P. A. Schweitzer, Fundamentals of Corrosion: Mechanisms, Causes, and Preventative Methods, 1st Edition, 2009.

P. R. Roberge, Handbook of Corrosion Engineering, 2 nd Edition, 2012.

T. E. Graedel, Corrosion mechanisms for zinc exposed to the atmosphere, Journal of the Electrochemical Society, vol.136, p.193, 1989.

A. M. Beccaria, Zinc layer characterization on galvanized steel by chemical methods, Corrosion, vol.46, pp.906-912, 1990.

J. J. Friel, Atmospheric corrosion products Al, Zn, and AlZn metallic coatings, Corrosion, vol.42, pp.422-426, 1986.

S. Koizumi, S. Shima, and Y. Matsushima, A development of black chromate oxide niches by baking process for galvanized steel, International Conference on Zinc and Zinc Alloy Coated Steel Sheet_Galvatech'89, pp.246-253, 1989.

E. Schedin, G. Engberg, S. Karlsson, R. Kiusalaas, and H. Klang, Plasticity of pure zinc hotdip galvanized coatings, International Conference on Zinc and Zinc Alloy Coated Steel Sheet Galvatech'89, pp.493-499, 1989.

E. Johansson and J. Gullman, Corrosion study of carbon steel and zinc-comparison between exposure and accelerated tests, ASTM special technical publication, pp.240-256, 1995.

I. Odnevall and C. Leygraf, Formation of NaZn4Cl(OH)6SO4?.6H2O in a marine atmosphere, Corrosion science, vol.34, pp.1213-1229, 1993.

T. Biestek, M. Drys, N. Sokolov, D. Knotkova, R. Ramishvili et al.,

. Zeidel, Atmospheric corrosion of metallic systems. v. identification of the chemical compounds in the corrosion products of zinc, PROTECT. METALS, vol.19, pp.612-615, 1984.

I. Odnevall and C. Leygraf, A comparison between analytical methods for zinc specimens exposed in a rural atmosphere, Journal of the Electrochemical Society, vol.138, 1923.

A. Janotti and C. G. Van-de-walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys, vol.72, p.126501, 2009.

Ü. Özgür, V. Avrutin, and H. Morkoç, Chapter 16 -Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy, Molecular Beam Epitaxy 2 nd Edition, pp.343-375, 2018.

H. Morkoç and U. Özgur, Zinc oxide: fundamentals, materials and device technology, pp.1-2, 2007.

L. Schmidt-mende and J. L. Macmanus-driscoll, ZnO -nanostructures, defects, and devices, Materials Today, vol.10, pp.40-48, 2007.

E. Vasco, Growth evolution of ZnO films deposited by pulsed laser ablation, Journal of Physics: Condensed Matter, vol.13, pp.63-72, 2001.

C. Song, J. Zhang, and . Chapter, Electrocatalytic Oxygen Reduction Reaction, PEM Fuel Cell Electrocatalysts and Catalyst Layers, pp.89-134, 2008.

M. Lefevre, E. Proietti, F. Jaouen, and J. P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, vol.324, pp.71-74, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00800345

J. A. Cracknell, K. A. Vincent, and F. A. Armstrong, Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis, Chem. Rev, vol.108, pp.2439-2461, 2008.

J. Zhang, Z. Zhao, Z. Xia, and L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nat. Nanotechnol, vol.10, pp.444-452, 2015.

Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim et al., Advanced zinc-air batteries based on high-performance hybrid electrocatalysts, Nat. Commun, vol.4, p.1805, 2013.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental application of semiconductor photocatalysis, Chem. Rev, vol.95, pp.69-96, 1995.

Q. Xiang, J. Yu, and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev, vol.41, pp.782-796, 2012.

A. Fujishima, X. Zhang, and D. A. Tryk, TiO2 photocatalysis and the related surface phenomena, Surf. Sci. Rep, vol.63, pp.515-582, 2008.

D. Ravelli, D. Dondi, M. Faqnoni, and A. Albini, Photocatalysis. A multi-faceted concept for green chemistry, Chem. Soc. Rev, vol.38, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01388471

X. Ge, A. Sumboja, D. Wuu, T. An, B. Li et al., Oxygen reduction in alkaline media: from mechanisms to recent advances in catalysts, ACS Catalysis, vol.5, p.4643, 2015.

K. Kinoshita, Electrochemical oxygen technology, 1992.

A. Damjanovic, J. O'm-bockris, and B. Conway, Modern aspects of electrochemistry, vol.5, p.107, 1992.

J. O. Bockris and S. U. Khan, Surface Electrochemistry: A Molecular Level Approache, vol.2, 1993.

A. Damjanovic, O. J. Murphy, S. Srinivasan, and B. E. Conway, Electrochemistry in transition, p.107, 1992.

P. A. Sorensen, S. Kiil, K. Dam-johansen, and C. E. Weinell, Anticorrosive coatings: A review, J. Coat. Technol. Res, vol.6, p.135, 2009.

D. Gervasio, I. Song, and J. H. Payer, Determination of the oxygen reduction products on ASTM A516 steel during cathodic protection, J. Appl. Electrochem, vol.28, pp.979-992, 1998.

M. Stratmann, R. Feser, and A. Leng, Corrosion protection by organic films, Electrochim. Acta, vol.39, pp.1207-1214, 1994.

A. K. Shukla and R. K. Raman, Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells, Annual review of materials research, pp.155-168, 2003.

D. R. Sena, E. A. Ticianelli, and E. R. Gonzalez, Characterization of the limiting structural effects on the electrochemical behavior of porous gas diffusion electrodes, Journal of Electroanalytical Chemistry, vol.357, issue.2, pp.225-236, 1993.

J. Perez, E. R. Gonzalez, and E. A. Ticianelli, Impedance studies of the oxygen reduction on thin porous coating rotating platinum electrodes, Journal of The Electrochemical Society, vol.145, pp.2307-2313, 1998.

A. Damjanovic, M. A. Genshaw, J. O'm, and . Bockris, The Mechanism of Oxygen Reduction at Platinum in Alkaline Solutions with Special Reference to H2O2, J. Electrochem. Soc, pp.1107-1112, 1967.

H. S. Wroblowa, Y. C. Pan, and G. Razumney, Electroreduction of oxygen: a new mechanistic criterion, J. Electroanal. Chem, vol.69, pp.195-201, 1976.

A. J. Appleby and M. Savy, Kinetics of oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide: application to porous and rotating ring-disk electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.92, pp.15-30, 1978.

R. W. Zurilla, R. K. Sen, and E. Yeager, The kinetics of the oxygen reduction reaction on gold in alkaline solution, Journal of the Electrochemical Society, vol.125, pp.1103-1109, 1978.

V. S. Bagotzky, N. A. Shumilova, G. P. Samoilov, and E. I. Khrushcheva, Electrochemical oxygen reduction on nickel electrodes in alkaline solutions-II, Electrochimica Acta, vol.17, pp.1625-1635, 1972.

H. S. Wroblowa and S. B. Qaderi, The mechanism of oxygen reduction on zinc, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.295, pp.153-161, 1990.

K. Wu, D. Wang, and D. Su, An Extension to the Analytical Evaluation of the oxygen reduction reaction based on the electrokinetics on a rotating ringdisk electrode, vol.3, pp.622-628, 2016.

F. Van-den, E. Brink, W. Barendrecht, and . Visscher, Hydrogen peroxide as an intermediate in electrocatalytic reduction of oxygen. -A new method for the determination of rate constants, J. Electrochem. Soc, vol.9, 2003.

Y. Li, D. Zhang, and J. Wu, Study on kinetics of cathodic reduction of dissolved oxygen in 3.5% sodium chloride solution, Journal of Ocean University of China, vol.9, p.239, 2010.

T. Prosek, D. Persson, J. Stoulil, and D. Thierry, Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions, Corrosion Science, vol.86, pp.231-238, 2014.

T. Prosek, J. Hagström, D. Persson, N. Fuertes, F. Lindberg et al.,

D. Serák and . Thierry, Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability, Corrosion Science, 2016.

J. Stoulil, T. Prosek, A. Nazarov, J. Oswald, P. Kriz et al., Electrochemical properties of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions, Materials and Corrosion, vol.66, pp.777-782, 2015.

A. Nazarov, E. Diler, D. Persson, and D. Thierry, Electrochemical and corrosion properties of ZnO/Zn electrode in atmospheric environments, Journal of Electroanalytical Chemistry, vol.737, pp.129-140, 2015.

S. Thomas, I. S. Cole, and N. Birbilis, Compact oxides formed on zinc during exposure to a single sea-water droplet, Journal of the Electrochemical Society, vol.160, p.59, 2013.

S. Thomas, I. S. Cole, M. Sridhar, and N. Birbilis, Revisiting zinc passivation in alkaline solution, Electrochimica Acta, vol.97, p.192, 2013.

S. Thomas, N. Birbilis, M. S. Venkatraman, and I. S. Cole, Self-repairing oxides to protect zinc: Review, discussion and prospects, Corrosion Science, vol.69, p.11, 2013.

M. S. Venkatraman, I. S. Cole, and B. Emmanuel, Corrosion under a porous layer: A porous electrode model and its implications for self-repair, Electrochimica Acta, vol.56, pp.8192-8203, 2011.

R. F. Bunshad, Deposition Technologies for Films and Coatings, 1982.

E. Alfonso, J. Olaya, and G. Cubillos, Thin film growth through sputtering technique and its applications, Science and Technology, 2012.

A. Znamenski? and V. Marchenko, Thin film materials technology: sputtering of compound materials, Technical physics, vol.43, issue.7, 1998.

B. N. Chapman, Glow discharge processes: sputtering and plasma etching, 1980.

M. Ohring, The Materials Science of Thin Films, 1992.

S. Y. Chu, W. Water, and J. T. Liaw, Journal of the European Ceramic Society, vol.23, pp.593-1598, 2003.

G. Cao, Nanostructures & Nanomaterial: Synthesis, properties & applications, 2004.

C. A. Bishop, Vacuum Deposition onto Webs, Films and Foils (Second Edition), 20 -Magnetron Sputtering Source Design and Operation, 2011.

F. C. Van-de-pol, F. R. Blom, and J. A. Popma, planar magnetron sputtered ZnO films I: structural properties, Thin Solid Films, vol.204, pp.349-364, 1991.

J. A. Thornton, Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings, Journal of Vacuum Science & Technology, vol.11, pp.666-670, 1974.

O. Kluth, Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behavior, Thin Solid Films, vol.442, pp.80-85, 2003.

J. Zhang, PEM Fuel Cell Electrocatalysts and Catalysts Layers Fundamentals and Applications, 2008.

K. Kinoshita, Electrochemical oxygen technology, 1992.

D. A. Pletcher, First course in electrode processes, 1991.

A. J. Bard, Electroanalytical chemistry. Marcel Dekker, 1982.

V. G. Levich, Physicochemical Hydrodynamics, 1962.

P. T. Kissinger and W. R. Heineman, Laboratory techniques in eletroanalytical chemistry

M. Dekker, , 1996.

F. Opekar and P. Beran, Rotating disk electrodes, Journal of Electroanalytical Chemistry

M. E. Orazem and B. Tribollet, Eletrochemical Impedance Spectroscopy, 2017.

E. Barsoukov and J. R. Macdonald, Impedance spectroscopy theory, experimental, and Applications, vol.2, 2005.

M. E. Orazem and B. Tribollet, Tutorials in Electrochemical Technology: Impedance Spectroscopy, 2008.

P. Eaton and P. West, Atomic Force Microscopy, OUP Oxford, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00356780

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.

J. M. Bennett and L. Mattsson, Introduction to Surface Roughness and Scattering

K. Stout and L. Blunt, Three-Dimensional Surface Topography, p.22, 2000.

B. Cullity, Elements of X-ray Diffraction, 1956.

V. Pecharsky and P. Zavalij, Fundamentals of powder diffraction and structural characterization of materials, 2004.

M. Birkholz, Thin film Analysis by X-ray Scattering, 2006.

U. Pietsch, V. Holy, and T. Baumbach, High-resolution X-ray scattering: From thin films to lateral nanostructures, Advanced texts in physics, 2004.

D. J. Stokes, Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM), 2008.

G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori et al., Scanning electron microscopy and x-ray microanalysis, 1981.

J. Goldstein, Scanning electron microscopy and x-ray microanalysis, 2003.

J. J. Friel and C. E. Lyman, Tutorial Review: X-ray Mapping in Electron-Beam Instruments, vol.12, pp.2-25, 2006.

L. Reimer and R. Kohl, Transmission Electron Microscopy Physics of Image Formation

J. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis, 2003.

N. Heller-ling, M. Prestat, J. L. Gautier, J. F. Koenig, G. Poillerat et al., Oxygen electroreduction mechanism at thin NixCo3-xO4 spinel films in a double channel electrode flow cell (DCEFC), Electrochimica Acta, vol.42, pp.197-202, 1997.

R. G. Compton, G. M. Stearn, P. R. Unwin, and A. J. Barwise, Double channel electrodes and the measurement of heterogenous reaction rates at the solid-liquid interface, Journal of Applied Electrochemistry, vol.18, pp.657-655, 1988.

N. Heller-ling, G. Poillerat, J. F. Koenig, J. L. Gautier, and P. Chartier, Double channel electrode flow cell (DCEFC): application to the electrocatalysis of the oxygen reduction on oxide films, Electrochimica Acta, vol.39, p.1669, 1994.

I. S. Cole, Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc, Materials, vol.10, p.1288, 2017.

H. Dafydd, D. A. Worsley, and H. N. Mcmurray, The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc-aluminium alloy galvanized coatings, Corrosion Science, vol.47, pp.3006-3018, 2005.

H. J. Flitt and D. P. Schweinsberg, Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions, Corrosion Science, vol.52, pp.1905-1914, 2010.

A. Goux, T. Pauporte, and D. Lincot, Oxygen reduction reaction on electrodeposited zinc oxide electrodes in KCl solution at 70 ? C, Electrochimica Acta, vol.51, pp.3168-3172, 2006.

M. Prestat, F. Vucko, B. Lescop, S. Rioual, F. Peltier et al., Oxygen reduction at electrodeposited ZnO layers in alkaline solution, Electrochimica Acta, vol.218, pp.228-236, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01698930

W. K. Burton, N. Carberra, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society of London A, vol.243, p.299, 1951.

S. Y. Chu, W. Water, and J. T. Liaw, Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering, Journal of the European Ceramic Society, vol.23, pp.1593-1598, 2003.

S. S. Lin and J. L. Huang, Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering, Surface & Coatings Technology, vol.185, pp.222-227, 2004.

J. Hüpkes, J. I. Owen, S. E. Pust, and E. Bunte, Chemical etching of zinc oxide for thin-film silicon solar cells, ChemPhysChem, vol.13, pp.66-73, 2012.

J. Han, W. Qiu, and W. Gao, Potential dissolution and photo-dissolution of ZnO thin films, Journal of hazardous materials, vol.178, pp.115-122, 2010.

Z. Onuk, N. Rujisamphan, R. Murray, M. Bah, M. Tomakin et al., Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films, Applied Surface Science, vol.396, pp.1458-1465, 2017.

K. B. Sundaram and A. Khan, Characterization and optimization of zinc oxide films by r.f. magnetron sputtering, Thin Solid Films, vol.295, pp.87-91, 1997.

D. L. Cheng, K. S. Kao, C. H. Liang, Y. C. Wang, Y. C. Chen et al., Piezoelectric Response Evaluation of ZnO Thin Film Prepared by RF Magnetron Sputtering, MATEC Web of Conferences, vol.109, p.4001, 2017.

Y. H. Hsu, J. Lin, and W. C. Tang, RF sputtered piezoelectric zinc oxide thin film for transducer applications, Journal of Materials Science: Materials in Electronics, vol.19, pp.653-661, 2008.

S. Kunj and K. Sreenivas, Residual stress and defect content in magnetron sputtered ZnO films grown on unheated glass substrates, Current Applied Physics, vol.16, pp.748-756, 2016.

K. Zhang, J. Qi, Y. Tian, S. Lu, Q. Liang et al., Influence of piezoelectric effect on dissolving behavior and stability of ZnO micro/nanowires in solution, RSC Advances, vol.5, pp.3365-3369, 2015.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

N. H. Al-hardan, M. J. Abdullah, A. A. Aziz, H. Ahmad, and M. Rashid, The effect of oxygen ratio on the crystallography and optical emission properties of reactive RF sputtered ZnO films, Physica B: Condensed Matter B, vol.405, pp.1081-1085, 2010.

J. P. Becker, S. E. Pust, and J. Hupkes, Effects of the electrolyte species on the electrochemical dissolution of polycrystalline ZnO:Al thin films, Electrochimica Acta, vol.112, pp.976-982, 2013.

A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Temperature effects on ZnO electrodeposition, Electrochimica Acta, vol.50, pp.2239-2248, 2005.

, crystal ZnO thin films on sapphire substrates, Semiconductors Science and Technology, vol.19, pp.29-31, 2004.

S. Lin and J. Huang, Effect of thickness on the structural and optical properties of ZnO films by rf. magnetron sputtering, Surface & Coatings Technology, vol.185, pp.222-227, 2004.

Z. Onuk, N. Rujisamphan, R. Murray, M. Bah, M. Tomakin et al., Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films, Applied Surface Science, vol.396, pp.1458-1465, 2017.

K. B. Sundaram and A. Khan, Characterization and optimization of zinc oxide films by rf. magnetron sputtering, Thin Solid Films, vol.295, pp.87-91, 1997.

J. P. Becker, S. E. Pust, and J. Hupkes, Effects of the electrolyte species on the electrochemical dissolution of polycrystalline ZnO:Al thin films, Electrochimica Acta, vol.112, pp.976-982, 2013.

T. T. Tran, B. Tribollet, and E. M. Sutter, New insights into the cathodic dissolution of aluminium using electrochemical methods, Electrochimica Acta, vol.216, pp.58-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394958

J. Sakabe, N. Ohta, T. Ohnishi, K. Mitsuishi, and K. Takada, Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Communications chemistry, pp.1-24, 2018.

V. Godinho, P. Moskovkin, R. Álvarez, J. Caballero-hernández, R. Schierholz et al., On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique angles, Nanotechnology, vol.25, p.355705, 2014.

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur et al., Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. II. Applications, J. Electrochem. Soc, vol.157, pp.458-463, 2010.

M. E. Orazem, N. Pébère, and B. Tribollet, Enhanced Graphical Representation of Electrochemical Impedance Data, J. Electrochem. Soc, p.129, 2006.

M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, vol.2, 2017.

J. R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, 1987.

G. J. Brug, A. L. Van-den-eeden, and M. Sluyters-rehbach, The analysis of electrode impedances complicated by the presence of a constant phase element, J.Electroanal. Chem, p.275, 1984.

W. Gao and Z. Li, ZnO thin films produced by magnetron sputtering, Ceramics International, vol.30, pp.1155-1159, 2004.

H. Tsai, Characteristics of ZnO thin film deposited by ion beam sputter, Journal of Materials Processing Technology, pp.55-59, 2007.

S. Chu, W. Water, and J. Liaw, Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering, Journal of the European Ceramic Society, vol.23, pp.1593-1598, 2003.

R. E. Schropp and A. Madan, Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering, Journal of Applied Physics, vol.66, p.2027, 1989.

Z. Onuk, N. Rujisamphan, R. Murray, M. Bah, M. Tomakin et al., Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films, Applied Surface Science, vol.396, pp.1458-1465, 2017.

I. Sayago, M. Aleixandre, L. Arés, M. J. Fernández, J. P. Santos et al.,

. Horrillo, The effect of the oxygen concentration and the rf power on the zinc oxide films properties deposited by magnetron sputtering, Applied Surface Science, vol.245, pp.273-280, 2005.

K. Srinivasarao, . Ch, P. Prameela, P. K. Kala, and . Mukhopadhyay, Preparation and Characterization of rf. magnetron sputtered porous ZnO thin films, Materials Today: Proceedings, vol.2, pp.4503-4508, 2015.

H. S. Al-salman and M. J. Abdullah, Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application, Measurement, vol.59, pp.248-257, 2015.

C. Shang, Y. Thimont, A. Barnabé, L. Presmanes, I. Pasquet et al., Detailed microstructure analysis of as-deposited and etched porous ZnO films, Applied Surface Science, vol.344, pp.242-248, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218614

M. A. Mahdi, A. Ramizy, and H. F. Al-taay, Preparation and characterization of porous ZnO nanostructures grown onto silicon substrate, Journal of Ovonic Research, vol.13, pp.135-141, 2017.

Z. W. Li, W. Gao, and R. J. Reeves, Zinc oxide films by thermal oxidation of zinc thin films, Surface & Coatings Technology, vol.198, pp.319-323, 2005.

M. A. Borysiewicz, E. Dynowska, V. Kolkovsky, J. Dyczewski, M. Wielgus et al.,

A. Kaminska and . Piotrowska, From porous to dense thin ZnO films through reactive DC sputter deposition onto Si (100) substrates, Phys. Status Solidi A, pp.1-7, 2012.

A. Sacco, A. Lamberti, R. Gazia, S. Bianco, D. Manfredi et al.,

E. Ma and . Tresso, High efficiency Dye-sensitized Solar Cell exploiting sponge-like ZnO Nanostructures, Physical Chemistry Chemical Physics, 2012.

R. Gazia, A. Chiodoni, S. Bianco, A. Lamberti, M. Quaglio et al.,

C. F. Mandracci and . Pirri, An easy method for the room-temperature growth of spongelike nanostructured Zn films as initial step for the fabrication of nanostructured ZnO, Thin Solid Films, vol.524, pp.107-112, 2012.

M. A. Borysiewicz, E. Dynowska, V. Kolkovsky, M. Wielgus, K. Golaszewska et al.,

M. Kaminska, P. Ekielski, T. Struk, A. Pustelny, and . Piotrowska, Sputter deposited ZnO porous films for sensing applications, Mater. Res. Soc. Symp. Proc, p.1494, 2013.

V. V. Sasi, A. Iqbal, K. Chaik, A. Iacopi, and F. Mohd-yasin, RF Sputtering, Post-Annealing Treatment and Characterizations of ZnO (002) Thin Films on 3C-SiC

, Substrates, Micromachines, vol.8, p.148, 2017.

B. Abdallah, A. K. Jazmati, and R. Refaai, Oxygen Effect on Structural and Optical Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering, Materials Research, vol.20, pp.607-612, 2017.

M. Mas?yk, M. A. Borysiewicz, M. Wzorek, T. Wojciechowski, M. Kwoka et al.,

. Kaminska, Influence of absolute argon and oxygen flow values at a constant ratioon the growth of Zn/ZnO nanostructures obtained by DC reactivemagnetron sputtering, Applied Surface Science, vol.389, pp.287-293, 2016.

T. Barres, B. Tribollet, O. Stephan, H. Montigaud, M. Boinet et al., Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy, Electrochemica Acta, vol.227, pp.1-6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01452732

T. T. Tran, B. Tribollet, and E. M. Sutter, New insights into the cathodic dissolution of aluminium using electrochemical methods, Electrochimica Acta, vol.216, pp.58-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394958

F. Huang, Z. Lin, W. Lin, J. Zhang, K. Ding et al.,

P. Chen, X. Lv, and . Wang, Research progress in ZnO single-crystal: growth, scientific understanding, and device applications, Chin. Sci. Bull, vol.59, pp.1235-1250, 2014.

J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu et al., Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO, ACS Applied Materials & Interfaces, 2012.

M. Prestat, F. Vucko, B. Lescop, S. Rioual, F. Peltier et al., Oxygen reduction at electrodeposited ZnO layers in alkaline solution, Electrochimica Acta, vol.218, pp.228-236, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01698930

A. Goux, T. Pauporte, and D. Lincot, Oxygen reduction reaction on electrodeposited zinc oxide electrodes in KCl solution at 70?C, Electrochimica Acta, vol.51, pp.3168-3172, 2006.

N. Heller-ling, M. Prestat, J. L. Gautier, J. F. Koenig, G. Poillerat et al., Oxygen electroreduction mechanism at thin NixCo3-xO4 spinel films in a double channel electrode flow cell (DCEFC), Electrochimica Acta, vol.42, pp.197-202, 1997.

H. S. Wroblowa and S. B. Qaderi, The mechanism of oxygen reduction on zinc, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, pp.153-161, 1990.

A. P. Yadav, A. Nishikata, and T. Tsuru, Oxygen reduction mechanism on corroded zinc, Journal of Electroanalytical Chemistry, vol.585, pp.142-149, 2005.

H. J. Flitt and D. P. Schweinsberg, Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions, Corrosion Science, vol.52, pp.1905-1914, 2010.

A. Goux, T. Pauporte, and D. Lincot, Oxygen reduction reaction on electrodeposited zinc oxide electrodes in KCl solution at 70?C, Electrochimica Acta, vol.51, pp.3168-3172, 2006.

M. Prestat, F. Vucko, B. Lescop, S. Rioual, F. Peltier et al., Oxygen reduction at electrodeposited ZnO layers in alkaline solution, Electrochimica Acta, vol.218, pp.228-236, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01698930

H. S. Wroblowa and S. B. Qaderi, The mechanism of oxygen reduction on zinc, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, pp.153-161, 1990.

H. J. Flitt and D. P. Schweinsberg, Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions, Corrosion Science, vol.52, pp.1905-1914, 2010.

S. Rashmi, L. Elias, and A. C. Hedge, Multilayered Zn-Ni alloy coatings for better corrosion protection of mild steel, Engineering Science and Technology, an International Journal, vol.20, pp.1227-1232, 2017.

N. Heller-ling, M. Prestat, J. L. Gautier, J. F. Koenig, G. Poillerat et al., Oxygen electroreduction mechanism at thin NixCo3-xO4 spinel films in a double channel electrode flow cell (DCEFC), Electrochimica Acta, vol.42, pp.197-202, 1997.

N. Heller-ling, G. Poillerat, J. F. Koenig, J. L. Gautier, and P. Chartier, Double channel electrode flow cell (DCEFC): application to the electrocatalysis of the oxygen reduction on oxide films, Electrochimica Acta, vol.39, p.1669, 1994.

J. Stoulil, T. Prosek, A. Nazarov, J. Oswald, P. Kriz et al., Electrochemical properties of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions, Materials and Corrosion, vol.66, pp.777-782, 2015.

T. Prosek, D. Persson, J. Stoulil, and D. Thierry, Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions, Corrosion Science, vol.86, pp.231-238, 2014.

T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions, Corrosion Science, vol.50, pp.2216-2231, 2008.

M. Stratman, H. Streckel, K. T. Kim, and S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers -III. The measurement of polarization curves on metal surfaces which are covered by thin electrolyte layers, Corrosion Science, vol.30, pp.715-734, 1990.

Y. L. Cheng, Z. Zhang, F. H. Cao, J. F. Li, J. Q. Zhang et al., A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers, Corrosion Science, vol.46, pp.1649-1667, 2004.

X. G. Zhang, Corrosion and electrochemistry of zinc, 1996.

I. S. Cole, , vol.10, p.1288, 2017.

H. S. Wroblowa and S. B. Qaderi, J. Electroanal. Chem, vol.295, pp.153-161, 1990.

S. Thomas, I. S. Cole, Y. Gonzalez-garcia, M. Chen, M. Musameh et al., J. Appl. Electrochem, vol.44, pp.747-757, 2014.

S. Thomas, I. S. Cole, M. Sridhar, and N. Birbilis, Electrochim. Acta, vol.97, pp.192-201, 2013.

S. Thomas, N. Birbilis, M. S. Venkatraman, and I. S. Cole, Corrosion, vol.68, p.15009, 2012.

W. Miao, I. S. Cole, A. K. Neufeld, and S. Furman, J. Electrochem. Soc, vol.154, pp.7-15, 2007.

F. H. Assaf, S. S. El-rehiem, and A. M. Zaky, Mater. Chem. Phys, vol.58, pp.58-63, 1999.

M. Mokaddem, P. Volovitch, and K. Ogle, Electrochim. Acta, vol.55, pp.7867-7875, 2010.

E. E. , Abd El Aal, Corros. Sci, vol.46, pp.37-49, 2004.

, Port. Electrochim. Acta, vol.31, pp.207-219, 2013.

M. Mouanga and P. Berçot, Corros. Sci, vol.52, pp.3993-4000, 2010.

W. J. Tomlinson and D. R. Breary, Corrosion, vol.44, pp.62-63, 1988.

H. Leidheiser, Y. Momose, and R. D. Granata, Corrosion, vol.38, pp.178-179, 1982.

H. Leidheiser and I. Suzuki, Corrosion, vol.36, pp.701-702, 1980.

A. Nazarov, E. Diler, D. Persson, and D. Thierry, J. Electroanal. Chem, vol.737, pp.129-140, 2015.

H. J. Flitt and D. P. Schweinsberg, Corros. Sci, vol.52, pp.1905-1914, 2010.

M. Prestat, L. Holzer, B. Lescop, S. Rioual, C. Zaubitzer et al., Electrochem. Commun, vol.81, pp.56-60, 2017.

M. C. Bernard, A. Hugot-le-goff, D. Massinon, and N. Phillips, Corros. Sci, vol.35, pp.1339-1349, 1993.

T. Ohtsuka and . Matsuda, , vol.59, pp.407-413, 2003.

S. Khamlich, T. Mokrani, M. S. Dhlamini, B. M. Mothudi, and M. Maaza, J. Colloid Interface Sci, vol.461, pp.154-161, 2016.

J. D. Yoo, P. Volovitch, A. Aal, C. Allely, and K. Ogle, Corros. Sci, vol.70, pp.1-10, 2013.

J. Sithole, B. D. Ngom, S. Khamlich, E. Manikanadan, N. Manyala et al., Appl. Surf. Sci, vol.258, pp.7839-7843, 2012.

S. R. Tavares, V. S. Vaiss, F. Wypych, and A. A. Leitão, J. Phys. Chem. C, vol.118, pp.19106-19113, 2014.

J. Duchoslav, M. Arndt, T. Keppert, G. Luckeneder, and D. Stifter, Anal. Bioanal. Chem, vol.405, pp.7133-7144, 2013.

M. Prestat, F. Vucko, B. Lescop, S. Rioual, F. Peltier et al., Electrochim. Acta, vol.218, pp.228-236, 2016.

J. D. Yoo, K. Ogle, and P. Volovitch, Corros. Sci, vol.81, pp.11-20, 2014.

V. Shkirskiy, P. Keil, H. Hintze-bruening, F. Leroux, P. Volovitch et al., Electrochim. Acta, vol.184, pp.203-213, 2015.

Y. B. Hahn, Korean J. Chem. Eng, vol.28, pp.1797-1813, 2011.

E. M. Elsayed, F. A. Harraz, and A. E. Saba, Int. J. Nanoparticles, vol.5, pp.136-148, 2012.

M. Izaki and T. Omi, Appl. Phys Lett, vol.68, pp.2439-2440, 1996.

M. Nobial, O. Devos, and B. Tribollet, J. Cryst. Growth, vol.327, pp.173-181, 2011.

T. Yoshida, D. Komatsu, N. Shimokawa, and H. Minoura, Thin Solid Films, vol.451, pp.166-169, 2004.

M. Wadowska, T. Frade, D. Siopa, K. Lobato, A. Gomes et al., Lett, vol.2, pp.40-42, 2013.

T. Pauporté and I. Jirka, Electrochim. Acta, vol.54, pp.7558-7564, 2009.

A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Electrochim. Acta, vol.50, pp.2239-2248, 2005.

T. Pauporté and D. Lincot, J. Electroanal. Chem, vol.517, pp.54-62, 2001.

S. Hori, T. Suzuki, T. Suzuki, S. Miura, and S. Nonomura, Mater. Trans, vol.55, pp.728-734, 2014.

M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraïbi et al., Sol. Energy. Mat. Sol. Cells, vol.90, pp.1437-1444, 2006.

R. Salazar, C. Lévy-clément, and V. Ivanova, Electrochim. Acta, vol.78, pp.547-556, 2012.

K. Laurent, B. Q. Wang, D. P. Yu, and Y. Leprince-wang, Thin Solid Films, vol.517, pp.617-621, 2008.

A. Henni, A. Merrouche, L. Telli, S. Walter, A. Azizi et al., Mater. Sci. Semicond. Process, vol.40, pp.585-590, 2015.

M. G. Taryba, M. F. Montemor, and S. V. Lamaka, Electroanalysis, vol.27, pp.2725-2730, 2015.

R. M. Souto, Y. González-garcía, D. Battistel, and S. Daniele, Chem. Eur. J, vol.18, pp.230-236, 2012.

E. Mena, L. Veleva, and R. M. Souto, Int. J. Electrochem. Sci, vol.11, pp.5256-5266, 2016.