Learning with Limited Annotated Data for Visual Understanding - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Learning with Limited Annotated Data for Visual Understanding

Apprentissage avec des données annotées limitées pour une compréhension visuelle

Résumé

The ability of deep-learning methods to excel in computer vision highly depends on the amount of annotated data available for training. For some tasks, annotation may be too costly and labor intensive, thus becoming the main obstacle to better accuracy. Algorithms that learn from data automatically, without human supervision, perform substantially worse than their fully-supervised counterparts. Thus, there is a strong motivation to work on effective methods for learning with limited annotations. This thesis proposes to exploit prior knowledge about the task and develops more effective solutions for scene understanding and few-shot image classification.Main challenges of scene understanding include object detection, semantic and instance segmentation. Similarly, all these tasks aim at recognizing and localizing objects, at region- or more precise pixel-level, which makes the annotation process difficult. The first contribution of this manuscript is a Convolutional Neural Network (CNN) that performs both object detection and semantic segmentation. We design a specialized network architecture, that is trained to solve both problems in one forward pass, and operates in real-time. Thanks to the multi-task training procedure, both tasks benefit from each other in terms of accuracy, with no extra labeled data.The second contribution introduces a new technique for data augmentation, i.e., artificially increasing the amount of training data. It aims at creating new scenes by copy-pasting objects from one image to another, within a given dataset. Placing an object in a right context was found to be crucial in order to improve scene understanding performance. We propose to model visual context explicitly using a CNN that discovers correlations between object categories and their typical neighborhood, and then proposes realistic locations for augmentation. Overall, pasting objects in ``right'' locations allows to improve object detection and segmentation performance, with higher gains in limited annotation scenarios.For some problems, the data is extremely scarce, and an algorithm has to learn new concepts from a handful of examples. Few-shot classification consists of learning a predictive model that is able to effectively adapt to a new class, given only a few annotated samples. While most current methods concentrate on the adaptation mechanism, few works have tackled the problem of scarce training data explicitly. In our third contribution, we show that by addressing the fundamental high-variance issue of few-shot learning classifiers, it is possible to significantly outperform more sophisticated existing techniques. Our approach consists of designing an ensemble of deep networks to leverage the variance of the classifiers, and introducing new strategies to encourage the networks to cooperate, while encouraging prediction diversity. By matching different networks outputs on similar input images, we improve model accuracy and robustness, comparing to classical ensemble training. Moreover, a single network obtained by distillation shows similar to the full ensemble performance and yields state-of-the-art results with no computational overhead at test time.
La capacité des méthodes d'apprentissage profond à exceller en vision par ordinateur dépend fortement de la quantité de données annotées disponibles pour la formation. Pour certaines tâches, l'annotation peut être trop coûteuse et demander trop de travail, devenant ainsi le principal obstacle à une meilleure précision. Les algorithmes qui apprennent automatiquement à partir des données, sans supervision humaine, donnent de bien pires résultats que leurs homologues entièrement supervisés. Il y a donc une forte motivation à travailler sur des méthodes efficaces d'apprentissage avec des annotations limitées. Cette thèse propose d'exploiter les connaissances préalables sur la tâche et développe des solutions plus efficaces pour la compréhension des scènes et la classification de quelques images.Les principaux défis de la compréhension des scènes comprennent la détection d'objets, la sémantique et la segmentation des instances. De même, toutes ces tâches visent à reconnaître et localiser des objets, au niveau de la région ou au niveau plus précis des pixels, ce qui rend le processus d'annotation difficile. La première contribution de ce manuscrit est un réseau neuronal convolutionnel (CNN) qui effectue à la fois la détection d'objets et la segmentation sémantique. Nous concevons une architecture de réseau spécialisée, qui est formée pour résoudre les deux problèmes en un seul passage et qui fonctionne en temps réel. Grâce à la procédure de formation multitâche, les deux tâches bénéficient l'une de l'autre en termes de précision, sans données supplémentaires étiquetées.La deuxième contribution introduit une nouvelle technique d'augmentation des données, c'est-à-dire l'augmentation artificielle de la quantité de données de formation. Il vise à créer de nouvelles scènes par copier-coller d'objets d'une image à l'autre, dans un ensemble de données donné. Placer un objet dans un contexte approprié s'est avéré crucial pour améliorer la compréhension de la scène. Nous proposons de modéliser explicitement le contexte visuel à l'aide d'un CNN qui découvre les corrélations entre les catégories d'objets et leur voisinage typique, puis propose des emplacements réalistes à augmenter. Dans l'ensemble, le collage d'objets aux "bons endroits" permet d'améliorer les performances de détection et de segmentation des objets, avec des gains plus importants dans les scénarios d'annotations limitées.Pour certains problèmes, les données sont extrêmement rares et un algorithme doit apprendre de nouveaux concepts à partir de quelques exemples. Peu de classification consiste à apprendre un modèle prédictif capable de s'adapter efficacement à une nouvelle classe, avec seulement quelques échantillons annotés. Alors que la plupart des méthodes actuelles se concentrent sur le mécanisme d'adaptation, peu de travaux ont abordé explicitement le problème du manque de données sur la formation. Dans notre troisième article, nous montrons qu'en s'attaquant à la question fondamentale de la variance élevée des classificateurs d'apprentissage à faible tir, il est possible de surpasser considérablement les techniques existantes plus sophistiquées. Notre approche consiste à concevoir un ensemble de réseaux profonds pour tirer parti de la variance des classificateurs et à introduire de nouvelles stratégies pour encourager les réseaux à coopérer, tout en encourageant la diversité des prédictions. En faisant correspondre différentes sorties de réseaux sur des images d'entrée similaires, nous améliorons la précision et la robustesse du modèle par rapport à la formation d'ensemble classique. De plus, un seul réseau obtenu par distillation montre des performances similaires à celles de l'ensemble complet et donne des résultats à la pointe de la technologie, sans surcharge de calcul au moment du test.
Fichier principal
Vignette du fichier
DVORNIK_2019_archivage.pdf (14.23 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02527279 , version 1 (01-04-2020)

Identifiants

  • HAL Id : tel-02527279 , version 1

Citer

Mikita Dvornik. Learning with Limited Annotated Data for Visual Understanding. Computer Vision and Pattern Recognition [cs.CV]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAM050⟩. ⟨tel-02527279⟩
302 Consultations
545 Téléchargements

Partager

Gmail Facebook X LinkedIn More