, Microoled, the smallest AMOLED microdisplay in the world

H. Letheby, On the production of a blue substance by the electrolysis of sulphate of aniline, Journal of the Chemical Society, vol.15, issue.0, pp.161-164, 1862.

M. Pope, Charge-transfer exciton and ionic levels in organic crystals, Journal of Polymer Science Part C: Polymer Symposia, vol.17, issue.1, pp.233-273, 1967.

C. Sekine, Y. Tsubata, and T. Yamada, Recent progress of high performance polymer OLED and OPV materials for organic printed electronics, Science and Technology of Advanced Materials, V, vol.15, issue.3, p.34203, 2014.

X. Guo, M. Baumgarten, and K. Müllen, Designing ?-conjugated polymers for organic electronics, Progress in Polymer Science, vol.38, pp.1832-908, 2013.

T. Lei, J. Wang, P. , and J. , Roles of Flexible Chains in Organic Semiconducting Materials, Chemistry of Materials, V, vol.26, issue.1, pp.594-603, 2014.

T. M. Kraft, P. R. Berger, and D. Lupo, Printed and organic diodes: devices, circuits and applications, vol.2, p.33001, 2017.

H. Youn, H. J. Park, and L. J. Guo, Printed Nanostructures for Organic Photovoltaic Cells and Solution-Processed Polymer Light-Emitting Diodes, Energy Technology, issue.4, pp.340-50, 2015.

S. K. Gupta, P. Jha, and A. Singh, Flexible organic semiconductor thin films, Journal of Materials Chemistry C, issue.33, pp.8468-79, 2015.

Y. H. Lee, O. Y. Kweon, and H. Kim, Recent advances in organic sensors for health selfmonitoring systems, Journal of Materials Chemistry C, vol.6, issue.32, pp.8569-612, 2018.

J. Meyer, P. Görrn, and T. Riedl, 17 -Transparent OLED displays, pp.512-559, 2013.

H. Koezuka, A. Tsumura, A. , and T. , Field-effect transistor with polythiophene thin film, Synthetic Metals, vol.18, issue.1, pp.699-704, 1987.

X. Ren, F. Yang, and X. Gao, Organic Field-Effect Transistor for Energy-Related Applications: Low-Power-Consumption Devices, Near-Infrared Phototransistors, and Organic Thermoelectric Devices, Advanced Energy Materials, V, vol.8, issue.24, p.1801003, 2018.

C. Zhang, P. Chen, and W. Hu, Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations, Small, V, vol.12, issue.10, pp.1252-94, 2016.

R. Capelli, S. Toffanin, and G. Generali, Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes, Nature Materials, V, vol.9, issue.6, pp.496-503, 2010.

C. W. Tang, Two-layer organic photovoltaic cell, Applied Physics Letters, vol.48, issue.2, pp.183-188, 1986.

O. Inganäs, Organic Photovoltaics over Three Decades, Advanced Materials, V, vol.30, issue.35, p.1800388, 2018.

K. Baeg, M. Binda, and D. Natali, Organic Light Detectors: Photodiodes and Phototransistors, Advanced Materials, V, vol.25, issue.31, pp.4267-95, 2013.

A. Bernanose, M. Comte, and P. Vouaux, Sur un nouveau mode d'émission lumineuse chez certains composés organiques, Journal de Chimie Physique, pp.64-72, 1953.

M. Pope, H. P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals, The Journal of Chemical Physics, vol.38, issue.8, pp.2042-2045, 1963.

R. H. Partridge, Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations, Polymer, vol.24, issue.6, pp.733-741, 1983.

C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Applied Physics Letters, vol.51, issue.12, pp.913-918, 1987.

J. H. Burroughes, D. D. Bradley, and A. R. Brown, Light-emitting diodes based on conjugated polymers, Nature, vol.347, issue.6293, pp.539-580, 1990.

Y. Murat, Nouvelles structures électroluminescentes organiques pour applications signalétiques et petits afficheurs, 2017.

L. Sun, Y. Kurosawa, and H. Ito, Solution processing of alternating PDMS/SiOx multilayer for encapsulation of organic light emitting diodes, Organic Electronics, pp.176-80, 2019.

S. Amberg-schwab, L. Klein, M. Aparicio, and A. Jitianu, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, pp.3295-315, 2018.

P. E. Burrows, V. Bulovic, and S. R. Forrest, Reliability and degradation of organic light emitting devices, Applied Physics Letters, vol.65, issue.23, pp.2922-2926, 1994.

R. Knechtel, Glass frit bonding: an universal technology for wafer level encapsulation and packaging, vol.12, pp.63-71, 2005.

S. Garner, Flexible Glass: Enabling Thin, Lightweight, and Flexible Electronics, vol.380, p.pp, 2017.

D. Yu, Y. Yang, and Z. Chen, Recent progress on thin-film encapsulation technologies for organic electronic devices, Optics Communications, vol.362, pp.43-52, 2016.

L. Wang, C. Ruan, and M. Li, Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer, Journal of Materials Chemistry C, issue.16, pp.4017-4041, 2017.

T. Maindron, T. Jullien, A. , and A. , Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.34, issue.3, p.31513, 2016.

A. Rückerl, R. Zeisel, and M. Mandl, Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3, Journal of Applied Physics, vol.121, issue.2, p.25306, 2017.

H. Kim, H. N. Ra, and M. Kim, Enhancement of barrier properties by wet coating of epoxy-ZrP nanocomposites on various inorganic layers, Progress in Organic Coatings, pp.25-34, 2017.

G. Choi, J. Jin, and D. Shin, Flexible Hard Coating: Glass-Like Wear Resistant, Yet Plastic-Like Compliant, Transparent Protective Coating for Foldable Displays, Advanced Materials, V, vol.29, issue.19, p.1700205, 2017.

H. Im, H. Y. Park, and D. J. Kang, Class-II-type nanosilica-epoxy hybrid coating with high moisture barrier performance and mechanical robustness, Progress in Organic Coatings, pp.136-177, 2019.

D. J. Kang, G. U. Park, and H. Y. Park, A high-performance transparent moisture barrier using surface-modified nanoclay composite for OLED encapsulation, Progress in Organic Coatings, vol.118, pp.66-71, 2018.

P. Mandlik, J. Gartside, and L. Han, A single-layer permeation barrier for organic lightemitting displays, Applied Physics Letters, vol.92, issue.10, p.103309, 2008.

M. Chung, J. Lin, and T. Hsieh, Preparation of organic/inorganic hybrid nanocomposites by ultraviolet irradiation and their packaging applications for organic optoelectronic devices, Applied Surface Science, vol.257, issue.21, pp.9142-51, 2011.

S. Costacurta, L. Malfatti, and P. Falcaro, Photocurable silica hybrid organic-inorganic films for photonic applications, Journal of Sol-Gel Science and Technology, vol.44, issue.1, pp.59-64, 2007.

F. Mammeri, E. L. Bourhis, and L. Rozes, Mechanical properties of hybrid organic-inorganic materials, Journal of Materials Chemistry, pp.3787-811, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022637

, Polyrise : expert en vernis sol-gel et traitement de surface, Polyrise. Available at

T. Maindron, N. Troc, and B. Aventurier, P-183: Study of Electrical Probing through Thin-film Encapsulation Made of Al2O3 Films Deposited by Low Temperature ALD onto Different Metallic Underlayers, SID Symposium Digest of Technical Papers, vol.48, issue.1, pp.1960-1962, 2017.

W. La-synthèse and . Stöber, La plupart du temps, les particules sont formées par hydrolyse-condensation du TEOS en milieu alcool et le catalyseur utilisé est l'ammoniaque. C'est l'une des voies de synthèse en phase homogène les plus communes. Toutefois cette méthode n'est pas utilisée pour une production à grande échelle contrairement aux techniques d'ensemencement basées sur la croissance par procédé sol-gel autour de clusters de silices préexistants, est dérivée des travaux de G. Kolbes i, vol.42

C. Sanchez and P. Gómez-romero, Hybrid Materials, Functional Applications. An Introduction, Functional Hybrid Materials. Weinheim, FRG, pp.1-14, 2005.

L. Wilkes, G. Orler, B. Huang, and H. , Ceramers-hybrid materials incorporating polymeric oligomeric species into inorganic glasses utilizing a sol-gel approach, pp.300-302, 1985.

H. Schmidt, New type of non-crystalline solids between inorganic and organic materials, Journal of Non-Crystalline Solids, vol.73, issue.1, pp.681-91, 1985.

C. J. Brinker and G. Scherer, Sol Gel Science: The Physics And Chemistry Of Sol Gel Processing, 1990.

E. J. Pope and J. Mackenzie, Sol-gel processing of silica, Journal of Non-Crystalline Solids, vol.87, issue.1, pp.185-98, 1986.

C. J. Brinker, Hydrolysis and condensation of silicates: Effects on structure, Journal of Non-Crystalline Solids, vol.100, issue.1, pp.31-50, 1988.

F. Collignon, Cahier technologique Sol-Gel, Certech absl, 2008.

C. J. Brinker and G. W. Scherer, CHAPTER 9 -Structural Evolution during Consolidation, pp.514-615, 1990.

D. J. Kang, G. U. Park, and H. Y. Park, A high-performance transparent moisture barrier using surface-modified nanoclay composite for OLED encapsulation, Progress in Organic Coatings, vol.118, pp.66-71, 2018.

H. Im, H. Y. Park, and D. J. Kang, Class-II-type nanosilica-epoxy hybrid coating with high moisture barrier performance and mechanical robustness, Progress in Organic Coatings, pp.136-177, 2019.

E. G. Jeong, S. Kwon, and J. H. Han, A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs, Nanoscale, vol.9, issue.19, pp.6370-6379, 2017.

M. Chung, J. Lin, and T. Hsieh, Preparation of organic/inorganic hybrid nanocomposites by ultraviolet irradiation and their packaging applications for organic optoelectronic devices, Applied Surface Science, vol.257, issue.21, pp.9142-51, 2011.

S. Costacurta, L. Malfatti, and P. Falcaro, Photocurable silica hybrid organic-inorganic films for photonic applications, Journal of Sol-Gel Science and Technology, vol.44, issue.1, pp.59-64, 2007.

L. Sun, Y. Kurosawa, and H. Ito, Solution processing of alternating PDMS/SiOx multilayer for encapsulation of organic light emitting diodes, Organic Electronics, pp.176-80, 2019.

G. Choi, J. Jin, and D. Shin, Flexible Hard Coating: Glass-Like Wear Resistant, Yet Plastic-Like Compliant, Transparent Protective Coating for Foldable Displays, Advanced Materials, V, vol.29, issue.19, p.1700205, 2017.

P. Mandlik, J. Gartside, and L. Han, A single-layer permeation barrier for organic lightemitting displays, Applied Physics Letters, vol.92, issue.10, p.103309, 2008.

M. Kaur and A. K. Srivastava, Photopolymerization: A Review, Journal of Macromolecular Science, Part C, vol.42, issue.4, pp.481-512, 2002.

C. Belon, A. Chemtob, and C. Croutxé-barghorn, A Simple Method for the Reinforcement of UV-Cured Coatings via Sol-Gel Photopolymerization, Macromolecular Materials and Engineering, vol.296, issue.6, pp.506-522, 2011.

G. Malucelli, A. Priola, and E. Amerio, Surface and barrier properties of hybrid nanocomposites containing silica and PEO segments, Journal of Applied Polymer Science, vol.103, issue.6, pp.4107-4122, 2007.

F. Mammeri, E. Le-bourhis, and L. Rozes, Elaboration and mechanical characterization of nanocomposites thin films: Part I: Determination of the mechanical properties of thin films prepared by in situ polymerisation of tetraethoxysilane in poly(methyl methacrylate), Journal of the European Ceramic Society, vol.26, issue.3, pp.259-66, 2006.

M. J. Bommel, . Van, P. M. Wolde, and T. N. Bernards, The influence of methacryloxypropyltrimethoxysilane on the sol-gel process of TEOS, Journal of Sol-Gel Science and Technology, issue.2, pp.167-70, 1994.

D. Shang, X. Sun, and J. Hang, Preparation and stability of silica sol/TPGDA dispersions and its application in the UV-curable hybrid coatings for fire protection, Journal of Sol-Gel Science and Technology, vol.67, issue.1, pp.39-49, 2013.

S. R. Kunst, H. R. Cardoso, and C. T. Oliveira, Corrosion resistance of siloxane-poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition, Applied Surface Science, pp.1-11, 2014.

M. Sangermano, E. Gaspari, and L. Vescovo, Enhancement of scratch-resistance properties of methacrylated UV-cured coatings, Progress in Organic Coatings, vol.72, issue.3, pp.287-91, 2011.

A. B. Wojcik and L. C. Klein, Transparent inorganic/organic copolymers by the Sol-Gel process: Copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth)acrylate monomers, Journal of Sol-Gel Science and Technology, issue.1, pp.57-66, 1995.

Y. Eo, D. Kim, and B. Bae, Coating of Tetraethylorthosilicate (TEOS)/Vinyltriethoxysilane (VTES) Hybrid Solution on Polymer Films, Journal of Sol-Gel Science and Technology, vol.13, pp.409-422, 1998.

S. Peng, Z. Zeng, and W. Zhao, Performance evaluation of mercapto functional hybrid silica sol-gel coating on copper surface, Surface and Coatings Technology, pp.135-177, 2014.

E. Amerio, P. Fabbri, and G. Malucelli, Scratch resistance of nano-silica reinforced acrylic coatings, Progress in Organic Coatings, vol.62, issue.2, pp.129-162, 2008.

J. Jang, J. Bae, and D. Kang, Role of silane coupling agents for performance improvement of poly(vinyl acetate)/tetraethyl orthosilicate hybrid composites prepared by a sol-gel process, Polymer International, vol.50, issue.11, pp.1247-51, 2001.

C. J. Landry, B. K. Coltrain, and J. A. Wesson, In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions, Polymer, vol.33, issue.7, pp.1496-506, 1992.

J. Alvarado-rivera, J. Muñoz-saldaña, and R. Ramírez-bon, Nanoindentation testing of SiO2-PMMA hybrid films on acrylic substrates with variable coupling agent content, Journal of Sol-Gel Science and Technology, vol.54, issue.3, pp.312-320, 2010.

J. Alvarado-rivera, J. Muñoz-saldaña, and R. Ramírez-bon, Determination of fracture toughness and energy dissipation of SiO2-poly(methyl metacrylate) hybrid films by nanoindentation, Thin Solid Films, vol.519, issue.16, pp.5528-5562, 2011.

S. W. Kim, Characterization of UV curable hybrid hard coating materials prepared by sol-gel method, Korean Journal of Chemical Engineering, vol.28, issue.1, pp.298-303, 2010.

H. Yahyaei and M. Mohseni, Mechanically controlled, morphologically determined sol-gel derived UV curable hybrid nanocomposites: SAXS and DMTA studies, Journal of Sol-Gel Science and Technology, vol.66, issue.2, pp.187-92, 2013.

M. Rezaei, M. Mohseni, Y. , and H. , A study on water and oxygen permeability of BOPP coated with hybrid UV cured nanocoatings, Progress in Organic Coatings, pp.72-81, 2016.

K. Tadanaga, K. Azuta, and T. Minami, Preparation of Organic-Inorganic Hybrid Coating Films from Vinyltriethoxysilane-Tetraethoxysilane by the Sol-Gel Method, Journal of the Ceramic Society of Japan, vol.105, issue.1223, pp.555-563, 1997.

S. K. Basu, L. E. Scriven, and L. F. Francis, Mechanism of wrinkle formation in curing coatings, Progress in Organic Coatings, vol.53, issue.1, pp.1-16, 2005.

F. Bauer, V. Sauerland, and H. Ernst, Preparation of Scratch-and Abrasion-Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 4, vol.204, pp.375-83, 2003.

F. Li, S. Zhou, and L. Wu, Preparation and characterization of UV-curable MPS-modified silica nanocomposite coats, Journal of Applied Polymer Science, vol.98, issue.5, pp.2274-81, 2005.

S. Li, J. Wang, and S. Zhao, Effect of surface modification and medium on the rheological properties of silica nanoparticle suspensions, Ceramics International, vol.42, issue.6, pp.7767-73, 2016.

D. J. Kang, D. H. Han, and D. P. Kang, Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin, Journal of Non-Crystalline Solids, vol.355, issue.7, pp.397-402, 2009.

S. Sadasivan, A. K. Dubey, and Y. Li, Alcoholic Solvent Effect on Silica Synthesis-NMR and DLS Investigation, Journal of Sol-Gel Science and Technology, vol.12, issue.1, pp.5-14, 1998.

G. Wolf and N. , Etude et modélisation de la précipitation de la silice selon le procédé Stöber en phase homogène et en émulsion, 2007.

J. Matsuoka, M. Numaguchi, and S. Yoshida, Heat of Reaction of the Hydrolysis-Polymerization Process of Tetraethyl Orthosilicate in Acidic Condition, Journal of Sol-Gel Science and Technology, vol.19, issue.1, pp.661-665, 2000.

S. De-monredon, Interaction Organosilane / Silice de précipitation : du milieu hydro-alcoolique au milieu aqueux, 2004.

W. Posthumus, P. C. Magusin, and J. C. Brokken-zijp, Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane, Journal of Colloid and Interface Science, vol.269, issue.1, pp.109-125, 2004.

H. Hsiang, Y. Chang, and C. Chen, Silane effects on the surface morphology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites, Applied Surface Science, vol.257, issue.8, pp.3451-3455, 2011.

F. Bauer, H. Ernst, and D. Hirsch, Preparation of Scratch and Abrasion Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 5, vol.205, pp.1587-93, 2004.

Y. Yu, C. Chen, C. , and W. , Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica, Polymer, vol.44, issue.3, pp.593-601, 2003.

M. Py, Study of interfaces and nanometric structures by ToF-SIMS : upon a spatially resolved quantitative analysis, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00721832

L. E. Nielsen and R. F. Landel, Mechanical properties of polymers and composites, 1994.

E. Chabert, Propriétés mécaniques de nanocomposites à matrice polymère : approche expérimentale et modélisation, thesis, 2002.

W. C. Oliver and G. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, issue.6, pp.1564-83, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

Y. Cheng and C. Cheng, Scaling, dimensional analysis, and indentation measurements, Materials Science and Engineering: R: Reports, vol.44, issue.4, pp.91-149, 2004.

M. F. Doerner and W. D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, issue.4, pp.601-610, 1986.

S. Bec, A. Tonck, and J. Georges, Improvements in the indentation method with a surface force apparatus, Philosophical Magazine A, V, vol.74, issue.5, pp.1061-72, 1996.

W. C. Oliver and G. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, vol.19, issue.1, pp.3-20, 2004.

A. Bolshakov and G. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, Journal of Materials Research, vol.13, issue.4, pp.1049-58, 1998.

M. Y. N'jock, D. Chicot, and J. M. Ndjaka, A criterion to identify sinking-in and piling-up in indentation of materials, International Journal of Mechanical Sciences, pp.145-50, 2015.

A. E. Giannakopoulos and S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation, Scripta Materialia, vol.40, issue.10, pp.1191-1199, 1999.

D. Mercier, NIMS Toolbox documentation, Release 3.2.0, 2018.

S. Bec, A. Tonck, and J. Loubet, A simple guide to determine elastic properties of films on substrate from nanoindentation experiments, Philosophical Magazine A, issue.86, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00513685

D. Mercier, V. Mandrillon, and M. Verdier, Mesure de module d'Young d'un film mince à partir de mesures expérimentales de nanoindentation réalisées sur des systèmes multicouches, Matériaux & Techniques, V, vol.99, issue.2, pp.169-78, 2011.

D. B. Marshall and A. G. Evans, Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination, Journal of Applied Physics, vol.56, issue.10, pp.2632-2640, 1984.

J. Faou, Mécanique des couches minces fonctionnelles : instabilité et adhésion, thesis, 2013.

G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proceedings of the Royal Society of London Series A, pp.172-177, 1909.

S. S. Injeti and R. K. Annabattula, Extending Stoney's equation to thin, elastically anisotropic substrates and bilayer films, Thin Solid Films, pp.252-261, 2016.

H. Leplan, B. Geenen, and J. Y. Robic, Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior, Journal of Applied Physics, vol.78, issue.2, pp.962-970, 1995.

J. J. Vlassak, Y. Lin, and T. Y. Tsui, Fracture of organosilicate glass thin films: environmental effects, Materials Science and Engineering: A, V, vol.391, issue.1, pp.159-74, 2005.

X. Guo, J. E. Jakes, and M. T. Nichols, The effect of water uptake on the mechanical properties of low-k organosilicate glass, Journal of Applied Physics, vol.114, issue.8, p.84103, 2013.

S. Kook and R. H. Dauskardt, Moisture-assisted subcritical debonding of a polymer/metal interface, Journal of Applied Physics, vol.91, issue.3, pp.1293-303, 2002.

T. Y. Tsui, A. J. Griffin, and R. Fields, The effect of elastic modulus on channel crack propagation in organosilicate glass films, Thin Solid Films, vol.515, issue.4, pp.2257-61, 2006.

J. Alvarado-rivera, J. Muñoz-saldaña, and R. Ramírez-bon, Determination of fracture toughness and energy dissipation of SiO2-poly(methyl metacrylate) hybrid films by nanoindentation, Thin Solid Films, vol.519, issue.16, pp.5528-5562, 2011.

J. Hay, Introduction to Instrumented Indentation Testing, vol.33, pp.66-72, 2009.

V. L. Houerou, Rayabilité des verres Silico-Sodo-Calciques, Université de Rennes, vol.1, 2005.

B. N. Lucas and W. C. Oliver, Indentation power-law creep of high-purity indium, Metallurgical and Materials Transactions A, vol.30, issue.3, pp.601-611, 1999.

A. S. Argon, The Physics of Deformation and Fracture of Polymers, vol.536, p.pp, 2013.

F. Mammeri, Université Paris VI, 2003. Caractérisation par perméation au flux gazeux : hélium Pour commencer cette étude, nous choisissons l'hélium comme perméant, Cette mesure, rapide et reproductible permet une bonne évaluation des structures

, est caractéristique d'une dégradation par infiltration au travers des défauts de la couche ALD. Les essais sur substrat OLED se recoupent avec notre étude en perméation au gaz : le revêtement CP2 permet effectivement de diminuer la vitesse d'apparition

, Cette couche est pourtant usuellement utilisée en microélectronique et est celle utilisé dans la structure multicouche SHB. Nous n'expliquons pas distinctement l'accélération des dégradations, il est possible que la résine organique se gorge d'eau et accélère ainsi l'étape d'adsorption de l'humidité sur la couche ALD, voire provoque le décollement de cette dernière. Nous avons précédemment observé une différence de comportement à l'humidité ambiante lors des mesures de perméation hélium, Curieusement, l'encapsulation par une simple couche organique (R1) provoque, dans 29 % des cas de fortes défaillances sur les systèmes OLED, et un important développement de points noirs dans 71 % des cas

, ? Utilisation en couche d'interface

O. Sur-système, SHB) et (T2, COMETS) est faible. À l'incertitude près, le nombre de puces présentant des défauts de vieillissement est similaire pour les deux architectures (Figure IV-25-b, Tableau IV-15). La différence est bien moins marquée que dans le cas de la mesure de BIF HeTR (Figure IV-21). Ce résultat est attribué à la différence de sollicitation mécanique des échantillons, vol.1

, second dépôt ALD est notable avec une augmentation de 91 % du pourcentage de puces sans défauts pour la structure SHB en comparaison de l'encapsulation bicouche correspondante. Ce résultat signifie que, bien que le second dépôt ALD apparaisse imparfait et granuleux (Figure IV-23), ses propriétés barrières ne sont pas négligeables. Aucune dégradation majeure n'est observable dans cette étude ; nous supposons que, contrairement au système bicouche, la couche organique (R1) est ici suffisamment isolée et ne crée pas de perturbations en se dégradant face à l'humidité

L. , un nouveau dépôt haute barrière par ALD est positif ; il n'est cependant pas suffisant pour protéger l'ensemble des puces, ce qui est attribué à la dégradation non négligeable de l'ALD de surface face à l'humidité

, En conditions climatiques sur substrat OLED, les architectures d'encapsulation COMETS et SHB sont globalement équivalentes. Ce résultat recoupe également nos observations en perméation hélium, pour lesquelles, un BIF similaire lié à l'ajout de la douche ALD ou de la dyade ALD-CP2 avait été observé. ? Architecture multicouche complète

, La finalisation de la structure par un revêtement CP2 en surface permet, comme prévu, d'améliorer la résistance du système en vieillissement climatique (Figure IV-25, Tableau IV-15). Bien que les structures (T1, SHB) et (T2, COMETS) soient initialement assez performantes avec plus de 90 % de puces intactes après 500 heures de stockage, ce nombre est encore amélioré de quelques pourcents avec la structure Cocoon

, Jusqu'à présent nous avons testé la résistance des dispositifs face à la vapeur d'eau or, lors de la vie commerciale, il est possible que les dispositifs soient soumis à de la condensation, donc à de l'eau liquide. Un sondage a également été effectué en déposant une goutte d'eau déionisée sur certaines puces, Comme nous l'avons précédemment étudié, l'ajout de la couche CP2 en surface permet d'isoler les couches barrières ALD et ainsi de limiter les dégradations liées à l'environnement humide

, D'après notre étude, le composite CP2 sélectionné pour notre application, s'est avéré est parfaitement compatible avec l'application sur substrat OLED. REFERENCES BIBLIOGRAPHIQUES

K. Hayashi, H. Nakanotani, and M. Inoue, Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm, Applied Physics Letters, vol.106, issue.9, p.93301, 2015.

J. Boizot, Optimisation de la durée de vie de microécrans vidéo à diodes électroluminescentes organiques. » phdthesis, 2012.

W. E. Howard and O. F. Prache, Microdisplays based upon organic light-emitting diodes, IBM Journal of Research and Development, vol.45, issue.1, pp.115-142, 2001.

C. Féry, B. Racine, and D. Vaufrey, Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes, Applied Physics Letters, vol.87, issue.21, p.213502, 2005.

R. Meerheim, K. Walzer, and M. Pfeiffer, Ultrastable and efficient red organic light emitting diodes with doped transport layers, Applied Physics Letters, vol.89, issue.6, p.61111, 2006.

F. Wölzl, Degradation Mechanisms in Small-Molecule Organic Electronic Devices, Technische Universität Dresden, 2016.

D. Y. Kondakov, W. C. Lenhart, and W. F. Nichols, Operational degradation of organic lightemitting diodes: Mechanism and identification of chemical products, Journal of Applied Physics, vol.101, issue.2, p.24512, 2007.

G. Nisato, H. Klumbies, and J. Fahlteich, Experimental comparison of high-performance water vapor permeation measurement methods, Organic Electronics, vol.15, issue.12, pp.3746-55, 2014.

S. Iizuka, K. Murata, and M. Sekine, Development of a simple cup method for water vapor transmission rate measurements under high-temperature conditions, 2016 International Conference on Electronics Packaging (ICEP), pp.522-527, 2016.

P. Boldrighini, A. Fauveau, and S. Thérias, Optical calcium test for measurement of multiple permeation pathways in flexible organic optoelectronic encapsulation, Review of Scientific Instruments, vol.90, issue.1, p.14710, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02190355

T. Maindron, B. Aventurier, and A. Ghazouani, Investigation of Al2O3 barrier film properties made by atomic layer deposition onto fluorescent tris-(8-hydroxyquinoline) aluminium molecular films, Thin Solid Films, pp.517-542, 2013.

J. Crank and G. S. Park, Diffusion in polymers, 1968.

S. W. Rutherford and D. D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption, issue.4, pp.283-312, 1997.

G. L. Graff, R. E. Williford, and P. E. Burrows, Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation, Journal of Applied Physics, vol.96, issue.4, pp.1840-1849, 2004.

A. S. Da-silva-sobrinho, G. Czeremuszkin, and M. Latrèche, Defect-permeation correlation for ultrathin transparent barrier coatings on polymers, Journal of Vacuum Science & Technology A, vol.18, issue.1, pp.149-57, 2000.

A. Morlier, S. Cros, and J. Garandet, Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates, Thin Solid Films, pp.85-94, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01883809

J. Simon, T. Maindron, and B. Aventurier, Late-News Poster: ALD-based Multilayer Encapsulation of PIN OLED: On the Stability of the Organic Layer in 85°C / 85% RH Storage Conditions, SID Symposium Digest of Technical Papers, vol.141, issue.1, pp.1470-1472, 2013.

C. Wolf, H. Angellier-coussy, and N. Gontard, How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review, Journal of Membrane Science, vol.556, pp.393-418, 2018.

K. E. Min and D. R. Paul, Effect of tacticity on permeation properties of poly(methyl methacrylate), Journal of Polymer Science Part B: Polymer Physics, vol.26, issue.5, pp.1021-1054, 1988.

T. Terlier, T. Maindron, and J. Barnes, Characterization of advanced ALD-based thin film barriers for organic electronics using ToF-SIMS analysis, Organic Electronics
URL : https://hal.archives-ouvertes.fr/hal-01963177

I. V. Chapitre,

B. Yan, S. Meilink, and G. Warren, Water Adsorption and Surface Conductivity Measurements onalpha-Alumina Substrates, and Manufacturing Technology, vol.10, pp.247-51, 1987.

T. Maindron, T. Jullien, A. , and A. , Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.34, issue.3, p.31513, 2016.

A. Rückerl, R. Zeisel, and M. Mandl, Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3, Journal of Applied Physics, vol.121, issue.2, p.25306, 2017.

H. Kim, H. N. Ra, and M. Kim, Enhancement of barrier properties by wet coating of epoxy-ZrP nanocomposites on various inorganic layers, Progress in Organic Coatings, pp.25-34, 2017.

J. N. Ding, X. F. Wang, and N. Y. Yuan, The influence of substrate on the adhesion behaviors of atomic layer deposited aluminum oxide films, Surface and Coatings Technology, issue.8, pp.2846-51, 2011.

P. F. Carcia, R. S. Mclean, and M. H. Reilly, Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers, Applied Physics Letters, vol.89, issue.3, p.31915, 2006.

E. G. Jeong, Y. C. Han, and H. Im, Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs, Organic Electronics, pp.150-155, 2016.

J. Jin, J. J. Lee, and B. Bae, Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation, Organic Electronics, vol.13, issue.1, pp.53-60, 2012.

?. Bibliographie,

J. Simon, T. Maindron, and B. Aventurier, Late-News Poster: ALD-based Multilayer Encapsulation of PIN OLED: On the Stability of the Organic Layer in 85°C / 85% RH Storage Conditions, SID Symposium Digest of Technical Papers, vol.141, issue.1, pp.1470-1472, 2013.

M. Provost, K. Raulin, and T. Maindron, Influence of silane coupling agent on the properties of UV curable SiO2-PMMA hybrid nanocomposite, Journal of Sol-Gel Science and Technology, vol.89, issue.3, pp.796-806, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02186470

, Polyrise : expert en vernis sol-gel et traitement de surface, Polyrise. Available at

M. Provost, A. Suhm, and V. Gaud, 75-3: UV-curable Thin-film Packaging for OLED-based Microdisplays, SID Symposium Digest of Technical Papers, vol.49, issue.1, pp.1007-1017, 2018.

T. Maindron, B. Chambion, and M. Provost, Microoled, the smallest AMOLED microdisplay in the world, Journal of the Society for Information Display, issue.0

, A.2 Spectroscopie Infra-rouge à Transformée de Fourrier (FTIR)

, Dans cette gamme de longueur d'onde, l'énergie n'est pas suffisante pour provoquer la transition électronique d'une liaison mais peut provoquer le mouvement de groupes d'atomes. En effet, sur certaines longueurs d'onde caractéristiques les liaisons entrent en résonnance, s'étirant ou oscillant ; l'énergie est absorbée. En pratique l'absorption est exprimée en fonction de la longueur d, La spectroscopie InfraRouge à Transformée de Fourier (FTIR) permet d'obtenir les caractéristiques d'absorption dans la gamme infrarouge d'un échantillon solide

, Chaque bande d'absorption correspond à un type de liaison donné, dans un environnement donné. Les plus intenses proviennent généralement du mouvement d'étirement (stretching) simple, symétrique ou asymétrique des liaisons. Les mouvements de bascule (rocking), de cisaillement (scissoring), d'agitation hors du plan (wagging) et de torsion (twisting) sont également présents

H. Scissoring,

A. Tableau, Attribution des principaux pics d'absorption FTIR définis expérimentalement

, et 1636 cm -1 . Les deux dernières sont attribuées à l'étirement de la liaison carbone-carbone (C=C) porté par les silanes et par les monomères acrylates. De la même manière, dans cette étude, Dans la gamme 1500-1650 cm -1 , trois contributions sont observées à 1602, 1919.

, Figure A-4 : Correction de la ligne de base et déconvolution des bandes d'absorption FTIR dans la gamme 1550-1800 cm -1 pour le vernis : (a) en forme liquide et (b) en film condensé sous UV

, Lors de la polymérisation organique, les contributions correspondant à la liaison (C=C) diminuent alors que le nombre de liaison (C=O) reste constant. Il est donc possible d'évaluer l'avancement de la polymérisation en suivant la décroissance des aires des pics à 1619 et 1636 cm -1 et en utilisant la bande, pp.1700-1730

J. C. Pouxviel, J. P. Boilot, and J. C. Beloeil, NMR study of the sol/gel polymerization, Journal of Non-Crystalline Solids, vol.89, issue.3, pp.345-60, 1987.

M. Mohseni, S. Bastani, J. , and A. , Influence of silane structure on curing behavior and surface properties of sol-gel based UV-curable organic-inorganic hybrid coatings, Progress in Organic Coatings, vol.77, issue.7, pp.1191-1200, 2014.

M. A. Rodriguez, M. J. Liso, and F. Rubio, Study of the reaction of ?methacryloxypropyltrimethoxysilane (? -MPS) with slate surfaces, Journal of Materials Science, vol.34, issue.16, pp.3867-73, 1999.

P. Innocenzi, Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview, Journal of Non-Crystalline Solids, vol.316, pp.309-328, 2003.

A. Fidalgo and L. Ilharco, The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR, Journal of Non-Crystalline Solids, vol.283, pp.144-54, 2001.

Z. Olejniczak, M. ??czka, and K. Cholewa-kowalska, 29Si MAS NMR and FTIR study of inorganic-organic hybrid gels, Journal of Molecular Structure, pp.465-71, 2005.

C. Tontrup, Granulométrie de particules fines en suspension chargée par mesures de rétrodiffusion de la lumière, 1999.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, vol.388, p.pp, 2000.

B. J. Frisken, Revisiting the method of cumulants for the analysis of dynamic light-scattering data, Applied Optics, vol.40, issue.24, p.4087, 2001.

D. E. Koppel, Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants, The Journal of Chemical Physics, vol.57, issue.11, pp.4814-4834, 1972.

E. Yeramian, C. , and P. , Analysis of multiexponential functions without a hypothesis as to the number of components, Nature, vol.326, issue.6109, pp.169-74, 1987.

C. M. Maguire, M. Rösslein, and P. Wick, Characterisation of particles in solution -a perspective on light scattering and comparative technologies, Science and Technology of Advanced Materials, V, vol.19, issue.1, pp.732-777, 2018.

, Taille de nanoparticules, 2019.