L. Initialement, par la simulation, par une barrière de potentiel ponctuelle pouvant aller jusqu'à plusieurs volts. La première amélioration du modèle du potentiel dipolaire consiste à utiliser un champ électrique produit par une électrode. La géométrie de l'électrode est définie de sorte qu'elle suive le contour de la zone RCE

. Figure-d, 1 -Géométrie de l'électrode au niveau de la zone RCE pour produire une carte de champ électrique pour le potentiel Dip

, Pour passer de la géométrie des électrodes aux champs électriques qu'elles génèrent, le programme SIMION est utilisé à nouveau. Le champ électrique est supposé avec un symétrique cylindrique autour de l'axe de la source d'ions

É. Le-champ,

, Le champ électrique est non nul très proche de la paroi; le confinement que doit prodiguer le potentiel dipolaire n'est pas assurée. Il en va de même pour le champ axial; le champ électrique produit par cette géométrie d'électrode est présent de l'injection de la source jusqu

, Annexe: Production de faisceaux d'ions Ca: utilisation d'un cylindre thermorégulé

, Les figures suivantes présentent les différents spectres d'ions obtenus pour différentes températures du cylindre thermorégulé. L'intégralité des spectres a été obtenue dans la même configuration magnétique (identique à celle testée pour la production de calcium dans la partie 4.3.3 Utilisation du four basse température avec la source PHOENIX V3 )

, Les différents spectres ont respectivement été réalisés pour une température de cylindre thermorégulé de 345 ?

, Le premier spectre, en noir, correspond à un spectre produit par la source d'ions PHOENIX V3 avec un plasma d'azote. La présence de contaminants dû au cylindre thermorégulé est à noter

. Figure-f, 1 -Spectre d'ions produit par la source d'ions PHOENIX V3 avec 200 W de puissance micro-onde et un cylindre thermorégulé à 345 ? C. Le spectre en noir correspond au four éteint

H. Becquerel, On the rays emitted by phosphorescence, Compt. Rend. Hebd. Seances Acad. Sci, vol.122, pp.420-421, 1896.

M. Curie, (. M. Lippmann, and ). Gabriel, Rayons émis par les composés de l'uranium et du thorium, 1898.

E. Rutherford, Nuclear constitution of atoms, 1920.

M. Veselsky and G. A. Souliotis, Production of exotic nuclides in nucleus-nucleus collisions in the Fermi-energy domain, 1909.

N. Yu and N. , Mass mapping of a new area of neutron-deficient suburanium nuclides, Nuclear Physics A, vol.697, issue.2, pp.92-106, 2002.

K. Guggenheimer, Remarques sur la constitution des noyaux atomiques" I, J. phys. radium, vol.5, issue.6, pp.253-256, 1934.
URL : https://hal.archives-ouvertes.fr/jpa-00233232

P. Chauveau and . Design, Simulations and test of a Time-of-Flight spectrometer for mass measurement of exotic beams from SPIRAL1/SPIRAL2 and ? ? ray spectroscopy of N=Z nuclei close to 100 Sn, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01469429

P. Armbruster, Y. K. Agarwal, W. Brüchle, M. Brügger, J. P. Dufour et al., Attempts to Produce Superheavy Elements by Fusion of Ca 48 with Cm 248 in the Bombarding Energy Range of 4.5-5.2 MeV/u, Physical review letters, vol.54, issue.5, p.406, 1985.

J. Bermudez, E. Udup, L. B. Tecchio, L. Maran, and L. Pranovi, Radiation Damage Analysis on CDG Graphite for SPIRAL 2 Neutron Converter: Preliminary Results, LNL Annual Report, pp.136-137, 2009.

S. Gales, SPIRAL2 at GANIL: Next generation of ISOL facility for intense secondary radioactive ion beams, Nuclear physics A, vol.834, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00413304

R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics, pp.1-2, 1995.

I. Langmuir, Oscillations in Ionized Gases, Proceedings of the National Academy of Sciences, vol.14, issue.8, pp.627-637, 1928.

A. I. Morozov, Introduction to Plasma Dynamics, p.17, 2012.

N. Benjamin, S. Mangano, and R. Jewett, Scalable helicon wave plasma processing device with a non-cylindrical source chamber having a serpentine antenna, vol.087, 2000.

G. Torrisi, D. Mascali, G. Sorbello, G. Castro, L. Celona et al.,

S. Gammino, Non-conventional microwave coupling of RF power in ECRIS plasmas, AIP Conference Proceedings, vol.2011, p.20014, 2018.

J. S. , The mean free path in air, Journal of Aerosol Science, vol.19, issue.2, pp.159-166, 1988.

S. Gammino and G. Ciavola, ECR ion sources and scaling laws, p.3, 1996.

V. Mironov, S. Bogomolov, A. Bondarchenko, A. Efremov, and V. Loginov, Numerical model of electron cyclotron resonance ion source, Physical Review Special Topics-Accelerators and Beams, vol.18, issue.12, p.123401, 2015.

J. P. Beijers and V. Mironov, Three-dimensional simulations of ion dynamics in an Electron Cyclotron Resonance Ion Source, Review of Scientific Instruments, vol.81, issue.2, pp.2-307, 2010.

R. Geller, Proc. of the 8th Workshop on ECRIS, East Lansing, p.1, 1987.

G. Douysset, H. Khodja, A. Girard, and J. Briand, Highly charged ion densities and ion confinement properties in an electron-cyclotron-resonance ion source, Physical Review E, vol.61, issue.3, p.3015, 2000.

H. Busch, Berechnung der bahn von kathodenstrahlen im axial symmetrischen electromagnetischen felde, Z. Phys, vol.8, pp.974-993, 1926.

V. P. Pastukhov, Classical longitudinal plasma losses from open adiabatic traps, pp.203-259, 1987.

D. Hitz, A. Girard, G. Melin, S. Gammino, G. Ciavola et al., Results and interpretation of high frequency experiments at 28 GHz in ECR ion sources, future prospects, Review of Scientific Instruments, vol.73, issue.2, pp.509-512, 2002.

M. Sakieldien, Characteristic K? emission of electron cyclotron resonance ion source plasmas. Research report/Department of Physics, vol.6, 2018.

R. Geller, Electron cyclotron resonance ion sources and ECR plasmas, p.35, 1996.

S. Biri, A. Valek, and J. Vámosi, Status of ECRIS building and recent results on trap modelling, Proceedings of the 12th International Workshop on ECR Ion Sources, 1995.

C. F. Kennel and F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field, The Physics of Fluids, vol.9, issue.12, pp.2377-2388, 1966.

M. A. Lieberman and A. Lichtenberg, Principles of plasma discharges and materials processing, 2005.

V. B. Krapchev, Kinetic theory of the ponderomotive effects in a plasma, Physical Review Letters, vol.42, issue.8, p.497, 1979.

R. Geller, Electron cyclotron resonance ion sources and ECR plasmas, p.127, 1996.

H. W. Zhao, A. A. Efremov, and V. B. Kutner, Numerical study on the gas mixing effect in ECR ion sources, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.98, pp.545-548, 1995.

V. Mironov and J. P. Beijers, Three-dimensional simulations of ion dynamics in the plasma of an electron cyclotron resonance ion source, Physical Review Special Topics-Accelerators and Beams, vol.12, issue.7, p.73501, 2009.

O. Tarvainen, P. Suominen, and H. Koivisto, A new plasma potential measurement instrument for plasma ion sources, Review of scientific instruments, vol.75, issue.10, pp.3138-3145, 2004.

M. Leitner, D. Wutte, J. Brandstötter, F. Aumayr, and H. Winter, Single-stage 5 GHz ECR-multicharged ion source with high magnetic mirror ratio and biased disk, vol.65, pp.1091-1093, 1994.

D. Mascali, A. Musumarra, F. Leone, F. P. Romano, A. Galatà et al., PANDORA, a new facility for interdisciplinary in-plasma physics, The European Physical Journal A, vol.53, issue.7, p.145, 2017.

F. Chen, Introduction to Plasma Physics and Controlled Fusion, vol.1, p.116, 1984.

A. G. , Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume, U.S. Patent, vol.506, issue.5, p.475, 1996.

R. Kronholm, T. Kalvas, H. Koivisto, J. Laulainen, M. Marttinen et al., Spectroscopic study of ion temperature in minimum-B ECRIS plasma, Plasma Sources Science and Technology, 2019.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. Gaponenko, Spontaneous emission of organic molecules embedded in a photonic crystal, Physical review letters, vol.81, issue.1, p.77, 1998.

S. C. Rand and L. G. Deshazer, Visible color-center laser in diamond, Optics letters, vol.10, issue.10, pp.481-483, 1985.

S. K. Lam, C. E. Zheng, D. Y. Lo, A. Dem'yanov, and A. Napartovich, Kinetics of Ar* 2 in high-pressure pure argon, Journal of Physics D: Applied Physics, vol.33, issue.3, p.242, 2000.

A. A. Ivanov and K. Wiesemann, Ion confinement in electron cyclotron resonance ion sources (ECRIS): importance of nonlinear plasma-wave interaction, IEEE Transactions on Plasma Science, vol.33, pp.1743-1762, 2005.

D. Farley, The effect of Coulomb collisions on incoherent scattering of radio waves by a plasma, Journal of Geophysical Research, vol.69, issue.1, pp.197-200, 1964.

V. D. Tereshchenko, E. D. Tereshchenko, and H. Kohl, The incoherent scattering of radio waves in a non-Maxwellian plasma: The effects of Coulomb collisions, Journal of Geophysical Research: Space Physics, vol.96, issue.A10, pp.17591-17598, 1991.

G. Shirkov, Multicomponent consideration of electron fraction of electron-cyclotron resonance source plasma, Review of Scientific Instruments, vol.71, issue.2, pp.850-852, 2000.

O. Tarvainen, P. Suominen, T. Ropponen, T. Kalvas, P. Heikkinen et al., Effect of the gas mixing technique on the plasma potential and emittance of the JYFL 14

, GHz electron cyclotron resonance ion source, Review of scientific instruments, vol.76, issue.9, p.93304, 2005.

G. Melin, A. G. Drentje, A. Girard, and D. Hitz, Ion behavior and gas mixing in electron cyclotron resonance plasmas as sources of highly charged ions, Journal of applied physics, vol.86, issue.9, pp.4772-4779, 1999.

T. A. Antaya, A review of studies for the variable frequency superconducting ECR ion source project at MSU, Le Journal de Physique Colloques, vol.50, issue.C1, pp.1-707, 1989.
URL : https://hal.archives-ouvertes.fr/jpa-00229377

F. J. Wenander, Charge breeding and production of multiply charged ions in EBIS and ECRIS" (Doctoral dissertation, Chalmers U. Tech, 2001.

P. Kumar, G. Rodrigues, P. S. Lakshmy, D. Kanjilal, B. P. Singh et al., Development of metallic ion beams using ECRIS, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.252, pp.354-360, 2006.

S. Sugiyama, Y. Kato, and S. Ishii, Production of multiply charged Si and Fe ions from solid materials by sputtering and evaporating methods in a 2.45 GHz ECR source, Review of scientific instruments, vol.73, issue.2, pp.542-544, 2002.

R. Harkewicz, P. J. Billquist, J. P. Greene, J. A. Nolen, and R. C. Pardo, Ion plasma sputtering as a method of introducing solid material into an electron cyclotron resonance ion source, Review of scientific instruments, vol.66, issue.4, pp.2883-2887, 1995.

P. A. Zavodszky, Status report on the design and construction of the Superconducting Source for Ions at the National Superconducting Cyclotron Laboratory/Michigan State University, Review of scientific instruments, vol.77, 2006.

C. M. Lyneis and T. A. Antaya, ERC sources for the production of highly charged ions, Review of Scientific Instruments CONF 890703, vol.61, pp.221-224, 1990.

D. Wutte, S. Abbott, M. A. Leitner, and C. Lyneis, High intensity metal ion beam production with ECR ion sources at the Lawrence Berkeley National Laboratory, Review of scientific instruments, vol.73, issue.2, pp.521-524, 2002.

H. Koivisto, J. Ärje, and M. Nurmia, Metal ion beams from an ECR ion source using volatile compounds, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.94, pp.291-296, 1994.

T. Werner, G. Zschornack, F. Grossmann, V. P. Ovsyannikov, and F. Ullmann, Highly charged metal ions produced from volatile organometallic compounds in a room temperature electron beam ion trap, Review of Scientific Instruments, vol.71, issue.5, pp.2038-2040, 2000.

H. Koivisto, J. Arje, and M. Nurmia, Metal ions from the volatile compounds method for the production of metal ion beams, Review of scientific instruments, vol.69, pp.785-787, 1998.

O. Tarvainen, /2005): Production efficiency and reduction of carbon contamination of an ECRIS, 2005.

A. Leduc, L. Maunoury, T. Thuillier, O. Bajeat, C. Barué et al., Angular distribution measurement of neutral atoms coming out a resistive oven, 2019.

D. Leitner, M. L. Galloway, T. J. Loew, C. M. Lyneis, I. Castro-rodriguez et al., High intensity production of high and medium charge state uranium and other heavy ion beams with VENUS, Review of Scientific Instruments, vol.79, issue.2, pp.2-710, 2008.

R. Harkewicz, Efficient production of a 48 Ca beam from oxide material in an electron cyclotron resonance ion source using a low power miniature oven, vol.6, pp.2176-2178, 1996.

D. Winklehner, D. Todd, J. Benitez, M. Strohmeier, D. Grote et al., Comparison of extraction and beam transport simulations with emittance measurements from the ECR ion source venus, Journal of Instrumentation, vol.5, issue.12, p.12001, 2010.

S. Gammino, G. Ciavola, L. Celona, P. Romano, L. Torrisi et al., Operations of the SERSE superconducting ECR ion source at 28 GHz, AIP Conference Proceedings, vol.600, pp.223-227, 2001.

M. Cavenago, S. Petrenko, and T. Kulevoy, A Vapour Source for ECR Ion Sources, 2002.

R. Rácz, S. Biri, P. Hajdu, A. Csik, K. Vad et al.,

V. Hegedus, Application of an ecr ion source for ionic fuctionalization of implant materials on the nanoscale, Proceedings of the 21st International Workshop on ECR Ion Sources (ECRIS2014), pp.24-28, 2014.

L. Maunoury, MONO1001: A source for singly charged ions applied to the production of multicharged fullerene beams, Review of scientific instruments, vol.75, pp.1884-1887, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021906

L. Garrigues, A. Heron, J. C. Adam, and J. P. Boeuf, Hybrid and particle-in-cell models of a stationary plasma thruster, Plasma Sources Science and Technology, vol.9, issue.2, p.219, 2000.

F. Gérardin, N. Chauvin, M. Baylac, N. Pichoff, D. Uriot et al.,

F. Bouly, Space Charge Compensation in Low Energy Beam Lines, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554072

L. Brieda, Development of the DRACO ES-PIC code and fully-kinetic simulation of ion beam neutralization, 2005.

G. P. Nikishkov, Introduction to the finite element method. University of Aizu, pp.1-70, 2004.

, The Finite Element Method by Example in Qt/C++, Krzysztof Napiontek

V. Vahedi and M. Surendra, A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges, Computer Physics Communications, vol.87, 1995.

R. Teyssier, Basic principles of cosmological simulation

, Writing a PM code, Andrey Kravtsov

T. Haugbølle, J. T. Frederiksen, and Å. Nordlund, photon-plasma: A modern high-order particle-in-cell code, Physics of Plasmas, vol.20, p.62904, 2013.

A. Roberts, Simple and fast multigrid solution of Poisson's equation using diagonally oriented grids, ANZIAM Journal, vol.43, pp.1-36, 2001.

J. Wang, W. Zhong, and &. J. Zhang, A general meshsize fourth-order compact difference discretization scheme for 3D Poisson equation. Applied mathematics and computation, vol.183, pp.804-812, 2006.

B. E. Ainseba, M. Bendahmane, and A. Lopez, Solving the Laplacian Equation in 3D using Finite Element Method in C# for Structural Analysis, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656481

Y. Notay, An aggregation-based algebraic multigrid method. Electronic transactions on numerical analysis, vol.37, pp.123-146, 2010.

J. Demmel, D. Vasileska, and M. Saraniti, Multigrid Overview, 2004.

M. Adams, Parallel multigrid algorithms for unstructured 3D large deformation elasticity and plasticity finite element problems, 1999.

J. P. Boris, Relativistic plasma simulation-optimization of a hybrid code, Proc. 4th Conf. Num. Sim. Plasmas, pp.3-67, 1970.

K. Nanbu, Theory of cumulative small-angle collisions in plasmas, Physical Review E, vol.55, p.4642, 1997.

D. Bote, F. Salvat, A. Jablonski, and C. J. Powell, Cross sections for ionization of K, L and M shells of atoms by impact of electrons and positrons with energies up to 1 GeV: Analytical formulas, Atomic Data and Nuclear Data Tables, vol.95, pp.871-909, 2009.

J. E. Lawler, Nanosecond time-resolved spectroscopy of the n= 2 levels in a highpressure He discharge, Physical Review Letters, vol.39, p.543, 1977.

V. Mironov, S. Bogomolov, A. Bondarchenko, A. Efremov, and V. Loginov, Numerical simulations of gas mixing effect in electron cyclotron resonance ion sources, Physical Review Accelerators and Beams, vol.20, issue.1, p.13402, 2017.

S. Song and M. Yovanovich, Correlation of thermal accommodation coefficient for engineering surfaces, National Heat Transfer Conference, 1987.

F. O. Goodman, Thermal accommodation coefficients, The Journal of Physical Chemistry, vol.84, pp.1431-1445, 1980.

J. Leclerc, Pompes à fixation, vol.4274, 2002.

A. Pichard, Développement de faisceaux d'ions radioactifs pour le projet SPIRAL 2, Université de Caen. Annexe, vol.2, p.1, 2010.

F. Landré-pellemoins, Production de faisceaux d'ions radioactifs par la méthode ISOL pour SPIRAL, 2001.

A. Touil, J. Litaiem, and F. Zagrouba, Isothermes de sorption et propriétés thermodynamique de l'Allium sativum, Journal of the Tunisian Chemical Society, vol.17, pp.105-114, 2015.

I. Izotov, O. Tarvainen, V. Skalyga, D. Mansfeld, T. Kalvas et al., Measurement of the energy distribution of electrons escaping minimum-B ECR plasmas, Plasma Sources Science and Technology, vol.27, p.25012, 2018.

T. Ropponen, Electron heating, time evolution of bremsstrahlung and ion beam current in electron cyclotron resonance ion sources, Research report, 2010.

G. D. Shirkov, A classical model of ion confinement and losses in ECR ion sources, Plasma Sources Science and Technology, vol.2, p.250, 1993.

N. Adrouche, Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions néon hydrogenoïdes avec des agrégats d'argon, 2006.

W. Lotz, Electron-impact ionization cross-sections for atoms up to Z= 108, Zeitschrift für Physik A Hadrons and nuclei 232, vol.2, pp.101-107, 1970.

C. Belenger, P. Defrance, E. Salzborn, V. P. Shevelko, H. Tawara et al., Double ionization of neutral atoms, positive and negative ions by electron impact, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.30, p.2667, 1997.

Y. Hahn, Electron-ion recombination processes-an overview, Reports on Progress in Physics, vol.60, p.691, 1997.

J. W. Gallagher, B. H. Bransden, and R. K. Janev, Evaluated Theoretical Cross Section Data for Charge Exchange of Multiply Charged Ions with Atoms. II. Hydrogen Atom-Partially Stripped Ion Systems, Journal of physical and chemical reference data, vol.12, pp.873-890, 1983.

J. M. Lagniel and J. L. Lemaire, Computing in Accelerator Design and Operation, Proceedings of the Europhysics Conference held at the Hahn-Meitner-Institut für Kernforschung Berlin GmbH, vol.215, 1983.

D. H. Edgell, J. S. Kim, I. N. Bogatu, R. C. Pardo, and R. C. Vondrasek, Modeling of electron cyclotron resonance ion source plasmas, Particle Accelerator Conference, vol.3, pp.2135-2137, 2001.

V. B. Kutner and G. D. Shirkov, Calculation of ion charge distribution in the Dubna ECRIS-14, Zeitschrift für Physik D Atoms, vol.21, pp.323-325, 1991.

E. A. Perelstein and G. D. Shirkov, Particles & Nuclei, vol.18, p.68, 1987.

K. Wiesmann, Proc. of Int. Conf. on Mult. Charged Heavy Ion Sources, vol.19, p.156, 1972.

T. Asaji, T. Ohba, T. Uchida, H. Minezaki, S. Ishihara et al.,

&. Yoshida and Y. , Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source, Review of Scientific Instruments, vol.85, issue.2, pp.2-936, 2014.

E. Rudberg, The Vapor Pressure of Calcium between 500 and 625 ? C, Physical Review, vol.46, p.763, 1934.

P. E. Douglas, The Vapour Pressure of Calcium: I, Proceedings of the Physical Society. Section B, vol.67, p.783, 1954.

B. Eichler, S. Hübener, and H. Roßbach, Adsorption flüchtiger Metalle auf metallischen Oberflächen und ihre Anwendung in der Kernchemie: Berechnung der Enthalpie der dissoziativen Chemisorption von Monooxiden der Seltenerdmetalle und Actinoide, 1986.

J. Arianer, , 2006.

A. J. Karpenko and V. A. Baturin, Cluster Beams Sources. Part 2. The Formation of Cluster Beams in Nozzle Sources, 2012.