B. C. Hancock and G. Zografi, Characteristics and Significance of the Amorphous State in Pharmaceutical Systems, J. Pharm. Sci, vol.86, pp.1-12, 1997.

T. L. Threlfall, Analysis of organic polymorphs. A review, Analyst, vol.120, pp.2435-2460, 1995.

J. Haleblian and W. Mccrone, Pharmaceutical applications of polymorphism, J. Pharm. Sci, vol.58, pp.911-929, 1969.

C. E. Lowell, Solid Solution of Boron in Graphite, J. Am. Ceram. SOC, vol.50, pp.142-144, 1967.

N. Shan and M. J. Zaworotko, The role of cocrystals in pharmaceutical science, Drug Discov. Today, vol.13, p.7, 2008.

A. D. Bond, What is a co-crystal? CrystEnComm, vol.9, pp.833-834, 2007.

C. B. Aakeröy, M. E. Fasulo, and J. Desper, Cocrystal or Salt: Does It Really Matter?, Mol. Pharmaceutics, vol.4, pp.317-322, 2007.

G. F. Koster, Space groups and their representations, Solid States Phys, vol.5, pp.173-256, 1957.

H. D. Flack, Chiral and Achiral Crystal Structures, HCA, vol.86, pp.905-921, 2003.

C. Lindenberg, M. Krättli, J. Cornel, M. Mazzotti, and J. Brozio, Design and Optimization of a Combined Cooling/Antisolvent Crystallization Process, Cryst. Growth. Des, vol.9, pp.1124-1136, 2009.

W. Ostwald, Studien über die Bildung und Umwandlung fester Körper, Z. Phys. Chem, vol.22, pp.289-330, 1897.

H. Ting, . Huai, and W. L. Mccabe, Supersaturation and Crystal Formation in Seeded Solutions, Industrial & Engineering Chemistry, vol.26, pp.1201-1207, 1934.

J. Garside, Nucleation. in Biological Mineralization and Demineralization, vol.23, pp.23-35

H. Nancollas, , 1982.

E. J. Langhma and B. J. Mason, The heterogeneous and homogeneous nucleation of supercooled water, Proc. R. Soc. Lond. A. 247, pp.493-504, 1958.

X. Y. Liu, Heterogeneous nucleation or homogeneous nucleation?, J. Chem. Phys, vol.112, p.9949, 2014.

S. G. Agrawal and A. H. Paterson, Secondary Nucleation: Mechanisms and Models, Chem Eng Commun, vol.202, pp.698-706, 2015.

J. Garside and R. J. Davey, Secondary contact nucleation: Kinetics, growth and scale up, Chem Eng Commun, vol.4, p.33, 1980.

T. W. Evans, G. Margolis, and A. F. Sarofim, Mechanisms of secondary nucleation in agitated crystallizers, AIChE Journal, vol.20, pp.950-958, 1974.

E. G. Denk and G. D. Botsaris, Fundamental studies in secondary nucleation from solution, J. Cryst. Growth, vol.13, pp.493-499, 1972.

C. Y. Sung, J. Estrin, and G. R. Youngquist, Secondary nucleation of magnesium sulfate by fluid shear, AIChE Journal, vol.19, pp.957-962, 1973.

S. H. Chung, D. L. Ma, and R. D. Braatz, Optimal seeding in batch crystallization, Can. J. Chem. Eng, vol.77, pp.590-596, 1999.

Y. Saito and H. Hyuga, Chiral Crystal Growth under Grinding, J. Phys. Soc. Jpn, vol.77, p.113001, 2008.

M. Uwaha, A Model for Complete Chiral Crystallization, J. Phys. Soc. Jpn, vol.73, pp.2601-2603, 2004.

M. Uwaha, Simple Models for Chirality Conversion of Crystals and Molecules by Grinding, J. Phys. Soc. Jpn, vol.77, p.83802, 2008.

J. H. Cartwright, O. Piro, and I. Tuval, Ostwald Ripening, Chiral Crystallization, and the Common-Ancestor Effect, Phys. Rev. Lett, vol.98, p.165501, 2007.

W. L. Noorduin, The Driving Mechanism Behind Attrition-Enhanced Deracemization, Angew. Chem, vol.122, pp.8613-8616, 2010.

C. Viedma, J. E. Ortiz, T. Torres, . De, T. Izumi et al., Evolution of Solid Phase Homochirality for a Proteinogenic Amino Acid, JACS, vol.130, pp.15274-15275, 2008.

C. Viedma and P. Cintas, Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling, Chem. Commun, vol.47, p.12786, 2011.

K. Suwannasang, A. E. Flood, C. Rougeot, and G. Coquerel, Using Programmed Heating-Cooling Cycles with Racemization in Solution for Complete Symmetry Breaking of a Conglomerate Forming System, Cryst. Growth Des, vol.13, pp.3498-3504, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01930112

R. Oketani, M. Hoquante, C. Brandel, P. Cardinael, and G. Coquerel, Practical Role of Racemization Rates in Deracemization Kinetics and Process Productivities, Cryst. Growth Des, vol.18, pp.6417-6420, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950306

F. Breveglieri, G. M. Maggioni, and M. Mazzotti, Deracemization of NMPA via Temperature Cycles, Cryst. Growth Des, vol.18, pp.1873-1881, 2018.

F. Breveglieri and M. Mazzotti, Role of Racemization Kinetics in the Deracemization Process via Temperature Cycles, Cryst. Growth Des, vol.19, pp.3551-3558, 2019.

H. Katsuno and M. Uwaha, Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters, Phys. Rev. E, vol.93, p.13002, 2016.

K. Suwannasang, G. Coquerel, C. Rougeot, and A. E. Flood, Mathematical Modeling of Chiral Symmetry Breaking due to Differences in Crystal Growth Kinetics, Chem. Eng. Technol, vol.37, pp.1329-1339, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01929891

K. Suwannasang, A. E. Flood, C. Rougeot, and G. Coquerel, Use of Programmed Damped Temperature Cycles for the Deracemization of a Racemic Suspension of a Conglomerate Forming System, Org. Process Res. Dev, vol.21, pp.623-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01928204

R. Uchin, K. Suwannasang, and A. E. Flood, Model of Temperature Cycle-Induced Deracemization via Differences in Crystal Growth Rate Dispersion, Chem. Eng. Technol, vol.40, pp.1252-1260, 2017.

B. Bodák, G. M. Maggioni, and M. Mazzotti, Population-Based Mathematical Model of Solid-State Deracemization via Temperature Cycles, Cryst. Growth Des, vol.18, pp.7122-7131, 2018.

B. Bodák, G. M. Maggioni, and M. Mazzotti, Effect of Initial Conditions on Solid-State Deracemization via Temperature Cycles: A Model-Based Study, Cryst. Growth Des, vol.19, pp.6552-6559, 2019.

R. Ristic, J. N. Sherwood, and K. Wojciechowski, Morphology and growth kinetics of large sodium chlorate crystals grown in the presence and absence of sodium dithionate impurity, J. Phys. Chem, vol.97, pp.10774-10782, 1993.

Z. Lan, Characterization of the Structural Environment of Dithionate Ions Associated with Their Role in the Crystal Habit Modification of Sodium Chlorate, Cryst. Growth Des, vol.18, pp.3328-3338, 2018.

V. Torbeev, . Yu, E. Shavit, I. Weissbuch, L. Leiserowitz et al., Control of Crystal Polymorphism by Tuning the Structure of Auxiliary Molecules as Nucleation Inhibitors. The ?-Polymorph of Glycine Grown in Aqueous Solutions, Cryst. Growth Des, vol.5, pp.2190-2196, 2005.

T. L. Threlfall, Analysis of organic polymorphs. A review, Analyst, vol.120, pp.2435-2460, 1995.

U. J. Griesser, The importance of solvates. Polymorphism in the pharmaceutical industry, pp.211-233, 2006.

S. Clevers, F. Simon, V. Dupray, and G. Coquerel, Temperature resolved second harmonic generation to probe the structural purity of m-hydroxybenzoic acid, J. Therm. Anal. Calorim, vol.112, pp.271-277, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01930159

G. G. Schlessinger, Inorganic laboratory preparations, 1962.

C. T. Kiers, A. Piepenbroek, and A. Vos, Refinement of disodium dithionate dihydrate, Acta Crystallogr. B, vol.34, pp.888-890, 1978.

H. A. Papazian, P. J. Pizzolato, and J. Peng, Observations on the thermal decomposition of some dithionates and sulfites, Thermochim. Acta, vol.5, pp.147-152, 1972.

J. Zsakó, E. Brandt-petrik, G. Liptay, and C. Várhelyi, Kinetic analysis of thermogravimetric data. XI thermal decomposition of some metal dithionates, J. Thermal. Anal, vol.12, pp.421-428, 1977.

Z. Yang and G. Giester, Hydrogen bonding in goldichite, KFe(SO4)2?4H2O: structure refinement, Miner. Petrol, vol.112, pp.135-142, 2018.

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, 2004.

B. Nyberg and R. Larsson, Infrared Absorption Spectra of Solid Metal Sulfites, Acta Chem. Scand, vol.27, pp.63-70, 1973.

D. W. Larson and A. B. Vancleave, X-Ray diffraction data for alkali dithionates, Can. J. Chem, vol.41, pp.219-223, 1963.

N. Mofaddel, R. Bouaziz, and M. Mayer, Le polymorphisme du sulfate de sodium anhydre et les phases intermediaires, glaserite et aphtitalite, dans le binaire Na2S04-K2S04, Thermochim. Acta, vol.185, pp.141-153, 1991.

W. Eysel, Crystal chemistry of the system Na2SO4-K2SO4-K2CrO4-Na2CrO4 and the glaserite phase, Am. Min, vol.58, pp.736-747, 1973.

S. Martinez, S. Garcia-blanco, and L. Rivoir, Crystal structure of sodium dithionate dihydrate, Acta Cryst, vol.9, pp.145-150, 1956.

A. Kirfel, G. Will, and A. Weiss, X-ray diffraction study of Na2S2O6.2H2O and Na2S206. 2D20, Acta Crystallogr. B, vol.36, pp.223-228, 1980.

S. Petit and G. Coquerel, Mechanism of Several Solid?Solid Transformations between Dihydrated and Anhydrous Copper(II) 8-Hydroxyquinolinates. Proposition for a Unified Model for the Dehydration of Molecular Crystals, Chem. Mater, vol.8, pp.2247-2258, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01936841

, Accelrys, Inc. Materials Studio, 2018.

F. Simon, S. Clevers, V. Dupray, and G. Coquerel, Relevance of the Second Harmonic Generation to Characterize Crystalline Samples, Chem. Eng. Technol, vol.38, pp.971-983, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01928833

F. S. Kipping, W. J. Pope, and . Lxiii.-enantiomorphism, J. Chem. Soc. Trans, vol.73, pp.606-617, 1898.

D. K. Kondepudi, R. J. Kaufman, and N. Singh, Chiral Symmetry Breaking in Sodium Chlorate Crystallization, Science, vol.250, pp.975-976, 1990.

C. Viedma, Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling, Phys. Rev. Lett, vol.94, p.65504, 2005.

Y. Saito and H. Hyuga, Chirality Selection in Crystallization, J. Phys. Soc. Jpn, vol.74, pp.535-537, 2005.

K. Suwannasang, A. E. Flood, C. Rougeot, and G. Coquerel, Using Programmed Heating-Cooling Cycles with Racemization in Solution for Complete Symmetry Breaking of a Conglomerate Forming System, Cryst. Growth Des, vol.13, pp.3498-3504, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01930112

C. Xiouras, Attrition-Enhanced Deracemization of NaClO 3 : Comparison between Ultrasonic and Abrasive Grinding, Cryst. Growth Des, vol.15, pp.5476-5484, 2015.

C. Rougeot, F. Guillen, J. Plaquevent, and G. Coquerel, Ultrasound-Enhanced Deracemization: Toward the Existence of Agonist Effects in the Interpretation of Spontaneous Symmetry Breaking, Cryst. Growth Des, vol.15, pp.2151-2155, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01929350

F. Cameli, C. Xiouras, and G. D. Stefanidis, Intensified deracemization via rapid microwaveassisted temperature cycling, Cryst. Eng. Comm, vol.20, pp.2897-2901, 2018.

F. Breveglieri, G. M. Maggioni, and M. Mazzotti, Deracemization of NMPA via Temperature Cycles, Cryst. Growth Des, vol.18, pp.1873-1881, 2018.

W. W. Li, Deracemization of a Racemic Compound via Its Conglomerate-Forming Salt Using Temperature Cycling, Cryst. Growth Des, vol.16, pp.5563-5570, 2016.

R. Oketani, M. Hoquante, C. Brandel, P. Cardinael, and G. Coquerel, Practical Role of Racemization Rates in Deracemization Kinetics and Process Productivities, Cryst. Growth Des, vol.18, pp.6417-6420, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950306

D. K. Kondepudi, K. L. Bullock, J. A. Digits, J. K. Hall, and J. M. Miller, Kinetics of chiral symmetry breaking in crystallization, JACS, vol.115, pp.10211-10216, 1993.

M. Uwaha, A Model for Complete Chiral Crystallization, J. Phys. Soc. Jpn, vol.73, pp.2601-2603, 2004.

S. Veintemillas-verdaguer, S. O. Esteban, and M. A. Herrero, The effect of stirring on sodium chlorate crystallization under symmetry breaking conditions, J. Cryst. Growth, vol.303, pp.562-567, 2007.

Z. El-hachemi, J. Crusats, J. M. Ribó, J. M. Mcbride, and S. Veintemillas-verdaguer, Metastability in Supersaturated Solution and Transition towards Chirality in the Crystallization of NaClO3, Angew. Chem. Int. Ed, vol.50, pp.2359-2363, 2011.

C. J. Callahan and X. Ni, Probing into Nucleation Mechanisms of Cooling Crystallization of Sodium Chlorate in a Stirred Tank Crystallizer and an Oscillatory Baffled Crystallizer, Cryst. Growth Des, vol.12, pp.2525-2532, 2012.

H. Niinomi, Emergence and Amplification of Chirality via Achiral-Chiral Polymorphic Transformation in Sodium Chlorate Solution Growth, Cryst. Growth Des, vol.14, pp.3596-3602, 2014.

C. J. Callahan and X. Ni, An investigation into the effect of mixing on the secondary nucleation of sodium chlorate in a stirred tank and an oscillatory baffled crystallizer, CrystEngComm, vol.16, pp.690-697, 2014.

L. Sögütoglu, R. R. Steendam, H. Meekes, E. Vlieg, and F. P. Rutjes, Viedma ripening: a reliable crystallisation method to reach single chirality, Chem. Soc. Rev, vol.44, pp.6723-6732, 2015.

J. Ahn, D. H. Kim, G. Coquerel, and W. Kim, Chiral Symmetry Breaking and Deracemization of Sodium Chlorate in Turbulent Flow, Cryst. Growth Des, vol.18, pp.297-306, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01857171

R. Macleod and X. Ni, Effect of surface scraping on chiral symmetry in seeded cooling crystallization of sodium chlorate, CrystEngComm, vol.20, pp.3696-3701, 2018.

C. Xiouras, Particle Breakage Kinetics and Mechanisms in Attrition-Enhanced Deracemization, Cryst. Growth Des, vol.18, pp.3051-3061, 2018.

C. Viedma and P. Cintas, Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling, Chem. Commun, vol.47, p.12786, 2011.

G. Belletti, H. Meekes, F. P. Rutjes, and E. Vlieg, Role of Additives during Deracemization Using Temperature Cycling, Cryst. Growth Des, vol.18, pp.6617-6620, 2018.

A. H. Engwerda, Deracemization of a Racemic Compound by Using Tailor-Made Additives, Chem. Eur. J, vol.24, pp.2863-2867, 2018.

A. H. Engwerda, Solid-Phase Conversion of Four Stereoisomers into a Single Enantiomer, Angew. Chem, vol.130, pp.15667-15670, 2018.

R. Ristic, J. N. Sherwood, and K. Wojciechowski, Morphology and growth kinetics of large sodium chlorate crystals grown in the presence and absence of sodium dithionate impurity, J. Phys. Chem, vol.97, pp.10774-10782, 1993.

R. Ristic, B. Shekunov, . Yu, and J. N. Sherwood, Growth of the tetrahedral faces of sodium chlorate crystals in the presence of dithionate impurity, J. Cryst. Growth, vol.139, pp.336-343, 1994.

Z. Lan, X. Lai, K. Roberts, and H. Klapper, X-ray Topographic and Polarized Optical Microscopy Studies of Inversion Twinning in Sodium Chlorate Single Crystals Grown in the Presence of Sodium Dithionate Impurities, Cryst. Growth Des, vol.14, pp.6084-6092, 2014.

Z. Lan, Characterization of the Structural Environment of Dithionate Ions Associated with Their Role in the Crystal Habit Modification of Sodium Chlorate, Cryst. Growth Des, vol.18, pp.3328-3338, 2018.

W. H. Zachariasen and . Xxviii, The Crystal Structure of Sodium Chlorate. Zeitschrift für Kristallographie -Crystalline Materials, vol.71, pp.517-529, 1929.

G. N. Ramachandran and K. S. Chandrasekaran, The absolute configuration of sodium chlorate, Acta Cryst, vol.10, pp.671-675, 1957.

S. C. Abrahams, A. M. Glass, and K. Nassau, Crystal chirality and optical rotation sense in isomorphous NaClO3 and NaBrO3, Solid State Commun, vol.24, pp.515-516, 1977.

S. Chandrasekhar and M. S. Madhava, Optical rotatory dispersion of a mixed crystal of sodium chlorate-sodium bromate, Materials Research Bulletin, vol.4, pp.489-493, 1969.

K. S. Chandrasekaran and S. K. Mohanlal, The x-ray anomalous dispersion and optical rotation in the crystalline solid solution NaClO3: NaBrO3, Pramana, vol.7, pp.152-159, 1976.

D. G. Blackmond, Chiral Amnesia" as a Driving Force for Solid-Phase Homochirality, Chem. Eur. J, vol.13, pp.3290-3295, 2007.

A. De-vries, Determination of the absolute configuration of a-Quartz, Nature, p.1193, 1958.

G. Clydesdale, Prediction of the Polar Morphology of Sodium Chlorate Using a Surface-Specific Attachment Energy Model, J. Phys. Chem. B, vol.102, pp.7044-7049, 1998.

R. Viswanathan, Elastic Constants of Sodium Chlorate Single Crystals by Pulse-Echo Method, J. Appl. Phys, vol.37, pp.884-886, 1966.

B. Simon, Influence of the direction of the influence flow on the morphology of NaClO3 crystals, J. Cryst. Growth, vol.61, pp.167-169, 1983.

Z. Lan, The structural role of sodium dithionate impurity in the habit modification of sodium chlorate single crystals, 2013.

, The influence of RO4 and related ions on the crystalline form of sodium chlorate. Zeitschrift für Kristallographie -Crystalline Materials, vol.75, pp.15-31, 1930.

H. E. Buckley, Habit modification in crystals as a result of the introduction of impurities during growth, Discuss. Faraday Soc, vol.5, pp.243-254, 1949.

H. D. Flack, Chiral and Achiral Crystal Structures, HCA, vol.86, pp.905-921, 2003.

H. D. Flack and G. Bernardinelli, Absolute structure and absolute configuration, Acta Crystallogr A Found Crystallogr, vol.55, pp.908-915, 1999.

M. L. Blanc and W. Schmandt, Über Kristallisation und Auflösung in wässeriger Lösung. Zeitschrift für Physikalische Chemie, vol.77, 1911.

R. R. Steendam and P. J. Frawley, Secondary Nucleation of Sodium Chlorate: The Role of Initial Breeding, Cryst. Growth Des, vol.19, pp.3453-3460, 2019.

T. Buhse, D. Durand, D. Kondepudi, J. Laudadio, and S. Spilker, Chiral Symmetry Breaking in Crystallization: The Role of Convection, Phys. Rev. Lett, vol.84, pp.4405-4408, 2000.

X. Ni, R. Shepherd, J. Whitehead, and T. Liu, Chiral symmetry breaking due to impeller size in cooling crystallization of sodium chlorate, CrystEngComm, vol.20, pp.6894-6899, 2018.

W. C. Chen, D. D. Liu, W. Y. Ma, A. Y. Xie, and J. Fang, The determination of solute distribution during growth and dissolution of NaClO3 crystals: the growth of large crystals, J. Cryst. Growth, vol.236, pp.413-419, 2002.

S. Hosoya, M. Kitamura, and T. Miyata, Growth mechanisms of NaClO3 and KBr from aqueous solutions under relatively high supersaturation ranges, Mineralogical Journal, vol.9, pp.147-168, 1978.

M. Kitamura, A. Kouchi, S. Hosoya, and I. Sunagawa, Growth and dissolution of NaClO3 crystal in aqueous solutions, Mineralogical Journal, vol.11, pp.119-137, 1982.

J. Cruz, Non-stochastic behavior in sodium chlorate crystallization, Chirality, vol.32, pp.120-134, 2020.

R. Plasson, A. Brandenburg, L. Jullien, H. Bersini, and . Autocatalyses, J. Phys. Chem. A, vol.115, pp.8073-8085, 2011.

F. C. Frank, On spontaneous asymmetric synthesis, Biochem. Biophys. Acta, vol.11, pp.459-463, 1953.

R. R. Steendam, Linear Deracemization Kinetics during Viedma Ripening: Autocatalysis Overruled by Chiral Additives, Cryst. Growth Des, vol.15, 1975.

M. Leeman, B. Kaptein, and R. M. Kellogg, Nucleation inhibition in attrition-enhanced Pope-Peachey type of diastereomeric resolutions, Tetrahedron-Asymmetry, vol.20, pp.1363-1364, 2009.

S. Titiz-sargut and J. Ulrich, Influence of Additives on the Width of the Metastable Zone, Cryst. Growth Des, vol.2, pp.371-374, 2002.

F. Breveglieri and M. Mazzotti, Role of Racemization Kinetics in the Deracemization Process via Temperature Cycles, Cryst. Growth Des, vol.19, pp.3551-3558, 2019.

F. Cameli, J. H. Ter-horst, R. R. Steendam, C. Xiouras, and G. D. Stefanidis, On the Effect of Secondary Nucleation on Deracemization via Temperature cycles, Chem. Eur. J, vol.26, pp.1344-1354, 2020.

M. Schindler, C. Brandel, W. Kim, and G. Coquerel, Temperature cycling induced deracemization (TCID) of NaClO3 under the influence of Na2S2O6, Cryst. Growth Des, vol.20, pp.414-421, 2019.

B. Bodák, G. M. Maggioni, and M. Mazzotti, Population-Based Mathematical Model of Solid-State Deracemization via Temperature Cycles, Cryst. Growth Des, vol.18, pp.7122-7131, 2018.

R. R. Steendam and J. H. Horst, Scaling Up Temperature Cycling-Induced Deracemization by Suppressing Nonstereoselective Processes, Cryst. Growth Des, vol.18, pp.3008-3015, 2018.

J. W. Mullin and . Crystallization, , 2001.

L. Sögütoglu, R. R. Steendam, H. Meekes, E. Vlieg, and F. P. Rutjes, Viedma ripening: a reliable crystallisation method to reach single chirality, Chem. Soc. Rev, vol.44, pp.6723-6732, 2015.

K. Suwannasang, A. E. Flood, C. Rougeot, and G. Coquerel, Using Programmed Heating-Cooling Cycles with Racemization in Solution for Complete Symmetry Breaking of a Conglomerate Forming System, Cryst. Growth Des, vol.13, pp.3498-3504, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01930112

F. Breveglieri, G. M. Maggioni, and M. Mazzotti, Deracemization of NMPA via Temperature Cycles, Cryst. Growth Des, vol.18, pp.1873-1881, 2018.

R. R. Steendam and J. H. Horst, Scaling Up Temperature Cycling-Induced Deracemization by Suppressing Nonstereoselective Processes, Cryst. Growth Des, vol.18, pp.3008-3015, 2018.

K. Kataoka, H. Doi, and T. Komai, Heat/mass transfer in taylor vortex flow with constant axial flow rates, Int. J. Heat. Mass. Tran, vol.20, pp.57-63, 1977.

D. M. Maron and S. Cohen, Hydrodynamics and Heat/Mass Transfer near Rotating Surfaces, Advances in Heat Transfer, vol.21, pp.141-183, 1991.

A. Nguyen, T. Yu, W. Kim, and . Crystallizer, Effective control of crystal size distribution and recovery of l-lysine in cooling crystallization, J. Cryst. Growth, vol.469, pp.65-77, 2016.

W. Kim, T. Yu, and Z. Wu, Method for conducting deracemization using Taylor flow and a device therefor, pp.81188-81189, 2017.

W. Kim, Application of Taylor Vortex to Crystallization, J. Chem. Eng. Japan, vol.47, pp.115-123, 2014.

M. Couette, Distinction de deux régimes dans le mouvement des fluides, J. Phys. Theor. Appl, vol.9, pp.414-424, 1890.

W. M. Jung, S. H. Kang, W. Kim, and C. K. Choi, Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor, Chemical Engineering Science, vol.55, pp.733-747, 2000.

D. L. Marchisio, A. A. Barresi, and R. O. Fox, Simulation of turbulent precipitation in a semibatch Taylor-Couette reactor using CFD, AIChE J, vol.47, pp.664-676, 2001.

S. H. Kang, Effect of Taylor vortices on calcium carbonate crystallization by gasliquid reaction, Journal of Crystal Growth, vol.254, pp.196-205, 2003.

S. Lee, A. Choi, W. Kim, and A. S. Myerson, Phase Transformation of Sulfamerazine Using a Taylor Vortex, Cryst. Growth Des, vol.11, pp.5019-5029, 2011.

A. Nguyen, J. Kim, S. Chang, W. Kim, and . Vortex, Effect on Phase Transformation of Guanosine 5-Monophosphate in Drowning-Out Crystallization, Industrial & Engineering Chemistry Research, vol.49, pp.4865-4872, 2010.

Q. Mayra and W. Kim, Agglomeration of Ni-Rich Hydroxide in Reaction Crystallization: Effect of Taylor Vortex Dimension and Intensity, Cryst. Growth Des, vol.15, pp.1726-1734, 2015.

D. K. Thai, Q. Mayra, and W. Kim, Agglomeration of Ni-rich hydroxide crystals in Taylor vortex flow, Powder Technol, vol.274, pp.5-13, 2015.

W. Jung, S. Hoon-kang, K. Kim, W. Kim, and C. Choi, Precipitation of calcium carbonate particles by gas-liquid reaction: Morphology and size distribution of particles in Couette-Taylor and stirred tank reactors, J. Cryst. Growth, vol.312, pp.3331-3339, 2010.

C. Viedma, Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling, Phys. Rev. Lett, vol.94, p.65504, 2005.

A. Mallock and . Iii, Experiments on fluid viscosity, Phil. Trans. A, vol.187, pp.40-56, 1896.

A. Davey, The growth of Taylor vortices in flow between rotating cylinders, J. Fluid Mech, vol.14, pp.336-368, 1962.

J. T. Stuart, On the non-linear mechanics of hydrodynamic stability, J. Fluid Mech, vol.4, pp.1-21, 1958.

G. I. Taylor, Stability of a Viscous Liquid Contained between Two Rotating Cylinders, Phil. Trans. A, vol.223, pp.289-343, 1923.

D. Coles, Transition in circular Couette flow, J. Fluid Mech, vol.21, pp.385-425, 1965.

P. R. Fenstermacher, H. L. Swinney, and J. P. Gollub, Dynamical instabilities and the transition to chaotic Taylor vortex flow, J. Fluid Mech, vol.94, pp.103-128, 1979.

C. D. Andereck, S. S. Liu, and H. L. Swinney, Flow regimes in a circular Couette system with independently rotating cylinders, J. Fluid Mech, vol.164, pp.155-183, 1986.

M. Fénot, Y. Bertin, E. Dorignac, and G. Lalizel, A review of heat transfer between concentric rotating cylinders with or without axial flow, International Journal of Thermal Sciences, vol.50, pp.1138-1155, 2011.

Z. Wu, S. Seok, D. H. Kim, and W. Kim, Control of Crystal Size Distribution using Non-Isothermal Taylor Vortex Flow, Cryst. Growth Des, vol.15, pp.5675-5684, 2015.

, Micro and macro mixing: analysis, simulation and numerical calculation, 2010.

D. K. Kondepudi, R. J. Kaufman, and N. Singh, Chiral Symmetry Breaking in Sodium Chlorate Crystallization, Science, vol.250, pp.975-976, 1990.

Z. Lan, X. Lai, K. Roberts, and H. Klapper, X-ray Topographic and Polarized Optical Microscopy Studies of Inversion Twinning in Sodium Chlorate Single Crystals Grown in the Presence of Sodium Dithionate Impurities, Cryst. Growth Des, vol.14, pp.6084-6092, 2014.

W. Ostwald, Studien über die Bildung und Umwandlung fester Körper, Z. Phys. Chem, vol.22, pp.289-330, 1897.

P. H. Karpi?ski, Crystallization as a mass transfer phenomenon, Chem. Eng. Sci, vol.35, pp.2321-2324, 1980.

M. Uwaha, A Model for Complete Chiral Crystallization, J. Phys. Soc. Jpn, vol.73, pp.2601-2603, 2004.

Y. Saito and H. Hyuga, Complete Homochirality Induced by Nonlinear Autocatalysis and Recycling, J. Phys. Soc. Jpn, vol.73, pp.33-35, 2004.

C. Xiouras, J. Van-aeken, J. Panis, J. H. Horst, T. Van-gerven et al., Attrition-Enhanced Deracemization of NaClO3 : Comparison between Ultrasonic and Abrasive Grinding, Cryst. Growth Des, vol.15, pp.5476-5484, 2015.

M. Schindler, C. Brandel, W. Kim, and G. Coquerel, Temperature cycling induced deracemization (TCID) of NaClO3 under the influence of Na2S2O6, Cryst. Growth Des, vol.20, pp.414-421, 2020.

W. L. Noorduin, The Driving Mechanism Behind Attrition-Enhanced Deracemization, Angew. Chem, vol.122, pp.8613-8616, 2010.

B. Bodák, G. M. Maggioni, and M. Mazzotti, Population-Based Mathematical Model of Solid-State Deracemization via Temperature Cycles, Cryst. Growth Des, vol.18, pp.7122-7131, 2018.

F. Cameli, J. H. Ter-horst, R. R. Steendam, C. Xiouras, and G. D. Stefanidis, On the Effect of Secondary Nucleation on Deracemization via Temperature cycles, Chem. Eur. J, vol.26, pp.1344-1354, 2020.

M. R. Bakar, Z. K. Nagy, and C. D. Rielly, Seeded Batch Cooling Crystallization with Temperature Cycling for the Control of Size Uniformity and Polymorphic Purity of Sulfathiazole Crystals, Org. Process Res. Dev, vol.13, pp.1343-1356, 2009.

E. S. Shaqfeh, S. J. Muller, and R. G. Larson, The effects of gap width and dilute solution properties on the viscoelastic Taylor-Couette instability, J. Fluid Mech, vol.235, p.285, 1992.

B. Judat, A. Racina, and M. Kind, Macro-and Micromixing in a Taylor-Couette Reactor with

, Axial Flow and their Influence on the Precipitation of Barium Sulfate, Chem. Eng. Technol, vol.27, pp.287-292, 2004.

R. Oketani, M. Hoquante, C. Brandel, P. Cardinael, and G. Coquerel, Practical Role of Racemization Rates in Deracemization Kinetics and Process Productivities, Cryst. Growth Des, vol.18, pp.6417-6420, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950306

F. Breveglieri and M. Mazzotti, Role of Racemization Kinetics in the Deracemization Process via Temperature Cycles, Cryst. Growth Des, vol.19, pp.3551-3558, 2019.

F. Gendron, J. Mahieux, M. Sanselme, and G. Coquerel, Resolution of Baclofenium Hydrogenomaleate By Using Preferential Crystallization. A First Case of Complete Solid Solution at High Temperature and a Large Miscibility Gap in the Solid State, Cryst. Growth Des, vol.19, pp.4793-4801, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02454701

R. Oketani, Deracemization in a Complex Quaternary System with a Second-Order Asymmetric Transformation by Using Phase Diagram Studies, Chem. Eur. J, vol.25, pp.13890-13898, 2019.

, Experimental Part 1. Infra Red Spectroscopy Infra-red spectra were acquired using an ATR-FTIR spectrometer

X. , Powder Diffraction (XRPD)

, XRPD analyzes were performed using a D8-Discover diffractometer

, Temperature Resolved X-Ray Powder Diffraction (TR-XRPD)

. Tr-x-, Ray diffraction analyses were performed using a D5005 diffractometer

, X-ray beam is generated by a sealed Cu Source (40 kV, 40 mA), and a K? filter

, Thermogravimetry Differential Scanning Calorimetry

, TG-DSC analyses are carried out with a STA 409 PC instrument (Netzsch). The DSC and TGA signal are plotted against temperature

, Dynamic Vapor Sorption (DVS) and Characterization of sodium dithionate and its dihydrate

,. Y. Couvrat, C. Cartigny, G. Brandel, and . ;. Coquerel, Chemical Engineering & Technology, 2019.

M. Schindler, C. Brandel, W. Kim, and G. Coquerel, Temperature cycling induced deracemization (TCID) of NaClO3 under the influence of Na2S2O6, Crystal Growth and Design, 2019.

&. M. Schindler, G. Baaklini, Y. Cartigny, N. Couvrat, M. Sanselme et al., Crystallization and macroscopic symmetry breakings, JEEP, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01938367

M. Gendron, S. Schindler, C. Clevers, . De-saint, P. Jores et al., Symposium on Molecular Chirality, 2018.

M. Schindler, C. Brandel, G. Coquerel, . Biwic, ;. M. Rayong-(thailand et al., Août 2019 3. Poster presentations "Study of the behaviour of the 1,3-dimethyluera in presence of water : Construction of the binary system, Influence of water on the behaviour of the 1,3-dimethylurea studied by construction of the binary phase diagram" M, 2016.

M. Gendron, C. Schindler, W. Brandel, G. Kim, . Coquerel et al., Determination of the crystal structure of a hydrate of 1-3-dimethylurea (DMU) stable at low temperature, 2017.

M. Schindler, C. Brandel, G. Coquerel, C. , and S. , Deracemization of sodium chlorate in the presence of sodium dithionate impurity, Influence of Na2S2O6 on NaClO3 deracemization" M. Schindler, C. Brandel, G. Coquerel, 2018.