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1.5 Structure de la thèse . . . . . . . . . . . . . . . . . . . . 7

1.1 Ingénierie des systèmes à base de modèles

"L’ingénierie des systèmes à base de modèles (MBSE) est l’application
formalisée de la modélisation à l’appui des exigences, de la conception,
de l’analyse, de la vérification et de la validation des systèmes, dès la
phase de conception jusqu’à la fin des phases de développement et du
cycle de vie." [FGS07]

Bien que les gens utilisent des modèles dans l’ingénierie des sys-
tèmes depuis des décennies, les modèles de systèmes n’ont pas encore
suffisamment remplacé les documents dans les processus d’ingénierie
et les communications jusqu’à présent. Pour aller dans ce sens,
l’International Council on Systems Engineering (INCOSE) a introduit,
en 2007, l’approche MBSE dans un cadre bien défini, accompagné d’une
feuille de route qui établit une vision pour l’avenir des pratiques en in-
génierie système [FGS07].
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2 Chapter 1. Contexte et Objectif de la Thèse

Aujourd’hui, après une dizaine d’années de l’initiative MBSE de
INCOSE, MBSE s’applique déjà à un nombre considérable de domaines
(électrique, mécanique, etc. . . ), implique de nombreux types de modèles
(statiques, variables dans le temps, déterministes, stochastiques, etc...)
et de techniques de modélisation (Computer Aided Design, Analytical
modeling, etc...) et offre de nombreux avantages [Ber11], tels que:

• l’amélioration de la productivité et de l’abordabilité de l’ingénierie
des systèmes;

• la réduction du coût de la conception du système et la limitation
de ses risques en vérifiant les performances et les exigences du
système dès le début du processus;

• l’anticipation des changements et des améliorations du système
avant la mise en œuvre, c’est-à-dire avant que le changement ne
devienne coûteux;

• l’amélioration de la qualité et de la fiabilité des systèmes conçus;

• la fourniture de multiples alternatives de conception en fournissant
une rétroaction rapide sur les décisions de conception;

• la promotion de l’interopérabilité et de l’intégration des modèles
tout au long du cycle de vie du système, ce qui ouvre la porte à la
réutilisation des modèles et qui permet un environnement de con-
ception unifié, de la phase d’identification des exigences du sys-
tème à la phase de test et de validation.

1.2 Le groupe motopropulseur

Le groupe motopropulseur (GMP) d’une automobile est l’ensemble des
composants qui transforment la puissance de son moteur en mouve-
ment. Bien que la définition demeure inchangée, que le moteur soit
un moteur à combustion interne, électrique, hybride ou d’un autre type,
les composants du GMP peuvent varier. Dans les véhicules traditionnels
équipés d’un moteur à combustion interne, le moteur, la transmission,
l’arbre de transmission, les différentiels, les essieux et tout ce qui se
trouve entre le moteur et les roues sont les composantes qui composent
le GMP.



1.3. Ingénierie des systèmes à base de modèles pour
l’optimisation des systèmes du groupe motopropulseur 3

La composante du GMP qui fait l’objet d’une visite exclusive dans cette
thèse est le moteur. En plus de considérer le moteur dans son ensemble,
cette étude tient également compte de deux sous-composantes du mo-
teur: le papillon électrique et le circuit d’air du moteur, en particulier
l’échangeur de chaleur et le recirculateur des gaz d’échappement EGR.
Les chapitres suivants traiteront plus en détail de ces sous-composantes.

1.3 Ingénierie des systèmes à base de modèles
pour l’optimisation des systèmes du groupe
motopropulseur

En raison de ses mérites évidents, MBSE a été reçu par l’industrie au-
tomobile à bras ouverts. L’industrie est consciente de la nécessité de
transformer l’ingénierie basée sur le texte en ingénierie basée sur le
modèle, car la première est incapable de faire face à la complexité
croissante des systèmes automobiles et aux exigences de plus en plus
strictes des gouvernements et des clients. De la réduction des émissions
à l’économie de carburant en passant par la performance supérieure, les
défis actuels et futurs sont nombreux, et l’évolution du développement
automobile est impérative.

1.3.1 Conception d’un système de commande basé sur un
modèle

L’un des piliers de l’évolution des concepts de conception automobile
est l’optimisation et le contrôle basés sur des modèles. Avec les modèles
orientés commande à portée de main, la conception de commande basée
sur modèle entre en jeu et apporte toute une liste d’avantages [Mic+10],
tels que:

• la possibilité d’évaluer le comportement et la robustesse du sys-
tème en boucle fermée au début du cycle de conception. De nom-
breuses architectures de contrôle peuvent donc être testées sur le
modèle avant la génération de tout logiciel ou la construction de
tout hardware, ce qui minimise les coûts d’ingénierie et le temps
de conception;

• l’assistance à la définition des exigences et spécifications des nou-
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veaux systèmes moteurs (définitions techniques des moteurs, exi-
gences de contrôle, exigences de mise au point, etc...), en offrant
la possibilité de simuler des systèmes en boucle fermée dans des
cycles de conduite normatifs et réels;

• l’aide à la conception du contrôle en fournissant un cadre pour
vérifier l’interaction entre le modèle du système et le contrôleur,
que ce soit sous la forme d’un code logiciel ou une fois intégré à
un microcontrôleur;

• la réduction des coûts des moteurs en permettant l’intégration des
observateurs.

Le modèle en V, illustré à la Figure 1.1, est un outil graphique utilisé
pour décomposer les différentes étapes de la conception du système
de contrôle, depuis l’établissement des exigences du système et la con-
struction de son modèle jusqu’à la validation et la mise au point de la
conception sur le hardware prévu.

Conception
système

Conception contrôle

Conception et codage
du software

Exigences
système

Mise au point
du système

Intégration du système

Intégration du hardware/software
(Génération du code calculateur)

simulation SIL simulation PIL

simulation HILsimulation MIL

test du système

test du
contrôleur

Figure 1.1: Cycle de développement des systèmes de contrôle

Les travaux de cette thèse se déroulent dans la phase de conception
du contrôle. Dans cette phase, également appelée phase MIL (Model-in-
the-Loop), les modèles des systèmes orientés commande sont simulés en
boucle fermée avec leurs conceptions de contrôle-commande correspon-
dantes. Les systèmes en boucle fermée qui en résultent sont ensuite
validés et vérifiés pour répondre aux exigences nécessaires pendant
les cycles de conduite réels. Après la phase MIL, les phases suivantes
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reprennent et complètent le processus de développement du système de
contrôle, notamment en intégrant le logiciel (SIL), le processeur (PIL) et
le hardware dans la boucle (HIL). Dans ces phases, les lois de contrôle
sont générées sous forme de codes intégrables, embarquées sur un mi-
croprocesseur, validées et calibrées sur le système réel ou à l’aide de
simulateurs en temps réel.

1.3.2 Optimisation des systèmes du groupe moto-
propulseur

La réduction de la consommation de carburant, la conformité aux
normes de contrôle de la pollution, les coûts de fabrication et d’autres
défis industriels importants obligent Renault et d’autres acteurs de
l’industrie automobile à développer des GMPs de plus en plus com-
plexes. Sur ces GMPs, le nombre d’actionneurs, de briques tech-
nologiques et donc de combinaisons de commandes explose. Par ex-
emple, sur les GMPs équipés de moteurs diesel, la combinaison des
technologies moteur et post-traitement connaît une croissance exponen-
tielle. Déterminer en début de cycle de développement la bonne defini-
tion technique du GMP parfaitement adapté aux normes et aux besoins
des différents pays devient extrêmement difficile avec les méthodolo-
gies actuelles. C’est la raison pour laquelle l’optimisation des systèmes
du GMP est d’une importance capitale.

Aujourd’hui, l’optimisation de la definition technique d’un GMP ne se fait
plus sur des cycles stabilisés mais sur des cycles normatifs, comme le
New European Driving Cycle (NEDC) et le Worldwide Harmonized Light
Vehicles Test Cycle (WLTC), et sur des cycles de conduite réels, comme
le cycle Real Driving Emissions (RDE). Elle est réalisée sur un système
en boucle avec un contrôleur dont l’objectif est de suivre certaines con-
signes. L’optimiseur agira donc à la fois sur les macroprogrammes du
GMP et sur les paramètres du contrôleur, notamment sur les cartogra-
phies permettant de définir les consignes des grandeurs à contrôler.

Du point de vue de l’automatique, cela nécessite deux éléments essen-
tiels:

1. Un controlleur qui exécute des cycles de conduite sur le simulateur
de GMP sur lequel les paramètres du controlleur et les cartogra-
phies de consignes peuvent être modifiés ;
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2. Un simulateur de GMP permettant d’accéder le plus possible à la
physique tout en assurant un temps de simulation acceptable pour
l’optimisation des algorithmes.

Sur cette base, cette thèse développera des méthodologies et testera
des algorithmes d’optimisation qui seront utilisés pour identifier et cali-
brer les modèles de systèmes et les paramètres de contrôleurs, qui sont
susceptibles d’être intégrés dans les outils et processus de définir les
definitions techniques du GMP tout en respectant diverses contraintes,
telles que la performance énergétique et le respect des normes antipol-
lution.

1.4 Objectif de la thèse

Après avoir placé cette thèse dans l’étape MIL de la conception du sys-
tème de contrôle-commande à base de modèles, et après avoir énoncé
son objectif général en matière d’optimisation des systèmes du GMP,
nous précisons ici son objectif précis et les principaux axes de travail
autour desquels s’articule le travail de cette thèse.

Aujourd’hui, les ingénieurs de Renault construisent les modèles de sys-
tèmes de GMPs sur des plates-formes de modélisation graphique et
de simulation. Ces plates-formes sont largement utilisées par les con-
structeurs de moteurs car elles permettent une modélisation simple et
rapide de modèles nonlinéaires précis. Du point de vue de l’ingénierie
de l’Alliance Renault-Nissan, de nombreuses activités d’ingénierie sont
liées à ces modèles, c’est pourquoi ils sont disponibles pour presque
tous les moteurs de l’Alliance. Ces modèles sont souvent associés à la
conception de commande à dérivée intégrale proportionnelle (PID), qui
reste la technique de commande la plus utilisée dans l’industrie automo-
bile en raison de sa simplicité et de sa capacité à traiter un large éven-
tail de problèmes de commande. La linéarisation des modèles autour
de chaque point de fonctionnement pourrait être un moyen de faciliter
le réglage du régulateur PID, ou même de le remplacer par un régula-
teur linéaire. Cependant, cette solution n’est pas simple en raison de
la complexité de la dynamique conduisant à des goulots d’étranglement
numériques et informatiques. C’est pourquoi l’intérêt principal de Re-
nault dans ce travail de recherche est de déterminer des procédures ef-
ficaces d’identification des modèles linéaires pour les systèmes du GMP
en utilisant uniquement leurs entrées et sorties, chaque fois que cela est
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possible.

Au-delà de l’identification et de la mise au point de modèles linéaires de
systèmes du GMP, Renault s’intéresse également au problème des re-
tards dans ces systèmes. Les retards sont très répandus dans les GMPs,
et les ingénieurs du controle sont confrontés à ces retards dans de nom-
breuses applications de commande du GMP, telles que la commande
EGR, la régulation du régime de ralenti (ISC) et la régulation du rap-
port air/carburant. Les retards, s’ils ne sont pas pris en compte dans
la conception de la commande du GMP, peuvent avoir des effets négat-
ifs sur ses performances. Pour Renault, il est essentiel de trouver des
techniques fonctionnelles pour traiter ces retards dans ses futurs GMPs.
C’est l’un des nombreux piliers qui permettront à Renault de maîtriser
et d’exceller dans la conception du contrôle du GMP, qui est un élé-
ment clé pour maintenir et améliorer la qualité et la compétitivité de ses
véhicules. Afin de répondre aux attentes de Renault dans cette thèse et
d’apporter des solutions innovantes aux problèmes abordés, les travaux
de thèse peuvent être structurés en trois parties décrites ci-dessous, où
les développements théoriques attendus sont associés aux réalisations
industrielles demandées.

1.5 Structure de la thèse

En plus de ce chapitre d’introduction, cette thèse comprend quatre
autres chapitres. Notez que la notation utilisée dans chaque chapitre est
limitée au chapitre lui-même et ne s’applique pas aux autres chapitres.

Chapitre 3: Identification des Modèles Boîte-Noire pour des Mo-
teurs à Essence à l’Aide des Méthodes Subspace

Ce chapitre définit une méthodologie qui permet l’identification automa-
tique dans le domaine temporel d’un modèle state-space (SS) linéaire
d’un moteur essence, à partir d’un modèle à valeur moyenne nonlinéaire
(MVEM). Sachant que chaque constructeur automobile propose une
large gamme de moteurs et que les definitions techniques de chacun
de ces moteurs sont en constante évolution, l’avantage fondamental
de la méthodologie proposée est qu’elle permet de passer d’une defi-
nition technique à une autre sans avoir à définir une nouvelle technique
d’identification du système linéaire à chaque changement. L’approche
adoptée dans ce chapitre suggère la réalisation d’une identification
linéaire du modèle SS dans le domaine temporel à l’aide de méthodes
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subspace. Comme le modèle est une boîte noire, seules ses entrées et
sorties sont accessibles. Il est excité en utilisant des signaux d’entrée
avec des propriétés de corrélation et de fréquence adéquates, et les
sorties correspondantes sont enregistrées. En utilisant cet ensemble
d’entrées et de sorties, des méthodes subspace ainsi que des méthodes
de minimisation des erreurs de prédiction sont utilisées pour estimer
un modèle linéaire SS à chaque point de fonctionnement. Ce chapitre
conclut sur l’ordre des modèles et les paramètres d’algorithme les plus
pratiques pour l’application de ces méthodes d’identification sur les mo-
teurs essence.

Chapitre 4: Identification et Commande du Modèle Linéaire du
Papillon Electrique

Ce chapitre présente une méthodologie pour identifier les modèles SS
et ARX linéaires à paramètres variants (LPV) d’un papillon électrique
à partir d’un modèle nonlinéaire de ce dernier. Le modèle nonlinéaire,
dont les paramètres de variation sont l’angle du papillon et sa vitesse,
est d’abord écrit sous la forme d’un système LPV SS utilisant les équa-
tions physiques. Ce modèle donne un aperçu des éléments à utiliser
dans le vecteur de régression, la deuxième étape étant d’identifier le
système à l’aide d’une régression lineaire en minimisant un critère des
moindres carrés. Pour contrôler les modèles linéaires, un régulateur
quadratique linéaire (LQR) est conçu séparément pour chacun des sys-
tèmes LPV identifiés, équipé d’un feedforward de perturbation et d’un
feedforward de référence pour faire face à la perturbation sur l’entrée
existant dans les modèles à paramètres variables du papillon et au prob-
lème de suivi de référence, respectivement. Le régulateur est evalué sur
le modèle nonlinéaire dont le modèle linéaire est extrait. Cette approche
se révèle intéressante essentiellement grâce au modèle ARX, qui permet
de contourner les modèles mathématiques SS dans les futures identifi-
cations des modèles linéaires de papillons électriques. La crédibilité du
modèle ARX est vérifiée par rapport à un autre modèle nonlinéaire et
par rapport à un banc d’essai de papillon électrique réel.

Chapitre 5: Identification et Contrôle des Modèles de Transport
dans la Chaine d’Air du Moteur

Les phénomènes de transport sous leurs différentes formes sont abon-
dants dans la chaine d’air du moteur. Ce chapitre aborde deux de ces
phénomènes de transport, le transport d’énergie (chaleur) et le trans-
port de masse, en présentant leurs modèles orientés commande et la
conception de la commande du modèle de transport de masse. Pour dé-
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montrer les phénomènes de transport de chaleur et de masse sur des
composants la chaine d’air, l’échangeur de chaleur et l’EGR sont choisis
respectivement. Le chapitre est donc divisé en deux parties:

• La première partie présente l’identification des flux advectifs
présents dans l’échangeur de chaleur. Les phénomènes d’échange
de chaleur qui se produisent dans les tuyaux d’un échangeur
de chaleur peuvent être modélisés sous forme d’équations aux
dérivées partielles (EDP) hyperboliques de premier ordre. La re-
formulation de ces équations sous la forme d’un système à retard
préserve la dimensionnalité infinie du système, tout en diminu-
ant sa complexité mathématique. Ce chapitre propose, à l’aide
d’une technique de moyennage spatiale et de la méthode des car-
actéristiques, une modélisation des températures du flux dans la
chaine d’air sous forme d’un système à retard. Une méthode
d’optimisation par descente de gradient est proposée pour estimer
les paramètres de ce système à retard, en utilisant des mesures de
température sur les bords d’une section de la chaine d’air. L’intérêt
de cette approche est mis en évidence par les données expérimen-
tales obtenues sur un banc d’essai d’échangeur de chaleur.

• La deuxième partie présente le modèle orienté commande et la
conception de commande du phénomène de transport du rapport
des gaz brûlés (BGR), qui se produit dans le trajet d’admission d’un
moteur à combustion interne (MCI), en raison de la réorientation
des gaz brûlés vers le trajet d’admission par l’EGR basse pression.
Inspiré du modèle à retard présenté dans la première partie du
chapitre, et basé sur un modèle AMESim® nonlinéaire du moteur,
le BGR du collecteur d’admission est modélisé comme un modèle
SS à retard de sortie, ou bien comme un système couplé EDO-EDP,
qui prend en compte le délai entre le moment où les gaz brûlés
quittent le collecteur d’échappement et celui où ils sont réadmis
dans le collecteur d’admission. En plus de leur retard de trans-
port de masse, les BGRs sur le trajet d’admission sont également
soumis à des contraintes d’inégalité d’état et d’entrée. L’objectif
du problème de contrôle est de suivre un profil de sortie de
référence du BGR dans le collecteur d’admission, en tenant compte
du retard de transport et des contraintes d’état (sortie) et d’entrée
du système. Dans ce but, deux approches de contrôle optimal indi-
recte sont mises en œuvre et comparées, l’approche discretize-
then-optimize et l’approche optimize-then-discretize. Pour tenir
compte des contraintes d’inégalité d’état, les deux méthodes sont
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équipées de techniques d’optimisation sous contraintes telles que
les méthodes Lagrangienne augmentée et UZAWA. Les conditions
d’optimalité nécessaires sont formulées, dans chacun des deux
cas, et les équations résultantes sont résolues numériquement à
l’aide de la méthode de la descente du gradient projeté, qui assure
la non-violation des contraintes d’inégalité sur l’entrée. La nou-
veauté du travail effectué dans ce chapitre réside dans la prise en
compte des contraintes du système et de la dimensionnalité infinie
du phénomène de transport de masse qui le régit. Les mérites du
modèle à retard et de la conception de contrôle basée sur le mod-
èle sont illustrés sur le modèle nonlinéaire AMESim® sur lequel le
modèle mathématique est basé.

Chapitre 6: Conclusion et Perspectives d’Avenir

Le présent chapitre résume les travaux réalisés dans le cadre de cette
thèse. Il indique les orientations des travaux futurs possibles et men-
tionne certains problèmes en suspens qui pourraient révéler des solu-
tions intéressantes à long terme.



Chapter 2

Context and Objective of the
Thesis

Chapter Summary

2.1 Model-based systems engineering . . . . . . . . . . . . 11

2.2 The powertrain . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Model-based systems engineering for powertrain sys-
tems optimization . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Model-based control system design . . . . . . . . . . . 13

2.3.2 Powertrain systems optimization . . . . . . . . . . . . 14

2.4 Objective of the thesis . . . . . . . . . . . . . . . . . . . 15

2.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Model-based systems engineering

"Model-based systems engineering (MBSE) is the formalized application
of modeling to support system requirements, design, analysis, verifica-
tion and validation activities, beginning in the conceptual design phase
and continuing throughout development and later life cycle phases."
[FGS07]

Although people have been using models in system engineering for
decades, yet system models haven’t sufficiently replaced documents
in engineering processes and communications, so far. To push for-
ward in this direction, the International Council on Systems Engineer-
ing (INCOSE) introduced, in 2007, the MBSE approach in a well-defined
framework, accompanied by a roadmap which establishes a vision for
the future of system engineering practices [FGS07].

11
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Today, after around a decade of the INCOSE MBSE initiative, MBSE al-
ready applies to a considerable number of fields (electrical, mechanical,
etc...), involves many sorts of models (static, time-varying, deterministic,
stochastic, etc...) and modeling techniques (Computer Aided Design, An-
alytical modeling, etc...), and offers numerous advantages [Ber11], such
as:

• improving the productivity and affordability of systems engineer-
ing;

• reducing the cost of system design and limiting its risks by verify-
ing the system’s performance and requirements early in the pro-
cess;

• anticipating system changes and improvements before implemen-
tation, i.e. before the change becomes costly;

• ameliorating the quality and reliability of designed systems;

• providing multiple design alternatives by providing rapid feedback
on design decisions;

• promoting model interoperability and integration throughout the
system life cycle, which opens the door to model reuse and allows a
unified design environment starting from the system requirements
identification phase until the testing and validation phase.

2.2 The powertrain

The powertrain of an automobile is the set of components which trans-
form the power of its engine into motion. Although the definition re-
mains unchanged, whether the engine is an internal combustion engine
(ICE), electric, hybrid, or of other type, the components of the power-
train may vary. In traditional vehicles powered by an ICE, the engine,
transmission, driveshaft, differentials, axles, and whatever lies between
the engine and the wheels, are the components that make up the pow-
ertrain.

The component of the powertrain that is exclusively visited in this thesis
is the engine. In addition to considering the engine as a whole, this
thesis also considers two sub-components of the engine: the electric
throttle and the engine air-path, in particular the heat exchanger and
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the exhaust gas recirculation (EGR). The following chapters will discuss
these sub-components in further details.

2.3 Model-based systems engineering for power-
train systems optimization

Due to its obvious merits, MBSE was received by the automobile indus-
try with open arms. The industry is realizing the need to transform the
text-based engineering to model-based engineering, because the former
is unable to cope with the ever-increasing complexity of the automotive
systems and with the more and more stringent demands of governments
and customers. From reduced emissions to fuel economy to superior
performance, the current and future challenges are numerous, and the
evolution in automotive development is imperative.

2.3.1 Model-based control system design

A key pillar in evolving automotive design concepts is model-based op-
timization and control. With control-oriented models at hand, model-
based control design comes into the picture, and brings in a whole list
of benefits [Mic+10], such as:

• the possibility to assess the closed-loop system’s behavior and ro-
bustness in the beginning of the design cycle. Many possible con-
trol architectures can therefore be tested on the model before gen-
erating any software or building any hardware, which minimizes
the engineering costs and design time;

• assistance in defining new engines’ system requirements and spec-
ifications (engines’ technical definitions (TDs), control require-
ments, calibration requirements, etc...), by offering the possibil-
ity of closed-loop system simulation in normative and real driving
cycles;

• assistance in control design by providing a framework to verify the
interaction between the plant model and the controller whether in
the form of software code or once embedded on a microcontroller;

• reducing engine costs by allowing the integration of observer de-
sign.
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The V-model, shown in Figure 2.1, is a graphical tool used to break-
down the different stages of the control system design, from setting the
requirements of the system and building its model until validating and
calibrating the design on the intended hardware.

System design

Component
(controller) design

Software design
and coding

System
requirements

System calibration

System integration

Hardware/software integration
(ECU code generation)

SIL simulation PIL simulation

HIL simulation
MIL simulation

System test

Component
test

Figure 2.1: Control system development lifecycle

The work in this thesis takes place in the controller design phase. In this
phase, also called the model-in-the-loop (MIL) phase, control-oriented
plant models are simulated in closed-loop with their corresponding con-
trol designs. The resulting closed-loop systems are then validated and
verified to meet the necessary requirements during real driving cycles.
Following the MIL phase, the subsequent phases take over and complete
the control system development process, notably by integrating the soft-
ware (SIL), the processor (PIL), and the hardware in the loop (HIL). In
these phases, the control laws are generated in the form of embeddable
codes, embarked on a microprocessor, and validated and calibrated on
the actual system or using real-time simulators.

2.3.2 Powertrain systems optimization

Reduced fuel consumption, compliance with pollution control standards,
manufacturing costs, and other strong industrial challenges are forcing
Renault and other actors in the automotive industry to develop increas-
ingly complex powertrains. On these powertrains, the number of actu-
ators, technological bricks and therefore control combinations explode.
For example, on powertrains equipped with diesel engines, the combina-
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tion of engine and post-treatment technologies is growing exponentially.
Determining at the beginning of the development cycle, the right pow-
ertrain TD which is perfectly in line with the standards and needs of the
different countries becomes extremely difficult with current methodolo-
gies. This is the reason why powertrain systems optimization is of core
significance.

Nowadays, optimization of the TD of a powertrain is no longer done on
stabilized but on normative cycles, such as the New European Driving
Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle
(WLTC), and on real driving cycles, such as Real Driving Emissions cy-
cle (RDE). It is performed on a looped system with a controller whose
objective is to follow certain setpoints. The optimizer will therefore act
on both, the powertrain macro sizes and the controller parameters, es-
pecially the maps allowing to define the setpoints of the quantities to be
controlled.

From an automatic control point of view, this prerequires two essential
elements:

1. A controller which runs driving cycles on the powertrain simulator
on which the controllers’ parameters and the setpoint maps can be
modified;

2. A powertrain simulator to access as much as possible of the physics
while ensuring acceptable simulation time for optimization algo-
rithms.

On this basis, this thesis will develop methodologies and test optimiza-
tion algorithms that will be used to identify and calibrate system models
and controller parameters, that are susceptible to be embedded in the
tools and processes for defining powertrain TDs while respecting various
constraints, such as energy performance and compliance with pollution
control standards.

2.4 Objective of the thesis

After having placed this thesis in the MIL step of the model-based con-
trol system design, and having stated its general objective with regard
to powertrain systems optimization, we hereby specify its precise objec-
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tive and the principal work axes around which the work in this thesis
revolves.

Today, Renault engineers build the powertrain systems models on graph-
ical modeling and simulation platforms. These platforms are widely used
by engine manufacturers because they allow easy and fast modeling
of accurate nonlinear models. From the Renault-Nissan Alliance engi-
neering perspective, many of the engineering activities are attached to
these models, which is why they are available for almost all the Alliance
engines. These models are often associated with proportional integral
derivative (PID) control design, which is still the most widely used con-
trol technique in the automotive industry due to its simplicity and ability
to handle a broad range of control problems. A way to facilitate the tun-
ing of the PID controller, or even to replace it by a linear controller, could
be the linearization of the models around each operating point. How-
ever, this solution is not straightforward due to the complexity of the
dynamics leading to numerical and computational bottlenecks. There-
fore, the main interest for Renault in this research work is to determine
efficient linear model identification procedures for powertrain systems
using only their inputs and outputs, whenever that is possible.

In addition to identifying and calibrating linear models of powertrain
systems, another main interest for Renault in this work is tackling
the problem of time-delays in powertrain systems. Time delays are
widespread in powertrains, and control engineers confront these delays
in many of the powertrain control applications, such as EGR control,
idle speed control (ISC), and air-to-fuel ratio control. Time delays, if not
accounted for in the powertrain control design, can have disadvanta-
geous effects on the powertrain performance. For Renault, it is substan-
tial to find functional techniques for treating these delays in its future
powertrains. This is one of the many pillars that will enable Renault to
master and excel in powertrain control design, which is a key element
in maintaining and improving the quality and competitiveness of its fu-
ture vehicles. In order to meet the expectations of Renault in this thesis
and provide innovative solutions to the problems under consideration,
the thesis work can be structured in the three parts described below,
where the expected theoretical developments are associated with the
requested industrial achievements.
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2.5 Thesis structure

In addition to this introductory chapter, this thesis comprises four other
chapters. Note that the notation used in each chapter is restricted to
the chapter itself and doesn’t carry on to other chapters.

Chapter 3: Black-box Gasoline Engine Identification using Sub-
space Methods

This chapter defines a methodology that permits automatic time-domain
identification of a linear state-space (SS) model of a gasoline engine
starting from a nonlinear mean-value engine model (MVEM). Knowing
that each automobile manufacturer proposes a broad series of engines
and that the TDs of each of these engines is ever-changing, the basic ad-
vantage of the proposed methodology is that it allows switching from one
TD to another without having to define a new linear system identification
technique with every switch. The approach adopted in this chapter sug-
gests carrying out a linear SS model identification in time domain using
subspace methods. Because the model is a black-box, only its inputs and
outputs are accessible. It is excited using input signals with adequate
correlation and frequency properties, and the corresponding outputs are
registered. Using this set of inputs and outputs, subspace methods along
with prediction error minimization methods are used to estimate a linear
SS model at each operating point. This chapter concludes on the model
order and the algorithm parameters most convenient for the application
of these identification methods on gasoline engines.

Chapter 4: Electric Throttle Linear Model Identification and Con-
trol

This chapter presents a methodology for identifying SS and auto-
regressive with exogenous input (ARX) linear parameter-varying (LPV)
models of an electric throttle starting from a nonlinear model of the lat-
ter. The nonlinear model, whose scheduling parameters are the angle of
the throttle and its speed, is first written in the form of an LPV SS system
using the physical equations. This model highlights the throttle’s discon-
tinuities and nonlinearities, and gives insight about the elements to be
used in the regression vector, whereby the second step is to identify the
system using a linear regression by minimizing a least squares criterion.
To control the linear models, a linear quadratic regulator (LQR) con-
troller is designed separately for each one of the identified LPV systems,
equipped with disturbance and reference feedforwards to cope with the



18 Chapter 2. Context and Objective of the Thesis

input disturbance existing in the parameter-varying models of the throt-
tle and with the reference tracking problem respectively. The regulator
is evaluated on the nonlinear model from which the linear model was
extracted. This approach reveals interesting basically due to the ARX
model, which allows bypassing the SS mathematical models in future
electric throttle linear model identifications. The credibility of the ARX
model is verified with respect to another nonlinear model and with re-
spect to a real electric throttle test-bench.

Chapter 5: Identification and Control of Transport Models in the
Engine Air-path

Transport phenomena in their different forms are abundant in the en-
gine air-path. This chapter touches on two of these transport phenom-
ena, energy (heat) transport and mass transport, by presenting their
control-oriented models and the control design of the mass transport
model. To demonstrate the heat and mass transport phenomena on air-
path components, the heat exchanger and the EGR are chosen respec-
tively. Therefore, the chapter is divided in two parts:

• The first part presents the identification of advective flows present
in the heat exchanger. The heat exchange phenomena occur-
ring in the pipes of a heat exchanger can be modeled as first-
order hyperbolic partial differential equations (PDEs). Reformulat-
ing these equations as a time-delay system preserves the infinite-
dimensional property of the system, yet decreases its mathemati-
cal complexity. Using a space-averaging technique and the method
of characteristics, this chapter proposes a time-delay system mod-
eling of the flow temperatures in the air-path. A gradient-descent
optimization method is proposed to estimate the parameters of this
time-delay system, using boundary measurements of temperature
in an air-path section. The interest of this approach is emphasized
with experimental data obtained from a heat exchanger test-bench.

• The second part presents the control-oriented model and control
design of the burned gas ratio (BGR) transport phenomenon, wit-
nessed in the intake path of an ICE, due to the redirection of
burned gases to the intake path by the low-pressure EGR. Inspired
by the time-delay model presented in the first part of the chapter,
and based on a nonlinear AMESim® model of the engine, the BGR
in the intake manifold is modeled as a SS output time-delay model,
or alternatively as an ODE-PDE coupled system, that take into ac-
count the time delay between the moment at which the combusted
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gases leave the exhaust manifold and that at which they are read-
mitted in the intake manifold. In addition to their mass transport
delay, the BGRs in the intake path are also subject to state and in-
put inequality constraints. The objective of the control problem is
to track a reference output profile of the BGR in the intake man-
ifold, taking into account the transport delay and the state (out-
put) and input constraints of the system. In this aim, two indirect
optimal control approaches are implemented and compared, the
discretize-then-optimize approach and the optimize-then-discretize
approach. To account for the state inequality constraints, both
methods are equipped with techniques for constrained optimiza-
tion such as the augmented Lagrangian and the UZAWA methods.
The necessary conditions of optimality are formulated, in each of
both cases, and the resulting equations are solved numerically
using the projected gradient-descent method, which ensures the
non-violation of the input inequality constraints. The novelty of
the work done in this chapter lies in considering the system’s con-
straints and the infinite-dimensionality of the mass transport phe-
nomenon governing it. The merits of the time-delay model and
the model-based control design are illustrated on the nonlinear
AMESim® model on which the mathematical model is based.

Chapter 6: Conclusions and Future Perspectives

This chapter summarizes the work done in this thesis. It points out
directions of possible future work, and mentions some open problems
that might reveal interesting to tackle in the long-term.
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The gasoline engine, also called petrol engine, is an ICE equipped with
a spark-ignition system used to ignite gasoline in a cylinder containing
a piston. The ignition of the fuel causes an explosive combustion inside
the cylinder, thereby pushing the piston downwards and initiating the
rotation of the crankshaft connected to it.

This engine dates back to 1876 when a German engineer named Niko-
laus August Otto developed what is known as the "Otto cycle engine".
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Nine years later, in 1885, Gottlieb Daimler reshaped this engine, which
was originally intended for stationary use, and adapted it for transporta-
tion purposes [SK03].

An invention which revolutionized transportation back then, the gasoline
engine still fits in the transportation scheme of nowadays. In addition
to its satisfactory performance, lately, the international opinion rose up
against diesel engines, which are usually considered more polluting than
their gasoline analogues, leading to a more stringent economic policy.
So as the popularity of the diesel engine declines, and the era of the full
electric engines hardly begins, the gasoline engine reigns. This is why
further study, such as this one, is being conducted on gasoline engines.
In this study, the engine at hand is the Renault engine H5Ft400. It will
be described later in further details.

A nonlinear MVEM of the H5Ft400 engine is built by Renault engi-
neers on LMS Imagine.Lab AMESim®, an integrated simulation plat-
form, which provides a graphical modeling interface. As previously men-
tioned in chapters 1 and 2, it is of considerable importance to by-pass the
nonlinear models of the powertrain systems and find innovative method-
ologies for identifying linear models of these systems. This gives rise to
the objective of this chapter, which is to find a methodology to identify a
linear model of the H5Ft400 engine.

State of the art In the literature, identification of ICE linear models
has been addressed in more than one reference, and different types
of models and identification methods have been used. In [WDR07];
[WDR06]; [WRL08], the authors modeled a diesel engine in the form
of LPV SS and LPV input-output (IO) models, whose parameters were
identified using the recursive least-squares algorithm [WDR07] and us-
ing linear algorithms originating from classical identification methods
[WDR07]. [WRL08] and [WDR07] used, as scheduling parameters for
the LPV model, the engine speed and indicators of the load, such as
the boost pressure [WRL08], due to the absence of the engine torque
measurement. A SS representation was also employed by [Ser14] to
model a partially premixed combustion (PPC) engine, whereas it used
ARX and auto-regressive moving-average exogenous (ARMAX) represen-
tations to model a diesel engine. Whilst the above mentioned works
used time-domain modeling, [KHO17] used frequency-domain modeling
to model the diesel engine in the form of a transfer function and iden-
tify its parameters using nonparametric and parametric identification
procedures.
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Similar kinds of models and identification methods where used for gaso-
line engines, where [TAW12] utilized the least-squares approach to iden-
tify an LPV linear regression model of the engine, a model which is then
transformed into the LPV SS form. [MS12] did the same transforma-
tion from LPV IO to LPV SS, but he used the downhill simplex method,
which is a nonlinear iterative optimization method, for the identification
of the LPV IO model. Both [TAW12] and [MS12] chose the engine speed
and the intake manifold pressure as scheduling parameters for their LPV
models. The gasoline engine was also modeled in the frequency-domain,
where [ABMST94] used standard identification techniques to identify a
transfer function of the model. Finally, opposing the current of black-
box modeling, [EH14] modeled the gasoline engine as a physics-based
mathematical nonlinear model.

Moreover, whilst [TAW12], which models only the engine intake mani-
fold, limited the model input to the opening of the throttle valve , [EH14]
and [MS12] added another input which is the opening of (or the mass
flow through) the waste-gate. As for the output, [TAW12] and [MS12]
selected the air charge of the cylinders, whereas the model presented
by [EH14] output the boost pressure, intake and exhaust manifold pres-
sures, and the turbocharger rotational speed.

Proposed method Regarding the H5Ft400 engine, whose scheme is
shown in Figure 3.1, and which we consider from the air-chain point
of view, a first reflection on the problem suggests basing the foreseen
linear model of the engine on a mathematical model inspired from the
physical laws governing the air-chain dynamics, i.e. analytical lineariza-
tion of the nonlinear model presented in [EH14]. However, this lineariza-
tion is not straightforward for different reasons. First of all, parameters
such as the compressor and turbine flow rates, compressor and turbine
isentropic efficiencies, the volumetric efficiency, and the amount of en-
ergy transferred to the exhaust gas are data maps, neither explicit nor
smooth mathematical equations. Second, the mass flow rate through
the throttle and the wastegate is a function of the valve’s effective open-
ing surface, which is highly nonlinear, and a function of the pressure
ratio around the actuator which is a maximum function, i.e. an undiffer-
entiable function which hinders the calculation of the Jacobian matrix,
thus hindering the linearization process. As a consequence, this work di-
rection is dropped, and the black-box identification approach is adopted.

The black-box identification approach is advantageous for numerous
reasons. In addition to the fact that it avoids the limitations of the
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Figure 3.1: H5Ft400 engine scheme

linearization process, mentioned above, consider the case of a co-
simulation between AMESim®, MATLAB®, and Simulink®, which will
happen to be the case in this work. The presence of such a co-simulation
environment deprives any solver from having access to the states of the
AMESim® model which cannot be communicated through a Simulink s-
function. This implies that the only accessible data are the inputs and
the outputs of the system, and therefore gives rise to the objective of this
chapter which is to identify a linear SS model of the H5Ft400 gasoline
engine at each of its operating points, using only its inputs and outputs,
i.e. identify a black-box linear model of the H5Ft400 engine.

Therefore, we formulate the identification problem as follows. Inspired
by the LPV models in the literature, we propose to identify a discrete
linear model of the H5Ft400 engine at each of its operating points be-
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longing to the (engine speed, mean effective pressure) map. Because the
engine torque is not measurable, it is represented, in the engine map, by
the mean effective pressure which varies in direct proportionality with
it, according to the equation [Hey+88]

PME =
2πnrT

ncVd
(3.1)

where PME is the mean effective pressure (Pa), nr is the number of
crankshaft rotations for a complete engine cycle, T is the torque (Nm),
nc is the number of cylinders, and Vd is the cylinder volume displace-
ment (m3). Note that the mean effective pressure intended in this case
is the brake mean effective pressure, which is equal to the indicated
mean effective pressure minus the friction mean effective pressure. In
other words, it is the mean effective pressure that takes into account the
engine efficiency and represents the actual output of the engine at the
crankshaft. For the sake of simplicity, we denote brake mean effective
pressure as PME, and we point out that, in this case, T in equation (3.1)
is equal to the effective torque not the indicated torque. Moreover, for
the H5Ft400 engine, nr = 2 (because it is a 4-stroke engine), nc = 4, and
Vd = 1200 cm3.

The openings of the throttle and waste-gate, represented by their pulse
width modulations, denoted respectively as PWMth and PWMwg (th with
respect to throttle; wg with respect to waste-gate), are chosen as inputs
to the linear models. The intake manifold pressure Pcol and the pres-
sure after the heat exchanger considered as the boost pressure Pboost,
are chosen as outputs, in addition to the pressure upstream the tur-
bocharger Pavt, and the turbo speed Wt. Section 3.2 details this choice
of inputs and outputs.

The input profiles are sent to the nonlinear MVEM gasoline engine
model built on AMESim®, and the corresponding outputs are registered.
Although they are simulated outputs, they play the role of measured
outputs in this identification problem. In other words, it is with these
outputs that we compare the eventual outputs of the identified linear
model, and check the validity of the identification results.

Concerning the identification algorithm, the subspace method is con-
sidered for the estimation of the SS model matrices, due to the merits it
offers. First of all, we do not need to know the structure of the model be-
forehand, which eliminates the need for any prior parameterization, and
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it is suitable for multi-variable systems. To reinforce the subspace algo-
rithm and improve the quality of the estimation, it is implemented in col-
laboration with the prediction-error minimization method [VV01]. The
initial estimate of the SS system matrices is determined using the sub-
space identification method, before the prediction-error method takes
over to further minimize the error between the output of the linear esti-
mate and that of the nonlinear AMESim® model.

The novelty of this approach is that it investigates the use of the sub-
space methods in the identification of gasoline engine air-path. Although
[BSJTJ06] solicited subspace methods for the identification of an ho-
mogeneous charge compression ignition (HCCI) engine, but generally
speaking, subspace methods are still under-investigated in this domain.

We hereby detail the steps of the identification, which is carried out in
the time-domain.

Step 1: Excitation of the AMESim® model using disturbed input signals
(disturbed PWMth and PWMwg) and registration of the corresponding
outputs (Pcol, Pboost, Pavt, and Wt). Note that the disturbance used to
perturb the inputs is a multi-sine wave [KHO17], chosen because it can
cover a wide frequency range. Also note that the multi-sine signal dis-
turbing PWMth is of very low correlation with that disturbing PWMwg.

Step 2: Identification of a discrete linear SS model at each of the en-
gine’s operating points, characterized by the speed and mean effective
pressure. Recall that the identification algorithm is a combination of
subspace methods and prediction-error minimization method.

Step 3: Once all the models at all the operating points are identified,
they are subject to validation criteria to verify their quality. If they re-
spect the validation criteria, the models are then validated on another
set of input-output data.

Chapter structure This chapter is organized as follows. Section 3.1
describes the H5Ft engine AMESim® model and points out its impor-
tant aspects. Section 3.2 defines the inputs and outputs of the linear
model to be identified, and justifies their choice. Section 3.3 presents
the identification’s preparation phase, i.e. the excitation of the system
using special disturbance signals. Section 3.4 briefs the subspace meth-
ods and details the identification process and its results. Consequently,
section 3.5 evaluates the identification results, first by subjecting them
to validation criteria, and second by validating the identified linear sys-
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tem on a new set of data. Finally, section 3.6 concludes the chapter and
points out its limitations and possibilities of future work.

3.1 H5FT400 nonlinear model

The H5Ft400 is a gasoline engine made by Renault. As shown in Fig-
ure 3.1, it has four cylinders with a displacement volume of 1200 cm3,
turbocharger with waste gate, variable-valve-timing intake and exhaust
systems, and a direct injection system.

Renault engineers built the nonlinear model of this engine, shown in
Figure 3.2, on AMESim®. The model simulation is launched using
MATLAB® which communicates with the AMESim® platform via an s-
function of the adjoint Simulink® file. This structure results in a co-
simulation environment between MATLAB®, Simulink®, and AMESim®.

Figure 3.2: Nonlinear model of the H5Ft400 engine built on AMESim®

The engine model takes in numerous inputs, among which are the atmo-
spheric temperature, atmospheric pressure, the variable-valve timings
during intake and exhaust, rail pressure, injection time, spark advance,
engine speed, and most importantly PWMwg and PWMth. On the other
hand, it gives many outputs, among which are the pressures and temper-
atures at different positions of the engine, the air-fuel ratio, the torque,
the turbo speed, and the fuel and air flows.

Two PID controllers are designed on Simulink® to regulate PWMwg and
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PWMth. The first controller takes Pboost as feedback from the model,
and regulates the value of PWMwg while minimizing the error on Pboost,
whereas the second one takes Pcol as feedback, and outputs the desired
value of PWMth while minimizing the error on Pcol. Note that the error
is the difference between the output of the AMESim® model and the
setpoint value of the concerned parameter, where the setpoint value is
the value predefined by experts for each operating point in the (speed,
PME) ISO field.
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Figure 3.3: ISO field covering the engine operating range

An ISO field, shown in Figure 3.3, is a (speed, PME) cartography of
around 300 points which covers the full functioning range of an engine.
Generally speaking, the engine speed ranges from 750 rpm to 5500 rpm

(with a step of 250 rpm) and the PME ranges from 1 bar to 20 bar (with
a step of 1 bar). In the case of the H5FT400 engine, we consider the
4200 rpm speed range, to which corresponds a number of points whose
PME ranges from low (≈ −1 bar) to high (≈ 18 bar).
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3.2 Linear state-space model inputs and outputs

As mentioned earlier, the linear SS model declares PWMth and PWMwg

as inputs, and Pcol, Pboost, Pavt, and Wt as outputs. PWMth and PWMwg

are selected as inputs because they are the control inputs when it comes
to regulating the flows and pressures in the air-path of a turbocharged
gasoline engine. PWMth has a direct impact on Pcol and PWMwg has a
direct impact on Pboost. The relevance of these variables for the control
of the engine air-path justifies their choice for the identification problem.

The relationship between the inputs and the outputs can be depicted
clearly if 2 functioning zones of the air-path are distinguished, for a par-
ticular engine speed.

• Zone of low engine torque: In this zone, the waste-gate is fully-
open and hence uncontrolled, and the throttle is therefore the only
actuator whose excitation can affect the air-path. Upon excita-
tion of the throttle, Pcol, which is less than 1 bar in this case, is
altered. Consequently, the cylinder filling, the temperature Tavt
and pressure Pavt before the turbine, the turbo speed Wt, and the
boost pressure Pboost are all affected. However, as Pcol is relatively
low, its effect on the other parameters and on the turbocharger
is minimal, so we can consider that in this zone, the engine is on
atmospheric functioning.

• Zone of high engine torque: In this zone, the throttle is fully-open
and hence uncontrolled, and the waste-gate is therefore the only
actuator whose excitation can affect the air-path. Upon excita-
tion of the waste-gate, the temperature Tavt and pressure Pavt be-
fore the turbine are affected, which alters the turbo speed Wt, and
eventually Pboost, and Pcol which varies between 1 bar and around
2.8 bar in this case.

On one hand, this distinction shows that in order to well excite the sys-
tem throughout all its operating range, both actuators, the throttle and
the waste-gate, have to be triggered and subject to disturbance. On the
other hand, this distinction points out that in the low-torque zone, Pcol
is the most important output which the estimated model should be able
to reproduce, and the three other outputs are considered secondary,
whereas in the high-torque zone, all four outputs Pboost, Pcol, Pavt, and
Wt are important and the estimated model should be able to reproduce
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them all. This relative importance of the outputs is taken into consider-
ation in the identification process described in section 3.4.2.

3.3 Experiment design

This section details the preparations that precede the identification
phase. It describes the nature of the generated disturbance sig-
nals, shows the correlation between the disturbance signal referring to
PWMwg and that referring to PWMth, shows the spectral analysis done
on the disturbance signals to verify their frequency content, and de-
scribes the construction of the disturbed input signals and the corre-
sponding outputs of the system.

3.3.1 Disturbance signals

The major concern when generating an excitation disturbance signal for
an identification problem is how persistently this signal excites the sys-
tem to be identified. It has to be sufficiently rich to be able to generate
informative input-output identification data. According to [Lju99], iden-
tifying a linear system requires an input signal with a customized input
spectrum and a low crest factor. Moreover, the fact that the engine
system admits two inputs adds an additional requirement, which is the
input signal’s ability to be generated in two sequences with minimum
correlation. To meet these requirements, we survey a number of popu-
lar excitation signals, such as the Gaussian white noise, random binary
signal (RBS), pseudo-random binary signal (PRBS), sine signal, square
signal, triangular signal, saw-tooth signal, chirp signal (also called swept
sinusoids), and multi-sines signal. Each of these signals presents certain
advantages and disadvantages. We invite the reader to refer to [Lju99];
[VNJP17]; [ALMO12], among others, for detailed records on their defi-
nition, merits, and demerits.

Consider the Gaussian white noise, for example. On one hand, it uni-
formly solicits all the frequencies, but on the other hand, it has a high
crest factor. On the contrary, RBS (Random Binary Signal) and the white
noise-like PRBS, have a very low crest factor and result in uncorrelated
sequences, but the RBS has an uncontrollable spectrum and the PRBS
has to be generated in full length to reveal its nice frequency and corre-
lation properties. Moving on to the sine signal, it is also inconvenient for
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exciting the H5FT400 engine system because it solicits a unique funda-
mental frequency. Considering the sine-based signals, in particular the
square, triangular, and saw-tooth signals, their spectral analysis shows a
principal spike at their fundamental frequency and smaller spikes at har-
monic frequencies, which are nothing but multiples of the fundamental
frequency. So these signals are also an expression of a single frequency
and are unsuitable inputs for the identification problem, which is why
we continue investigating other signals, such as the chirp signal. The
chirp signal is a very interesting signal because of its favorable fea-
tures. First, the excited frequency band can be assigned by the user,
and second, it has a low crest factor, as low as that of the sine signal
which is equal to

√
2 = 1.414. The major drawbacks of the chirp signal

are: its power spectrum will not be null at frequencies falling outside
the specified frequency band [Lju99] and it doesn’t allow selecting par-
ticular frequencies within a frequency band. The energy is distributed
almost uniformly over the whole band instead [ALMO12]. The signal
which avoids this drawback is the multi-sines signal. The multi-sines
signal is a combination of multiple sine waves with multiple frequen-
cies. It can be customized to cover particular frequencies or wide and
precise ranges of frequencies (frequency bands), and it has shown to
ensure very good estimates of the system at the solicited frequencies.
Another merit of the multi-sine signal is that the phase of the signal can
be manipulated which gives the user control over the correlation be-
tween different generated signals. However, the multi-sine signal is not
free of drawbacks as it is usually characterized with a high crest fac-
tor especially when all the summed sines are in phase with each other
[Lju99]. Fortunately, there exists a solution for this problem which is
the Schroader-phased multisine [Sch70]. It is a sum of sinusoids with
variable frequencies and phases selected in a way that ensures a low
crest factor. That being said, the multi-sines signal is compliant with the
problem requirements, which is why it is chosen as the excitation input
of the system. This input is denoted as dist from "disturbance", and it is
a function of time t:

dist(t) =

d∑
k=1

akcos(2πfkt+ φk) (3.2)

where d is the number of summed sine waves, ak is the amplitude of sine
wave k (%), fk is the frequency of sine wave k (Hz), and φk is the phase
of sine wave k (rad)
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Two multi-sines disturbance signals, shown in Figure 3.4, are created:
the first one is added to the steady-state value of PWMwg and denoted by
distwg, while the second one is added to the steady-state value of PWMth

and denoted by distth. distwg and distth are created with a frequency f
ranging between 0.01 Hz and 5 Hz, the former with a step of 0.01 Hz and
the latter with a step of 0.015 Hz. Hence, dwg = 500 and dth = 333.

The amplitude a of both disturbance signals is set to 3% before being
divided by the maximum amplitude of the multi-sines, which guarantees
that the signals are limited to an amplitude of 3%.

The phase φ of both disturbance signals is calculated as

φk =
−k(k − 1)

d
π (3.3)

To verify that this phase ensures a low peak-to-peak amplitude, the crest
factor is calculated, and distwg is found to have a crest factor equal to
1.67 and distth a crest factor equal to 1.88. Knowing that the lowest
possible crest factor, corresponding to the PRBS signal with zero mean
is equal to 1, and that corresponding to the sine signal is equal to 1.414,
it can be noticed that the disturbances’ crest factors are not high, which
means that the Schroader phase attained its objective.

3.3.2 Disturbance signals correlation study

To improve the efficiency of the identification, the disturbed PWMwg and
PWMth signals must have the minimum possible correlation. To study
the correlation between distwg and distth, the correlation coefficient r is
used.

r(distwg, distth) =
cov(distwg, distth)

stddistwg ∗ stddistth
(3.4)

where cov(distwg, distth) is the covariance of distwg and distth, and
stddistwg and stddistwg are the respective standard deviations of distwg
and distth.

This correlation coefficient reflects the linear correlation between the
two disturbance signals, i.e. the correlation when the signals are not
shifted from each other. r(distwg, distth) is a constant equal to 0.0175,
which indicates that the two signals are almost not correlated.
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Figure 3.4: Disturbance signals added to PWMwg and PWMth

3.3.3 Disturbance signals spectral analysis

To verify the frequency content of the input signals, i.e. of the distur-
bances added to the input signals, a spectral analysis is carried out.
Because the chosen disturbance is a multi-sines signal which is built
manually, it is clear that the frequency range goes from 0.01 Hz up to
5 Hz, as shown in Figure 3.5. However, for the sake of generality, the
spectral analysis is presented. It is used, in case the disturbance signal
is random or automatically generated, to verify its frequency content.

The spectral analysis is done by calculating the 1-sided power spectral
density, denoted by PSD,

PSD =
2|FFT (signal)|2

LsFs
(3.5)

where the signal is either distwg or distth, Ls is its length, Fs = 1
Ts

is its
sampling frequency, Ts is its sampling time equal to 0.001 s, and FFT is
its Fast Fourier transform, which is a vector of complex numbers whose
magnitude is considered here. Note that the power spectral density is
measured in power/Hz = amplitude2/Hz, where the amplitude of the
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Figure 3.5: Spectrum of the disturbance signals

disturbance signal is measured in %, because it represents the PWM of
the throttle and waste-gate valves.

3.3.4 Disturbed inputs and outputs

The disturbed inputs are formed as follows. The 2 input signals PWMwg

and PWMth are stabilized by their corresponding PID controllers. Once
they become stable, after approximately 10 seconds, their final values
are fixed, the PID controllers stop working, and the respective distur-
bances distwg and distth are added to the signals. From that moment on,
the system runs in open-loop. The four outputs of the engine model are
collected by the end of the simulation. Figure 3.6 shows a sample of the
simulation inputs and outputs at operating point (2000 rpm,11.35 bar).
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Figure 3.7: Discrete black-box SS model

3.4 State-space linear model identification

In this section, we identify, at each operating point (speed, PME), a
discrete black-box SS model whose inputs and outputs are shown in Fig-
ure 3.7, where A, B, C, D and K are the SS system matrices, x(k)

is the system state, u(k) =
[
PWMwg PWMth

]T
is the system input,

y(k) =
[
Pboost Pavt Pcol Wt

]T
is the system output, w(k) is the pro-

cess noise, and t = kTs is the time sampled with a time step Ts = 1 ms,
using k ∈ N0. The following subsections give a briefing about the sub-
space algorithm, describe the identification procedure, and detail the
identification results.
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3.4.1 Subspace methods

For the sake of completeness, and to be able to later specify the pa-
rameters of the identification algorithm, the basic steps of the subspace
method [Lju99] are summed up briefly down below.

Consider a SS model whose matrices are to be estimated:

x(t+ 1) = Ax(t) +Bu(t) +Kw(t)

y(t) = Cx(t) +Du(t) + v(t)
(3.6)

where A, B, C, D, and K are the SS system matrices, x(t) is the system
state of dimension n (where n is the order of the system), u(t) is the
system input, y(t) is the system output of dimension p, w(t) and v(t) are
the respective process and measurement noise, and t is the time. The
identification is carried according to the following procedure:

1. Using input-output data, form a matrix G = 1
NYπ⊥UT φ

T where U is
a vector of inputs, Y is a vector of outputs, π⊥UT is the orthogonal
projection of U, φ is a matrix defined such that the measurement
noise is eliminated, and N is a constant used for normalization.

2. From G, which is a pr × n∗ dimensional matrix (where r is the
maximal prediction horizon and n∗ = n in case of known system
order and n∗ ≥ n in case of unknown system order), construct
Ĝ = W1GW2 where W1 and W2 are weighting matrices to be se-
lected. In order to get the rank n of G, it is subjected to a singular-
value decomposition Ĝ = ZSV T , where Z and V are orthonormal
matrices. Only the most significant singular values in S are re-
tained while the rest are set to 0, which results in a new decompo-
sition Ĝ = Z1S1V

T
1 in another basis. In other words, the rank n of

G is the number of nonzero Eigen values of S.

3. Form the observability matrix Ôr = W−1
1 Z1R where R is an arbi-

trary full rank matrix that determines the coordinate basis for the

state representation. Knowing that Or =
[
C CA . . . CAr−1

]T
,

determine the estimates Â and Ĉ of the SS system matrices, such
that Ĉ = Ôr(1 : p, 1 : n) and Ôr(p+ 1 : pr, 1 : n) = Or(1 : p(r − 1), 1 :

n)Â. The notation used for matrix indexing is such that a matrix
F (m : n, o : p) is a matrix obtained from matrix F by extracting
from it rows m,m+ 1, ..., n and columns o, o+ 1, ..., p.
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4. After calculating Â and Ĉ, the estimated matrices of the SS system
B̂ and D̂, in addition to the estimated initial state x̂0, are calculated
by solving a linear regression problem

arg min
B,D,x0

1

N

N∑
t=1

‖y(t)−Ĉ(qI−Â)−1Bu(t)−Du(t)−Ĉ(qI−Â)−1x0δ(t)‖2

This problem aims at minimizing the least-squares criterion of the
error y−ŷ where ŷ = Ĉ(qI−Â)−1Bu(t)+Du(t)+Ĉ(qI−Â)−1x0δ(t) is
the estimated output, Ĉ(qI − Â)−1x0δ(t) is the term corresponding
to the initial state x0, q is a shift operator, I is an identity matrix,
and δ(t) is the unit pulse at time 0.

An additional step could be added to form the noise model, i.e. calculate
w(t) = x̂(t+ 1)− Âx̂(t)− B̂u(t) and v(t) = y(t)− Ĉx̂(t)− D̂u(t)

3.4.2 Identification algorithm

The sequential procedure used for the identification of the discrete-time
linear SS model of the gasoline engine air-path is elaborated below.

1. Choose the operating point (speed, PME), where speed =
{2000 rpm, 4200 rpm, 6000 rpm} and PME corresponds to the mean
effective pressure (between −1 bar and 18 bar).

2. Define the sampling time Ts = 0.001 s, the input vec-
tor u =

[
PWMwg PWMth

]
and the output vector y =[

Pboost Pavt Pcol Wt · 10−5
]
.

3. Specify the order of the system (4, 6, or 8): the minimum order is
set to 4 because the system has four outputs.

4. Specify the options of the MATLAB® solver "ssest", which is a
combination of subspace and prediction-error minimization meth-
ods. The subspace method described in subsection 3.4.1 includes
different parameters whose values play an important role in its
efficiency and quality of its estimation. The MATLAB® function
"ssestOptions" enables the user to alter the algorithm’s modifiable
parameters. While the default values of some parameters are re-
tained, other parameters, shown in Table 3.1, are modified.



38
Chapter 3. Black-box Gasoline Engine Identification using

Subspace Methods

5. Estimate the SS system matrices using the "ssest" identification
method of MATLAB®. This method implements, as a first step, the
non-iterative subspace algorithm to provide an initial estimate of
the SS system. Consequently, as a second step, it implements the
prediction-error minimization algorithm, which launches an itera-
tive search to refine the black-box estimation.

6. Evaluate the goodness of fit between the estimated and the
simulated system using the normalized root mean square error
(NRMSE) of MATLAB®, whose values vary between − inf (bad fit)
to 1 (perfect fit). Note that when Pcol is less than 1 bar, it is the
only output whose fit is taken into consideration because in this
case, the waste-gate is fully-open and hence not controlled, which
means that the output Pboost is of little importance. Otherwise, the
fits of the two basic outputs, the Pcol and Pboost, in addition to those
of Pavt and Wt, are also taken into consideration.

7. Repeat steps 3 to 6 until all the possible combinations (system or-
der - solver options), shown in Table 3.2, are tested.

8. After testing all 108 combinations (36 combinations of solver op-
tions × 3 model orders (4, 6, and 8)), determine that which yields
the best fit and check the stability of the estimated models.
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• Disturbance model: For systems in time-domain, the disturbance pa-
rameter is not necessarily null, which is why the user can choose or not
to estimate the K matrix in equation (3.6). This parameter is modified in
MATLAB® using the option "DisturbanceModel" which has two different
versions: "none", which implies K = 0, and "estimate", which implies
that the K matrix is a free parameter to be estimated.

• Iterative numerical search method: This option specifies the numerical
method used to estimate the parameters of the SS model. It is modified
in MATLAB® using the option "SearchMethod". Although a particular
search method can be chosen to perform the iterative search, but we
choose to specify it as "auto", which sequentially employs different line
search methods at each iteration, and continues in the first descent di-
rection which yields the lowest estimation cost. The line search methods
are implemented in the following order: the subspace Gauss-Newton
least squares, the Levenberg-Marquardt least squares, the adaptive
subspace Gauss-Newton, and the steepest descent least squares. Al-
though we don’t switch manually among the numerical methods, but we
mention this option in Table 3.2 to remind the reader that the search
switches among different numerical methods, and doesn’t rely on a sin-
gle one.

• The weighting matrices W1 and W2: Different algo-
rithms such as MOESP [Ver94], N4SID [VODM94], CVA
[Lar90], IVM [Vib95], etc... use different choices of weights.

∗ MOESP W1 = I W2 = ( 1
N φπ

⊥
UT φ

T )−1φπ⊥UT

∗ CVA W1 = ( 1
NYπ⊥UTY)−

1
2 W2 = ( 1

N φπ
⊥
UT φ

T )−
1
2

∗ N4SID W1 = I W2 = ( 1
N φπ

⊥
UT φ

T )−1φ

This parameter is modified in MATLAB® using the option "N4Weight"
which has four different versions: "MOESP", "CVA", "SSARX" [Jan03],
and "auto: automatic choice between MOESP and CVA". Despite
the existence of a unifying theorem for MOESP, N4SID, and CVA
[VODM95], nevertheless the choice of the weighting matrices is not
straightforward, which makes them one of the simulation options to be
shuffled and tested one by one.
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• Initial state of system: This parameter is modified in MATLAB® using
the option "InitialState" which can take six different forms, among which
three are shuffled to estimate the best initial state: "zero" where the ini-
tial state is set to zero, "estimate" where the initial state is estimated as
any other parameter, and "backcast" where the initial state is estimated
using the best least squares fit.

• Focus: It determines how to estimate the error between the measured
and the modeled outputs, hence acting as a weighting filter in the loss
function. It is modified in MATLAB® using the option "Focus", which can
take two forms. The first form is called "simulation" where the solver
focuses on finding a good fit on the current simulation step, uses the
current input to generate the model response, and minimizes the sim-
ulation error between measured and simulated outputs during estima-
tion. The second form is called "stability" where the solver focuses on
finding a good fit on the following simulation step and minimizes the
prediction error between measured and predicted outputs. Note that
we use MATLAB2013b®, where the "stability" option is the same as the
"prediction" option, available in MATLAB2018b®, but with stability en-
forcement.

Table 3.1: Options of the "ssest" algorithm

3.4.3 Identification results

From the major objective of this work, which is to bypass the nonlinear
AMESim® model of the engine and identify automatically a black-box
linear model of the engine, the minor objectives of the identification
process are deduced and listed below.

• Verify the adequacy and effectiveness of the experiment design;

• test different model orders and find that which best suits each op-
erating point or, if possible, that which suits all operating points;

• test different combinations of solver options and find that which
best identifies the model parameters at each operating point or, if
possible, that which can identify reliable models at all operating
points;
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Model order

PME 4 6 8

NRMSE # NRMSE # NRMSE #

−1 0.86 31 0.88 35 0.89 13

0.86 0.78 13 0.79 9 0.86 17

2.21 0.95 9 0.92 33 0.97 17

3.54 0.85 9 0.89 17 0.91 11

4.78 0.95 9 0.93 35 0.94 33

6.30 0.89 7 0.88 17 0.81 11

7.98 0.65 13 0.83 17 0.81 9

9.74 0.64 34 0.65 35 0.66 35

11.76 0.60 9 0.55 11 0.45 11

13.5 0.34 35 0.4 35 −0.38 17

15.3 0.49 9 0.59 33 0.50 17

16.84 0.27 35 0.18 9 0.47 9

17.84 0.44 11 0.42 17 0.45 33

18.51 0.44 35 0.28 11 0.39 9

18.98 0.49 17 0.42 7 0.76 11

18.94 0.49 15 0.42 7 0.73 11

Table 3.3: Identification results at 4200 rpm

• study the degree of similarity between the identified models, espe-
cially those corresponding to adjacent operating points.

For a global view of the results discussed in this subsection, we refer
to Table 3.3. It presents the operating points considered in the iden-
tification process. They are points in the 4200 rpm speed range whose
PME ranges from −1 bar to 18.94 bar. They are good representatives of
the engine in both zones, the low-torque zone (from −1 bar to 9.74 bar)
and the high-torque zone (from 11.76 bar to 18.94 bar). This table also
shows the NRMSE of the identified models with respect to their PME

versus three model orders (4, 6, and 8), and shows the corresponding
number of the chosen combination (#), from Table 3.2. The bold cells
highlighted in light grey correspond to the highest NRMSE for a partic-
ular operating point, therefore pointing out its best model order and the
best combination which can be used for its identification.

Note that the NRMSE values in Table 3.3 are calculated as follows. In
the low-torque zone, they are calculated according to the level of fit of
Pcol, as it is the only output of concern in this zone, whereas in the high-
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Min Max Mean Standard deviation

Pboost [bar] 0.93 2.18 1.39 0.06

Pcol [bar] 0.15 2.15 1.14 0.06

Pavt [bar] 1 3.44 1.75 0.07

Wt [rpm] 626.97 226060 108790 8034.2

Table 3.4: Statistical properties of the outputs at 4200 rpm

torque zone, they are calculated according to the levels of fit of all four
outputs, Pcol, Pboost, Pavt, and Wt. Table 3.4 is given as an indication on
the statistical properties of the four outputs in the 4200 rpm speed range,
which might be useful for controller tuning, in case the presented model
is to be exploited for control purposes.

3.4.3.1 Adequacy of the experiment design

Starting off with the first minor objective, we inspect the NRMSE of
the fit at each operating point and present a selection of graphical re-
sults. The better the level of fit between the outputs simulated by the
AMESim® model and those generated by the identified model, the better
the adequacy and effectiveness of the experiment design. The following
results will show that the excitation process has variant effects on the
outputs depending on whether its a low-torque or a high-torque zone,
and leads to better identification results in the low-torque zone where
Pcol is the major concerned output.

Table 3.3 shows the levels of fit of Pcol at a set of operating points
in the low-torque zone (−1 bar ≤ PME ≤ 9.74 bar), and Figure 3.8
shows a sample of the graphical results in this zone, corresponding to
PME = −1 bar. These results show high fits between the simulated and
the estimated output Pcol, with an average NRMSE of 0.87, calculated
from the bold cells highlighted in light grey.

The fact that the estimated outputs show such a high fit with the simu-
lated outputs in terms of tendency and amplitude, indicates, in addition
to the efficiency of the estimation technique, that the input PWMth well-
excites the system. This points out the good frequency coverage of this
input signal, and therefore the adequate choice of the multi-sines as an
excitation input. Notice also, from Figure 3.6, the linear relationship
between the input PWMth and the output Pcol, which also justifies why
the linear model is well-suited for the data in the low-torque zone.



44
Chapter 3. Black-box Gasoline Engine Identification using

Subspace Methods

Figure 3.8: Identification results at operating point (4200 rpm,−1 bar)

On the other hand, Table 3.3 shows the levels of fit of the four outputs
at a set of operating points in the high-torque zone (11.76 bar ≤ PME ≤
18.9401 bar), and Figure 3.9 shows a sample of the graphical results in
this zone, corresponding to PME = 11.76 bar. In contrast to the results
in the 2000 rpm speed range, which present an average NRMSE equal to
0.74 in the high-torque zone and good fits in terms of amplitude as well
as tendency (see for example Figure 3.10), these results in the 4200 rpm

speed range present a lower fit between the simulated and the estimated
outputs, with an average NRMSE of 0.55, calculated from the bold cells
highlighted in light grey. Also, though the tendencies of the simulated
outputs are still followed by the estimated outputs, except that their in-
congruous amplitudes shed light on the difficulty of isolating the effects
of the 2 inputs, PWMth and Pcol, on the outputs. That is to say, contrary to
the case when Pcol ≤ 1 bar where the throttle is the only valve in charge
of the air flow, here the throttle and waste-gate are both active and are
simultaneously affecting the four outputs, which renders the excitation
process more complicated.
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Figure 3.9: Identification results at operating point (4200 rpm,11.76 bar)

3.4.3.2 Model orders

Moving on to the second minor objective of the identification, three
model orders were tested, 4, 6, and 8, as shown in Table 3.3. The bold
cells highlighted in light grey correspond to the highest NRMSE for a
particular operating point, and therefore correspond to the chosen or-
der for the estimated system. For a more global view of the results, Table
3.5 shows the repartition (in %) of model orders of estimated systems in
the same speed range. It shows that 25% of the estimated systems are
of order 4, 18.75% are of order 6, and 56.25% are of order 8. From these
2 tables, the following conclusions can be drawn out:

• Although order 8 is able to best represent the biggest number of
models, nevertheless lower orders such as 4 and 6 prove, for some
operating points, to be better representatives.

• There is no relationship between the model order and the position
of the operating point in the ISO field. For a certain engine speed,
operating points with low or high PME might have system models
with order 4, 6, or 8.
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Figure 3.10: Identification results at operating point (2000 rpm,14.87 bar)

Model order Percentage

4 25

6 18.75

8 56.25

Table 3.5: Repartition of model orders of estimated systems at 4200 rpm

• Generally speaking, the impact of the model order is less evident
on low-torque points (−1 ≤ PME ≤ 9.74) than on high-torque
points (11.76 ≤ PME ≤ 18.94), where changing the order causes a
considerable change in the % of fit.

These observations lead to the conclusion that there is no single prefer-
able model order to represent the engine on all operating points. And
in case we would like to impose a unique order for a group of operating
points, this is more likely to work on low-torque points than on high-
torque points.
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3.4.3.3 Combinations of solver options

In addition to testing different model orders, the identification algorithm
also tested 36 different combinations of solver options, shown in Table
3.2, in an aim to find that or those which yield the best models. The
bold cells highlighted in light grey correspond to the highest NRMSE
for a particular operating point, and therefore correspond to the best
combination for this point. For a more global view of the results, Table
3.6 shows the repartition (in %) of the best solver options combinations
for operating points in the same speed range. It shows that 6.25% of the
estimated systems were identified using the solver options combination
7, 18.75% were identified using the solver options combination 9, and so
on.

A few remarks can be made in this context, regarding the solver op-
tions that were part of the best combinations and those that were never
solicited.

• Both forms of the option "Disturbance", "none" and "estimate",
were used.

• The "estimate" and "backcast" forms of the option "InitialState"
were used, but "zero" was not.

• The weighting forms "MOESP", "CVA", and "SSARX" of the option
"N4Weight" were all used.

• The "Focus" option only took the "simulation" form, never the "sta-
bility" form.

As to whether there is a relationship between the order of the model
and the chosen combinations, Table 3.3 shows that the answer is no,
because different combinations are chosen for different operating points
under the same order. Even considering the best combinations (bold and
highlighted in light grey), it can be noticed that operating points with
different model orders might share the same combination.

From the side of the PME, the relationship between the PME and the
chosen combinations is also unclear. For most of the operating points,
three different combinations are chosen for different order models.

That being said, we conclude that there is no one best combination of
solver options that is always able to estimate the best model on all oper-
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ating points. However, we can still notice that, out of 36 tested combina-
tions, only 7 were actually used. This conclusion is time-saving, because
the number of combinations that need to be tested, for three model or-
ders, in future black-box identifications of linear SS models of a gasoline
engine air-path, reduces from 108 combinations to 21 combinations, thus
shrinking the testing time by 81%. In this context, we would like to point
out the importance of testing different combinations in the first identifi-
cation attempt, because testing more combinations increases the chance
of finding those which are able to identify the models with the best fits.
This can be shown clearly in Table 3.7, which shows that the more the
tested combinations, the better the average NRMSE of the estimated
models.

Combination Percentage

7 6.25

9 18.75

11 18.75

13 6.25

17 18.75

33 12.5

35 18.75

Table 3.6: Repartition of solver options combinations at 4200 rpm

Number of tested combinations 8 9 36

NRMSE 0.27 0.42 0.71

Table 3.7: Effect of testing different number of combinations

3.4.3.4 Degree of similarity between the identified models

The degree of similarity between the identified models is another as-
pect which merits being inspected, because it shows how close from
each other the identified models are, and therefore to what extent it is
possible to group these models in batches, where each batch groups a
number of operating points that share the same model. This grouping
is particularly interesting in the control phase which usually follows the
identification.

To study the similarity between models, it is intuitive to start by compar-
ing the matrices A, B, C, and D of the identified SS systems. However,
comparing the system matrices among different operating points is not
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straightforward for two reasons. The major reason is because the iden-
tified models are not necessarily of the same order. Some are of order 4,
while others are of orders 6 and 8. The second reason is because, even
for the same model order, identifying the SS systems, without setting
the same C matrix for all operating points, would result in systems with
different states. For example, A(1, 1) in system 1 would not necessarily
correspond to A(1, 1) in system 2 even if both systems have the same
order. To find other means of comparison between models and to prove
that the same system can have different SS matrices, a well-known ex-
ample, the DC motor, is chosen for demonstration.

v

i(t) R L

e
J

θ bθ̇

Figure 3.11: DC motor scheme

The DC motor, whose scheme is shown in Figure 3.11, is a combina-
tion of a voltage source giving a voltage V (V), a resistance R (ω), an
inductance L (H), and a rotor of inertia J (kg m−2) propelled by an elec-
tromotive force e, which is subject to a magnetic field. The electromotive
force e is represented by M which is the electromotive force constant or
the motor torque constant (V rad−1 s−1), and the motor viscous friction
is represented by a constant b (Nm s). Let θ be the rotational angle of the
rotor (rad), θ̇ be its rotational speed (rad s−1) and i be the current (A).
Based on Newton’s 2nd law and Kirchhoff’s voltage law, this system can
be described in the following SS representation:

d

dt

[
θ̇

i

]
=

[
− b
J

M
J

−M
L −R

L

] [
θ̇

i

]
+

[
0
1
L

]
V (3.7)

z =
[
1 0

] [θ̇
i

]
(3.8)

Considering Table 3.8, showing the numerical values of the DC motor
parameters, the SS system matrices become
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R 1ω b 0.1 Nm s

L 0.5 H M 0.01 V rad−1 s−1

J 0.01 kg m−2

Table 3.8: Numerical values of the DC motor parameters

Asim =

[
−10 1

−0.02 −2

]
Bsim =

[
0

2

]
Csim =

[
1 0

]
Dsim = 0

Let SSsim = (Asim, Bsim, Csim, Dsim) be the simulated SS model. Its
input V and output z = θ̇ are collected and given to the “ssest” estimator
which estimates a new SS system denoted by SSest = (Aest,Best, Cest,
Dest).

Aest =

[
−12.22 1, 064

−14.41 −0, 4883

]
Best =

[
0

2

]
Cest =

[
1 0

]
Dest = 0

Note that Best = Bsim, Cest = Csim, and Dest = Dsim, and this was
imposed in the options of the solver. Even under such constraints, the
solver will not estimate the same Aest matrix as Asim.

Nevertheless, Figure 3.12 shows that the output generated by the simu-
lated model and that generated by the identified model overlap perfectly,
despite the inequality of the SS systems. To understand the origin of the
difference between the simulated and identified systems matrices, we
conduct different tests, where one test parameter is altered at a time.
Below is a nonexclusive list of some parameters which, once changed,
change the estimated system matrices with them.

• System simulator: For example, if we build the DC motor system
in the form of physical equations on MATLAB® and build another
one graphically on AMESim® with the same parameters, then ex-
tract the input-output data from each of them, and give them to
the estimator, the estimated systems will have the same output but
different matrices.

• Sampling time/discretization scheme: For example, consider a
unique DC motor mathematical system built on MATLAB®. If
we extract two sets of input-output data from this system,
such that the only difference between them is their sampling
time/discretization scheme, and use each of these sets to estimate
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Figure 3.12: Rotational speed of the DC motor

a SS system, the estimated systems will again have the same out-
put but different matrices.

• Prediction-error minimization algorithms: As mentioned in subsec-
tion 3.4.2, the subspace method’s basic role is to provide an initial
estimate of the system, which will in turn be the starting point of
the iterative prediction-error minimization algorithm. It is possi-
ble, however, to specify an initial system manually. But even if we
specify the original mathematical system as an initial system, the
prediction-error minimization algorithm will estimate another SS
system, with same output but different SS matrices.

• Weighting schemes and other subspace solver options: Changing
these options for the same initial system, sampling time, discretiza-
tion scheme, and prediction-error minimization solver will change
the estimated SS matrices, though for the same output.

These different factors point out the difficulty of estimating models with
exact same matrices, which makes model comparison a cumbersome
task. Nevertheless, if the simulated model and the identified model of
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the DC motor do not share the same SS matrices, they do share how-
ever the same Eigen values, −10 and −2, and the same DC gain, 0.0999.
This observation is expected, because the Eigen values are the system’s
characteristic roots and the DC gain is the value of the transfer func-
tion, relating the inputs to the outputs of the system, evaluated as time
tends to infinity. This means that they are good representatives of the
dynamics governing the system and its input-output response at steady-
state. This implies that if two systems behave the same way, although
their matrices may be different, their Eigen values and DC gains will be
the same. Therefore, Eigen values and DC gains can be used to confirm
similarity between SS models whose matrices are not equal.

Going back to the identification of the gasoline engine, the Eigen values
and DC gains of systems, at different operating points in the 4200 rpm

speed range, are shown respectively in Figures 3.13 and 3.14.

Based on these figures, the comparison of the Eigen values and DC gains
leads to the following observations:

• No system coincides with another system in all its Eigen values or
its DC gains, even those belonging to adjacent operating points;

• a couple of operating points such as (16.8354 bar - 17.8407 bar)
or (4.7852 bar - 18.5058 bar) coincide in some Eigen values, and
a couple others such as (2.2110 bar - 16.8354 bar) or (3.5382 bar -
18.9401 bar) coincide in some DC gains, but except for the points
(16.8354 bar - 17.8407 bar), these operating points are not adjacent
points in the ISO field;

• operating points which coincide in some Eigen values are not the
same as those which coincide in DC gains;

• even points which perfectly coincide with other points in some
Eigen values and DC gains have other Eigen values and DC gains
which are completely isolated from other points.

These observations point out the fact that the degree of similarity be-
tween the identified SS models is almost null, which means that group-
ing models in sorts of batches is not possible at this stage.

Finally, to study the stability of the identified discrete-time systems,
the magnitudes of the Eigen values, shown in Figure 3.13, are plot-
ted against the unit circle, as shown in Figure 3.15. The fact that all
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Figure 3.13: Eigen values of identified systems at 4200 rpm

the magnitudes fall outside the unit circle is an indicator of the sys-
tems’ instability. This instability makes sense because the input-output
data used for identification are collected from the open-loop AMESim®

model, which is only stable on certain operating points, but exhibits ex-
ponential divergence on others. Especially in the high-torque zone, if
the waste-gate is not controlled, the engine model will experience un-
stable behavior. Note that the AMESim® system is excited in open-loop,
because according to [Lju99], if the data given to subspace methods is
acquired in closed-loop, they will produce biased estimates. Therefore,
to avoid this bias, we perform an open-loop identification while bearing
in mind the need to complement the identified system with a stabilizing



54
Chapter 3. Black-box Gasoline Engine Identification using

Subspace Methods

0,15

-1.5

×10−3

2

0

-2

0

0.1

×10−3

-0.2

-0.1

-1 3-0.5 0 0.5 1.5 2 2.5

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

-1.0033 bar
0.8611 bar
2.2110 bar
3.5382 bar
4.7852 bar
6.3007 bar

*
*

*
*

*
*

7.9837 bar
9.7402 bar
11.7649 bar
13.5032 bar
15.2971 bar

o
o
o
o
o

18.9807 bar

17.8407 bar
18.5058 bar

16.8354 bar

18.9401 bar

Figure 3.14: DC gains of identified systems at 4200 rpm

controller.

3.5 State-space linear model validation

3.5.1 Validation criteria

The SS system identified using the identification algorithm detailed ear-
lier has four outputs: Pcol, Pboost, Pavt, and Wt. To verify that the iden-
tified SS system produces outputs that fit well the simulated outputs
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Figure 3.15: Stability analysis of identified systems at 4200 rpm

issued by the nonlinear AMESim® model, the margin of allowed error
between the identified SS system outputs and the simulated outputs is
defined and the admissible zone is shown in yellow in Figure 3.16, where
y represents the identified output and x represents the simulated output.

For all four outputs, the margin of error is limited to 5% when the pres-
sures Pcol, Pboost, and Pavt are greater than or equal to 50 mbar, or when
the turbo speed is greater than or equal to 5000 rpm. In this case, the
admissible zone is located between the two straight lines y = 1.05x and
y = 0.95x.

When the pressures are less than 50 mbar, or when the turbo speed is
less than 5000 rpm, the margin of error is maintained at 5%, but the 5%

in this case is the admissible error corresponding to 50 mbar or 5000 rpm

respectively. Concerning the pressures, the admissible zone is hence
located between the two straight lines y = x+0.00238 and y = x−0.0025.
As for the turbo speed, the admissible zone is located between the two
straight lines y = x+ 238.0952 and y = x− 250.

Figure 3.17 shows that all four outputs of the identified models for oper-
ating points belonging to 4200 rpm speeds respect the validation criteria
depicted in Figure 3.16, which makes these models eligible for valida-
tion on another set of data.
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Figure 3.16: Criteria used for validation of identification results
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Figure 3.18: Sawtooth signal and its power spectral density

3.5.2 Validation results

To validate the identified models, they are subject to input signals of the
triangular and PRBS types, and their outputs are compared to those of
the AMESim® model. The amplitude of the triangular and PRBS signals
varies between −3% and 3% of the throttle’s or waste-gate’s steady-
state value of the simulation. They are sampled with a rate of 1 m s.
The triangular signal solicits only one frequency equal to 0.25 Hz, and
the PRBS signal solicits frequencies in the range of [0, 1] Hz. Figures
3.18 and 3.19 show the respective plots of these signals along-side their
power spectral densities.

To show a sample of the validation results corresponding to the triangu-
lar and the PRBS input signals, we refer to Figures 3.20 and 3.21 in the
low-torque zone, and to Figures 3.22 and 3.23 in the high-torque zone.
For a more global view of the results, Figure 3.24 shows the validation
results, corresponding to the triangular signal, subject to the validation
criteria described in subsection 3.5.1, and Figure 3.25 shows the valida-
tion results, corresponding to the PRBS signal, subject to the validation
criteria. In the low-torque zone, Pcol is shown to respect the 5% margin
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Figure 3.19: PRBS signal and its power spectral density

error, whereas in the high-torque zone, the four outputs are shown to re-
spect 5% margin error only on the last 2 operating points of the ISO field
in the 4200 rpm speed range. This is in conformity with the identification
results, shown in Table 3.3, regarding the efficiency of the identifica-
tion technique in identifying the gasoline engine at operating points of
low torque, and its limited efficiency at operating points of high torque.
Nevertheless, the models identified at high torque, might be sufficient
for exploitation for control purposes.
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3.6 Conclusion and future perspectives

In this chapter, a methodology for gasoline engine identification is pro-
posed. A linear SS model of the engine is identified at a set of operating
points in the 4200 rpm speed range, with mean effective pressure vary-
ing from low to high. Multi-sine disturbance signals with good frequency
properties are added to well-excite the almost uncorrelated system in-
puts, PWMth and PWMwg. These inputs along with their corresponding
registered outputs, Pcol, Pboost, Pavt, and Wt, are fed into the subspace
and prediction-error minimization algorithms, which in their turn iden-
tify, at each operating point, a linear SS model of the engine. Different
model orders are tested without leading to any preference, as to the
best model order to be used in future gasoline engine identifications.
Different solver option combinations are also tested, and out of 36 com-
binations, the solver showed preference for only 7, which brings about a
time-save of 81% in similar future identifications.

This study, which is one of the few that approach identification of the
gasoline engine air-path from the subspace algorithm point of view,
proves being highly efficient in identifying operating points were Pcol <
1 bar, yet proves being less efficient for points in the high-torque zone.
This deficiency presents the first scope of improvement to this work. An-
other scope of improvement would be controlling the identified model,
and testing its performance in closed-loop. Moreover, given that while
some estimated models are of order 4, others are of order 6 or 8, an-
other issue that could be addressed is the model reduction, which in
turn opens the door to model comparison and probably model grouping.
Finally, the experiments used for identification and validation are ISO
experiments being held at specific (speed, mean effective pressure) op-
erating points. A natural extension would be to validate the method on
transient tests, preferably real driving cycles.
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The electric throttle, shown in Figure 4.1, is an important component of
the powertrain system of nowadays automotive vehicles whose advanced
features, such as cruise control, are at the core of an enjoyable driving
experience. As shown in the scheme of Figure 4.2, the electric throt-
tle mainly consists of a throttle valve, a DC motor, two return springs,
a "low" limit switch spring and a "high" limit switch spring, reduction
gears, and two position sensors used to ensure an accurate reading of
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the throttle’s angular position. Its job is to regulate the amount of air
entering an ICE, hence playing an important role in its performance,
fuel economy, and pollution aspect.

Figure 4.1: Electric throttle
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Figure 4.2: Electric throttle scheme

A reliable throttle model is the foundation of its design and control, be-
cause it permits to test and improve the design early enough in the de-
sign lifecycle to save significant amounts of time and money. However,
the electric throttle presents a modeling challenge, despite its simplic-
ity, due to its nonlinearities, which find their origins in the static friction
torque, the Coulomb friction torque, the preload torque, and in its dual
spring system, comprised of a "low" and a "high" spring, which function
selectively under the limp-home position and above it. The limp-home
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position is the default angular position taken by the throttle when the en-
gine control unit (ECU) stops sending it control inputs, after it detects
abnormal or nonexistent sensor readings, or in case of a communication
error between them. At this position, the throttle admits in the intake
manifold a small amount of gas, just enough to maintain a minimum level
of power and to keep the engine running. By doing so, it puts the engine
and the car on safe mode and ensures a certain level of security in case
the throttle control fails in the middle of the highway, for example. When
the angular position of the throttle flap descends below the limp-home
position, the "low" spring becomes active to resist further closure of the
valve, and maintain it at least at the limp-home position. The "high"
spring, on the other hand, is always active, independently of the valve’s
angular position. This spring constantly provides a torque to close or to
resist the opening of the throttle.

Despite the challenges, building a good model of an electric throttle is
worth the effort because of its importance in the overall engine control
cycle, from the MIL to the HIL phase. Moreover, the electric throttle
along with the other actuators of the electric drive chain, such as the
high-pressure and low-pressure EGR valves and the air-intake valve in
diesel engines, share the same control strategy and the same structure
of one or two return springs, a reduction gear, and a valve. Having
accurate models and easily-calibrated controllers for these actuators is
crucial in the calibration of the gasoline engines subject to the upcom-
ing euro7 emission norm. In this chapter, for the sake of linearity itself
and the advantages that accompany it, we are particularly interested
in identifying a linear model of the electric throttle. Given an open-
loop AMESim® model of the electric throttle, the model is written in
a linear form, and then linearly controlled, to follow a predefined set-
point or reference trajectory. The linear control strategy applied on the
AMESim® model can hence be transfered to the real throttle and tested
in later phases of control design. The methodology of deriving the elec-
tric throttle’s linear model and controlling it is described in this chapter.
It is generic and can therefore be extended to other similar actuators
such as the EGR valve.

State of the art Electric throttle identification and control is a topic
whose deliberation dates back to the late 1900s. Almost 20 years of
research have already been conducted on the subject, which makes an
extensive literature regarding the types of models, identification tech-
niques, and control strategies.
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Regarding the models of electric throttles in cars and motorbikes, differ-
ent sorts of models can be found: Mathematical, black-box, piece-wise
affine (PWA), piecewise auto-regressive exogenous (PWARX), ARMAX,
SS, LPV models, etc... Most of the works in the literature present linear
and nonlinear mathematical models of the electric throttle based on the
physical equations representing the functioning of the DC motor and the
spring(s), take for example [AK+17]; [BPP05]; [PCS13]. Black-box mod-
els also had their share of electric throttle; see for example [DPPJH04]
and [CTSF11] where an linear time-invariant (LTI) nominal model was
experimentally identified in the frequency domain. PWA models are
widely spread as well. [VBMPP06], for example, presents discrete-
time models of the static and dynamic friction present in the throttle.
In [VMP05], a clustering-based method was used to identify a PWARX
model. LPV modeling can be seen in [TE09] with an LPV mathematical
model and in [ZYZ15] with a discrete-time physics-based model where
the time-varying parameters are the vehicle battery voltage and the fric-
tion torque, which is a function of the throttle’s position. In [Yan04], six
different linear models were identified at six different operating points
of the throttle. In [GB00], a mathematical model is established for the
linear parts and more than one ARMAX model, distributed below and
above the limp-home position, are estimated by MATLAB for the non-
linear parts. [PD11] presents a linear SS model, but the addition of a
nonlinear friction model, results in a nonlinear model of the throttle.
On the other hand, avoiding all the identification difficulties, [JSK09]
presents a model-free control technique.

As for the model identification techniques, [BPP05]; [JZS14]; [PCS13]
use an online estimator of the friction, preload torque, and spring non-
linearities. In [BPP05], however, the online estimator is neural-network
based. [BNS06], on the other hand, uses a state observer enhanced by
an output-error technique where the model is extracted from the closed-
loop identification carried on with a proportional controller. [NSHO06]
relies on nonlinear optimization and genetic algorithms to estimate the
system parameters. Fuzzy system modeling is used in [YW09] where
Taylor expansion is used to linearize an input-output model. In contrast
to the online estimation techniques, [DPPJH04]; [PDJP06] perform an
offline identification which is carried out separately for the linear part
representing the DC motor and for the nonlinear part representing the
spring limp-home position and the static and dynamic frictions. [DP-
PJH04], however, is distinguished by a multi-step identification approach
that characterizes the dynamics of the linear throttle depending on its
physical form, and another single-step black-box identification approach
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that captures the part of the model which has no physical significance.

When it comes to control, PID is one of the most popular forms of
electric throttle control; take for example [AK+17]; [Li+12]. Sliding
mode control (SMC) has also been used [OHP01]; [PD11], in addition
to H2/H∞ [ZYZ15], and other types of controllers. Optimal control also
has its share of electric throttle control. For instance, an optimal linear
quadratic Gaussian (LQG) controller was used with another proportional
controller to compensate for the nonlinearities observed in the throttle
system [KSHKS96]. LQG optimal control with integral action applied
on a SS linear model was also compared with RST control applied on
an ARMAX model [GB00]. In case of LQG and RST control, the control
law applied below the limp-home position is different from that applied
above it. Also, an adaptive scheme is followed in [GB00], where three
methods, among which is recursive least-squares, are used to estimate
the parameters of the nonlinear limp-home position.

Proposed methodology In a first step, this chapter proposes to use
the physical equations corresponding to the AMESim® model to form
an LPV SS model of the electric throttle, taking into account the throt-
tle’s nonlinearities, such as limp-home position nonlinearity. The LPV
SS model captures the most important aspects of the AMESim® model
without considering unnecessary details and functionalities that would
complicate the linear system without offering additional accuracy. Con-
sequently, the LPV SS system is used as a basis leading to the formation
of a regression vector, employed later in the identification of an LPV
ARX model of the throttle. In a second step, the identified ARX and
SS systems are subject to LQR control design, which features reference
and disturbance feedforwards, and which is later verified on the origi-
nal open-loop AMESim® model. In addition to these simulation results,
experimental results are demonstrated on a real throttle test-bench, to
which the LPV model is compared and adapted acccordingly.

Note that from the identification point of view, although the PWARX
identification of the electric throttle was suggested in [VMP05], the ad-
vantage of the work proposed in this chapter is the reduced number of
sub-models. Furthermore, the state of the art shows that mathemat-
ical modeling and black-box modeling are both used in the literature
to model the electric throttle, but they are usually used separately not
in collaboration with one another, because mathematical modeling is
used when the physical equations of the system are known and black-
box modeling is used in the opposite case, when these equations are not
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known. In [DPPJH04], for example, though both techniques were used
together, but each of them was used separately to identify a different
part of the model. In this work, to take advantage of the merits of both
techniques and provide a model which implies the physical laws govern-
ing the electric throttle’s functioning, we propose to use the physical
equations that we know about the throttle to set the structure of the
black-box model. That is to say, we use the physical equations to define
the regression vector of the ARX model. Once this is done, all we need
is the system input and output to do a system identification and find the
model parameters. Even if a new throttle model with different parame-
ters has to be identified, the ARX model regressor remains unchanged,
and the new throttle’s input and output are plugged in to identify the
new linear model. Combining both techniques exploits the capability of
black-box modeling to capture the obscure aspects of the electric throt-
tle functioning, and results in a physically meaningful black-box model
all at the same time. Consequently, the conversion of the ARX model to
a SS model results in a 2nd order model which has a physical meaning,
unlike the numerically identified SS model in [GB00].

From the control point of view, a PID controller could have been di-
rectly used to control the nonlinear AMESim® models. But taking into
consideration that PID control has been widely explored with the elec-
tric throttle, it is interesting to explore other control techniques as well.
LQR control is chosen for this application for one main reason. In addi-
tion to its numerous well-known advantages, an LQR controller has one
tuning parameter (the Q/R weighting ratio). This interesting feature al-
lows rapid switching from one throttle model to another, without having
to do time-consuming controller calibrations each time. This is essen-
tial in the automobile industry, taking into consideration the frequent
changes in the engines’ TDs. Finally, another contribution of this work
is the systematic methodology proposed for converting an AMESim®

nonlinear model into a linear model and controlling it, a methodology
which can be applied on other actuators’ models, similar in structure to
the electric throttle.

Chapter structure This chapter is organized as follows. Section 4.1
details the physical equations governing the functioning of the electric
throttle and the scheduling parameters used to split the functioning
zones. Section 4.2 describes the throttle nonlinear AMESim® model,
and discusses the identification of the LPV models. Section 4.3 presents
the electric throttle test-bench and identifies the LPV model correspond-
ing to it. Section 4.4 presents the LQR controller associated with the
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initial LPV models, and the application of the control design on the ini-
tial nonlinear model of the throttle. Section 4.5 describes the overall
proposed methodology to present an AMESim® nonlinear model of the
throttle in a linear form and control it, and section 4.6 concludes the
chapter.

4.1 Modeling an electric throttle with an LPV
Model

To understand the electric throttle’s nonlinear behavior and get insight
about its different functioning zones, the mathematical equations, lying
behind its components, are inspected, by analyzing the reference model
provided by the engineers from Renault and referring to the documen-
tation of AMESim®. The underlying equations, representing the torques
stemming from the different model components shown in Figure 4.2,
govern the electric throttle’s functioning and shed light on its nonlinear-
ities. Four torques are listed below: the motor torque, the torques stem-
ming from the "high" and "low" return springs, and the friction torque
applied on the motion.

• The motor torque is:

Tmotor = K · i · ηGB (4.1)

where K is the motor torque constant (N m A−1), i is the electric
current (A), and ηGB is the gear box efficiency.

• The torque stemming from the "high" spring is:

Thigh = Th + Tvh + Tph (4.2)

where Th = ktor ·θ is the ”high” spring torque (N m), Tvh = rtor · θ̇ is
the viscous friction torque associated with the "high" spring (N m),
and Tph is the constant "high" spring preload torque (N m).

The constant ktor is the "high" spring stiffness (N m rad−1), θ is the
angular displacement (rad) of the throttle flap, rtor is the viscous
friction constant associated with the "high" spring (N m s rad−1),
and θ̇ is the angular speed (rad s−1) of the throttle flap with respect
to time.
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• The torque stemming from the "low" spring is:

Tlow =

{
Tcontact , if Tcontact ≤ Tpl
Tspring , else

(4.3)

where

Tcontact =

{
−kint(θ − θ0)− reff · θ̇ , if θ < θ0

0 , if θ ≥ θ0

is the contact

torque (N m), and

Tspring =

{
Tl + Tvl + Tpl , if θ < θ0

0 , if θ ≥ θ0

is the spring torque (N m),

where Tl = kcont·θ is the ”low” spring torque (N m), Tvl = rcont·θ̇ is
the viscous friction torque associated with the "low" spring (N m),
and Tpl = kint · disth is the constant "low" spring preload torque
(N m).

The constant kint is the contact stiffness (N m rad−1), θ0 is the ini-
tial displacement or the limp-home position (rad), kcont is the "low"
spring stiffness (N m rad−1), rcont is the viscous friction constant
associated with the "low" spring (N m s rad−1), disth is the angu-
lar displacement threshold to reach the "low" spring preload (rad),
and reff is the effective contact damping coefficient (N m s rad−1)
calculated as

reff = r(1− exp
−(θ − θ0)

e
)

where r is the damping to reach the preload (N m s rad−1) and e is
the limit penetration distance for full damping (rad).

Note that the conditions Tcontact ≤ Tpl and Tcontact > Tpl in equation
(4.3) are respectively equivalent to 0 < ∆θ ≤ disth and ∆θ > disth

where ∆θ = −θ + θ0. Figure 4.3 shows how the stiffness changes
from contact to spring stiffness as ∆θ reaches the angular displace-
ment threshold disth.

• AMESim® provides different ways for modeling the friction torque,
from static models, such as the Coulomb friction model, to dynamic
models, such as the Dahl, reset-integrator, or the LuGre model. Be-
cause the AMESim® models used in this work solicit two different
friction models, the static Coulomb friction model and the dynamic
reset-integrator model, the calculation of the friction torque will
be addressed from both perspectives.
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Figure 4.3: Low spring: contact vs spring torque

∗ In case of the Coulomb friction model, the torque stemming from
the friction component is:

Tfriction = Tcsgn(θ̇) + bθ̇ (4.4)

where Tc is the constant Coulomb friction torque (N m) and b is the
motor viscous friction constant (N m s rad−1).

Note that equation (4.4) represents the dynamic frictions included
in the Coulomb friction model: the Coulomb friction which is the
friction that opposes a body’s motion with a constant force regard-
less of its velocity and contact area, and the viscous friction which
is a linear function of the body’s velocity. From Figure 4.4, which
shows a scheme of the Coulomb and viscous friction torques, notice
the discontinuity of the model and the uncertainty of the Coulomb
torque at θ̇ = 0, as it can take any value in the interval [−Tc, Tc]. In
addition to these two dynamic frictions, the Coulomb friction model
also allows modeling the static friction force, otherwise called stic-
tion, which represents the sticking of two bodies as they tend to
slip over each other but do not move (θ̇ = 0). Because stiction is
neglected in the original AMESim® model , it is not detailed any
further here.

∗ In case of the reset-integrator model, the torque stemming from
the friction component is:

Tfriction =

{
Tstick + Tvs , if |θdiff | < dtrel

Tcsgn(θ̇) , if |θdiff | ≥ dtrel
(4.5)
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Figure 4.4: Friction torque as a function of the angular velocity for the
Coulomb friction model

where Tstick = krel · θdiff (N m), and Tvs = rtors · θ̇/N is the equiv-
alent viscous friction torque during stiction (N m).

The constant rtors is the equivalent viscous friction constant dur-
ing stiction (N m s rad−1), N is the gear ratio, krel is the stick stiff-
ness (N m rad−1), and dtrel is the stick displacement threshold
(rad). θdiff is an internal variable of the friction model standing for
the relative differential angle, between the two ports of the inertial
component, during stiction. The dynamics of θdiff are calculated
as:

dθdiff
dt

=


0 , if (θ̇ < 0 and θdiff ≤ −dtrel)
0 , if (θ̇ > 0 and θdiff ≥ dtrel)
θ̇
N , else

The integrator implied by this internal variable θdiff is what gives this
reset-integrator friction model its name. During stiction phase, the in-
tegrator input is set equal to θ̇ (divided by N to account for the gear
ratio), implying an “integrator” action, and it is “reset” to zero once
θdiff reaches the stick displacement threshold dtrel and starts sliding
during the Coulomb friction phase. Figure 4.5 shows a scheme of the
Coulomb and static friction torques, Tc and Ts, with respect to θ and
θ̇. Ts = krel · dtrel is the constant stiction torque (N m) which acts as
an upper limit for |Tfriction|. The continuous transition, shown in Figure
4.5, from Ts to Tc is due to the Stribeck effect, which is not detailed here
because it is considered negligible in the AMESim® model used in this
work.
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Figure 4.5: Friction torque as a function of the angular displacement
(left) and as a function of the rotary velocity (right) for the reset-
integrator friction model

The above equations reveal the origins of the throttle nonlinearities.
Let’s first consider equations (4.1), (4.2), and (4.3). While the motor
torque, "high" and "low" spring torques, and "high" and "low" viscous
friction torques are respectively linear functions of the current i, the
relative angular displacement θ, and the relative angular velocity θ̇, the
"high" and "low" springs preload torques reveal the first sources of non-
linearity. The contact torque in equation (4.3) shows a nonlinearity due
to the limp-home position θ0. Finally, the Coulomb and stiction torques
in equations (4.4) and (4.5) reflect other nonlinearities due to the sign
function of the angular velocity θ̇ and due to the torque saturation im-
posed by Ts.

In addition to the nonlinearities, the equations above reveal the different
functioning zones of the throttle, shown in Figure 4.6. The first zone
definition, shown in the top table of Figure 4.6, is with respect to θ

(zones 1, 2, and 3). Indeed, while Tmotor and Thigh are common for zones
1, 2, and 3, Tlow is calculated differently in each of these zones. When
θ0 ≤ θ ≤ θmax (zone 3), Tlow is nonexistant, whereas when θmin ≤ θ <

θ0 − disth (zone 1) and θ0 − disth ≤ θ < θ0 (zone 2), the motor is subject
to Tlow, coming in the form of Tspring and Tcontact, respectively. Note that
the springs never allow the throttle to go beyond its limit positions θmin
and θmax to avoid pushing the limits of the DC motor.

Considering Tfriction in case of the reset-integrator model, it is calcu-
lated differently in each of the 5 zones A, B, C, D, and E, shown in the
middle table of Figure 4.6, independently of the value of θ. This table
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shows the second zone split, which is with respect to θdiff and Tfriction.
Note that selecting θdiff among the scheduling parameters is permissi-
ble because it is a function of θ, which in turn is a measurable parameter.
On the other hand, in case of the Coulomb friction model, Tfriction is cal-
culated differently in each of the two zones F and G shown in the bottom
table of Figure 4.6. This table shows the second zone split, which is with
respect to θ̇.

Therefore, by crisscrossing zones 1−3 with zones A−E, when Tfriction is
calculated using the reset-integrator model, 15 functioning zones of the
electric throttle can be distinguished, and by crisscrossing zones 1 − 3

with zones F −G, when Tfriction is calculated using the Coulomb friction
model, 6 functioning zones of the electric throttle can be distinguished.
Therefore, the number of functioning zones of an electric throttle’s LPV
model depends on the type and complexity of the models chosen to de-
pict the phenomena taking place in the throttle. The 6-zone and the
15-zone split schemes presented here will be projected respectively on
two different AMESim® models and their modeling efficiencies will be
compared.

The above-mentioned physical equations can be used to write the
AMESim® model in the form of an LPV SS model. The initial AMESim®

model provided by the Renault engineers can be written as a 4-zones
LPV SS model, two of these zones lying below the limp-home position
and two lying above it. This LPV SS model takes as scheduling param-
eters the position and speed of the throttle. This model is used to form
an LPV ARX model and to design an LQR controller for the AMESim®

model. In the rest of the chapter, this AMESim® model is referred to as
AMESim® model A.

Unfortunately, upon the late arrival of an electric throttle test-bench,
after the above proposed identification and control methodology had al-
ready been applied, verification of the AMESim® model, with respect
to the test-bench, turned out to be unsuccessful. Upon giving the
AMESim® model and the test-bench the same input, they resulted in
different outputs. This is why another AMESim® model is designed, one
which is sure to be valid with respect to the test-bench, and the ARX
system identification proposed above is executed again, this time based
on the new AMESim® model. In the rest of the chapter, this AMESim®

model is referred to as AMESim® model B.

The next sections detail the AMESim® nonlinear models A and B, the
functioning zones in which they fall and therefore the equations leading
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θ̇ = 0θ̇ < 0 θ̇ > 0

Figure 4.6: Functioning zones of the electric throttle
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to their respective LPV SS models A0, A, and B, and the identifications
leading to their respective LPV ARX models A and B.

4.2 Identification of an electric throttle model
and simulation results

4.2.1 Nonlinear AMESim® model A and its nonlinearities

The model of the throttle built on the simulation platform LMS Imag-
ine.Lab AMESim® is shown in Figure 4.7. It is modeled as a combina-
tion of the throttle flap, a DC motor, 2 springs, a "low" return spring
and a "high" return spring, reduction gears, and a group of sensors. No
separate component is dedicated for modeling the friction. Instead, the
inertial component is parameterized in way that the friction on the move-
ment of throttle is taken into account. The control of the throttle is built
in Simulink®, which accesses AMESim® model A through an S-function,
thus resulting in a co-simulation environment launched by MATLAB.

Figure 4.7: AMESim® nonlinear model A of the electric throttle

The throttle takes a PWM (%) as input and gives an angular position (%)
as output. Many of its states are accessible: power (W), torque (N m),
speed (RPM), voltage (V), and current (A).
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This nonlinear model built in AMESim® was validated by Renault engi-
neers with respect to a real throttle test-bench present in Renault. A set
of experiments was conducted in open-loop on the real throttle at differ-
ent temperatures, where a voltage (PWM) signal was sent to the throt-
tle, and its corresponding angular positions were recorded over time,
resulting in a set of measured input and output profiles. The AMESim®

open-loop simulation of a concatenation of some of these experiments is
shown in Figure 4.8.

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

100

Time [s]

P
W

M
[%

]

0 5 10 15 20 25 30 35 40 45 50

20

40

60

Time [s]

A
n

g
u

la
r

P
o
si

ti
o
n

[d
e
g

]

Figure 4.8: Input and output signals of AMESim® nonlinear open-loop
model A

LQR control design requires a linear model, which brings us to the next
step: finding the linear equivalent of AMESim® nonlinear model A, thus
the need to understand the origin of the model nonlinearities prior to any
linearization attempt. This model presents a high nonlinearity mainly
due to the springs’ preload torques, the springs’ torques at the limp-
home position, and Coulomb friction torque, whose value is directly as-
sociated to the sign of the angular speed. Due to these nonlinearities,
the system is represented as an LPV system with four sets of parameters
in four functioning zones, as shown in the next subsection.
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4.2.2 Linear-parameter-varying state-space model A

As mentioned earlier, AMESim® model A admits the Coulomb friction
model for the calculation of Tfriction, which means that its functioning is
restricted to 6 zones: 1F, 1G, 2F, 2G, 3F, and 3G (referring to Figure 4.6).
This means that writing this model in the form of an LPV model requires
only two scheduling parameters: θ and θ̇, the respective position and
speed of the throttle.

A few remarks can be made in this context about the functioning zones:

• to simplify the linear model and minimize the number of function-
ing zones, the contact torque is neglected and disth is assumed
equal to 0, which leads to merging zones 1 and 2 in the first table
of Figure 4.6 and considering that Tlow = Tspring all the time.

• the Coulomb friction model presents a discontinuity of the friction
torque at θ̇ = 0 and does not explicitly specify the value of the
Coulomb torque at this speed. For simulation reasons, however,
we assign the value of Tc to the Coulomb friction torque at θ̇ = 0,
as if it falls in zone G where θ̇ > 0.

Taking these remarks into account, the 6 zones reduce to four zones,
which are split at the points presenting the nonlinearities originating
from the limp-home position and the Coulomb friction torque, as follows:

• zone 1− 2F: θmin ≤ θ < θ0 and θ̇ < 0

• zone 1− 2G: θmin ≤ θ < θ0 and θ̇ ≥ 0

• zone 3F: θ0 ≤ θ ≤ θmax and θ̇ < 0

• zone 3G: θ0 ≤ θ ≤ θmax and θ̇ ≥ 0

Two other remarks can be made concerning particularities in AMESim®

model A:

• in zones 1 and 2 (i.e. below the limp-home position), only the "low"
limit spring is active. The "high" spring is active only in zone 3 (i.e.
above the limp-home position), which means that Thigh = 0 in these
zones.
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• viscous friction is considered at the level of the inertial component
(DC motor) following the Coulomb friction model, not on the level
of the springs, which means that Tvl = Tvh = 0.

To build the LPV SS model of the electric throttle, the first equation to
consider is Newton’s Second Law of rotation.

Jθ̈motor =
∑

T = Tmotor +NThigh +NTlow − Tfriction (4.6)

where J is the moment of inertia of the motor (kg m2) and θ̈motor is the
angular acceleration of the motor with respect to time (rad s−2).

θmotor = θ
N (θ being the angular displacement of the throttle which is on

the same level as the springs) and Ton themotor level = NTon the spring level.
Therefore, Thigh and Tlow are multiplied by the gear ratio N , as they are
generated on the level of the springs, not on the level of the DC motor
to which we apply Newton’s Second Law.

Equation (4.6) takes two different forms depending on the functioning
zone.

In zones 1− 2F and 1− 2G:

Jθ̈motor = Tmotor +NTlow − Tfriction

= Ki · ηGB +Nkcont∆θ +NTpl − Tcsgn(θ̇)− bθ̇

N

In zones 3F and 3G:

Jθ̈motor = Tmotor +NThigh − Tfriction

= Ki · ηGB +Nktor∆θ −NTph − Tcsgn(θ̇)− bθ̇

N

The second equation to consider is Kirchhoff’s voltage law.

V = Kθ̇ + L
di

dt
+Ri (4.7)

where V is the electric voltage (V), R is the electric resistance (Ω), and
L is the electric inductance (H).
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J 3.29× 10−6 kg m2 Tph 0.05 N m

N 0.04566 Tpl 0.05 N m

K 0.021 N m A−1 ktor 0.55 N m rad−1

R 2 Ω kcont 5.16 N m rad−1

L 0.001 25 H θmin 5◦

ηGB 0.95 θmax 95◦

b 0.0002 N m s rad−1 θ0 18◦

Tc 0.005 N m

Table 4.1: Parameters of linear model A

To build the linear SS model A0, consider the state vector
X0 =

[
θ θ̇ i

]T
, the output Y = θ, the input U = V , and the state dis-

turbance B0d where B0d is a matrix containing the parameters relative
to θ0, the preload torque, and Coulomb’s friction torque.

The SS system can hence be expressed as

Ẋ0 = A0X0 +B0U +B0d

Y = C0X0 +DU
(4.8)

where C0 =
[
1 0 0

]
, D = 0, and A0, B0, and B0d are the system ma-

trices whose parameters vary with the variation of the functioning zone
following equations (4.6) and (4.7):

In zones 1− 2F and 1− 2G:

A0 =

 0 1 0
−Nkcont

J
−b
NJ

KηGB
J

0 −K
L

−R
L

 B0 =

0

0
1
L

 B0d =

 0
Nkcontθ0+NTpl−Tcsgn(θ̇)

J

0


In zones 3F and 3G:

A0 =

 0 1 0
−Nktor

J
−b
NJ

KηGB
J

0 −K
L

−R
L

 B0 =

0

0
1
L

 B0d =

 0
Nktorθ0−NTph−Tcsgn(θ̇)

J

0


Table 4.1 shows the numerical values of the constants used in the result-
ing LPV SS system.

The validity of LPV SS model A0 depends on its level of fit with AMESim®

nonlinear model A from which it was extracted. To study this level of fit,
the same voltage signal sent to AMESim® nonlinear model A is sent to
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the linear model, and their corresponding angular positions are regis-
tered over time. The results are shown in Figure 4.9.
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Figure 4.9: Throttle angular position of AMESim® nonlinear model A
and linear SS model A0

Figure 4.9 shows a good fit between the two models, confirmed by an
NRMSE equal to 0.921. However, expressing the electric throttle sys-
tem in the form of SS calls for preliminary knowledge of the physical
equations governing the system, thereby eliminating the ability to do
an identification by solely relying on the input and the output signals.
Nevertheless, SS model A0 has some advantages. First, it provides the
reference regressor structure for the identification of ARX model A de-
scribed in subsection 4.2.3. Second, it allows to assess the credibility of
the ARX identification by comparing the identified parameters with the
initial parameters given by the physics-based SS model.

4.2.3 Identification of linear ARX model A

The identified ARX model is a linear regression model of the predictor
form [Lju99]

ŷ(t|ξ) = φT (t)ξ (4.9)

where ŷ is the predicted output, φ is the regression vector expressed as
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φ(t) =
[
θ(t) θ(t− 1) V sgn(θ̇) 1

]T
(4.10)

ξ is the vector of parameters to be identified and t is the time.

As previously mentioned, the regression vector φ inherits its elements
from the discretization of equations (4.6) and (4.7), where θ̈ and θ̇ in
equation (4.6) are discretized using the central difference scheme, and
the motor inductance L in equation (4.7) is considered equal to zero due
to its negligible impact.

The objective function to be minimized is the prediction error

ε(t, ξ) = y(t)− φT (t)ξ (4.11)

where y is the output of AMESim® nonlinear model A. The objective
function to be minimized is the least squares criterion

VN (ξ, ZN ) =
1

N

N∑
t=1

1

2
[y(t)− φT (t)ξ]2 (4.12)

where the time t varies between 1 and N , and ZN is the data set con-
taining the inputs (in this case V ) and the outputs (in this case θ). The
linear regression least-squares method is chosen because of the mer-
its it offers. Minimizing the least-squares criterion (4.12) with the linear
regression (4.9) is a convex optimization problem, for which we can com-
pute the analytical solution as [Lju99]:

ξLSN = argminVN (ξ, ZN ) = R−1(N) ∗ f(N) (4.13)

where R−1(N) = 1
N

∑N
t=1 φ(t)φT (t) and f(N) = 1

N

∑N
t=1 φ(t)y(t)

We suppose that the information content in our input-output data is suf-
ficiently rich to obtain accurate parameters. Four ARX models are iden-
tified, one for each of the four functioning zones. The ξ identified vectors
are shown in Table 4.2, each corresponding to one of the ARX models.

To verify to what extent ARX model A comprises physical meaning, in
comparison to SS mathematical model A0, these vectors are compared
to the initial ξ vectors, shown in Table 4.3, corresponding to the first SS
formulation in zones 1− 2F, 1− 2G and zones 3F, 3G.
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Zone 1− 2F Zone 1− 2G

ξ1−2F =


1.9846

−0.9847

1.577 · 10−6

2.1686 · 10−9

1.2739 · 10−5


T

ξ1−2G =


1.9838

−0.9839

1.5853 · 10−6

−9.8839 · 10−7

1.1535 · 10−5


T

Zone 3F Zone 3G

ξ3F =


1.9841

−0.9841

1.6131 · 10−6

−2.1601 · 10−6

−5.5758 · 10−7


T

ξ3G =


1.9883

−0.9883

1.1874 · 10−6

−5.3499 · 10−7

4.6316 · 10−7


T

Table 4.2: Least-squares estimates ξ of ARX model A

Zones 1− 2F and 1− 2G Zones 3F and 3G

ξ1−2F,1−2G =


1.9872

−0.9879

3.1915 · 10−5

−1.5198 · 10−5

2.4443 · 10−4


T

ξ3F,3G =


1.9872

−0.9873

3.1915 · 10−5

−1.5198 · 10−5

1.8374 · 10−5


T

Table 4.3: Least-squares estimates ξ of SS model A0
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The vectors stemming from ARX model A identification mostly fall in the
same range as those corresponding to the SS formulation. Moreover,
Figure 4.10 shows how well the output of the identified ARX model A
fits the output of AMESim® nonlinear model A. In fact, this model shows
a higher level of fit with AMESim® nonlinear model A compared to SS
model A0 because the NRMSE increases from 0.921 in the case of SS to
0.9672 in the case of ARX. This can be interpreted by the fact that the SS
model explicitly implies the physical laws presented in the mathematical
equations, whereas the ARX model is not restricted to these equations
and therefore keeps room for expressing obscure physical phenomena.
The proximity of the ξ vectors from those of SS model A0 in addition to
the good level of fit shown in Figure 4.10, both prove that ARX model
A can in fact be utilized to identify a linear model of an electric throttle
just by taking into account its inputs and outputs. This is substantial and
helpful because it implies that it is possible to accelerate the modeling
process. In other words, it is possible to surpass the AMESim® model by
identifying immediately a linear model using inputs and outputs coming
from a test-bench experiment. This process does not only save time,
but it also makes room for linear control techniques in electric throttle
applications.
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Figure 4.10: Throttle angular position of identified LPV ARX model A

In view of the criticality of the electric throttle’s limp-home position,
ARX model A is also verified on a simulation shown in Figure 4.11 where
the position of the throttle varies slightly around the limp-home posi-
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tion, lying at around 18◦. A good fit between AMESim® model A and
ARX model A can be noted and verified with an NRMSE equal to 0.9520.
Also, the passages through limp-home position do not show any blatant
discontinuities.
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Figure 4.11: Around-limp-home throttle angular position of AMESim®

nonlinear model A and identified LPV ARX model A

Finally, to facilitate the control design (presented in section 4.4), ARX
model A is converted to a SS model, referred to as "SS model A". For-
ward Euler method is applied to transform the discrete model into a
continuous one, and the third state i is omitted from the SS vector be-
cause the inductance L is negligible, and can hence be approximated by
0. This approximation removes from (4.7) the term corresponding to the
dynamics of the current.

The resulting SS systems have the following form:

Ẋ = AX +BU +Bd

Y = CX +DU
(4.14)

where X =

[
θ

θ̇

]
, A =

[
0 1

ξi1+ξi2−1
dt2

ξi1−2

dt

]
, B =

[
0
ξi3
dt2

]
,

Bd =

[
0

ξi4sgn(θ̇)+ξi5
dt2

]
, C =

[
1 0

]
, D = 0, and i is the model number

(i = 1− 2F, 1− 2G, 3F, 3G).
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4.3 Electric throttle test-bench and experimen-
tal results

The work in the previous section motivated us to build a test-bench of
the electric throttle, shown in Figure 4.12, to allow testing the methodol-
ogy and the model presented earlier. The test-bench consists of different
components: the H4Bt Renault engine electric throttle from Continental
Edison (orange), an Arduino Mega R3 2560 microcontroller board (vi-
olet), an L298N H-bridge motor driver (green), an secure digital (SD)
card (blue), a current sensing resistor with an RC filter (grey), and a
power supply (black). The connections between these components are
depicted in Figure 4.13.

Figure 4.12: Electric throttle test-bench

In order to actuate the opening of the throttle valve, the microcontroller
sends the H-bridge motor driver two logical values specifying the direc-
tion of rotation of the throttle motor, and an input voltage between 0 and
5 volts specifying the valve’s angular position. The throttle valve motor
needs to be supplied with an input voltage between 0 and 12 volts. There-
fore, taking into consideration that the L298N H-bridge motor driver
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Figure 4.13: Connections of the electric throttle test-bench

induces a voltage drop of approximately 2 V, a generator supplying a
voltage of 14.5 V is used. The output angular position of the throttle
valve, between 0 and 90 degrees, is measured by means of the throttle
sensors which receive their 5 V power supply from the microcontroller
board. The input and output data are saved on the SD card which com-
municates with the microcontroller using the serial peripheral interface
(SPI) communication protocol. In addition, a current sensing resistor is
used to sense, at a frequency of about 2 kHz, the current going through
the motor. This high frequency is incompatible with that of a real-time
simulation, which is why an RC filter is plugged onto the sensing re-
sistor to ensure an appropriate sampling. With a resistance R = 1.5 kΩ

and a capacitance C = 10 µF, the frequency of the RC filter is equal to
fc = 1/(2πRC) ≈ 10 Hz. This frequency is well-suited for the real-time
simulation and the SD card logging frequency ranging between 20 Hz to
100 Hz.

4.3.1 Nonlinear AMESim® model B and its nonlinearities

Though AMESim® model A was verified by Renault engineers on a test-
bench in Renault, its evaluation on the test-bench described above re-
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vealed unsuccessful, basically for two reasons. First, it does not cover
all the nonlinearities of the real throttle test-bench, as shown in subsec-
tion 4.2.2. Second, it assumes that the "high" spring is only active above
the limp-home position and not everywhere in the functioning zone. For
these reasons, a new AMESim® model, referred to as AMESim® model
B, is designed. It is the adjusted or rectified version of model A, compat-
ible with the throttle bench.

Figure 4.14: AMESim® model B

AMESim® model B, shown in Figure 4.14, is slightly different from
AMESim® model A, presented earlier. The differences between both
models are summed up in the list below.

• The principal components of AMESim® model B are the 2-sided
inertia, the gearbox, the throttle flap, the "low" spring, and the
"high" spring. The friction associated with the inertial component
(to its upper-right) and that associated with the "high" spring (be-
low it) are put in separate components rather than being embed-
ded in the components themselves, which accounts for two extra
components compared to AMESim® model A.

• AMESim® model B models the electric throttle from a pure me-
chanical point of view. Hence, as opposed to AMESim® model A,
AMESim® model B does not contain a DC motor. It also does not
take into consideration the electrical parts of the test-bench such
as the current sensing resistor and the RC filter.

• AMESim® model B considers the viscous friction at the level of
the "high" and "low" return springs, whereas AMESim® model A
considers it at the level of the inertial component.
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• In contrast to AMESim® model A which restricts the functioning
of the "high" spring to the zone where θ ≥ θ0, AMESim® model B
features a "high" spring that is equally active below and above the
limp-home position.

• The contact torque corresponding to the "low" spring is not ne-
glected in AMESim® model B, as is the case in AMESim® model A.
However, the "low" spring torque is not visited, which means that
it spans zones 2 and 3 from Figure 4.6.

• Whereas AMESim® model A considers the Coulomb friction model,
AMESim® model B considers the reset-integrator friction model,
which means that it spans zones A, B, C, D, and E from Figure 4.6.

• The span of functioning zones covered by AMESim® model B
makes it more detailed than AMESim® model A, covering 10 zones
of instead of 4.

AMESim® model B and the electric throttle test-bench introduced ear-
lier show an important proximity in their open-loop results, shown in
Figure 4.15. When the same input voltage is given to model B and to the
test-bench, the output position simulated by model B shows being very
close to that measured on the real throttle. Note that AMESim® model
B was compared with the test-bench using a scenario different than that
shown in Figure 4.8, as the latter is not testable on the test-bench, be-
cause the input profile contains high frequencies that are incompatible
with a real-time simulation, and the output profile features partial open-
ing positions of the valve. The valve’s opening profile gives insight about
its frictional behavior and high nonlinearity, originating from the "high"
and "low" springs preload torques, the contact torque, the limp-home po-
sition θ0, and the Coulomb torque. Starting from the limp-home position,
the throttle valve shows no change in position as the voltage increases,
until it gets close to 7 V. At this threshold, it opens all the way from the
limp-home position to its maximum opening position, and it maintains
this position despite further increase in the voltage input. The same
scenario repeats itself with the decrease of the voltage input. As soon as
the input decreases below 5 V, the valve returns back to the limp-home
position, thus showing that the throttle valve in the test-bench cannot
open partially.

As mentioned earlier, AMESim® model B calculates Tfriction using the
reset-integrator model, which implies that its functioning should nor-
mally span 15 zones: 1A-1E, 2A-2E, and 3A-3E (referring to Figure 4.6).



94
Chapter 4. Electric Throttle Linear Model Identification and

Control

100 200 300 4000
Time [s]

500 600 700

5

In
p

u
t

V
o
lt

a
g

e
[V

]
O

u
tp

u
t

P
o
si

ti
o
n

[d
e
g

]

0

10

15

40

20

80

60

AMESim model
Test-bench

Figure 4.15: Voltage input (upper plot) and position output (lower plot)
of the electric throttle

This means that writing this model in the form of an LPV model requires
four scheduling parameters: θ, θ̇, θdiff , and Tfriction.

A remark can be made in this context about the functioning zones of
AMESim® model B, whose parameters are shown in Table 4.4. When θ <
θ0, the contact torque attained during all the scenarios used to validate
AMESim® model B lies between 0 N m and 0.27 N m, as shown in the
lower plot of Figure 4.18 (showing the "low" spring torque). Hence, its
absolute value never exceeds Tpl = 1.36 N m, which implies that Tspring
is never solicited. This is also exposed in Figure 4.16, which shows,
between the blue dashed lines, the range of torque in which falls Tcontact.

This remark points out the fact that AMESim® model B does not solicit
zone 1, and is restricted to zones 2 and 3. Consequently, the total number
of zones visited by this model reduces from 15 to 10. These 10 zones
are split at the points presenting the nonlinearities originating from the
limp-home position, the Coulomb friction torque, the contact torque, and
the stiction torque, as follows:

• zone 2A: θ0 − disth ≤ θ < θ0, θ̇ > 0, and θdiff ≥ dtrel

• zone 2B: θ0 − disth ≤ θ < θ0, |θdiff | < dtrel, and Tfriction < −Ts

• zone 2C: θ0 − disth ≤ θ < θ0, |θdiff | < dtrel, and |Tfriction| ≤ Ts

• zone 2D: θ0 − disth ≤ θ < θ0, |θdiff | < dtrel, and Tfriction > Ts
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J 3.29× 10−6 kg m2 kint 77 922.26 N m rad−1

N 0.0456 kcont 0.086 N m rad−1

K 0.0235 N m A−1 rcont 0 N m s rad−1

ηGB 0.95 r 5.73× 10−6 N m s rad−1

Tc 0.004 N m e 1.745 · 10−5 rad

Ts 0.0048 N m disth 1.745× 10−5 rad

Tpl 1.36 N m krel 2.75 N m rad−1

Tph 0.259 N m dtrel 0.0017 rad

ktor 0.056 N m rad−1 rtors 57.29 N m s rad−1

rtor 0.0955 N m s rad−1 θ0 0.1675 rad

Table 4.4: AMESim® model B parameters

Tpl = 1.36Nm

Ts = 0.0048Nm

Tc = 0.004Nm

-Tc = −0.004Nm

-Ts = −0.0048Nm

-Tpl = −1.36Nm

Tcontactmax = 0.27Nm

Tlow = Tspring

Tlow = Tspring

Tlow = Tcontact

Tcontactmin = 0Nm

Figure 4.16: Torque range of Tcontact
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Component Torque Equation Figure

Inertia Tmotor (4.1) 4.17

High spring Thigh (4.2) 4.18

Low spring Tlow (4.3) 4.18

Friction on motor Tfriction (4.5) 4.19

Friction on high spring Tfriction (4.5) (deactivated)

Table 4.5: Torque calculation of AMESim® model B

• zone 2E: θ0 − disth ≤ θ < θ0 and θ̇ < 0, and θdiff ≤ −dtrel

• zone 3A: θ0 ≤ θ ≤ θmax, θ̇ > 0, and θdiff ≥ dtrel

• zone 3B: θ0 ≤ θ ≤ θmax, |θdiff | < dtrel, and Tfriction < −Ts

• zone 3C: θ0 ≤ θ ≤ θmax, |θdiff | < dtrel, and |Tfriction| ≤ Ts

• zone 3D: θ0 ≤ θ ≤ θmax, |θdiff | < dtrel, and Tfriction > Ts

• zone 3E: θ0 ≤ θ ≤ θmax and θ̇ < 0, and θdiff ≤ −dtrel

For what follows, consider Figure 4.14 showing AMESim® model B. We
discuss the mathematical equations, representing the torques stemming
from the different components in this model, the total torque applied on
the motor, in addition to the applicability of Newton’s Second Law on
the inertial component.

Starting with the mathematical equations, Table 4.5 shows the compo-
nent name, its torque, equation, and the figure showing the plot of the
torque. Note that Tmotor is the torque to the left of the inertial compo-
nent. The torque stemming from the "high" spring Thigh and that stem-
ming from the "low" spring Tlow are the spring torques calculated at the
level of the throttle. The torque stemming from the friction component
Tfriction is that resulting from stiction and Coulomb friction and calcu-
lated at the level of the inertial component. Tfriction corresponding to the
high spring is equal to zero because, although the friction component is
there, it is deactivated and has no effect.

Notice from the middle plot of Figure 4.18 how Thigh is always active
independently of the value of θ, whereas Tlow exists only when θ < θ0.
Concerning Tfriction, Figure 4.19 shows how the friction torque becomes
saturated as soon as its absolute value reaches Ts = 0.0048 N m. It
also shows, though not clearly, how the absolute value of the friction
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torque becomes equal to the Coulomb torque as the absolute value of
θdiff reaches dtrel at certain points.
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Figure 4.17: Motor Torque

The total torque stemming from the two springs and the friction compo-
nent combined can be calculated as:

Tspringsfriction =

{
(Thigh − Tlow)N + Tfriction , if θ < θ0

ThighN + Tfriction , if θ ≥ θ0

(4.15)

Tspringsfriction is the torque to the right of the inertial component, and its
plot is shown in Figure 4.20. Thigh and Tlow are multiplied by the gear
ratio N because they are generated on the level of the springs.

Knowing the torque Tmotor applied on the inertial component from the
left and Tspringsfriction applied on the inertial component from the right,
the calculation of the angular acceleration is supposed to be trivial.
However, the link between the sum of torques and the angular accel-
eration of the motor is not straightforward, because of the saturability
of Newton’s Second Law of Rotation.

To demonstrate the saturability of Newton’s Second Law on the iner-
tial component of AMESim® model B, imagine the inertial component
isolated from the rest of the model, and consider only the torques ap-
plied on it from the left Tmotor and from the right Tspringsfriction. Figure
4.21 shows that the angular acceleration of the motor computed auto-
matically by AMESim® model B is not equal to that computed using
Newton’s Second Law θ̈ = (Tmotor − Tspringsfriction)/J .
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Figure 4.18: Throttle angular position (upper plot); Torque stemming
from the "high" spring (middle plot); Torque stemming from the "low"
spring (lower plot)
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Figure 4.19: Torque stemming from the friction component

The reason behind this inequality is the ideal endstop system of the in-
ertial component, which works in a 2-step process:

• Step 1: Ignoring the effect of dry friction, the angular displacement
θmotor and velocity θ̇motor of the motor are computed. If the angular
displacement reaches an endstop, i.e. attempts to exceed its limit
values xmin = 0◦ and xmax = 1905◦, it is saturated and its angular
velocity is forced at 0 rad s−1. Note that xmax = 1905◦ on the level of
the motor is translated into θmax = 87◦ on the level of the throttle
due to the gearbox of ratio N .

• Step 2: If none of the endstops is reached, the angular displace-
ment θmotor, speed θ̇motor, and acceleration θ̈motor of the motor are
computed, taking into account the dry friction. The following equa-
tion shows the computation of θ̈motor and the conditions of applica-
bility of Newton’s Second Law:
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θ̈motor =



Tmotor−Tspringsfriction
J , if |Tmotor − Tspringsfriction| > Ts

or θ̇motor 6= 0

0 , if |Tmotor − Tspringsfriction| ≤ Ts
and θ̇motor = 0

(4.16)

This fact highlights an additional merit of ARX modeling, which short-
cuts the calculation of θ without being hindered by the saturability of
Newton’s Second Law or by the numerical manipulations carried out by
the AMESim® simulator during the conversion of θ̈ to θ. ARX model B
corresponding to the test-bench is detailed in the next subsection.

4.3.2 Identification of linear ARX model B

The mathematical equations governing the dynamics of AMESim®

model B can be used to conclude two things: the number and repar-
tition of the functioning zones, and the elements of the regression vec-
tor. These elements are extracted from each torque as shown in the list
below.

• From Tmotor, extract the element i. However, i and the input volt-
age V are directly related together, either by virtue of Kirchoff’s
law, or the current sensing resistor. This is why i will be replaced
by V in the regression vector, as it is the input of the system.

• From Thigh, extract θ, θ̇, and 1 to stand for the constant term.

• From Tlow, extract θ, θ̇, exp(θ), and 1.

• From Tfriction, extract θdiff , θ̇, and 1. Taking into account that θdiff
is either a constant or a function of θ, it is excluded from the list of
chosen elements.

By discretizing θ̈ and θ̇ using the central difference scheme, the regres-
sion vector can be written as:

φ(t) =
[
θ(t) θ(t− 1) V exp(θ(t)) 1

]T
(4.17)
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Using the same estimation technique presented in section 4.2.3, 10 ARX
models are identified, one for each of the 10 functioning zones. The
values of θ, θ̇, θdiff , and Tfriction used to split the zones are those issued
by AMESim® model B. These identifications give rise to the ξ vectors
presented in Table 4.6.

The experimental data used for identification is presented in Figure
4.15, which shows in the upper plot the voltage input that is given to
the real throttle as well as to AMESim® model B, and shows in the lower
plot the position output of the real throttle (red) and of AMESim® model
B (blue). To assess the ARX system identification, Figure 4.22 shows, as
well as the position outputs of AMESim® model B and the test-bench,
the position output of the identified ARX model B (green). The goodness
of fit between the output of ARX model B and that of the electric throttle
test-bench is expressed with an NRMSE equal to 0.7993. This is consid-
ered a good fit, taking into consideration that ARX model B is extracted
from AMESim® model B, whose own output compared with that of the
test-bench has an NRMSE equal to 0.7925.
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Figure 4.22: Voltage input and position output of the electric throttle

Note that this experiment does not solicit all the functioning zones of the
electric throttle. Figure 4.23 shows the repartition of the functioning
zones throughout the experiment. Only zones 2C, 3A, 3B, 3C, 3D, and
3E are solicited. In other words, when θ ≥ θ0, all the torque calculation
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Zone 2C Zone 3A

ξ2C =


0.18259 · 10−1

0.86371 · 10−1

0.67548 · 10−10

−0.39618 · 10−2

0.39086 · 10−2


T

ξ3A =


1.9641

−0.96414 · 10−1

0.18531 · 10−5

0.25441 · 10−6

−0.11326 · 10−4


T

Zone 3E Zone 3C

ξ3E =


1.9763

−0.97631 · 10−1

−0.40508 · 10−6

−0.88021 · 10−6

0.95418 · 10−6


T

ξ3C =


1.8989

−0.89886 · 10−1

0.92807 · 10−8

−0.24116 · 10−6

0.15978 · 10−6


T

Zone 3D Zone 3B

ξ3D =


1.5010

−0.49089 · 10−1

0.27359 · 10−13

−0.40596 · 10−3

0.31450 · 10−3


T

ξ3B =


−0.15427 · 10−6

1.9461

0.17212 · 10−2

−0.10042 · 10−1

−0.99782 · 10−2


T

Table 4.6: Least-squares estimates ξ of ARX model B
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possibilities are visited, which is not the case when θ < θ0.
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Figure 4.23: Repartition of the functioning zones during the reference
experiment

Moreover, notice how the angular position generated by AMESim®

model B, as well as that generated by the linear ARX model B never
exceed θmax = 87◦. The fact that the outputs are strictly limited to this
position is an indication that both models respect the physical limits of
the electric throttle.

Reversing the central difference discretization in ARX model B, the ARX
discrete model B can be transformed into SS model B expressed as:

[
θ̇

θ̈

]
=

[
0 1

ξi1+ξi2−1
dt2

ξi1−2

dt

] [
θ

θ̇

]
+

[
0
ξi3
dt2

]
V +

[
0

ξi4 exp(θ)+ξi5
dt2

]
1 (4.18)

where i is the model number (i = 2C, 3A, 3B, 3C, 3D, 3E).

4.4 Control of the throttle LPV model

In this section, the theory of the infinite-horizon LQR is briefly pre-
sented, the LQR controller initially designed on linear SS model A is
detailed and evaluated on AMESim® model A.
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4.4.1 Linear quadratic regulator with reference and distur-
bance feedforwards

Using SS model A, a model-based LQR controller is designed to con-
trol the voltage input of the throttle, which in turn affects the angular
position of the flap. The objective of the controller is to drive the out-
put of the LPV system towards the reference output. In addition to the
tracking objective, the controller should also compensate for the pro-
cess noise which appears in the term Bd. For these two reasons, the
designed LQR is equipped with reference feedforward and disturbance
feedforward.

Considering system (4.14), the objective of the LQR is to minimize the
cost function

J =
1

2

∫ ∞
0

[(X −Xref )TQ(X −Xref ) + UTRU ]dt (4.19)

where Xref is the reference state
[
θref θ̇ref

]T
, θref is the reference an-

gular position (rad), Q is the state weighting matrix, and R is the input
weighting matrix.

The Hamiltonian can be expressed as

H =
1

2
(X −Xref )TQ(X −Xref ) +

1

2
UTRU + pT Ẋ (4.20)

where p is the co-state vector and p∗ is its optimal value. Note that the
"∗" is used to denote the optimal value of a parameter in the sequel.

The necessary optimality conditions can be expressed as [Kir04]

• ṗ∗ = ∂H
∂X

• ∂H
∂U = 0

Therefore,

U∗ = −R−1BT p∗ = −R−1BT (KX∗ + S1 + S2) (4.21)

where K is the solution of the differential Ricatti equation,
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K̇ +KA−KBR−1BTK +ATK +Q = 0 (4.22)

S1 is the reference feedforward term, obtained from the following equa-
tion,

Ṡ1 +ATS1 −KBR−1BTS1 −QXref = 0 (4.23)

and S2 is the disturbance feedforward term and the solution of

Ṡ2 +ATS2 −KBR−1BTS2 +KBd = 0 (4.24)

Because the horizon is considered to be infinite, the dynamics of K, S1,
and S2 can be considered null as time goes to infinity, i.e. K̇ −→ 0, Ṡ1 −→ 0,
and Ṡ2 −→ 0. Let J be the cost function expressed as:

J =
1

2

∫ tf

0
[(Y − Yref )TW (Y − Yref ) + UTRU ]dt (4.25)

where W is a weighting constant, which implies that Q = CTWC.

4.4.2 Control of linear model A

The control is designed on LPV SS model A converted from ARX model A
in a way that for each of the models, a controller is designed separately.
The controllers’ parameters are:

Q = CTWC where W = 30000

R = I where I is a (2× 2) identity matrix

The solutions of equation (4.22) are

K1−2G =
[
154 0.7

]
K1−2F =

[
152.3 0.7

]
K3G =

[
171 1

]
K3F =

[
170.9 0.8

]
The solutions of equation (4.23) are
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S1 1−2G =

[
−297 0

−1 0

]
S1 1−2F =

[
−291.7 0

−1 0

]

S1 3G =

[
−339.8 0

−1.5 0

]
S1 3F =

[
−304.2 0

−1.1 0

]

The solutions of equation (4.24) are

S2 1−2G =

[
5.4

0.04

]
S2 1−2F =

[
6.1

0.05

]

S2 3G =

[
−0.06

0

]
S2 3F =

[
0.9

0

]

The objective of the control is to drive the output of linear SS model A,
which fits almost perfectly the output of AMESim® model A (shown in
blue in Figure 4.24) toward the reference output, also called the set-
point (shown in red in Figure 4.24). When the control takes effect, this
objective is attained. This can be shown by the almost exact superposi-
tion of the green curve over the red one.
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Figure 4.24: Throttle angular position of the closed-loop LPV SS system
A
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4.4.3 Control of AMESim® model A

The control designed on the identified linear SS model A is evaluated
on AMESim® nonlinear model A with an objective of driving its output
toward the reference. Knowing that the level of fit between the open-
loop AMESim® model and the set-point was expressed in an NRMSE of
0.4443, Figure 4.25 shows that the objective is well fulfilled after apply-
ing the LQR control with reference and disturbance feedforwards, as the
NRMSE rises up to 0.7653 in the closed-loop case.
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Figure 4.25: Throttle angular position of the closed-loop AMESim® non-
linear model A

4.5 Methodology of identification and control

In this section, the methodology of controlling a nonlinear AMESim®

model of an electric throttle by means of linear optimal control is de-
scribed in the flowchart shown in Figure 4.26. Note, however, that there
are two prerequisites before identifying the linear model of the throttle
and controlling it.

• Test-bench experiments: it is preferable to have 2 sets of test-
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bench experiments, one representing a series of throttle open-
ing/closing motion in different conditions of temperature, ampli-
tude, frequency, etc. . . , and another representing a series of throt-
tle opening/closing motion around the limp-home position.

• A valid AMESim® model of the electric throttle.

Concerning the flowchart, a number of key points are noted.

• Study AMESim® model means studying the components of the
model, the physical equations attributed to each of them, simu-
lation properties, numerical manipulations, and whatever features
necessary for constructing a reliable primary physical model of the
electric throttle.

• When the SS model output does not follow its reference trajectory,
the controller is reconsidered. Reconsidering the controller means
re-tuning the weights Q and R of the performance function. It
might also mean reconsidering the structure of the LQR controller
such as the addition or the elimination of reference or disturbance
feedforwards, or the addition of an error integral term to ensure a
better reference tracking.

• If we are sure of the regression vector to use, the SS model might
be avoided altogether along with its controller. In this case, we can
go directly from step 1 of the flowchart (Study AMESim® model)
to step 8 (Identify the ARX model), design a discrete LQR con-
troller, and validate it on the AMESim® model. The advantage of
this method is that it is a shortcut to the final step, but its applica-
tion requires prior knowledge of the model.

• Although the SS model is a good representative of the AMESim®

model and its controller suffices to drive the output of the
AMESim® model towards the reference output, it is still worthy
to convert the SS into an ARX model, basically because when the
SS and the ARX models are compared to the AMESim® model, the
identified ARX model appears to be more accurate, as it is more ca-
pable of capturing the model nonlinearities. The SS hence serves
as a guideline for the identification of the ARX model.

• When this methodology is applied to an actuator that is different
from the electric throttle, the number of models and controllers
vary depending on the nonlinearities and discontinuities governing
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the functioning of the actuator, i.e. the number of its functioning
zones.

4.6 Conclusion and future perspectives

This chapter presents a methodology for linear ARX model identification
and reference tracking control of an electric throttle. From the identifi-
cation point of view, the mathematical LPV SS system that corresponds
to the throttle’s nonlinear model is presented, and is used to define the
regression vector of an ARX model. The SS model and the identified ARX
model have outputs which are very close to those of the nonlinear model,
which points out the usefulness of using a mathematical model to form
a black-box model that not only captures the model nonlinearities, but
can be used independently from the mathematical model in future iden-
tifications. This methodology is also verified on another electric throttle
nonlinear model, where a new ARX model is identified, and is shown to
be compatible with a real throttle-test-bench. From the control point of
view, an LQR controller is designed to control the linear SS, ARX, and
nonlinear models. This method, which can be applied to other actuators
similar to the electric throttle, splits the functioning of the electric throt-
tle into 4 or 10 zones (depending on the chosen friction model), which
results in an easily-implemented LPV model-controller structure.
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trol of AMESim® model of electric throttle
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The engine air-path, whose scheme is shown in Figure 5.1, is a combi-
nation of components, valves, and tubes, whose job is to collect air and
guide it to the engine cylinders, and to clear away exhaust gases to the
external environment. The air-path is critical to the function of the en-
gine, because it provides oxygen to its combustion process and removes

113



114
Chapter 5. Identification and Control of Transport Models in the

Engine Air-path

away its harmful emissions. The cleaner, more continuous, and well-
calibrated the air flowing through and away from the engine cylinders
is, the better the mileage, power, and performance of the vehicle. The
engine air-path consists of the air intake and the air exhaust systems.

The air-path shown in Figure 5.1 corresponds to the H5Ft400 engine.
On the left of the figure is the air intake system composed of different
components. The cold air intake marks the beginning of the air intake
system as it pulls fresh air from outside. The introduced fresh air passes
through a screen and an air filter which filters out dirt and other finer
particles, and continues in the air intake tube via the compressor and
the heat exchanger, which decreases the temperature of compressed
air. After passing through the throttle body which regulates its mass
flow rate Qair, the air reaches the intake manifold from which it is di-
rected to the combustion chambers via the intake valves. To regulate
the amount of fuel to be injected into the cylinders, Pcol in the intake
manifold is measured by means of a MAP sensor. On the other hand, the
different components composing the air exhaust system are shown on
the right of the figure. The opening of the exhaust valves expels air from
the combustion chambers to the exhaust manifold, connecting the cylin-
ders to the exhaust piping. In the exhaust piping, part of the exhaust
gases spins up the turbine, which in turn spins the compressor wheel in
the air intake system. The harmful emissions in these gases are treated
using the catalytic converter, before being ejected out of the exhaust
system through the tailpipe. The other part of the exhaust emissions
that doesn’t pass through the turbine and the rest of the exhaust line,
either bypasses the turbine via the wastegate or is sent back to the air
intake path through the EGR system. The EGR system of the H5Ft400
engine is a low-pressure EGR. It is one of different types of EGR, the
low-pressure EGR where the exhaust gases are recirculated from down-
stream of the turbine to upstream of the compressor, the high-pressure
EGR where the exhaust gases are recirculated from upstream of the tur-
bine to downstream of the compressor, and the dual-loop EGR where the
low-pressure and high-pressure EGR coexist.

Transport phenomena exist everywhere in the engine air-path in their
different forms: momentum transport, mass transport, and energy
transport otherwise called heat transport. Two of these transport phe-
nomena are addressed in this chapter. Heat transport is tackled from
the heat exchanger point of view, while mass transport is tackled from
the perspective of the EGR.
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Figure 5.1: H5Ft400 engine air-path scheme (with EGR)

Heat transport model in a heat exchanger

A heat exchanger is a device used to transfer heat among fluids with-
out bringing them in direct contact. Different types of heat exchangers
are used in different places of ICEs, to ensure adequate cooling and fa-
vorable operating conditions that allow ICEs to work more efficiently
and prevent their failure. An intercooler is a particular type of heat ex-
changer, implemented in gasoline and diesel turbocharged ICEs, such
as the H5Ft, to cool down the hot compressed air coming from the tur-
bocharger. When intake air is compresed, it simultaneously experiences
a temperature boost and density drop. The temperature boost becomes



116
Chapter 5. Identification and Control of Transport Models in the

Engine Air-path

disadvantageous after a certain threshold because it overheats the en-
gine, therefore leading to premature ignitions and engine knock. The
density drop is also unhealthy because it implies less oxygen content
per unit volume, translated as a decrease in power production and a de-
terioration of combustion efficiency. By removing the waste energy in
the compressed gas, the intercooler reduces the chances of knock and
increases the volumetric efficiency of the ICE.

The heat exchangers in the air-path of the H5Ft engine are shown in
Figure 5.1. Their heat transport model will exclusively include advec-
tive heat transport as radiative heat transport is considered small. The
advective flows take place in the tubular structures making up the heat
exchanger. They affect its temperature dynamics in a way that can be
modeled as a first order hyperbolic PDE [BAB14]:

h
dSa
dx

∆T = ρSaCp
∂T

∂t
+QCp

∂T

∂x
(5.1)

This equation illustrates the total advective heat transfer rate
(
hdSadx ∆T

)
as the summation of the rate of heat transfer of the pipe in time(
ρSaCp

∂T
∂t

)
and the rate of heat transfer to the wall of the pipe

(
QCp

∂T
∂x

)
.

ρ(kg m−3), Cp(J K−1 kg−1), Q(kg s−1), h(J s−1 m−2 K−1), Sa(m
2), and

∆T (K) represent the density of the fluid, specific heat, mass flow rate,
advection exchange coefficient, heat transfer surface area, and the tem-
perature gradient respectively.

Though different types of heat exchangers and intercoolers are used
in engine air-paths, this work focuses in particular on tubular heat ex-
changers, which are very common devices in industry and very good
examples of advective heat exchange phenomena. They permit heat ex-
change between two fluids separated by a wall and circulating in oppo-
site or, less often, in similar directions.

Objective In the absence of an optimal operation of heat exchangers
and intercoolers in the air-path and elsewhere in the engine, negative
impacts on the engine performance can be recorded. For example, a
dysfunctional intercooler in the intake air-path will result in volumetric
efficiency loss and will increase knock in gasoline engines. A dysfunc-
tional heat exchanger in the exhaust pipeline, on the other hand, will
affect the turbocharger performance and degrade the quality of emis-
sions expeled by the catalytic converter. Therefore, regulating the heat
transport phenomena taking place in these heat exchangers is a must
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in modern automobiles which should satisfy exigent criteria of perfor-
mance, driving comfort, polluting emissions, etc... This regulation is
done using simulation tools and temperature models that allow simulat-
ing and analyzing the thermal behavior of the gases circulating in their
pipelines, and controlling it all at the same time. Therefore the general
objective of this chapter can be divided in two parts: the first consists
of setting the structure of the heat transport model in a heat exchanger
and determining its mathematical equations, and the second consists
of performing a parametric identification of the model to uncover the
optimal values of its parameters.

Regarding the model structure, equation (5.1) shows that heat transport
phenomena (in particular advective flows) occuring in a heat exchanger
can be modeled as first-order hyperbolic PDEs. Infinite-dimensional,
these hyperbolic PDEs accurately describe the behavior of these physi-
cal phenomena, yet recasting them as a time-delay system can be inter-
esting as it preserves their infinite-dimensional property but also de-
creases their mathematical complexity, hence easing the design of a
real-time control strategy.

Regarding the parametric identification of the model, it begins with
an informative experiment design to generate interesting input-output
data, in this case signifying the boundary temperature measurements in
the tubular heat exchanger. The identification algorithm aims at iden-
tifying the optimal parameters of the heat exchanger’s mathematical
model, while minimizing, as much as possible, an error function express-
ing the difference between the output temperature of the experiment
and that of the model. A robust parametric identification is important
for several reasons. First of all, it results in a satisfactory error and
a reliable model, which is valid on experiments other than that used
for its identification, and which is able to reproduce the heat transport
dynamics of a real heat exchanger. Also, the advection exchange coeffi-
cient is usually not well-known, difficult to identify, and changes as the
heat exchanger ages in time. Hence, a robust technique for parametric
identification of a heat-exchanger allows adapting its model to accomo-
date the changes it experiences over the course of time. Such a simple,
easily-parameterized, yet accurate model is a cornerstone for analyzing
a heat exchanger’s thermal behavior and making it accessible to control
design.

State of the art Multi-flow transport and advective flows phenomena,
such as those encountered in a heat exchanger, although previously
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modeled as a first-order transfer function featuring delay [TL60], are
better described by two first-order hyperbolic PDEs which better impli-
cate the physical balance laws (see [BAB14]). In the case of a tubular
heat exchanger, for instance, two hyperbolic PDEs, which take into con-
sideration the temperature evolution of both fluids (the one in the inter-
nal tube as well as the one in the external tube), are far more realistic
than a single equation covering only the internal temperature evolution.

In order to deal with hyperbolic PDE equations modeling the temper-
ature dynamics, different methods were presented in the literature.
[BKO11] for example replaces the PDEs representing a heat exchanger
with sets of nonlinear (ODE) with delayed inputs, each of these sets
attributed to a section of the heat exchanger. Laplace transformation
and numerical solutions of the PDE were also proposed in [ASGY04];
[Rom84]; [RW92]. However, these numerical solutions exhibit conver-
gence and stability issues. [DS16] on the other hand uses an analytical
approach and a physical lumping approach with time delay at certain
positions of the heat exchanger in order to deal with the flow and wall
dynamics. However, the drawback of this methodology is its relative
complexity order due to the division of the exchanger in cells.

Proposed approach In this chapter, we represent the advective flows in
a heat exchanger as coupled first-order hyperbolic PDEs. We propose to
reformulate them as delay equations using the method of characteristics
(see for example [Str04] or [KK14], [NRWS16] for an application in fluid
networks, and [CK68] for an application in power lines). In order to ease
this reformulation, we decouple the equations by using spatial-lumping.
We then use a gradient-descent optimization method to estimate the pa-
rameters of the corresponding time-delay system (dynamics coefficients
and time-delay), using boundary measurements of temperature in the
heat exchanger. The interest of this technique is illustrated on experi-
mental data obtained on a test-bench.

Mass transport model in the EGR

The low-pressure EGR system, denoted as LP-EGR, is a system which
draws off some of the exhaust gases, cools them down by means of a
heat exchanger, and redirects them back into the air intake system. In
addition to that they absorb the combustion heat, the cooled down ex-
haust gases, having been burned already, are of low oxygen content,
and therefore do not participate in the combustion process. This causes
a reduction in the combustion speed and temperature, which is trans-
lated in a limited production of NOx, the product of a reaction between
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nitrogen and oxygen catalyzed by high temperature conditions. This is
essential in the case of diesel engines, where controlling and decreasing
the production of nitrogen oxides is extremely important for meeting the
upcoming emission standards. In gasoline engines such as the H5Ft400,
the EGR is not implemented to treat nitrogen oxides in the first place,
though it does. The technology basically aims at promoting fuel econ-
omy and improving knock resistance, which comes by as a natural effect
of the reduction in peak in-cylinder temperatures. Though the benefits
of EGR in diesel and gasoline engines do not coincide, its functioning in
both cases is governed by the same physical principles and mathemati-
cal equations, detailed in the rest of this chapter.

During the transport of exhaust air all the way back to the intake mani-
fold, it experiences two distinct compositions:

• Stage of pure exhaust gas: this stage exists prior to the EGR valve,
and the burned-gas ratio (BGR) with respect to the overall gas mix-
ture is equal to 100% because the exhaust gas is not yet mixed with
fresh air.

• Stage of impure exhaust gas: after the EGR, the exhaust gas gets
mixed with fresh air arriving from the outside environment, which
decreases the BGR below 100%. Note that in gasoline engines,
such as the H5Ft400, the BGR doesn’t exceed 15% or 20%, in con-
trary to diesel engines, which operate with excess air and with a
BGR reaching 50%.

Overlooking the dynamics of dilution in the volume downstream the EGR
valve and assuming that fresh air and recirculated gases blend together
instantaneously, the BGR is calculated as

BGR =
QEGR

QEGR +Qair
(5.2)

where QEGR is the mass flow rate of the recirculated exhaust air admit-
ted through the EGR valve to the air intake line, and Qair is the mass
flow rate of the cold fresh air.

Understanding the dynamics of the BGR is fundamental for its control,
which is why we hereby present the mathematical equations governing
the physics behind the mixture of burned gases and fresh air, as it prop-
agates in the intake line, shown in Figure 5.2, which is an extract of
Figure 5.1. The burned gas fraction along the line evolves progressively
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with time, and its dynamics vary according to the intake line compo-
nents it is traversing. Two kinds of components can be distinguished:
tube sections, where gas transport takes place, and control volumes,
where gas mixing takes place [CB13].

Pape
Tape
Xape(0,t)

Heat exchanger
(intercooler)

Papc
Tapc
Xapc = XcompoutPavc

Tavc
Xavc

Compressor

fresh air

EGR

recirculated air

Lape

Pcol
Tcol
Xape(Lape,t)=Xcol

P: pressure
T: temperature
X: gas mass fraction

avc: upstream compressor
apc: downstream compressor
ape: downstream heat exchanger
col: intake manifold

Figure 5.2: Air intake path scheme

Let X(x, t) be the BGR at time t for a spatial coordinate x ∈ [0, L]. Its
dynamics can be modeled using a first-order hyperbolic PDE expressed
as [CB13]:

∂tX(x, t) + u(x, t)∂xX(x, t) = 0 (5.3)

where X(0, t) = Xin(t) and X(x, 0) are the respective boundary and ini-
tial conditions, and u(x, t) is a propagation speed.

Knowing the boundary condition Xin(t) at the entrance of the tube sec-
tion, and considering u(x, t) = u(t) (with a plug-flow assumption, consid-



121

ering the fluid as incompressible), the burned gas fraction at the exit of
the tube section can be calculated, using equation (5.3) and the method
of characteristics, as [WN10]:

X(L, t) = X(t− τf (t)) (5.4)

where τf (t) is the time-varying time delay due to the transport of the gas
inside the tube section, calculated as [CB13]:

τf (t) ≈ P (t)Vtube
RT (t)Q(t)

(5.5)

where Vtube is the volume of the tube section (m3), R = 287.058

(J kg−1 K−1) is the gas constant, T (t) is the temperature (K), Q(t) is the
mass flow rate (kg s−1), and P (t) is the pressure (Pa) of the mixture at
time t.

Equation (5.4) shows that the transport of the BGR inside the tube is,
in fact, not immediate and subject to time delay. Taking into account
this transport time is important in the case of LP-EGR, as the distance
traveled by the recirculated gas is relatively long, and neglecting it
could lead to severe performance degradation, especially during tran-
sient phases.

In a control volume, such as the intake manifold, by ignoring the air
fraction dynamics with respect to space, the volume-average air frac-
tion dynamics with respect to time can be formulated as a 0-D model,
implying the law of conservation of mass and expressed as [CB13]:

Ẋcv =
RTcv
PcvVcv

[
l∑

in=1

(XinQin)−Xcv

o∑
out=1

(Qout)] (5.6)

where Xcv, Tcv (K), Pcv (Pa), and Vcv (m3) are the control volume’s re-
spective BGR, temperature, pressure, and volume, Xin and Qin (kg s−1)
are the respective BGR and mass flow rate of the gas coming into the
control volume, and Qout (kg s−1) is the mass flow rate of the gas going
out of the control volume.

Objective The amount of exhaust gas being recirculated has a huge im-
pact on whether the EGR is functioning in favor of the engine overall
performance or against it, which is why controlling the BGR is essential
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to procure its benefits and avoid its drawbacks. For example, increas-
ing the BGR raises the temperature of the intake mixture, leading to
better vaporization of the fuel, better homogeneity of the mixture in
the intake manifold, and therefore better combustion. This is highly
recommended in cold weather, or directly after starting the engine to
accelerate its warm-up. Nevertheless, the BGR can’t be increased un-
limitedly, because the higher the BGR, the more dilute the mixture in the
intake manifold is. This mixture is hence poor in fuel and oxygen, and
therefore low in power, which is inconvenient when high or full power
is in demand [Mca33]. So the BGR ratio can be advantageous or dis-
advantageous depending on the operating conditions of the engine, the
driver’s commands and expectations, the external environment, and sev-
eral other factors. Taking into account all these factors, experts define
a cartography that maps different engine operating conditions to set-
points or reference values of Xcol, the exhaust gas mass fraction in the
intake manifold.

Therefore, the purpose of EGR control is to manipulate the opening an-
gle of the EGR valve such that Xcol attains its desired reference value,
at the current operating conditions, while taking into account the trans-
port delay of the intake gas and respecting the physical constraints of
the valve, all at the same time.

State of the art Before tackling the modeling of mass fraction dynamics
and how the literature dealt with the hyperbolic PDEs modeling them,
note that all kinds of EGR were visited in former studies. However,
LP-EGR has been less investigated than HP-EGR (where HP stands for
high pressure), which was more popular in the early days of the EGR
technology, and Dual-EGR, which recently started being popular. Note
also that most of the studies conducted on EGR modeling and control
considered diesel engines, and only a few considered gasoline engines.
However, this fact is of little importance given that the EGR operates on
the same principles in gasoline and diesel engines.

Modeling: Different kinds of models were used in the literature to
model the engine air-path and the EGR system. Most of the studies
relied on mathematical and MVEM nonlinear models, inspired from
the physical principles, to model the air-path and EGR system dynam-
ics [VNMKSWC98]; [JK98]; [UCKC00]; [AFGG03]; [Wan08]; [GMC09];
[YLSCHJC09]; [YW11]. Among these studies, many of them linearized
the physical models [ADR95]; [VNMKSCW98]; [LK98]; [SKF00], some-
times as LPV models [JG03]; [ODR07]; [PS08] or linear time-varying
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(LTV) models [WSKB17], with or without model reduction. Nevertheless,
these models did not explicitly take the transport delay into account,
unlike [BPLCP12] and [CB13], where the delay due to the mass trans-
port phenomena resulted in SS formulations, describing the dynamics of
Xcol with time-varying input and state delays, respectively. The model
in [BPLCP12] uses the input-delay model, describing Ẋcol by means of
a composition balance equation, for control purposes. The control in-
put is the burned gas ratio downstream the EGR valve, delayed by the
summation of the times needed to transport the gas from downstream
the EGR valve to the compressor, from downstream the compressor to
the intercooler, and from downstream the intercooler to the intake man-
ifold. From the input, the EGR mass flow rate can be deduced, and the
conversion of the latter to the effective valve opening is done using the
Saint-Venant equation. The model in [CB13], on the other hand, is used
for observation purposes. It divides the air intake path into control vol-
umes, in which the air fraction dynamics are modeled as an ODE, and
into tube sections, in which the air fraction dynamics are modeled as
first-order hyperbolic PDEs, which can be reformulated as a time-delay
system by means of the method of characteristics. The delay in this case
corresponds to the transport of the gas from downstream the compres-
sor to the intercooler, inside the intercooler (considered here as a tube
section), and from downstream the intercooler to the intake manifold.

Control: Different control techniques have been used in the literature
to control the EGR valve and the burned gas ratio in the intake man-
ifold; take for example model predictive control (MPC) [ODR07], PID
[XMJB10], LQG [PS08], SMC [UCKC00], feed-forward and PI feedback
control [YLSCHJC09], control-Lyapunov function (CLF) [JK98], among
others. Despite the efficacy of these techniques in controlling the air
or burned gas fraction in the intake line, yet they suffer from a major
drawback, which is their reliance on 0-D, instead of 1-D, air-path mod-
els. By doing so, they neglect the time delays induced by the transport
of the gas mixture in the tubes of the air-path, which might be justifi-
able in the case of HP-EGR, but not in the case of LP-EGR and Dual-loop
EGR, where ignoring the long travel distance of the recirculated gases
and its corresponding transport delay might have serious impacts on
the efficiency of the air-path control design, and consequently on the
overall engine performance. To avoid this drawback, automakers and
researchers started integrating 1-D air-path models in the engine con-
trol design. In [BPLCP12], a prediction-based trajectory tracking control
is designed on a time-varying input delay model to determine the intake
BGR for gasoline engines. In [CB13], where air fraction transport phe-
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nomena in a LP-EGR-equipped diesel engine are modeled by means of a
cascade of first-order LPV hyperbolic systems with dynamics associated
with the boundary conditions, Lyapunov-based techniques and matrix in-
equalities are employed to find sufficient conditions for the exponential
stabilization and observation of this class of systems. Overall, 1-D model-
based air-path control design is a topic which is still under-investigated.

Proposed approach The transport of the BGR in the air intake path is
modeled, as per [CB13], as a set of coupled ODEs and PDEs attributed
respectively to a succession of control volumes and tube sections. In this
work, we consider the average BGR dynamics in the tube downstream
the compressor, considered as a control volume, and model it using a
0-D model. The part of the air intake path extending from upstream the
heat exchanger until the intake manifold is considered as a tube section
and modeled using a 1-D model. This results in a simplified ODE-PDE
coupled system, whose one-dimensional part is discretized, for control
purposes, by means of the method of lines [Ros71]. To track a reference
profile of Xcol, the EGR system is subject to two indirect optimal con-
trol approaches: discretize-then-optimize and optimize-then discretize
[HPUU08]. In the former, the PDE is discretized first, leading to a delay-
free traditional SS system, and the calculation of the necessary condi-
tions of optimality follows afterwards. In the latter, on the other hand,
the necessary conditions of optimality stem directly from the ODE-PDE
coupled system, and then the discretization takes place to solve the re-
sulting boundary-value problem. In both cases, however, because the
BGR is limited between 0 and 100, the Augmented Lagrangian method is
employed to ensure that the controlled output respects this constraint.
The resulting system of equations representing the necessary optimal-
ity conditions is solved numerically using the projected gradient-descent
method, which makes sure that the constraints on the control input Xavc

(which is the BGR upstream the compressor) are respected. Although
constraining the control problem is not a novel idea in the field of EGR
control (take for example [CCP06]), but explicitly accounting for the in-
put and output constraints while considering an infinite-dimensional air-
path model that accounts for its transport delays, is, to the best of our
knowledge, novel. The merits of using these control techniques are eval-
uated on the nonlinear AMESim® model from which the mathematical
model was initially extracted.

Chapter structure The remainder of this chapter is organized as fol-
lows. Section 5.1 focuses on model identification of a heat exchanger.
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It presents the hyperbolic PDEs modeling the temperature dynamics,
details their reformulation as a time-delay system, formulates the time-
delay system parameter estimation problem, presents the gradient-
descent identification technique, and discusses the merits of this ap-
proach on experimental data obtained from a test-bench. Section 5.2
presents a delay linear system modeling of the EGR mass fraction. It
also presents the formulation of the EGR contol problem and recapit-
ulates the Augmented Lagrangian method which is at the core of the
considered indirect optimal control methods, in their turn detailed in
the same section, along with their simulation results. Finally, section
5.3 concludes the chapter and points out future work perspectives.

5.1 Identification of advective flows time-delay
model in a heat exchanger

5.1.1 PDE model and problem formulation

Figure 5.3: Schematic representation of a section of the air-path

To study the temperature dynamics of the advective flows, the heat ex-
changer’s tubular structures are assumed to be split in two separate vol-
umes separated by an internal wall. A schematic representation of this
section is shown in Figure 5.3. It shows two volumes of length L sepa-
rated by a wall. In the top volume, a hot fluid of distributed temperature
TH circulates in the rightward direction and, in the bottom volume, a
cold fluid of distributed temperature TC circulates in the leftward direc-
tion. Heat exchange takes place between the two fluids through the wall
separating the two tubes. T γin (γ = (H,C)) is the temperature of the fluid
at the entrance of the tube and T γout is its temperature at the exit.
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The following assumptions from [ZWB17] are considered:

• the flow is one-dimensional (along an axis called x), with the hot
fluid direction considered as positive.

• the heat diffusion through the tubes is negligible;

• advection between the two fluids is the only heat exchange taking
place;

• the external walls of the tubular structure are adiabatic and no
heat exchange between it and its surrounding environment takes
place;

• the heat transfer coefficient is constant.

Under these assumptions, the temperature dynamics in the heat ex-
changer’s tubular structure can be represented as the following system
of coupled hyperbolic first order PDEs [BAB14][ZWB17]:

∂TH(x, t)

∂t
+ c1

∂TH(x, t)

∂x
= −d1(TH(x, t)− TC(x, t)) (5.7a)

∂TC(x, t)

∂t
− c2

∂TC(x, t)

∂x
= d2(TH(x, t)− TC(x, t)) (5.7b)

where the parameters c1, d1, c2, and d2 are constant positive coefficients.
x represents the spatial coordinate which spans an interval [0, L], and
t represents the time coordinate which spans an interval [t0,∞). The
corresponding boundary and initial conditions are

TH(0, t) = THin (t) and TC(L, t) = TCin(t)

TH(x, 0) = TH0 (x) and TC(x, 0) = TC0 (x)

It can be noticed that the transport and heat exchange parameters c1,
d1, c2, and d2 are highly uncertain (as d1 and d2 depend on the advection
exchange coefficient which reveals troublesome to determine in prac-
tice). Therefore, the aim is to obtain an estimation technique of these pa-
rameters using only boundary measurements of the temperatures THin (t),
TCin(t), TH(L, t), and TC(0, t). With this aim in view, we propose to derive
a time-delay approximation of this model.
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5.1.2 From PDE to time-delay equations

Consider the coupled first-order hyperbolic PDE system (5.7) rep-
resenting the heat exchange dynamics. In order to decouple these
equations, the space-averaging technique presented in [NRWS16] is
used to replace TC(x, t) in equation (5.7a) by the average

TCin(t)+TCout(t)
2 = TC(L,t)+TC(0,t)

2 , f(t)
2

and to replace TH(x, t) in equation (5.7b) by the average

THin(t)+THout(t)
2 = TH(0,t)+TH(L,t)

2 , g(t)
2

Let THx = ∂TH(x,t)
∂x and THt = ∂TH(x,t)

∂t (and similarly for TC). The system
dynamics can hence be expressed as

T̃Ht + c1T̃
H
x = −d1T̃

H(x, t) +
d1

2
f(t) (5.8a)

T̃Ct − c2T̃
C
x = −d2T̃

C(x, t) +
d2

2
g(t) (5.8b)

where T̃ is another notation of temperature, used to differentiate be-
tween the PDEs (5.7) showing the temperature dynamics before the
space-averaging assumption and the PDEs (5.8) showing the tempera-
ture dynamics after the space-averaging assumption. The correspond-
ing boundary and initial conditions are

T̃H(0, t) = T̃Hin (t) and T̃C(L, t) = T̃Cin(t)

T̃H(x, 0) = T̃H0 (x) and T̃C(x, 0) = T̃C0 (x)

As the two equations (5.8a) and (5.8b) belong to the same class, only the
first equation is discussed hereafter.

Following the method of characteristics presented in [Eva10], consider
a point (x, t) ∈ [0, L]× [t0,∞) and define the function

z(θ) = T̃H(c1θ + x, θ + t) (5.9)
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C = {x(θ), t(θ), z(θ)} is the characteristic curve which passes through
point (x, t) and satisfies the ODEs:

dx(θ)

dθ
= c1 (5.10a)

dt(θ)

dθ
= 1 (5.10b)

dz(θ)

dθ
= c1T̃

H
x (c1θ + x, θ + t) + T̃Ht (c1θ + x, θ + t)

= −d1T̃
H(c1θ + x, θ + t) +

d1

2
f(θ + t) (5.10c)

= −d1z(θ) +
d1

2
f(θ + t)

To solve equation (5.10c), consider first the solution of the homogeneous
equation:

dz(θ)

dθ
+ d1z(θ) = 0 (5.11)

which is z(θ) = z(0)e−d1θ, where z(0) = z(θ = 0) = T̃H(x, t). Note that
T̃H(0, θ + t) corresponds to c1θ + x = 0, i.e. θ = −x

c1
, which implies that

z(θ) = z(−xc1 ) = T̃H(0, t− x
c1

) = T̃Hin (t− x
c1

).

Therefore, the solution of the homogeneous equation is

T̃H(x, t) = T̃Hin

(
t− x

c1

)
e
−d1 x

c1 (5.12)

Hence, for t ≥ x
c1

, the solution of the nonhomogeneous equation (5.10)
is:

T̃H(x, t) =T̃Hin

(
t− x

c1

)
e
−d1 x

c1

+
d1

2
e
−d1 x

c1

∫ x
c1

0
f

(
η + t− x

c1

)
ed1ηdη

(5.13)

By evaluating (5.13) at x = L, the output temperature T̃H(L, t) is thus
obtained as
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T̃H(L, t) =T̃Hin

(
t− L

c1

)
e
−d1 Lc1

+
d1

2
e
−d1 Lc1

∫ L
c1

0
f

(
η + t− L

c1

)
ed1ηdη

(5.14)

where T̃Hin

(
t− L

c1

)
= T̃Hin (0) when t ≤ L

c1
.

Similarly, from (5.8b), one obtains

T̃C(x, t) =T̃Cin

(
t− L− x

c2

)
e
−d2 L−x

c2

+
d2

2
e
−d2 L−x

c2

∫ L−x
c2

0
g

(
η + t− L− x

c2

)
ed2ηdη

(5.15)

By evaluating (5.15) at the other boundary of the cold tube at x = 0, the
output temperature T̃C(0, t) is obtained as

T̃C(0, t) =T̃Cin

(
t− L

c2

)
e
−d2 Lc2

+
d2

2
e
−d2 Lc2

∫ L
c2

0
g

(
η + t− L

c2

)
ed2ηdη

(5.16)

Thus, (5.13)-(5.16) are time-delay equations depending only on past val-
ues of the boundary measurements.

5.1.3 Estimation of the parameters of time-delay equations

The time-delay equations (5.14) and (5.16) are now used to identify the
vector κ =

[
c1 d1 c2 d2

]
, and hence the time delays L

c1
and L

c2
. The

proposed optimization method is a gradient-descent algorithm, such as
the one proposed in [WGDW06] for the optimal control of time-delay
systems. The objective is to minimize over time the square of the error
ε

ε =

[
THmeasured − THmodel(L, ·)
TCmeasured − TCmodel(0, ·)

]
(5.17)
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which is defined as the difference between the test-bench output tem-
peratures (measured temperatures) and the ones provided by the model
(5.14) and (5.16).

The gradient-descent method is summarized below. Its objective is to
find the optimal vector κ∗ that minimizes the cost function defined as

J0(κ̂, t) =
1

2tf

∫ tf

0
ε(κ̂, t)TQ0ε(κ̂, t)dt (5.18)

where tf is a given time horizon, Q0 is a weighting matrix, and κ̂ is an
estimate of the parameter vector κ, whose derivative is defined as

˙̂κ = −α(κ̂, t)∇J0(κ̂, t) (5.19)

The gradient is computed as

∇J0(κ̂, t) = − 1

tf

∫ tf

0
ε(κ̂, t)TQ0S(κ̂, t)dt (5.20)

where S =
[
∂y
∂c1

∂y
∂d1

∂y
∂c2

∂y
∂d2

]
is the sensitivity function, y = [TH(L, t)

TC(0, t)]T , and α(κ̂, t) is the step obtained from Newton’s method
[MNT99] and is defined as

α(κ̂, t) =

(
1

tf

∫ tf

0
S(κ̂, t)TQ0S(κ̂, t)dt+ υI

)−1

(5.21)

with υ a positive constant acting as a tuning parameter.

By definition, one has

S1 =
∂y

∂c1
=

[
∂T̃H(L,t)

∂c1
0

]
S2 =

∂y

∂d1
=

[
∂T̃H(L,t)

∂d1
0

]

S3 =
∂y

∂c2
=

[
0

∂T̃C(0,t)
∂c2

]
S4 =

∂y

∂d2
=

[
0

∂T̃C(0,t)
∂d2

] (5.22)

in which
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∂T̃H(L, t)

∂c1
= −Ld1

2c1
2
f(t) +

L

c1
2
e
−d1 Lc1×(

dT̃
H

in

(
t− L

c1

)
dt

+ d1T̃
H
in

(
t− L

c1

)

+
d2

1

2

∫ L
c1

0
f

(
η + t− L

c1

)
ed1ηdη

+
d1

2

∫ L
c1

0

df
(
η + t− L

c1

)
dt

ed1ηdη

)
(5.23)

∂T̃H(L, t)

∂d1
= T̃Hin

(
t− L

c1

)(
−L
c1

)
e
−d1 Lc1

+
c1 − Ld1

2c1
e
−d1 Lc1

∫ L
c1

0
f

(
η + t− L

c1

)
ed1ηdη

+
d1

2
e
−d1 Lc1

∫ L
c1

0
f

(
η + t− L

c1

)
(η)ed1ηdη

(5.24)

and S3 and S4 have the same form as S1 and S2 respectively, except that
c1 is replaced by c2, d1 is replaced by d2, and f(·) is replaced by g(·).

In practice, the integrals in the sensitivities are estimated using the

trapezoidal rule, and the time derivatives df(.)
dt and

T̃Hin(.)
dt are approxi-

mated using a Backward Euler discretization. Subsection 5.1.5 shows
that the effect of this approximation is not substantial and that the sen-
sitivity resulting from the experimental measurements’ noise is quite
low.

5.1.4 Experimental setup

The proposed approach has been evaluated on a heat exchanger test-
bench available in GIPSA-lab, Grenoble, France. As shown in Figure 5.4,
it consists of a hot tank (equipped with an immersed heater which heats
the water up to a target temperature), a cold tank, and a heat exchanger
which is a tubular structure made of two concentric tubes, an external
tube through which the hot fluid circulates and an internal tube through
which the cold fluid circulates. The surfaces of the heat exchanger tubes
are designed to maximize the turbulence of the flows. In addition to that,
it also consists of hot fluid and cold fluid pumps, manual and automatic
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Figure 5.4: Heat exchanger test-bench in GIPSA-lab

valves to direct the flows, and various sensors of temperature, pressure,
and volumetric flow rate. The sensors provide the measurements of the
temperature and the volumetric flow rate of each of the fluids at the
entrances and exits of the exchanger. A fresh water source and the
immersed heater allow controlling the temperatures at the entrances of
the exchanger.

In addition, the test-bench is equipped with a target PC used for data
acquisition and a host PC through which the user can communicate with
the target PC using the XPC Target of Simulink.

The exchanger is dimensioned according to the values provided in Ta-
ble 5.1. Hence, for a hot fluid temperature of 70◦C and a flow rate of
0.2 m3 h−1, a temperature difference of 10◦C between the input and the
output is expected, i.e. a theoretical heat capacity of 2.3 kW.

Flow Rate Tin Tout Reynold’s nb Flow Type

Cold 0.2 m3 h−1 20◦C 30◦C 8000 Turbulent

Hot 0.2 m3 h−1 70◦C 60◦C 5500 Transitional

Table 5.1: Nominal thermal specifications of heat exchanger test-bench

5.1.5 Experimental results

Two sets of experiments are used, one for identification and another for
validation. The identification experiment is held at around THin = 40◦C,
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and volume flow rates of q̇ = 260 L hr−1. The validation experiment is
a concatenation of two experiments held at a temperature THin = 60◦C,
and mass flow rates of q̇ = 260 L hr−1. The difference between the first
and the second validation experiment is that, in the first experiment, a
disturbance is applied on the entrance of the hot circuit (THin ) and no dis-
turbance is applied on the cold circuit, whereas the second experiment
consists in the reverse, that is a disturbance is applied on the entrance
of the cold circuit (TCin) and no disturbance is applied on the hot circuit.

The optimization problem is set with the following parameters:

• Initial set of parameters
κ0 =

[
0.01 0.001 0.01 0.001

]
• Q0 =

[
4 0

0 10

]
Q011 and Q022 are not taken equal because, in the experimental
setup, the hot tube is the external tube. Therefore, the hot tem-
perature can be subject to unmodelled exchange with the external
environment despite the isolation. Consequently, a higher weight
is attributed to the cold temperature error.

• υ = 10−9

• ‖∇J0‖ ≤ 10−6 is a stop condition of the optimization process.

The primary concern is to show that the time-delay model is able to
reproduce the same output as the PDE system. For this sake, a first
estimation of the transport and exchange parameters is done using the
discretized PDE system and the gradient-descent estimation method de-
rived previously. The estimated parameters are shown in Table 5.2.

c1 (m s−1) d1 (W J−1m−1) c2 (m s−1) d2 (W J−1m−1)

0.12144 0.023693 0.17998 0.029412

Table 5.2: Parameters estimated with the PDE model

Using these parameters, the PDE system and the time-delay system are
simulated with the measured input temperatures and compared with the
outflows measurements provided by the test-bench experiments. Figure
5.5 corresponds to the identification experiment, with Figure 5.6 show-
ing its corresponding absolute error. Figures 5.7 and 5.8 show the same
results on the validation experiments. The mean-squared averaged error



134
Chapter 5. Identification and Control of Transport Models in the

Engine Air-path

1

N

N∑
i=1

(T γmeasured − T
γ
model)

2 (5.25)

corresponding to the experiments simulated with the parameters esti-
mated from the PDE model is summarized in Table 5.3.

Time [s]

36.7

36.9

T
e
m

p
e
ra

tu
re

[◦
C

]

37.1

37.3

T
e
m

p
e
ra

tu
re

[◦
C

]

37.5

26.9

27.1

27.3

27.5

27.7

Hot temperature

Cold temperature

Experiment
PDE model
Time-delay model

Experiment
PDE model
Time-delay model

305 310 315 320300
Time [s]

325 330 335 340 345 350

305 310 315 320300 325 330 335 340 345 350

Figure 5.5: Comparison of PDE and time-delay models with respect to
the experimental data - identification experiment

The simulation results show the credibility of the PDE and the time-
delay models as the error separating them from the experimental data
is low, especially in the identification experiment. In addition to that,
the error separating each of the PDE and the time-delay models from
the experiment is very close indicating a very slight difference between
them, which illustrates the adequacy of the averaging assumption.

The following step is to identify the system using the time-delay model,
i.e. equations (5.14) and (5.16). The results are shown in Table 5.4.
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Figure 5.6: Absolute errors of PDE and time-delay models with respect
to the experimental data - identification experiment

Although the estimated parameters are quite different from those es-
timated in the case of the PDE system, the simulation results tend to
imply that this new set of parameters is also valid. Indeed simulating
the PDE model and the time-delay model using these parameters, the
results shown in Figure 5.9 for the identification experiment and those
shown in Figure 5.11 for the validation experiment are obtained. The
mean-squared averaged error corresponding to the experiments simu-
lated with the parameters estimated from the time-delay model is sum-
marized in Table 5.5.

These results show that the two models have a high level of similarity
and a good level of fit with the experimental data. This can also be seen
in Table 5.5 and Figures 5.10 and 5.12 which show low absolute errors
in the case of the identification experiment as well as the validation ex-
periment.

In addition to that, comparing Tables 5.3 and 5.5 shows that the mean-
squared errors obtained on the identification experiment with the pa-
rameters estimated from the PDE system are almost equal to those
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Figure 5.7: Comparison of PDE and time-delay models with respect to
the experimental data - validation experiment

recorded on the same experiment but with the parameters estimated
from the time-delay system. Although this implies that the estimation al-
gorithm works similarly on both models, the mean-squared errors corre-
sponding to the validation experiment are much better in the case when
the estimation is done using the time-delay model. In addition to that, a
time-save of 98% can be noted when launching the estimation algorithm
using the time-delay system. This implies that the time-delay system is
more adequate and more computationally efficient than the PDE model
to be used for estimation using the gradient-descent algorithm.

Finally, Tables 5.2 and 5.4 indicate that the parameter vector estimated
using the PDE model is far from being equal to that estimated using the
time-delay model. However, it can be noted that the ratio c1

d1
= 5.12 from

Table 5.2 is almost equal to the ratio c1
d1

= 5.06 from Table 5.4. The same
remark can also be attributed to the ratio c2

d2
. This might be explained

by the simulation results depicted in Figures 5.5 and 5.9 showing that
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Figure 5.8: Absolute errors of PDE and time-delay models with respect
to the experimental data - validation experiment

the PDE system and the time-delay model represent more accurately the
steady-state behavior of the model rather than its transient state.
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Experiment set Identification Validation

Fluid Hot Cold Hot Cold

PDE 0.0234 0.019 3.3333 2.3533

Time-delay 0.0275 0.0237 4.3190 2.5425

Table 5.3: Mean-squared averaged error

c1 (m s−1) d1 (W J−1m−1) c2 (m s−1) d2 (W J−1m−1)

15.9021 3.14237 16.1599 2.59372

Table 5.4: Parameters estimated with the time-delay model
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Figure 5.9: Comparison of PDE and time-delay models with respect to
the experimental data - identification experiment
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Figure 5.10: Absolute errors of PDE and time-delay models with respect
to the experimental data - identification experiment

Experiment set Identification Validation

Fluid Hot Cold Hot Cold

PDE 0.0357 0.0259 0.0655 0.3947

Time-delay 0.0335 0.0252 0.0862 0.3921

Table 5.5: Mean-squared averaged error
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5.2 Optimal control of mass-transport time-
delay model in an EGR

In this section, we turn our attention to another transport problem,
which is optimal control of the LP-EGR time-delay system, whose linear
form is hereby presented.

5.2.1 EGR linear state-space model

The schematic presentation of the section of the air intake path extend-
ing from the LP-EGR valve to the intake manifold is shown in Figure
5.2. It shows the fresh air coming from the external environment mix-
ing with the recirculated gases, admitted to the intake path through
the EGR valve, in the volume upstream the compressor (AVC). The mix-
ture of gases then traverses the compressor, the volume downstream
the compressor (APC), the heat exchanger (HE), and the tube section
following it (APE). Note how AVC and APC are considered as control
volumes, where mere gas mixing occurs, whereas HE and APE are con-
sidered as tube sections. X(x, t)n and X(t)m are the respective burned
gas fractions in the tube sections n = {HE,APE} and control volumes
m = {COL,APC,AV C}. x represents the spatial coordinate which
spans an interval [0, Ln] (Ln being the length of tube section n), and t

represents the time coordinate which spans an interval [t0,∞).

To calculate the burned gas fractions in the intake path, we consider the
following assumptions, inspired from [CB13]:

• The control volumes in the EGR path are large compared to their
length, which means that the mass transport phenomenon is negli-
gible compared to the mixing phenomenon, which justifies model-
ing the gas mixing in these volumes as ODEs.

• the gas mixing in the heat exchanger of the intake path is consid-
ered negligible, and the heat exchanger is entirely considered as a
tube section;

• the mixing dynamics in the intake manifold are negligible;

From the first two assumptions, and from equation (5.6) describing the
BGR dynamics in a control volume, the BGR dynamics in the control
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volume downstream the compressor can be written as:

Ẋapc = αapc[−QengineXapc(t) +QengineXavc(t)] (5.26)

where αapc =
RTapc
PapcVapc

, Xapc (%), Tapc (K), Papc (Pa), and Vapc (m3) are the
respective BGR, temperature, pressure, and volume in the control vol-
ume downstream the compressor, and Qengine (kg s−1) is the mass flow
rate of the gas flowing in the intake air-path, equal to (Qair +QEGR) (as-
suming that the speed dynamics of the particles are fast in comparison
to the dynamics of the BGR).

According to [BPLCP12], the control input to the model describing the
dynamics of Xcol is Xavc, the burned gas ratio downstream the EGR
valve, delayed by the transport time in the intake path. It is chosen
as control input because, once calculated, it can be translated to EGR
mass flow rate by virtue of equation (5.2), and then to effective valve
opening by virtue of the Saint-Venant equation.

The third assumption implies that the dynamics ofXcol are not expressed
as an ODE, as is the case for control volumes. Instead, Xcol(t) is sup-
posed to be equal to Xape(Lape, t), calculated at the very end of the tube
section downstream the heat exchanger. This assumption, along with
equation (5.4) accounting for the transport of the BGR in the heat ex-
changer and in the tube section following it, can be formulated as:

Xcol(t) = Xape(Lape, t) = Xapc(t− τtotal(t)) (5.27)

where Xcol (%) and Xape (%) are the respective BGRs in the intake man-
ifold and in the tube downstream the heat exchanger,
τtotal(t) = τape(t) + τHE(t), τape(t) =

Pape(t)Vape
RTape(t)Qengine(t)

and

τHE(t) = PHE(t)VHE
RTHE(t)Qengine(t)

are the respective delays, measured in sec-
onds, due to the transport of the gas in the tube downstream the heat
exchanger and in the heat exchanger itself, Lape (m), Tape (K), Pape (Pa),
and Vape (m3) are the respective length, temperature, pressure, and vol-
ume of the tube downstream the heat exchanger, and THE (K), PHE (Pa),
and VHE (m3) are the respective temperature, pressure, and volume of
the heat exchanger.

Therefore, the resulting SS model is an output delay model expressed
as:

Ẋ (t) = A(t)X (t) +B(t)U(t)

Y = X (t− τtotal(t))
(5.28)
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where A(t) = −αapcQengine, B(t) = αapcQengine, X (t) = Xapc(t), U(t) =

Xavc(t), and Y (t) = Xcol(t) = Xapc(t− τtotal(t)) .

Note that, alternatively, in view of (5.3), these dynamics can be formu-
lated as the following ODE-PDE system:

Ẋ (t) = A(t)X (t) +B(t)U(t)

∂tX(x, t) + u(t)∂xX(x, t) = 0

X(0, t) = X (t)

Y (t) = X(1, t)

(5.29)

where u(t) = 1
τtotal(t)

is the BGR propagation speed, assuming a normal-
ized length Lape = 1.

Figure 5.13 shows Xcol generated by the AMESim® model and by model
(5.28). The small difference between the two plots is an indicator of the
adequacy of the assumptions.
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Figure 5.13: Xcol from AMESim® and the linear SS delay models

5.2.2 Control problem formulation

The objective of controlling the EGR is to drive the exhaust gas mass
fraction in the intake manifold Xcol(t) to its setpoint r(t), using min-
imum control effort U . Therefore, an objective function to minimize,
with respect to U , can be expressed as:
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J1(t) =
1

2
‖Xcol(T )−r(T )‖2L1

+
1

2

∫ T

0
‖Xcol(t)−r(t)‖2Q1

+‖U(t)‖2R1
dt (5.30)

where ‖ · ‖β (with βT = β a positive matrix) denotes the weighted Eu-
clidean norm, L1 ∈ R≥0, Q1 ∈ R≥0, and R1 ∈ R>0 are the matrix weights
used to manage the trade-off between the different minimization objec-
tives implied in the cost function J1, and T is the final time.

This optimization problem is subject to the infinite-dimensional dynam-
ics described in equation (5.28) or (5.29), and to constraints on the input
U(t) = Xavc(t) and on the output/state Xcol(t), because these quantities
represent gas mass fractions whose values vary between 0% and 100%.
This leads to the inequality constraints

0 ≤ Xcol ≤ 100

0 ≤ U(t) ≤ 100

Based on the above, we formulated a constrained optimization problem
of a time-delay system. Before addressing the application of the indirect
optimal control methods, the next subsections give a general overview
of their principles, with a focus on the Augmented Lagrangian method,
and the UZAWA method, which are used to manage the input and state
constraints.

5.2.3 Indirect optimal control methods

Optimal control is a control strategy that aims at finding an admissi-
ble control law, while optimizing a performance criterion, which is a
function of state and control variables. Because solving the optimal con-
trol problem analytically is unlikely, two numerical methods were de-
veloped: the direct method and the indirect method. Firstly developed
for finite-dimensional systems, these methods were later extended to
infinite-dimensional systems. This section gives a briefing about the in-
direct methods, states the necessary conditions of optimality in the finite
as well as in the infinite-dimensional case, and points out the main ref-
erences in the field. The particularities concerning the constraints are
left to the following section 5.2.4 which discusses the techniques used
in this work to manage the state and output constraints.
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The direct methods discretize the original control problem to recast it
as a finite-dimensional problem, which often results in a computation-
ally expensive-to-solve nonlinear constrained optimization problem, to
be solved using nonlinear programming algorithms. [Bet10] can be ref-
ered to, for a detailed explanation of the direct methods and the algo-
rithms they use to solve the control problem.

On the other hand, the indirect methods, which are the methods adopted
in the sequel for the air-path control problem, solve the optimal con-
trol problem, in continuous time, using Pontryagin Minimum Principle
[PBGM62]. Although Pontryagin Minimum Principle provides only the
necessary (but not sufficient) conditions for optimality, using the calcu-
lus of variations, it often reduces the computational load compared to
the direct methods. For a detailed explanation of the indirect methods
and the necessary conditions for optimality in the cases of unconstrained
admissible controls and states, constrained controls, and constrained
states, one can refer to [Kir04], and for an extension to the case of con-
strained controls and states, one can refer to [SW77].

Both methods, though fundamentally developed for finite-dimensional
state dynamics, yet they found their way through infinite-dimensional
state dynamics, thanks to the works of [Lio71], [AT81], [Trö10],
[LY95], and others. As already mentioned in the introduction, the air-
path control problem is approached from two different perspectives:
discretize-then-optimize and optimize-then-discretize. In the discretize-
then-optimize method, the discretization of the system transforms the
infinite-dimensional PDE into a finite-dimensional system of ODEs, be-
fore the calculation of the first-order optimality conditions takes place.
This leads to the definition of a standard optimal control problem, un-
like the optimize-then-discretize method which preserves the infinite-
dimensional system dynamics, as it calculates the necessary optimality
conditions before discretizing the PDE. As both methods are addressed
in this work, we proceed by stating the necessary conditions of optimal-
ity in each of both cases.

• Necessary optimality conditions in case of finite-dimensional dynam-
ics

The necessary conditions, corresponding to the finite-dimensional case,
are mentioned briefly below, by referring to [Kir04], which provides a
thorough demonstration of their origins.

Let s be the state of the system, U be its control input, d be the function
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describing the dynamics, J be the cost function, F be the terminal cost,
G be the cost-to-go, and t be the time falling in the interval [t0, tf ].

As a first step, the admissible state and control input are considered to
be unbounded. We also assume that the initial state and time s0 and t0
are specified, the final time tf is specified, whereas the final state sf can
be specified or free.

After discretization, the dynamics of the system can be described as:

ṡ(t) = d(s(t), U(t), t) (5.31)

The objective of the controller is to find the optimal control input U∗ that
minimizes the cost function

J(U) = F(s(tf ), tf ) +

∫ tf

t0

G(s(t), U(t), t)dt (5.32)

For this purpose, define the Hamiltonian

H(s(t), U(t), p(t), t) = G(s(t), U(t), t) + pT (t)d(s(t), U(t), t) (5.33)

where p(t) is the adjoint state or co-state.

For all t ∈ [t0, tf ], the necessary conditions of optimality can be written
as:

ṡ∗(t) =
∂H
∂p

(s∗(t), U∗(t), p∗(t), t) (5.34a)

ṗ∗(t) = −∂H
∂s

(s∗(t), U∗(t), p∗(t), t) (5.34b)

0 =
∂H
∂U

(s∗(t), U∗(t), p∗(t), t) (5.34c)

[
∂F
∂s

(s∗(tf ), tf )− p∗(tf )

]T
δsf+

[
H(s∗(tf ), U∗(tf ), p∗(tf ), tf ) +

∂F
∂t

(s∗(tf ), tf )

]
δtf = 0

(5.35)
where s∗, U∗, and p∗ are the optimal state, control input and co-state,
respectively.

Note that the necessary conditions (5.34a), (5.34b), and (5.35) remain
unchanged in case of a constrained input. Condition (5.34c), however,
becomes

H(s∗(t), U∗(t), p∗(t), t) ≤ H(s∗(t), U(t), p∗(t), t) (5.36)



148
Chapter 5. Identification and Control of Transport Models in the

Engine Air-path

for all t ∈ [t0, tf ] and for all admissible U(t). Equation (5.36) is, in fact,
the Pontryagin Minimum Principle.

Considering the air-path control problem, the final time is specified (tf =

T ) implying that δtf = 0, and the final state is free implying that δsf 6= 0.
Therefore, in this case, (5.35) reduces to p∗(T ) = ∂F

∂s (s∗(T ), T ).

• Necessary optimality conditions in case of infinite-dimensional dy-
namics

For the calculation of the necessary conditions in the infinite-
dimensional case, we refer to the Lagrangian-based adjoint method,
from [HPUU08], which is a general optimal control approach that ap-
plies to linear and nonlinear PDEs. We consider minimizing a cost func-
tion subject to infinite-dimensional equality constraints, such as PDEs
representing the system dynamics. We also consider the boundary-
control case, because it is representative of the EGR control problem.

Let s be the state of the system, sr be a bounded reference to be tracked,
U be the system’s control input, Z be a partial derivative operator, H
be a bounded linear operator, q and r be strictly positive weights, x
be the spatial coordinate falling in the interval [0, 1], and t be the time
coordinate falling in the interval [t0, tf ].

The dynamics of the system can be described by the following PDE:

∂ts(x, t) = Z(s(x, t)) (5.37)

where s(x, t0) = s0(x) is the initial condition, and G1(s(0, t)) =

U(t), G1(s(1, t)) = 0 is one of two possible boundary-control scenarios.

The objective of the controller is to find the optimal control input U∗

which minimizes the cost function

J(U) =

∫ tf

t0

∫ 1

0
|H(s(x, t)− sr(x, t))|2dxdt+

∫ tf

t0

r|U(t)|2dt

+

∫ 1

0
q|H(s(x, tf )− sr(x, tf ))|2dx

(5.38)
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For this purpose, define the Lagrangian

L(s, U, p, λ) =

∫ tf

t0

∫ 1

0
|H(s(x, t)− sr(x, t))|2dxdt+

∫ tf

t0

r|U(t)|2dt

+

∫ 1

0
q|H(s(x, tf )− sr(x, tf ))|2dx+

∫ tf

t0

< λ(t), (U(t)−G1(s(0, t))) > dt

+

∫ tf

t0

∫ 1

0
< p(x, t), ∂ts(x, t)− Z(s(x, t)) > dxdt

(5.39)

where p(x, t) is the adjoint state, λ(t) is the Lagrange multiplier associ-
ated to the boundary control G1(s(0, t)) = U(t), and < ·, · > denotes a
scalar product.

The necessary conditions for optimality can be written as:

LU (s∗, U∗, p∗, λ∗) = 0 (5.40a)

Ls(s
∗, U∗, p∗, λ∗) = 0 (5.40b)

Lp(s
∗, U∗, p∗, λ∗) = 0 (5.40c)

Lλ(s∗, U∗, p∗, λ∗) = 0 (5.40d)

p∗(x, tf ) = 2qH(s∗(x, tf )− sr(x, tf )) (5.40e)

s∗(x, t0) = s0(x) (5.40f)

where the index of L denotes its partial derivatives with respect to the
variable.

5.2.4 Augmented Lagrangian method

The literature proposes different methods for constrained optimization,
such as the penalty methods, the primal approach, or the primal-dual
approach (Lagrangian method). The dual approach (Augmented La-
grangian method), which is the approach we use in this work, shares
some features with these methods. Following is a preface which dis-
cusses some of these ideas before attacking the Augmented Lagrangian
method. Starting off by the penalty methods, they are methods which
approximate the constrained optimization problem by an unconstrained
optimization problem by adding to the objective function a penalty func-
tion, which is a term that penalizes the violation of the constraints, thus
resulting in an augmented objective function. Here is an example of an
exterior penalty function P (µ) used in the case of inequality constraint
Zi(µ) ≤ 0 for i = 1.
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• When Zi(µ) ≤ 0 : P (µ) = 0 because the constraint is satisfied.

• When Zi(µ) > 0 : P (µ) > 0 because the constraint is violated. Take
for example P (µ) = Zi(µ).

Therefore, the penalty function can be formulated as P (µ) =

max(0, Zi(µ)) or as P (µ) = max(0, Zi(µ))p (where p is an integer) for
a more severe penalization. Moving on to the primal-dual method, as
indicated in its name, it associates to the primal problem, which aims at
minimizing the original objective function, a dual problem, which aims
at maximizing a Lagrange dual function. To illustrate the Lagrangian
method in case of inequality constraints, we consider the following stan-
dard constrained optimization problem:

minimize M(µ)

s.t. Zi(µ) ≤ 0, i = 1, 2, ...m
(5.41)

In what follows, we define the Lagrangian, Lagrange dual function, and
Lagrange dual problem corresponding to the primal minimization prob-
lem (5.41), by referring to [BV04].

The Lagrangian L : Rn × Rm → R is defined as:

L(µ, λ) = M(µ) +
m∑
i=1

λiZi(µ) (5.42)

where λ ≥ 0 is the dual variable or Lagrange multiplier vector, composed
of λi corresponding to the inequality constraints Zi(µ) ≤ 0.

The Lagrange dual function Θ : Rm → R is defined as:

Θ(λ) = min
µ
L(µ, λ) (5.43)

An important property of the dual function Θ(λ) is that, for λ ≥ 0, it is a
lower bound on M(µ) for all feasible values of µ, which implies that it is
also a lower bound of the optimal value M∗ of problem (5.41).

The Lagrange dual problem is the optimization problem defined as:

maximize Θ(λ)

s.t. λ ≥ 0
(5.44)

For each λ ≥ 0, there exists a dual function Θ(λ), i.e. there exists a
lower bound for M∗. Nevertheless, a lower bound is only meaningful
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when λ ≥ 0 and Θ(λ) > −∞. In this case, the Lagrange multiplier λ is
said to be dual feasible (feasible for the dual problem (5.44)). The idea
behind the Lagrangian dual problem is to find λ ≥ 0 which results in the
best lower bound Θ(λ), i.e. to find the dual optimal Lagrange multiplier
λ∗.

Always referring to [BV04], the concept of weak and strong Lagrangian
duality is briefly introduced. To do so, the optimal solution M∗ of the
primal problem (5.41) can be formulated as:

M∗ = min
µ

max
λ≥0
L(µ, λ) (5.45)

This is justifiable because
maxλ≥0 L(µ, λ) = maxλ≥0 (M(µ) +

∑m
i=1 λiZi(µ)) is equal to ∞ when the

constraints are not respected, but it is equal to M(µ) when Zi(µ) ≤ 0.

Also, from (5.43) and (5.44), the optimal solution Θ∗ of the dual problem
(5.44) can be formulated as:

Θ∗ = max
λ≥0

min
µ
L(µ, λ) (5.46)

We talk of weak duality when

max
λ≥0

min
µ
L(µ, λ) ≤ min

µ
max
λ≥0
L(µ, λ)

and we talk of strong duality when

max
λ≥0

min
µ
L(µ, λ) = min

µ
max
λ≥0
L(µ, λ)

The primal-dual optimal point (µ∗, λ∗) satisfying the strong duality con-
dition is called a saddle-point for the Lagrangian.

The Augmented Lagrangian approach, proposed by [Hes69] and
[Pow69], dates back to the year 1969. Similarly to penalty methods, it
transforms a constrained optimization problem to an unconstrained op-
timization problem by adding a penalty term penalizing the constraint
violation. However, it considers the Lagrangian, which is why it is also
called the "Method of Multipliers" or the "Penalty-Multiplier Method",
and is considered as an advantageous method which merges many of
the merits of both methods, the penalty and the local duality methods.

Since its first introduction in 1969, different variants of the Augmented
Lagrangian method have been introduced to improve the quality of the
solution or to solve different kinds of constrained optimization prob-
lems; take for example the alternating direction method of multipliers
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(ADMM) or the generalized Augmented Lagrangians (GAL) method. In
the rest of this subsection, however, we stick to the classical Augmented
Lagrangian method considering the case of equality constraints, pre-
sented in [Hes69]. Since we are dealing with inequality constraints, we
show how a simple manipulation of the constraint inequality function
can transform the inequality constraint problem into an equality con-
straint problem, upon which the classical method can be applied.

By referring to [Hes69], consider the equality constrained problem:

minimize M(µ)

s.t. e(µ) = 0
(5.47)

where M : Rn → R and e : Rn → R are assumed to be twice continu-
ously differentiable functions. To solve the minimization problem (5.47),
the Augmented Lagrangian method suggests using the augmented La-
grangian function

La(µ, λ) = M(µ) + λT e(µ) +
c

2
|e(µ)|2 (5.48)

where c is a positive constant chosen sufficiently large, and λ is the
Lagrange multiplier whose appropriate value is to be computed. The
reason behind this suggestion is that if µ∗ is a minimum point of the
function La respecting the equality constraint e(µ∗) = 0, then, accord-
ing to [Hes69], µ∗ is also a minimum to M and respects the equality
constraint e = 0. In other words, µ∗ is also a solution of problem (5.47).

To compute the appropriate value of λ starting from an initial estimate
λ(0), the following update law is used:

λ(k+1) = λ(k) + c(k)e(µ(k)) (5.49)

where 0 < c(k) ≤ c and µ(k) = argmin
µ
La(µ, λ(k)).

Not only is this method useful for minimization problems with equal-
ity constraints, but it is also able to deal with certain inequality con-
straints. To illustrate the incorporation of inequality constraints in the
Augmented Lagrangian method, we reconsider the minimization prob-
lem (5.41), taking i = 1 for simplicity. Under certain assumptions
[LY08]; [Ber76], this minimization problem can be written as an equality-
constrained minimization problem, similar to problem (5.47), where

ei(µ) = Zi(µ) + ui = 0 (5.50)
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ui being a slack variable equal or greater than zero. By doing so, the
augmented Lagrangian in case of equality constraints (5.48) can be re-
formulated as:

La(µ, λ) = M(µ) +

m∑
i=1

{λTi [Zi(µ) + ui] +
c

2
[Zi(µ) + ui]

2} (5.51)

The dual function can therefore be written as:

Θ(λ) = min
u≥0, µ

La(µ, λ) = min
u≥0, µ

{M(µ)+
m∑
i=1

{λTi [Zi(µ) + ui]+
c

2
[Zi(µ) + ui]

2}}

(5.52)

The first minimization of the dual function Θ(λ) is with respect to u ≥ 0,
and then its minimization with respect to µ follows. It is shown in [LY08]
and [Ber76] that minimizing Θ(λ) with respect to u ≥ 0 yields an optimal
value of ui equal to:

ui = max{0,−Zi(µ)− λi
c
} (5.53)

Substituting for this ui in equation (5.52) allows its reformulation as
[LY08]; [Ber76]; [Ius99]:

Θ(λ) = min
µ
{M(µ) +

1

2c

m∑
i=1

{[max{0, λi + cZi(µ)}]2 − λ2
i }} (5.54)

The minimization with respect to µ now takes place as per equation
(5.54), yielding a value µ(k) for each iteration k. Finally, in view of equa-
tions (5.49), (5.50), and (5.53), the appropriate value of λi can be com-
puted as:

λ
(k+1)
i = max{0, λ(k)

i + cZi(µ
(k+1))} (5.55)

This iterative solution of the constrained optimization problem is, in
fact, the Uzawa algorithm. The Uzawa algorithm was first introduced in
[Uza58] and adapted to the augmented Lagrangian in [FG83] to become
the Augmented Lagrangian Uzawa Method (ALUM), which is nothing but
the Uzawa algorithm applied to the saddle-point problem. ALUM can
be seen as the projected gradient-descent method applied to the con-
strained dual problem, to maximize the dual function (5.52) for λ ≥ 0.
It substitutes the constrained dual problem by a sequence of uncon-
strained problems, and solves them iteratively in three basic steps:

• Choose an initial nonnegative Lagrange multiplier λ(0).

• Calculate µ(k+1), solution of the unconstrained problem (5.54).

• Update the Lagrange multiplier λ(k+1), as per equation (5.55).
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5.2.5 Indirect method: discretize-then-optimize approach

In this approach, discretization of the system precedes the calculation
of the necessary optimality conditions. Its objective is to transform the
system into a delay-free system to which we can attribute delay-free
control. System (5.28) is an output delay system with a time-varying
delay equal to τtotal(t). In what follows, for simplicity, we consider a
time-invariant delay, denoted as τtotal, which is the average of the time-
varying delays τtotal(t). To transform system (5.28) into a delay-free SS
system, we use equation (5.29) and discretize the transport PDE along
the x-direction, using the method of lines [Ros71]. Figure 5.14 shows the
tube section’s discretization points, equal to x = idw, and their corre-
sponding values, Xi(t) = X(x = idw, t). X0(t) = X(0, t) = Xapc(t) = X (t)

is the BGR at the entrance of the tube section and XN (t) = X(1, t) =

Xapc(t − τtotal) = X (t − τtotal) = Y (t) is the BGR at the exit of the tube
section of length L = 1.

0 dw idw
dw

Ndw = 1

X0X1 Xi XN

Figure 5.14: Discretization of X(x, t) along the x-direction

This discretization scheme results in a vector of discretization points
Z =

[
X1 X2 . . . XN

]T ∈ RN≥0, upon which we discretize the transport
PDE in equation (5.29), in time using an explicit forward Euler scheme,
and in space using an implicit backward discretization scheme:

Ẋi(t) = − 1

τtotal

Xi −Xi−1

dw
(5.56)

For i = 1: Ẋ1 = − 1
τtotaldw

(X1 −X0) = − 1
τtotaldw

(X1 −X (t))

For i = 2: Ẋ2 = − 1
τtotaldw

(X2 −X1)

Discretizing the system forward in time and backward in space results
in a discretization scheme which is conditionally stable. This was shown
in Von Neumann’s stability analysis [CFN50], where the stability condi-
tion is such that 0 ≤ σ = u∆t

∆w ≤ 1, u being the positive speed of the wave
equation, ∆t being the time discretization step, and ∆w being the space
discretization step. Because we are discretizing a hyperbolic PDE, σ is
also called the Courant-Friedrichs-Lewy (CFL) number, which first ap-
peared in [CFL28] in 1927. In case of the EGR model, u = 1

τtotal
= 10,
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∆t = 0.01, and ∆w = 0.1, which implies that σ = 1, thus ensuring the
stability of the discretization scheme.

Consequently, using (5.56), the discretized version of the transport PDE
in equation (5.29) can be expressed as:

Ż(t) = F · Z(t) +G · X (t) (5.57)

where F =


− 1
τtotaldw

1
τtotaldw

. . . 0

. . .
. . .

0 1
τtotaldw

− 1
τtotaldw

 ∈ RN×N

and G =
[

1
τtotaldw

0 . . . 0
]T
∈ RN≥0.

As a result of equations (5.28) and (5.57), the delay-free time-varying SS
model describing the dynamics of the system can be written as:

˙XZ(t) = Λ(t) · XZ(t) + Ξ(t) · U(t) (5.58)

where XZ(t) =
[
X (t) Z(t)T

]T ∈ RN+1
≥0 , XZ(0) = XZ0 is the state vec-

tor at t = 0, Λ(t) =

[
A(t) 01×N
G F

]
∈ R(N+1)×(N+1), Ξ(t) =

[
B(t)

0N×1

]
∈ RN+1,

and 0a×b is an (a× b) zero matrix.

At this stage, the availability of the delay-free model allows for a delay-
free control design. Based on equation (5.58), the first step of this con-
trol design is to reformulate the objective function (5.30) as:

J2(t) =
1

2
‖XZN+1(T )−r(T )‖2L2

+
1

2

∫ T

0
(‖XZN+1(t)−r(t)‖2Q2

+‖U(t)‖2R2
)dt

(5.59)

where L2 ∈ R≥0, Q2 ∈ R≥0, and R2 ∈ R>0 are the weights of the cost
function J2,

and to reformulate the inequality constraints as:

0 ≤ XZN+1(t) ≤ 100

0 ≤ U(t) ≤ 100
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While the constraints on U(t) are taken care of using the projected gra-
dient descent method, XZN+1 on the other hand is considered in the
state-constraint vector I ∈ R2

≤0, therefore expressed as:

I(XZ(t))) =

[
XZN+1(t)− 100

−XZN+1(t)

]
In order to calculate the necessary conditions of optimality, the aug-
mented Hamiltonian is introduced, and is expressed as:

H(t) =
1

2
‖XZN+1(t)− r(t)‖2Q2

+
1

2
‖U(t)‖2R2

+ pT (t)(Λ(t) · XZ(t) + Ξ(t) · U(t))

+ ζc(λ, I(XZ(t)))
(5.60)

where p(t) ∈ RN+1 is the co-state vector,
and ζc(λ, I(XZ(t))) = 1

2c(‖max(02×1, λ + cI(XZ(t)))‖2 − ‖λ‖2) ∈ R2
≥0,

λ ∈ R2
≥0 is the Lagrange multiplier, and c is a positive scalar.

From the augmented Hamiltonian, the necessary conditions of optimal-
ity can be derived as:

∂H(t)

∂p(t)
= ˙XZ(t) = Λ(t) · XZ(t) + Ξ(t) · U(t) (5.61)

∂H(t)

∂XZ(t)
= −ṗ(t) = Q2(XZN+1(t)− r(t)) + Λ(t)T p(t) +

∂ζc(λ, I(XZ(t)))

∂XZ(t)

(5.62)

H(XZ∗(t), U∗(t), p∗(t), λ∗(t), t) ≤ H(XZ∗(t), U(t), p∗(t), λ∗(t), t) (5.63)

for all t ∈ [0, T ] and for all admissible U(t).

Note that

∂ζc(λ, I(XZ(t)))

∂XZ(t)

=
∂I(XZ(t))

∂XZ(t)
· ∂ζc(λ, I(XZ(t)))

∂I(XZ(t)))

=


0 0
...

...
0 0

1 −1

max(02×1, λ+ cI(XZ(t)))

∂H(t)

∂U(t)
= U(t)TR2 + p(t)TΞ(t) (5.64)
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∂H(t)

∂λ
=
∂ζc(λ, I(XZ(t)))

∂λ
=

1

c
(max(02×1, λ+ cI(XZ(t)))− λ) (5.65)

Uzawa method is used to solve this problem numerically, and the algo-
rithm will execute the following steps:

1. Choose arbitrary values of λ(0) ∈ R≥0 and U(t)(0), where the sub-
script k ∈ [0,∞) refers to the number of iteration.

2. Calculate XZ(t) using (5.58) and XZ(0)

3. Calculate p(t) using (5.62) and p(T ) = L2(XZN+1(T )− r(T ))

4. Update U(t)

U (k+1)(t) = U (k)(t)− υ1 ·
∂H(t)

∂U(t)

where ∂H(t)
∂U(t) is obtained from (5.64) and υ1 is a positive constant.

5. Saturate U (k+1)(t) by projecting it on the feasible set.

U (k+1)(t) =


0 , U (k+1)(t) < 0

U (k+1)(t) , 0 ≤ U (k+1)(t) ≤ 100

100 , U (k+1)(t) > 100

6. For each λ(k), verify that ‖U(t)(k+1) − U(t)(k)‖ ≤ ε, where ε is a
positive constant. If condition is true, go to step 7. Otherwise, go
back to step 2.

7. Update λ

λ(k+1) = λ(k) + υ2 ·
∂H(t)

∂λ

= λ(k) +
υ2

c
(max(02×1, λ

(k) + cI(XZ(t)))− λ(k))

where υ2 is a positive constant. This update law reduces to equa-
tion (5.55) when υ2 = c.

8. Verify that ‖λ(k+1) − λ(k)‖ ≤ ε. If condition is true, terminate. Oth-
erwise, go back to step 3.
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5.2.6 Indirect method: optimize-then-discretize approach

In this approach, following equation (5.29), the objective function (5.30)
can be reformulated as:

J3(t) =
1

2
‖X(1, T )− r(T )‖2L3

+
1

2

∫ T

0

(
‖X(1, t)− r(t)‖2Q3

+ ‖U(t)‖2R3

)
dt

(5.66)
where L3 ∈ R≥0, Q3 ∈ R≥0, and R3 ∈ R>0 are the weights of the cost
function J3,

and the inequality constraints can be reformulated as:

0 ≤ X(1, t) ≤ 100

0 ≤ U(t) ≤ 100

Similar to the discretize-then-optimize approach, the constraints on U(t)

are taken care of using the projected gradient descent method, whereas
the constraints on X(1, t) are considered in the state-constraint vector

I(X(1, t)) ∈ R2
≤0, expressed as: I(X(1, t)) =

[
X(1, t)− 100

−X(1, t)

]
To calculate the necessary optimality conditions, the augmented La-
grangian is introduced, and is expressed as:

L(X (t), Ẋ (t), U(t), X(x, t), p1(t), p2(t))

=
1

2
‖X(1, T )− r(T )‖2L3

+
1

2

∫ T

0

(
‖X(1, t)− r(t)‖2Q3

+ ‖U(t)‖2R3

)
dt

+

∫ T

0
pT1 (t)

(
A(t)X (t) +B(t)U(t)− Ẋ (t)

)
dt

+

∫ T

0

∫ 1

0
pT2 (x, t)

(
∂tX(x, t) +

1

τtotal
∂xX(x, t)

)
dxdt

+

∫ T

0
ζc(λ, I(X(1, t)))dt

(5.67)
where p1(t) ∈ R and p2(x, t) ∈ R are the Lagrange multipliers associated
to the ODE and PDE dynamics respectively,
ζc(λ, I(X(1, t))) = 1

2c(‖max(02×1, λ+ cI(X(1, t)))‖2−‖λ‖2), λ ∈ R2
≥0 is the

Lagrange multiplier, and c is a positive scalar.

To ease the calculation of the necessary optimality conditions, we first
expand and clarify some terms in the Lagrangian and reformulate its
double integral terms using integration by parts.
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0
−pT1 (t)Ẋ (t)dt

= −pT1 (t)X (t)
∣∣T
0

+

∫ T

0
X (t)ṗ1

T (t)dt

= −pT1 (T )X (T ) + pT1 (0)X (0) +

∫ T

0

dpT1 (t)

dt
X (t)dt

∫ T

0

∫ 1

0
pT2 (x, t)∂tX(x, t)dxdt

=

∫ 1

0

(
pT2 (x, t)X(x, t)

∣∣T
0
−
∫ T

0
X(x, t)∂tp

T
2 (x, t)dt

)
dx

=

∫ 1

0

(
pT2 (x, t)X(x, T )− pT2 (x, 0)X(x, 0)

)
dx−

∫ 1

0

∫ T

0
X(x, t)∂tp

T
2 (x, t)dtdx

∫ T

0

∫ 1

0
pT2 (x, t)

1

τtotal
∂xX(x, t)dxdt

=

∫ T

0

(
pT2 (x, t)

1

τtotal
X(x, t)

∣∣1
0
−
∫ 1

0
X(x, t)

1

τtotal
∂xp

T
2 (x, t)dx

)
dt

=

∫ T

0

(
pT2 (1, t)

1

τtotal
X(1, t)− pT2 (0, t)

1

τtotal
X(0, t)

)
dt−

∫ T

0

∫ 1

0

1

τtotal
X(x, t)∂xp

T
2 (x, t)dxdt

Consequently, the Lagrangian can be expressed as:

L(X (t), Ẋ (t), U(t), X(x, t), p1(t), p2(t))

=
1

2
‖X(1, T )− r(T )‖2L3

+
1

2

∫ T

0

(
‖X(1, t)− r(t)‖2Q3

+ ‖U(t)‖2R3

)
dt

+

∫ T

0
pT1 (t) (A(t)X (t) +B(t)U(t)) dt+ pT1 (0)X (0)− pT1 (T )X (T )

+

∫ T

0

dpT1 (t)

dt
X (t)dt+

∫ 1

0

(
pT2 (x, t)X(x, T )− pT2 (x, 0)X(x, 0)

)
dx

−
∫ T

0

∫ 1

0

(
1

τtotal
X(x, t)∂xp

T
2 (x, t) +X(x, t)∂tp

T
2 (x, t)

)
dxdt

+

∫ T

0

(
pT2 (1, t)

1

τtotal
X(1, t)− pT2 (0, t)

1

τtotal
X (t)

)
dt

+

∫ T

0
ζc(λ, I(X(1, t)))dt

(5.68)
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From the augmented Lagrangian, the necessary conditions of optimality
can be derived by studying the variation of L(·) with respect to U(t),
X (t), and X(x, t), denoted respectively as LU (·), LX (·), and LX(·).

LU (X (t), Ẋ (t), U(t), X(x, t), p1(t), p2(t)) =

∫ T

0

(
U(t)TR3 +BT (t)p1(t)

)
δU(t)dt

LX (X (t), Ẋ (t), U(t), X(x, t), p1(t), p2(t))

=

∫ T

0

(
AT (t)p1(t)− 1

τtotal
pT2 (0, t) +

dpT1 (t)

dt

)
δX (t)dt− pT1 (T )δX (T )− pT1 (0)δX (0)

LX(X (t), Ẋ (t), U(t), X(x, t), p1(t), p2(t))

= L3 (X(1, T )− r(T )) δX(1, T ) +

∫ 1

0

(
pT2 (x, T )δX(x, T )− pT2 (x, 0)δX(x, 0)

)
dx

+

∫ T

0

(
Q3 (X(1, t)− r(t)) δX(1, t) +

1

τtotal
pT2 (1, t)δX(1, t) +

∂ζc(λ, I(X(1, t)))

∂X(1, t)
δX(1, t)

)
dt

−
∫ T

0

∫ 1

0

(
1

τtotal
∂xp

T
2 (x, t)δX(x, t) + ∂tp

T
2 (x, t)δX(x, t)

)
dxdt

where

∂ζc(λ, I(X(1, t)))

∂X(1, t)
=
∂ζc(λ, I(X(1, t)))

∂I(X(1, t)))

T

· ∂I(X(1, t))

∂X(1, t)

= max(02×1, λ+ cI(X(1, t)))T
[
1 −1

]T
= max(0, λ1 + cX(1, t)− 100c)−max(0, λ2 − cX(1, t))

To obtain the necessary optimality conditions, these variations are set to
zero, while admissible (i.e. δX (0) = δX(x, 0) = 0), which gives:
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• δU(t) = 0 =⇒ U(t)TR3 +BT (t)p1(t) = 0⇒ U(t) = −R−1
3 B(t)T (t)p1(t)

• δX (t) = 0 =⇒ dp1(t)

dt
+AT (t)p1(t) =

1

τtotal
p2(0, t)

• δX (T ) = 0 =⇒ −p1(T ) = 0⇒ p1(T ) = 0

• δX(x, t) = 0 =⇒ ∂tp2(x, t) +
1

τtotal
∂xp2(x, t) = 0

• δX(x, T ) = 0 =⇒ p2(x, T ) = 0

• δX(1, t) = 0 =⇒ Q3 (X(1, t)− r(t)) +
1

τtotal
p2(1, t)

+max(0, λ1 + cX(1, t)− 100c)−max(0, λ2 − cX(1, t)) = 0

=⇒ p2(1, t) = τtotalQ3 (X(1, t)− r(t))
+ τtotal (max(0, λ1 + cX(1, t)− 100c)−max(0, λ2 − cX(1, t)))

• δX(1, T ) = 0 =⇒ X(1, T )− r(T ) = 0 =⇒ X(1, T ) = r(T )

For the sake of clarity, we hereby sum up the boundary-value problem
resulting from the system dynamics and the necessary optimality condi-
tions.

Equations describing the dynamics of the system:

∂tX(x, t) +
1

τtotal
∂xX(x, t) = 0 ((5.29) revisited)

Initial condition : X(x, 0)

Boundary conditions : X(0, t) and X(1, t)

Terminal condition : X(1, T ) = r(T )

Ẋ = A(t)X (t)−B(t)R−1
3 BT (t)p1(t) (5.69)

Initial condition : X (0) = X0

Equations describing the dynamics of the adjoint states:

dp1(t)

dt
+AT (t)p1(t) =

1

τtotal
p2(0, t) (5.70)

Terminal condition : p1(T ) = 0

∂tp2(x, t) +
1

τtotal
∂xp2(x, t) = 0 (5.71)

Terminal condition : p2(x, T ) = 0

Boundary condition : p2(1, t) = τtotalQ3 (X(1, t)− r(t))
+τtotal (max(0, λ1 + cX(1, t)− 100c)−max(0, λ2 − cX(1, t)))
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To solve this boundary-value problem, we discretize the PDEs in equa-
tions (5.29) and (5.71). Concerning the PDE in equation (5.29), as in the
previous section, it is discretized forward in time and backward in space,
upon equation (5.56), resulting in its discretized version (5.57). Con-
cerning equation (5.71), it is discretized, along the x-direction, using the
method of lines, in a discretization scheme similar to that shown in Fig-
ure 5.14 (p instead of X), where p2i(t) = p2(x = idw, t), p20(t) = p2(0, t) is
taken at the entrance of the tube section, and p2N (t) = p2(1, t) is taken at
the exit of the tube section of length L = 1. This discretization scheme

results in a vector of discretization points W =
[
p20 p21 . . . p2N−1

]T
,

upon which we discretize equation (5.71) in time using a backward Euler
scheme, and in space using a forward discretization scheme:

ṗ2i(t) = − 1

τtotal

p2i+1 − p2i

dw
(5.72)

For i = 0: ṗ20 = − 1
τtotaldw

(p21 − p20)

For i = N − 1: ṗ2N−1 = − 1
τtotaldw

(p2N − p2N−1)

This discretization scheme is used in this case because p2N is the known
boundary condition and it is used to calculate all the other values p2i .
Consequently, the discretized version of equation (5.71) can be ex-
pressed as:

Ẇ (t) = KW (t) +DpT2 (1, t) (5.73)

where K =


1

τtotaldw
− 1
τtotaldw

0
. . .

. . .

. . . − 1
τtotaldw

0 1
τtotaldw

 ∈ RN×N

and D =
[
0 . . . 0 −1

τtotaldw

]T
∈ RN≤0.

Now that the discretization of the PDEs is done, the boundary-value
problem can be reformulated. By concatenating equations (5.57) and
(5.69), and concatenating equations (5.70) and (5.73), the boundary-
value problem can be expressed as:

˙XZ(t) = Λ(t) · XZ(t) + Υ(t) · PP (t) (5.74)

˙PP (t) = Γ(t) · PP (t) + Ω · p2(1, t) (5.75)
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where XZ and Λ are given in equation (5.58),

PP (t) =
[
p1(t) W (t)T

]T
, Ω =

[
0 DT

]T
,

Υ(t) =

[
−B(t)R−1

3 B(t)T 01×N
0N×1 0N×N

]
, and

Γ(t) =

[
−AT (t)

[
1

τtotal
01×N−1

]
0N×1 K

]
.

By referring to the boundary condition p2(1, t) corresponding to equation
(5.71), (5.75) becomes

˙PP (t) = Γ(t) · PP (t)− Ω · τtotal ·Q3 ·X(1, t) + Ω · τtotal ·Q3 · r(t)
− Ω · τtotal ·max (0, λ1 + cX(1, t)− 100c) + Ω · τtotal ·max (0, λ2 − cX(1, t))

= Γ(t) · PP (t)− Ω · τtotal ·Q3 · E · XZ(t) + Ω · τtotal ·Q3 · r(t)
− Ω · τtotal ·max (0, λ1 + c · E · XZ(t)− 100c) + Ω · τtotal ·max (0, λ2 − c · E · XZ(t))

where E =
[
01×N 1

]
, and PP (T ) =

[
p1(T ) W (T )

]T
=
[
0 0N×1

]T
is

the terminal condition.

To solve this problem numerically, UZAWA method, which was used ear-
lier, is implemented. The algorithm executes the following steps.

1. Choose arbitrary values of λ(0) ∈ R+ and U(t)(0)

2. Calculate XZ(t) using (5.74) and XZ(0)

3. Calculate PP (t) using (5.75) and PP (T )

4. Update U(t)

U (k+1)(t) = U (k)(t)− υ1 ·
∂L(·)
∂U(t)

where ∂L(·)
∂U(t) is obtained from LU (·) as U(t)R3 +BT (t)p1(t) and υ1 is

a positive constant.
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5. Saturate U (k+1)(t) by projecting it on the feasible set.

U (k+1)(t) =


0 , U (k+1)(t) < 0

U (k+1)(t) , 0 ≤ U (k+1)(t) ≤ 100

100 , U (k+1)(t) > 100

6. For each λ(k), verify that ‖U(t)(k+1) − U(t)(k)‖ ≤ ε, where ε is a
positive constant. If condition is true, go to step 7. Otherwise, go
back to step 2.

7. Update λ

λ(k+1) = λ(k) + υ2 ·
∂L(·)
∂λ

= λ(k) +
υ2

c

(
max(02×1, λ

(k) + cI(X(1, t)))− λ(k)
)

where υ2 is a positive constant. This update law reduces to equa-
tion (5.55) when υ2 = c.

8. Verify that ‖λ(k+1) − λ(k)‖ ≤ ε. If condition is true, terminate. Oth-
erwise, go back to step 3.

5.2.7 Simulation results

5.2.7.1 EGR linear model control

The control designed on the EGR linear model results in a closed-
loop system whose input and output are shown in Figure 5.15, for the
discretize-then-optimize approach, and in Figure 5.16, for the optimize-
then-discretize approach. Both approaches share the same solver pa-
rameters, shown in Table 5.6.

It can be noticed from Figures 5.15 and 5.16 that starting from the same
initial input U (0) = Xavc = 50%, both methods calculate the same optimal

λ0

[
0.01 0.01

]T
c 0.1

ε 0.002 L2,3 50

υ1 0.01 Q2,3 50

υ2 0.01 R2,3 0.01

Table 5.6: Parameters of the solver
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Figure 5.15: Discretize-then-optimize approach: closed-loop system in-
put and output

input U∗ = X∗avc and result in the same output Xcol, which perfectly
tracks the reference.

While some authors prefer the discretize-then-optimize approach be-
cause the gradient stems directly from the original cost function, others
prefer the optimize-then-discretize approach, because it is more precise
and less sensible to the choice of the numerical solver, as the discretiza-
tion comes in after the calculation of the necessary conditions of opti-
mality. The EGR control problem, however, doesn’t show a preference
for any of both approaches, in terms of merits as well as demerits. From
the positive point of view, the discretization in both cases seems to re-
tain the precision conveyed by the infinite-dimensionality of the control
problem. From the negative point of view, both approaches are com-
putationally expensive. Their iterative nature prolongs the time needed
to calculate an optimal solution, which makes them not practical for
an implementation on an ECU, unless subject to more efficient faster
numerical solvers, such as those proposed in [HHP94] for large-scale
optimization problems.
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Figure 5.16: Optimize-then-discretize approach: closed-loop system in-
put and output

5.2.7.2 AMESim® nonlinear model control

The control input in the AMESim® nonlinear model is the EGR duty cy-
cle (%). Therefore, verifying the optimal control law on the nonlinear
AMESim® model requires converting the optimal control input X∗avc to
EGR duty cycle (%). This conversion is a 4-step process:

• Convert X∗avc to QEGR using the ODE:

Ẋavc = αavc [− (QEGR +Qair)Xavc +QEGRXem] (5.76)

where αavc = RTavc
PavcVavc

, Tavc (K), Pavc (Pa), and Vavc (m3) are the
respective temperature, pressure, and volume upstream the com-
pressor, and Xem is the BGR of the gas arriving from the exhaust
manifold. This ODE formulation stems from the fact that the vol-
ume upstream the compressor is considered as a control volume.
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SEGR (mm2) 0 25 125 210 250 250.01 250.015 250.02 250.025

Duty cycle (%) 0 10 20 30 40 50 60 70 100

Table 5.7: Look-up table matching SEGR and EGR duty cycle

• Convert QEGR to SEGR using the Saint-Venant equation, which cal-
culates the mass flow rate as a function of the pressure drop across
the EGR valve, as follows:

QEGR =
SEGRCqCmPup√

Tup
(5.77)

where SEGR (m2) is the cross-sectional surface area of the EGR
opening, Cq is the flow coefficient equal to 1, Pup (Pa) and Tup (K)
are the respective pressure and temperature upstream the EGR
valve, and Cm is the mass flow parameter expressed, by assuming
a subsonic flow [Hey+88], as:

Cm =

√√√√ 2γg
R(γg−1)

((
Pdown
Pup

) 2
γg −

(
Pdown
Pup

) γg+1

γg

)

where γg is the specific heat ratio of the gas, and Pdown (Pa) is the
pressure downstream the EGR valve.

• Saturate SEGR between Smin = 0 and Smax = 250.025 mm2 to make
sure that the physical limits of the actuator are respected, and
smooth it using a median filter to avoid the peaks and outliers.

• Convert SEGR (mm2) to EGR duty cycle (%) using look-up Table 5.7.

Processing the optimal input X∗avc in this way to obtain the optimal EGR
duty cycle, results in an eventually smoother input Xavc, shown in Fig-
ure 5.17 along with the system output, which well tracks the reference
output. Note that the output falling between t = 100 s and t = 150 s cor-
responds to a stop phase in which the engine is not running. Therefore,
tracking the reference output in this phase is senseless.

The nonlinear AMESim® model was initially controlled using a propor-
tional integral (PI) controller, with proportional and integral gains equal
to 1. The input of the controller is the error between the currentXcol and
its reference value, and the output of the controller is the EGR duty cy-
cle, whose value is saturated between 0 and 100 to avoid exceeding the
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Figure 5.17: AMESim® model input and output

physical limits of the valve. Figure 5.18 helps comparing the optimal
controllers proposed in this chapter with the PI controller, by showing
the output Xcol, the mass flow through the EGR QEGR, and the EGR duty
cycle in both cases. The output plot shows that, while both controllers
are able to track the reference output, the optimal controllers feature
less overshoot and transient oscillations than the PI controller.

5.3 Conclusion and future perspectives

Heat and mass transport phenomena, taking place in the pipes of the
engine air-path, such as the heat exchanger and the EGR system, can
be modeled as first-order hyperbolic PDEs of infinite-dimensional na-
ture. A space-averaging technique is proposed in this chapter to allow
decoupling the hyperbolic PDEs representing advective flows in a heat
exchanger and reformulating them as a time-delay system. The mer-
its of this technique are illustrated on experimental data and replacing
the original PDEs by the time-delay model for identification showed in-
creased accuracy of the identified parameters and enhanced computa-
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Figure 5.18: AMESim® model output and EGR mass flow rate and duty
cycle

tional efficiency. Testing this computationally-efficient estimator on a
car heat exchanger would be an interesting sequel of this work. From
the EGR perspective, the BGR mass transport in the intake manifold is
also described by a time-delay model, in this case exploited for control
purposes. Two indirect optimal control approaches, taking into account
the infinite-dimensional nature of the model, are compared: discretize-
then-optimize and optimize-then-discretize. To account for the system’s
input and state constraints, the controllers are equipped with constraint
management techniques such as the Augmented Lagrangian Uzawa
method, and their merits are demonstrated on the original AMESim®

model. To deal with the computationally expensive optimization process,
a future scope of this research work lies in exploring more efficient sim-
ulation and numerical tools. Also, replacing the time-invariant delay by
a time-variant delay would enhance the control performance by making
it more realistic.





Conclusions and
Perspectives

The control development lifecycle in modern automotive industry is
model-based, which is why accurate reliable models of engine actuators
are fundamental for successful engine control design. Traditional con-
trol techniques, such as the PID, have long been used in the automotive
industry, and automotive engineers have well experimented them. They
know their strengths and weaknesses, and they know for a fact that
they are insufficient for addressing many of today’s advanced control
problems. Nevertheless, introducing to the automotive industry iden-
tification and control techniques never-before tested and evaluated on
real engine models is a blunt hasty step, which puts the industry under
the risk of losing lots of time and money. This is where this work and
similar works come in to prepare the field for the introduction of such
techniques, and to evaluate the applicability of novel methods to certain
powertrain systems.

The research covered by this PhD thesis is two-fold as it addresses the
questions of system identification as well as system control. The first
topic of interest is linear black-box model identification. Linear black-
box models are becoming increasingly important in the automotive in-
dustry for two reasons. First, concerning the black-box property, the
ever-changing TDs of engines provoke an ever-lasting need for models
of these engines. Building numerous sophisticated engine models is an
exhausting task, which requires a huge effort and delays the control de-
velopment process. Linearity of the model is another concern for the
industry, because it is the cornerstone for integrating advanced linear
control techniques in the design lifecycle. In this context, chapter 3 of
this thesis evaluates the ability of subspace methods to identify a black-
box linear SS model of the engine air-path, and chapter 4 proposes two
black-box linear ARX models of the throttle, identified using the least-
squares method. The second topic of interest is modeling engine air-
path components featuring gas transport as time-delay models and con-
trolling them. Gas transport and advective flows in the engine air-path
inevitably induce time-delay. Automakers know that developing air-path
control without accounting for this delay is less likely to yield an optimal
control law. In this context, chapter 5 of this thesis proposes time-delay
modeling and control schemes for the advective flows and mass trans-
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port phenomena taking place in the engine air-path. The conclusions
and future perspectives of each chapter are summarized hereafter.

In chapter 3, we identify black-box linear SS models of the H5Ft400
engine air-path at a set of operating points whose torque ranges from
low to high, using subspace methods and prediction error minimization
algorithms. Excellent models were identified in the low-torque zone,
and good ones were identified in the high-torque zone. This chapter
sheds light on the adjustable parameters of the solvers, and specifies
the most successful combinations of parameter values that yield the best
estimates. Some interesting extensions to this work would be:

• understanding and addressing the hysterisis phenomenon ob-
served in the outputs of the AMESim® model upon exciting the
throttle or the waste-gate in opening/closing sequences, which
might be handy in improving the quality of the estimation;

• subjecting the identified SS systems to model reduction, result-
ing in equal model orders on all operating points of a certain ISO
speed. By doing so, studying the level of similarity of the identified
models becomes more straightforward, which opens the door to
grouping the operating points that share similar models (attribut-
ing a single model for more than one operating point) and reduces
the number of submodels for a particular ISO speed;

• replacing the iterative prediction error minimization algorithms by
other optimization algorithms, preferably non-iterative, to acceler-
ate the system identification process and to refine the initial esti-
mate produced by the subspace methods in a more efficient way;

• evaluating the identification method proposed in this chapter when
it comes to identifying the air-path dynamics of a diesel engine,
whose main inputs would be the waste-gate and the high or low-
pressure EGR and whose respective main outputs would be Pboost
and the air flow rate in the intake path;

• exploiting the air-path model for open-loop and closed-loop control
purposes to regulate the throttle and waste-gate valves and attain
desired values of pressure in the air-path, and carrying on the con-
trol design process through the MIL, SIL, PIL, HIL, and calibration
phases.

In chapter 4, we inspire from the mathematical model of the electric
throttle to set the structure of a black-box linear regressor ARX model,
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identify it using the least-squares method, and control it using an LQR
controller. The identified model, which is verified with respect to a non-
linear AMESim® model and a real throttle test-bench, is an LPV model
which highlights the throttle’s nonlinearities and discontinuities as it
varies from one functioning zone to another. Below is a non exhaustive
list of possible future work directions:

• improving the AMESim® model and test bench of the electric throt-
tle to cover the torque range where Tlow = Tspring. The validity of
the identified ARX model can then be verified on the whole func-
tioning range of the electric throttle;

• testing the identification and control methodology on other actua-
tors, similar in physical structure to the electric throttle, such as
the diesel engine air-intake valve;

• evaluating the linear control design of the identified SS and ARX
models, firstly on the electric throttle test bench, and eventually
on-board the vehicle after integrating all the steps of the control
development lifecycle.

In chapter 5, we use the method of characteristics and spatial lumping to
convert a system of first-order hyperbolic equations representing advec-
tive flows in a heat exchanger into a time-delay system, and we use the
gradient-descent method to identify the parameters of the time-delay
model. Exploiting this model to identify a heat exchanger test-bench
shows being more efficient than the PDE system in terms of accuracy
and computational efficiency. A future perspective to this work would
be:

• understanding the nature of the advection exchange coefficient
and how it changes with time. Using a time-varying instead of
a constant advection exchange coefficient is more realistic and
might increase the accuracy of the identified transport and heat
exchange parameters;

• going a step forward toward real heat exchangers by considering
the vertical flow of the liquid in the heat exchanger tube and drop-
ping the assumption that advection is the only heat transfer taking
place by considering other forms of heat transfer such as heat dif-
fusion through the tubes of exchanger and that with the external
environment;
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• replacing the liquid water circulating in one of the heat exchanger
tubes by an air-fuel mixture representative of the gas circulating
in the pipes of an ICE, and replacing the liquid water circulating
in the other tube by a liquid or gas coolant commonly used in ICE
intercoolers. Although this significantly increases the complexity
of the identification problem because it raises questions regarding
gas mixing, homogeneity, and values of the gas constants such as
density or specific heat as the gas evolves in the heat exchanger
tube, but this long-term perspective is a natural extension to this
work if the identification method is intended for engine air-path
exchangers;

• considering the piping structure of a real intercooler which, re-
gardless of its type, is certainly more complex than the single-tube
structure considered in this work. Herein, the identified time-delay
model only uses the input temperature at the tube boundary to pre-
dict its output temperature. Conserving this property with a com-
plex piping structure involving elbows and other bent segments
is not natural, and the intuitive approach that comes to mind is
discretizing the structure into straight tube segments where the
output temperature of a certain segment is considered the input
temperature of the following one;

To tackle the control of time-delay systems, we adopt the EGR system ex-
ample, which presents a constrained optimization problem. To solve this
problem, we refer to indirect optimal control methods, the augmented
Lagrangian method, and Uzawa algorithm. Very good tracking results
were observed as a result of this method, which is worth extending in
the following directions:

• controlling the SS model subject to time-varying delay in the out-
put instead of constant delay, which would improve the output
tracking without impacting the application of the indirect optimal
control methods;

• testing alternative efficient numerical methods, other than the iter-
ative time-consuming projected gradient-descent method, to accel-
erate the computation of the optimal law and increase its chance
of real-time implementation on board an engine ECU.

• extending the optimal controller to the case of dual-EGR, by inte-
grating into the LP-EGR time-delay system an HP-EGR model, with
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or without time-delay as the distance traveled by the burned gases
in case of HP-EGR is relatively short.

• assessing the performance of the optimal controller on a real LP-
EGR system, by persuing all the phases of the V-cycle.

A global long-term perspective of the work done in this PhD is to ob-
tain an assembly of credible linear models of all the systems composing
the powertrain, accompanied with well-defined practical identification
methods, and easily-calibrated controllers. The desirable characteris-
tics of this assembly would be:

• its accessibility to rapid identification and simulation;

• its ability to reproduce the behavior of a real powertrain, just like
the AMESim® models used today;

• its adaptability and openness to welcome rapidly any change in the
TD of the powertrain, without having to reconstruct the assembly
from scratch.

The automotive industry, continuously pressured by manufacturing stan-
dards and marketing deadlines, has little time for testing new system
identification and control techniques and updating what it has already
been employing for years. The industry is in fact experimenting new
techniques, such as artificial neural networks for system identification.
Another example is MPC, which was lately welcomed by the automotive
industry for implementation on real engines. Despite these promising
experiences, however, the gap between theoretical progress and auto-
motive applications remains wide. Many identification and control tech-
niques that are very successful in theory remain unexplored in automo-
tive applications, and are shelved because the industrialists do not have
the time or the will to invest in them. The work done in this PhD is an
investment in this direction, aiming at bridging this gap between real au-
tomotive applications, such as throttle and EGR control, and successful
theories on system identification and control. In other words, inventing
new control theories or new techniques for system identification is not in
the scope of this work. It rather focuses on experimenting some already
existing theories and techniques on real-life problems in the automotive
industry, and evaluating their eligibility for implementation on an ECU.
It addresses the automotive industrialists, and directs their attention to
these identification and control methods, provides them with a prelimi-
nary assessment of their merits, demerits, and limitations, and enables
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them to judge their worthiness to pass from the MIL phase to the SIL,
PIL, and HIL phases of the control development lifecycle.

Further research on similar topics is necessary to open up the eyes of
the industry on the control theories developed in the academic world,
and to give these theories a chance of being integrated in future auto-
motive technologies. It is our job as researchers and engineers not to
let successful theories fade from the memories because they hadn’t been
put to good use. It is our job to bring them to the light. Theory shines in
the light of industrial applications.
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Résumé — Pour faire face à la complexité croissante des systèmes au-
tomobiles et aux exigences de plus en plus strictes des gouvernements
et des clients, la pratique de l’ingénierie dans l’industrie automobile se
transforme de l’ingénierie basée sur le texte à l’ingénierie basée sur
le modèle. Le cycle de développement d’un système de contrôle basé
sur un modèle décompose les différentes étapes de la conception du
système de contrôle, depuis l’établissement des exigences du système
et la construction de son modèle jusqu’à la validation et la calibration
de la conception sur le hardware prévu. Les travaux de cette thèse se
déroulent au cours de la phase de conception du contrôleur, également
appelée model-in-the-loop (MIL). Dans cette phase, les modèles orien-
tés commande sont simulés en boucle fermée avec leurs conceptions de
commande correspondantes. Après la phase MIL, les phases suivantes
prennent en charge et complètent le processus de développement du
système de contrôle, notamment en intégrant le software (SIL), le pro-
cesseur (PIL) et le hardware dans la boucle (HIL).

Le groupe motopropulseur (GMP) d’une automobile est l’ensemble des
composants qui transforment la puissance de son moteur en mouve-
ment. Le composant du GMP qui fait l’objet d’une visite exclusive dans
le cadre de cette thèse est le moteur, et le principal sujet d’intérêt est
l’optimisation des systèmes du GMP, qui est d’une importance capitale
pour les raisons suivantes. La réduction de la consommation de car-
burant, le respect des normes antipollution, les coûts de fabrication
et d’autres défis industriels importants obligent Renault et d’autres ac-
teurs de l’industrie automobile à développer des motorisations de plus
en plus complexes. Sur ces GMPs, le nombre d’actionneurs, de briques
technologiques et donc de combinaisons de commandes explose. Déter-
miner au début du cycle de développement, la définition technique (DT)
du GMP en parfaite adéquation avec les normes et les besoins des
différents pays devient extrêmement difficile avec les méthodologies
actuelles, et évoque la nécessité d’optimiser les systèmes du GMP, qui
nécessite deux éléments essentiels. Le premier est un contrôleur qui
exécute des cycles de conduite sur le simulateur de GMP sur lequel les
paramètres des contrôleurs et les cartographies de consignes peuvent
être modifiés ; et le deuxieme est un simulateur de GMP pour accéder au
plus grand nombre possible de données physiques tout en garantissant
un temps de simulation acceptable pour les algorithmes d’optimisation.



190

De cette base émerge l’objectif général de cette thèse, qui est de sim-
plifier la DT d’un GMP en développant des méthodologies et en testant
des algorithmes d’optimisation pour identifier et calibrer les modèles de
systèmes et les paramètres de contrôle. Voici les objectifs précis et les
principaux axes de travail autour desquels s’articule le travail de cette
thèse.

Le premier intérêt principal de Renault dans ce travail de recherche
est de déterminer des procédures efficaces d’identification de modèles
de boîtes noires linéaires pour les systèmes de GMPs. Aujourd’hui, les
ingénieurs de Renault construisent les modèles de systèmes de GMPs
sur des plateformes de modélisation graphique et de simulation, comme
AMESim®. Ces plates-formes sont largement utilisées par les con-
structeurs de moteurs car elles permettent une modélisation simple et
rapide de modèles non linéaires précis. Du point de vue de l’ingénierie
de l’Alliance Renault-Nissan, de nombreuses activités d’ingénierie sont
liées à ces modèles, c’est pourquoi ils sont disponibles pour presque
tous les moteurs de l’Alliance. Ces modèles sont souvent associés à
la commande proportionnelle-dérivée-intégrale (PID), qui reste la tech-
nique de commande la plus utilisée dans l’industrie automobile en rai-
son de sa simplicité et de sa capacité à traiter un large éventail de
problèmes de commande. Un moyen de faciliter le réglage du con-
trôleur PID, ou même de le remplacer par un contrôleur linéaire, pour-
rait être la linéarisation des modèles autour de chaque point de fonc-
tionnement. Cependant, cette solution n’est pas simple en raison de la
complexité de la dynamique conduisant à des goulots d’étranglement
numériques et informatiques. Renault s’intéresse non seulement à la
propriété linéaire des modèles identifiés, mais aussi à leur aspect boîte-
noire. C’est parce que l’évolution constante des moteurs provoque un
besoin constant de modèles de moteurs, ce qui nécessite d’énormes ef-
forts d’ingénierie et retarde le processus de développement des com-
mandes. De plus, l’environnement de co-simulation entre AMESim®

et MATLAB-Simulink® empêche tout solveur d’avoir accès aux états du
modèle AMESim® qui sont difficiles à communiquer via une s-fonction.
Cet objectif précis est abordé dans les chapitres 3 et 4 de la thèse, qui
traitent de l’identification d’un modèle linéaire boîte-noire d’un trajet
d’air d’un moteur à essence par des méthodes subspace (chapitre 3), et
d’un papillon électrique par la méthode des moindres carrés (chapitre
4).

Au-delà de l’identification et de la calibration de modèles linéaires de
systèmes de GMPs, Renault s’intéresse également à la problématique
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des retards dans ces GMPs. Les retards sont très répandus dans les
GMPs, et les ingénieurs de la régulation sont confrontés à ces retards
dans de nombreuses applications de commande du GMP, telles que
la commande de la recirculation des gaz d’échappement (EGR) et la
régulation du rapport air/carburant. L’intégration des retards dans les
modèles de GMPs améliore la conception de la commande du GMP,
ce qui se traduit par de meilleures performances du GMP et donc par
des véhicules plus compétitifs. Cet objectif précis est abordé dans le
chapitre 5 de la thèse, qui traite de l’identification et du contrôle des
modèles de transport dans la chaine d’air du moteur. Cette partie sera
divisée en deux sous-parties, la première qui est axée sur l’identification
et se concentre sur le transport d’énergie (chaleur) dans un échangeur
de chaleur, et la seconde qui est axée sur le contrôle et se concentre sur
le transport de masse dans un système EGR.

En plus du chapitre d’introduction, la thèse comprend quatre autres
chapitres, dont le contenu est résumé dans la suite.

Le chapitre 3, intitulé "Identification des Modèles Boîte-Noire pour
des Moteurs à Essence à l’Aide des Méthodes Subspace", définit une
méthodologie qui permet l’identification automatique dans le domaine
temporel d’un modèle linéaire à boîte noire type state-space (SS) d’un
moteur à essence à partir d’un modèle à valeur moyenne non linéaire
(MVEM) construit sur AMESim®. Le modèle linéaire SS déclare les
pourcentages d’ouverture des vannes papillon et wastegate comme
entrées, et la pression d’admission et la pression de suralimentation
comme sorties en plus de la pression en amont de la turbine et de la
vitesse du turbo. La méthodologie consiste à exciter le système MVEM
en utilisant des signaux d’entrée de type multisines en raison des avan-
tages qu’ils offrent en termes de faible facteur de crête, de gamme de
fréquence personnalisable et de faible corrélation linéaire entre les deux
signaux d’entrée. En utilisant l’ensemble d’entrées et de sorties obtenu,
des méthodes subspace sont utilisées pour identifier une estimation ini-
tiale du modèle SS à chaque point de fonctionnement caractérisé par
le régime moteur et la pression effective moyenne de frein, qui varie
en proportion directe avec le couple d’une zone à faible couple vers
une zone à couple élevé. Ces méthodes sont renforcées par des algo-
rithmes de minimisation des erreurs de prédiction afin d’améliorer la
qualité de l’estimation et de minimiser davantage l’erreur entre la sor-
tie de l’estimation linéaire et celle du modèle non linéaire AMESim®. Ce
chapitre conclut sur l’ordre des modèles et les paramètres d’algorithme
les plus pratiques pour l’application de ces méthodes d’identification sur
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les moteurs à essence, ce qui réduit le temps nécessaire pour tester les
options du solveur de 81% à. Il conclut également sur l’efficacité de la
technique d’identification pour identifier le moteur à essence aux points
de fonctionnement à faible couple, et sur l’adéquation des multisines
comme entrée d’excitation dans cette zone de couple. D’autre part,
l’efficacité limitée de la méthodologie aux points de fonctionnement à
couple élevé met en évidence la difficulté de dissocier les effets du pa-
pillon et du wastegate sur les sorties dans cette zone de couple. C’est-à-
dire, contrairement au cas où la pression dans le collecteur d’admission
est inférieure à 1 bar où le papillon est la seule vanne en charge du débit
d’air, ici le papillon et le wastegate sont tous deux actifs et affectent si-
multanément les quatre sorties, ce qui rend le processus d’excitation
plus complexe. Enfin, sachant que chaque constructeur automobile
propose une large gamme de moteurs et que les DT de chacun de
ces moteurs sont en constante évolution, l’avantage fondamental de la
méthodologie proposée est qu’elle permet de passer d’une DT à une
autre sans avoir à définir une nouvelle technique d’identification linéaire
à chaque changement.

Le chapitre 4, intitulé "Identification et Commande du Modèle Linéaire
du Papillon Electrique", présente une méthodologie pour identifier des
modèles linéaires à paramètres variants (LPV) type SS et auto-régressifs
avec entrée exogène (ARX) d’un papillon électrique à partir d’un mod-
èle non linéaire du dernier. Le modèle non linéaire, dont les paramètres
de variation sont l’angle du papillon et sa vitesse, est d’abord écrit sous
la forme d’un système LPV SS en utilisant les équations physiques qui
régissent sa dynamique. Ce modèle met en évidence les discontinuités et
les non-linéarités du papillon et donne un aperçu des éléments à utiliser
dans le vecteur de régression, la deuxième étape étant d’identifier le
système par régression linéaire en minimisant un critère des moindres
carrés. Pour contrôler les modèles linéaires, un régulateur quadratique
linéaire (LQR) est conçu séparément pour chacun des systèmes LPV
identifiés, équipé d’un feedforward de perturbation et de référence pour
faire face aux perturbations d’entrée existant dans les modèles LPV du
papillon et au problème du suivi de référence respectivement. Le régu-
lateur est évalué sur le modèle non linéaire d’où le modèle linéaire a
été extrait. Cette approche se révèle intéressante fondamentalement
grâce au modèle ARX, qui permet de contourner les modèles mathéma-
tiques SS dans les futures identifications de modèles linéaires de papil-
lons électriques, et dont la crédibilité est vérifiée par rapport à un autre
modèle non linéaire et par rapport à un véritable banc de test de papil-
lon électrique. Aussi, ce chapitre montre que le nombre idéal de sous-
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modèles LPV représentatifs du papillon électrique dépend des choix de
modélisation et du niveau de précision requis. Enfin, le fait d’utiliser
les équations physiques que nous connaissons du papillon pour définir
la structure du modèle boîte-noire implique de combiner les mérites de
la modélisation mathématique et de la modélisation boîte-noire en four-
nissant un modèle qui implique les lois physiques régissant le papillon
électrique, mais qui capture ses aspects obscurs et ne nécessite que des
entrées et des sorties du système pour l’identifier.

Le chapitre 5, intitulé "Identification et Contrôle des Modèles de Trans-
port dans la Chaine d’Air du Moteur", traite des phénomènes de trans-
port dans la chaine d’air du moteur. Il aborde deux de ces phénomènes
de transport, le transport d’énergie et le transport de masse, en présen-
tant leurs modèles orientés commande et la conception de la commande
du modèle de transport de masse. Pour démontrer les phénomènes
de transport de chaleur et de masse sur les composants de la chaine
d’air, l’échangeur de chaleur et l’EGR sont choisis respectivement. Ce
chapitre est divisé en deux parties:

• La première partie présente l’identification des flux advectifs
présents dans l’échangeur de chaleur. Les phénomènes d’échange
thermique qui se produisent dans les tuyaux d’un échangeur
de chaleur peuvent être modélisés sous forme d’équations aux
dérivées partielles hyperboliques du premier ordre (EDPs). La
reformulation de ces équations sous la forme d’un système à re-
tard préserve la propriété infinie du système, tout en diminu-
ant sa complexité mathématique. Ce chapitre propose, à l’aide
d’une technique de moyennage spatiale et de la méthode des car-
actéristiques, une modélisation des températures du flux dans la
chaine d’air sous forme d’un système à retard. Une méthode
d’optimisation par descente de gradient est proposée pour estimer
les paramètres de ce système à retard, en utilisant des mesures de
température sur les bords d’une section de la chaine d’air. L’intérêt
de cette approche est mis en évidence par les données expérimen-
tales obtenues sur un banc d’essai d’échangeur de chaleur. En
comparant le modèle EDP et le modèle à retard lorsqu’il est ex-
ploité à cette fin d’identification, le modèle à retard est aussi pré-
cis que le modèle EDP, mais beaucoup plus efficace sur le plan
informatique avec un gain de temps égal à 98%.

• La deuxième partie présente le modèle orienté commande et la
conception de commande du phénomène de transport du rapport
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des gaz brûlés (BGR), qui se produit dans le trajet d’admission
d’un moteur, en raison de la réorientation des gaz brûlés vers le
trajet d’admission par l’EGR basse pression. Inspiré du modèle
à retard présenté dans la première partie du chapitre, et basé
sur un modèle AMESim® non linéaire du moteur, le BGR du col-
lecteur d’admission est modélisé comme un modèle SS à retard
de sortie ou comme un système couplé EDO-EDP qui prend en
compte le retard entre le moment auquel les gaz brulés quittent
le collecteur d’échappement et celui auquel ils sont réadmis dans
le collecteur d’admission. En plus de leur retard de transport de
masse, les BGRs sur le trajet d’admission sont également soumis
à des contraintes d’inégalité d’état et d’entrée. L’objectif du prob-
lème de contrôle est de suivre un profil de sortie de référence du
BGR dans le collecteur d’admission, en tenant compte du retard de
transport et des contraintes d’état (sortie) et d’entrée du système.
Dans ce but, deux approches de contrôle optimal indirecte sont
mises en oeuvre et comparées, l’approche discretize-then-optimize
et l’approche optimize-then-discretize. Pour tenir compte des con-
traintes d’inégalité d’état, les deux méthodes sont équipées de
techniques d’optimisation sous contraintes telles que les méthodes
Lagrangienne augmentée et UZAWA. Les conditions d’optimalité
nécessaires sont formulées, dans chacun des deux cas, et les équa-
tions résultantes sont résolues numériquement à l’aide de la méth-
ode de la descente du gradient projeté, qui assure la non-violation
des contraintes d’inégalité sur l’entrée. La nouveauté du travail
effectué dans ce chapitre réside dans la prise en compte des con-
traintes du système et de la dimensionnalité infinie du phénomène
de transport de masse qui le régit. Les mérites du modèle à retard
et de la conception de contrôle basée sur le modèle sont illustrés
sur le modèle nonlinéaire AMESim® sur lequel le modèle mathé-
matique est basé.

Enfin, le dernier chapitre, intitulé "Conclusions et Perspectives
d’Avenir", résume les travaux réalisés dans le cadre de cette thèse,
indique les orientations des travaux futurs possibles et réaffirme
l’importance de ces travaux pour combler l’écart entre les applications
automobiles réelles et les théories réussies sur l’identification et le con-
trôle des systèmes.
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Summary — To cope with the ever-increasing complexity of the au-
tomotive systems and the more and more stringent demands of govern-
ments and customers, engineering practice in the automotive industry is
transforming from text-based engineering to model-based engineering.
The model-based control system development lifecycle breaks down the
different stages of the control system design, from setting the require-
ments of the system and building its model until validating and calibrat-
ing the design on the intended hardware. The work in this thesis takes
place in the controller design phase, which is also called the model-in-
the-loop (MIL) phase. In this phase, control-oriented plant models are
simulated in closed-loop with their corresponding control designs. Fol-
lowing the MIL phase, the subsequent phases take over and complete
the control system development process, notably by integrating the soft-
ware (SIL), the processor (PIL), and the hardware in the loop (HIL).

The powertrain of an automobile is the set of components which trans-
form the power of its engine into motion. The component of the power-
train that is exclusively visited in this thesis is the engine, and the main
topic of interest is powertrain systems optimization, which is of core
significance due to the following reasons. Reduced fuel consumption,
compliance with pollution control standards, manufacturing costs, and
other strong industrial challenges are forcing Renault and other actors
in the automotive industry to develop increasingly complex powertrains.
On these powertrains, the number of actuators, technological bricks and
therefore control combinations explode. Determining at the beginning
of the development cycle, the right powertrain technical definition (TD)
which is perfectly in line with the standards and needs of the different
countries becomes extremely difficult with current methodologies, and
evokes the need for powertrain systems optimization, which prerequires
two essential elements. The first is a controller which runs driving cy-
cles on the powertrain simulator on which the controllers’ parameters
and the setpoint maps can be modified; and the second is a powertrain
simulator to access as much as possible of the physics while ensuring
acceptable simulation time for optimization algorithms. From this ba-
sis emerges the general objective of this thesis, which is to simplify the
TD of a powertrain by developing methodologies and testing optimiza-
tion algorithms to identify and calibrate system models and controller
parameters. In what follows are the precise objectives and the principal
work axes around which the work in this thesis revolves.

The first main interest for Renault in this research work is to determine
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efficient linear black-box model identification procedures for powertrain
systems. Today, Renault engineers build the powertrain systems mod-
els on graphical modeling and simulation platforms, such as AMESim®.
These platforms are widely used by engine manufacturers because they
allow easy and fast modeling of accurate nonlinear models. From the
Renault-Nissan Alliance engineering perspective, many of the engineer-
ing activities are attached to these models, which is why they are avail-
able for almost all the Alliance engines. These models are often asso-
ciated with proportional-integral-derivative (PID) control design, which
is still the most widely used control technique in the automotive indus-
try due to its simplicity and ability to handle a broad range of control
problems. A way to facilitate the tuning of the PID controller, or even to
replace it by a linear controller, could be the linearization of the models
around each operating point. However, this solution is not straightfor-
ward due to the complexity of the dynamics leading to numerical and
computational bottlenecks. Renault is not only interested in the lin-
ear property of the identified models, but in their black-box aspect as
well. This is because the ever-changing TDs of engines provoke an ever-
lasting need for engine models which requires huge engineering effort
and delays the control development process. Also, the co-simulation
environment between AMESim® and MATLAB-Simulink® deprives any
solver from having access to the states of the AMESim® model which
are hard to communicate through a Simulink® s-function. This precise
objective is addressed in chapters 3 and 4 of the thesis, which discuss
linear black-box model identification of a gasoline engine air-path using
subspace methods (chapter 3), and of an electric throttle using least-
squares method (chapter 4).

In addition to identifying and calibrating linear models of powertrain
systems, another main interest for Renault in this work is tackling
the problem of time-delays in powertrain systems. Time delays are
widespread in powertrains, and control engineers confront these delays
in many powertrain control applications, such as exhaust gas recircula-
tion (EGR) control, idle speed control (ISC), and air-to-fuel ratio control.
Integrating time delays in powertrain models improves powertrain con-
trol design, which leads to better powertrain performance, and therefore
more competitive vehicles. This precise objective is addressed in chap-
ter 5 of the thesis, which discusses identification and control of transport
models in the engine air-path. This part will be split in two sub-parts,
the first which is identification-oriented and focusing on energy(heat)
transport in a heat-exchanger, and the second which is control-oriented
and focusing on mass transport in an EGR system.
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In addition to the introductory chapter, the thesis comprises four other
chapters, whose content is summarized in the sequel.

Chapter 3, entitled as "Black-box Gasoline Engine Identification using
Subspace Methods", defines a methodology that permits automatic time-
domain identification of a linear black-box state-space (SS) model of
a gasoline engine starting from a nonlinear mean-value engine model
(MVEM) built on AMESim®. The linear SS model declares the percent-
age openings of the throttle and waste-gate valves as inputs, and the
intake manifold pressure and the boost pressure as outputs in addition
to the pressure upstream the turbine and the turbo speed. The method-
ology consists of exciting the MVEM system using input signals of mul-
tisines type due to the merits they offer in terms of low crest factor, cus-
tomizable frequency range, and low linear correlation between the two
input signals. Using the resulting set of inputs and outputs, subspace
methods are used to identify an initial estimate of the SS model at each
operating point characterized by the engine speed and the break mean
effective pressure, which varies in direct proportionality with the torque
from a low-torque zone to a high-torque zone. These methods are rein-
forced by prediction error minimization algorithms in order to improve
the quality of the estimation and further minimize the error between
the output of the linear estimate and that of the nonlinear AMESim®

model. This chapter concludes on the model order and the algorithm
parameters most convenient for the application of these identification
methods on gasoline engines, which decreases the time needed to test
the solver options by 81%. It also concludes on the efficiency of the
identification technique in identifying the gasoline engine at operating
points of low torque, and the adequacy of the multi-sines as an excitation
input in this torque zone. On the other hand, the limited efficiency of the
methodology at operating points of high torque highlights the difficulty
of dissociating the effects of the throttle and the waste-gate on the out-
puts in this torque zone. That is to say, contrary to the case when the
pressure in the intake manifold is less than 1 bar where the throttle is
the only valve in charge of the air flow, here the throttle and waste-gate
are both active and are simultaneously affecting the four outputs, which
renders the excitation process more complicated. Finally, knowing that
each automobile manufacturer proposes a broad series of engines and
that the TDs of each of these engines is ever-changing, the basic advan-
tage of the proposed methodology is that it allows switching from one
TD to another without having to define a new linear system identification
technique with every switch.
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Chapter 4, entitled as "Electric Throttle Linear Model Identification and
Control", presents a methodology for identifying SS and auto-regressive
with exogenous input (ARX) linear parameter-varying (LPV) models of an
electric throttle starting from a nonlinear model of the latter. The non-
linear model, whose scheduling parameters are the angle of the throttle
and its speed, is first written in the form of an LPV SS system using
the physical equations governing its dynamics. This model highlights
the throttle’s discontinuities and nonlinearities, and gives insight about
the elements to be used in the regression vector, whereby the second
step is to identify the system using linear regression by minimizing a
least-squares criterion. To control the linear models, a linear quadratic
regulator (LQR) controller is designed separately for each one of the
identified LPV systems, equipped with disturbance and reference feed-
forwards to cope with the input disturbance existing in the LPV mod-
els of the throttle and with the reference tracking problem respectively.
The regulator is evaluated on the nonlinear model from which the linear
model was extracted. This approach reveals interesting basically due to
the ARX model, which allows bypassing the SS mathematical models in
future electric throttle linear model identifications, and whose credibil-
ity is verified with respect to another nonlinear model and with respect
to a real electric throttle test-bench. Also, this chapter shows that the
ideal number of LPV submodels representative of the electric throttle
depends on the modeling choices and the level of precision required. Fi-
nally, the fact that we use the physical equations that we know about the
throttle to set the structure of the black-box model implies combining
the merits of mathematical modeling and black-box modeling by pro-
viding a model which implies the physical laws governing the electric
throttle, yet captures its obscure aspects and only needs the system’s
inputs and outputs to be identified.

Chapter 5, entitled as "Identification and Control of Transport Models in
the Engine Air-path", addresses transport phenomena in the engine air-
path. It touches on two of these transport phenomena, energy transport
and mass transport, by presenting their control-oriented models and the
control design of the mass transport model. To demonstrate the heat and
mass transport phenomena on air-path components, the heat exchanger
and the EGR are chosen respectively. This chapter is divided in two
parts:

• The first part presents the identification of advective flows present
in the heat exchanger. Heat exchange phenomena occurring in the
pipes of a heat exchanger can be modeled as first-order hyperbolic
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partial differential equations (PDEs). Reformulating these equa-
tions as a time-delay system preserves the infinite-dimensional
property of the system, yet decreases its mathematical complex-
ity. Using a space-averaging technique and the method of char-
acteristics, this chapter proposes a time-delay system modeling
of the flow temperatures in the air-path. A gradient-descent op-
timization method is proposed to estimate the parameters of this
time-delay system, using boundary measurements of temperature
in an air-path section. The interest of this approach is emphasized
with experimental data obtained from a heat exchanger test-bench.
By comparing the PDE model and the time-delay model when ex-
ploited for this identification purpose, the time-delay model shows
being as accurate as the PDE model, yet much more computation-
ally efficient with a time-save equal to 98%.

• The second part presents the control-oriented model and control
design of the burned gas ratio (BGR) transport phenomenon, wit-
nessed in the intake path of an engine, due to the redirection of
burned gases to the intake path by the low-pressure EGR. Inspired
by the time-delay model presented in the first part of the chapter,
and based on a nonlinear AMESim® model of the engine, the BGR
in the intake manifold is modeled as a SS output time-delay model,
or alternatively as an ODE-PDE coupled system, that take into ac-
count the time delay between the moment at which the combusted
gases leave the exhaust manifold and that at which they are read-
mitted in the intake manifold. In addition to their mass transport
delay, the BGRs in the intake path are also subject to state and in-
put inequality constraints. The objective of the control problem is
to track a reference output profile of the BGR in the intake man-
ifold, taking into account the transport delay and the state (out-
put) and input constraints of the system. In this aim, two indirect
optimal control approaches are implemented and compared, the
discretize-then-optimize approach and the optimize-then-discretize
approach. To account for the state inequality constraints, both
methods are equipped with techniques for constrained optimiza-
tion such as the augmented Lagrangian and the UZAWA methods.
The necessary conditions of optimality are formulated, in each of
both cases, and the resulting equations are solved numerically
using the projected gradient-descent method, which ensures the
non-violation of the input inequality constraints. The novelty of
the work done in this chapter lies in considering the system’s con-
straints and the infinite-dimensionality of the mass transport phe-
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nomenon governing it. The merits of the time-delay model and
the model-based control design are illustrated on the nonlinear
AMESim® model on which the mathematical model is based.

Finally, the last chapter entitled as "Conclusions and Future Perspec-
tives", summarizes the work done in this thesis, points out directions
of possible future work, and restates the importance of this work in
bridging the gap between real automotive applications and successful
theories on system identification and control.



Résumé — L’optimisation des systèmes de groupes motopropulseurs
(GMP) dans les automobiles modernes repose sur l’ingénierie des
systèmes basée sur des modèles pour faire face à la complexité crois-
sante des systèmes automobiles et aux exigences de conception des
commandes. Deux prérequis à l’optimisation du GMP basée sur le
modèle sont le simulateur de GMP et la conception des commandes,
qui assurent un fonctionnement satisfaisant du GMP pendant les cycles
de conduite. Cette thèse s’articule autour de ces deux prérequis et fait
donc partie de la phase de model-in-the-loop du cycle de développement
du contrôle-commande. Elle vise d’abord à identifier les modèles
de systèmes de GMP orientés commande, en particulier les modèles
linéaires de boîtes noires en raison des avantages qu’ils présentent
en termes d’accessibilité à la conception de la commande linéaire et
de facilité d’intégration des modifications dans la définition technique
du système de GMP. Elle vise également à identifier et à contrôler
les systèmes de GMP à retard de transport car l’intégration du retard
dans le modèle et la conception des commandes est cruciale pour la
précision du modèle et l’optimalité de son contrôle. En se basant sur
ces prémisses, nous abordons le GMP du point de vue de la chaîne
d’air du moteur. Nous identifions d’abord un modèle linéaire de boîte
noire type state-space (SS) de la chaîne d’air d’un moteur essence, en
utilisant un algorithme d’identification basé sur les méthodes subspace.
Différents ordres de modèles et paramètres d’algorithmes sont testés et
ceux qui donnent les meilleurs résultats d’identification et de validation
sont mis en évidence, ce qui conduit à un gain de temps de 85% pour
des identifications futures similaires. Bien que cette partie considère la
chaîne d’air dans son ensemble, le reste du travail se concentre sur cer-
tains de ses composants, notamment le papillon électrique, l’échangeur
de chaleur et la recirculation des gaz d’échappement (EGR). En ce qui
concerne le papillon électrique, nous nous inspirons des lois physiques
régissant le fonctionnement de ce dernier pour construire un modèle
mathématique linéaire à paramètres variables (LPV) type SS, qui sert à
définir la structure vectorielle de régression du modèle LPV boîte noire
type ARX, qui est représentatif d’un banc d’essais du papillon électrique
et reflète ses nonlinéarités et discontinuités en variant entres ses zones
fonctionnelles. Pour traiter les questions des délais de transport de
chaleur et de transport de masse dans la chaîne d’air du moteur, nous
nous référons respectivement à l’échangeur de chaleur et à l’EGR.
La refonte des équations aux dérivées partielles (EDP) hyperboliques
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à dimensions infinies décrivant ces phénomènes de transport sous
la forme d’un système à retard facilite l’identification du système
adjoint et la conception du contrôle. Pour ce faire, une technique de
moyennage spatiale et la méthode des caractéristiques sont utilisées
pour découpler les EDP hyperboliques décrivant les flux advectifs
dans un échangeur de chaleur et pour les reformuler en un système
à retard temporel. Réduire l’erreur entre la température de sortie du
modèle et celle d’un banc d’essai d’échangeur de chaleur, c’est ce que
recherche la méthode à descente de gradient utilisée pour identifier
les paramètres du système à retard, qui dépasse les EDP en termes
de précision d’identification et de temps de calcul. D’autre part, l’EGR
est abordé sous l’angle du contrôle et les EDP décrivant le phénomène
du transport de masse dans sa structure tubulaire sont refondus en
un système SS soumis à un retard de sortie. Pour réguler le rapport
de gaz brûlé dans le gaz d’admission, la quantité de gaz recirculé est
contrôlée à l’aide de deux approches de contrôle optimale indirecte qui
prennent en compte la nature infinie du modèle. Ces méthodes sont
accompagnées de la méthode du Lagrangien Augmenté et la méthode
d’Uzawa pour garantir le respect des contraintes d’entrée et d’état,
permettant ainsi d’obtenir un contrôleur plus performant que le PID
initialement existant. D’une manière générale, cette thèse se situe à
mi-chemin entre le secteur académique et le secteur industriel. En éval-
uant l’éligibilité de l’intégration des théories existants d’identification
et de contrôle des systèmes dans des applications automobiles réelles,
elle met en évidence les avantages et les inconvénients de ces théories
et ouvre de nouvelles perspectives dans le domaine de l’optimisation
des systèmes du GMP basée sur les modèles.

Mots clés: Ingénierie système basée sur un modèle, optimisation
du groupe motopropulseur, chaîne d’air du moteur, identification du
système, systèmes à retard, contrôle optimal



203

Abstract — Powertrain systems optimization in modern automobiles
relies on model-based systems engineering to cope with the increasingly
complex automotive systems and challenging control design require-
ments. Two prerequisites for model-based powertrain optimization are
the powertrain simulator and the control design, which ensures a de-
sirable powertrain operation during driving cycles. This thesis revolves
around these two prerequisites, and therefore belongs to the model-
in-the-loop phase of the control development lifecycle. It first aims at
identifying control-oriented powertrain systems models, particularly
linear black-box models because of the merits they present in terms of
accessibility to linear control design and facility of integrating changes
in the powertrain system technical definition. It also aims at identifying
and controlling powertrain systems featuring transport time delay
because integrating the delay in the model and control design is crucial
on the former’s system representability and on the latter’s optimality.
Based on these premises, we address the powertrain from the engine
air-path perspective. We first identify a linear black-box state-space (SS)
model of a gasoline engine air-path, using an identification algorithm
based on the subspace methods. Different model orders and algorithm
parameters are tested and those yielding the best identification and
validation results are made clear, which leads to an 85% time gain in
future similar identifications. While this part considers the air-path as
a whole, the rest of the work focuses on specific air-path components,
notably the electric throttle, the heat-exchanger, and the exhaust gas
recirculation (EGR). Regarding the electric throttle, we inspire from
the physical laws governing the throttle functioning to construct a
linear-parameter-varying (LPV) mathematical SS model, which serves
to set the regression vector structure of the LPV black-box ARX model,
which is representative of an electric throttle test bench and reflects its
nonlinearities and discontinuities as it varies from one functioning zone
to another. To address the questions of heat and mass transport time
delays in the engine air-path, we refer to the heat exchanger and the
EGR respectively. Recasting the infinite-dimensional hyperbolic partial
differential equations (PDEs), describing these transport phenomena, as
a time-delay system facilitates the adjoint system identification and con-
trol design. To that end, a space-averaging technique and the method
of characteristics are used to decouple the hyperbolic PDEs describing
the advective flows in a heat exchanger, and to reformulate them as a
time-delay system. Reducing the error between the output temperature
of the model and that of a heat exchanger test-bench is what seeks
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the gradient-descent method used to identify the parameters of the
time-delay system, which surpasses the PDEs in terms of identification
accuracy and computational efficiency. On the other hand, the EGR is
addressed from a control-oriented perspective, and the PDEs describing
the mass transport phenomenon in its tubular structure are recast as a
SS system subject to output delay. To regulate the burned gas ratio in
the intake gas, the amount of recirculated gas is controlled using two
indirect optimal control approaches that take into account the model’s
infinite-dimensional nature. These methods are accompanied with the
Augmented Lagrangian Uzawa method to guarantee the respect of the
input and state constraints, thus resulting in a controller of superior per-
formance than the initially existing PID. Generally speaking, this thesis
is located half-way between the academic sector and the industrial one.
By evaluating the eligibility of integrating existing system identification
and control theories in real automotive applications, it highlights the
merits and demerits of these theories and opens up new prospects in
the domain of model-based powertrain systems optimization.

Keywords: Model-based system engineering, powertrain optimization,
engine air-path, system identification, time-delay systems, optimal
control
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