, What information do we need about the course and the educational experience to determine the competency of an academic? 2. What are the obligations of professors of HEIs?

, Who asses the educational process?

, What are the types of courses in terms of setting (lab, theory, etc

, Does the same educator take part in the theory and laboratory of a course?

, What are the prerequisites for someone to teach a course? 11. How an academic create the material of his/her course? 12

, Do the students participate in this course? 1. How economic indicators affect the development progress of a country? 2. How many women have at least master degree? 3. What is the ratio of women with master degree to men with master degree?

, How many people are living in slums in a selected country?

, What is the life expectancy at birth for males? 10. How much cost to export from a selected country? 11. What is the percentage of ICT goods imports? 12. What is the amount of patent applications of a country's residents? 13. Are there any children in employment? 14. How many women work part-time? 15

, What is the percentage of the urban population with access to electricity? 17. How much development progress did a country make for a selected time period?

, How many years lasts the compulsory education? 19. What is the amount of methane emissions? 20. What is the change of methane emissions from 1990? 21. How many are the broadband subscriptions? 22

, What country has the best performance in the dimension "Infrastructure"? 24. Find the birth rate for a specific country

, What is the military expenditure for a given country?

, I would like to know the amount of scientific and technical journal articles in a country

M. , How many are the high-technology exports in a selected country? 28. How many seats are held by women in the national parliament? 29. How many men are unemployed in a given country?, Bibliography 1. Zopounidis, C., & Doumpos, vol.138, pp.229-246, 2002.

M. A. Köksalan, Multiple Criteria Decision Making: Foundations and Some Approaches, INFORMS Tutorials in Operations Research, vol.9, pp.171-183, 2012.

P. Korhonen, H. Moskowitz, and J. Wallenius, Multiple criteria decision support-A review, European Journal of Operational Research, vol.63, issue.3, pp.361-375, 1992.

B. Roy, Méthodologie multicritère d'aide à la décision, 1985.

I. Subirats and M. L. Zeng, LODE-BD Recommendations 2.0 : How to select appropriate encoding strategies for producing Linked Open Data (LOD)-enabled bibliographic data. Rome: Food and Agriculture Organization of United Nations, 2012.

E. Triantaphyllou, Multi-Criteria Decision Making Methods, 2000.

D. Baker, D. Bridges, R. Hunter, G. Johnson, J. Krupa et al., Guidebook to DecisionMaking Methods, 2002.

R. Harris, Introduction to Decision Making, 1998.

J. Figueira, V. Mousseau, and B. Roy, ELECTRE methods. In Multiple criteria decision analysis: State of the art surveys, pp.133-153, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00876980

R. R. Pena, L. R. Rebollo, K. G. Oliveras, and A. V. Mateu, Use and evaluation of ELECTRE III/IV, 2007.

J. R. Figueira, S. Greco, B. Roy, and R. S?owi?ski, ELECTRE methods: main features and recent developments, Handbook of Multicriteria Analysis, pp.51-89, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00876980

J. Fülöp, Introduction to decision making methods, BDEI-3 Workshop, 2005.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy, Learning to map between ontologies on the semantic web, Proceedings of the 11th international conference on World Wide Web, pp.662-673, 2002.

S. K. Card, Readings in information visualization: using vision to think, 1999.

B. Ferster, Interactive Visualization -Insight through inquiry, 2013.

S. Johnson, The Ghost Map: The Story of London's Most Terrifying Epidemic and How It Changed Science, Cities, and the Modern World, 2006.

D. A. Keim, Visual analytics: Definition, process, and challenges, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00272779

T. Kerren, Information Visualization, pp.154-175
URL : https://hal.archives-ouvertes.fr/hal-00701737

S. Russell and A. G. , Assisting decision making in the event-driven enterprise using wavelets, Decision Support Systems, vol.46, issue.1, pp.14-28, 2008.

E. R. Tufte and E. Moeller, Visual explanations: images and quantities, evidence and narrative, vol.107, 1997.

I. Xydas, Network Security Surveillance Aid Using Intelligent Visualization, G. &. Miaoulis, Intelligent scene modelling information systems, vol.181, pp.185-214, 2009.

Y. Gil-kim and J. H. , Visualization of patent analysis for emerging technology, Expert Systems with Applications, vol.34, issue.3, pp.1804-1812, 2008.

E. Turban, R. Sharda, and D. Delen, Decision Support and Business Intelligence Systems, 2011.

G. A. Gorry and M. S. Morton, A framework for management information systems, vol.13, 1971.

H. A. Simon, The New Science of Management Decision, 1977.

C. Ware, Information visualization: perception for design, 2012.

J. D. Fekete, J. J. Van-wijk, J. T. Stasko, and C. North, The value of information visualization, Information visualization, pp.1-18, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00701741

T. R. Gruber, A translation approach to portable ontology specifications. Knowledge acquisition, vol.5, pp.199-220, 1993.

S. Staab and R. Studer, Handbook on ontologies, 2010.

G. Antoniou and F. Van-harmelen, Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce, vol.32, 2004.

W. N. Borst, Construction of engineering ontologies for knowledge sharing and reuse, 1997.

D. Djuric, D. Gasevic, and V. Devedzic, The Tao of Modeling Spaces, Journal of Object Technology, vol.5, issue.8, pp.125-147, 2006.

P. F. Patel-schneider, A revised architecture for semantic web reasoning, Principles and Practice of Semantic Web Reasoning, pp.32-36, 2005.

H. Springer-berlin,

T. Anastasios, C. Sgouropoulou, I. Xydas, O. Terraz, and G. Miaoulis, Academic Research Policy-Making and Evaluation Using Graph Visualisation, Proceedings of the 2011 15th Panhellenic Conference on Informatics, pp.28-32, 2011.

A. Tsolakidis, C. Sgouropoulou, E. Papageorgiou, O. Terraz, and G. Miaoulis, Using Visual Representation for Decision Support in Institutional Research Evaluation, Intelligent Computer Graphics, pp.41-57, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00932339

H. Springer-berlin,

M. Conlon and J. Corson-rikert, VIVO: A Semantic Approach to Scholarly Networking and Discovery, vol.2, 2012.

A. Ball, M. Darlington, T. Howard, C. Mcmahon, and S. Culley, , 2012.

, Visualizing research data records for their better management, Journal of Digital Information, vol.13, issue.1

H. R. Bayliss, A. Wilcox, G. B. Stewart, and N. P. Randall, Does research information meet the needs of stakeholders? Exploring evidence selection in the global management of invasive species, Evidence & Policy: A Journal of Research, Debate and Practice, vol.8, issue.1, pp.37-56, 2012.

K. Jeffery, N. Houssos, B. Jörg, and A. Asserson, Research information management: the CERIF approach, International Journal of Metadata, Semantics and Ontologies, vol.9, issue.1, pp.5-14, 2014.

S. Waddington, A. Sudlow, K. Walshe, R. Scoble, L. Mitchell et al., Feasibility Study Into the Reporting of Research Information at a National Level Within the UK Higher Education Sector, New Review of Information Networking, vol.18, issue.2, pp.74-105, 2013.

A. Clements, Research information meets research data management in the library? Insights: the UKSG journal, vol.26, pp.298-304, 2013.

H. Kalb, H. Bukvova, and E. Schoop, The digital researcher: exploring the use of social software in the research process, 2009.

W. A. Anderson, U. Banerjee, C. L. Drennan, S. C. Elgin, I. R. Epstein et al.,

G. C. Strobel, I. M. Walker, and . Warner, Changing the culture of science education at research universities, Chron. High. Educ, vol.331, issue.6014, p.1, 2010.

M. C. Taylor, Chron. High. Educ, vol.56, issue.42, p.22, 2010.

L. A. Burke and B. Rau, The research-teaching gap in management, Academy of Management Learning & Education, vol.9, issue.1, pp.132-143, 2010.

J. Hattie and H. W. Marsh, The relationship between research and teaching: A meta-analysis, Review of educational research, vol.66, issue.4, pp.507-542, 1996.

F. A. Van-vught and F. Ziegele, Multidimensional ranking: The design and development of U-Multirank, vol.37, 2012.

, World University Rankings, The Times Higher Education Supplement, The Times Higher, 2015.

R. V. Florian, Irreproducibility of the results of the Shanghai academic ranking of world universities, Scientometrics, vol.72, issue.1, pp.25-32, 2007.

D. Docampo and L. Cram, On the internal dynamics of the Shanghai ranking, Scientometrics, vol.98, issue.2, pp.1347-1366, 2014.

L. Waltman, C. Calero-medina, J. Kosten, E. Noyons, R. J. Tijssen et al., The Leiden Ranking 2011/2012: Data collection, indicators, and interpretation, Journal of the American Society for Information Science and Technology, vol.63, issue.12, pp.2419-2432, 2012.

M. Beerkens and D. D. Dill, The CHE university ranking in Germany. InPublic Policy for Academic Quality, pp.61-82, 2010.

A. Y. Hou, R. Morse, and E. S. Yueh-jen, Is there a gap between students' preference and university presidents' concern over college ranking indicators?: a case study of "College Navigator in Taiwan, pp.767-787, 2012.

C. Dehon, A. Mccathie, and V. Verardi, Uncovering Excellence in Academic Rankings: A case study on the Shanghai Ranking, p.28, 2009.

L. Douglas, The importance of 'big data': A definition, Gartner, 2012.

K. Möller, M. Hausenblas, R. Cyganiak, and S. Handschuh, Learning from linked open data usage: Patterns & metrics, 2010.

M. Schmachtenberg, C. Bizer, and H. Paulheim, , 2014.

P. Jain, P. Hitzler, A. P. Sheth, K. Verma, and P. Z. Yeh, Ontology alignment for linked open data, The Semantic Web-ISWC 2010, pp.402-417, 2010.

S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller, Triplify: light-weight linked data publication from relational databases, InProceedings of the 18th international conference on World wide web, pp.621-630, 2009.

T. Berners-lee, Linked data-design issues, 2006.

C. Bizer, R. Cyganiak, and T. Heath, How to publish linked data on the web, 2007.

M. Saeki and H. Kaiya, On relationships among models, meta models and ontologies, Proceedings of the Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling, 2006.

L. L. Haak, D. Baker, D. K. Ginther, G. J. Gordon, M. A. Probus et al., Standards and infrastructure for innovation data exchange, Science, vol.338, issue.6104, p.196, 2012.

K. E. Graham, H. L. Chorzempa, P. A. Valentine, and J. Magnan, , 2012.

, Evaluating health research impact: Development and implementation of the Alberta Innovates-Health Solutions impact framework, Research Evaluation, vol.21, issue.5, pp.354-367

A. Asserson, K. Jeffery, and A. Lopatenko, CERIF: past, present and future: an overview, Proceedings of the 6th International Conference on Current Research Information Systems, pp.33-40, 2002.

B. Jörg, CERIF: The common European research information format model, Data Science Journal, vol.9, pp.24-31, 2010.

J. Bourdeau, R. Mizoguchi, Y. Hayashi, V. Psyche, and R. Nkambou, When the Domain of the Ontology is Education, Proc. of I2LOR'07, 2007.

C. Ullrich, Description of an instructional ontology and its application in web services for education, Proceedings of Workshop on Applications of Semantic Web Technologies for E-learning, vol.4, pp.17-23, 2004.

S. Bechhofer, I. Buchan, D. De-roure, P. Missier, J. Ainsworth et al., Why linked data is not enough for scientists, Future Generation Computer Systems, vol.29, issue.2, pp.599-611, 2013.

M. Grandbastien, F. Azouaou, C. Desmoulins, R. Faerber, D. Leclet et al., Sharing an ontology in Education: Lessons learnt from the OURAL project, Seventh IEEE International Conference on, pp.694-698, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00962001

R. Styles, N. Shabir, and J. Tennison, A pattern for domain specific editing interfaces using embedded RDFa and HTML manipulation tools.SFSW2009, p.449, 2009.

D. B. Krafft, N. A. Cappadona, B. Caruso, J. Corson-rikert, M. Devare et al., Vivo: Enabling national networking of scientists, 2010.

L. Zemmouchi-ghomari and A. R. Ghomari, Process of Building Reference Ontology for Higher Education, Proceedings of the World Congress on Engineering, vol.3, 2013.

Y. Guo, Z. Pan, and J. Heflin, LUBM: A benchmark for OWL knowledge base systems, Web Semantics: Science, Services and Agents on the World Wide Web, vol.3, issue.2, pp.158-182, 2005.

J. Hebeler, M. Fisher, R. Blace, and A. Perez-lopez, Semantic web programming, 2011.

, Grégoire Surrel, initial work by Deltacen, 2013.

P. Youngworth, Data Visualization and the Intranet: Turning Mounds of Data into Shared Corporate Insights, Dimensional Insight, 1998.

A. A. Angehrn and H. J. Lüthi, Intelligent decision support systems: a visual interactive approach, vol.20, pp.17-28, 1990.

S. B. Eom, S. M. Lee, E. B. Kim, and C. Somarajan, A survey of decision support system applications (1988-1994), Journal of the Operational Research Society, pp.109-120, 1998.

N. H. Lurie and C. H. Mason, Visual representation: Implications for decision making, Journal of Marketing, vol.71, issue.1, pp.160-177, 2007.

C. Ware, Information visualization: perception for design, 2012.

O. Lassila, Towards the semantic web, Towards the Semantic Web and Web Services Conference, pp.21-22, 2002.

S. Auer and S. Hellmann, The web of data: Decentralized, collaborative, interlinked and interoperable, Proceedings of the 8th International Conference on Language Resources and Evaluation, p.2012, 2012.

G. Mahmoudi and C. Müller-schloer, Semantic multi-criteria decision making semcdm, Computational intelligence in miulti-criteria decision-making, 2009. mcdm'09. ieee symposium on, pp.149-156, 2009.

J. Chai and J. N. Liu, An ontology-driven framework for supporting complex decision process, World Automation Congress (WAC), pp.1-6, 2010.

K. Miettinen, Survey of methods to visualize alternatives in multiple criteria decision making problems, OR spectrum, vol.36, issue.1, pp.3-37, 2014.

A. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive decision maps: Approximation and visualization of Pareto frontier, vol.89, 2013.

S. Tarkkanen, K. Miettinen, and J. Hakanen, Interactive poster: Interactive multiobjective optimization-a new application area for visual analytics, Visual Analytics Science and Technology, pp.237-238, 2009.

J. W. Ahn and P. Brusilovsky, Adaptive visualization of search results: Bringing user models to visual analytics, Information Visualization, vol.8, issue.3, pp.167-179, 2009.

S. Garg, J. E. Nam, N. I. Ramakrishnan, and K. Mueller, , 2008.

, Model-driven visual analytics, Visual Analytics Science and Technology, 2008. VAST'08. IEEE Symposium on, pp.19-26

S. Guerlain, G. Jamieson, P. Bullemer, and R. Blair, The MPC Elucidator: A case study in the design for human-automation interaction.Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol.32, issue.1, pp.25-40, 2002.

F. ;. Roberts and B. Tesman, Applied Combinatorics, vol.9781420099836, pp.254-256, 2011.

D. Stodder, Visual analytics for making smarter decisions fasterapplying self-service business intelligence technologies to data-driven objectives, 2015.

J. J. Thomas and K. Cook, A visual analytics agenda, Computer Graphics and Applications, vol.26, issue.1, pp.10-13, 2006.


P. Mota, A. R. Campos, and R. Neves-silva, First look at mcdm: Choosing a decision method, Adv. Smart Syst. Res, vol.3, issue.2, pp.25-30, 2013.

P. L. Yu, Multiple-criteria decision making: concepts, techniques, and extensions, vol.30, 2013.

J. Thomas and K. Cook, Illuminating the Path: Research and Development Agenda for Visual Analytics, 2005.

A. Mosavi, A. S. Milani, M. Hoffmann, and M. Komeili, , 2012.

, Multiple criteria decision making integrated with mechanical modeling of draping for material selection of textile composites, Proceedings of 15th

, European Conference on Composite Materials

A. M. Lazarevska, N. Fischer, A. Haarstrick, and K. Münnich, , 2009.

, A Multi-Criteria Decision Making Conceptual Approach to optimal Landfill Monitoring, Springer Netherlands. 103. Reddy, R. D. T. A. A Visual Analytics Based Methodology for Multi-Criteria Evaluation of Building Design Alternatives, pp.85-96

R. Dutta, A Visual Analytics Based Decision Support Methodology For Evaluating Low Energy Building Design Alternatives (Doctoral dissertation, 2013.

S. Mittelstädt, D. Spretke, D. Sacha, D. Keim, B. Heyder et al.,

J. , Visual Analytics for Critical Infrastructures, Internationaler ETG-Kongress, 2013.

W. Luo and A. M. Maceachren, Geo-social visual analytics, Journal of spatial information science, issue.8, pp.27-66, 2014.

S. Tarkkanen, K. Miettinen, and J. Hakanen, , 2009.

, Interactive multiobjective optimization-a new application area for visual analytics, Visual Analytics Science and Technology, pp.237-238, 2009.

K. Miettinen, Survey of methods to visualize alternatives in multiple criteria decision making problems, OR spectrum, vol.36, issue.1, pp.3-37, 2014.

A. ?. Bastinos and M. Krisper, Multi-criteria decision making in ontologies, Information Sciences, vol.222, pp.593-610, 2013.

G. Mahmoudi and C. Muller-schloer, Semantic multicriteria decision making semcdm, Computational intelligence in miulticriteria decision-making, 2009. mcdm'09. ieee symposium on, pp.149-156, 2009.


D. Mun and K. Ramani, Knowledge-based part similarity measurement utilizing ontology and multi-criteria decision making technique, Advanced Engineering Informatics, vol.25, issue.2, pp.119-130, 2011.

V. X. Tran, H. Tsuji, and R. Masuda, A new QoS ontology and its QoS-based ranking algorithm for Web services, Simulation Modelling Practice and Theory, vol.17, issue.8, pp.1378-1398, 2009.

S. A. Mushtaq, C. Lohr, and A. Gravey, An integration of semantics in Multi Criteria Decision Making for converged multimedia network management, 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp.712-717, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00725498

A. Pandit and Y. Zhu, An ontology-based approach to support decision-making for the design of ETO (Engineer-To-Order) products. Automation in Construction, vol.16, pp.759-770, 2007.

H. Jinbing, W. Youna, and J. Ying, Logistics decision-making support system based on ontology, Computational Intelligence and Design, 2008. ISCID'08. International Symposium on, vol.1, pp.309-312, 2008.

R. G. Qiu, Towards ontology-driven knowledge synthesis for heterogeneous information systems, Journal of Intelligent Manufacturing, vol.17, issue.1, pp.99-109, 2006.

D. Mun, J. Cho, and K. Ramani, A method for measuring part similarity using ontology and a multi-criteria decision making method, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.419-430, 2009.

D. Mun and K. Ramani, Knowledge-based part similarity measurement utilizing ontology and multi-criteria decision making technique, Advanced Engineering Informatics, vol.25, issue.2, pp.119-130, 2011.

A. S. Niaraki and K. Kim, Ontology based personalized route planning system using a multi-criteria decision making approach, Expert Systems with Applications, vol.36, issue.2, pp.2250-2259, 2009.

M. Martínez-garcía, A. Valls, and A. Moreno, , 2016.

, Construction of an Outranking Relation Based on Semantic Criteria with ELECTRE-III. InInternational Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp.238-249

Y. Tang and R. Meersman, Use semantic decision tables to improve meaning evolution support systems, International Journal of Autonomous and Adaptive Communications Systems, vol.3, issue.1, pp.92-109, 2009.

Y. Jiang, H. Liu, Y. Tang, and Q. Chen, Semantic decision making using ontology-based soft sets, Mathematical and Computer Modelling, vol.53, issue.5, pp.1140-1149, 2011.

C. Evangelou, N. Karacapilidis, and O. A. Khaled, , 2005.

, Interweaving knowledge management, argumentation and decision making in a collaborative setting: the KAD ontology model, International Journal of Knowledge and Learning, vol.1, issue.1-2, pp.130-145

V. C. Storey, D. Dey, H. Ullrich, and S. Sundaresan, An ontology-based expert system for database design, Data & Knowledge Engineering, vol.28, issue.1, pp.31-46, 1998.

L. Y. Shue, C. W. Chen, and W. Shiue, The development of an ontology-based expert system for corporate financial rating, Expert Systems with Applications, vol.36, issue.2, pp.2130-2142, 2009.

F. García-sánchez, R. Martínez-béjar, L. Contreras, and -. Fernández,

J. T. Breis, D. Castellanos-nieves, A. Garcia-crespo, B. Ruiz-mezcua, and J. L. Lopez-cuadrado, An ontology-based intelligent system for recruitment, Expert Systems with Applications, vol.31, issue.2, pp.248-263, 2006.

J. M. Gomez-berbis, N. Gorogiannis, A. Hunter, and M. Williams, Conceptual model for semantic representation of industrial manufacturing processes, International Journal of Approximate Reasoning, vol.61, issue.7, pp.1-22, 2009.

M. Prcela, D. Gamberger, and A. Jovic, Semantic web ontology utilization for heart failure expert system design, Studies in health technology and informatics, vol.136, p.851, 2008.

D. Vasto-terrientes, L. Valls, A. Slowinski, R. Zielniewicz, and P. ,

. Electre-iii-h, An outranking-based decision aiding method for hierarchically structured criteria, Expert Systems with Applications, vol.42, issue.11, pp.4910-4926

T. L. Saaty, Decision making with the analytic hierarchy process, International journal of services sciences, vol.1, issue.1, pp.83-98, 2008.

B. Swartout, R. Patil, K. Knight, and T. Russ, , 1996.

, Toward distributed use of large-scale ontologies, Proc. of the Tenth Workshop on Knowledge Acquisition for Knowledge-Based Systems

M. Uschold and M. Gruninger, Ontologies and semantics for seamless connectivity, ACM SIGMod Record, vol.33, issue.4, pp.58-64, 2004.

H. J. Happel and S. Seedorf, Applications of ontologies in software engineering, Proc. of Workshop on Sematic Web Enabled Software Engineering"(SWESE) on the ISWC, pp.5-9, 2006.

D. Keim, G. Andrienko, J. D. Fekete, C. Görg, and J. Kohlhammer,

G. Melançon, Visual analytics: Definition, process, and challenges, pp.154-175, 2008.

D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, , 2006.

M. Sampson, J. Rester, and M. , Ontology Visualization: Tools and Techniques for Visual Representation of Semi-Structured Meta-Data, Tenth International Conference on Information Visualisation (IV'06), vol.16, pp.1036-1054, 2010.

M. Al-shehhi, B. Hirsch, K. Taha, M. Leida, and P. D. Yoo, A knowledge Base Visual Analytics Technique for Semantic Web, 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp.392-395, 2016.

G. J. Mcinerny, M. Chen, R. Freeman, D. Gavaghan, and M. Meyer,

F. Rowland, D. J. Spiegelhalter, M. Stefaner, G. Tessarolo, and J. Hortal, Information visualisation for science and policy: engaging users and avoiding bias, Trends in ecology & evolution, vol.29, issue.3, pp.148-157, 2014.

D. Ceneda, T. Gschwandtner, T. May, S. Miksch, and H. J. Schulz,

M. Streit and C. Tominski, Characterizing Guidance in Visual Analytics, IEEE Transactions on Visualization and Computer Graphics, vol.23, issue.1, pp.111-120, 2017.

S. Pajer, M. Streit, T. Torsney-weir, F. Spechtenhauser, and T. Möller,

H. Piringer, WeightLifter: Visual Weight Space Exploration for, 2017.

S. Van-wijk and J. J. , Multivariate network exploration and presentation: From detail to overview via selections and aggregations, Multi-Criteria Decision Making. IEEE Transactions on Visualization and Computer Graphics, vol.23, pp.2310-2319, 2014.

M. Riveiro, T. Helldin, G. Falkman, and M. Lebram, Effects of visualizing uncertainty on decision-making in a target identification scenario, Computers & graphics, vol.41, pp.84-98, 2014.

R. Kosara and J. Mackinlay, Storytelling: The next step for visualization, Computer, vol.46, issue.5, pp.44-50, 2013.

C. Bizer, T. Heath, and T. Berners-lee, Linked data-the story so far. Semantic services, interoperability and web applications: emerging concepts, pp.205-227, 2009.

H. Kalb, Social networking services as a facilitator for scientists' sharing activities, ECIS 2011 Proceedings, 2011.

E. Hazelkorn, Rankings and the reshaping of higher education: The battle for world-class excellence, 2015.

H. Butcher, Meeting managers+ information needs, p.53, 1998.

:. London and . Aslib,

E. D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, , 2010.

, Mastering the Information Age: Solving Problems with Visual Analytics, Eurographics Association

J. D. Fekete, J. J. Van-wijk, J. T. Stasko, and C. North, The value of information visualization, Information visualization, pp.1-18, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00701741

. Springer,

J. W. Tukey, Exploratory data analysis, vol.2, 1977.

D. Oliveira, M. F. Levkowitz, and H. , From visual data exploration to visual data mining: a survey, IEEE Transactions on Visualization and Computer Graphics, vol.9, issue.3, pp.378-394, 2003.

D. A. Keim, Visual data mining, Very Large Databases (VLDB'97), 1997.

T. M. Green, W. Ribarsky, and B. Fisher, Building and applying a human cognition model for visual analytics, Information visualization, vol.8, issue.1, pp.1-13, 2009.

P. Piaget, Piaget's theory, Cognitive development to adolescence

K. Richardson and S. Sheldon, , pp.3-18, 1988.

D. J. Power, Decision support systems: a historical overview, 2008.

D. J. Power, Supporting Decision-Makers: An Expanded Framework, e-Proceedings Informing Science Conference, vol.158, pp.431-436, 2001.

D. J. Power, Decision Support Systems: Concepts and Resources for

. Managers, . Westport, /. Ct:-greenwood, . Quorum, and D. J. Power, Specifying an Expanded Framework for Classifying and Describing Decision Support Systems, Commun Assoc Inform Syst, vol.13, issue.13, pp.158-166, 2004.

P. G. Keen, Decision support systems, 1978.

R. H. Sprague and H. J. Watson, Decision Support for Management, 1996.

U. R. Averweg, Historical Overview of Decision Support Systems (DSS), Encyclopedia of Information Science and Technology, pp.1753-1758, 2009.

J. D. Little, Models and Managers: he Concept of a Decision Calculus, Management Science, issue.8, p.16, 1970.

P. G. Keen, M. S. Scott-morton, R. I. Mann, and H. J. Watson, Decision Support Systems: An Organizational Perspective. Reading: Addison-Wesley 166, MIS Quarterly, vol.8, issue.1, pp.27-38, 1978.

H. Bidgoli, Decision Support Systems: Principles and Practice, 1989.

S. Paul, ;. Sauter, V. L. Rainer, R. K. Potter, and R. E. , Decision Support Systems: An Applied Managerial Approach, 1997.

T. P. Liang, E. Turban, and J. E. Aronson, Decision Support Systems and Intelligent Systems, 2005.

S. L. Alter, Decision Support Systems: Current Practices and Continuing Challenges, 1980.

C. W. Holsapple, A. B. Whinston, J. H. Benamati, and G. S. Kearns, Instructor's manual with test bank to accompany decision support systems: a knowledge-based approach, 1996.

J. J. Donovan and S. E. Madnick, Institutional and Ad Hoc DSS and Their Effective Use, Data Base, vol.8, issue.3, 1977.

R. D. Hackathorn and P. G. Keen, Organizational Strategies for Personal Computing in Decision Support Systems, MIS Quart, vol.5, issue.3, pp.21-26, 1981.

M. Doumpos and C. Zopounidis, Multicriteria analysis in finance, 2014.

M. E. Hidalgo, A Decision Framework for Integrated Wetland-River Basin Management in a Tropical and Data Scarce Environment: UNESCO-IHE PhD Thesis, 2013.

E. Triantaphyllou, B. Shu, S. N. Sanchez, and T. Ray, Multicriteria decision making: an operations research approach. Encyclopedia of electrical and electronics engineering, vol.15, pp.175-186, 1998.

D. Bouyssou, Some remarks on the notion of compensation in MCDM, European Journal of Operational Research, vol.26, issue.1, pp.150-160, 1986.

M. L. Markus and D. Robey, The organizational validity of management information systems, Human relations, vol.36, issue.3, pp.203-225, 1983.

V. Belton and T. Stewart, Multiple criteria decision analysis: an integrated approach, 2002.

K. J. Arrow and H. Raynaud, Social Choice and Multicriterion Decisionmaking, 1986.

B. Roy, Classement et choix en présence de points de vue multiples: La méthode ELECTRE. Revue Francaise d'Informatique et de, Recherche Opérationnelle, vol.8, pp.57-75, 1968.

J. Siskos, A way to deal with fuzzy preferences in multicriteria decision problems, European Journal of Operational Research, vol.10, issue.3, pp.314-324, 1982.

C. A. Costa, An additive value function technique with a fuzzy outranking relation for dealing with poor intercriteria preference information, Readings in multiple criteria decision aid, pp.351-382, 1990.

. Springer,

J. P. Brans, L'ingénierie de la décision: élaboration d'instruments d'aide à la décision. La méthode PROMETHEE, 1982.

M. Behzadian, R. B. Kazemzadeh, A. Albadvi, and M. Aghdasi, PROMETHEE: A comprehensive literature review on methodologies and applications, European journal of Operational research, vol.200, issue.1, pp.198-215, 2010.

B. Mareschal, J. P. Brans, and C. Macharis, The GDSS PROMETHEE procedure: a PROMETHEE-GAIA based procedure for group decision support (No. 2013/9373). ULB--Universite Libre de Bruxelles. 189. Brans, PROMETHEE V: MCDM problems with segmentation constraints. INFOR: Information Systems and Operational Research, vol.30, pp.85-96, 1992.

B. Mareschal, J. P. Brans, and P. Vincke, PROMETHEE: A new family of outranking methods in multicriteria analysis, 1984.

J. P. Brans, The engineering of decision: Elaboration instruments of decision support method PROMETHEE, 1982.

B. Mareschal and J. P. Brans, Geometrical representations for, 1988.

. Mcda and . The, European Journal of Operational Research, vol.34, issue.1

J. P. Brans and B. Mareschal, The PROMETHEE VI procedure: how to differentiate hard from soft multicriteria problems, Journal of Decision Systems, vol.4, issue.3, pp.213-223, 1995.

K. Deb, Multi-objective optimization using evolutionary algorithms, vol.16, 2001.

S. Bandyopadhyay and S. Saha, Some single-and multiobjective optimization techniques, Unsupervised Classification, pp.17-58, 2013.

J. L. Cohon and D. H. Marks, A review and evaluation of multiobjective programing techniques, Water Resources Research, vol.11, issue.2, pp.208-220, 1975.

J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 1992.

R. L. Keeney and H. Raiffa, Decisions with multiple objectives: preferences and value trade-offs, 1993.

, Multi-Criteria Decision Analysis: Methods and Software, pp.81-113

T. L. Saaty, An eigenvalue allocation model for prioritization and planning. Energy Management and Policy Center, pp.28-31, 1972.

T. L. Saaty, A scaling method for priorities in hierarchical structures, Journal of mathematical psychology, vol.15, issue.3, pp.234-281, 1977.

T. L. Saaty, The analytic hierarchy process: planning, priority setting, resources allocation, p.281, 1980.

T. L. Saaty, How to make a decision: the analytic hierarchy process, European journal of operational research, vol.48, issue.1, pp.9-26, 1990.

D. A. Keim, Visual exploration of large data sets, 2001.

, Communications of the ACM, vol.44, issue.8, pp.38-44

D. A. Keim, W. Müller, and H. Schumann, Visual Data Mining, 2002.

D. A. Keim, F. Mansmann, and J. Thomas, Visual analytics: how much visualization and how much analytics?, ACM SIGKDD Explorations Newsletter, vol.11, issue.2, pp.5-8, 2010.

M. Tory and T. Moller, Human factors in visualization research, IEEE transactions on visualization and computer graphics, vol.10, issue.1, pp.72-84, 2004.

G. Sun, Y. Wu, R. Liang, and S. Liu, A survey of visual analytics techniques and applications: State-of-the-art research and future challenges, JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, vol.28, issue.5, pp.852-867, 2013.

M. Streit, H. J. Schulz, A. Lex, D. Schmalstieg, and H. Schumann,

, Model-driven design for the visual analysis of heterogeneous data

, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.6, pp.998-1010

B. Shneiderman, The eyes have it: A task by data type taxonomy for information visualizations, Visual Languages, 1996. Proceedings., IEEE Symposium on, pp.336-343, 1996.

D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, Challenges in visual data analysis, Information Visualization (IV 2006), 2006.

T. M. Green, W. Ribarsky, and B. Fisher, Visual analytics for complex concepts using a human cognition model, Visual Analytics Science and Technology, 2008.

S. Few, The chartjunk debate. Perceptual Edge, Visual Business Intelligence Newsletter, pp.1-11, 2011.

E. Tufte and P. Graves-morris, The visual display of quantitative information, 1983.

N. Shadbolt, T. Berners-lee, and W. Hall, Web design issues; What a semantic can represent, IEEE intelligent systems, vol.21, issue.3, pp.96-101, 1998.

N. Guarino, D. Oberle, and S. Staab, What is an ontology, Handbook on ontologies, pp.1-17, 2009.

R. Hoehndorf, What is an upper level ontology, 2010.

, Ontogenesis

A. Harth and K. Hose, Linked data management, 2014.

K. Solecka, Electre III method in assessment of variants of integrated urban public transport system in Cracow, Transport Problems: an International Scientific Journal, vol.9, issue.4, 2014.

G. Antoniou and F. Van-harmelen, , 2004.

, Owl, Handbook on ontologies, pp.67-92

D. A. Keim, Information visualization and visual data mining, 2002.

, IEEE Transactions on Visualization & Computer Graphics, issue.1, pp.1-8

D. A. Keim, Designing pixel-oriented visualization techniques: Theory and applications, IEEE Transactions on Visualization and Computer Graphics, vol.6, issue.1, pp.59-78, 2000.

M. O. Ward, Xmdvtool: Integrating multiple methods for visualizing multivariate data, Proceedings of the Conference on Visualization'94, pp.326-333, 1994.

R. Borgo, J. Kehrer, D. H. Chung, E. Maguire, and R. S. Laramee,

H. Hauser, M. Ward, and M. Chen, Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications, Eurographics (STARs), pp.39-63, 2013.

T. Nocke, S. Schlechtweg, H. Schumann, P. Spyns, Y. Tang et al., Journal of experimental psychology: human learning and memory, Proceedings. Ninth International Conference on, vol.2, pp.13-39, 1976.

M. Williams and A. Hunter, Harnessing ontologies for argument-based decision-making in breast cancer, 19th IEEE International Conference on Tools with Artificial Intelligence, vol.2, 2007.

G. W. Dickson, G. Desanctis, and D. Mcbride, Understanding the effectiveness of computer graphics for decision support: A cumulative experimental approach, Communications of the ACM, vol.29, issue.1, pp.40-47, 1986.

C. Speier and M. G. Morris, The influence of query interface design on decision making performance, MIS Quarterly, vol.27, issue.3, pp.397-423, 2003.

D. S. Ebert, B. Fisher, and K. Gaither, Introduction to the Minitrack on Interactive Visual Analytics and Visualization for Decision Making: Making Sense of Big Data, Proceedings of the 51st Hawaii International Conference on System Sciences, 2018.

W. Luo and A. M. Maceachren, Geo-social visual analytics, Journal of spatial information science, issue.8, pp.27-66, 2014.

R. De-amicis, G. Conti, S. Piffer, and B. Simões, Geospatial visual analytics, GeoSpatial Visual Analytics, pp.265-286, 2009.

M. Bonazountas, S. Kanellopoulos, J. Schaller, and D. Kallidromitou,

G. Martirano, Gis & Visual Analytics on Grid Technology, GeoSpatial Visual Analytics, pp.287-297, 2009.

G. Andrienko, N. Andrienko, P. Jankowski, D. Keim, and M. J. Kraak,

A. Maceachren and S. Wrobel, Geovisual analytics for spatial decision support: Setting the research agenda, International journal of geographical information science, vol.21, issue.8, pp.839-857, 2007.

A. Vaezipour, Visual analytics for multi-criteria decision analysis, Visual Analytics Based Methodology for Multi-Criteria Evaluation of Building Design Alternatives, 2013.

A. Vaezipour, A. Mosavi, U. ;. Seigerroth, C. Teplovs, N. Fujita et al., Visual analytics for informed-decisions, CAE Conference, Italy. 242. Vatrapu, 2011.

A. Maciejewski, R. Ebert, and D. S. , Towards visual analytics for teachers' dynamic diagnostic pedagogical decision-making, Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp.93-98, 2008.

, Applied visual analytics for economic decision-making, Visual Analytics Science and Technology, 2008. VAST'08. IEEE Symposium on, pp.107-114


S. Rudolph, A. Savikhin, and D. S. Ebert, Finvis: Applied visual analytics for personal financial planning, Visual Analytics Science and Technology, pp.195-202, 2009.

D. Guo, Visual analytics of spatial interaction patterns for pandemic decision support, International Journal of Geographical Information Science, vol.21, issue.8, pp.859-877, 2007.

A. Savikhin, H. C. Lam, B. Fisher, and D. S. Ebert, , 2011.

, An experimental study of financial portfolio selection with visual analytics for decision support, 44th Hawaii International Conference on, pp.1-10, 2011.

H. Ziegler, T. Nietzschmann, and D. A. Keim, Visual analytics on the financial market: Pixel-based analysis and comparison of long-term investments, Information Visualisation, 2008. IV'08. 12th International Conference, pp.287-295, 2008.

M. Riveiro, G. Falkman, and T. Ziemke, Visual analytics for the detection of anomalous maritime behavior, 12th International Conference Information Visualisation, pp.273-279, 2008.

O. Ola and K. Sedig, The challenge of big data in public health: an opportunity for visual analytics, Online journal of public health informatics, vol.5, issue.3, p.223, 2014.

G. Siemens, D. Gasevic, C. Haythornthwaite, S. P. Dawson, S. Shum et al., Open Learning Analytics: an integrated & modularized platform, 2011.

A. Sun, Enabling collaborative decision-making in watershed management using cloud-computing services, Environmental Modelling & Software, vol.41, pp.93-97, 2013.

A. Tsolakidis, Systèmes d'aide à l'évaluation à base de visualisation interactive de graphes. Applications à l'évaluation des systèmes et des institutions éducatives (Doctoral dissertation, 2014.

P. C. Wong, G. Chin, H. Foote, P. Mackey, and J. Thomas, , 2006.

. October, Have Green-a visual analytics framework for large semantic graphs

, Visual Analytics Science And Technology, 2006 IEEE Symposium On

M. A. Whiting, N. Cramer, G. Andrienko, N. Andrienko, H. Bosch et al., WebTheme?: Understanding Web Information through Visual Analytics, International Semantic Web Conference, vol.257, pp.460-468, 2002.

P. Jankowski and D. Thom, Thematic patterns in georeferenced tweets through space-time visual analytics, Computing in Science & Engineering, vol.15, issue.3, pp.72-82, 2013.

X. Wang, D. H. Jeong, W. Dou, S. W. Lee, W. Ribarsky et al., Defining and applying knowledge conversion processes to a visual analytics system, Computers & Graphics, vol.33, issue.5, pp.616-623, 2009.

A. Mazeika, T. Tylenda, and G. Weikum, Entity timelines: visual analytics and named entity evolution, Proceedings of the 20th ACM international conference on Information and knowledge management, pp.2585-2588, 2011.

J. Aurisano, A. Nanavaty, and I. F. Cruz, Visual Analytics for, 2015.

, Ontology Matching Using Multi-linked Views, VOILA@ ISWC, p.25

S. J. Rysavy, D. Bromley, and V. Daggett, DIVE: A graphbased visual-analytics framework for big data, IEEE computer graphics and applications, vol.34, issue.2, pp.26-37, 2014.

D. A. Keim, F. Mansmann, D. Oelke, and H. Ziegler, , 2008.

, Visual analytics: Combining automated discovery with interactive visualizations, International Conference on Discovery Science, pp.2-14

. Springer,

B. Broeksema, T. Baudel, A. Telea, and P. Crisafulli, Decision exploration lab: A visual analytics solution for decision management, IEEE Transactions on Visualization and Computer Graphics, vol.19, issue.12, pp.1972-1981, 2013.

R. A. Gandhi and S. W. Lee, Visual analytics for requirements-driven risk assessment, Requirements Engineering Visualization, pp.6-6, 2007.


A. Scharl, A. Hubmann-haidvogel, A. Weichselbraun, H. P. Lang, and M. Sabou, Media Watch on Climate Change--Visual Analytics for Aggregating and Managing Environmental Knowledge from Online Sources, 46th Hawaii International Conference on System Sciences, pp.955-964, 2013.

K. Matkovic, D. Gracanin, B. Klarin, and H. Hauser, Interactive visual analysis of complex scientific data as families of data surfaces, IEEE Transactions on Visualization and Computer Graphics, 2009.

R. K. Yin, Design and methods. Case study research, p.3, 2003.

J. W. Tukey, Exploratory data analysis, vol.2, 1977.

J. C. Billaut, D. Bouyssou, and P. Vincke, Fatal attraction: Conceptual and methodological problems in the ranking of universities by bibliometric methods, Scientometrics, vol.84, issue.1, pp.133-143, 2005.

C. Giannoulis and A. Ishizaka, A Web-based decision support system with ELECTRE III for a personalised ranking of British universities, Decision Support Systems, vol.48, issue.3, pp.488-497, 2010.

S. Nisel and R. Nisel, Using VIKOR methodology for ranking universities by academic performance, International Conference on Operations Research and Statistics, Proceedings Global Science and Technology Forum, p.25, 2013.

H. Y. Wu, J. K. Chen, I. S. Chen, and H. H. Zhuo, Ranking universities based on performance evaluation by a hybrid MCDM model, Measurement, vol.45, issue.5, pp.856-880, 2012.

M. Erdo?an and ?. Kaya, A type-2 fuzzy MCDM method for ranking private universities in ?stanbul, Proceedings of the World Congress on Engineering, vol.1, pp.2-4, 2014.

D. Kraft, N. Capadona, B. Caruso, J. Corson-rikert, and M. Devare,

J. Lowe and . Vivo-collaboration, VIVO: enabling national networking of scientists, Web Science Conference, 2010.

S. Mitchell, S. Chen, M. Ahmed, B. Lowe, P. Markes et al.,

J. Corson-rikert, B. He, Y. Ding, M. C. Suárez-figueroa, and A. Gómez-pérez, IEEE (1993) IEEE Recommended practice for software requirements specifications, Ontology Engineering in a Networked World, vol.277, p.830, 2011.

A. Davis, ELECTRE III as a support for participatory decision-making on the localisation of waste-treatment plants, Land Use Policy, vol.23, issue.1, pp.76-85, 1993.

E. Turban and P. R. Watkins, Integrating expert systems and decision support systems, Mis Quarterly, pp.121-136, 1986.

E. Rahm and P. A. Bernstein, A survey of approaches to automatic schema matching, the VLDB Journal, vol.10, issue.4, pp.334-350, 2001.

C. Batini, M. Lenzerini, and S. B. Navathe, A comparative analysis of methodologies for database schema integration, ACM computing surveys (CSUR), vol.18, issue.4, pp.323-364, 1986.

H. Stretton, The political sciences: General principles of selection in social science and history, 1969.

, WS_/view?usp=sharing 287

E. Triperina, C. Sgouropoulou, I. Xydas, O. Terraz, and G. Miaoulis, Creating the context for exploiting linked open data in multidimensional academic ranking, International Journal of Recent Contributions from Engineering, vol.3, issue.3, pp.33-43, 2015.

E. Triperina, C. Sgouropoulou, I. Xydas, O. Terraz, and G. Miaoulis, Assessing the performance of educational institutions: A multidimensional approach, Global Engineering Education Conference (EDUCON, pp.1337-1344, 2017.

E. Triperina, G. Bardis, C. Sgouropoulou, I. Xydas, O. Terraz et al., Visual-aided Ontology-Based Ranking on Multidimensional Data: A Case Study in Academia, Data Technologies and Applications, vol.52, issue.3, pp.366-383, 2018.

C. Sgouropoulou, E. Triperina, and A. Tsolakidis, Fostering academic collaboration for quality education, Proceedings of the 6th International Conference on Education & New Learning Technologies (EDULEARN14), 2014.

E. Triperina, C. Sgouropoulou, and A. Tsolakidis, , 2013.

, AcademIS: an ontology for representing academic activity and collaborations within HEIs, Proceedings of the 17th Panhellenic Conference on Informatics, pp.264-271, 2013.