, Plusieurs méthodes de conception ont été proposées par la communauté scientifique pour objectif à simplifier le processus. Parmi eux, les plus reconnus sont le « Power Electronics Building Blocks » (PEBB) et les « multicell converters » (MCC). Les deux proposent de simplifier et, La conception et la fabrication des convertisseurs de puissance sont très coûteuses en termes de temps et argent

, Pourtant, les convertisseurs fabriqués en suivant ces méthodes ne représentent qu'un petit marché de la totalité de l'électronique de puissance

, Ce travail est une contribution au développement d'une nouvelle méthodologie de conception de convertisseurs inspirée des approches PEBB et MCC, mais aussi d'un formalisme à l'image de la micro-électronique digitale. Cette nouvelle méthodologie s'appelle « Automate Design for Manufacture, ADFM) et conduit à la synthèse de réseaux de convertisseurs

, ADFM un convertisseur n'est plus une pièce issue d'une ingénierie multidisciplinaire, mais un assemblage simple d'éléments normalisés maîtrisés et fiables. De plus, l'ADFM introduit une forme de prototypage virtuel permettant d'estimer les caractéristiques de tous types d'assemblages de cellules standards (CSs)

, La clé pour le prototypage virtuel d'un PCA c'est l'utilisation d'une « Technology Platform » (TP) mature, pièce centrale de la démarche ADFM. La maturité d'une TP signifie la caractérisation et la description minutieuse de chaque cellule standard une

C. C. Harskind and M. M. Morack, A History of Mercury-Arc Rectifiers in North America, IEEE Ind. Appl. Soc. Piscataway NJ Publ. TH, pp.201-207, 1987.

B. Bose, The past, present, and future of power electronics, IEEE Ind. Electron. Mag, vol.3, issue.2, pp.7-11, 2009.

B. K. Bose, Power Electronics, Smart Grid, and Renewable Energy Systems, Proc. IEEE, vol.105, 2011.

N. Holonyak, The silicon pnpn switch and controlled rectifier (thyristor), IEEE Trans. Power Electron, vol.16, issue.1, pp.8-16, 2001.

P. Friedrichs, ECPE Position Paper on Next Generation Power Electronics based on Wide Bandgap Devices, 2016.

D. Boroyevich, R. Burgos, L. Arnedo, and F. Wang, Synthesis and Integration of Future Electronic Power Distribution Systems, 2007 Power Conversion Conference -Nagoya, p.1, 2007.

D. Nguyen, Intégration fonctionnelle autour des composants quatre quadrants Avec l'application à la conversion AC/AC, 2008.

T. Ericsen and A. Tucker, Power Electronics Building Blocks and potential power modulator applications, Conference Record of the Twenty-Third International Power Modulator Symposium (Cat. No. 98CH36133), pp.12-15, 1998.

T. Ericsen, Power Electronic Building Blocks-a systematic approach to power electronics, 2000 Power Engineering Society Summer Meeting, vol.2, pp.1216-1218, 2000.

F. C. Lee, Power electronics building block and system integration, Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference, vol.1, pp.1-8, 2000.

F. Wang, S. Rosado, T. Thacker, and D. Boroyevich, Power electronics building blocks for utility power system applications, Power Electron. Motion Control Conf. 2004 IPEMC 2004 4th Int, vol.1, pp.354-359, 2004.

F. Mariut, S. Rosu, and R. B. Tenconi, Multiphase modular power converter using the PEBB concept and FPGA-based direct high speed voltage measurement, 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe, pp.1-10, 2015.

A. R. Iyer, R. P. Kandula, R. Moghe, J. E. Hernandez, F. C. Lambert et al., Validation of the Plug-and-Play AC/AC Power Electronics Building Block (AC-PEBB) for Medium-Voltage Grid Control Applications, IEEE Trans. Ind. Appl, vol.50, issue.5, pp.3549-3557, 2014.

F. Wang, Z. Zhang, T. Ericsen, R. Raju, R. Burgos et al., Advances in Power Conversion and Drives for Shipboard Systems, Proc. IEEE, vol.103, pp.2285-2311, 2015.

M. S. Ortmann, W. Hoffmann, S. A. Mussa, and M. L. Heldwein, Multilevel multistate switching cells PEBBs as the basis for the implementation of advanced rectifiers, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp.1871-1877, 2013.

C. Klumpner, F. Blaabjerg, and P. Nielsen, Speeding-up the maturation process of the matrix converter technology, 2001 IEEE 32nd Annual Power Electronics Specialists Conference, vol.2, pp.1083-1088, 2001.

M. Liserre, T. Sauter, and J. Hung, Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics, IEEE Ind. Electron. Mag, vol.4, issue.1, pp.18-37, 2010.

J. Chivite-zabalza, I. Larrazabal, I. Zubimendi, S. Aurtenetxea, and M. Zabaleta, Multimegawatt wind turbine converter configurations suitable for off-shore applications, combining 3-L NPC PEBBs, IEEE Energy Conversion Congress and Exposition, pp.2635-2640, 2013.

I. Cvetkovic, Modular scalable medium-voltage impedance measurement unit using 10 kV SiC MOSFET PEBBs, 2015 IEEE Electric Ship Technologies Symposium (ESTS), pp.326-331, 2015.

P. K. Steimer, B. Oedegard, O. Apeldoorn, S. Bernet, and T. Brückner, Very high power IGCT PEBB technology, 2005 IEEE 36th Power Electronics Specialists Conference, pp.1-7, 2005.

D. Boroyevich, Building block integration in power electronics, 2010 IEEE International Symposium on Industrial Electronics, pp.3673-3678, 2010.

D. Boroyevich, IPEM-based power electronics system integration, 5th International Conference on Integrated Power Electronics Systems, pp.1-10, 2008.

R. Chen, F. Canales, B. Yang, and J. D. Vanwyk, Volumetric Optimal Design of Passive Integrated Power Electronics Module (IPEM) for Distributed Power System (DPS) Front-End DC/DC Converter, IEEE Trans. Ind. Appl, vol.41, issue.1, pp.9-17, 2005.

, ACS 6000 datasheet, ABB, 2008.

P. Steimer, O. Apeldoorn, and E. Carroll, IGCT devices-applications and future opportunities, 2000 Power Engineering Society Summer Meeting, vol.2, pp.1223-1228, 2000.

T. A. Meynard and H. Foch, Multi-level conversion: high voltage choppers and voltage-source inverters, PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference, vol.1, pp.397-403, 1992.

G. Gateau, P. Maussion, and T. Meynard, Fuzzy phase control of series multicell converters, Proceedings of 6th International Fuzzy Systems Conference, vol.3, pp.1627-1633, 1997.

T. A. Meynard, H. Foch, P. Thomas, J. Courault, R. Jakob et al., Multicell converters: basic concepts and industry applications, IEEE Trans. Ind. Electron, vol.49, issue.5, pp.955-964, 2002.

Y. Lei, A 2 kW, single-phase, 7-level, GaN inverter with an active energy buffer achieving 216 W/in3 power density and 97.6% peak efficiency, 2016 IEEE Applied Power Electronics Conference and Exposition, pp.1512-1519, 2016.

Z. Liao, Y. Lei, and R. C. Pilawa-podgurski, Analysis and Design of a High Power Density Flying-Capacitor Multilevel Boost Converter for High Step-Up Conversion, IEEE Trans. Power Electron, vol.34, issue.5, pp.4087-4099, 2019.

H. Ertl, J. W. Kolar, and F. C. Zach, A novel multicell DC-AC converter for applications in renewable energy systems, IEEE Trans. Ind. Electron, vol.49, issue.5, pp.1048-1057, 2002.

M. Kasper, D. Bortis, and J. W. Kolar, Scaling and balancing of multi-cell converters, 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 -ECCE ASIA), pp.2079-2086, 2014.

S. Busquets-monge and L. Caballero, Switching-Cell Arrays-An Alternative Design Approach in Power Conversion, IEEE Trans. Ind. Electron, vol.66, issue.1, pp.25-36, 2019.

M. Kasper, D. Bortis, G. Deboy, and J. W. Kolar, Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm3) Isolated AC-DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach, IEEE Trans. Power Electron, vol.32, issue.10, pp.7750-7769, 2017.

U. Badstuebner, J. Miniboeck, and J. W. Kolar, Experimental verification of the efficiency/power-density (?-?) Pareto Front of single-phase double-boost and TCM PFC rectifier systems, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp.1050-1057, 2013.

M. Moosavi and H. A. Toliyat, A Multicell Cascaded High-Frequency Link Inverter With Soft Switching and Isolation, IEEE Trans. Ind. Electron, vol.66, issue.4, pp.2518-2528, 2019.

A. Bindra and A. Mantooth, Modern Tool Limitations in Design Automation: Advancing Automation in Design Tools is Gathering Momentum, IEEE Power Electron. Mag, vol.6, issue.1, pp.28-33, 2019.

M. Delhommais, J. Schanen, F. Wurtz, C. Rigaud, and S. Chardon, First order design by optimization method: Application to an interleaved buck converter and validation, 2018 IEEE Applied Power Electronics Conference and Exposition, pp.944-951, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730219

, POWERFORGE, Multi-level by design, 2019.

T. M. Evans, PowerSynth: A Power Module Layout Generation Tool, IEEE Trans. Power Electron, vol.34, issue.6, pp.5063-5078, 2019.

H. Dang-thai, Institut National Polytechnique de Grenoble -INPG, Doctoral dissertation, 2009.

O. Deleage, Conception, réalisation et mise en oeuvre d'un micro-convertisseur intégré pour la conversion DC/DC, 2009.

T. Trinh, Réeseaux de micro convertisseurs, les premiers pas vers le circuit de puissance programmable, 2013.

L. Kerachev, Technologies de mise en oeuvre et stratégies de configuration de réseaux de micro-convertisseurs -Application au photovoltaique, 2013.

T. and H. Phung, Conception d'un équilibreur de charge de batterie à base du réseau de micro-convertisseurs, 2013.

T. Lamorelle, A. Andreta, Y. Lembeye, J. Crébier, and J. Podvin, Design level power electronics building block: Industrial framework for DC-DC conversion, 2018 IEEE International Conference on Industrial Technology (ICIT), pp.670-675, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730696

J. Wang, V. Veliadis, J. Zhang, Y. Alsmadi, P. R. Wilson et al., IEEE ITRW Working Group Position Paper-System Integration and Application: Silicon Carbide: A Roadmap for Silicon Carbide Adoption in Power Conversion Applications, IEEE Power Electron. Mag, vol.5, issue.2, pp.40-44, 2018.

H. Amano, The 2018 GaN power electronics roadmap, J. Phys. Appl. Phys, vol.51, 2018.

D. Bortis, D. Neumayr, and J. W. Kolar, ??-Pareto optimization and comparative evaluation of inverter concepts considered for the GOOGLE Little Box Challenge, 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), pp.1-5, 2016.

R. Ghosh, Industrial Approach to Design a 2-kVa Inverter for Google Little Box Challenge, IEEE Trans. Ind. Electron, vol.65, issue.7, pp.5539-5549, 2018.

L. Zhang, R. Born, X. Zhao, and J. Lai, A high efficiency inverter design for Google little box challenge, 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp.319-322, 2015.

C. W. Halsted and M. D. Manjrekar, A Critique of Little Box Challenge Inverter Designs: Breaking from Traditional Design Tradeoffs, IEEE Power Electron. Mag, vol.5, issue.4, pp.52-60, 2018.

S. Rosado, F. Wang, and D. Boroyevich, Design of PEBB based power electronics systems, IEEE Power Engineering Society General Meeting, p.5, 2006.

R. Giri, V. Choudhary, R. Ayyanar, and N. Mohan, Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and loadcurrent sharing, IEEE Trans. Ind. Appl, vol.42, issue.4, pp.1101-1111, 2006.

, Manufacturing readiness level, Wikipedia, The Free Encyclopedia, vol.17, p.49, 2019.

L. Kerachev, Technologies de mise en oeuvre et stratégies de configuration de réseaux de micro-convertisseurs -Application au photovoltaique, 2013.

F. Krismer and J. W. Kolar, Efficiency-optimized high-current dual active bridge converter for automotive applications, IEEE Trans. Ind. Electron, vol.59, issue.7, pp.2745-2760, 2011.

M. Blanc, Optimisation d'une structure de conversion DC/DC réversible pour application aéronautique de forte puissance, Grenoble Alpes, Doctoral dissertation, 2017.

. Nist/sematech,-e-handbook-of-statistical and E. Methods,

P. Schimmerling, J. C. Sisson, and A. Zaïdi, Pratique des plans d'expériences, 1998.

A. M. Dean and D. Voss, Design and Analysis of Experiments, 2000.

D. Coleman and G. Bert, A DOE Handbook: A Simple Approach to Basic Statistical Design of Experiments. Verlag nicht ermittelbar, 2014.

W. J. Diamond, Practical Experiment Designs: for Engineers and Scientists, 2001.

R. W. De-doncker, D. M. Divan, and M. H. Kheraluwala, A three-phase soft-switched high-power-density DC/DC converter for high-power applications, IEEE Trans. Ind. Appl, vol.27, issue.1, pp.63-73, 1991.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, vol.103, 2013.

C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning, 3. print, 2008.

R. R. Richardson, M. A. Osborne, and D. A. Howey, Battery health prediction under generalized conditions using a Gaussian process transition model, J. Energy Storage, vol.23, pp.320-328, 2019.

S. H. Ali, M. Heydarzadeh, S. Dusmez, X. Li, A. S. Kamath et al., Lifetime Estimation of Discrete IGBT Devices Based on Gaussian Process, IEEE Trans. Ind. Appl, vol.54, issue.1, pp.395-403, 2018.

A. Andreta, Y. Lembeye, L. L. Villa, and J. Crebier, Statistical Modelling Method for Active Power Components Based on Datasheet Information, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01838577

, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp.1-7, 2018.

T. Semiconductor, N-Channel Power MOSFET, TSM650N15CS datasheet

. Eemb, Lithium-ion Battery datasheet -LIR18650 2600mAh, 2010.

T. Lamorelle, Y. Lembeye, and J. Crébier, Handling differential mode conducted EMC in modular converters, 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), p.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886783

T. Lamorelle, V. Nguyen, J. Crebier, Y. Lembeye, D. Rubio et al., Multi-cell DC-DC converters -Input differential mode filtering generic design rules and implementation, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02136401