functional requirements for adaptive systems via dynamic software product-lines, Software Engineering for Self-Adaptive Systems II -International Seminar, 2010.

M. Israel, G. E. Gelfand, and . Shilov, Generalized Functions, vol.84, 1964.

S. Gerasimou, T. Vogel, and A. Diaconescu, Software 25 engineering for intelligent and autonomous systems: report from the GI dagstuhl seminar 18343. CoRR, 2019.

J. C. Georgas, A. Van-der-hoek, and R. N. Taylor, Using architectural models to manage and visualize runtime adaptation. 30 IEEE Computer, vol.51, pp.54-56, 2009.

B. D. Hall, Component interfaces that support measurement uncertainty, vol.35, p.61, 2006.

T. Hartmann, Enabling Model-Driven Live Analytics For Cyber-Physical Systems: The Case of Smart Grids, 2016.

S. Hassan, N. Bencomo, and R. Bahsoon, Minimizing nasty 5 surprises with better informed decision-making in self-adaptive systems, 10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2015.

. Hfj-+-17,

T. Hartmann, F. Fouquet, M. Jimenez, R. Rouvoy, and Y. L. Traon, Analyzing complex data in motion at scale with temporal graphs, The 29th International Conference on Software Engineering and Knowledge Engineering, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01511636

[. Hfk-+-14a]-thomas-hartmann, F. Fouquet, J. Klein, G. Nain, and Y. L. Traon, Reactive security for smart grids using mod-els@run. time-based simulation and reasoning, Smart Grid Security -Second International Workshop, SmartGridSec, vol.42, p.66, 2014.

[. Hfk-+-14b]-thomas-hartmann, F. Fouquet, J. Klein, Y. L. Traon, A. Pelov et al., Generating realistic smart grid communication topologies based on real-data, 2014 IEEE International Conference on Smart Grid Communi-25 cations, 2014.

N. Harrand, F. Fleurey, B. Morin, and K. E. Husa, ThingML: a language and code generation framework for heterogeneous targets, Proceedings of the ACM/IEEE 19th International 30 Conference on Model Driven Engineering Languages and Systems, p.22, 2016.

T. Hartmann, F. Fouquet, A. Moawad, R. Rouvoy, and Y. L. Traon, GreyCat: efficient what-if analytics for 35 data in motion at scale. Information Systems, vol.73, 2019.

F. Hfn-+-14a]-thomas-hartmann, G. Fouquet, B. Nain, J. Morin, O. Klein et al., A native versioning concept to support historized models at runtime. In Model-Driven Engineering Languages and Systems, MODELS, 2014.

F. Hfn-+-14b]-thomas-hartmann, G. Fouquet, B. Nain, J. Morin, Y. L. Klein et al., Reasoning at runtime using timedistorted contexts: A models@run.time based approach, The 26th International Conference on Software Engineering and Knowledge 10

. Engineering, , vol.56, p.66, 2014.

O. Svein, M. Hallsteinsen, S. Hinchey, K. Park, and . Schmid, Dynamic software product lines, IEEE Computer, vol.15, p.18, 2008.

K. Henricksen, J. Indulska, and A. Rakotonirainy, Modeling context information in pervasive computing systems, Pervasive Computing, First International Conference, Pervasive, vol.20, p.51, 2002.

T. Hartmann, A. Moawad, F. Fouquet, Y. Reckinger, J. Klein et al., Near real-time electric load approximation in low voltage cables of smart grids with models@run.time, Proceedings of the 31st Annual ACM Symposium on Applied Com-25 puting, vol.33, p.32, 2016.

T. Hartmann, A. Moawad, F. Fouquet, and Y. L. Traon, The next evolution of MDE: a seamless integration of machine learning into domain modeling. Software and System Modeling, vol.30, 2019.

C. A. Hoare, Communicating sequential processes. Communications of the ACM, p.49, 1978.

D. Harel and B. Rumpe, Meaningful modeling: what's the semantics of "semantics, IEEE Computer, vol.77, p.27, 2004.

J. E. Hutchinson, M. Rouncefield, and J. Whittle, Modeldriven engineering practices in industry, Proceedings of the 33rd International Conference on Software Engineering, ICSE, vol.23, p.22, 2011.

. Hwr-+-11,

J. E. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, Empirical assessment of MDE in industry, Proceedings of the 33rd International Conference on Software Engineering, ICSE, p.22, 2011.

A. Ipakchi and F. Albuyeh, Grid of the future. IEEE power and energy magazine, 2009.

I. Iso and . Ieee, Systems and software engineering -vocabulary, ISO/IEC/IEEE 24765: 2017 (E), 2017.

M. , U. Iftikhar, and D. Weyns, ActivFORMS: active formal models for self-adaptation, 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, vol.50, p.57, 2014.

M. Jackson, Annals of Software Engineering, vol.17, 1997.

J. Jézéquel, , p.25

F. Monperrus and . Fouquet, Mashup of metalanguages and its implementation in the kermeta language workbench. Software and Systems Modeling, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00829839

A. Seyyed, A. Javadi, and . Gandhi, DIAL: reducing tail 30 latencies for cloud applications via dynamic interference-aware load balancing, 2017 IEEE International Conference on Autonomic Computing, 2017.

S. Jaroszewicz and M. Korzen, Arithmetic operations 35 on independent random variables: A numerical approach, SIAM J. Scientific Computing, vol.61, p.65, 2012.

A. Jiménez-ramírez, B. Weber, I. Barba, and C. D. Valle, Generating optimized configurable business process models in scenarios subject to uncertainty. Information & Software Technology, vol.63, pp.59-61, 2015.

O. Jeffrey, D. M. Kephart, and . Chess, The vision of autonomic computing, IEEE Computer, pp.16-19, 2003.

R. M. Keller, Formal verification of parallel programs, Communications of ACM, vol.10, p.360251, 1976.

S. Kent, Model driven engineering, Integrated Formal Methods, Third International Conference, IFM, 2002.

M. Koegel and J. Helming, EMFStore: a model repos-15 itory for EMF models, Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE, p.9, 2010.

A. Kleppe, Software language engineering: creating domain-20 specific languages using metamodels, Kleppe -Software -Language -Engineering -Creating -Domain -Specific-Languages-Using-Metamodels/PGM162096.html, pp.0-321, 2008.

J. Kramer and J. Magee, The evolving philosophers problem: dynamic change management, IEEE Transactions on Software Engineering, vol.48, p.16, 1990.

J. Kramer, Is abstraction the key to computing? Communications 30 of the ACM, p.21, 2007.

B. Kanso and S. Taha, Temporal constraint support for OCL, Software Language Engineering, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00762150

E. O. Lebigot, Uncertainties: a python package for calculations with uncertainties, vol.Accessed, pp.2018-2028, 2018.

B. Lewis, Debugging backwards in time. CoRR, cs.SE/0310016, 2003.

P. Lalanda, E. Gerbert-gaillard, and S. Chollet, Selfaware context in smart home pervasive platforms, 2017 IEEE International Conference on Autonomic Computing, ICAC, 2017
URL : https://hal.archives-ouvertes.fr/hal-01674695

D. J. Lunn, A. Thomas, N. Best, and D. J. Spiegelhalter, WinBUGS -A bayesian modelling framework: concepts, structure, and extensibility, Statistics and Computing, vol.67, 2000.

S. Maoz, Using model-based traces as runtime models, IEEE Computer, vol.51, p.48, 2009.

D. F. Mendonça, R. Ali, and G. Rodrigues, Modelling and analysing contextual failures for dependability re-20 quirements, 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2014.

M. Maurer, I. Breskovic, and V. C. Emeakaroha, , p.25

. Brandic, Revealing the MAPE loop for the autonomic management of cloud infrastructures, Proceedings of the 16th IEEE Symposium on Computers and Communications, ISCC, vol.58, p.56, 2011.

L. Mouline, A. Benelallam, and F. Fouquet, A temporal model for interactive diagnosis of adaptive systems, 2018 IEEE International Conference on Autonomic Computing, ICAC, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01862964

/. Icac,

L. Mouline, A. Benelallam, and T. Hartmann, François, vol.35

J. Fouquet, B. Bourcier, O. Morin, and . Barais, Enabling temporal-aware contexts for adaptative distributed systems, Proceedings of the 33rd Annual ACM Symposium on Applied Computing, xl SAC, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01723451

[. Mbh-+-ng]-ludovic-mouline, A. Benelallam, T. Hartmann, J. Bourcier, O. Barais et al., Ain'tea: managing data uncertainty at the language level. Forthcoming, forthcoming

B. Morin, O. Barais, and J. Jézéquel, Franck Fleurey, and Arnor Solberg. Models@run.time to support dynamic adaptation, IEEE Computer, 2009.

. Mbn-+-09,

B. Morin, O. Barais, G. Nain, and J. Jézéquel, Taming dynamically adaptive systems using models and aspects, 31st International Conference on Software Engineering, ICSE, vol.57, p.56, 2009.

. Mcg-+-15,

A. Gabriel, J. Moreno, D. Cámara, and B. R. Garlan,

. Schmerl, Proactive self-adaptation under uncertainty: a probabilistic model checking approach, Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE, 2015.

E. Meijer and P. Drayton, Static typing where possible, dynamic typing when needed: the end of the cold war between programming languages, 2004.

J. Metrology, Evaluation of measurement data -guide to the 25 expression of uncertainty in measurement, 2008.

A. M. Mood, F. A. Graybill, and D. C. Boes,

, Introduction to the Theory of Statistics, 1963.

A. Moawad, T. Hartmann, F. Fouquet, G. Nain, J. Klein et al., Beyond discrete modeling: A continuous and efficient model for iot, 18th ACM/IEEE Inter-35 national Conference on Model Driven Engineering Languages and Systems, 2015.

L. Mouline, T. Hartmann, F. Fouquet, Y. L. Traon, J. Bourcier et al., Weaving rules into models@run.time for embedded smart systems, Companion to the first International Conference on the Art, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01609796

D. Peter and . Mosses, The varieties of programming language semantics, Perspectives of System Informatics, PSI, p.77, 2001.

M. Mongiello, P. Pelliccione, and M. Sciancalepore,

, 10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2015.

Z. Vera, J. Moffitt, and . Stoyanovich, Temporal graph algebra, Proceedings of The 16th International Symposium on Database Programming Languages, vol.51, 2017.

P. Makris, D. N. Skoutas, and C. Skianis, A 20 survey on context-aware mobile and wireless networking: on networking and computing environments' integration, IEEE Communications Surveys and Tutorials, vol.20, p.19, 2013.

T. Minka, J. M. Winn, J. P. Guiver, Y. Zaykov, D. Fabian et al., , p.25

. Bronskill and . Infer, , 2018.

T. Mayerhofer, M. Wimmer, and A. Vallecillo, Adding uncertainty and units to quantity types in software models, International Conference on Software Language Engineering, vol.30, p.67, 2016.

, OMG Unified Modeling Language, version 2.5.1, 2017.

, Smart grid: a beginner's guide, 2019.

C. Parra, X. Blanc, A. Cleve, and L. Duchien,

, Unifying design and runtime software adaptation using aspect models. Science of Computer Programming, vol.54, 2011.

A. Pfeffer, IBAL: A probabilistic rational programming language, Proceedings of the Seventeenth International Joint Conference on 10

, Artificial Intelligence, vol.IJCAI, p.65, 2001.

M. Pinto, L. Fuentes, and J. M. Troya, DAOP-ADL: an architecture description language for dynamic component and aspectbased development, Frank Pfenning and Yannis Smaragdakis, edi-15 tors, vol.57, 2003.

M. Plummer, Jags: a program for analysis of bayesian graphical models using gibbs sampling, Proceedings of the 3rd 20 international workshop on distributed statistical computing, vol.67, 2003.

S. Park, F. Pfenning, and S. Thrun, A probabilistic language based on sampling functions, ACM Transactions on Programming Languages and Systems, vol.61, p.65, 2008.

D. Pandey, U. Suman, and A. K. Ramani, An effective requirement engineering process model for software development and requirements management, Advances in Recent Technologies 30 in Communication and Computing (ARTCom), p.21, 2010.

C. Perera, A. B. Zaslavsky, P. Christen, and D. Georgakopoulos, Context aware computing for the internet of things: A survey, IEEE Communications Surveys and Tutorials, p.19, 2014.

N. Ramsey and A. Pfeffer, Stochastic lambda calculus and monads of probability distributions, Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, vol.67, 2002.

J. José-eduardo-rivera, A. Romero, and . Vallecillo, Behavior, time and viewpoint consistency: three challenges for MDE, Models in Software Engineering, Workshops and Symposia at MODELS, 2008.

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling framework, 2008.

S. Sankaranarayanan, A. Chakarov, and S. Gulwani, Static analysis for probabilistic programs: inferring whole program properties from finitely many paths, ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI, vol.67, 2013.

R. Salay, M. Chechik, J. Horkoff, and A. Sandro, Managing requirements uncertainty with partial models. Requirements Engineering, pp.59-62, 2013.

C. Douglas and . Schmidt, Guest editor's introduction: model-driven engineering, IEEE Computer, 2006.

G. Shafer, A mathematical theory of evidence, vol.42, p.9780691100425, 1976.

J. Schwarz, J. Mankoff, and S. E. Hudson, Monte carlo methods for managing interactive state, action and feedback under uncertainty, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, vol.67, 2011.

M. Salehie and L. Tahvildari, Self-adaptive software: landscape and research challenges, TAAS, vol.17, 2009.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, Probabilistic programming in python using PyMC3, PeerJ Computer

, Science, vol.36, p.65, 2016.

, Watcher Drivers Team. OpenStack Watcher, 2015.

H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic, PLASMA: a plan-based layered architecture for software model-driven adaptation, IEEE/ACM International Conference on Automated Software Engineering, vol.50, p.58, 2010.

S. Thrun, Towards programming tools for robots that integrate probabilistic computation and learning, Proceedings of the 2000 IEEE International Conference on Robotics and Automation, ICRA, vol.844075, 2000.

Y. Tahara, A. Ohsuga, and S. Honiden, Formal verification of dynamic evolution processes of UML models using aspects, 12th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, 2017. 25 url

A. Van-deursen and P. Klint, Little languages: little maintenance? Journal of Software Maintenance, 1998.

, , vol.10, pp.1096-908, 199803.

, , p.27

A. Van-deursen, P. Klint, and J. Visser, Domain-specific languages: an annotated bibliography. SIGPLAN Notices, 2000.

A. Vallecillo, C. Morcillo, and P. Orue, Expressing measurement uncertainty in software models, 10th International Conference on the Quality of Information and Communications Technology, QUATIC, 2016.

M. Voelter, Generic tools, specific languages. Citeseer, p.27, 2014.

, Document Object Model (DOM), World Wide Web Consortium (W3C), p.26, 2005.

D. Weyns and T. Ahmad, Claims and evidence for architecturebased self-adaptation: A systematic literature review, p.15

, Architecture ECSA, vol.17, 2013.

C. Walck, Hand-book on statistical distributions for experimentalists, vol.84, p.78, 1996.

R. Wang, D. Butnariu, and J. Rexford, Openflowbased server load balancing gone wild, USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE, 2011.

D. Weyns, Software engineering of self-adaptive systems, Handbook of Software Engineering, vol.17, p.16, 2019.

T. Wolf and T. Holvoet, Emergence versus self-organisation: 30 different concepts but promising when combined, Engineering Self-Organising Systems, Methodologies and Applications, p.17, 2004.

D. Weyns, R. Haesevoets, and A. Helleboogh, The MACODO organization model for context-driven dynamic agent 35 organizations, TAAS, vol.57, 2010.

J. Whittle, J. E. Hutchinson, and M. Rouncefield, The state of practice in model-driven engineering, IEEE Software, vol.22

J. Whittle, J. E. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal, Industrial adoption of model-driven 5 engineering: are the tools really the problem?, Model-Driven Engineering Languages and Systems, MODELS, 2013.

G. Wübbeler, M. Krystek, and C. Elster, Evaluation of measurement uncertainty and its numerical calculation by a 10 monte carlo method. Measurement science and technology, p.134, 2008.

D. Weyns, S. Malek, and J. Andersson, FORMS: unifying reference model for formal specification of distributed self-adaptive 15 systems, TAAS, vol.48, p.56, 2012.

C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication in software engineering, 18th International Conference on Evaluation and Assessment in Software Engineering, vol.66, p.46, 2014.

J. Whittle, P. Sawyer, N. Bencomo, H. C. Betty, J. Cheng et al., RELAX: incorporating uncertainty into the specification of self-adaptive systems, International Requirements 25 Engineering Conference, vol.63, pp.59-61, 2009.

J. Whittle, P. Sawyer, N. Bencomo, H. C. Betty, J. Cheng et al., RELAX: a language to address uncertainty in self-adaptive systems requirement. Requirements Engineering, vol.30, pp.59-61, 2010.

E. Yu, Modelling strategic relationships for process reengineering, vol.115, 2011.

E. Zio and T. Aven, Uncertainties in smart grids behavior and modeling: what are the risks and vulnerabilities? how to analyze them? Energy Policy, 2011.

A. Lotfi and . Zadeh, Fuzzy sets, Fuzzy Sets, Fuzzy Logic, And Fuzzy 5 Systems: Selected Papers by Lotfi A Zadeh

M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-wise cyber-physical system test modeling. Software and Systems Modeling, vol.10, pp.59-61, 2019.

J. Zhang, H. Goldsby, and B. H. Cheng, Modular verification of dynamically adaptive systems, Proceedings of the 8th International Conference on Aspect-Oriented Software Development, AOSD, 2009.

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz et al., Understanding uncertainty in cyber-physical systems: A conceptual model, Modelling Foundations and Applications, vol.63, pp.59-61, 2016.