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General Introduction

Pursuing the trend towards miniaturization and increased performance of integrated circuits,

new processes and architectures are constantly developed. For decades, integrated circuit man-

ufacturing has been driven by a continuous increase of the number of semiconductor devices

(typically, transistors) integrated per unit surface. In recent years however, many challenges

have arisen in that regard. Indeed, as transistor dimensions reach the ten-nanometer range

quantum effects become no longer negligible, leading to increased power consumption and heat

generation due to leakage currents. In addition, the need for ever-increasing wiring density be-

tween semiconductor devices also results in larger delays in the signal propagation due to the

generation of parasitic capacitances.

As an alternative to further device downscaling, a progressive shift towards 3D integration is

currently observed in the semiconductor industry. The aim of this innovative approach is to

combine chips of different technologies or different functionalities into a single module. This is

typically achieved by vertically stacking integrated circuits instead of tiling them on a plane,

enabling considerable gain in several aspects: (i) increased compactness, by leveraging the ver-

tical direction to integrate a larger number of devices at constant chip footprint, (ii) decreased

complexity, as all of the different functionalities need not be integrated within a single circuit,

(iii) improved versatility, since already developed chips can be combined to form a more complex

system, for which the different building blocks can be developed independently.

In particular, 3D integration opens up a host of new possibilities for imaging applications.

Indeed, vertical stacking enables to move existing peripheral circuitry around the pixel matrix

to a separate chip directly below the image sensor, allowing increased performances through

shorter wiring, but also the incorporation of additional functionalities such as advanced image

signal processing.

Among various possible strategies to process direct vertical interconnections between the im-

age sensor and its carrier chip (e.g. through-silicon vias, metal pillars), a promising method is

Cu/SiO2 hybrid bonding. This technique consists in the simultaneous direct bonding of metal

interconnection pads and their surrounding dielectric surfaces on both sides of the assembly,

thereby providing mechanical and electrical connection between the stacked chips, with an in-

terconnection pitch only limited mostly by photolithography resolution and alignment accuracy

(i.e. below 1 µm).

1



2 Acronyms

In earlier work at STMicroelectronics and CEA-Leti, a Cu/SiO2 hybrid bonding process has been

developed on several test chips, for which the electrical performance, environmental reliability

and bonding interface morphology has been extensively studied1, allowing the transfer from

the development stage to the manufacturing stage. In the present work, the integration of a

more complex stack, namely a backside-illuminated image sensor on a logic integrated circuit,

is considered. Compared to previous studies, a broader scope of process steps is therefore

investigated, encompassing image sensor chip fabrication and its encapsulation into a supporting

case for interfacing with external devices2, in addition to the Cu/SiO2 hybrid bonding process

for chip stacking.

The focus of this thesis is on the mechanical robustness of such a 3D integrated imager-on-logic

device during its fabrication, aiming to address a number of possible issues for this relatively

new technology in semiconductor manufacturing and secure product integration from a ther-

momechanical perspective. Mechanical stresses building up in the image sensor during chip

processing and assembly onto a package are investigated, and the interactions between the dif-

ferent system components analyzed. The mechanical integrity of several key structures is studied,

namely (i) interconnection pads at the hybrid bonding interface between the imager/logic chips,

(ii) bondpad structures below the wires connecting the imager to the package substrate, and

(iii) semiconductor devices in the image sensor, through the evaluation of process-induced me-

chanical stresses using Si piezoresistive stress sensors. For each item, combined numerical and

experimental investigations are carried out, relying on finite element analysis and morphological,

mechanical or electrical experimental characterization.

Firstly, we will provide in Chapter I an overview of the fabrication of 3D integrated image sensors,

and discuss the main benefits and new perspectives brought by chip stacking. The specific risks

and challenges in terms of thermomechanical robustness for this kind of architecture will also be

highlighted, and the main objectives of the thesis outlined.

In Chapter II, we will focus on the Cu/SiO2 hybrid bonding interface between the image sensor

and its carrier chip. In a first part, we will evaluate experimentally the influence of various

geometries and layouts for the Cu interconnection pads on the bonding surface topography af-

ter planarization by chemical-mechanical polishing. In turn, the influence of this initial surface

topography on the Cu-Cu bonding interface morphology will be examined. Then, thermome-

chanical finite element modeling of the hybrid bonding process at the interconnect scale will be

carried out, aiming to assess the influence of additional process and design parameters identified

as critical for future applications, e.g. interconnect pitch distance or alignment accuracy.

In Chapter III, we are interested in the mechanical robustness of wirebond pads at the backside

of the 3D stacked image sensor. An experimental comparison between several pad architectures

will be carried out, by failure inspection after the wire bonding process to detect possible cracks

or delaminations in the multi-layer interconnection stack. The focus is on the influence of

1Taibi (2012) and Beilliard (2015)
2Referred to in the semiconductor industry as an “integrated circuit package”.
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interconnection layout below the pad, as well as the introduction of a capping layer between the

bonding surface and the interconnection stack. Aiming to provide a better understanding of the

experimental trends, a multi-scale finite element analysis of a standardized wirebond qualification

test, namely the wire pull test, is carried out. This model is then used to investigate the influence

of various pad configurations on the mechanical robustness, and thereby propose guidelines to

decrease the occurrence of pad mechanical failure.

In Chapter IV, a methodology based on Si piezoresistive stress sensors is proposed for in situ

monitoring of the stress distribution in the active semiconductor region during the image sensor

fabrication sequence, including encapsulation in a package. First, sensor calibration is carried

out using a previously developed in-house instrumented four-point bending fixture to determine

the piezoresistive coefficients1. Inline stress measurements are then carried out both at the

wafer-level and the package-level, and compared with thermomechanical finite element modeling

of the process sequence. The limitations of this method will be discussed and directions for

further work proposed.

In a last part, the main achievements of this work are presented and propositions for further

developments outlined.

1Ewuame (2016)





Chapter I

3D Stacking of Integrated Circuits

for Imaging Applications

The aim of this chapter is to provide an overview of the fabrication processes of integrated cir-

cuits for imaging applications (i.e. image sensors), more specifically within the context of 3D

stacking, a new integration strategy enabling improved compactness and performance. After an

overview of integrated circuit fabrication processes, some of the key challenges currently facing

the semiconductor industry are presented. In this context, the main benefits and new perspec-

tives brought by the 3D stacking approach are discussed. For imaging applications, the shift

towards 3D architectures gives rise to specific risks and challenges in terms of thermomechanical

robustness, that will be highlighted. Finally, the main objectives of the thesis will be outlined.

I.1 Context

During the first half of the 20th century, electronic devices consisted of individual components

interconnected by pieces of wire to form discrete circuits. However, shortly after World War II,

two major inventions enabled tremendous miniaturization of electronic circuits:

• the discovery of the transistor effect and the realization of the first transistor in 1947 by

Bardeen, Brattain and Shockley [1], which provided a more compact replacement for the

large and fragile vacuum tubes used at the time;

• the invention of the integrated circuit by Kilby and Noyce [2] in 1958, which enabled further

miniaturization by embedding several electronic components together at the surface of the

same substrate.

An integrated circuit (IC) can be defined as a collection of electronic devices (mostly transistors,

but also diodes, capacitors and resistors) processed and electrically interconnected together onto

a flat circular slice of semiconductor material (typically high-purity single-crystal silicon), called

5



6 Chapter I 3D Stacking of Integrated Circuits for Imaging Applications

wafer. Among the different types of electronic components present on an IC, transistors are the

fundamental building blocks for circuit design. A transistor acts as a voltage-controlled switch

and is used to build the logic gates that confer ICs their functionalities.

The first ICs in the beginning of the 1960s comprised only a few dozens of transistors, mostly

for aerospace and military applications: a level of integration nowadays referred to as small-

scale integration. After the commercialization of the first microprocessors in the early 1970s,

IC manufacturing shifted to mass production, with circuits of several thousands of transistors

(large-scale integration). It was around that time that Gordon Moore, co-founder of Intel, made

his famous observation that the density of components at minimum cost roughly doubles every

year1 [4]. This prediction has verified quite well since then, with ICs comprising hundreds

of thousands of transistors in the early 1980s (very-large-scale integration), and the million-

transistor milestone2 crossed in the second half of the 1980s (ultra-large-scale integration).

Nevertheless, in the early 1990s several major difficulties began to arise for keeping the pace

of IC miniaturization and performance, requiring the introduction of new fabrication processes

and new materials3. Since then, IC scaling has therefore been driven by technology roadmaps4

produced by a group of semiconductor industry experts [5]. These documents assess the current

challenges for IC performance improvement, determine directions for research, and set the mile-

stones to be reached by the industry for each IC technology or processing area in the upcoming

years (Table I.1).

1995 1997 1999 2001 2004 2007 2010 2013 2016 2019 2022

Node 0.35 µm 0.25 µm 180 nm 130 nm 90 nm 65 nm 45 nm 28 nm 22 nm 17 nm 13 nm
MLs 5 6 7 7 10 11 12 13 13 14 15

Table I.1: Summary of semiconductor technology roadmaps: process nodes for DRAM appli-
cations and number of metallization levels (MLs) for MPU applications

[6–10].

During the short history of ICs, continuous improvement of circuit performances was made

possible through device miniaturization. Many technological advances in terms of the processes

and materials used were necessary to sustain this trend. In the next section, the main fabrication

processes involved in the manufacturing of image sensors (but also for virtually any other kind

of IC) are presented.

1A decade later, Moore adjusted this projection to a twofold increase every two years [3].
2It can be noted that, rather than transistor count, the commonly used metric to designate IC generations is

the process node or technology node. This terminology refers to the set of fabrication processes and design rules
required to reach a given level of miniaturization.

3Notable examples include (i) the introduction of chemical-mechanical polishing for planarity improvement in
1990, (ii) the use of copper to replace aluminum interconnections in 1997, (iii) the move to low- and ultra-low-
permittivity dielectrics to insulate fine interconnects, respectively for the 90 and 45 nm nodes. These processes
and materials will be described in the next section.

4First from 1991 with the National Roadmap for Semiconductors (NTRS) in the USA, then from 1998 the
International Roadmap for Semiconductors (ITRS), and since 2017 the International Roadmap for Devices and
Semiconductors (IRDS).
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I.3 Front-end processing: from bare wafer to IC

IC manufacturing is a long and complex task involving hundreds of processing steps, typically

resulting in total fabrication times in the order of months. In the semiconductor industry, these

processes are commonly divided into two categories, namely front-end (FE) at the beginning

of the process sequence, and back-end (BE) at the end1. Starting from a bare Si wafer, ICs

are fabricated step-by-step by combining (and repeating) the elementary operations previously

described: film deposition, photolithography, etching, doping and surface planarization. Using

this approach, all of the electronic components making up the IC can be processed (and inter-

connected) simultaneously at the substrate surface, layer-upon-layer. This method of fabricating

ICs is referred to as the planar process or planar technology, and falls within the front-end process

category.

I.3.1 Semiconductor devices (front-end-of-line)

Planar technology enables to fabricate semiconductor devices directly at the wafer surface. The

fabrication of these devices is called front-end-of-line (FEoL) processing, and by extension this

expression is also refers to the part of the IC multilayer stack where those devices are located.

In the following paragraphs and in Appendix A, the main semiconductor devices present in a

typical image sensor IC are described, such as transistors and pixel sensors. These semiconductor

devices rely on the specific electrical properties obtained at the interface between P-type and

N-type doped regions, called P-N junctions, described in Appendix A.

I.3.1.1 Si resistors

Resistors can be fabricated directly onto the Si substrate by selectively doping the wafer surface

to form an elongated N-type region embedded within the P-type bulk2. If an electrical current

originally flowing into the metal interconnects is diverted into this N-doped region, a decrease

of conductivity is obtained: the N-doped region thus acts as resistor. The current does not flow

into the grounded P bulk due to the formation of a depletion region (i.e. a diode) at the P-N

junction, as described in Appendix A (Figure I.8).

This kind of device is referred to as N-type resistor. However, it is also possible to create P-

resistors on the P-doped substrate. This can be achieved by first forming a large N region at

the surface of the P bulk, referred to as a well, and then forming an elongated P-type region

embedded within this N-well. In Chapter III, a stress sensor consisting of an array of such N-type

1Quite often, these two categories also indicate different geographical locations for manufacturing, with IC
fabrication in front-end plants and IC packaging in back-end plants.

2Doping agents are already present in bare Si wafers used at the beginning of IC fabrication. The most widely
used wafers in the semiconductor industry are P-type substrates. They are incorporated into the melt during the
crystal growth process (Czochralski process) to form the silicon ingots from which wafers are then sliced.
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I.3.2 Metal-silicon contacts (middle-of-line)

All individual semiconductor devices formed at the wafer surface need to be accessible electrically.

This is achieved by fabricating vertical metal plugs embedded in dielectric material (Figure I.10),

providing access points to the different terminals of the semiconductor devices, e.g. between a

photodiode and its associated transistors. These metal plugs are referred to as contacts and the

surrounding dielectric matrix is called pre-metal dielectric (PMD).

The pre-metal dielectric layer is generally made of phosphosilicate glass (PSG) (i.e. phosphorus-

doped SiO2), due to the ability of phosphorus atoms to capture ionic contaminants that could

otherwise damage semiconductor devices in the underlying active region [14]. This material

is sensitive to humidity however, and it is therefore typically capped by a layer of undoped

silicate glass (USG). The typical thickness of the PMD layer is in the 100 nm range. Due to

the small lateral dimensions of semiconductor devices, metal plugs are generally high-aspect-

ratio structures. Therefore, the metal deposition process used to fill contact holes etched in the

dielectric layer must be sufficiently conformal. For this reason, tungsten is used to fabricate the

metal plugs, because historically it is the easiest metal to deposit by CVD [15]. In addition,

diffusion into silicon of the metal must be prevented, and thus most low-resistivity metals such

as Al or Cu cannot be used. Tungsten is a refractory metal and offers great benefit in that

respect. However, it has low adhesion to SiO2, and thus the presence of a metal liner (typically

TiN) is necessary.

After CVD deposition of the PMD layer, a photolithography step is carried out to etch holes into

the layer, which are filled with CVD tungsten. Subsequent chemical-mechanical polishing (CMP)

enables to remove the tungsten deposited in excess. This fabrication sequence is sometimes

called middle-of-line (MOL). Typical dimensions for the tungsten metal plugs are a few 10 nm

in diameter for a thickness in the 100 nm range.

Figure I.10: Colorized SEM cross-section view showing, from bottom to top, the active region,
the tungsten contacts and the first metallization level (M1), with the dielectric material removed

(Source: IBM).
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I.3.3 Metal interconnections (back-end-of-line)

In addition to the vertical contacts described above, a horizontal network of wires is also necessary

to interconnect the different semiconductor devices and thereby build a circuit. This is achieved

by fabricating on top of the PMD layer a network of metal lines embedded in dielectric material

(Figure I.11). These metal lines are referred to as interconnects and the dielectric material

between them as intermetal dielectric (IMD).

Due to the high density of semiconductor devices at the wafer surface, several tiers are actu-

ally necessary for this network of metal lines. Typically, between one and fifteen metallization

levels (MLs) are processed at the surface of an IC. Altogether, these metallization levels form

a stack about 10 µm thick. To interconnect adjacent metallization levels, vertical metal plugs

are processed between the horizontal lines. These are referred to as vertical interconnect access,

or simply via, and the dielectric material between the different metallization levels as interlayer

dielectric (ILD). For simplicity, metal or via layers are generally referenced as Mi and Vi, with

i denoting the metallization level number, in ascending order from the PMD upwards. The

fabrication of these interconnects is called back-end-of-line (BEoL) processing, and by extension

this expression is also used to refer to the interconnect stack.

The BEoL stack also enables a change in scale between the submicron-scale semiconductor

devices and the outside world. It is commonly divided into several regions with increasing layer

thickness, line width, spacing and length from the PMD upwards (Figure I.11):

• The lowermost layers are the X-levels (local interconnects): this network of thin, fine and

short metal lines ensures local interconnection between semiconductor devices.

• Absent in some devices, Y-levels (semi-global interconnects) consist of layers of intermedi-

ate thickness, line width and density, and are used to join groups of semiconductor devices.

• The uppermost are the Z-levels (global interconnects): they contain the thickest metal lay-

ers, with wide metal lines enabling long distance communication between different regions

on the chip, as well as power/ground distribution.

This interconnection network consists of lines with rectangular cross-section, and generally run

along orthogonal directions (i.e. no oblique or curved lines), due to limitations inherent to the

planar process (especially photolithography). Typical thickness for the different levels are about

100 nm for an X-level, a few 100 nm for a Y-level and about 1 µm for a Z-level. Typical lateral

dimensions for the metal lines are in the 0.1-10 µm range, and for the via plugs in the 0.01-1 µm

range.

Interconnects were originally fabricated using aluminum for the lines, tungsten for the vias, and

SiO2 for the dielectric layers. After deposition of an Al layer by PVD, a positive photoresist was

used during the lithography step to expose the region between the lines, which were removed

by dry etching. The dielectric layer was then deposited by CVD to embed the lines and surface

waviness of the deposited layer was suppressed by CMP. However, Al lines lead to significant
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a significant increase of the optical performances, while at the same time relaxing constraints on

BEoL design [23].

In this section, the “front-end” part of the fabrication sequence for the studied image sensor has

been presented. In Chapter IV, an approach based on Si piezoresistive stress sensors is proposed

to evaluate the mechanical stress induced by these processing steps in the active region of the

image sensor. In addition, the contribution of chip packaging to the mechanical stress in the ac-

tive region will also be investigated. In the following section, the processing steps corresponding

to chip packaging, i.e. the “back-end” part of the fabrication sequence, are described.

I.4 Back-end processing: from IC to packaged chip

After completion of the front-end process sequence, an array of ICs has been formed at the

surface of the Si substrate. After electrical testing at the wafer level, functional ICs must then

be extracted from the wafer to be encapsulated in a supporting case, referred to as a package.

The role of the package is to protect the die from the external environment (e.g. contamination,

shocks) and to act as an electrical interface for direct use in external circuits. The associated

process steps fall into the back-end (BE) processing category.

I.4.1 Thinning

With a thickness of 775 µm for a diameter of 300 mm, Si wafers used for IC manufacturing

provide sufficient mechanical stability throughout the process sequence, e.g. for wafer handling or

during various annealing steps. However, this thickness range is generally too large for compact

electronic products, such as hand-held and portable devices. Therefore, the backside of processed

wafers is typically thinned down to between 400 to 50 µm, depending on the application.

This is achieved using a multi-step grinding process, called backgrinding or simply wafer thinning.

About 90% of the initial thickness is removed by coarse mechanical grinding first, while for the

remaining thickness a polishing process and/or chemical etching is used. Indeed, coarse grinding

leaves scratches on the wafer backside, potentially detrimental for IC mechanical robustness in

the subsequent process steps or product life, e.g. under bending loads.
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thereby simultaneously providing electrical and mechanical connection1. This is achieved by

forming an additional metallization level at the frontside of both tiers, with fine-pitch Cu pads

immersed in organic or inorganic dielectric material (Figure I.29) [55–57]. By doing so, in the

same way as flip-chip assembly, the entire die surface can be used for the connection between

the two tiers, thereby enabling ultra-high-density interconnection. After bonding, the top tier

is thinned and Cu plugs are processed on the backside to enable electrical connection to the

package via the IO pads.

Although the use of polymer dielectric materials at the hybrid bonding interface provides several

advantages [49, 58, 59], such as better tolerance to surface waviness during bonding or lower

bonding temperature, these materials generally have limited temperature-stability [60] for typical

deposition or annealing temperatures in the remainder of the process sequence, i.e. up to 400 ◦C.

In addition, most organic materials are generally not compatible with usual CMOS fabrication

processes, for contamination reasons [49]. Conventional SiO2-based dielectrics on the other hand,

such as undoped silicate glass (USG), enable seamless integration of the hybrid bonding step

into the usual IC fabrication sequence. Indeed, the additional metallization levels required on

both tiers to form the Cu/SiO2 interface can be processed using the standard damascene process

[52].

Surface planarity requirements for Cu/SiO2 hybrid bonding are quite demanding. As detailed

in Chapter II, metal/dielectric hybrid bonding relies on the molecular bonding phenomenon, oc-

curring between extremely smooth and plane surfaces due to surface interaction forces, to make

the two tiers adhere to each other at room temperature. Therefore, both device layers to be

stacked must undergo extensive cleaning and surface planarization by CMP before bonding. In

addition, an annealing step is necessary after bonding to increase the adhesion energy2 [55, 61],

adding up to the total thermal budget already transferred to the IC during the fabrication se-

quence. Nevertheless, since the hybrid bonding interconnections are fabricated using a standard

damascene process, extremely small dimensions are attainable with the current capabilities of

deep UV photolithography, potentially below 1 µm. To achieve the electrical connection between

the two tiers however, each hybrid bonding interconnect on one side of the assembly must be

bonded with its matching counterpart in the other device. Therefore, the main limiting fac-

tor for ultra-fine interconnection pitch is the alignment precision attainable with the bonding

equipment [62].

Hybrid bonding offers significant advantages compared to the TSV approach for image sensing

applications. Indeed, short length pixel-scale vertical connections with the bottom chip can be

achieved instead of peripheral connections, thanks to the fine-pitch capability of hybrid bonding

interconnects. This increased performance enables direct image signal processing below the

1Other technologies exist, such as Cu micropillars, which solely rely on a metal/metal interface to provide the
electrical and mechanical connection between the two tiers. This kind of interconnect may be bonded by eutectic
bonding, in the same way as Cu pillars in flip-chip assembly, or by solid-liquid interdiffusion (SLID) bonding,
enabling low-temperature bonding with a very thin intermediate layer between the Cu micropillars.

2As described in Chapter II, bond strengthening occurs due to the formation of covalent bonds at the
SiO2/SiO2 instead of the weak hydrogen bonds present after bonding at room temperature, and simultaneous
reconstruction of the Cu/Cu interface occurs due to grain growth and interdiffusion.
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pixel matrix and is thus particularly suitable for application to leading-edge technologies, e.g.

automated driver-assistance systems (ADAS), automated face recognition, or global shutter

(GS)1.

The first instances of image sensor chips stacked onto other devices are due to academia in the

2000s, notably the MIT [63–65] and Yale University [66]. In these early devices, the image sensor

was stacked using a dual-TSV approach. Although a demonstrator chip with an image sensor

stacked by Ni/SiO2 hybrid bonding was reported by Nikon in 2012 [56], the first commercial 3D

BSI image sensor was brought to mass-production by Sony for smartphone cameras in 2013 [67].

A dual-TSV strategy was used to stack the image sensor onto a logic chip, enabling to integrate

a high-dynamic-range (HDR) functionality into the device. They were followed in this path

by major competitors on the image sensor market, such as Olympus [68–70], TSMC [71, 72]

and OmniVision [73]. Among these commercial chips, although some were stacked using the

dual-TSV approach similarly to previous generations, others relied on a different technology,

namely metal micro-bumping [69, 74]. Simultaneously, image sensors stacked by Cu/SiO2 or

Au/SiO2 hybrid bonding were also reported among smaller actors2, such as research institutes

or universities [75, 76]. In 2016-2017, 3D BSI image sensors stacked by Cu/SiO2 hybrid bonding

were demonstrated by Sony [77], OmniVision [78], Toshiba [79] and STMicroelectronics [80].

A detailed account of 3D stacking for BSI image sensor applications is presented in Table I.2.

An increase in the number of actors and publications pertaining to metal/oxide hybrid bonding

for imaging applications can be noticed in the recent period (2015-2018), with a focus reducing

the interconnect pitch to improve the density of integration, and thus the performance of the

image sensor. The present work in collaboration with STMicroelectronics was initiated within

that context. In the next section, the objectives of this thesis are outlined.

I.6 Objectives of the thesis

As discussed in the previous section, chip stacking by Cu/SiO2 hybrid bonding is a promising

technology for high-performance image sensing applications.

In earlier work at STMicroelectronics and CEA-Leti, wafer-to-wafer and chip-to-wafer stacking

by Cu/SiO2 hybrid bonding have been compared, and their feasibility investigated. Taibi [81]

has studied interconnect electrical performance, bonding interface morphology and alignment

accuracy on dedicated test structures. This work has then been extended by Beilliard [82], who

carried out a comprehensive study of the interconnect electrical performance, environmental

1As mentioned in Section I.3.1.2, in CMOS image sensors the integration of the signal coming from the pixel
matrix is typically done sequentially on a row-to-row basis. Due to this mode of integration, called rolling shutter
(RS), significant image distortion may occur when capturing fast-moving objects (jello effect). With global
shutter (GS) on the other hand, the signal is integrated simultaneously from all pixels through the incorporation
of additional memories and transistors, enabling to suppress this kind of artefact.

2It cannot be excluded that this technology has also been used by larger semiconductor companies at that
time. Indeed, for a number of publications, the technology used for chip stacking is not explicitly described or
ambiguous expressions such as “direct connection” or “hybrid-stacking” are used.
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material removal rates, the polishing process thus typically results in a slight recess of Cu

surfaces compared to the surrounding dielectric, with a depth in the nanometric range.

Although it was previously shown that this Cu recess can be expected to be compensated,

if sufficiently low, thanks to CTE mismatch between Cu and SiO2 [84], the maximum

acceptable surface topography for successful bonding is not known. In addition, as the

hybrid interconnect pitch is targeted to further decrease in the upcoming years, the influ-

ence on the bonding behavior of several important design and process parameters is not

fully understood. In this chapter, we focus on the hybrid bonding interconnect layer, taken

separately, aiming to gain further insight into these aspects.

First, the topography of the surfaces to be bonded is measured after planarization at

the interconnect scale by AFM for different sets of CMP conditions, resulting in various

observed Cu recess depths. Then, wafers having undergone the same CMP process are

bonded and the Cu/Cu interface morphology after bonding and annealing is characterized

using SEM/TEM cross-sections or 3D-FIB/SEM, aiming to qualitatively assess interface

closure or a possible presence of voids or cavities for each case.

Aiming to correlate these experimental observations, a finite element model for Cu/Cu

interface closure during bonding is then proposed, building on earlier work by Beilliard

[85]. The influence of various design and process parameters on the bonding behavior is

investigated (e.g. interconnect aspect ratio and surface fraction, interconnect overlay or an-

nealing temperature), enabling to secure integration from a thermo-mechanical viewpoint.

The role played by (possible) Cu plasticity in assisting or hindering molecular bonding is

also assessed.

• Chapter 3: Study of mechanical failures induced in interconnect layers by the

wire bonding process on backside pads

Due to the specific integration strategy of the studied 3D BSI image sensor, package

assembly is carried out by wire bonding on peripheral IO pads. As a result of the BSI

configuration, the interconnect stack is flipped and the wirebond pads are located on the

backside of the imager die, just above the local interconnection levels containing thin

dielectric layers with fine metal lines. This proximity of local interconnects to the region

where wirebond is formed may lead to cracks or delamination in the BEoL multi-layer stack.

Indeed, wire-bonding is one of the most critical fabrication steps in terms of mechanical

robustness, due to the large stresses generated in the pad structure during the thermosonic

bonding process. In this chapter, we will investigate the specificity of such an integration

scheme.

First, the mechanical integrity of several pad structures after wire bonding is compared

experimentally. These wirebond pads include different layouts for the metal lines in the un-

derlying interconnect stack (BEoL) and several stacks for the passivation capping (fBEoL).

A comparison between these different pad structures is made by failure inspection after

thermosonic bonding to detect possible cracks or delamination.
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Then, a multi-scale finite element analysis of a standardized wirebond qualification test,

namely the wire pull test, is carried out. A stress-based criterion is proposed to assess

the mechanical robustness of the different pad architectures, aiming to correlate the trends

observed in the experiments. This model is then used to investigate the influence of various

design choices on the mechanical robustness, and thereby propose guidelines to decrease

the number of pad failure occurrences.

• Chapter 4: Process-induced Thermomechanical Stresses in a 3D Integrated

Circuit assembled by Hybrid Stacking

Semiconductor device performance is known to be influenced when subjected to external

mechanical load, due to the strain-induced bandgap narrowing phenomenon, resulting in a

variation of the free carrier mobility in strained Si doped regions. Similarly, the electro-

optical performance of image sensors is stress-sensitive [13]. Although no significant issues

were reported in that respect for the studied BSI image sensor in its “planar” version, a

different stress state can be expected for a 3D BSI image sensor stacked by hybrid bonding,

which has a much thicker interconnection stack and includes a hybrid bonding interconnect

layer. The stress state for this relatively new integration strategy in manufacturing is not

known. It is therefore necessary to have a method enabling in situ measurement of the

mechanical stress in the active region of the chip during the processing and packaging steps

of the 3D image sensor.

A methodology based on Si piezoresistive stress sensors is explored. For the first time,

these sensors are implemented in a 3D BSI image sensor stacked by hybrid bonding. Dif-

ferent locations on the chip are investigated, namely the center and corner regions. By

measuring resistance variations throughout the process sequence, the corresponding stress

variations can be derived, provided that the piezoresistive coefficients associated with the

different orientations have been determined. This calibration procedure is carried out us-

ing a previously developed in-house instrumented four-point bending fixture [86]. The

stress variations are then evaluated throughout both the chip fabrication and packaging

processes, and the result compared with corresponding finite element analyses. Finally,

the limitations and applicability of this method for the current technology are discussed,

and recommendations are proposed for implementation in future devices.

In a last part, the main achievements of this work, to our knowledge the first thermomechanical

stress analysis for a 3D BSI image sensor stacked by hybrid bonding, are presented and further

developments suggested.
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Year Stacked layers Stacking technology Interconnect pitch Company/Institution Reference

2001
64 × 64 12 µm 2MLs APS
0.8 µm 2MLs CMOS ADC

Epoxy adhesive bonding
Al dual-TSV

? MIT [63]

2005
1Mpixel 8 µm APS

0.35 µm 3MLs CMOS readout
Direct bonding
W dual-TSV

8 µm MIT [64]

2007
97 × 97 16 µm CIS

0.35 µm CMOS
W dual-TSV ? Yale Univ. [66]

2009
1Mpixel 8 µm 3MLs APS

3MLs CMOS readout
5-tier multichip stack

Direct bonding
Dual-TSV

Au stud bumps

8 µm
500 µm

MIT [65]

<2012
1.5Mpixel 1.25 µm CIS

?
Ni/SiO2 HB ? Kodak [56]

2013
8Mpixel 4MLs CIS

65 nm 7MLs CMOS logic
Direct bonding

Dual-TSV
? Sony [67]

2013
704 × 512 4.3 µm 6MLs CIS

0.18 µm 6MLs CMOS process
µpillars 8.6 µm Olympus [68]

2013
512 × 832 17 µm SOI X-ray detectors

0.2 µm 5MLsCMOS
µbumps 5 µm

KEK
T-Micro

[87]

2014
1.1 µm CIS

ASIC
Dual-TSV ? TSMC [71]

2014
2056 × 1600 1.1 µm CIS

45 nm ASIC
Dual-TSV

or “direct connection”
? TSMC [88]

2014
4096 80 µm X-ray APSs

2-tier F2F 0.13 µm 5MLs ASICs
Cu/SiO2 HB

via-middle W-TSVs
4 µm Fermilab [75]

2014
64 80 µm APSs

200 µm 3MLs ADC
Pixel-level Au/SiO2 HB ?

NHK
Univ. of Tokyo

[76]

2015
20Mpixel 1.43 µm 4MLs CIS

65 nm 7MLs CMOS logic
? ? Sony [89]

2015
16Mpixel 3.8 µm 6MLs CIS
0.13 µm 6MLs CMOS logic

µpillars 7.6 µm Olympus [69]

2015
4MLs CIS

CMOS logic
Parallel inductive coupling ?

Hokkaido Univ.
Keio Univ.

[90]

2015
8Mpixel 1.1 µm

CMOS logic
Dual-TSV ? TSMC [72]

2015
5Mpixel 1.1 µm CIS on ASIC

16Mpixel 1.12 µm CIS on ASIC
16Mpixel 1 µm CIS on ASIC

? ? OmniVision [73]

2015
20Mpixel 1.43 µm 4MLs CIS

65 nm 7MLs CMOS logic
? ? Sony [91]

2015
4224 × 240 3.8 µm 6MLs CIS
0.18 µm 6MLs CMOS logic

? ? Olympus [70]

2016
8Mpixel 1.12 µm CIS
65 nm CMOS logic

Cu/SiO2 HB ? Toshiba [79]

2016
33Mpixel 4MLs CIS

65 nm 5MLs CMOS logic
“Direct connection” ? TSMC [92]

2016
33Mpixel 1.1 µm 4MLs CIS

65 nm 5MLs ASIC
“Hybrid-stacking” 4.4 µm

NHK
Brookman Technology

TSMC
Shizuoka Univ.

[93]

2016
Two 65 nm 9MLs CMOS logic
on one 8.3Mpixel 5MLs CIS

µbumps ? Sony [74]

2016
6.6 µm 4MLs CIS

65 nm 5MLs CMOS logic
“Direct connection” 6.6 µm

Tohoku Univ.
TSMC

[94]

2016
SPAD CIS

40 nm CMOS logic
Cu/SiO2 HB 7.83 µm

STMicroelectronics
Univ. of Edinburgh

[80]

2016
22.5Mpixel 1.1 µm CIS

40 nm CMOS logic
Cu/SiO2 HB 4 µm Sony [77]

2017
20Mpixel 1.22 µm 5MLs CIS

30 nm 3MLs DRAM
40 nm 6MLs CMOS logic

via-last TSVs ? Sony [95]

2017
1.27Mpixel 3.5 µm 4MLs CIS

40 nm 7MLs CMOS logic
? ?

Sony
Univ. of Tokyo

[96]

2017
8Mpixel 1.1 µm CIS
40 nm CMOS logic

? ?
Qualcomm

TSMC
[97]

2017
4.1Mpixel 3.8 µm 4MLs CIS

55 nm 7MLs CMOS logic
? ? Sony [98]

2017
8Mpixel 1.1 µm CIS
40 nm CMOS logic

? ?
Qualcomm

TSMC
[97]

2017
SPAD CIS

65 nm CMOS logic
F2F “connection layer” ?

EPFL
TSMC

[99]

2017 16Mpixel 1 µm CIS on ASIC Cu/SiO2 HB ? OmniVision [78]

2018
3.9Mpixel 1.5 µm 4MLs CIS

40 nm 6MLs CMOS logic
? ? Sony [100]

2018
13.5Mpixel 1.1 µm 4MLs CIS

65 nm 4MLs CMOS logic
“F2F bonding” ? TSMC [101]

2018
SPAD CIS

65 nm 5MLs CMOS logic
“Multiple 3D connections per SPAD” ?

Delft Univ. of Technology
EPFL
TSMC

[102]

2018 8Mpixel 1.5 µm CIS on ASIC “Stacking technology” 1.5 µm OmniVision [103]

2018
14Mpixel 1.5 µm 4MLs CIS

7MLs CMOS logic
Cu/SiO2 HB

8.8 µm
1.44 µm

STMicroelectronics
Univ. of Bordeaux

CEA-Leti

[83]
This work

Table I.2: Overview of 3D stacking for BSI image sensor applications.
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Chapter II

Cu/SiO2 hybrid bonding process for

chip stacking

II.1 Introduction

For the 3D integrated circuit considered in this work, with an image sensor stacked onto an image

signal processing chip, an electrical connection must be achieved between the two active tiers.

To do so, the method used here is hybrid bonding: a novel approach compared to more mature

techniques in the semiconductor industry, such as wire-bonding, bumping or TSVs presented in

Chapter I. With this method, an additional metal/dielectric patterned layer is processed on top

of the interconnect stack in both chips to be bonded. Thanks to specific surface preparation and

thermal treatment, these matching surfaces can then be bonded directly, without the need for

any intermediate material such as glue or solder. Thus, a very compact interconnection layer

can be obtained using hybrid bonding, making this technique particularly suitable for ultra-high-

density 3D integration. However, for the considered application, involving Cu/SiO2 patterned

bonding surfaces, surface preparation is key for a successful bonding. Indeed, as will be shown

in Section II.3, excellent conformality between the bonding surfaces is mandatory. Therefore,

surface topography for the Cu/SiO2 hybrid bonding layer must be carefully monitored to meet

these stringent planarity requirements.

The aim of this chapter is to evaluate the influence of surface topography on the bonding quality,

exploring various geometries or layouts for the Cu interconnects of the hybrid bonding layer.

The focus is put on the Cu-Cu interface joining matching interconnect pairs on both sides of

the assembly. In Section II.2, we start with an overview of the hybrid bonding process for chip

stacking. Then, in Section II.3 some key experimental aspects of hybrid bonding are investigated.

The influence of Cu interconnect geometry and layout on the resulting surface topography after

planarization of the Cu/SiO2 patterned surface is studied. In turn, the influence of the obtained

surface topography on the bonding quality is examined. In Section II.4, finite element modeling

of the hybrid bonding process at the interconnect scale is carried out, aiming to assess the

53
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influence of additional process and design parameters that could not be addressed in Section

II.3, such as interconnect aspect ratio and surface fraction, metal/dielectric material pair or

interconnect misalignment.

II.2 Overview of hybrid bonding for chip stacking

In this section, the hybrid bonding process is described, and an overview of the underlying

physical mechanisms is proposed. Then, the main advantages and drawbacks of the technique,

as well as the current state-of-the-art are reviewed. Lastly, the present challenges for chip

stacking by hybrid bonding, which motivate this study are discussed.

II.2.1 Process variants

The hybrid bonding process consists in the formation of a patterned metal-dielectric interface at

the surface of the chips to be stacked, able to provide both electrical connection and mechanical

attachment simultaneously, over the whole die surface. Depending on the kind of dielectric

material used to insulate the hybrid bonding pads for a given application, the term “hybrid

bonding” may actually refer to two very different classes of processes:

metal-polymer hybrid bonding: for those applications in which the hybrid bonding pads

are immersed in organic dielectric. Typical examples of polymer dielectrics used for hybrid

bonding include benzocyclobutene (BCB) or SU-8.

metal-oxide hybrid bonding: based on inorganic dielectric, as is typically the case in inter-

connect stack fabrication, with hybrid bonding pads embedded into SiO2 or in some cases

SiCN.

The latter method is used in the considered application to stack the image sensor chip onto

the logic processing chip. Therefore, metal-polymer dielectric will not be considered in this

work. Instead, the materials involved are TEOS-based PECVD undoped silicate glass (SiO2)

for the dielectric, and electroplated Cu for the hybrid bonding pads. This is mainly because for

Cu/SiO2 hybrid bonding, the patterned bonding layer can be fabricated in a straightforward

manner, relying on a mature and ubiquitous technique in the semiconductor industry, namely

the damascene process. As seen in Chapter I, this process is also used for interconnect stack

fabrication just before hybrid bonding. The hybrid bonding process can therefore be integrated

almost seamlessly into the existing manufacturing sequence.

The hybrid bonding process comes right at the end of interconnect stack fabrication (back-end-

of-line process), before IO pad opening and IC surface passivation. The integrated circuits to

be stacked are processed onto two separate wafers. After the last metallization level has been

processed, for each wafer an additional metal/dielectric patterned layer is deposited on top of

the interconnect stack to serve as a bonding layer (Figure II.1). In the considered application,
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II.2.2.2 Decontamination

For similar reasons, the issue of particle contamination is critical for successful bonding. Indeed,

whereas small particles (with diameter less than a few 0.1 µm) can be accommodated through

localized elastic deformation of the bonding surface, for larger particles a distinct deformation

regime was identified, in which the wafers deform by bending to form a bulge around the par-

ticle. This regime typically leads to very large bonding defects, with diameters several order of

magnitudes larger than the particle itself. Such particle contamination may be either airborne

or process-induced (e.g. left-over slurry particles or polishing residues after surface planarization

by CMP). Another crucial aspect is organic contamination, for instance due to volatile organic

compounds adsorption during wafer handling or storage in plastic containers. This kind of con-

tamination may lead to the formation of a thin layer of hydrocarbons or silicones at the wafer

surface, inhibiting the establishment of surface forces during pre-bonding.

Therefore, extensive surface cleaning is necessary before the bonding process to remove the

different contaminants. Typically, this is achieved using a multi-step cleaning process, with (i)

organic removal, then (ii) particle removal and (iii) metallic contaminants removal.

II.2.2.3 Activation

Both the chemical composition of the solutions used for surface cleaning, as well as the chronolog-

ical order of the cleaning sequence are crucial for surface activation, i.e. to create the conditions

necessary for the formation of chemical bonds between the two wafer surfaces in contact. For

instance, following surface cleaning with typical solutions for organic removal, e.g. sulfuric acid

with hydrogen peroxide (SPM solution), the bonding surface acquires a nonzero charge leading

to particle attraction. Organic removal is therefore carried out before particle removal. The

chemistry used for particle removal, usually the “standard clean 1” solution (SC-1), a mixture

of hydrogen ammonium and hydrogen peroxide, enables to activate the bonding surface by ren-

dering it highly hydrophilic, which as will be seen in Section II.2.4 is one of the possible ways to

achieve direct bonding. But conversely, this solution etches the surface oxide and may lead to an

increase of the surface roughness. Therefore, cleaning time is closely monitored to enable particle

removal and surface activation, but limit surface roughening. In addition, the SC-1 clean is also

known to induce metallic contamination. A third cleaning step is thus necessary, generally using

a hydrochloric acid solution referred to as “standard clean 2” (SC-2). This solution however

leads to a degradation of the surface hydrophilicity. Thus, solution concentration, cleaning time,

and temperature must be carefully adjusted to mitigate this detrimental influence of the SC-2

clean on the surface activation obtained during the SC-1 clean. Other possibilities for enhanced

surface activation include plasma activation and/or bonding in ultra-high-vacuum.
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cases, a compressive force may be prescribed in addition on the bonded assembly to fur-

ther reinforce the bond (thermo-compression) [1]. After completion of this consolidation

annealing, a permanent, mechanically more robust bond is obtained, able to withstand

the remainder of the fabrication sequence, especially the critical wafer thinning and wafer

sawing steps.

II.2.4 Physical mechanisms

The hybrid bonding process can be seen as a combination of two long-known technologies in

the semiconductor industry, involving two distinct bonding mechanisms, namely direct bonding

between the SiO2 dielectric portions of the hybrid bonding surface (also referred to as molecular

bonding)1, and metal bonding between matching Cu hybrid bonding interconnect pairs (also

referred to as diffusion bonding). In the following, drawing upon recent research, the physical

mechanisms underlying these two distinct phenomena, both involved in hybrid bonding, are

reviewed.

II.2.4.1 Direct bonding

The long-known phenomenon of spontaneous adhesion between flat, clean, smooth glass sur-

faces [2–4] was first leveraged for industrial purposes in the early 1960s at Philips Research,

with the application to the direct bonding of optical devices for laser miniaturization [5]. It was

then adapted and developed by the semiconductor industry some twenty-five years later by two

research groups independently at IBM and Toshiba for the fabrication of silicon-on-insulator

substrates by wafer direct bonding [6, 7]. Since that time, molecular bonding was shown to

occur for various kinds of materials (ceramics, semiconductors and metals), bonding pairs (ho-

mostructures and heterostructures) and surface properties (hydrophilic and hydrophobic). We

focus exclusively on the adhesion between SiO2 surfaces by the hydrophilic bonding mechanism,

which is used in this work for chip stacking. Another type of direct bonding is possible, namely

hydrophobic bonding, in the context of semiconductor manufacturing corresponding to adhe-

sion between native oxide stripped Si surfaces. Hydrophobic bonding relies on distinct surface

preparation and adhesion mechanisms and will not be described here.

The physical mechanisms and surface parameters controlling the hydrophilic bonding phe-

nomenon have been, and still are, the subject of much research. In the general case, adhesion

may arise between the surfaces of two solids, brought in sufficiently close proximity, due to four

types of surface interactions [8]:

Capillary forces: due to capillary condensation of water at surface contact sites, depending

on the presence or not of a condensable vapor;

1It must be noted that direct bonding of Si wafers is also possible in absence of an oxide layer, native or
deposited, at the surface before bonding. This type of bonding is referred to as hydrophobic bonding.
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Coulomb forces: due to the presence of adsorbed electrons or ions on the surfaces, resulting

in macroscopic surface charges.

Van der Waals forces: due to the interaction between atomic or molecular dipoles, whether

instantaneous, permanent, or induced. Contrary to the former two contributions, these

forces are always present, even between neutral atoms or molecules.

Hydrogen bonds due to the interaction of hydrogen with highly electronegative atoms, e.g.

oxygen-mediated hydrogen bonds in presence of hydroxyl groups (–OH) on the surfaces.

Hydrogen bonds are very energetic, ranging somewhere between a Van der Waals interac-

tion and a covalent bond.

For hydrophilic bonding, the respective contribution of the different surface interactions is de-

termined by surface preparation, bonding environment, and the distance separating the bonding

surfaces.

II.2.4.1.1 At room temperature

For wafer bonding, capillary attraction is not the main driving force bringing the two wafers

into contact during the early stages of the bonding, except for some specific applications such

as direct bonding with a liquid interlayer [9–11]. Indeed, although the bonding surfaces have

become highly hydrophilic1 after surface preparation, due to the basic and oxidizing properties of

the surface cleaning solution, only a few water monolayers are adsorbed on the bonding surface.

Therefore, it is generally assumed that the volume of adsorbed water is not sufficient to form

a meniscus at the bonding front during the contacting phase of the wafer bonding process, and

that the radius of curvature of the surface asperities is too large for capillary bridges to appear

between the contacting surfaces [13, 14].

In the early stages of wafer bonding, as the wafers are placed in front of each other, a thin

cushion of air (about 30 µm-thick [13]) remains trapped in-between, preventing contact between

the bonding surfaces. Due to gravity, this thin air layer progressively flows outside of the inter-

wafer gap as the top wafer falls into contact with its bottom counterpart. As shown by Navarro

[13], this process is very slow however, with about one day’s time needed to reach the last 100 nm.

Therefore, in practice, bonding is systematically initiated by pressing the two wafers at a given

location (in most cases at the center) using tweezers or a metal pin. This first contact point

in which adhesion has been initiated then spontaneously extends, leading to the propagation of

a “bonding wave” across the whole bonding surface. This method is far more effective, with a

bonding front propagation speed of about 1 cm/s [15–17]. It is widely accepted that adhesion is

the result of oxygen-mediated hydrogen bonds between the hydroxylated SiO2 bonding surfaces

[18–21]. Thus, rather than capillary forces, hydrogen bonding coupled with air flow outside of

the inter-wafer gap is the driving mechanism in the early stages of wafer bonding.

1Droplet angles of a few degrees only are obtained in wettability experiments for various surface cleaning
chemistries [12].
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Wafer bonding experiments were carried out in various atmospheres by Tong and Gösele [18],

who observed a strong influence of gas viscosity on the propagation speed of the bonding front.

In another study [22], they bonded wafers in ultra-high vacuum and reported instantaneous

bonding, by bonding wave velocities in the order of 1 m/s. For a given bonding environment,

bonding wave velocity is a good indicator of the quality of the bond [23]. Extensive analytical

and numerical work of bonding front propagation has been done to enable the adhesion energy

evaluation from bonding wave velocity and assess the influence of various process or design

parameters on the bonding quality. Rieutord et al. and other authors [15–17] have developed

a quantitative analytical framework based on a Poiseuille flow between two deformed adhesive

Kirchoff plates. Turner et al. [24–26] used an analytical energy balance approach and a numerical

model based on fracture mechanics (VCCT) to evaluate the equilibrium bonded length for various

design or process parameters (e.g. initial wafer geometry, etch patterns, bonding configuration).

Kubair et al. [27] and Estevez et al. [28] also proposed a numerical approach, based on cohesive

zone modeling.

II.2.4.1.2 During thermal annealing

Immediately after pre-bonding at room temperature, the formed bond is quite weak, with a

typical bonding strength of about 100 mJ m−2 [29]. While sufficient for wafer handling, these

adhesion energies are far too low to provide sufficient mechanical robustness during product life,

or even the remainder of the fabrication sequence. As mentioned in Section II.2.3, a thermal

anneal is thus necessary to strengthen the bonding interface, increasing the bond strength up

to about 2 mJ m−2 [18, 29–31]. Such values, closer to the fracture toughness of bulk silicon [32],

enable to form a permanent bonding, considerably mitigating the risk of interfacial fracture.

From a chemical standpoint, the accepted mechanism to explain the large increase of adhesion

energy between initial bonding and permanent bonding is a thermally-activated transformation

of the comparatively weak hydrogen bonds formed at the bonding interface into covalent bonds.

Stengl et al. [33] proposed a conceptual chemical model for the hydrophilic bonding of perfectly

flat surfaces. They distinguished three regimes associated with different temperature ranges:

between room temperature and 200 ◦C, formation of hydrogen bonds between two adsorbed

water monolayers on each side of the bonding interface, between 200 ◦C and 700 ◦C, desorption

of the adsorbed water molecules leading to direct contact between the bonding surfaces and

formation of hydrogen bonds between silanol groups (Si–OH), and above 700 ◦C, replacement of

the weak hydrogen bonds by covalent siloxane bonds (Si–O–Si). This model was later revised

by Tong and Gösele [18], who suggested that in the low temperature regime two or three water

monolayers may be present between the bonding surfaces, leading to a more stable configuration.

This also lead them to propose new estimations for the separation distance between bonding

surfaces in the different regimes. Several works relying on molecular dynamics simulations have

since enable to derive more precise estimates for these separation distances [27, 34–37]. Recently,

Navarro et al. [21], proposed a mechanistic model for hydrophilic bonding drawing upon these
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studies and accounting for realistic surface topography. Their model captures the experimentally-

observed hysteretic effect between adhesion and separation [38], which they attributed to the

evolving distribution of water along the interface during bonding.

A mechanical approach is also needed to account for surface asperities, in addition to the chem-

ical aspects investigated in the above studies. Indeed, the chemical nature of the formed bond

greatly depends on the separation distance between the bonding surfaces at the local scale, and

conversely the bond type will in turn determine the average separation distance at the surface

scale. Asperity deformation is also a crucial factor deciding whether, for a given surface rough-

ness, excessively large repulsive forces will prevent bond formation, or on the contrary if elastic

accommodation of the asperities is possible during bonding. Various studies have investigated

these aspects. Yu and Suo [39] have analytically derived a criterion for the bonding of two wafers

with a 3D sinusoidal surface profile, confirming some earlier results by Tong and Gösele [40, 41],

obtained using thin plate theory. Miki and Spearing [42] have correlated the surface morphology

with the resulting apparent bonding energy, using the notion of bearing ratio. Turner et al. [43]

have investigated the bonding of more realistic surfaces using a mechanics-based numerical model

and derived design maps showing acceptable magnitudes of height variations as a function of spa-

tial wavelength. More recently, a number of studies have relied on the Greenwood-Williamson

asperity contact model [44], used in conjunction with adhesive contact theory to predict the

equilibrium distance between the bonding surfaces. Gui et al. [45] have shown that both the

effective bonding energy and the effective bonding area between rough surfaces depend on a

dimensionless surface adhesion parameter, using the DMT model (Derjaguin-Muller-Toporov

[46]), whereas other authors [47, 48] have used the JKR model (Johnson-Kendall-Roberts [49]).

Rieutord et al. [47] tested the results obtained using the latter model against X-ray reflectivity

and blade insertion measurements carried out on several surfaces with distinct roughness values,

and were able to establish a correlation between interface separation and bonding energy.

II.2.4.2 Metal bonding

Spontaneous adhesion between clean and smooth pieces of metal has also been known for a

long time. Medieval encyclopedists [50] already highlighted the importance of cleanliness for

joining thin gold and silver foils. In the eighteenth century, Desaguliers showed in a series of

experiment on friction that pressing clean and smooth lead spheres into contact results in strong

attachment [51]. Since the 1970s, pressure welding and diffusion bonding have been used in the

automotive, railway and aeronautical industries for commercial or military applications [52, 53].

In the semiconductor industry, this type of process was also introduced around that time, with

the development of thermosonic wire-bonding1 [54]. Another example is the introduction in the

2000s of thermocompression bonding, an important technology for 3D integration applications

[55, 56].

1Mechanical aspects related to this process are investigated for a 3D stacked image sensor in Chap 3.
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A distinctive feature of diffusion bonding is the absence of welding material, contrary to eutectic

bonding for example between Cu pillars. Instead, adhesion is achieved through the application

of pressure and temperature, enabling to (i) achieve intimate contact between the bonding

surfaces, and (ii) activate diffusion processes at the interface. Although many different metals

can be used for diffusion bonding, we will focus here exclusively on Cu-Cu bonding. While for

bonding with dissimilar metals, intermetallic compounds1 are formed at the interface, the use of

a monometallic bonding process allows seamless contact between the bonding surfaces, resulting

in the formation of metallic bonds at the interface.

II.2.4.2.1 At room temperature

The physical mechanism involved in the adhesion of Cu surfaces at room temperature are as-

sumed to be quite similar to those described in the previous section for SiO2 surfaces [57]. Indeed,

copper surfaces are easily oxidized, for example during storage in ambient air. The presence of

this native oxide during surface cleaning before the bonding process makes the copper surfaces

hydrophilic. Gueguen et al. [58] carried out water droplet angle measurements before and after

surface preparation, and evidenced a sharp increase of surface hydrophilicity immediately after

surface cleaning (from 49° down to 19°2). Similarly to the case of SiO2 surfaces, water adsorption

is expected to occur on the Cu surfaces, leading to hydrogen bond formation and thus adhesion

during pre-bonding at room temperature. This assumption is supported by a number of experi-

mental studies in which the same process as for SiO2 hydrophilic bonding was successfully used

to achieve direct bonding of Cu blanket wafers at room temperature [58–63]. Another evidence

is the possibility to bond materials of very different nature, provided that an oxide has formed

at their surface and adequate surface preparation has been carried out. For instance, direct

bonding of Cu and SiO2 blanket wafers at room temperature has been demonstrated [60, 61].

In both cases, namely Cu-Cu and Cu-SiO2 direct bonding with blanket wafers, blade insertion

measurements have revealed bonding energies quite close to those obtained for SiO2-SiO2 hy-

drophilic bonding [60, 61]. It must be noted that the Cu surfaces become hydrophobic again

a few hours after surface preparation, leading to a strong time constraint between the surface

cleaning and pre-bonding steps [58].

The presence of native oxide on Cu surfaces is not fundamentally detrimental during pre-bonding

at room temperature, by enabling adhesion through the formation of hydrogen bonds. Actually,

a significant increase of the bonding energy3 is even observed with storage time after pre-bonding,

typically from a few 100 mJ m−2 to about 2.5 J m−2 [61, 66]. Di Cioccio et al. [61] characterized

the Cu-Cu bonding interface after bonding at room temperature using X-ray reflectivity and

showed that the initial surface oxide undergoes significant growth with storage time, from 0.2 nm

up to 4 nm for an initial roughness of about 2 nm RMS. This growth is attributed to copper

1For example, AuAl for wire bonding or CuSn for Cu pillars.
2Gondcharton [53] even reports droplet angles below 3°.
3Although less marked, a similar increase of the bonding energy with storage time was observed for SiO2-SiO2

direct bonding [20, 40, 64], which was attributed to thermally-activated capillary condensation of liquid water
bridging the two surfaces in the contact regions [65].
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diffusion through the oxide to react with adsorbed water [53, 67]. However, typical durations

associated with this kind of interface reinforcement are in the range of days, and in addition the

presence of a continuous layer of cuprous oxide at the interface is not desirable from an electrical

standpoint. In that respect, the surface oxide is rather regarded as a limiting factor, preventing

intimate contact between Cu surfaces, as well as the creation of strong metallic bonds sought

after to enhance the bonding energy.

II.2.4.2.2 During thermal annealing

The thermal annealing process carried out to strengthen the SiO2-SiO2 interface actually enables

to circumvent the detrimental effect of cuprous oxide presence at the Cu-Cu bonding interface.

Several experimental studies have been conducted to investigate the evolution of the Cu-Cu

bonding interface during annealing, for instance using X-ray reflectivity or TEM cross-sections

[58–61, 68, 69]. These have shown that direct contact between Cu surfaces can be obtained,

even in the presence of an initial surface oxide, provided that sufficient temperature (and for

thermocompression bonding, sufficient pressure) is prescribed. Various mechanisms have been

proposed to explain this observation [57–59, 62, 63, 70, 71]:

At room temperature: asperity contact due to surface roughness and interface reinforcement

through interface oxide growth;

Between RT and 150 ◦C: fracture/dewetting of the interface oxide, formation of grain joints

in regions where the oxide layer is absent, segregation of remaining oxide into nodules

along the interface;

Above 150 ◦C: reorganization of the Cu-Cu interface, transformation of initially T-shaped triple

junctions into a lower energy 120° configuration.

The loss of continuity of the oxide layer between room temperature and 150 ◦C may attributed

to several factors, among which (i) breakage of the brittle oxide due to dislocation pile-up in the

neighboring plastically deforming copper under thermal loading [57, 72], (ii) competition between

metal-oxide interface and grain boundary energies resulting in a thermodynamically unstable

oxide [57, 63], (iii) reduction of the oxide by the surrounding Cu material with dissolution of

oxygen atoms into Cu grains and/or migration into grain boundaries [53, 73–75], (iv) phase

transformation of the oxide from Cu2O to CuO resulting in a volume change of about 12%

[53, 76, 77].

The reorganization of the Cu-Cu interface is a result of the apparition of diffusion wedges at

triple junction points [62] and/or abnormal grain growth [68]. As a result, the initially flat

bonding interface assumes a sawtooth shape and becomes virtually equivalent to bulk-like grain

boundaries. A very large increase of the bonding energy ensues, which becomes almost impossible

to evaluate using typical destructive methods (blade insertion, four-point bending) due to sample

breakage or crack kinking [58, 63, 78]. Thus, it may be inferred that the Cu-Cu bonding energy
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becomes comparable to bulk fracture toughness. Radu et al. [60] investigated the influence

of annealing temperature on the bonding energy for different types of interface. A very large

increase is observed above 150 ◦C for Cu/Cu full sheet and for Cu/SiO2 patterned1 interfaces,

with for the latter up to 8 J m−2 after annealing at 400 ◦C. A weak bonding energy was obtained

for a Cu/SiO2 full sheet interface however, with initial values of a few 100 mJ m−2 at room

temperature, without any significant increase even after annealing at 400 ◦C.

By combining oxide-oxide direct bonding and metal-metal diffusion bonding within a single

heterogeneous interface, the hybrid bonding process enables to achieve simultaneous mechanical

and electrical interconnection between the top and bottom chips of the considered 3D stacked

image sensor. In the next two paragraphs, the advantages and drawbacks of the Cu/SiO2 hybrid

bonding compared to other methods are reviewed, as well as the current challenges for application

of this process to 3D chip stacking.

II.2.5 Advantages and drawbacks

Contrary to 3D assembly methods based on TSVs, with hybrid bonding the connection between

the chips is achieved at the bonding interface only, rather than extending through the whole

thickness of interconnect stack. Therefore, this technique does not require large FEoL or BEoL

exclusion regions, enabling to achieve great compactness and ultra-high density of interconnec-

tions. In addition, with hybrid bonding the bonded surface extends laterally over the whole chip

area, contrary to metal bonding techniques such as eutectic bonding or solid-liquid interdiffu-

sion (SLID) for which micro-pillars are required at the bonding interface, resulting in a stand-off

distance between the stacked dies. Since no solder alloy or intermetallic compound is necessary

to form the bond, issues associated with solder bridging or voiding during reflow can also be

alleviated.

Among the two hybrid bonding process variants presented in Section II.2.1, namely metal-

polymer hybrid bonding and metal-oxide hybrid bonding, the latter can be achieved using

similar tools and processes as for interconnect manufacturing, namely the damascene process

and chemical-mechanical polishing, thus providing better compatibility with typical CMOS pro-

cesses. Furthermore, the use of an inorganic dielectric enables to avoid issues typically associated

with polymer materials, such as ageing or poor mechanical properties above the glass transition

temperature. Another advantage of the Cu/SiO2 hybrid bonding process considered here is the

possibility to achieve strong attachment without necessarily needing to exert pressure on the

bond, as for thermocompression bonding.

The above advantages come at the price of extensive surface preparation however, as detailed in

Section II.2.2, with stringent requirements on surface flatness. Indeed, both Cu and SiO2 bonding

surfaces are far less compliant compared to polymer dielectrics or eutectic alloys. In addition,

thorough surface cleaning is needed to avoid particle, organic and metallic contamination, while

1The metal surface fraction for the studied samples was 20% [60].
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ensuring that the bonding surfaces remain sufficiently hydrophilic to obtain good adhesion during

the pre-bonding step at room temperature. The hybrid bonding process also requires a high

thermal budget compared to polymer curing or solder reflow, with temperatures ranging between

200 ◦C and 400 ◦C for several hours during the post-bonding annealing step.

II.2.6 Current challenges

Bonding energy measurement

Quantitative evaluation of the bonding energy is a very challenging task. Generally, the obtained

energy values are deemed valid only for qualitative comparison, between samples measured using

the same technique, with the same protocol, and in a similar environment [23]. As with any

interface energy evaluation, the influence of the measurement technique on the obtained value is

a critical issue. Indeed, distinct loading configurations with distinct mode mixity lead to quite

different results [79]. For SiO2/SiO2, another important aspect is the sensitivity of the formed

siloxane bond during thermal annealing to environmental effects. A strong influence of water

stress corrosion on the measured energy values was evidenced [29, 64, 65, 80]. Furthermore,

in presence of copper at the bonding interface, the respective contributions of interface energy

and plastic dissipation are difficult to decorrelate [61, 81]. However, those issues are generally

encountered in many studies related to fracture mechanics. A more specific issue for wafer

bonding is the presence of an hysteresis effect between adhesion and debonding [26, 38]. Several

authors stressed the importance of operating a distinction between “bonding energy” and “work

of adhesion” [13, 17], and specific measurement methods enabling to obtain the latter were

recently developed [64]. Being able to quantitatively evaluate adhesion at the hybrid bonding

interface is an important requirement to allow further optimization of the mechanical robustness

of the bond formed between the stacked chips. These investigations require specific equipment

and sample preparation however, and thus will not be undertaken here.

Bonding-compatible planarization of patterned surfaces

Surface preparation requirements become even more challenging for hybrid bonding, due to the

need for simultaneous surface planarization, cleaning and activation of heterogeneous Cu/SiO2

surfaces. Indeed, Cu and SiO2 have distinct physical and surface properties (e.g. Young’s

modulus and material removal rate), causing distinct planarization behaviors during chemical-

mechanical polishing [61, 82–84]. As will be seen in the next section, this heterogeneous behavior

can lead to topography defects, which in some critical cases may even prevent proper contact

between the Cu interconnects at the interface. In addition to a decrease of the electrical contact

area, these bonding defects could also result in a degradation of the overall adhesion of the

hybrid bonding interface. These issues related to bonding-compatible planarization of Cu/SiO2

patterned surfaces are investigated experimentally and numerically in the next two sections.

Overlay mismatch between hybrid bonding interconnects

The other main limiting factor for hybrid bonding is actually the alignment precision that can
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be reached by the bonding equipment [85]. Indeed, although well-defined hybrid bonding in-

terconnects can be processed below submicrometer dimensions using current photolithography

capabilities, the alignment precision during the pre-bonding step must be sufficient for intercon-

nects on one side of the bonding interface can be connected to their counterpart on the other

side. This overlay mismatch results to a decrease of the electrical contact area, and the presence

of overlapping Cu/SiO2 regions, which (i) were shown to have significantly lower bonding energy

compared to Cu/Cu and SiO2/SiO2 even after annealing at 400 ◦C and (ii) could lead to Cu

diffusion into the SiO2 dielectric. These issues have been addressed in several recent studies

[83, 84]. In Section II.3, the consequences of this issue on Cu-Cu interface closure will be as-

sessed, accounting for Cu surface planarization defects resulting from CMP on heterogeneous

surfaces.

II.3 Experimental characterization

Note: The characterization work presented in this section was carried out by the Physical Char-

acterization team at STMicroelectronics Crolles. Here, these individual experimental results

were brought together, interpreted and contextualized in order to better illustrate the investi-

gated issues and provide a basis for the simulation study.

In the following, test chips assembled by hybrid bonding are characterized before and after

bonding, aiming to evaluate the influence of several design parameters, namely interconnect

geometry or layout. Among these samples, for each set of process parameters one half is dedicated

to surface topography characterization of the Cu/SiO2 patterned bonding surfaces by atomic

force microscopy (AFM) after surface planarization. The remainder undergoes the bonding

process and is used for subsequent SEM or TEM inspection of cross-sections of the Cu-Cu

bonding interface obtained by ion-milling (FIB), enabling to investigate the influence of various

surface topographies on the Cu-Cu interface bonding quality.

II.3.1 Samples description

Two layers of dielectric material separated by an etch-stop layer are deposited sequentially, as

follows:

Via layer: SiCN barrier + USG1 (PECVD: 60 nm + 600 nm)

Metal layer: SiN barrier + TEOS2 (PECVD: 60 nm + 500 nm)

After photolithography and dry etching to form cavities for the Cu interconnects, a thin diffusion

barrier (PVD: TaN/Ta 13 nm) is deposited, and the trenches are filled with copper (PVD: Cu

seed 90 nm; ECD: Cu 1 µm). An annealing process is then used to reduce the Cu resistivity

1Undoped silicate glass, refers to SiO2 deposited using a silane-based chemistry
2Tetraethylorthosilicate, refers to SiO2 deposited using a TEOS-based chemistry
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and control the microstructural properties. Finally, to remove the excess of metallization (Cu

overburden) and obtain a flat and smooth surface, as required for direct bonding, a specific CMP

process is used.

II.3.2 Cu/SiO2 surface topography characterization before bonding

Since Cu and SiO2 have different removal rates, fine-tuning of the CMP parameters is thus

required to avoid obtaining surface topologies that, although very smooth, exhibit significant

height variations due to different erosion depths between the interconnects and the surrounding

dielectric: in a majority of cases, the Cu lines in BEoL stacks are slightly overpolished compared

to the surrounding dielectric surfaces. For hybrid bonding applications, this well-known “Cu

dishing” effect is potentially detrimental to the bonding between matching interconnects on

both surfaces. As will be seen in the following, how deep a dishing depth is acceptable for

efficient hybrid bonding is a central question.

In the following paragraphs, surface topography measurements are carried out at the pattern

scale for bonding pads with different geometries or processed using different CMP recipes. The

measurements are carried out in the “dummies” regions on several test chips using an AFM

(Bruker Dimension Icon, Bruker, Karlsruhe, Germany) in tapping mode with a standard probe

(Bruker Tespa-v2) of nominal tip radius 7 nm. Areas of 10 × 10 µm2 centered about a randomly

selected pad within the region of interest are scanned with 512×512 pixel resolution at a 1 Hz

line scan rate. The measured horizontal and vertical distances are calibrated to ±1%.

In the next paragraph, the surface topography of a Cu hybrid bonding interconnect corresponding

to a worst case is used to exemplify some typical planarization defects encountered at the pattern

scale.

II.3.2.1 Planarization defects classification

A line scan taken across of a square Cu pattern of width 4.4 µm at the wafer center, after

a CMP process identified as leading to a worst case in terms of Cu dishing1 is presented in

Figure II.3. The boundary between Cu and SiO2 regions is apparent from sharp drops in the

measured profile at the periphery of the Cu pattern, referred to in interconnect manufacturing

as “fangs”. This edge overetching is assumed to result from the high static etch rate of the

TaN/Ta diffusion barrier compared to Cu and SiO2 [86, 87]. A close inspection of the width of

the recessed zone therefore shows that for the considered Cu pattern, not only the interconnect,

but also a significant fraction of the surrounding oxide is overpolished. The surface topography

of a recessed Cu pad may more generally be decomposed into three main features [88]:

1For confidentiality reasons, in Figure II.3 (and in the remainder of this chapter) the measured Cu dishing
depth is normalized against a reference critical value, whose meaning will be discussed in Section II.3.3.1. The
measured pad overpolishing depth is in the 0.5-20 nm range.
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drops are observed in the Cu surface profiles, which are believed to result from scratches or grain

pull-out during CMP.

In conclusion we observe that, for the investigated Cu pattern width range, CMP results in

a similar dishing depth. The geometry (square or octagonal) or layout do not influence the

magnitude of the dishing either. In the following, a morphological study of the hybrid bonding

interface is carried out on wafers having undergone different CMP recipes, resulting in various

degrees of Cu recess. The aim is to assess the influence of CMP-induced surface topography on

Cu-Cu interface closure after post-bonding annealing.

II.3.3 Cu-Cu interface morphological characterization after annealing

As discussed in the previous section, CMP process selectivity has a strong influence on Cu

dishing. To investigate how this planarization defect may in turn affect the bonding, wafers

were processed using different slurry selectivity, i.e. various degrees of Cu overpolishing after

CMP, and bonded. These wafers are referred to by their respective “batch name”, using letters

from A to F with increasing slurry selectivity. To characterize the associated dishing, for each

batch one wafer was extracted from the manufacturing line to carry out pattern-scale surface

topography measurements by AFM, similarly to the previous section. Within each lot, the rest

of the samples1 undergoes the bonding process, followed by consolidation annealing at 400 ◦C

for two hours. Cross-sections are then carried out at the local-scale (a few microns wide) by

ion-milling (FIB), allowing detailed characterization of the bonding interface by SEM or TEM.

II.3.3.1 Influence of surface topography on Cu-Cu bonding

For each batch, FIB/SEM-TEM cross-sections of the bonding interface after post-bonding an-

nealing are presented in Figure II.6:

Lots A to D: within the detection capabilities2 of the equipment, no bonding defect is visible

at the Cu-Cu interface and the pads appear to be completely bonded. The presence of

cavities and cuprous oxide nodules with diameters of a few tens of nanometers can be

noticed at the Cu-Cu interface however upon closer inspection (Figure II.7a). These nano-

sized defects are assumed to arise due to dewetting of the oxide layer at the Cu interface

and diffusion-induced voiding [58, 59, 62];

Lots E and F: about 10 nm-thick gaps are present between the Cu surfaces, extending over

widths of about 1 µm (Figure II.7b). These large unbonded regions are believed to result

from excessive Cu dishing due to the planarization process.

1A thin metal layer is deposited at the surface of the samples for the AFM measurements. Therefore, the exact
same wafer cannot be used both for surface topography measurements and post-bonding interface characterization.

2The spatial resolution obtainable with the scanning electron microscope is 2-3 nm, and 0.5 nm for the trans-
mission electron microscope.
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II.3.3.2 Bonding defects classification

The high-resolution cross-sections presented above enable a qualitative assessment of the bonding

quality (“bonded” or “partially bonded”), and to approximately evaluate the lateral extent of

the voids. However, little information is obtained on their spatial distribution across the Cu-

Cu interface. Aiming to provide further insight, 3D imaging was carried out via FIB/SEM

tomography on bonded pads from lots C and E, corresponding respectively to “bonded” and

“partially bonded” cases in Figure II.8.

For the lot C sample (“bonded” case), FIB/SEM tomography was carried out by surface milling

parallel to the interface plane, with a 15 nm vertical step. A reconstructed view based on the

minimum voxel projection for the 133 images obtained is presented in Figure II.9. The Cu-

Cu bonding interface can be seen in top view at the center of the picture. It can be noticed

that for these bonding pads, the misalignment between Cu surfaces is very low, in the order of

100 nm. With this method, the voids present in the Cu-Cu stack can be observed in the form of

dark spots1. However, no distinction can be made between the voids located inside the hybrid

bonding pads and those present at the bonding interface. Therefore, similar measurements were

performed on a different sample exhibiting similar interface morphology (“bonded” case with

nano-sized cavities), for which the reconstructed minimum projection was taken perpendicularly

to the bonding interface2. Two populations can be distinguished for the voids:

• small cavities, with a diameter of about 10 nm, mainly segregated at the bonding interface.

This observation is in agreement with earlier results by Beilliard [92].

• larger voids, comparatively scarcer, ranging from 50 to 100 nm, found through the thickness

of the Cu pads.

For the lot E sample (“partially bonded”), a different approach was used in order to avoid

this issue. Similarly to the previous case, cross-sections of the bonded pads were carried out

perpendicularly to the bonding interface, at a 20 nm step. However, for each cross-section

the locations where interfacial voids are observed were reproduced “by hand” on a FIB/SEM

tomography, corresponding to a projection overlay of the top and bottom pads in top-view,

obtained by surface milling parallel to the interface. By doing so, only the interfacial voids are

visible, enabling to derive a rough estimate of the effective bonded area. The obtained image

is shown in Figure II.10. It can be seen that for this sample having a more marked Cu recess

compared to the previous case, large voids are present at the bonding interface, extending over

approximately 50% of the bonding surface. No specific symmetry or preferential location is

observed for these cavities, nor any correlation detected between the void distribution and the

grain structure.

1Within the equipment resolution (about 0.5 nm).
2While it may seem like grain boundaries are visible in Figure II.9, the reconstructed view is actually obtained

by taking the minimum projections for all the cross-sections. Thus, no conclusion can be drawn about any
preferential locations for the cavities compared to the grain structure (e.g., grain boundaries or triple junctions)
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II.3.4 Discussion

In this section, an experimental study of the influence of CMP-induced surface topography

defects on Cu-Cu interface bonding quality was carried out. In particular, Cu surfaces are

typically in recess compared to the surrounding dielectric materials (“dishing” effect). Cu dishing

originates due to the different material removal rates for the metal and dielectric regions on the

patterned hybrid bonding surface. Naturally, CMP slurry selectivity (metal to dielectric material

removal rate ratio) was therefore seen to have a strong influence on the final metal recess. An

increase of metal recess is observed for increasing selectivity. This influence of selectivity on

metal recess is well-known and has been reported in both experimental and modeling studies

[90, 93].

For fixed CMP process conditions, no significant variations of Cu dishing were measured within

the investigated range of pad widths, from about 3 µm to 6 µm. Yet several studies report an

increase of metal recess for increasing pattern width [90, 94–97]. In the latter references, two

regimes are identified depending on the surface roughness characteristics of the polishing pad:

• for small pattern width compared to typical dimensions of asperities at the surface of the

polishing pad, only the smallest asperities can reach the bottom of the recessed metal

surface. Larger asperities are filtered, resulting in lower Cu dishing1.

• for large pattern width, a behavior close to that of a blanket film is obtained, resulting in

a saturation of the dishing values.

Possible reasons explaining the mismatch between the latter results in the literature and the

observations of this study include: (i) distinct behavior for the considered square Cu patterns,

compared to Cu lines typically considered in the literature, (ii) increased asperity filtering due to

the very small dimensions considered here compared to the above-mentioned studies, suppressing

dynamic material removal in favor of static etching, or (iii) a lack of statistics in our study, with

only one pad measured by AFM for each pattern dimension.

The influence on Cu dishing of several other parameters, such as pattern shape (square, octagon,

rectangle) or layout (aligned or staggered), was also investigated. Similar to pattern width, no

significant variation of Cu recess was obtained. A possible explanation for this observation is

the following. In addition to pattern width, the other main design parameter identified in the

literature as having the most impact on metal recess is pattern density2. For the considered

shapes and layouts however, there is no substantial change in either pattern width or pattern

density, which could explain a negligible variation of the metal recess in our measurements.

Based on interface morphology characterization by SEM-TEM and 3D FIB/SEM tomography

for samples with various typical Cu recess depths, there is evidence that a dishing threshold

exists, beyond which only partial Cu-Cu bonding occurs. To estimate its magnitude and which

1Even for slightly larger pattern width, polishing pad compliance may also contribute to mitigate Cu dishing,
by preventing full contact in the recess regions (“asperity shielding”) [90].

2i.e. metal volume fraction (or equivalently, surface fraction).
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features influence it remains to be clarified. It can also be noted that, in addition to Cu dishing

depth, the opening angle formed between two dished pads could also play an important role

on the bonding. In that regard, assuming a circular shape for the measured 2D line scans1,

a constant dishing for pads of decreasing width, as observed in the present study within the

investigated width range, could be expected to lead to a decrease of the bonding quality, due to

larger initial opening angle before bonding. This issue is further discussed in Section II.4.

A central question for hybrid bonding is whether partial bonding due to large Cu dishing may

lead to critical electrical performance issues. Lhostis et al. [83] showed that for the type of

hybrid bonding interconnect considered here, the most influential factor in terms of the electrical

resistivity of the interconnection is the number of vias connecting the pad to the remainder of

the interconnect stack, rather than the bonded surface area between the top and bottom hybrid

bonding pads. Therefore, partial Cu-Cu bonding, even as critical as depicted in Figure II.10, is

not believed to represent a major risk for the electrical performance of the 3D integrated device.

Nevertheless, from a mechanical standpoint, partial bonding could lead to serious mechanical

reliability issues (i) by decreasing the contact area between the bonding surfaces, leading to

debonding at lower loads, and (ii) by generating large initial defects at the interface, present

even after consolidation annealing and likely to evolve towards critical dimensions due to fatigue,

electromigration or stress voiding phenomena, arising from thermal and electrical stressing during

product life.

In the following, numerical modeling of Cu-Cu bonding during post-bonding annealing is carried

out, aiming to provide a mechanistic understanding into the influence of several process and

design parameters on bonding quality.

Further experimental characterization is required to determine the mechanical properties of

the materials involved, thereby providing the necessary input parameters to carry out numerical

modeling. In Appendix B, using the same process parameters as for the Cu/SiO2 hybrid bonding

process, the plastic response of an electroplated Cu thin film is derived by nanoindentation using

a reverse analysis approach developed by Dao et al. [98].

II.4 Numerical study

In this section, a preliminary study is first carried out to investigate the influence on the results

of various possible initial assumptions regarding the stress configuration (2D plane strain/ax-

isymmetric or 3D) and boundary conditions (blocked or free boundaries, periodic or symmetric).

Then, we focus on the influence of the assumed initial dishing shape and depth on Cu-Cu bond-

ing. In addition, the influence of thermoelastic constants mismatch between the interconnect

and the surrounding matrix is assessed, enabling to compare various metal/dielectric pairs in

terms of sensitivity to an initial surface topography defect for successful hybrid bonding. In

1This was verified by least-squares fitting, with obtained correlation coefficients above 0.95
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another section, the influence of interconnect geometry and layout is investigated. Finally, the

scenario of misaligned Cu bonding pads is also investigated.

II.4.1 Problem formulation

II.4.1.1 Geometry

w
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Figure II.11: Cross-sectional geometry of the Cu pattern.

We consider the bonding of Cu pads of width w, thickness t and pitch p embedded in a SiO2

dielectric thin film of thickness tf = 2 µm, as depicted in Figure II.11. A dishing d corresponding

to a radius of curvature R = w2/8d is assumed at the top surface of Cu pads to account for

metal recess after CMP. Unless otherwise specified, the Cu interconnects are perfectly aligned

with respect to each other. Since the interconnects form a periodic arrangement, we focus on

a unit cell of width p. An aspect ratio t/w = 0.1 and dishing depth d/t = 0.01 are used as

reference for the Cu pad geometry. The dielectric film is very thin compared to the Si substrate

(ts = 775 µm), and the thickness ratio between the SiO2 layer and the Cu pads is set to tf /t = 2.

II.4.1.2 Boundary conditions and loading

Assuming a Cartesian coordinate system with the horizontal x1–axis in the bonding plane and

the x2-axis perpendicular to the thin films, the prescribed boundary conditions are as follows

(Figure II.12):

• blocked displacements in the x1 direction along the left boundary (symmetry condition);

• planar constraint (uniform x1-displacement) along the right boundary (periodicity condi-

tion);

• blocked displacements in the x2 direction at the intersection between the bottom boundary

and the axis of symmetry (rigid-body motion suppression);

A homogeneous thermal load ∆T from ambient to annealing temperature is prescribed. During

bonding, unilateral “hard” contact is assumed and “sticking” friction (µ = ∞), using the penalty

method.
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Figure II.12: Typical mesh and boundary conditions used in the numerical study (partial
view).

II.4.1.3 Material properties

Linear elastic isotropic behavior is assumed for both the Si substrate and the SiO2 dielectric

matrix embedding the Cu interconnects. The corresponding thermoelastic constants are, re-

spectively, Ef = 130 GPa, νf = 0.17, αf = 2.6 × 10−6 ◦C−1, and Es = 70 GPa, νs = 0.17,

αs = 0.5 × 10−6 ◦C−1.

Unless otherwise specified, an elastic-plastic response of Cu in the pads is considered. A J2-flow

theory is used for the description of the rate-independent Cu plastic response, with a Ludwik

power-law hardening rule:

σ = σY + Kεp
N (II.1)

where E = 130 GPa, ν = 0.34, α = 16.5 × 10−6 ◦C−1. The assumed values for the yield stress

and work hardening exponent are respectively σY = 200 MPa, N = 0.25 and K = 1010 MPa,

based on nanoindentation measurements on a blanket Cu thin film (Appendix B).

Numerical solutions are obtained by the finite element method using commercial code AN-

SYS Mechanical APDL 19.2. The domain is discretized using 8-noded quadrilateral elements

(PLANE183) for a 2D generalized plane strain calculation. As depicted in Figure ??, the mesh

in the Cu pad region is uniform and comprised of at least 64 × 10 square elements of length

lel ≈ 40 nm. The nonlinear, quasi-static problem is solved using a Newton-Raphson iterative

scheme. A careful control of the time step is performed to accurately describe contact between

Cu surfaces, with at least a hundred load increments in each loading step.
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Cu line configuration (plane strain), both for elastic and elastic-plastic behavior. However, for

each of these two cases the considered simplifying assumptions yield similar results. For the Cu

line case, there is very little difference between plane strain and generalized plane strain for the

bonding prediction, and similarly for the Cu pad case, the values obtained with 2D axisymmetric

and 3D configurations are very close. Thus, in the following a 2D axisymmetric configuration

will be used to simulate the bonding of the Cu pads considered in the experimental study.

Overall, the most significant difference is that between elastic and elastic-plastic Cu behavior.

The influence of Cu plastic deformation on bonding becomes noticeable for a temperature in-

crease of about 100 ◦C, leading to full bonding at a significantly lower critical thermal loading

∆Tcr compared to the elastic case, by approximately 15-20%.

Although the difference between the computed threshold temperature variations for full bonding

may be regarded as minor between the different cases (below 20%), for a given temperature

very large changes in the bonded area are observed. For instance, considering a prescribed

temperature increase ∆T = 380 ◦C, close to the annealing temperature range used to strengthen

the adhesion energy after the bonding process in the experimental study, full bonding is directly

obtained for the Cu pad with elastic-plastic behavior, whereas for the Cu line behaving elastically

the final lateral extent of the gap between the dished Cu surfaces accounts for about 45% of the

pad.

Boundary conditions

Various sets of boundary conditions are also explored for the bonding of Cu pads (2D axisym-

metric case):

blocked x1 and x2: normal displacements are blocked along the right boundary, and lower and

upper edges of the unit cell;

periodic x1 blocked x2: a planar constraint is prescribed on the right boundary, and normal

displacements are blocked along the lower and upper edges;

These two configurations with blocked x2 displacements correspond to a situation in which a

compression would be exerted on the wafers during post-bonding anneal

blocked x1 free x2: normal displacements are blocked along the right boundary, and the upper

edge is free. On the lower edge, vertical displacement is prevented for one node to suppress

rigid-body motion;

periodic x1 free x2: a planar constraint is prescribed on the right boundary, and the upper

edge is free. On the lower edge, vertical displacement is prevented for one node to suppress

rigid-body motion.

The latter configuration is the reference case since the wafer is free to deform vertically during

post-bonding anneal in the bonding process considered in this study.
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• for ∆T ≈ 300 ◦C, a point is reached where the same gap lateral extent is obtained for the

three profiles;

• for ∆T > 300 ◦C, i.e. at the end of bonding, the initial trend is reversed with the semi-

elliptical profile yielding the largest bonded area.

A first observation is that these changes in the rate of bonding with temperature seem to be

driven by the local slope or curvature of the surface profile at the current position of the bonding

front, with larger slope being detrimental for bonding. However, it can also be noticed that

although these three surface profiles have the same initial dishing depth, the obtained critical

temperature for full bonding ∆Tcr is significantly different in each case. For the semi-elliptical

profile, bonding initiation is hindered by the vertical initial slope at the edge of the Cu pad and

occurs only for a large temperature increase ∆T > 180 ◦C. And yet, compared to the 3/2-power

law and circular profiles, the obtained critical temperature for full bonding is significantly lower,

respectively by 33% and 15%. Therefore, in addition to local curvature, the initial surface profile

is believed to play a significant role on the remainder of the bonding. The assumed underlying

mechanism is a compressive stress build-up at the edge of the Cu pad in regions already in

contact, exerting a resistance against thermal expansion and in turn making bonding more

difficult at the center. This effect would then be expected to be especially acute for profiles with

a flat initial slope, as is the case for the 3/2-power law profile, which yields the largest critical

temperature for full bonding ∆Tcr among the three considered initial surface topographies.

Metal recess depth

In this paragraph, the influence of metal recess depth on Cu bonding for various annealing tem-

peratures is investigated, assuming a circular recess shape. Dishing depths comprised between

0 and 4% of the Cu pad thickness are explored, corresponding to the range of experimentally

measured values [61, 83, 84]. The final gap lateral extent computed for temperature increases

ranging from 100 to 400 ◦C is plotted in Figure II.16a, both for the elastic and elastic-plastic Cu

case.

A very sharp transition is observed between the fully bonded and no contact states, which

is consistent with the assumption in the experimental study about the existence of a dishing

threshold, beyond which only partial bonding occurs. As already observed in the preliminary

study, the influence of Cu plasticity becomes noticeable above approximately ∆T > 100 ◦C. For

plastically deforming Cu pads, an increase of the maximum acceptable dishing for full bonding

is obtained, for instance by about 20% for a temperature increase of 400 ◦C. This effect become

more noticeable as the prescribed temperature increase becomes larger.

The computed critical temperature for full bonding ∆Tcr is plotted in Figure II.16b as a function

of dishing depth (for constant interconnect thickness), both in the elastic and elastic-plastic Cu

cases. In the elastic case, a linear relationship is obtained between the two quantities. For

comparison, the temperature increase required to compensate metal recess for the limit case of

free thermal expansion of the Cu pad was also plotted in Figure II.16b. Based on the definition
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• constrained deformation in the lateral direction, due to the surrounding dielectric matrix

with low CTE;

• plastic deformation of the Cu pad, due to the stresses resulting from constrained deforma-

tion.

This strong influence of constrained deformation in assisting dishing compensation becomes

further evident by considering the other limit case, namely rigid thermal expansion of the Cu

pad embedded in an infinitely stiff matrix having zero thermal expansion. This case was also

included in Figure II.17a both for elastic or elastic-plastic Cu behavior, and results in a sharp

decrease of the critical temperature for full bonding, by 37 and 50% respectively for the elastic

and elastic-plastic cases.

In addition to the effects discussed above, another difference between the elastic and elastic-

plastic cases can be noticed by plotting the computed decrease in the lateral extent of the initial

gap between dished Cu pads for increasing temperature. The obtained values for various dishing

depths within the investigated range are superimposed in Figure II.17a, both for the elastic and

the elastic-plastic case. To enable proper comparison, the temperature increase ∆T is normalized

by the computed critical temperature for full bonding ∆Tcr:

• in the elastic case, the curves associated with the different dishing depths match perfectly,

in agreement with the previous result that the critical temperature ∆Tcr depends linearly

on the dishing depth;

• in the elastic-plastic case however, slight departures from the reference elastic curve are

observed, with lower “bond advance rate” at the beginning of thermal loading and then

slightly larger advance compared to the elastic case. For increasing dishing depth, these

departures are lower in magnitude and the low-bond-advance phase accounts for a smaller

proportion of the total loading sequence.

The obtained variations in the elastic-plastic case are believed to reflect the influence of local

plastic deformation near the bonding front, resulting in a different stress distribution for a given

temperature, as well as a different deformed shape of the Cu pad, as illustrated in Figure II.17b.

II.4.2.3 Influence of elastic constants mismatch

In the previous section, the thermoelastic mismatch between metal interconnect and dielectric

matrix was shown to enable (and enhance) dishing compensation during thermal loading, due

to transverse deformation of the constrained Cu pad. However, the respective contributions of

Young’s modulus and the CTE difference on this ability is not clear. Aiming to provide more

information on the influence of elastic constants mismatch, various metal/dielectric pairs are

explored for hybrid bonding with an initial dished shape of the metal bonding surface. For

simplicity, this study is restricted to elastic behavior, and a single dishing depth (d = 0.01h) is

considered.
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The Poisson’s ratio of the dielectric layer also has an influence on the bonding behavior. To

investigate any coupling between the respective impacts of Poisson’s ratio and Young’s modulus

on the critical temperature for full bonding, several ranges of Young’s moduli are explored for

varying Poisson’s ratio. Contrary to the interconnect case, a complex coupling is observed for the

dielectric layer. For low Young’s modulus, a significant increase of the critical temperature for

full bonding is obtained, whereas for high Young’s modulus it has only little influence, with a very

slight decrease of the critical temperature for increasing Poisson’s ratio. This complex behavior

could in part explain the observed difference in the contour maps of Figure II.18 between the

fixed dielectric material and fixed interconnect material cases. The influence of the dielectric

layer elastic properties on the bonding behavior is believed to result from (at least) two effects:

• a constraint effect of the dielectric matrix on the metal interconnect for large CTE mis-

match αi − αm and large Young’s modulus (i.e. Ei/Em ≪ 1), assisting the bonding by

enabling dishing compensation;

• interaction of the dielectric matrix with the Si substrate, due to imposed displacement

from the thick substrate. The resulting lateral expansion prescribed to the dielectric layer

under temperature increase in turn leads to a transverse contraction due to the Poisson

effect, with an amplitude modulated by a factor of −νm/Em. For large Young’s modulus

of the dielectric layer (Ei/Em ≪ 1), transverse contraction below the interconnect may be

detrimental for bonding by pulling the bonding surfaces apart.

The influence of the dielectric layer on the bonding behavior would then be the result of a

competition between these two effects. Thus, for fixed dielectric layer material and varying

interconnect properties (Figure II.18a), the influence of substrate expansion on the dielectric

layer does not vary and the constraint effect is predominant over a wide range of parameters,

while for fixed interconnect material and varying dielectric layer properties on the other hand,

the interaction effect with the substrate also plays a significant role, leading to a more complex

behavior with a strong coupling between the respective impacts of the elastic constants.

II.4.2.4 Influence of interconnect pitch and geometry

Due to circuit miniaturization, the pitch distance between hybrid bonding interconnects is bound

to decrease, and the interconnect surface fraction to increase. In the following section, we explore

the influence of such trends on the ability to bond the Cu surfaces in presence of an initial dishing.

The two main design parameters for hybrid bonding interconnects are investigated (separately),

namely interconnect aspect ratio and interconnect surface fraction.

Interconnect aspect ratio

We define the interconnect aspect ratio as the thickness-to-width ratio h/w (Figure II.11). Thus,

high aspect ratio refers to interconnects with a slender shape perpendicular to the substrate,
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was also observed by Beilliard et al. [99], who simulated two hybrid bonding configurations, with

free or blocked vertical displacements along the model top and bottom boundaries. This depen-

dence is due to the nature of the considered problem involving constrained thermal deformation

of the interconnect. For this study, the wafers are free to deform vertically during post-bonding

anneal, and thus a free boundary condition was used. Whether a configuration with blocked

vertical displacements is suitable to account for thermocompression bonding requires further in-

vestigations. Thermocompression experiments were not carried out here, and thus such a study

was not addressed in the present work.

The influence of metal recess shape and depth was also investigated. A striking result is the

strong result dependence of the temperature increase required for full bonding on the Cu recess

shape, even for constant dishing depth. Here, based on AFM measurements of surface profiles,

a circle arc profile was deemed a good approximation for our 2D axisymmetric model. An even

more important question then is what kind of surface topography could be used in the 3D case,

for instance for squares pads which is a far more likely configuration in practice compared to

the round pads considered here. Another important question is the influence of other surface

topography defects, such as oxide rounding, copper step, as well as that of Cu surface rough-

ness on the bonding behavior. The influence of surface roughness was recently addressed in a

simulation study by Wlanis et al. [108], in addition to the effect of Cu creep deformation. In

the latter study, the authors also pointed out the discrepancy between the 2D and 3D modeling

approaches, when using the current bonded area as a comparison criterion between different

configurations. For this reason, in the present study the threshold temperature increase for full

bonding was used as a criterion instead.

Regarding the influence of hybrid interconnect design on the bonding behavior, very distinct

trends are obtained depending on the initial assumption on the evolution of the dishing depth

for varying interconnect width. For constant dishing depth, decreasing the interconnect width

is highly detrimental for bonding, whereas for a dishing depth proportional to the interconnect

width, smaller interconnects lead to smaller dishing and therefore lower temperature required

for full bonding. For the interconnect width range considered here, the actual dependence of

the dishing profile on interconnect dimensions is not known. Thus, further experimental or

simulation work on the CMP process is needed to gain better understanding into this issue.

The influence of metal surface fraction was also studied. A large metal surface fraction was

observed to lead to a more difficult bonding, requiring higher temperatures. This is attributed

to vanishing vertical constraint at the periphery of the interconnects, attenuating the expansion

difference between the center and the edge and thus hindering dishing compensation. Therefore,

depending on the relationship between dishing depth and interconnect width, increasing the

density of interconnections in future chip generations (by decreasing interconnect width or pitch

distance) could potentially lead to bonding issues.

Besides gaining better control on hybrid bonding surface topography after CMP, an influential

parameter that could enable to mitigate these potential issues is the choice of materials for the

metal/dielectric pair. Naturally, a metal/dielectric having a large CTE mismatch is beneficial for
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dishing compensation. For the interconnect material, the critical temperature for full bonding

was shown to increase if the Young’s modulus close to that of the dielectric matrix. For the

dielectric material, a complex coupling with the substrate was observed, with an enhancement

of dishing compensation for large Young’s modulus compared to both the interconnect and the

substrate, as discussed in Section II.4.2.3.

In the latter results, adhesive forces between Cu surfaces were not accounted for. In future

work, surface interactions at the bonding interface could be included by using a cohesive zone

approach, similarly to a recent study by Beilliard et al. [100]. In particular, the influence of

parameters such as metal recess shape and depth, as well as interconnect aspect ratio on the

bonding behavior needs to be evaluated in presence of interaction forces.

II.5 Conclusion

In this chapter, the influence of CMP-induced surface topography on the bonding behavior of

Cu hybrid bonding interconnects was studied. In addition to Cu recess depth and shape, vari-

ous interconnect geometries and layouts, or metal/dielectric material pairs have been explored,

aiming to mitigate potential bonding issues.

After an overview of the physical mechanisms underlying the hybrid bonding process for chip

stacking and the current industry challenges associated with this process, bonding experiments

were carried out to investigate the influence of Cu interconnect geometry and layout on the

resulting surface topography after planarization of the Cu/SiO2 patterned surface. For the con-

sidered range of interconnect dimensions and layouts, a negligible influence of these parameters

on the obtained Cu surface topography is reported. In turn, the influence of the obtained sur-

face topography on the bonding interface quality was examined. Based on interface morphology

characterization by FIB/SEM tomography for samples with various Cu recess depths, there is

evidence that a dishing threshold exists, beyond which only partial Cu-Cu bonding occurs. To

estimate its magnitude and which features influence it remains to be clarified. For most cases,

the observed bonding defects are not believed to pose an immediate risk for the electrical per-

formance of the 3D integrated device, for instance due to an increase of the interface resistance.

Nevertheless, from a mechanical standpoint, partial bonding could lead to serious mechanical

robustness issues, e.g. by leading to debonding at lower loads, or by generating large initial de-

fects at the interface, likely to evolve towards critical dimensions due to fatigue, electromigration

or stress voiding phenomena during product life.

Thus, aiming to provide a mechanistic understanding into the influence of several process and de-

sign parameters on bonding quality, numerical modeling of Cu-Cu bonding during post-bonding

annealing was carried out. A striking result is a strong result dependence of the bonding behav-

ior on the Cu recess shape, even for constant dishing depth, which places a serious constraint on

the assumed surface profile for hybrid bonding simulation. In addition, a potentially detrimental

impact of an increase in the interconnect aspect ratio or surface fraction was observed, depending
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on the relationship between interconnect dimensions and surface topography after planarization.

Such a trend, if confirmed, could have negative consequences on dishing compensation for high

density of interconnections. This potential detrimental effect could be mitigated by careful se-

lection of the metal/dielectric material pair for hybrid bonding, in addition naturally to better

control on CMP-induced topography.

Several important topics may be considered for future work:

• Adhesive forces between Cu surfaces at the hybrid bonding interface were not accounted

for in Chapter II, but were previously shown to play a major role on the bonding behavior

[100]. The influence of the lateral extent of these interaction forces relative to pad width

remains to be clarified. The latter effect, if any, is expected to strongly depend on the

assumed shape for the Cu recess profile and more importantly on the relationship between

recess depth and pad width, thus warranting further surface topography characterization

or CMP process simulation to provide better understanding on these aspects.

• For the most part only 2D Cu recess profiles were considered in the present study, and

therefore detailed modeling of the bonding process in the case of a 3D Cu recess surface

for square-shaped hybrid bonding pads remains an open topic.

• The interplay between adhesion and plasticity also needs to be further investigated, ac-

counting for the influence of pad aspect ratio on macroscopic plastic deformation, in addi-

tion to local plasticity at the bonding front.
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III.2 Literature review

In this section, simulation studies in the literature regarding the mechanical robustness of the

interconnect stack below the bondpad are reviewed. An overview is provided in Table III.7.

III.2.1 Methodology

In general, the issue of bondpad mechanical reliability may be approached from two complemen-

tary perspectives:

Bonding-oriented approach the bonding parameters can be optimized, aiming to find a

tradeoff between low-intensity bonding conditions inducing minimum deformation below

the bond but resulting in poor bond strength [2], or severe bonding conditions potentially

leading to high levels of stress in the interconnect structure below the bondpad;

BEoL-oriented approach after finding an optimal set of parameters for the bonding process,

if bondpad strength is unacceptably low during qualification testing (e.g., crack propa-

gation or interface delamination in the BEoL), a more robust interconnect layout can be

designed below the bonding surface. In addition to the bonding process itself, this optimal

architecture must able to withstand subsequent loading, e.g. during qualification, further

processing or product life.

Both of these approaches have been tackled in the literature on wire bonding simulation.

III.2.1.1 Bonding-oriented studies

In a majority of studies, the focus is on providing a better understanding of the wire bonding

process, aiming to predict the final shape of the bond after ball impact and ultrasonic vibration as

well as the resulting state of stress. In addition to the influence of bonding parameters, different

materials for the wire or the bondpad are also generally investigated, e.g. the introduction of

(ultra-)low-κ dielectric in the interconnect stack or the move to Cu wires. Therefore, models

with complex physics and simplified geometry are typically used. Notable examples of such

studies are detailed below.

In a series of articles, [3–5] investigated ball deformation by the capillary tool during the impact

stage, and the impact of new interconnection materials on bondpad stresses for a 3ML stack using

a 2D axisymmetric finite element model. A two-step process was used to model bond formation.

First, bond compression on a rigid surface was simulated. A yield stress value was calibrated

for the wire by fitting the simulated bond deformation to SEM characterizations of bond shape.

Then, the force distribution obtained on the rigid surface was used as a boundary condition on

a bondpad model. They showed that a much higher bonding force is required in the case of a

Cu wire to obtain the same bond diameter as using gold. Thus, for a given target bond shape,
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higher stress is exerted on the underlying pad structure for the case of Cu wires. A comparison

of the simulated stress distribution below the pad with Raman spectroscopy measurements was

provided in [6], showing very good agreement. However, [7] compared the force distribution on

the bonding surface for a realistic interconnect stack and for a rigid substrate in the case of a

wire-pull load. They showed that significant mechanical interaction occurs between the ball and

the pad structure, and argued that considering a rigid or fully homogenized substrate would not

yield sufficiently accurate results to compare the stresses induced in different pad architectures,

confirming some of their earlier results on pad structure homogenization methods [8].

Dynamic analysis of Au wire bonding on a 7ML Cu/low-κ pad structure was carried out by [9]

and [10, 11]. In their work, both ball impact and ultrasonic vibration were accounted for using

a 2D plane strain model, and the influence of the elastic moduli of interconnection materials on

bondpad stress was investigated. Higher stress was obtained in the bondpad during the ultrasonic

vibration phase of the bonding process, compared to the ball impact phase. [12, 13] also proposed

a transient nonlinear dynamic model of wire bonding for a 3ML Al/SiO2 BOA bond pad, where

the cooling step after thermosonic bonding was also considered. Rate-dependent elastic-plastic

behavior was assumed for the Au wire and friction between the Au ball and the Al bondpad

was accounted for. In addition to guidelines to optimize bond formation, they investigated

the influence of pad structure on the stress transmitted to the active region below the bond.

They noticed that the stress becomes more uniformly distributed during the cooling process,

with a significant increase in magnitude compared to the bond impact and ultrasonic vibration

steps. This finding is in agreement with the results of [8], who simulated the wire pull/shear

tests and thermal cooling, and also concluded that thermal loading appears to be a major stress

contributor. [2] accounted for an increase of the dynamic friction coefficient between the ball and

the bondpad due to oxide removal and Au-Al interdiffusion during the ultrasonic vibration phase

of the bonding process. In addition, [14] also included a decrease in the wire material yield stress

due to ultrasonic energy (ultrasonic softening phenomenon). They argued that the majority of

pad failures occur during the ultrasonic stage, consisting of 500-1200 cycles of side-to-side motion

exerted on the ball by the capillary tool. They were able to simulate up to 60 cycles for the

ultrasonic vibration, after which bond height was found to saturate. In comparison, only one

to nine cycles could be accounted for in previous studies [2, 13, 15], due to computational cost

limitations. The influence of intermetallic compounds forming at the interface between the wire

and the bondpad on the debonding behavior was recently investigated by [16].

Although these bonding-oriented approaches enable to gain more insight into the physics of

the wire bonding process, convergence and computational cost issues can become problematic

for large parametric studies, in particular for comparing different bondpad architectures. In

the majority of cases, two-dimensional models were used and stacks with a low number of

interconnection levels or very simplified layouts considered.
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III.2.1.2 BEoL-oriented studies

Some authors on the other hand focused on the mechanical robustness of the bondpad inter-

connect stack, using simplified loading and physics but detailed geometric features. Notable

examples include [17, 18], [19, 20] or [21]. They developed 3D models of realistic pad structures

based on actual BEoL design rules. Ball deformation was not simulated and instead an a pos-

teriori bond shape was assumed, based on bond shape measurements in SEM views of actual

wirebonds. As a result, residual stresses due to the bonding process were not included in the

computations, although they are believed to be significant [12, 22]. Instead, static loading was

used to simulate the very end of bonding process or subsequent wire pull qualification testing.

In addition, the proposed models were based on a multi-scale modeling framework, using equiv-

alent homogeneous orthotropic materials for each layer of the interconnect stack at the global

scale, then prescribing the computed displacements as boundary conditions on a detailed model

of a representative unit cell at the local scale. As detailed in the following section, energy-based

criteria were developed in some of these studies to compare different interconnect layouts. Good

agreement was obtained with wire pull or ball shear testing on actual structures, both in terms

of the predicted weakest interface in the stack and the most robust pad configuration [17, 21].

III.2.2 Robustness index

III.2.2.1 Stress-based criteria

As can be seen from the literature overview in Table III.7, a majority of simulation studies have

been relying on stress-based approaches to investigate the effect of bondpad configuration on

mechanical robustness.

[8] developed a 3D finite element model of a bondpad architecture and compared three distinct

interconnect layouts under wire pull, wire shear and thermal loading. They used the cumulative

volume distribution of the maximum principal stress in the low-κ material to rank the different

pad configurations. Overall, good agreement was obtained with qualification testing results on

these structures, although distinct trends are obtained depending on whether the average stress

or the peak stresses are considered. [23] compared the reliability of six pad options, focusing

on the ultrasonic stage. Contrary to most studies, relying on the maximum principal stress or

maximum Von Mises stress to compare different pad structures, they proposed a stress criterion

based on fatigue theory using the maximum in-plane normal and out-of-plane shear stress range.

In some pads, a buffer layer was introduced below the bonding surface, which they showed

contributes to considerably attenuate failure risk. Their results were validated by cratering

tests1. The modified pad interconnect structures showed no significant decrease in terms of

mechanical robustness compared to the reference configuration. [22] simulated ball deformation

during thermosonic bonding and incorporated an additional step of wire pull just after bond

1See Section III.6.1.
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formation. A strain-based damage criterion was used with an element erosion procedure to

investigate the different failure modes of the pull test. They were able to capture failure mode

sensitivity to the elastic properties and to the strength of low-κ intermetal dielectric. [2] used

the incremental averaged first principal stress to compare two distinct pad configurations. In

their work, incremental stress refers to the stress accumulation during the ultrasonic phase only,

subtracting the stress accumulated after the bond compression stage. Volume-averaged stress

components were used instead of maximum stresses to avoid mesh dependency. The averaging

was based on four elements around the location of interest. Comparison with bond qualification

testing indicated that the proposed stress criterion captures well the influence of bond force,

but underestimates the effect of ultrasound. [14] proposed a 3D finite element model of the

wire bonding process, using a damage criterion developed by [24] to investigate the influence of

removing the upper metal levels on pad failure risk.

III.2.2.2 Energy-based criteria

As seen in the previous section, stress-based approaches can lead to reasonable correlation with

experimental results. However, in some cases comparing different pad configurations is not so

straightforward, either because the influence of interconnect layout is not captured by the stress

criterion [25] or because the results are strongly dependent upon the choice of the failure crite-

rion, e.g. averaged or maximum stress [8]. In addition, stress-based quantities are configuration-

dependent and therefore cannot be directly associated with intrinsic material quantities (e.g.,

fracture toughness, adhesion energy). [17] and [7] recommended the use of an energy-based crite-

rion over the monitoring of stress quantities, in particular for its ability to describe delamination

failure more accurately.

[17, 18] and [19, 20] developed a 3D finite element model for wire pull on a 6ML Cu/low-κ bond-

pad, using a multi-scale approach with a material homogenization procedure. This strategy

enabled to simulate local details of the interconnect stack and analyze different pad structures.

A novel failure index, namely the area release energy (ARE), was specially developed to com-

pare these structures. This method consists in a two-step process: first, computing the stress

distribution on the healthy structure, then selecting a location at a given interface and releasing

nodes over a circular area of chosen diameter. Using the computed forces and displacement at

these nodes, an energy release can be computed over the selected surface. By repeating this pro-

cedure over the whole surface and for each interface, contour mappings for an energy quantity

can be computed, even for surfaces with material heterogeneities, thereby providing a simple

scalar quantity to compare different pad configurations. A key feature of this method is its

ability to determine the most critical interface in a stack, provided that either the considered

interfaces all have the same adhesion energy, or that their adhesion energies are distinct but

known. [25] observed that the most critical interface in a stack is not necessarily that with the

largest interfacial stress. These authors noted however that the ARE, associated with a total

energy variation, has no obvious physical meaning. An enhanced ARE method was therefore
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developed and validated analytically in [26] to adapt this technique for direct computation of

the strain energy release rate.

[7, 21] and [27] also developed an energy-based failure index suitable for mechanical robustness

comparisons between different pad architectures, namely the nodal release energy (NRE). Con-

trary to ARE, in this approach the energy release for a given interface is not computed over

the whole surface but directly at the location of maximum stress, enabling to decrease compu-

tational cost while still providing a relevant failure index. Indeed, NRE method provided very

good agreement with experimental results, in particular the most critical interface according to

NRE agreed with experimentally characterized delamination locations.

Contrary to stress-based approaches, from a practical standpoint these methods are more relevant

for pad failure by interface delamination rather than crack initiation, since the initial failure

location needs to be assumed beforehand. This feature is not a limiting factor however for

analyzing commonly encountered “cratering” or “peeling” pad failures, for which delamination

in the interconnect stack is observed, especially in bondpads containing low-κ dielectrics with

poor adhesion on barrier layers.

A reference length scale must be selected for the energy release calculation, which may influence

the results depending on whether it is comparable with typical lengths associated with the

metallization pattern along the considered interface. This size-dependence was evidenced by

[17], who proposed to use the dimension of the smallest geometric entity in the model (e.g.

via plugs) as the reference length scale, or to link it with a characteristic length obtained from

experiments and intrinsic to the considered interface.

In addition to failure initiation location, strong assumptions are also required on crack front

shape in the interface plane. Recently, several authors used cohesive zone models in simulation

studies on wirebond pad mechanical reliability [28–31]. Such models are able to model both

crack initiation and propagation, and therefore do not require any assumptions on the shape of

the delaminated region. However, a characteristic length is still required to define the traction-

separation law associated with the considered interface.

Both stress-based and energy-based methods have been used in the literature to assess the

influence of interconnect layout on bondpad mechanical robustness. In the following section, the

main results from these studies are reviewed.
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III.2.3 Influence of interconnection layout

III.2.3.1 Metal lines

[32] evidenced a new bondpad failure mode, namely cratering damage, related to the presence

of low-κ dielectric in the interconnect stack. They showed these failures could be eliminated

by modifying the interconnect layout below the bondpad, replacing the Al metal sheets by

cross-hatched metal lines. This configuration enables the containment of brittle dielectric inside

“reservoirs”, while providing mechanical reinforcement to the pad structure. A simplified finite

element model of wire bonding confirmed a decrease of maximum tensile and shear stresses in

the interconnect stack with this architecture.

The effect of interconnect layout on bondpad mechanical robustness was also investigated by

[8]. They found that narrow parallel metal lines present a high percentage of cratering failures

during wire pull and wire shear tests, whereas metal sheets with holes or wide parallel lines were

within the specifications after qualification testing. These findings were correlated with finite

element modeling, which showed higher maximum stress values for the rejected pad architecture.

[17, 18] also simulated the wire pull test and evidenced a beneficial effect of holes in the metal

layers on pad robustness, using the ARE method. However, although the results did indicate

a decrease of the energy release near the holes, larger values were obtained in other locations.

Using the same approach, [25] compared several pad architectures (unfortunately not disclosed)

and also observed that the metallization density below the pad is indeed “a factor that affects

the mechanical performance”. They further argued that “metal density in a single layer does not

only locally affect the mechanical performance, but has an impact on the performance of the

remaining layers as well”.

An energy-based criterion, namely the NRE method, was also used by [7, 21] to compare the

robustness of different pad interconnect configurations under bonding and wire pull loading.

They found that patterns having wide metal lines (at constant metal surface fraction) lead to

lower energy release values compared to narrow metal lines. Comparing two interconnect layouts,

namely parallel metal lines and metal sheet with holes, they obtained better robustness with the

latter configuration. Good correlation with wire pull testing on these structures was obtained.
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III.2.3.2 Via plugs

[33] simulated the stresses in two Cu/SiO2 bond-over-active (BOA) pad stack versions during

wire bonding and thermal cycling, one with minimal metallization density at the edge of the

bonded ball (no via above M3), and the other with maximum interconnect density. In their

model, a static normal load was used to simulate bond compression and ultrasonic vibration.

Results suggest that stress concentration is mainly confined to the uppermost levels of the pad

structure near the edge of the bond, therefore with limited impact on the active regions below,

and that vias only have a local effect on the stress distribution in the pad. They attributed this

dissipation of the bonding forces to the comparable moduli of the copper metallization and SiO2

dielectric. No failure events were obtained in the experimental study due to excellent mechanical

robustness of both pads, thus preventing comparison with numerical results.

Contrary to the previous study, [5] evidenced a significant effect of via presence on pad robust-

ness. Using a 2D axisymmetric model to simulate ball compression by the capillary tool during

the impact stage, they found increasing via percentage leads to a large decrease of maximal

Von Mises stress in the interlayer dielectric, due to via plugs providing a mechanical supporting

structure. They also noticed that this beneficial effect is significantly diminished when the vias

start to yield. [12] also simulated ball impact and bond formation, accounting for ultrasonic

energy and Au ball viscoplastic behavior. However, they found that higher via density reduces

the stress transferred to the active region, but induces larger maximum Von Mises stress in the

dielectric layer surrounding the vias.

Using a dynamic finite element model of ball impact and ultrasonic vibration, [34] and [15, 35, 36]

investigated the influence of many parameters related to via plugs on pad robustness. They

reported the following trends:

• Increasing in the number of via plugs in a given layer results in a decrease of the equivalent

tensile stress in the surrounding dielectric.

• As the width of the via plugs is increased, the volume of dielectric material is decreased,

which dramatically reduces the equivalent tensile stress in the USG structure.

• Arranging vias in a nested square configuration was reported to provide better stress relief.

• The equivalent tensile stress in the USG dielectric increased with via plug thickness.

• The obtained peak equivalent tensile stress in the via plugs decreased when locating the

via array away from the center of the bond, although a higher magnitude was obtained for

the stress in the surrounding dielectric material.

In the next section, the strategy for the combined numerical/experimental study on the mechan-

ical robustness of backside wirebond pads for a 3D image sensor stacked by hybrid bonding is

presented.
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III.3 Strategy

Realistic simulation of ball deformation during the impact stage is a challenging task. Due to

the dynamic nature of the wirebonding process, a time-consuming explicit integration scheme

must be used and very fine mesh is required at the tool/ball and ball/pad contact regions.

Furthermore, frequent remeshing is mandatory to account for large deformation of the Au ball

during bond formation. The ultrasonic vibration stage brings further difficulties, considering

that for typical bonding parameters hundreds to thousands of cycles must be simulated.

Even beyond computational requirements, some important physical aspects are not easily charac-

terized, let alone incorporated into the model. Examples include the dynamic friction coefficient

between the ball and the bonding surface [13, 37], friction-induced heating [38, 39], dynamic

effects of the capillary tool [40–42] or force-controlled loading [43]. Thus, detailed modeling of

the thermosonic bonding process is beyond the scope of this study and will not be carried out

here. Instead, simulation of a qualification test (e.g., wire pull test or wire shear test) used

for bondpad mechanical robustness assessment offers a more straightforward alternative, while

having been shown adequate for comparing different pad architectures [7, 21, 44].

A universal qualification test in the microelectronics industry is the wire-pull test (ASTM F

459-06). This method consists in pulling off the wire with a hook, generally at mid-span of

the wire loop, while the reaction force on the tool is monitored. After wire pull, the failure

mode is determined by visual inspection of the bonding surface. For the structure to pass the

qualification, the maximum force must be above a certain specification, and fracture located in

the bond rather than inside the interconnect stack.

In this work, a 3D finite element model of the wire-pull bond qualification test on backside pads

in a 3D image sensor stacked by hybrid bonding is proposed. First, the mechanical robustness

of six distinct pad configurations is compared experimentally and numerically. Then, a series

of parametric simulation studies are carried out to analyze the influence of several interconnect

layouts for the most critical layers in the top tier pad stack.

The investigated 3D IC is comprised of two stacked chips, resulting in a complex interconnect

stack with a large number of metallization levels (MLs), as can be seen in Figure III.2. Therefore,

a multi-scale approach will be used, with a global model consisting of a stack of equivalent

homogeneous orthotropic layers and a local model including detailed interconnect geometry,

similar to [17] and [7]. To compare the different pad configurations, a criterion based on the

volume-averaged first principal stress will be used, consistent with the risk for brittle fracture in

the dielectric material observed in the experimental study.

As discussed in the literature review, the mechanical reliability of bondpad interconnect stacks

during and after the wire bonding process has been studied extensively. In particular, there are

many numerical studies comparing different pad architectures and materials, or optimizing a

given pad configuration. However, to the author’s knowledge, so far this kind of work has not
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been published for a 3D IC architecture with backside wirebonds, let alone from a simulation

perspective. And yet, wire bonding on backside pads can be expected to yield mechanical

failures due to the bonding surface being in close proximity to the lowermost metallization

levels, containing local interconnects (see Chapter I). Furthermore, a notable feature of the

literature reviewed in the previous section is that, apart from a few exceptions [21, 23, 32, 33],

there is a lack of combined experimental and numerical studies focusing on the effect of pad

configuration on wirebond mechanical robustness. In the following study, for correlation and

validation purposes, the numerically-obtained pad architectures ranking will be compared to

failure percentages obtained after completion of the wirebonding process on the investigated

pad configurations.

In the next two sections, the experimental and numerical methodologies used in this work are

detailed.

III.4 Experimental procedure

III.4.1 Cratering test

To verify pad mechanical integrity after completion of the wirebonding process, the cratering

test is used. It consists in a deprocessing of the wirebond. Wires are etched off, enabling to check

the bonding surfaces for any cracks or delamination due to ball impact, ultrasonic vibration or

cooling to room temperature. In this study, the Au bonds were dipped in an aqua regia solution

(mixture of nitric acid 69% and hydrochloric acid 36%) with an etching time of 7 minutes followed

by a rinse in distilled water. The bonding surface is then visually inspected using an optical

microscope. In case of damage in the dielectric layers below the bond, the reported failure mode

is termed “pad cratering”. The cratering test was carried out on five test chips to investigate the

influence of different pad architectures on interconnect stack integrity after wirebonding. For

each of the implemented pad configurations, failure percentages (in terms of number of cratering

occurrences) were obtained.

III.4.2 Test chip

The investigated test chip is a 3D image sensor comprised of two distinct 8×6 mm dies vertically

stacked and interconnected using the hybrid bonding process, as described in Chapter II. The

bottom chip has a 7ML BEoL stack, fabricated using a 40 nm CMOS process, while the top chip

is a 4ML BSI image sensor with backside wirebond pads capped by a 0.9-micron thick Al layer.

Thermosonic bonding is carried out using a commercial bonder with 0.8 mil 4N1 gold wire. The

bonding parameters are summarized in Table III.7. No electrical probing of the pads has been

carried out before the wire bonding process. This is to prevent any bias on bond robustness due

1Four-nines: 99.99% purity
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to by scrub marks on the Al capping during the electrical test, and thus isolate the effect of the

wire bonding process.

Time (ms) Force (mN) CV (mm/ms) Temperature (◦C)

16 16 0.8 150

Table III.1: Bonding parameters for the two bonding regions: bonding time, impact force,
capillary tool constant velocity (CV) and temperature

An array of 32 × 6 pads with various architectures is dedicated to evaluate the influence of

interconnect layout on pad robustness. To each of the six columns corresponds a different

pad design, with specific capping materials and interconnect layout. These pads have lateral

dimensions 75×125 µm2 with a pitch distance of 130 µm.

III.4.3 Test structures

III.4.3.1 Capping

For some of the investigated pads, buffer layers were introduced between the bonding surface

and the interconnect stack:

Thin buffer: a 300 nm thick SiO2 layer.

Thick buffer: a SiO2/Si/SiO2 multilayer (200 nm/2.8 µm/300 nm).

III.4.3.2 Metal lines

No active circuitry is present below the bonding surface in the top chip, thus affording great

freedom for interconnect layout. For the metal levels of the top tier, three types of patterning

were introduced, as illustrated in Figure III.3:

• Pads: a periodic array of square pads;

• Grid: a grid of evenly spaced interlaced perpendicular lines;

• Plate: a blanket layer having the same dimensions as the bonding pad.

Conversely, in the bottom chip the interconnection layout is defined by circuit design. Intercon-

nects are forming a complex layout and no fixed configuration can be set.
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III.5 Modeling methodology

A finite element model of the wire pull test on backside bondpads for a 3D image sensor with

chips stacked by hybrid bonding was constructed using finite element code ANSYS Mechanical

APDL, Release 17.0 (Ansys Inc., Canonsburg, PA), as depicted in Figure III.6. Similar to

several analyses in the literature [7, 17–21, 27], a multi-scale static approach is used to resolve

the detailed geometry of the BEoL structure below the bondpad. This feature is key to enable

comparison of the mechanical robustness for different pad architectures. The approach is as

follows:

• First, a global model with simplified features is used to capture the response of the coarse

structure to a prescribed macroscopic load.

• The obtained nodal displacements are then extracted in the region of interest, interpolated,

and prescribed as boundary conditions in a second smaller model.

• In this submodel, stress values can be obtained at a smaller scale, accounting for more

detailed geometrical and material features.

III.5.1 Global model

The global model features the two-chip IC architecture assembled by hybrid bonding (bottom:

7ML + top: 4ML), with a bonded gold wire (only the extremity is represented). Similarly to

[7, 18, 19, 25–27], a force load is prescribed on the wire section at an angle of 20° to mimic

the wire pull test. A load of 1 gf is prescribed to the wire section, within the same order of

magnitude as typical pull forces encountered in the wire-pull test. The magnitude of the load

can be considered arbitrary however, due to the linear elasticity assumption. A half-model is

used, accounting for symmetry, and only a fraction of the actual bonding surface is represented in

the model since the lateral dimensions of the bondpad are large compared to ball bond diameter.

The thick Si substrate is also modeled only partially. Displacements are blocked for nodes on

the bottom and lateral boundaries (except the symmetry plane). A parametric study on the

model dimensions was carried out to ensure convergence of the results in terms of the wire top

displacement. The geometry is meshed using ∼1750000 hexahedral elements with quadratic

interpolation. Elastic constants used for the isotropic linear elastic materials in the model are

listed in Table III.3 and the mesh is depicted in Figure III.6. Perfect bonding is assumed both

at the hybrid bonding interface and at the bonding area between the Au wirebond and the

Al capping. Gold aluminide intermetallic compounds known to form during the thermosonic

bonding process are not accounted for, due to the difficulty to characterize the mechanical

properties and topology for the many AuAl phases present at the interface. The shape of the

ball bond is derived from the dimensions of the capillary tool used for thermosonic bonding, as

well as FIB/SEM cross-sections after wirebonding. A perfectly flat Au/Al bonding surface is

assumed.
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Figure III.6: Global and local finite element models used in the multi-scale approach for
simulating the wire pull test (with zoomed view on the homogenized layers of the BEoL in the

global model).

Material Young’s modulus (GPa) Poisson’s ratio

Cu 130 0.34
Al 70 0.33
Au 40 0.44
W 410 0.26
Si 130 0.28

poly-Si 169 0.22
SiOCH (ULK) 6 0.29

FSG 72 0.25
TEOS 85 0.25
USG 76 0.25

SiN (passivation) 170 0.24
SiN (barrier) 180 0.24

SiCN 79 0.25

Table III.3: Material properties used in finite element analysis of the wire pull test.

III.5.2 Homogenization procedure

At the global model scale, details of the BEoL metallization structure cannot be represented

accurately, therefore a homogenization procedure was used [8, 17]:

• A representative unit cell (RUC) is isolated from the (periodic) multi-phase material.

Periodic boundary conditions are enforced on the faces of the volume. This is done by

assigning to each of the faces a reference “master” node, through which the loading is
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III.5.4 Robustness criterion

In this work, the investigated pad architectures are compared using a stress-based approach in

the submodel. Consistent with experimental results presented in Section III.6.1, the targeted

failure mode is brittle fracture in the dielectric layers close to the bonding region. Thus, the

maximum first principal stress in the dielectric material is extracted in the submodel. A volume-

averaging procedure is used:

< σ1 >D=
1

V (D)

∫

D
σ1(x)dx

The reference domain D used for averaging is centered about the region of maximum stress

for each dielectric layer in the submodel (Figure III.8). Constant dimensions were used for

this volume, ensuring that the stress field remains as homogeneous as possible while including a

sufficient number of elements to mitigate mesh-dependence issues caused by stress concentrations

around the metal structures. A domain meeting those requirements is the 2.5 × 5 µm2 region

located along wire bond footprint, comprising two adjacent periodic unit cells and encompassing

the whole thickness of the dielectric layer.

Figure III.8: Illustration of the stress-averaging procedure used in the analysis on a typical
contour plots of the 1st principal stress for the dielectric material of the CO layer for pad C2 in
the submodel (top view). The black dotted line marks the wire bond footprint, while the black

plain box represents the domain D for stress averaging.

Such stress-averaging procedures have been used in the literature for instance:

• to deal with stress singularities in tapered laminate composite materials when using a

delamination criterion based on maximum stress [45–47];

• in finite element analyses on solder joint failure reliability [48];

• to study debonding between encapsulation and leadframes in plastic IC packages [49].

• in a more theoretical context, the approach used is similar to some local, stress-controlled

failure criteria in fracture mechanics, e.g. Neuber’s fictitious notch rounding [50–52] or the

RKR model for cleavage fracture [53].
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Similarly to energy-based criteria this averaging procedure introduces a notion of characteristic

length, corresponding here to the dimension of domain D. As mentioned in Section III.2, [17]

proposed to use for this characteristic dimension either a typical length for geometric features in

the model (geometry-based) or an intrinsic length for the material obtained from experiments

(material-based). For a material-based approach, a first approximation can be obtained based

on Dugdale’s estimate for the fracture process zone length in linear elastic fracture mechanics

[54]:

LD ≈ π

8

(

KIc

σY

)2

For SiO2 dielectric (USG), with KIc ∼ 1 MPa
√

m for the fracture toughness1 and σY ∼ 100 −
1000 MPa for the yield stress, the obtained length LD ranges between 0.1 and 10 µm.

The dimensions of the considered averaging domain (2.5 × 5 µm2 over the thickness of the layer)

are inside this estimated range. It can also be noted, for a geometry-based approach, that the

estimated value also falls within the range of typical lateral dimensions for metal line intercon-

nects.

In the numerical study, this stress-based criterion relying on a volume-averaging procedure will

be used as a robustness index to compare the different pad architectures.

III.6 Results

In the following, first the experimental results obtained for the investigated six pad architectures

in the cratering test are presented and correlated with finite element modeling of the wire-pull

qualification test on the same structures. Then, these results are complemented with a numerical

study focusing on the influence of metal lines and via plugs layout in the metallization level closest

to the bonding surface. Finally, the mechanical robustness of the 3D BSI image sensor stacked

by hybrid bonding with backside bondpads is compared with the conventional planar BSI image

sensor architecture.

III.6.1 Cratering test

Configuration Pad A1 Pad A2 Pad B1 Pad B2 Pad C1 Pad C2

Number of bonds 132 132 132 132 132 132
Cratering failure mode (%) 0.8 12 0 4 0 0

Table III.4: Failure rates obtained in cratering tests after completion of the wirebonding
process.

The number of cratering occurrences for each pad structure variation is summarized in Ta-

ble III.4. Failure percentages range between 0 and 12%. Pad A2 has the highest failure rate,
1H. Brillet-Rouxel, M. Verdier, M. Dupeux, M. Braccini, S. Orain, Mater. Res. Soc. Symp. Proc. 914 (2006).
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(a) (b) (c)

Figure III.11: (a): SEM top-view of two damaged pads (type A2); (b): FIB/SEM cross-
sectional view showing the interconnect stack of the left-hand pad; (c): Zoomed view revealing
cracking in the poly-Si layer. A Pt/Au layer was deposited on the pad surface for sample

preparation before FIB milling.

the interconnect stack are visible. In Figure III.10 and Figure III.11, FIB/SEM cross-sectional

views of the fracture surfaces are shown. For these pads, the poly-Si layer was damaged. Overall,

visual inspection of failed pads indicated that the poly-Si, CO layer, and in some cases M1 layer

were exposed.

III.6.2 Numerical comparison

In this section, the numerical model and methodology described in Section III.5 are applied to the

studied pad configurations (Table III.2), aiming to provide better understanding and correlation

with experimental results. The different capping types and interconnect layouts corresponding

to the six pad architectures are depicted in Figure III.12 and III.13, respectively for the global

model and the submodel.

(a) Pads A1, A2 (b) Pads B1, B2 (c) Pads C1, C2

Figure III.12: Overview of the different pad cappings associated with each of the studied pad
configurations (global model).
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(a) Pads A1, B1, C1

(b) Pads A2, B2, C2

Figure III.13: Overview of the different interconnect layouts associated with each of the
studied pad configurations (submodel).

III.6.2.1 Global scale

(a) Pad A1
max(σI) = 115 MPa

(b) Pad B1
max(σI) = 100 MPa

(c) Pad C1
max(σI) = 53 MPa

(d) Pad A2
max(σI) = 110 MPa

(e) Pad B2
max(σI) = 97 MPa

(f) Pad C2
max(σI) = 52 MPa

Figure III.14: Contour plots of the 1st principal stress in the homogenized CO layer for the
studied pad structures (top view). The black dotted half-circle marks the wire bond footprint.

Contour plots of the 1st principal stress in the homogenized CO layer in the global model for

each pad configuration are shown in Figure III.14. The focus was put on this layer since failures

in the cratering test were observed in the poly-Si, CO and M1 levels, and because the CO layer

is the metallization layer closest to the bonding surface. For clarity, the footprint of the wire

bond was also represented on the plots. Two distinct regions are immediately apparent on each

side of the bond along the direction of the pull force, one mostly subjected to tensile stress and

the other to compressive stress. As discussed in Section III.5, the submodel in the multi-scale

approach is located around the region of maximum tensile stress.
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III.6.2.2 Local scale

(a) Pad A1
max(σI) = 122 MPa

(b) Pad B1
max(σI) = 102 MPa

(c) Pad C1
max(σI) = 57 MPa

(d) Pad A2
max(σI) = 115 MPa

(e) Pad B2
max(σI) = 104 MPa

(f) Pad C2
max(σI) = 60 MPa

Figure III.16: Contour plots of the 1st principal stress in the dielectric material of the CO
layer for the studied pad structures in the first local model (top view). The black dotted line
marks the wire bond footprint, while the black plain box represents the domain D for stress

averaging.

Contour plots of the 1st principal stress in the dielectric material of the CO layer in the global

model are shown for each pad configuration in Figure III.16. Comparing the peak tensile stress

values, again the impact of capping type is immediately apparent with a significant decrease

from capping A to C due to a “buffer” effect of the passivation layer with increasing thickness.

These values are quite close to those computed with the global model, but the ranking for the

six pads is not the same. Similarly to the global model, the difference between the peak stresses

for the two types of BEoL architectures (1 and 2) is modest. It can be noted however that the

computed stress distributions are quite different for type 1 and 2:

type 1: stress concentration regions are highly localized and sparsely distributed due to the

presence of interlaced tungsten contacts rows;

type 2: stress in the dielectric layer spreads more uniformly in regions corresponding to the

imprints of the underlying Cu pads in the M1 metallization level. Although stress peaks

are eliminated in pad type 2, the magnitude of the uniform stress remains quite high, on

the same order as the maximum values obtained in the type 1 pad.

Such features would not be captured if a criterion based on maximum stress values were used.

The stress-averaging approach, by introducing a characteristic length, accounts for the lateral

spread of the stress peaks and should thus provide a more suitable criterion to study the relative

mechanical robustness of the investigated pad configurations.
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structure for the via, as they are deemed representative of a typical wire bondpad interconnect

stack compared respectively to the “pads” and “rows” structures. In this study only the me-

chanical performance is considered, disregarding electrical aspects and ease-of-processing for the

different structures.

III.6.3.1 Effect of metal lines interconnect layout

All three basic metal lines configurations proposed in Section III.4.3, namely “pads”, “grid” and

“plate”, are investigated for the M1 level. The different pads are listed in Table III.5 and the

associated submodels showed in Figure III.18. No vias were introduced above or below the M1

layer to isolate the influence of the metal lines layout. The results of wire-pull simulation are

plotted in Figure III.19 for the global and local models (respectively the maximum 1st principal

stress in the homogenized M1 layer, and the averaged 1st principal stress in the dielectric material

of the M1 layer).

Interconnect layout
M1 Cu surface fraction

Poly-Si Contact M1 Via 1 M2 Via 2 M3 Via 3 M4

Case 1

Plate None

None

None Grid Clusters Grid Clusters Grid

0%
Case 2 Pads 16%
Case 3 Grid 84%
Case 4 Plate 100%

Table III.5: Investigated architectures in the study of the effect of metal lines layout on pad
mechanical robustness.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure III.18: Mesh and geometry (only Cu shown) used in the local models of the four pad
variations in the study of the effect of metal level interconnect configuration.

In the global model, stress variations due to changes in the interconnect layout are very local:

only the M1 level is affected (Figure III.19a). It can also be noted that for this layer, the

obtained maximum tensile stress increases with metallization surface fraction. This is because

in the global model, due to material homogenization, the maximum tensile stress in a given layer

depends only on the elastic properties of the considered equivalent orthotropic material. Indeed,

from case 1 to case 4 the Cu surface fraction in the M1 layer increases from 0 to 100%, with

respectively 16% and 84% for case 2 and 3. Since Cu has a significantly larger Young’s modulus
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In the submodel however, the obtained ranking is not the same as in the global model (Fig-

ure III.19b and Figure III.21). Instead, the largest volume-averaged stress is obtained for case

1, having the lowest equivalent elastic moduli (Figure III.20). This result can be interpreted in

terms of a competition at the local scale between two effects:

(i) stress relief in the dielectric material due to the load-bearing capability of the interconnect

layout;

(ii) stress concentration due to elastic mismatch and sharp geometric features introduced by

metal patterning.

From the submodel results, it seems that the load-bearing effect of the metal interconnect layout

is predominant compared to the elastic mismatch. Indeed, for case 3 the averaged dielectric stress

is the lowest despite high metallization density (84%), whereas for case 1 the averaged dielectric

stress is maximum even though the layer is homogeneous and the applied load from the global

model is the lowest of all four cases.

III.6.3.2 Effect of via plugs layout

The three basic via plugs configurations proposed in Section III.4.3 are investigated for the CO

layer. The resulting pads configuration are listed in Table III.6 and the associated local finite

element models illustrated in Figure III.22. For all metal layers the “grid” configuration was used,

as it is deemed more representative of a typical wire bondpad interconnect stack compared to

the “pads” and “plate” structures. For the same reason, for via layers the “clusters” configuration

was used. No vias were introduced between the M1 and M2 layers however, in order to better

isolate the effect of via plugs layout.

Interconnect layout
CO W surface fraction

Poly-Si Contact M1 Via 1 M2 Via 2 M3 Via 3 M4

Case 1
Plate

No CO
Grid No VIA1 Grid Clusters Grid Clusters Grid

0%
Case 2 Clusters 0.6%
Case 3 Rows 5.8%

Table III.6: Investigated architectures in the study of the effect of via interconnect layout on
pad mechanical robustness.

The results of wire pull simulation are plotted in Figure III.23 for the global and local models

(respectively the maximum 1st principal stress in the homogenized CO layer, and the averaged

1st principal stress in the dielectric material of the CO layer). Overall, the results are very

similar to the trends obtained regarding the effect of metal level interconnect layout.

In the global model, the obtained peak stress in the CO layer is directly correlated to metal

surface fraction (Figure III.23a). Similarly to the previous section, this is due to the use of an

equivalent orthotropic material with homogenized properties. It can also be noted that although

the metal surface fraction is very low for the CO layer compared to metal levels, a substantial

variation of the equivalent elastic properties is obtained nevertheless between the different via
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(a) Case 2
max(σI) = 110 MPa

(b) Case 3
max(σI) = 138 MPa

(c) Case 4
max(σI) = 120 MPa

Figure III.25: Contour plots of the 1st principal stress in the dielectric material of the CO
layer for the studied pad structures in the local model (top view). The black dotted line marks
the wire bond footprint, while the black plain box represents the domain D for stress averaging.

• the large Young’s modulus of tungsten compared to copper1;

• transverse stiffening due to a structure effect for interlaced via rows in case 3, enhancing

the homogenized elastic properties compared to individual vias arranged in clusters for

case 2.

Therefore, the load transmitted to the submodel is the largest for case 3 and the lowest for

case 1. In the submodel however, similarly to the previous section, the obtained ranking is

different. The lowest averaged stress is obtained for case 3 having the largest metal surface

fraction, while the highest average stress is obtained for case 1 in which there are no contact

plugs (Figure III.23a). This is believed to result from a significant fraction of the total loading

being transmitted through the stiff W contact plugs, effectively providing stress relief to the

surrounding dielectric material. In addition, it can be noted that even though no via plugs

are present between M1 and M2, the stress state in all four metal levels seems to be impacted

(although quite modestly) by contact plugs layout. This was not the case in the study on the

effect of M1 layout, for which no contact plugs were introduced. Therefore, it may be inferred

that contact plugs play an important role in transmitting the load exerted on the wirebond to

the underlying interconnect stack.

In order to check for any strong mechanical interactions between CO and M1 interconnect

patterns, the above analysis was carried out again with the “grid” structure for the M1 layer,

instead of “plate” structure. Even though some mild variations in stress levels are obtained

between the two cases (with slightly lower values for the “grid” structure), the results are globally

the same. This could indicate that there is little interaction between the effects of contact plugs

and M1 lines configuration.

1The Young’s modulus of Cu is twice larger than that of SiO2, compared to about five times for tungsten.
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III.7 Discussion

III.7.1 Influence of bondpad capping

Among the investigated parameters, bondpad capping is identified as having the most impact on

bondpad mechanical robustness, both in experimental and simulation results. For the considered

3D IC with backside bondpads, the introduction of a passivation layer between the Al bonding

surface and the underlying interconnect stack provides an effective way to reduce the risk of

mechanical failure in the narrow and thin metal lines present nearby the bonding surface. Acting

as buffer, it enables to redistribute stresses over a larger area and thus to attenuate the loading

exerted by the wirebond on the interconnect stack.

The thickness of the capping layer has a strong impact on the levels of stress exerted on the pad

structure. For a thick buffer (type C), as with the Si layer (three times thicker than Al capping,

twice larger Young’s modulus), the number of failures in the cratering test vanishes regardless

of the interconnection layout. However, capping material may have an even stronger influence.

Indeed, for a thin buffer (type B), as with the silicon oxide layer (three times thinner than

Al capping, similar Young’s modulus) a significant decrease of failure percentages is obtained

compared to the case of direct contact between Al capping and the interconnect stack.

This result is attractive from a practical standpoint, as SiO2 layer deposition is a relatively

straightforward and ubiquitous process step for typical ICs, whereas the integration of a thick

Si layer may require more complex processing. In addition to wirebonding, the introduction of

capping layers could also enable to improve mechanical robustness during electrical probing of

the bondpad. However, it can be noted that these additional layers may also have potentially

detrimental consequences, e.g. in terms of optical performance or interface adhesion.

A question not addressed here is whether increasing Al capping thickness may lead to similar

results. In general, increasing Al capping thickness should indeed result in lower stress in the

interconnect stack. However, Al thickness plays an important role during bond formation due

to mechanical interaction between the wire and the bonding surface. Excessive thickness may

actually result in mechanical reliability issues due to larger “splash-out” around the bond after

ball impact and ultrasonic vibration, but thinner “Al remnant” below the bond [55, 56].
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III.7.2 Influence of interconnect layout

Having observed in the experimental study that the most critical locations for failure in the pad

structure are the intermetal (or interlayer) dielectric layers, the influence of interconnect layout

on pad mechanical robustness may be interpreted in terms of a competition between two effects:

• At the pad scale, the load-bearing capability of Cu interconnects in a given metallization

layer, effectively shielding the dielectric matrix from transverse normal loading;

• At the local scale, the elastic mismatch between Cu metallization and SiO2 dielectric, and

stress concentration around sharp corners or edges.

From experimental results, the load-bearing capability of the interconnect layout seems to have

a major impact on pad mechanical robustness. Indeed, among both studied pad configurations,

that with fully connected metal lines layout for the M1 layer (type 2) yielded significantly lower

failure percentages in the cratering test. In the simulation study, two main contributors to this

structure effect of the interconnect stack were identified:

Metallization surface fraction: in a given metallization level, a larger surface fraction for

the through-layer Cu interconnects contributes to relieve transverse normal stresses in the

surrounding dielectric matrix, by allowing better load redistribution towards the underlying

layers.

Pattern connectedness: layouts with connected metal lines (or vias) provide a stiffening effect

to the pad due to interconnects acting as reinforcement bars, thereby enabling better

redistribution of shear loads and thus stress relief in the dielectric material.

Related to the issue of metallization structure connectedness is the presence or absence of via

plugs between the different metal levels. In the experimental study, the presence of via plugs

between all metal levels for the type 2 pad could be an additional reason for its better robustness

in the cratering test compared to the type 1 pad, with no vias above or below the M1 layer. In

the simulation study, considering an isolated M1 layer (no vias above or below), the computed

stress variations in the dielectric material in response to an interconnect layout modification

remain very local, with few impact on the rest of the interconnect stack. In the presence of stiff

W contact plugs, layout changes in the M1 layer lead to slightly larger variations (although still

very modest) in the rest of the interconnect stack. However, when the contact layer and the M1

layer are connected, no coupling effect was identified between their respective layouts.

Additional experiments are needed to confirm the effect of via presence on the stress distribution

in the different metallization levels of the pad interconnect stack. This effect, if confirmed, could

have important consequences in practice for pad structure design. For example, it is expected

that in applications with backside bondpads, a pad structure with a via layer between each pair

of adjacent metallization levels could be more robust, by enabling stress redistribution from the

thin topmost interconnect layers towards the thicker lowermost interconnects. Conversely, in
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applications with frontside bondpads, a pad structure without vias in the thin lowermost inter-

connect layers could help to confine stresses in the thicker topmost interconnects. In particular,

such a feature would be attractive for BOA pads, to prevent load transmission to the active

region.

The results obtained on the influence of interconnect layout are in agreement with studies by

[32] and [8], who investigated different metal lines structures and found the “grid” configuration

(type 2) to be the most robust, both in qualification testing and finite element analysis using

a stress-based criterion. This finding was confirmed in [21], using an energy-based criterion to

perform the same comparison. [32] attributed this robustness to a “mechanical reinforcement”

effect with the “grid” configuration.

[25] also identified metallization surface fraction as having an influence on pad mechanical ro-

bustness in finite element calculations and argued that “metal density in a single layer [...] has

an impact on the performance of the remaining layers”. This effect was also observed to some

extent in this study for metal lines layers, however with relatively small variations of the stress

levels in the remainder of the stack for large variations in the metal surface fraction of the con-

sidered layer. For via plugs layers, the results of the present study are in agreement with the

observation of [33] that vias only have a local effect on the stress distribution in the pad, with

minimum impact on the layers below.

Regarding the local effect of via plugs on the stress distribution, consistent with the results of

this study, finite element analyses by [5], [34] and [15, 35, 36] showed a significant effect of via

density on the stress levels at the local scale, with a large stress decrease in the dielectric material

for increasing via density. [5] attributed this effect to the vias plugs providing a “mechanical

supporting structure” to the pad. On the contrary, [12] obtained a stress increase in the dielectric

material for increasing via density. This discrepancy may be explained by distinct interconnect

layouts being considered in the different studies. It can also be noted that two-dimensional

models were used in all the latter, which depending on cases may lead in overestimation or

underestimation of the influence of via plugs compared to metal lines. In addition, there is a

lack of relevant experimental data for comparison to the finite element results.

In the literature, no clear distinction was made between the respective contributions of the

“metallization surface fraction” and “pattern connectedness” mechanisms identified above. In the

present study, with the investigated pad configurations these two effects could not be completely

separated either, and thus further work is needed. For example, the different interconnect

layouts presented here could be compared at constant metallization surface fraction, enabling to

isolate the effect of pattern connectedness. It can be noted however that working with constant

metal surface fraction may require varying metal pattern width or spacing. However, with

the comparison criterion used here, i.e. stress-averaging over a constant domain defined by an

intrinsic length associated with the material, an additional bias due to interconnect characteristic

length dependence may be introduced.
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III.7.3 Methodology

III.7.3.1 Experimental study

The cratering test was used in this study to compare the mechanical robustness of several

bondpad configurations. This technique enables post mortem observation of the bonding surface

after the wirebonding process by chemical etching of the Au wire. Optimized bonding parameters

were used for the investigated samples, representative of bonding conditions used in practical

applications. Although not detailed here, several verifications were carried out before the test

(e.g. bond shape measurements, intermetallic compounds coverage), aiming to rule out extrinsic

causes for failure and to ensure the homogeneity of the investigated wirebond population.

The main advantage of this technique is its ease-of-implementation and high throughput. Indeed,

all bonds can be etched simultaneously, enabling to inspect a large population. However, with

the protocol used here only through-cracks are directly detectable1. A possible solution to detect

blind cracks is a deprocessing of the bondpad by successively etching the different layers in the

interconnect stack, which was not carried out here. In both cases, time-consuming FIB/SEM

cross-sections are required to determine the damaged layers or interfaces.

It can be noted that among the investigated bondpads, no cracks were detected for the two

configurations with thick capping, thus preventing direct comparison. To trigger more failures

and thus obtain more statistics, additional testing could be carried out using slightly more ag-

gressive bonding parameters. However, this is generally not a desirable option, as the bonding

conditions would then no longer be representative. Thus, qualification methods such as the

ball shear test (JESD22-B116B) and/or the wire pull test (ASTM F 459-06) are an attractive

alternative (or supplement) to the cratering test. Because the bond reaction force is monitored

against tool displacement during the test, quantitative data can be obtained. In addition, since

these qualification procedures include failure mode determination after testing, more compre-

hensive information is gained for bondpad robustness assessment, or even failure mechanism

identification. Indeed, even for failure modes with no apparent cracking of the bonding surface,

cracks and delamination inside the interconnect stack may still be revealed by sharp drops in

the force-displacement response during the test.

1Although in some cases, blisters may indicate delamination inside the interconnect stack, without surface
cracks.
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III.7.3.2 Simulation study

Good agreement was obtained between experimental and simulation results, although a distinct

loading is involved in each case. Failures observed in the cratering test are due to the impact force

and ultrasonic lateral vibration of the capillary tool during the wirebonding process, whereas

in the simulation study an oblique force loading is prescribed on the wire, corresponding to the

wire pull qualification test. Although primarily motivated by the need for a simple and efficient

model in an industrial context, wire pull simulation is also deemed relevant for comparison with

cratering test results, since in both cases the load includes a normal and a shear component. It

can be noted however that a compressive load is prescribed on the pad during the wirebonding

process, whereas in the wire-pull test the load is tensile. For verification purposes, the pad archi-

tecture comparison carried out in Section III.6.2 was therefore repeated locating the submodel

in the maximum compressive stress region, leading to the same results.

The correlation between experimental and simulation results may also be explained by the use of

a local stress-averaging method, introducing of a notion of characteristic length in a stress-based

criterion and thereby emulating an energetic approach. Although not sufficient to serve directly

as a criterion for crack initiation, this approach is believed to provide a suitable reliability index

to compare the relative mechanical robustness of different pad configurations while retaining

the ease of implementation and computational cost-effectiveness of a stress-based analysis. In

addition, this local stress-averaging criterion shares common features with the RKR model for

cleavage fracture [53], stating that brittle fracture occurs after a critical stress has been reached

across a sufficient length (intrinsic to the material). Therefore, contrary to most studies relying

on a maximum stress criterion, it is believed that not only the magnitude of the stress peaks in

the brittle dielectric should be considered, but also their extent. For verification purposes, the

pad architecture comparison carried out in Section III.6.2 was repeated using a smaller domain1

for stress averaging in the submodel, leading to the same results.

A comparison between the present method and energetic approaches such as the ARE or the

NRE methods, or investigations into the results dependence on the dimensions of the averaging

domain may bring more insights into the applicability of the proposed method, for instance

comparing the results obtained using a typical dimension of the interconnect pattern against

an intrinsic material length evaluated from experimental testing. In addition, the proposed

approach could also be applied for other process steps critical for mechanical robustness, such

as electrical probing prior to wire bonding, which can lead to cracking or delamination in the

interconnect stack due to impact and scrubbing by contact probes [57–63].

1Half the length of the domain D used previously, with the same width, and centered about the peak maximum
tensile stress.
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on backside pads

III.8 Conclusions

In this chapter, a combined experimental and numerical analysis of the mechanical robustness

of wirebond pads in a 3D stacked BSI image sensor was conducted.

In the experimental study, six distinct pad architectures were investigated using the cratering

test. The bonding surface was inspected after the wirebonding process to determine the number

of failure occurrences for each pad and derive a ranking based on their relative mechanical

robustness. A 3D finite element model of the wire-pull qualification test was then proposed,

aiming to better understand the experimental results and to investigate in more detail the

influence of interconnection layout. A multiscale approach was adopted to account for detailed

geometric features of the interconnect stack, and a criterion based on volume-averaged maximum

tensile stress in the dielectric material at the local scale was used to compare the mechanical

robustness of the different pad configurations.

Based on the results, several guidelines on bondpad interconnect stack architecture were proposed

to optimize wirebond pad mechanical robustness. Most failures were observed in cross-sections in

the uppermost layers of the top chip (poly-Si layer, contact plugs, first metallization level). The

introduction of additional capping layers between the Al bonding surface and the interconnect

stack was found to have the most influence on mechanical robustness. By acting as buffer layer,

it enables stress redistribution and contributes to attenuate the load exerted on the interconnect

stack. Another important factor is interconnection layout in the pad structure. Metallization

surface fraction in the interconnect stack has a significant influence, due to the load-bearing

capability of metal interconnects, effectively shielding the dielectric matrix from transverse loads.

In addition, metallization connectedness in the plane provides further stress relief in the dielectric

material, by introducing structural reinforcement to the pad. Via plugs between metal lines also

seem to play a significant role on the mechanical robustness. Additional experiments are needed

to confirm the effect of via presence on the stress distribution in the different metallization levels

of the pad interconnect stack. It is expected in the case of a 3D stacked BSI image sensor that

a pad structure with a via layer between each pair of adjacent metallization levels could be

more robust, by enabling stress redistribution from the topmost interconnect layers, close to the

bonding surface, towards the thicker lowermost interconnects.

Thus, relying on a combined experimental and numerical approach a comprehensive analysis of

the most influent factors on wirebond pad mechanical robustness was carried out and guidelines

for backside bondpad optimization were derived, aiming to secure integration of 3D stacked BSI

image sensor devices.

Several possibilities may be considered for future work:

• Carrying out further experimental testing, in particular the wire-pull and wire-shear qual-

ification tests, aiming to supplement the cratering test data presented here and investigate

additional parameters such as the influence of via plugs presence;
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• Decorrelate the effect of interconnection layout from that of metallization density by work-

ing with constant Cu surface fraction

• Compare the present method with energetic approaches such as the ARE or the NRE

methods;

• Further investigate the results dependence on the dimensions of the averaging domain;
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Year Company/Institution Process Wire/Pad BEoL Configuration Type Loading Criterion Experiments Reference

1998 Texas Instruments WB Au/Al Al/low-κ ? ? ?
Stress-based:

Maximum tensile/shear stress

Bond shear, ball size

IMC coverage
[32]

2003 IMEC WB
Cu/Cu

Au/Al

Cu/SiO2

Cu/low-κ
2D (axisymmetric) Static

Normal force

Vertical displacement

Stress-based:

− Von Mises stress in metal layer

− Maximum principal stress in dielectric layer

Ball shape (SEM) [3–5]

2003 Motorola
WB

TC
Au/Al

Cu/SiO2

Cu/low-κ
2D (axisymmetric) Static Normal force

Stress-based:

− Maximum principal stress

− Maximum compressive stress

Functional testing, MSL, TC [33]

2003 ASE WB Au/Al Cu/low-κ 2D (plane strain) Dynamic (explicit) Normal/Lateral displacement

Stress-based:

− Von Mises stress for metal layers

− Maximum compressive stress for dielectric layers

n/a

[9]

[10, 11]

[64]

2004 Melixis/IMEC WB Cu/Cu n/a 2D (axisymmetric) Static
Vertical displacement

Cooling
Stress-based: ?

Ball shape (SEM), EBSD

µRaman spectroscopy
[6]

2004 Fairchild WB Au/Al Al/SiO2 2D (plane strain) Dynamic (implicit)

Vertical displacement

Lateral displacement

Cooling

Stress-based:

− Maximum principal stress

− Shear stress

− Von Mises stress

n/a [12, 13]

2005
STMicroelectronics

Philips

Wire shear

Wire pull

Cooling

Au/Al Cu/low-κ 3D Static
Force

Temperature variation

Stress-based:

− Maximum principal stress

− Von Mises stress

n/a [8]

2005
Philips

Eindhoven Univ.
Wire pull Au/Al Cu/low-κ 3D Static Force

Energy-based:

Area release energy
n/a

[17, 18]

[19, 20]

[25]

2005
A*STAR

ASM
WB Au/Al Cu/low-κ

2D (plane strain)

3D
Dynamic (explicit)

Normal force

Lateral displacement

Stress-based:

− Von Mises stress

− Shear stress

− Compressive stress

n/a
[65]

[66]

2006 National Semiconductor WB Au/Al Cu/SiO2 3D Dynamic
Normal force

Lateral displacement

Stress-based:

Maximum in-plane normal stress range
Ball shear test [23]

2006 ASE
WB

Wire pull
Au/Al Cu/low-κ 2D (plane strain) Dynamic (explicit)

Normal force

Lateral displacement

Vertical displacement

Damage-based:

Equivalent plastic strain
n/a [11]

2007
I-Shou Univ.

ASE
WB Au/Al Cu/low-κ 3D Dynamic (explicit)

Normal force

Lateral displacement

Stress-based:

Von Mises stress

Nanoindentation

Micro-tensile test

AFM

[34]

[67]

[15, 35, 36, 68, 69]

[70–73]

2007
STMicroelectronics

Freescale/NXP

WB

Wire pull

Wire shear

Au/Al Cu/low-κ 3D Static Force
Energy-based:

Nodal release energy
Wire pull test

[7, 21]

[27]

2007
Eindhoven Univ.

Philips
Wire pull ? Cu/low-κ 2D (plane strain) Static Force

Energy-based:

Cohesive zone modeling
n/a [28]

2007
National Semiconductor

Kulicke & Soffa
WB Au/Al Cu/SiO2 3D Static Normal/lateral displacement

Stress-based:

Maximum principal stress
Ball shear [2]
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Year Company/Institution Process Wire/Pad BEoL Configuration Type Loading Criterion Experiments Reference

2012

UTAC
Globalfoundries
WorleyParsons

Dassault Systèmes

WB
Wire pull

Cu/Al Cu/low-κ 2D (axisymmetric) Dynamic (explicit)
Normal force

Lateral displacement

Stress-based:
− Von Mises stress
− Peel stress
− Maximum principal stress

Ball shear
Wire pull

[56, 74]

2012
Idaho State Univ.

Brigham Young Univ.
ON Semiconductor

WB Au/Al Al/SiO2 3D ? Lateral displacement
Stress-based:

− Maximum principal stress
− Von Mises stress

n/a [75]

2012 Infineon WB Cu/Al Cu/low-κ 2D (axisymmetric) Dynamic (explicit)
Normal force

Lateral displacement

Stress-based:
− Maximum principal stress
− Maximum shear stress
− Von Mises stress

n/a [76]

2013
Fraunhofer Institute

Univ. of Erlangen-Nuremberg
AMS

WB Au/Al Cu/SiO2 3D Dynamic (explicit)
Normal force

Lateral displacement
Damage-based:

Christensen’s criterion [24]
Nanoindentation [14, 77]

2014 Tsinghua Univ. WB Cu/Al Cu/low-κ 2D ? Vertical/lateral displacement
Stress-based:

− First principal stress
− Maximum shear stress

n/a [78]

2014
Purdue Univ.

Binghampton Univ.
WB Cu/Al Cu/low-κ 3D ? Vertical/lateral displacement

Damage-based:
Cohesive damage law

n/a [79, 80]

2015
Fraunhofer Institute

Globalfoundries
WB Cu/Al Cu/low-κ 3D ? Vertical/lateral displacement

Damage-based:
Cohesive damage law

n/a
[29, 30]

[31]

2018
STMicroelectronics

Univ. Grenoble-Alpes
Wire pull Au/Al Cu/SiO2 3D Static Force

Stress-based:
Averaged maximum principal stress

Cratering test This work

Table III.7: Overview of simulation studies in the literature regarding the mechanical robustness of the interconnect stack below the bondpad.
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Chapter IV

Process-induced Thermomechanical

Stresses in a 3D BSI Image Sensor

Stacked by Hybrid Bonding

IV.1 Introduction

In the context of semiconductor manufacturing, with wafer fabrication cycle times on the order

of several months, inline monitoring of the different quantities of interest, e.g. mask alignment,

layer thickness, surface topography, or device resistance values is mandatory. Such measurements

are carried out many times during fabrication, and enable

during product development: to identify processing issues and the associated critical steps

without needing the wafers to undergo the whole fabrication sequence;

during mass production: to identify process errors and deviations using statistical process

control techniques.

Many issues encountered during integrated circuit processing, such as substrate warping, delam-

ination/cracking in the interconnect stack, or even semiconductor device electrical performance

are governed by the stress distribution in the assembly. Having a method able to evaluate stress

build-up during the sequence of processing steps is a way to prevent these problems, as well as

to correlate and validate the numerical models developed for material or structure optimization.

Several techniques have been developed to measure mechanical stresses in thin films, such as X-

ray diffraction [1] or Raman spectroscopy [2]. However, these methods are quite time-consuming

in an industrial context and for some applications require extensive (and destructive) sample

preparation. A more widespread and cost-effective technique is stress evaluation through wafer

curvature measurements, which are routinely carried out during wafer processing and can be
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used to determine thin film stress using Stoney’s equation [3]. However, this method has strong

limitations for complex patterned stacks, since only the average inplane stress is derived.

In an image sensor, the electro-optical performance of the different semiconductor components

inside the active pixel sensors (e.g. photodiodes, transistors) is known to be negatively affected

by mechanical stress [4]. Aiming to determine whether a significant increase of mechanical stress

could be induced in the active region of the image sensor due to the 3D BSI configuration, in this

chapter a method based on Si piezoresistive stress sensors is proposed for inline monitoring of

the in situ stress distribution during the fabrication sequence. Stress measurements are carried

out both at the wafer-level and the package-level, and compared with finite element modeling of

the sequence of process steps. The limitations of this method will be discussed and directions

for further work proposed.

IV.2 In situ stress evaluation using Si piezoresistive stress sen-

sors

In this section, after a short overview of the different sensor technologies for in situ stress mon-

itoring in integrated circuits, the theoretical framework and general methodology are outlined

for Si piezoresistive stress sensors.

IV.2.1 Overview of stress sensors technologies for integrated circuits

Resistor-based strain gauges have long been used in mechanical and civil engineering to derive

mechanical stresses in structural components. This is achieved by measuring resistance variations

under mechanical loading, after prior calibration to determine the gauge factors, enabling to

access the longitudinal, transverse and normal strain components. Using an array of resistors

with different orientations (rosette configuration), the 2D strain state can be reconstructed in

the location of interest at the sample surface.

This strategy is easily transferrable to microelectronic applications by integrating metal thin

film resistors in the interconnect stack of the integrated circuit of interest, in the form of metal

serpentines arranged in a rosette configuration. A common calibration method for this strain

gauge is to exert a controlled loading using the four-point bending technique on rectangular

samples sawed from the Si wafer, while measuring resistance variations in the metal serpentines

to determine the gauge factors. Specific design considerations are required to maximize strain

gauge sensitivity, while minimizing self-heating1 of the metal resistors to avoid disturbing the

resistance measurement [5]. Contrary to the strain gauges used in structural applications, which

are attached at the surface of the stressed body and thus only give access to a 2D stress field,

1Due to the Joule effect under the prescribed electrical current during resistance measurements.
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in integrated circuits the structure is embedded into the interconnect stack and may therefore

be subjected to transverse stresses.

In the general case, strain-induced resistance changes originate from two main sources [6]. This

is apparent from writing the resistance of a conductor of length L, rectangular cross-section

W × t and resistivity ρ:

R =
ρL

Wt
(IV.1)

Under an incremental length change δL, there is a variation in the transverse dimensions of

the conductor δW and δt due to the Poisson effect, but also a resistivity change δρ due to the

piezoresistivity effect (as will be detailed in Section IV.2.2). The resulting incremental relative

resistance change writes:

δR

R
=

δρ

ρ
+

δL

L
− δW

W
− δt

t
=

δρ

ρ
+ (1 + 2ν)

δL

L
(IV.2)

expressing the transverse strains δW/W and δt/t as a function of the longitudinal strain δL/L,

through Poisson’s ratio ν. With the metal serpentines approach described above, resistance

change during a mechanical loading is mostly due to geometrical variations of the deformed

resistor (right-hand side term in Equation (IV.2)), whereas the resistivity change is negligible

(left-hand side term). This type of sensors typically has poor sensitivity for application to

microelectronic devices: a low relative resistance variation is obtained for stress magnitudes

typically encountered (on the order of 0.1% resistance variation for 100 MPa). Since these metal

serpentines also have very low resistance, for instance compared to semiconductor resistors,

accurate stress evaluation using these sensors is challenging [5].

Another approach is to fabricate sensors using doped Si resistors instead of metal serpentines.

In these structures, resistance variations under mechanical loading originate from the resistivity

change due to the piezoresitive effect, rather than resistor geometry variation1. Such piezoresis-

tive sensors have been introduced for practical applications in integrated circuits by researchers

at Texas Instruments in the early 1980s [7, 8]. The increase in gauge factors obtained using

piezoresistors instead of metal serpentines can be as large as two orders of magnitude, depend-

ing on dopant concentration [9].

A fundamental difference between these two types of sensors is also their integration within

the die: metal thin film resistors are processed at the BEoL level and thus give access to the

stress components inside the interconnect stack, whereas doped Si resistors are fabricated at the

FEoL level, enabling to obtain the stress field in the active region. For the 3D BSI image sensor

considered in this work, an important question is whether the new integration scheme by chip

stacking with hybrid bonding may lead to a significant change in the magnitude or distribution

of the stresses exerted on the active components in the pixels, in turn resulting in a degradation

of image sensor electro-optical performance. Piezoresistive sensors, located in the active region

1Conversely, for metal thin film resistors the resistance change under mechanical loading due to the piezore-
sistive effect is negligible compared to that induced by resistor geometry variation.
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of the chip, are a good candidate for this purpose. Thus, an approach based on doped Si stress

sensors1 is proposed, aiming to enable in situ stress evaluation in the active region during the

fabrication process of a 3D test chip stacked by hybrid bonding.

IV.2.2 Theoretical background

In this section, the governing equations of silicon piezoresistivity are detailed. These describe

the relationship between the normalized change in resistance and local stress field, and will be

used in Section IV.2.4 both for the calibration of our stress sensors and the evaluation of the

stress variations between two process steps2. The notations and developments of [10] are directly

followed.

IV.2.2.1 Piezoresistive effect

This piezoresistive effect has been observed in both metals (e.g. Bi, Ni or Co) [11–13] and

semiconductors (Si and Ge) [9, 14, 15]. It corresponds to a variation of the components of the

resistivity tensor under applied stress. Neglecting second-order piezoresistivity, the resistivity

variation writes:

ρij = ρ0
ij + πijklσkl (IV.3)

where ρ0
ij and πijkl respectively correspond to the Cartesian components of the stress-free resis-

tivity tensor and the piezoresistivity tensor.

Because the resistivity and the stress tensors are both symmetric, this relationship can be con-

siderably simplified, from nine to six equations:
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1Metal serpentines rosettes are fundamentally strain gauges, since the measured resistance variations under
mechanical loading originate from resistor deformation. If the material in which these sensors are embedded
behaves elastically for the load magnitude considered, and the elastic constants of this material are known, then
the stress state can be derived from the measured strain components. Since that is the case for the piezoresistive
sensors embedded in single-crystal Si, the measured response to mechanical loading can be indifferently expressed
in terms of strain or stress, and thus these structures may be equivalently referred to as strain gauges or stress

sensors. Following the literature convention of expressing the governing equation of piezoresistivity in terms of
stress, Si piezoresistive sensors will be referred to in the following as stress sensors.

2Only the variation of the different stress components between two process steps is obtainable from the
knowledge of the resistance change, not the absolute magnitude of stress (contrary to other techniques such as
X-ray diffraction or Raman spectroscopy). For simplicity, in the remainder of this chapter we will sometimes
simply use the term ’stress’, when actually referring to a variation of stress between two process steps.
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Introducing the Voigt notation (i.e., 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6), the

above equation becomes:

ρα = ρ0
α + Παβσβ (IV.5)

with α, β = 1, 2, . . . 6.

Rewriting this expression in terms of relative resistivity change gives:

∆ρα

ρ̄
= παβσβ (IV.6)

where ∆ρα = ρα − ρ0
α and the παβ =

Παβ

ρ̄
are the piezoresistive coefficients, with ρ̄ =

ρ0
1+ρ0

2+ρ0
3

3

the mean unstressed resistivity.

For silicon, which is a cubic crystal with diamond structure, the number of independent piezore-

sistive coefficients is reduced to three due to orthotropic symmetry, namely π11, π22 and π44

[16].

IV.2.2.2 Electrical conduction in the stressed Si crystal

The general conduction equations for an anisotropic ohmic material write:

Ei = ρijJj (IV.7)

with Ei and Ji the Cartesian components of the electric field and current density vectors.

Substitution of Equation (IV.3) into the above expression gives:

Ei = ρ0
ijJj + πijklσklJj (IV.8)

Again, introducing the Voigt notation:
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E1 = ρ1J1 + ρ6J2 + ρ5J3

E2 = ρ6J1 + ρ2J2 + ρ4J3

E3 = ρ5J1 + ρ4J2 + ρ3J3

(IV.9)

The conduction equations in reduced index notation then write:

E1 =
(

ρ0
1 + ρ̄π1ασα

)

J1 +
(

ρ0
6 + ρ̄π6ασα

)

J2 +
(

ρ0
5 + ρ̄π5ασα

)

J3

E2 =
(

ρ0
6 + ρ̄π6ασα

)

J1 +
(

ρ0
2 + ρ̄π2ασα

)

J2 +
(

ρ0
4 + ρ̄π4ασα

)

J3

E3 =
(

ρ0
5 + ρ̄π5ασα

)

J1 +
(

ρ0
4 + ρ̄π4ασα

)

J2 +
(

ρ0
3 + ρ̄π3ασα

)

J3

(IV.10)
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IV.2.2.3 Stress-induced resistance change for a single Si piezoresistor in a (100)

substrate

IV.2.2.3.1 Coordinate system aligned with the principal symmetry axes of the Si

lattice

In a coordinate system (x1, x2, x3) aligned with the principal symmetry axes of the cubic lattice,

e.g. with x1 = [100], x2 = [010] and x3 = [001], the unstressed resistivity components and the

piezoresistive tensor become, respectively [16]:

ρ0
1 = ρ0

2 = ρ0
3 = ρ̄

ρ0
4 = ρ0

5 = ρ0
6 = 0

(IV.11)

and
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by requiring that these quantities remain unchanged under a number of symmetry operations

characteristic of a cubic crystal.

Substituting the above expressions into Equation (IV.10) yields for the conduction equations:

E1

ρ̄
= [1 + π11σ11 + π12 (σ22 + σ33)] J1 + π44σ12J2 + π44σ13J3

E2

ρ̄
= [1 + π11σ22 + π12 (σ11 + σ33)] J2 + π44σ12J1 + π44σ23J3

E3

ρ̄
= [1 + π11σ33 + π12 (σ11 + σ22)] J3 + π44σ13J1 + π44σ23J2

(IV.13)

These equations can then be used to derive the stress-induced resistance change in a uniform

filamentary piezoresistor of length L and cross-sectional area A (in the unstressed state) oriented

along unit vector n = le1 + me2 + ne3, with l, m and n the direction cosines with respect to

axes x1, x2 and x3. Assuming the piezoresistor is subjected to a current density J = Jn, with

magnitude J = I/A where I is the current intensity.
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Then, Equation (IV.13) becomes:

E1A

ρ̄I
= [1 + π11σ11 + π12 (σ22 + σ33)] l + π44σ12m + π44σ13n

E2A

ρ̄I
= [1 + π11σ22 + π12 (σ11 + σ33)] m + π44σ12l + π44σ23n

E3A

ρ̄I
= [1 + π11σ33 + π12 (σ11 + σ22)] n + π44σ13l + π44σ23m

(IV.14)

Considering that the electric potential difference V along the resistor writes:

V = (E1l + E2m + E3n) L (IV.15)

then the resistance of the stressed conductor is given by:

Rσ =
V

I
=

ρ̄L

A
[1 + (π11σ11 + π12 [σ22 + σ33]) l2 + (π11σ22 + π12 [σ11 + σ33]) m2

+ (π11σ33 + π12 [σ11 + σ22]) n2 + 2π44 (σ12lm + σ13ln + σ23mn)]

(IV.16)

Therefore, neglecting dimensional changes, the relative resistance change under mechanical load-

ing writes:

∆R

R
=

Rσ − R0

R0
= [π11σ11 + π12 (σ22 + σ33)] l2 + [π11σ22 + π12 (σ11 + σ33)] m2

+ [π11σ33 + π12 (σ11 + σ22)] n2 + 2π44 [σ12lm + σ13ln + σ23mn]

(IV.17)

with R0 = ρ̄L
A

the unstressed resistance.

In the plane of a (100) Si wafer, as used for the test chip investigated in this work, i.e. setting

n = 0, Equation (IV.17) becomes:

∆R

R
= [π11σ11 + π12 (σ22 + σ33)] l2 + [π11σ22 + π12 (σ11 + σ33)] m2

+2π44 [σ12lm]

(IV.18)

with l = cos θ and m = sin θ, where θ is the angle between the resistor orientation and the x1

axis (Figure IV.1).
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IV.2.2.3.2 Off-axis coordinate system

So far all equations have been expressed in coordinate system (x1, x2, x3), aligned with the

principal symmetry axes of the crystal, i.e. x1 = [100], x2 = [010] and x3 = [001]. However,

as will be seen for sensor calibration in Section IV.2.4.2, in some cases it is more convenient to

work in an off-axis coordinate system (x′
1, x′

2, x′
3).

Voigt’s notation was adopted for simplicity to express the piezoresistivity equations (IV.6) and

the conduction equations (IV.9). A consequence is that standard rotation operators cannot be

used directly to derive the equivalent expressions in the off-axis coordinate system (x′
1, x′

2, x′
3),

as would be the case for the fully expanded equations. The specific transformation relations in

Voigt’s notation can be obtained by introducing the reduced indices back into the expressions

obtained in the off-axis coordinate system in fully expanded form.

Thus, the piezoresistivity equations in reduced index notation:

ρ′
α = ρ0

α
′
+ π′

αβσ′
β (IV.19)

remain valid in the off-axis coordinate system by taking:

ρ′
α = Tαβρβ

σ′
α = Tαβσβ

π′
αβ = TαγπγδT −1

δβ

(IV.20)

where the transformation operator [Tαβ ] writes:
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with li, mi, ni the direction cosines for the two coordinate systems (x1, x2, x3) and (x′
1, x′

2, x′
3),

defined by:












l1 m1 n1

l2 m2 n2

l3 m3 n3













=













a11 a12 a13

a21 a22 a23

a31 a32 a33













(IV.22)

with aij = cos (x′
i, xj).
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Applying the obtained transformation relations to Equation (IV.10) yields:

E′
1 =

(

ρ0
1

′
+ ρ̄π′

1ασ′
α

)

J ′
1 +

(

ρ0
6

′
+ ρ̄π′

6ασ′
α

)

J ′
2 +

(

ρ0
4

′
+ ρ̄π′

4ασ′
α

)

J ′
3

E′
2 =

(

ρ0
6

′
+ ρ̄π′

6ασ′
α

)

J ′
1 +

(

ρ0
2

′
+ ρ̄π′

2ασ′
α

)

J ′
2 +

(

ρ0
5

′
+ ρ̄π′

5ασ′
α

)

J ′
3

E′
3 =

(

ρ0
4

′
+ ρ̄π′

4ασ′
α

)

J ′
1 +

(

ρ0
5

′
+ ρ̄π′

5ασ′
α

)

J ′
2 +

(

ρ0
3

′
+ ρ̄π′

3ασ′
α

)

J ′
3

(IV.23)

Observing that the unstressed resistivity components remain unchanged for any coordinate sys-

tem:
ρ0

1
′
= ρ0

2
′
= ρ0

3
′
= ρ̄

ρ0
4

′
= ρ0

5
′
= ρ0

6
′
= 0

(IV.24)

the above expression then writes:

E′
1

ρ̄
=

(

1 + π′
1ασ′

α

)

J ′
1 + π′

6ασ′
αJ ′

2 + π′
4ασ′

αJ ′
3

E′
2

ρ̄
= π′

6ασ′
αJ ′

1 +
(

1 + π′
2ασ′

α

)

J ′
2 + π′

5ασ′
αJ ′

3

E′
3

ρ̄
= π′

4ασ′
αJ ′

1 + π′
5ασ′

αJ ′
2 +

(

1 + π′
3ασ′

α

)

J ′
3

(IV.25)

Considering the same uniform filamentary piezoresistor subjected to a current density J = Jn′,

expressed this time in the off-axis coordinate system, i.e. n = l′e1 + m′e2 + n′e3, with l′, m′

and n′ the direction cosines with respect to axes x′
1, x′

2 and x′
3, and using the same approach as

in the previous paragraph, the stress-induced relative resistance change is readily obtained:

∆R

R
= π′

1ασ′
αl′2 + π′

2ασ′
αm′2 + π′

3ασ′
αn′2 + 2π′

4ασ′
αl′n′ + 2π′

5ασ′
αm′n′ + 2π′

6ασ′
αl′m′ (IV.26)

in which the remaining unknown quantities are the piezoresistive coefficients in the off-axis coor-

dinate system. They can be obtained using the transformation relation introduced in Equation

(IV.20).

A convenient off-axis coordinate system to express the equations used for sensor calibration is

x′
1 = [110], x′

2 = [1̄10] and x′
3 = [001], rotated by 45° with respect to the reference coordinate

system aligned with the principal symmetry axes of the crystal, x1 = [100], x2 = [010] and

x3 = [001]. In this off-axis coordinate system, the piezoresistive coefficients are written:

[

π′
αβ

]

=































π11+π12+π44

2
π11+π12−π44

2 π12 0 0 0

π11+π12−π44

2
π11+π12+π44

2 π12 0 0 0

π12 π12 π11 0 0 0

0 0 0 π44 0 0

0 0 0 0 π44 0

0 0 0 0 0 π11 − π12































(IV.27)
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(typically oriented at 0–45–90° or 0–60–120°), all three inplane stress components σ11, σ22 and

σ12 can be obtained. In microelectronic applications however, in the vast majority of cases the

rosette is not at the surface of the sample but embedded within the chip, and therefore the plane

stress assumption is not fulfilled (σ33 6= 0). Since there are four unknown stress components to

be determined, it seems reasonable then to introduce four resistors in the rosette (e.g. 0–45–90–

135°).

Even adding a fourth resistor however, the four accessible stress components still cannot be

obtained. Indeed, as pointed out by [10], writing Equation (IV.18) for four arbitrarily oriented

resistors in the plane of a (100) Si wafer leads to the following system of equations, which is not

invertible for any orientation1:















∆R1

R1

∆R2

R2

∆R3

R3

∆R4

R4















=















l1
2 m1

2 1 l1m1

l2
2 m2

2 1 l2m2

l3
2 m3

2 1 l3m3

l4
2 m4

2 1 l4m4





























π11σ11 + π12σ22

π12σ11 + π11σ22

π12σ33

2π44σ12















(IV.29)

with li = cos θi and mi = sin θi the direction cosines for the i-th resistor.

This is because although four equations are available for four accessible stress components, the

Si crystal has only three independent piezoresistive coefficients. A solution can thus be obtained

provided there is at least one resistor with distinct piezoresistive coefficients compared to the

three others. Indeed, introducing two distinct sets of piezoresistive coefficients πa
ij and πb

ij ,

Equation (IV.29) becomes:















∆R1

R1

∆R2

R2

∆R3

R3

∆R4

R4















=















l1
2πa

11 + m1
2πa

12 l1
2πa

12 + m1
2πa

11 1 2l1m1πa
44

l2
2πa

11 + m2
2πa

12 l2
2πa

12 + m2
2πa

11 1 2l2m2πa
44

l3
2πa

11 + m3
2πa

12 l3
2πa

12 + m3
2πa

11 1 2l3m3πa
44

l4
2πb

11 + m4
2πb

12 l4
2πb

12 + m4
2πb

11 1 2l4m4πb
44





























σ11

σ22

σ33

σ12















(IV.30)

which is invertible.

These two distinct sets of piezoresistive coefficients can for instance be obtained by incorporating

both N-type and P-type doped Si resistors into the rosette structure2. By doing so, all of the four

accessible stress components can be derived by measuring the relative resistance changes for all

resistors in the four-element rosette. Such piezoresistive sensors were designed and incorporated

into the studied 3D hybrid stacked test vehicle, and are presented in the next section.

1Due to the direction cosines matrix being singular.
2The issue is the same with metal thin film rosettes, and can be solved in a similar way, by introducing two

types of metal serpentines (e.g. different section or length) having distinct gauge factors









Chapter IV Process-induced Thermomechanical Stresses in a 3D BSI Image Sensor Stacked by
Hybrid Bonding 171

IV.2.3.2.2 During chip packaging

For the wafer undergoing the packaging steps (PKG), resistance values are measured a third

time after the encapsulation process (Figure IV.5), using a device interface board for automated

testing of the individual packaged integrated circuits in a parametric measurement unit (Ad-

vantest T2000, Advantest Co., Japan). Again, four-terminal sensing is used, with prescribed

currents of 200 µA. A chip identification circuit is implemented in each integrated circuit so that

each die can be traced by a unique digital identification tag after encapsulation, enabling proper

comparison with previous measurements at the wafer-level.

IV.2.3.3 Calibration procedure

To determine the piezoresistive coefficients of the N-type and P-type resistors in the stress

sensors, a known stress field must be prescribed to the sample while simultaneously measuring

the resulting resistance variation, as can be seen from Equation (IV.17). Several methods are

available for this calibration procedure, such as:

• microindentation [17];

• hydrostatic loading [18, 19];

• three-point bending [20];

• four-point bending [21].

Among these techniques, four-point bending is the most popular method1, as it is relatively easy

to prescribe and monitor the load, and a uniform stress field is obtained.

In this test, a rectangular thin plate sample is placed between two pairs of cylindrical pins and

a vertical load is prescribed on the inner pins, placing the sample in a state of bending. With

this loading configuration and specimen geometry, a uniform bending stress is prescribed at

the center of the sample between the inner pins (Figure IV.3). The sign and magnitude of the

uniform bending stress can be varied by adjusting the relative spacing between the inner and

outer pins. Indeed, the prescribed flexural stress is given by the following equation:

σf =
3

2

Lo − Li

bh2
F (IV.31)

where Lo and Li the width respectively between the outer and inner pins, b the sample width,

h the sample thickness, and F the applied load.

A previously developed in-house instrumented four-point bending apparatus, presented in [31]

and [30], is used for sensor calibration (Figure IV.6). The rectangular specimen is mounted on

a spherical-jointed support, on which several grooves enable to adjust the width between the

1see for instance [22–30]
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IV.2.4.2 Piezoresistive coefficients

IV.2.4.2.1 Methodology

Wafer 1 from the previous section was diced by mechanical sawing to obtain rectangular thin

plate specimens cut along different orientations for the calibration procedure.

For the samples cut along the [100] direction, resistance variations as a function of stress can

be obtained from Equation (IV.18). Considering only the resistors oriented along the length

(R1, R3) and width (R5, R7) of the rectangular specimens (Figure IV.4):

∆R1

R1
= πp

11σ11 + πp
12σ22 + πp

12σ33

∆R3

R3
= πp

12σ11 + πp
11σ22 + πp

12σ33

∆R5

R5
= πn

11σ11 + πn
12σ22 + πn

12σ33

∆R7

R7
= πn

12σ11 + πn
11σ22 + πn

12σ33

(IV.32)

Under uniaxial stress (σ11 = σ), a simple relationship is obtained between the resistance change

and the prescribed bending stress:
∆R1

R1
= πp

11σ

∆R3

R3
= πp

12σ

∆R5

R5
= πn

11σ

∆R7

R7
= πn

12σ

(IV.33)

Thus, the π11 and π12 piezoresistive coefficients can be directly evaluated from the slopes of the

calibration curves ∆Ri/Ri = f (σ) for resistors in the longitudinal and transverse directions of

the sample, respectively ai,L and ai,T :

πp
11 = a1,L

πp
12 = a3,T

πn
11 = a5,L

πn
12 = a7,T

(IV.34)

For the samples cut along the [110] direction, it is more convenient to express the resistance

changes in terms of the stress components in the basis (x′
1, x′

2, x′
3) (Figure IV.1). Then, apply-

ing Equation (IV.28) to resistors oriented along the length (R0, R4) and width (R2, R6) of the
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rectangular specimens (Figure IV.4):

∆R0

R0
=

πp
11 + πp

12 − πp
44

2
σ′

11 +
πp

11 + πp
12 + πp

44

2
σ′

22 + πp
12σ′

33

∆R2

R2
=

πp
11 + πp

12 + πp
44

2
σ′

11 +
πp

11 + πp
12 − πp

44

2
σ′

22 + πp
12σ′

33

∆R4

R4
=

πn
11 + πn

12 − πn
44

2
σ′

11 +
πn

11 + πn
12 + πn

44

2
σ′

22 + πn
12σ′

33

∆R6

R6
=

πn
11 + πn

12 + πn
44

2
σ′

11 +
πn

11 + πn
12 − πn

44

2
σ′

22 + πn
12σ′

33

(IV.35)

Under uniaxial stress (σ′
11 = σ), the above equation becomes:

∆R0

R0
=

πp
11 + πp

12 − πp
44

2
σ

∆R2

R2
=

πp
11 + πp

12 + πp
44

2
σ

∆R4

R4
=

πn
11 + πn

12 − πn
44

2
σ

∆R6

R6
=

πn
11 + πn

12 + πn
44

2
σ

(IV.36)

The remaining π44 coefficients can then be evaluated from the slopes of the calibration curves

∆Ri/Ri = f (σ) for resistors in the longitudinal or transverse directions of the rectangular

specimen, respectively ai,L and ai,T :

πp
44 = πp

11 + πp
12 − 2a0,T = 2a2,L − πp

11 − πp
12

πn
44 = πn

11 + πn
12 − 2a4,T = 2a6,L − πn

11 − πn
12

(IV.37)

It can be noted that for Si piezoresistive sensors fabricated on a (001) substrate, the transverse

shear piezoresistive coefficient π44 can be obtained using the four-point bending method on a

sample cut along a <100> direction, although with this type of loading only an inplane uniaxial

stress is prescribed1. This is due to the shear-coupling effect in orthotropic materials, whereby

shear strains are induced by a normal load prescribed in any direction other than the symmetry

axes of the material, i.e. the <100> directions for the transversely orthotropic Si single-crystal

substrate considered here.
1For the metal thin film strain gauges presented in Section IV.2.1 however, which are embedded in SiO2

dielectric, the transverse gauge factor cannot in general be obtained using four-point bending.







180
Chapter IV Process-induced Thermomechanical Stresses in a 3D BSI Image Sensor Stacked by

Hybrid Bonding

IV.2.4.3 Stress components estimation

In the following we will assume that the piezoresistive coefficients are identical for all resistors

of a given doping type. The stress-induced resistance variations for the eight-element rosettes

implemented in the studied test chip (Figure IV.4) can then be written using Equation (IV.17):

∆R0

R0
=

πp
11 + πp

12

2
σ11 +

πp
11 + πp

12

2
σ22 + πp

12σ33 − πp
44σ12

∆R1

R1
= πp

11σ11 + πp
12σ22 + πp

12σ33

∆R2

R2
=

πp
11 + πp

12

2
σ11 +

πp
11 + πp

12

2
σ22 + πp

12σ33 + πp
44σ12

∆R3

R3
= πp

12σ11 + πp
11σ22 + πp

12σ33

∆R4

R4
=

πn
11 + πn

12

2
σ11 +

πn
11 + πn

12

2
σ22 + πn

12σ33 − πn
44σ12

∆R5

R5
= πn

11σ11 + πn
12σ22 + πn

12σ33

∆R6

R6
=

πn
11 + πn

12

2
σ11 +

πn
11 + πn

12

2
σ22 + πn

12σ33 + πn
44σ12

∆R7

R7
= πn

12σ11 + πn
11σ22 + πn

12σ33

(IV.38)

IV.2.4.3.1 Method 1: Least-squares approximation

A generic approach to derive the variation of the different stress components from the resistance

changes measured in the eight-element rosette is to compute the least-squares solution for the

overconstrained system (IV.38), with eight equations and four unknowns. The main advantage of

this method is that it enables to use the information obtained from all eight resistors rather than

selecting a specific four-element rosette among many possible combinations. It was proposed and

successfully applied for MOS stress sensors by [29, 31, 37, 38].

Expressing Equation (IV.38) in matrix form yields:

Ax = b (IV.39)

for which the associated normal equation writes:

AT Ax = AT b (IV.40)

Because the system is overdetermined, AT A is invertible and Equation IV.38 can be solved for

x:

x =
(

AT A
)−1

AT b = A†b (IV.41)





182
Chapter IV Process-induced Thermomechanical Stresses in a 3D BSI Image Sensor Stacked by

Hybrid Bonding

(Figure IV.13b). These stresses are unrealistically high, almost comparable to the theoretical

strength of silicon (on the order of E/10). Again, the estimated inplane shear stress σ12 vanishes.

With this method, although all eight resistors in the rosette structure can be used altogether for

the evaluation of the stress components, the overconstrained system of equations (IV.38) has no

exact solution and thus the obtained result in an approximation. This approximate solution may

be regarded as an average (in the least-squares sense) and thus be sensitive to outliers, which

could play a role in explaining the surprisingly large values obtained for the σ33 component

between the M2/PADOPEN steps and for σ11, σ22 and σ33 between the PADOPEN/PKG steps.

In order to check this hypothesis, the variations of the different stress components between the

M2/PADOPEN and PADOPEN/PKG steps were estimated again using a second method.

IV.2.4.3.2 Method 2: Direct inversion

Instead of considering the eight resistors in the stress sensor altogether, a different approach is to

select two four-element rosettes within the sensor, for which direct inversion of the piezoresistivity

equations is possible. In the basis formed by the principal axes of the Si lattice (x1 = [100],

x′
1 = [110], x2 = [010], x′

2 = [1̄10]), there are twelve possible combinations to form a 0–45–90–

135° rosette including both doping types:

(3P1N) rosettes comprising three P-type resistors and a single N-type resistor. Depending

on the orientation of the N-type resistor, there are four distinct configurations: 1N3P,

1P1N2P, 2P1N1P and 3P1N;

(1P3N) rosettes comprising a single P-type resistor and three N-type resistors. Again, de-

pending on the orientation of the P-type resistor, there are four distinct configurations:

1P3N, 1N1P2N, 2N1P1N and 3N1P;

(2P2N) rosettes comprising two P-type resistors and two N-type resistors. Depending on

whether the angle formed between two resistors with the same doping type is 45 or 90°,

there are four distinct configurations: 2N2P, 2P2N, (1N1P)2, (1P1N)2.

The corresponding systems of equations are derived and inverted in Appendix C for each group.

It can be seen from Equations (C.2-C.12) that among all configurations, those yielding the

simplest expression for the stress components σ11, σ22, σ33, σ12 are configurations (1P1N)2 and

(1N1P)2, respectively associated with rosette A (R5, R2, R7, R0) and rosette B (R1, R6, R3, R4)

in our stress sensor (Figure IV.4). With the simple equations obtained for these two config-

urations, involving fewer terms compared to the other possible four-element rosette choices,

the estimated stress variations are believed to be less prone to error/uncertainty accumulation.

Thus, a possible approach is to derive exact solutions for both selected rosettes by direct in-

version of the piezoresistivity equations, and then to compute an average value for the different

stress components based on these two solutions. However, for reasons that will become apparent

in the next paragraph, configuration (1P1N)2 (rosette A) leads to exceedingly inaccurate results,
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which has been neglected so far1, is investigated for our stress sensors.

IV.2.4.3.3 Method 3: Temperature-compensated stress

Discussion: influence of temperature on the stress estimation

In both of the previous methods, the influence of temperature has been neglected in the equa-

tions for the stress-induced resistance changes in the eight-element rosette (IV.38). And yet, a

temperature-dependence may arise from at least two factors:

• through the piezoresistive coefficients:

παβ = παβ(T ) (IV.45)

• through the resistivity:

ρ (T ) = ρ (T0) [1 + α (T − T0)] (IV.46)

neglecting higher-order terms, with α the temperature coefficient of resistivity, T0 a refer-

ence temperature and ρ0 the resistivity at T0.

Among these two contributions, the temperature-dependence of the piezoresistive coefficients

is assumed to be negligible for our stress sensors, based on the measurements of [35]. Their

results indicate that the temperature-dependence of the piezoresistivity coefficients vanishes

with increasing doping density and becomes almost inexistent for dopant surface concentrations

on the order of 1020 cm−3, as is the case in this study.

The temperature-dependence of the resistivity on the other hand may have significant impact

on the resistance measurement itself. Indeed, the measured resistance then writes:

R (T ) = R (T0) [1 + α (T − T0)] (IV.47)

where α is the temperature coefficient of resistance (TCR).

Accounting for the temperature-induced resistance change, the system of equations (IV.38) be-

comes, for a four-element rosette:

∆Ra

Ra
= F1 (πn,p

11 , πn,p
12 , πn,p

44 , σ11, σ22, σ33, σ12) + αn,p∆T

∆Rb

Rb

= F2 (πn,p
11 , πn,p

12 , πn,p
44 , σ11, σ22, σ33, σ12) + αn,p∆T

∆Rc

Rc
= F3 (πn,p

11 , πn,p
12 , πn,p

44 , σ11, σ22, σ33, σ12) + αn,p∆T

∆Rd

Rd

= F4 (πn,p
11 , πn,p

12 , πn,p
44 , σ11, σ22, σ33, σ12) + αn,p∆T

(IV.48)

1Including in previous studies [30, 31].
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with {a, b, c, d} the indices of the resistors associated with the selected rosette configuration, and

∆T = T − T0 the difference between the measurement temperatures for the resistance in the

stressed state Rσ and the reference state R0, respectively T and T0.

For all possible four-element rosette configurations (Ra, Rb, Rc, Rd), the expressions of the four

accessible stress components (σ11, σ22, σ33, σ12) were derived in Appendix C, accounting for the

temperature-dependent terms αn,p∆T . From the obtained equations, it can be seen that ad-

ditional “temperature-induced” stresses systematically appear in the expressions for the normal

stresses (σ11, σ22, σ33), whereas the inplane shear stress component σ12 is not sensitive to tem-

perature fluctuations. The obtained expressions are of the form:

σ11 = G1

(

πn,p
11 , πn,p

12 , πn,p
44 ,

∆Ra

Ra
,
∆Rb

Rb

,
∆Rc

Rc
,
∆Rd

Rd

)

− αnπp
12 − αpπn

12

πn
11πp

12 − πp
11πn

12

∆T

σ22 = G2

(

πn,p
11 , πn,p

12 , πn,p
44 ,

∆Ra

Ra
,
∆Rb

Rb

,
∆Rc

Rc
,
∆Rd

Rd

)

− αnπp
12 − αpπn

12

πn
11πp

12 − πp
11πn

12

∆T

σ33 = G3

(

πn,p
11 , πn,p

12 , πn,p
44 ,

∆Ra

Ra
,
∆Rb

Rb

,
∆Rc

Rc
,
∆Rd

Rd

)

+
αn (πp

11 + πp
12) − αp (πn

11 + πn
12)

πn
11πp

12 − πp
11πn

12

∆T

σ33 = G4

(

πn,p
11 , πn,p

12 , πn,p
44 ,

∆Ra

Ra
,
∆Rb

Rb

,
∆Rc
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The temperature-dependent terms are the same for all configurations and depend on the piezore-

sistive coefficients πn,p
11 and πn,p

12 , as well as the temperature coefficients of resistance αn,p. De-

pending on the relative values of these coefficients, the error induced in the estimated stress

components may thus be significant.

For the Si piezoresistors considered here, the measured temperature coefficients are αn =

1430 ppm/◦C and αp = 1450 ppm/◦C. Using the piezoresistive coefficients determined in the

previous section (Table IV.1), it is estimated that a temperature fluctuation of ±1 ◦C may lead

to a drift of ∓87 MPa in the measured values of (σ11, σ22), and ±106 MPa for σ33. Such values

are well within the range of the stress variations expected during the fabrication process.

Therefore, temperature fluctuations between two resistance measurements with the previous

methods will cause a temperature-induced resistance change that is wrongly attributed to a

stress variation. To avoid these spurious stress variations, several strategies may be considered:

• using resistors with different characteristics, leading to a lower temperature-dependence;

• measuring the temperature near the resistors, in order to be able to evaluate the temperature-

dependent terms quantitatively for each sensor;

• working with temperature-compensated stress components, as proposed by [40].

The first and second solutions requiring new test chips could not be explored in this work.

Therefore, temperature-compensation of the estimated stress variations was investigated. This

approach consists in retaining among the four accessible stress components, only those for which

the temperature-dependent terms can be suppressed. Noticing that the temperature terms
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are the same for the inplane normal stress components σ11 and σ22 in Equation (IV.48), a

temperature-compensated stress component is simply obtained by subtraction, working with

σ11 − σ22 instead of σ11 and σ22. The out-of-plane stress component σ33 cannot be exploited

because its temperature-dependent term cannot be evaluated, nor compensated. The inplane

shear stress σ12 on the other hand is intrinsically insensitive to temperature fluctuations. The

temperature-independent stress components for the considered four-element sensor configuration

are thus (σ11 − σ22, σ12).

As mentioned in the previous paragraph (Section IV.2.4.3.2), among the twelve sensor config-

urations detailed in Appendix C, configurations (1N1P)2 and (1P1N)2, respectively associated

with rosette A (R5, R2, R7, R0) and rosette B (R1, R6, R3, R4), lead to the simplest expressions

for the stress components, and are thus deemed particularly advantageous due to an expected

lower sensitivity to errors or uncertainties. These expressions are written as follows:
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It can be noted that these configurations are also the most suitable for temperature compensation

of the estimated stress components. Indeed, as can be seen from Equations (IV.50) and (IV.51),

equations of very similar form are obtained for the inplane normal stresses σ11 and σ22, leaving

only one term after subtraction to obtain the temperature-compensated stress σ11 − σ22. In

these configurations, the expression for the inplane shear component σ12 also comprises only one

term. For rosette A and B, the temperature-compensated stress components thus write:
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It can be seen in the above expressions that only three piezoresistive coefficients appear.

As a result, these configurations could enable a less time-consuming calibration procedure,

since not all the coefficients are required for the stress estimation.

There are still two possible four-element rosette configurations to choose from, however. A

major difference between Equation (IV.52) and (IV.53) lies in the involved piezoresistive

coefficients: namely, πp
44 and πn

11 − πn
12 for rosette A, and πn

44 and πp
11 − πp

12 for rosette B.

By selecting the configuration in which the most accurately calibrated piezoresistive coef-

ficients appear, the precision obtained for the estimated temperature-compensated stress

components can be optimized [41]. In that regard, based on the previous calibration re-

sults (Table IV.1), rosette A is therefore clearly the best configuration for stress estimation.

Indeed, its associated piezoresistive coefficients πp
44, πn

11 and πn
12 are the largest and were

therefore determined with the best accuracy. Conversely, for rosette B the coefficients πp
11

and πp
12 are an order of magnitude lower with very large uncertainties, and more impor-

tantly are almost equal. Thus, due to the presence of the term πp
11−πp

12 at the denominator

in Equation (IV.53), the temperature-compensated stress component σ11 − σ22 should not

be evaluated with rosette B1. Nevertheless, the inplane shear component σ12 can still be

obtained since the coefficient πn
44 was calibrated with sufficient accuracy.

Results

The temperature-independent stress variations estimated at the die center are compared

between the M2/PADOPEN steps and between the PADOPEN/PKG steps for rosette A

(Figure IV.15). Again, the results are quite consistent between the four wafers.

Between the M2/PADOPEN steps, the estimated temperature-compensated stress σ11 −
σ22 is quite low, in the range of −20 to −30 MPa, and the inplane shear stress σ12 al-

most vanishes, with values comprised between 0 and 5 MPa (Figure IV.15a). Although

not detailed here, the temperature-independent stress components were also plotted for

rosette B. As inferred from Equations (IV.50) and (IV.51), with rosette B the temperature-

compensated stress cannot be precisely evaluated, whereas the inplane shear stresses are

still exploitable. For the latter, the obtained values range between 0 and 10 MPa, quite

1That is the reason why rosette B was not considered in the previous paragraph (Section IV.2.4.3.2)
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This number had to be reduced to two stress components (σ11 − σ22, σ12), in order to sup-

press any large spurious stresses expected due to temperature-induced resistance changes

between two given process steps. As a result, although the inplane shear stress compo-

nent σ12 could be estimated, the individual normal stress components (σ11, σ22, σ33) are

no longer accessible. It was thus not possible to achieve the initial aim of this chapter, i.e.

assessing whether a significant increase of mechanical stress can be expected in the active

region of the image sensor due to the 3D BSI configuration, which may lead a decrease

in the electro-optical performance of the different semiconductor components inside the

active pixel sensors (e.g. photodiodes, transistors). Therefore, in the next section, finite

element modeling of the front-end and back-end fabrication processes is carried out, aiming

to better understand the experimental results and complement the measurements with the

missing stress components. In addition, very large stresses were systematically obtained

at the corner location for the chips measured after the packaging step. Based on this finite

element analysis, we will also aim to assess whether such large stresses are indeed likely to

occur, or if they could simply result from a measurement error.

IV.3 Finite element modeling of process-induced stress build-

up

IV.3.1 Front-end processing

In order to estimate process-induced stress build-up in the active region of the chip during

front-end processing, and compare with the stresses evaluated using the piezoresistive stress

sensors in the previous section, a 3D finite element model is proposed in which sequential

layer deposition, etching and heating steps are simulated using finite element code ANSYS

(Mechanical APDL, Release 19.0, Cannonsburg, PA).

IV.3.1.1 Model description

In the top tier of the 3D integrated circuit, where the piezoresistive stress sensors are

located, specific design rules are defined, as described in Section IV.2.3.1. In these regions,

the 4ML interconnect layout is considerably simplified, with an exclusion area for the M3

and M4 levels, in which no Cu lines or vias allowed, while in the M1 and M2 levels Cu

lines and vias as well as W plugs are present to enable electrical access to the sensor.

Hybrid bonding pads are still included above the exclusion area however, arranged in a

grid pattern with regular spacing for topography homogeneity reasons.

In the bottom tier of the 3D integrated circuit on the other hand, no particular constraint is

prescribed in the sensor regions and the standard design rules for the considered technology

node are followed. Below the sensors, W plugs and Cu vias are absent from the 7ML
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of the considered unit cell, only a quadrant of width p/2 is modeled for each tier. This

periodic unit cell has a thickness hw + hi, the sum of the thicknesses of the wafer and

the considered interconnect stack for the top or bottom tier (Figure IV.19). The following

boundary conditions are prescribed on the quarter unit cell:

– to enforce the symmetry condition, the displacements along the x and z axes are

blocked, respectively on the x = 0 and z = 0 faces:











ux(0, y, z) = 0

uz(x, y, 0) = 0

(IV.54)

– to enforce the periodicity condition, the outer boundaries x = p/2 and z = p/2 are

free to move, but constrained to remain planar (rigid face constraint):











ux(p/2, y, z) = C1y + C2z + C3

uz(x, y, p/2) = C4x + C5y + C6

(IV.55)

where C1 to C6 are real constants.

Hexahedral elements with linear interpolation are used for the mesh, depicted in Fig-

ure IV.20. The whole substrate thickness and detailed structure of the stack are accounted

for, including thin SiN or SiCN barriers present between the different IMD or ILD layers,

as well as TaN/Ta liners separating metal lines from dielectric layers.

The methodology used to simulate the sequential layer deposition process is as follows

(Figure IV.26):

Layer deposition : the elements corresponding to the films to be deposited have their

stiffness initially suppressed using the so-called birth-and-death capability in ANSYS.

Then, for each deposited layer the associated elements are re-activated, while a ho-

mogeneous temperature load corresponding to the layer deposition temperature is

prescribed on the stack (Figure IV.22). The intrinsic stresses present at the depo-

sition temperature, which depend on the deposition process, are accounted for by

prescribing a homogeneous equibiaxial initial stress in the elements associated with

the deposited layer.

Damascene process : interconnect processing is simulated by first suppressing the stiff-

ness of the elements associated to the patterned regions in the deposited blanket

dielectric film (etching step), and then assigning updated mechanical properties for

these elements (metal deposition). Metal overburden removal by CMP is not ac-

counted for, as it is assumed not to affect the overall residual stresses significantly

[43].
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X Y Z

Figure IV.20: Mesh used in the finite element analysis for the top and bottom tiers of the
3D integrated circuit (the whole substrate thickness is accounted for in the model, but not

represented here).

Wafer bonding : to mimic the bonding step, first the process-induced stresses in the

BEoL structure during interconnect processing are computed in two separate models

corresponding to the two tiers of the 3DIC. Then, the obtained values are incorporated

as initial stresses in the undeformed bonded assembly.

Wafer thinning : wafer backgrinding is accounted for by suppressing the substrate ele-

ments associated with the removed material. Here, the final thicknesses for the top

and bottom tier are respectively 3 µm and 120 µm.

All materials are considered linear elastic isotropic and the temperature-dependence of the

mechanical properties is not considered (Table IV.2), corresponding. Any stress relaxation

after deposition due to gas desorption, defect annihilation or recrystallization during the

different thermal cycles [44–46] could not be characterized experimentally, and thus was

not accounted for.

The intrinsic stresses present at the deposition temperature are estimated from measure-

ments of the residual stresses at room temperature after film deposition, carried out rou-

tinely on the fabrication line for process monitoring (Table IV.3):

σI = σR − Ef ∆α∆T

1 − νf

(IV.56)
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Table IV.2: Thermoelastic properties used for the different layers of the interconnect stack.

Type Material Process E (GPa) ν α (10−6 K−1)

Passivation
SiN

PECVD
164a 0.24a 2.2b

SiCN 67a 0.19a 4.4b

Dielectric

SiO2 (SiH4) PECVD 60c 0.25c 2.67c

SiO2 (TEOS)
PECVD

63a 0.23a 0.5d

SACVDe

PSG PECVD 52c 0.3c 1.45c

FSG PECVDf 51g 0.19g 3g

SiOC:H PECVD 7.8a 0.15a 10.8b

Metal
TaN/Ta PVD 130h 0.25h 6.5i

Cu ECD 130j 0.34j 16.5k

Semiconductor Si <100> 130l 0.28l 2.6m

a [47] b [43] c [48] d [49]

e Unknown, but assumed equivalent to PECVD.

f Known only for HDPCVD, but assumed equivalent for PECVD. g [50]

h [51] i [52] j [53]

k [54] l [55] m [56]

Table IV.3: Residual stresses at 25 ◦C for the different layers of the top and bottom tier
interconnect stack used to evaluate intrinsic stresses generated during the deposition process.

Material Process Tdep (◦C) Layer σR (at 20 ◦C) (MPa)

SiN PECVD
380

IMDZ (bottom)
-120

HBM
IMD4 (top) -180

400 PMD 1500

SiCN PECVD 335

IMD1-3 (top)

-240
IMDX

IMDZ2 (bottom)
HBV

IMDZ1 (bottom) -350

SiO2 (SiH4) PECVD 400 -190

SiO2 (TEOS)

SACVD 490 PMD (bottom) 100

PECVD 400
HBM -150
IMDX

-240
IMDZ (bottom)

PSG HDPCVD 325 -175
FSG PECVD 400 -190a

SiOC:H PECVD 385b 50

TaN/Ta PVD 20 -1800c

Cu ECD 20 600c

a Unknown, but assumed to be equivalent to SiO2 with SiH4 precursor.

b For SiOC:H, the UV curing temperature is considered as the equilibrium temperature.

c [44]

change ∆κ can be used to derive an equibiaxial average film stress σf [3]:

σf =
Esh2

s

6(1 − νs)hf

∆κ (IV.57)
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hybrid bonding metal pads. A side view of the whole stack at the end of the process is

also shown in Figure IV.25. At the beginning of the process sequence, there is no stress at

the surface of the Si substrate as the stress sensor structure itself and the associated inter-

connect layout were not accounted for in the model. This is evidenced by stress contour

plots after the M2 step, not detailed here. At the end of the process sequence, after the

PADOPEN step, the inplane normal stress components σxx = σ<100> and σzz = σ<010>

reach maximum values of about 5 MPa, tensile, with slightly lower values right below the

hybrid bonding pads. The shape of the hybrid bonding pads is clearly visible in the contour

plot of the out-of-plane normal stress σyy = σ<001>, with stresses reaching about 5 MPa,

compressive, just below the metal patterns. The inplane shear stress σxz = τ(001) on the

other hand remains almost zero.

(a) Normal stress in the <100> direction
after the final step (PADOPEN).

(b) Normal stress in the <010> direction
after the final step (PADOPEN).

(c) Normal stress in the <001> direction
after the final step (PADOPEN).

(d) Shear stress in the (001) plane after
the final step (PADOPEN).

Figure IV.24: Contour plots of the normal and inplane shear stress components computed by
the finite element method in the active region of the Si substrate around a stress sensor at the

end of front-end processing.

The stress variations between the M2/PADOPEN steps obtained by simulation are far be-

low those estimated using the Si piezoresistive stress sensors in Section IV.2.4.3. However,

with the proposed method, the bending stresses induced by wafer curvature change during

wafer bonding and substrate thinning are not accounted for. Instead, local stresses build-

ing up in the sensor region due to CTE mismatch in the interconnect stack are computed

separately for the top and bottom tiers, and used as initial stress values in the undeformed
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pads. The maximum amplitude for the stress distribution is obtained for the out-of-plane

normal stress components σ33, with approximately 10 MPa. For the inplane normal stress

components (σ11, σ22), the stress amplitude is slightly lower, with about 5 MPa. The

temperature-compensated stress component σ11 − σ22, on the other hand, is almost zero

across the whole surface due to the symmetries of the considered periodic unit cell.

In the next section, a finite element analysis of the die packaging step is carried out, aiming

to derive the stress variations in the sensor regions during back-end processing.

IV.3.2 Back-end processing

IV.3.2.1 Model description

In the following analysis, the die to be encapsulated is considered stress-free in the initial

state, since we are only interested in the stress variation due to packaging. Since the bend-

ing stresses in the top tier Si substrate due to wafer curvature were found in the previous

section to be very low (on the order of 0.5 MPa), stress release during die singulation was

not taken into account. Due to the large length scale difference, the interconnect stacks in

the two-tier 3D integrated circuit are not accounted for. Instead, the die is considered as

a homogeneous silicon bulk. For the same reason, metal patterning in the printed circuit

board below the die is not detailed and instead an equivalent homogeneous orthotropic

multilayer stack is used.

For the considered cavity package, the image sensor is not in direct contact with the

epoxy molding compound. Therefore, the encapsulation stress originates for the most part

from the CTE mismatch between the die, package substrate, and die-attach glue (with

much larger CTE) [57]. Therefore, details of the die attach morphology such as the fillets

present at the edge of the chip are accounted for in the analysis [58]. A thickness of 10 µm is

assumed for this layer. On the other hand, although the detailed geometry of the package

lid and glass cap sealing the chip is taken into account, the lid-attach and glass-attach

materials are not modeled because they are not expected to have a significant influence on

the encapsulation stress exerted on the chip. The same applies to the gold wires at the

periphery of the chip, which does not significantly affect the stress state in the vicinity of

the stress sensors. This is the case even at the die corner, since the associated is located

sufficiently far away from the bonding pads.

The packaging process comprises many distinct steps, each associated with various process-

ing temperatures (e.g. wire bonding, die-attach and lid-attach curing). For this analysis,

the package is assumed stress-free at the die-attach curing temperature (150 ◦C), as the

packaging-induced stresses are expected to originate mostly from the CTE mismatch be-

tween the chip, die-attach glue and package substrate. A homogeneous thermal load is
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Table IV.4: Thermoelastic properties used for the different materials of the packaged inte-
grated circuit.

Material E (GPa) ν α (10−6 K−1) Tg (◦C)

Si 130a 0.28a 2.5b

Cu 130c 0.34c 16.5d

Glasse 73.6 0.23 3.17
Solder maske 2.4 0.29 60 100

Prepreg/Coree,f in-plane: 32 in-plane: 0.11 in-plane: 13
200-240

out-of-plane: 14 out-of-plane: 0.39 out-of-plane: 25
Die attache 0.3 0.4 174 -31

Lidf 20 ◦C: 13.1
0.4g in-plane: 4

120
120 ◦C: 6.9
200 ◦C: 4.2 out-of-plane: 87

a [55] b [56] c [53]

d [54] e Available from manufacturer technical datasheet.

f [59] g Assumed value.

prescribed on the assembly to simulate cooling down to room temperature from the initial

stress-free state at 150 ◦C.

Linear elastic behavior is assumed for all the materials in the analysis (Table IV.4). Me-

chanical properties for the package materials were obtained from manufacturer datasheets.

For the die-attach and package lid, and for most layers of the package substrate (“pre-preg”1

sheets and core), the glass transition is taken into account, except for the solder mask layer

for which this data was not available. Furthermore, for all of the latter materials except

the die-attach, transverse orthotropic behavior is assumed. In this static analysis, stress

relaxation of the different materials is not taken into account.

Owing to the quarter symmetry of the problem, only one quadrant is simulated. Both

hexahedral and tetrahedral elements with quadratic interpolation are used to mesh the

structure (Figure IV.26). To mimic the boundary conditions during the resistance mea-

surements in the experimental study, wherein the packaged chip in connected to a DIB,

nodes in regions corresponding to landing pads for electrical contact on the bottom surface

of the package substrate are pinned.

IV.3.2.2 Results

The computed inplane normal and shear stress components in the top tier of the packaged

die are plotted in Figure IV.27. The out-of-plane stress components on the other hand are

not considered. Indeed, the packaged image sensor is not immersed in molding compound,

but encapsulated in a cavity package. As described in Section IV.3.1, the top chip has been

thinned down to 3 µm during the final step, therefore the active region where the stress

1Pre-impregnated
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Figure IV.26: Mesh used in the finite element analysis of thermomechanical stresses induced
by chip encapsulation (quarter-model), with a close-up view of the mesh details near the die-

attach fillet.

sensors are located is very close to a free surface and the out-of-plane stress components

vanish.

The locations of maximum normal stress are found near the edges of the chip, where the

highest magnitude is obtained along the width of the rectangular chip, reaching approxi-

mately 30 MPa, tensile. Computing the normal stress difference σyy − σxx, magnitudes of

about −10 MPa and −1 MPa are obtained, respectively for the center and corners of the

die. The maximum inplane shear stress on the other hand is located near the corners with

values of about 10 MPa, whereas the stress state is equibiaxial at the center of the die,

with almost zero shear.

Comparing the numerical results to the estimated stress variations using the Si piezore-

sistive stress sensors in Section IV.2.4, the computed individual stress components are far

below those obtained in the experimental study, by as much as two order of magnitudes

for the normal stresses and one for the inplane shear stress (Figure IV.13b). Using the

temperature-compensated stress components however (Figure ??), consistent sign and or-

ders of magnitude are obtained at the die center, whereas at the die corner the computed

stress values are an order of magnitude below the experimental values.

A contour plot of the out-of-plane displacements for the packaged die after cooling from

150 ◦C down to room temperature is shown in Figure IV.22. Due to the use of a cavity

package for the image sensor chip, most of the deformation induced by the large CTE

mismatch between the different parts is actually taken up by the glass cap, which by

acting as a stiffener at the center of the molding compound contributes to mitigate chip

warpage. This specific feature of the considered package could explain the relatively low

values computed for the packaging-induced stress.

It can be noted that the stresses obtained by finite element modeling are quite low, be-

low 5 MPa for front-end processing and not exceeding 30 MPa for back-end processing.
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all materials in the finite element analysis, the obtained results are assumed to be quite

conservative and thus the focus is put on the stress sensing approach.

IV.4 Discussion

The normal stress variations between the M2 and PADOPEN steps for components σ11,

σ22 and σ33, estimated using the piezoresistive stress sensors are very large compared

to the typical stresses expected during the front-end process steps, especially the out-of-

plane normal stress, with up to 300 MPa variation [see, e.g. 43, 60–62]. This discrepancy

was confirmed by a finite element analysis of the sequential layer deposition process during

front-end manufacturing, for which very low magnitudes were obtained (below 10 MPa). It

can be noted that simulation results reveal the presence of an inplane stress gradient across

the sensor region due to the resistors spanning laterally over hybrid bonding interconnects.

After die assembly, unrealistically large values are obtained for the normal stress compo-

nents σ11, σ22 and σ33, on the order of 2–3 GPa, much above the expected magnitudes for

the packaging process [25, 31, 63], above even the levels of stress that can be taken up by

the silicon single-crystal. Again, finite element analysis of the packaging step was carried

out, leading to rather low stress magnitudes (below 30 MPa) at the sensor locations. This

is most likely due to the specific type of package used here to encapsulate the image sensor,

a cavity package, for which the die is not in direct contact with molding compound.

In the following paragraphs, aiming to better understand this mismatch between stress

sensing and finite element analysis, the main sources of error associated with this Si piezore-

sistive stress sensors are discussed, namely:

– the influence of temperature;

– stress sensor sensitivity;

– the measurement procedure.

IV.4.1 Influence of temperature

Among thermal errors, a first possible source is the temperature-dependence of the piezore-

sistive coefficients, which were considered constant in the analysis. However, as mentioned

in IV.2.4.2.3, an experimental study by [34] showed that the temperature-dependence of

the piezoresistivity coefficients vanishes with increasing doping density and becomes al-

most inexistent for impurity concentrations on the order of 1 × 1021 cm−3, as is the case

for the resistors considered here. Therefore, the piezoresistive coefficients for both N- and

P-doping should be virtually independent of temperature.
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A second kind of thermal error for stress sensing is the temperature dependence of the resis-

tance values through the temperature coefficients of resistance [41]. For each of the twelve

possible dual-polarity four-element sensors, the same additional temperature-dependent

terms appear in the expressions for the normal stresses (but not the shear stress). For

our sensors, a temperature variation of 1 ◦C between during sensor calibration or between

inline resistance measurements is estimated to lead to spurious stress variations comprised

between 90 MPa and 110 MPa (in absolute value). These values lie well within the ex-

pected magnitude for the process-induced stress variations. Therefore, for accurate stress

sensing it is critical to assess the temperature-dependent behavior of the resistors.

Temperature variations between inline resistance measurements may arise from various

causes:

– external environment, for instance through fluctuations of the local temperature in

the clean room;

– self-heating of the stress sensor due the Joule effect under prescribed current during

the resistance measurement.

As mentioned in Section IV.2.3.2.1, the air temperature in the clean room is controlled to

±0.5 ◦C, and thus fluctuations of 1 ◦C are indeed possible. Resistor self-heating on the other

hand depends on the magnitude of the electrical current used to measure the resistance

values. In case of a sufficiently large difference between these currents during the different

measurements, temperature-dependent resistance variations could arise. Dedicated elec-

trical measurements would be necessary to assess quantitatively the relative importance of

the latter effect [5, 64].

During front-end processing, between the M2/PADOPEN steps, the same measurements

conditions and equipment were used. Therefore, temperature-induced stress variations

are most likely due to the external environment. Temperature fluctuations of 1 ◦C during

inline resistance measurements, leading to spurious stresses of approximately 100 MPa, are

compatible with the magnitude range of the estimated stress variations, on the order of

200 − 300 MPa.

During back-end processing, between the PADOPEN/PKG steps, different measurement

conditions and equipment are used however. The obtained temperature-induced stress

variations thus cannot be attributed solely to external temperature fluctuations. The dif-

ference in the current intensities used in the resistance measurements before and after

packaging could be an additional contributor, through the Joule effect. However, it seems

unlikely that such low current variations could cause sufficiently large temperature varia-

tions, inducing spurious stress variations on the order of the GPa. Thus, other sources of

error must be involved, which are discussed in the next paragraphs.

To avoid parasitic stress variations due to temperature-induced resistance changes, several

possibilities may be considered:
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– design sensors with piezoresistors having low values of TCRs; the existence of a

minimum for the TCRs was evidenced for dopant concentrations around 1 × 1018–

1 × 1019 cm−3 for N-doped and P-doped Si resistors [65–68].

– monitor the local temperature in the sensor region during the resistance measure-

ments, enabling to quantify the temperature-dependent terms and correct for their

impact in the estimation of the stress components.

– consider only temperature-independent stress components, namely the inplane shear

stress σ12, which is intrinsically insensitive to temperature effects, and the inplane

normal stress difference σ11 − σ22, for which the temperature-dependent terms cancel

out [25, 40].

The solution that was adopted here is to work with the temperature-independent stress

components. Indeed, among the latter three approaches, that is the only one not requiring

to design a new test chip. It can be noted however that not all sensor configurations

among the twelve possibilities for dual-polarity rosettes are equivalent in that respect.

The (2P2N) rosette type offers several advantages for temperature compensation. In this

configuration, the temperature-compensated stress components involve only three out of

six independent piezoresistive coefficients, enabling less time-consuming sensor calibration

or to obtain more data for the same experimental effort. Among the two possible (2P2N)

sensor configurations, that with the N-type resistors aligned with the <100> directions

(resp. the P-type resistors with the <110> directions), leads to the best accuracy for stress

estimation [40]. Indeed, in this configuration the three piezoresistive coefficients involved

are the largest, i.e. those calibrated with the best accuracy. Incidentally, this configuration

is also optimal in terms of sensitivity to rosette rotational misalignment [41]. A comparison

between the two possible (2P2N) rosette combinations confirmed the optimal character of

that particular rosette.

Using temperature-compensated stress components for stress monitoring requires decreas-

ing the number of accessible stress components from four to two, for a (100) Si substrate.

Thus, it is recommended to optimize Si piezoresistor doping concentrations to decrease the

temperature dependence. If temperature-induced stresses are still non-negligible compared

to the expected process-induced stress variations, then implementing Si diode temperature

sensors near the stress sensors may be considered in order to quantify the temperature

dependence [69, 70].
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IV.4.2 Stress sensor sensitivity

IV.4.2.1 Piezoresistive coefficients magnitude

As discussed in Section IV.2.4.2.3, the piezoresistive coefficients evaluated in this work are

more than twice lower than typical values for stress sensor applications in the literature.

Therefore, piezoresistors in this study exhibit rather low stress sensitivity, between 0.05%

and 5% for 100 MPa, compared to between 1% and 10% in the literature [see, e.g. 25, 71].

This is due to the high doping concentrations used, about 1020 cm−3 compared to 1017-

1018 cm−3 in the literature. Indeed, piezoresistive coefficients were shown to decrease

sharply in heavily doped silicon for increasing doping concentrations [34, 35, 72]. The

high doping levels used in this study were set beforehand by transistor design rules for the

considered test chip.

Due to the low stress sensitivity of the sensors, the piezoresistive coefficients with the lowest

values πp
11 and πp

12 could not be evaluated with sufficient accuracy. Indeed, measurement

uncertainties for these coefficients were as high as 60% and 20%, respectively. These coeffi-

cients appear in the expressions of the three normal stress components and therefore could

lead to large errors in the estimation of the process-induced stress variations. That is the

case for all twelve possible dual-polarity sensor configurations. However, since in our case

the temperature-independent stress components must be used, this issue can be avoided by

selecting the rosette with N-type resistors aligned with the <100> directions and P-type

resistors along the <110> directions. Indeed, this configuration yields expressions that are

independent of π11 and πp
12.

Due to the limitations brought by temperature compensation (only two accessible inde-

pendent stress components instead of four), it is recommended to use moderate doping

concentrations, in the 1017 − 1018 cm−3 range, to enable improved stress sensitivity and

accurate evaluation of all piezoresistive coefficients. It can also be noted that the N-type

piezoresistive coefficients are less dissimilar are larger compared to the P-type coefficients.

Among the six independent piezoresistive coefficients, πp
11 and πp

12 are the smallest and

πp
44 the largest, whereas πn

11, πn
12 and πn

44 are all within the same intermediate range (in

absolute value). Therefore, an attractive possibility would be not only to decrease doping

levels, but also to use a single-polarity stress sensor based on N resistors only, as proposed

by [73]. By doing so, coefficients πp
11 and πp

12 in the expressions of the stress components

can be replaced by πn
11 and πn

12, having larger magnitude and thus calibrated more accu-

rately. For the governing system of equations to remain invertible, two groups of resistors

with distinct N-type piezoresistive coefficients1 would then have to be introduced.

Decreasing piezoresistor doping levels could also help mitigating the influence of temper-

ature. Indeed, it was shown for heavily doped resistors2 to lead to decrease of the TCRs

1This can be achieved for instance by using distinct doping concentrations or different doping atoms.
2In the 1020 cm−3 range
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[67, 68]. However, if the doping levels become too low, typically below 1018 cm−3, the

TCRs begin to increase again [67]. Thus, a tradeoff should be found for moderate doping

levels, between sufficiently increasing the piezoresistive coefficients to avoid large errors

in the estimation of process-induced stress variations and minimizing their temperature

dependence. It must also be noted that decreasing the doping levels leads to an increased

temperature dependence of the piezoresistive coefficients [34].

IV.4.2.2 Piezoresistive coefficients variability

Another important aspect regarding the robustness of the piezoresistive stress sensor ap-

proach is the variability of the piezoresistive coefficients between wafers (inter-wafer), but

also across the wafer surface (intra-wafer). Indeed, piezoresistive coefficient calibration is

a time-consuming task and therefore, although ideally each stress sensor should be cali-

brated individually, the piezoresistive coefficients are typically measured on a few sensors

and then used for stress estimation with different sensors, on different wafers.

In this study, limited information on the spatial variability of the piezoresistive coefficients

can be obtained using the instrumented four-point bending calibration, which is a destruc-

tive technique. Therefore, the distribution of the resistance values is used as an alternative

indicator, assumed to reflect at least in part the variability of the doping process, and thus

of the piezoresistive coefficients. Indeed, from measurements in the literature it is expected

that the piezoresistive coefficients are most sensitive to dopant concentration variations for

heavily doped resistors [34, 35, 67, 72].

Preliminary resistance measurements at the wafer level at the beginning of the process

sequence revealed low inter-wafer variability (below 5%). Intra-wafer variability, on the

other hand, is quite substantial, with relative variations of about 20% for P-type resistors,

and about 8% for N-type resistors. Moderate resistance variations (below 10%) were

obtained within the eight resistors in each sensor. From this, several assumptions can be

made:

– because inter-wafer variability is very low, the fact that the stress sensors were cali-

brated on only one wafer is not deemed prejudicial;

– intra-wafer variability is less for N-type resistors compared to the P type. This could

be a further argument for the use of single-polarity sensors, comprising only N-type

resistors, should it be established that the observed intra-wafer variability of the

resistance values is indeed associated with substantial variability of the piezoresistive

coefficients;

– inter-lot variability could not be assessed in this study. Further measurements would

be needed to determine whether sensor calibration is necessary for each lot;
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Several possibilities may be considered to optimize the calibration procedure, and thereby

obtain more data on the variability of the piezoresistive coefficients:

– an attractive approach is hydrostatic loading calibration [18], enabling to determine

the piezoresistive coefficients simultaneously at the wafer-scale, with a nondestructive

procedure. However, this method involves the development of a “modified vacuum

chuck” test fixture to prescribe a uniform pressure on the wafer, and finite element

analysis is required to derive the prescribed stress, accounting for large deflections.

– another approach, relying on the more conventional four-point bending technique, is

to introduce rosettes oriented at 22.5° with respect to the principal crystallographic

directions of the substrate [74]. With this configuration, a single uniaxial load on

samples diced in the same direction is then sufficient to obtain the two independent

piezoresistive coefficients required for temperature-independent stress evaluation.

IV.4.3 Measurement procedure

Several differences can be noted between inline resistance measurements carried at the

wafer-level and the package-level, which could further contribute to the large difference

in the magnitude of the estimated stress components, with unrealistically large values

obtained after packaging. During front-end processing, the measurements were performed

each time under the same conditions, whereas after the back-end process they were carried

out in a different environment, on a distinct equipment, and with lower values for the

prescribed currents (200 µA instead of 500 µA for P-type resistors).

The temperature-compensated stresses evaluated after the packaging step (at the die cen-

ter) are in reasonable agreement with finite element results compared to individual stress

components, it may thus be inferred that the very large values obtained for the latter are

mostly due to local or external temperature fluctuations. It can be noted however that

surprisingly high stresses are still obtained for the sensors located at the corner of the

die, even using the temperature-compensated components. Other monitoring structures

comprising MOSFETs located near the sensors, namely ring oscillators, also yielded unex-

pectedly large values at the die corner, with oscillation frequencies more than twice those

measured at the die center. At the time of redaction of this manuscript, electrical failure

analysis is currently underway to investigate the possible causes for these outliers at the

corner of the die after packaging.

Several hypotheses can be formulated to explain the discrepancies observed after packag-

ing. In addition to measurements errors, the fact that another equipment was used could

generate a shift in the values, due to a different calibration compared to the equipment

used at the wafer-level. In addition, the sample was mounted on a device interface board

for the resistance measurements, which could exert additional stresses on the die. It must
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be noted however that [29] carried out stress sensing experiments on a packaged die (using

CMOS sensors) in very similar conditions, but did not encounter such issues.

IV.5 Conclusions

In this chapter, a piezoresistive stress sensor based on doped single-crystal Si resistors

was developed to monitor the process-induced stress variations from inline wafer-level and

die-level resistance measurements on a hybrid bonded 3D integrated circuit.

After an overview of the general equations of the piezoresistivity theory, applied to the case

of a (100) Si substrate, the stress-resistance relationships for dual-polarity four-element

rosettes were detailed and the twelve possible configurations compared. Eight-element

stress sensors were implemented at several locations on the chip (center and corner) and

repeated on four wafers. The calibration procedure for determining the piezoresistive co-

efficients of the resistors making up the sensors using an in-house instrumented four-point

bending fixture was then detailed. Although the coefficients are consistent with the trends

observed in the literature, their magnitude is quite low, owing to high impurity concentra-

tions during the ion implantation process used to process the sensors. The variations of

the normal stress and inplane shear stress components were evaluated at the wafer-level

during die processing and after chip packaging.

In both cases, the obtained stress values are quite large compared to the values reported in

the literature for comparable processes. This was confirmed by finite element modeling of

the involved processes, namely sequential layer deposition and chip packaging. A potential

effect of the temperature-dependence of the resistance value was identified, due to the high

doping levels used to process the stress sensors (based on the design rules for the test

chip), with estimated stress variations comparable to the typical process-induced stress

values expected to arise for very low temperature fluctuations (about 50 MPa in absolute

value for 0.5 ◦C). This assumption led us to work with temperature-compensated stress

components, namely the inplane normal stress difference, for which the temperature terms

cancel out, and the inplane shear stress, which is intrinsically insensitive to temperature

variations. These temperature-compensated stress components are in better agreement

with the simulations results, although some unexpectedly high values remained (especially

at the die corner after packaging), for which further investigations are ongoing. Two

approaches for stress evaluation, namely the least squares method and the direct inversion

method were compared. Although both yield the same results for the determination of

the temperature-compensated stress components, this is not the case with the individual

stress components.

The low stress values (below 30 MPa) obtained in finite element analyses of die processing

and packaging tend to indicate a modest influence of the 3D BSI image sensor configuration

on pixel operation, from a thermo-mechanical perspective. Although this could not be
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achieved here, due to the limitations discussed above, a correlation of these simulation with

in-situ stress sensing experiments is needed to confirm this finding. The possible sources

of errors for the developed stress sensor have been discussed, based on the results of this

study and the literature. A few recommendations can thus be proposed for future work on

in situ monitoring of processed-induced stress by inline resistance variation measurements

using Si piezoresistive sensors:

– Lower doping levels are recommended, in order to increase the magnitude of the

piezoresistive coefficients and thus the sensitivity of the sensors to stress variations.

– To assess the variability of the piezoresistive coefficients, a wafer-scale calibration

technique such as hydrostatic loading using a modified vacuum chuck could provide

a great advantage [18]. If instead four-point bending is used, as in the present study,

another interesting approach would be to introduce rosettes oriented at 22.5° with

respect to the <100> orientation, enabling to evaluate in a single loading sequence

the two independent piezoresistive coefficients needed to obtain the temperature-

independent stress components.

– To assess the temperature dependence of the implemented stress sensors, the temper-

ature coefficients of resistance should be determined systematically before calibration

and inline stress measurements.

– If temperature-compensated stress components are used, for improved accuracy the

dual-polarity rosette configuration with N-type resistors aligned with the <100> di-

rections of the (100) Si substrate and P-type resistors along the <110> directions

is recommended [41]. Another interesting approach could be to use single-polarity

rosettes with two families of N-type resistors, each having a distinct set of piezoresis-

tive coefficients [73].
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General Conclusions

In recent years, a number of physical and economical barriers have emerged in the race for

miniaturization and speed of integrated circuits. To circumvent these issues, new processes

and architectures are continuously developed. In particular, a progressive shift towards 3D

integration is currently observed in the semiconductor industry, as an alternative path to

further transistor downscaling. This innovative approach consists in combining chips of

different technologies or different functionalities into a single module. A possible strat-

egy to realize such heterogeneous systems is to stack chips on top of each other instead

of tiling them on the plane, enabling considerable benefits in terms of compactness and

versatility, but also increased performance due to shorter wiring between semiconductor

devices. This is especially true for image sensors chips, for which vertical stacking allows

the incorporation of additional functionalities such as advanced image signal processing.

Among various methods to achieve direct vertical interconnections between, a promising

method is Cu/SiO2 hybrid bonding, enabling simultaneous mechanical and electrical con-

nection between the stacked chips with a submicron interconnection pitch, mostly limited

by photolithography resolution and alignment accuracy.

In earlier work at STMicroelectronics and CEA-Leti, a Cu/SiO2 hybrid bonding process

has been developed on several test vehicles, for which the feasibility and reproducibility

of chip stacking has been extensively studied1, allowing the transfer from development

stage to manufacturing stage. The main objective of this thesis was to study the me-

chanical integrity of a more complex stack, namely a 3D BSI image sensor stacked on a

logic chip, during integrated circuit processing and chip packaging. In this work, a number

of possible issues for this relatively new technology in semiconductor manufacturing have

been addressed. The mechanical interactions between the different system components

during the fabrication sequence has been analyzed, and the mechanical integrity of several

key structures in the image sensor chip investigated, namely (i) interconnection pads at

the hybrid bonding interface between the image sensor and logic chip, (ii) wire bondpad

structures for image sensor assembly onto the package substrate, and (iii) semiconductor

devices in the active region of the image sensor chip, through the evaluation of process-

induced mechanical stresses. To do so, a combined numerical and experimental approach

1Taibi (2012) and Beilliard (2015)
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was adopted, using morphological, mechanical and electrical characterizations, then corre-

lated or extended by thermomechanical finite element analyses, allowing to secure product

integration from a thermomechanical perspective.

In the first part of this thesis, the focus was placed on the Cu/SiO2 hybrid bonding interface

between the image sensor and its carrier logic chip, aiming to mitigate potential bonding

issues. The influence of various interconnection pad geometries and layouts on the bonding

surface topography after planarization by chemical-mechanical polishing was examined. In

the investigated range, a negligible influence was reported, and a recessed shape of the Cu

pads was typically observed (Cu dishing), due to a larger material removal rate compared

to the surrounding SiO2 surfaces. Bonding experiments were then carried out to assess

the impact of this initial surface topography on Cu-Cu bonding interface morphology

after annealing. Using FIB/SEM tomography on bonded samples with various initial Cu

profiles, evidence was found that a dishing threshold exists beyond which only partial Cu-

Cu bonding occurs. Although the observed bonding defects are not believed to represent a

significant risk for the electrical performance of the 3D integrated circuit, partial bonding

could lead to serious mechanical robustness issues.

As hybrid bonding interconnect pitch is targeted to further decrease in the upcoming years,

the influence on the bonding behavior of several important design and process parameters

is not fully understood. Aiming to provide a mechanistic understanding on the main

influent parameters to prevent partial bonding, thermomechanical finite element analysis

of Cu-Cu bonding during thermal annealing was carried out. An important result was

the observed strong dependence, even for constant dishing depth, of the bonding behavior

on Cu recess local curvature. A potentially detrimental impact of an increase in pad

aspect ratio or surface fraction was also observed. Such a trend, if confirmed, could mean

that dishing compensation is prevented for high density of interconnections. It was shown

however that this potential detrimental effect could be mitigated through careful selection

of the metal/dielectric material pair to maximize the pad vertical expansion. Finally,

the influence of an initial misalignment between facing hybrid bonding pads was also

investigated. For sufficiently low misalignement1, such a defect was not only shown not

to cause a decrease of the relative bonded area, but to actually lead to easier bonding for

the remaining available Cu-Cu surfaces. This study has thus allowed to identify the main

influent parameters on the bonding quality and provide guidelines to limit the occurrences

of partial bonding observed in the experimental study.

The second part of the thesis was dedicated to a study of the mechanical robustness of

wirebond pads on the backside of the 3D BSI image sensor. The main objective was to

optimize the pad structure to prevent potential cracking/delamination after thermosonic

bonding. First, several pad architectures were compared using failure inspection, namely

the cratering test) and FIB/SEM cross-sections to assess mechanical integrity after wire

1Typically, below the half-width of the Cu pad.
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bonding, and thereby derive a ranking based on the number of observed cracks or delam-

ination. Most failures were observed in the uppermost layers of the interconnect stack,

directly below the bond. The introduction of Si/SiO2 capping layers between the bonding

surface and the interconnect stack was seen to considerably improve the pad mechanical

robustness, by acting as a buffer layer. The influence of capping thickness was also clearly

apparent, as crack occurrences were completely suppressed for the pad configuration with

the largest thickness.

Aiming to investigate the influence of interconnection layout below the pad in more detail,

a multi-scale finite element analysis of a standardized bond qualification test (wire-pull

test) was carried out, enabling to account for detailed geometric features in the intercon-

nect stack. A criterion based on the volume-averaged maximum tensile stress in the brittle

SiO2 layers was proposed to compare the mechanical robustness of the different pad con-

figurations. Good correlation with experimental results was obtained, enabling to derive

several guidelines to optimize wirebond pad mechanical robustness. Although capping

layer presence was found to have the most influence, interconnect layout is also expected

to play an important role. Metallization surface fraction has a significant influence in

improving the mechanical robustness, due to the load-bearing capability of metal intercon-

nects. In addition, metallization “connectedness” was identified as introducing structural

reinforcement to the pad by enabling to relieve mechanical stress exerted on the dielectric

material. Similarly, the presence of via plugs between metal lines was also observed to

reinforce the mechanical robustness. The thermosonic bonding process is known as one

of the most critical fabrication steps in terms of mechanical robustness, due to the large

stresses generated in the pad structure. In this work, a comprehensive analysis of the most

influent factors in wirebond pad design on the mechanical robustness was provided and

guidelines for bondpad optimization were derived, enabling to secure wire-bonding on the

backside of a 3D stacked BSI image sensor.

In the final part of this work, a Si piezoresistive stress sensor was developed to monitor

process-induced stress variations, both during integrated circuit processing and chip pack-

aging. For the first time, these sensors were implemented in a 3D BSI image sensor stacked

by Cu/SiO2 hybrid bonding. By measuring resistance variations for the doped-Si sensor el-

ements throughout the process sequence, the corresponding stress variations can be derived

provided that the different piezoresistive coefficients have been evaluated. This calibration

procedure was carried out using a previously developed in-house instrumented four-point

bending fixture. Although the relative values of the different coefficients were consistent

with the literature, their magnitude was quite low due to the high dopant concentrations

used for the image sensor chip (above 1 × 1020 cm−3). A consequence was a decreased

sensitivity to stress variations, causing the measured values to be greatly overestimated.

In addition, a potential influence of temperature on the result was identified. Indeed, typ-

ical temperature-induced resistance variations were estimated to result in measured stress

variations comparable to the expected process-induced stress for the considered chip (i.e.
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nearly 50 MPa for 0.5 ◦C). This suspected strong temperature-dependence has led us to

work with temperature-compensated stress components.

To further investigate these potential biases in the stress evaluation, the experimental

results were compared with thermomechanical finite element analyses of integrated cir-

cuit processing and chip packaging. Much lower values were indeed obtained in the pro-

cess simulation (below 30 MPa), compared to experimental measurements. In addition,

much better agreement between experimental and numerical results was obtained when

temperature-compensated stress components were considered, although some unexpectedly

high values were still obtained after chip packaging, for which further investigations are

required. Thus, lower doping levels are recommended, in order to increase the magnitude

of the piezoresistive coefficients and thus the sensitivity of the sensors to stress variations.

Nevertheless, low stress values obtained in thermomechanical finite element analyses of

both integrated circuit processing and chip packaging tend to indicate a modest influence

of the 3D BSI image sensor configuration on pixel operation from a thermo-mechanical

viewpoint.



Perspectives

In this thesis, the mechanical integrity of an imager-on-logic 3D integrated circuit during

chip processing and packaging was studied. A number of possible issues for this relatively

new technology in semiconductor manufacturing have been addressed, allowing to secure

product integration from a thermomechanical perspective. Several important questions

remain to be investigated however, and a few recommendations may be proposed for future

work:

– Adhesive forces between Cu surfaces at the hybrid bonding interface were not ac-

counted for in Chapter II, but were previously shown to play a major role on the

bonding behavior [1]. The influence of the lateral extent of these interaction forces

relative to pad width remains to be clarified. The latter effect, if any, is expected

to strongly depend on the assumed shape for the Cu recess profile and more im-

portantly on the relationship between recess depth and pad width, thus warranting

further surface topography characterization or CMP process simulation to provide

better understanding on these aspects. In addition, for the most part only 2D Cu

recess profiles were considered in the present study, and therefore detailed modeling

of the bonding process in the case of a 3D Cu recess surface for square-shaped hy-

brid bonding pads remains an open topic. Finally, the interplay between adhesion

and plasticity needs to be further investigated, accounting for the influence of pad

aspect ratio on macroscopic plastic deformation, in addition to local plasticity at the

bonding front.

– For several pad configurations studied in Chapter III, no mechanical failures were

detected in the cratering test after thermosonic bonding. More comprehensive qual-

ification testing, for instance using wire-pull or wire-shear tests could be carried out

to supplement this data. In addition, the proposed simulation approach for pad ro-

bustness comparison could be extended by comparing the different pad architectures

while maintaining the Cu surface fraction constant, which should enable to better

decorrelate the influence of interconnect layout from that of metallization density.

Finally, the proposed stress-based criterion for pad robustness ranking could be com-

pared with energetic approaches such as the ARE [2] or the NRE [3] methods, and

further investigations could also be carried out to assess the results dependence on

the characteristic length used to dimension the averaging domain.
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– Aiming to provide a better understanding of the temperature dependence of the

stress sensors developed in Chapter IV, the temperature coefficients of resistance of

the different sensor elements should be systematically determined, in addition to the

piezoresistive coefficients. In addition, a more convenient approach to assess the vari-

ability of the piezoresistive coefficients would be to develop a wafer-scale calibration

technique such as hydrostatic loading [4], which should provide a great advantage

compared to time-consuming and destructive methods such as four-point bending in

the present study. If four-point bending is used, a possible improvement could be to

introduce calibration-dedicated rosettes oriented at 22.5° with respect to the <100>

orientation [5], which enable to obtain in a single loading sequence the two inde-

pendent piezoresistive coefficients needed to evaluate the temperature-compensated

stress components. Regarding stress sensor design, an interesting approach could be

to use single-polarity rosettes with two families of N-type resistors1, each having a

distinct set of piezoresistive coefficients [6].

1N-type resistors indeed provide overall better sensitivity to stress compared to the P type.
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Appendix B

Estimation of the elastoplastic

properties of an electroplated Cu

thin film by nanoindentation

B.1 Motivation

Many experimental techniques have been developed to measure the mechanical properties

of thin films, such as micro-tensile or micro-cantilever testing for freestanding films [1, 2],

or the so-called bulge test for a film-on-substrate configuration [3]. While such methods

are particularly suitable to investigate the plastic properties of metal thin films, extensive

sample preparation is required. Depth-sensing nanoindentation on the other hand can be

readily performed on as-deposited blanket thin films, and was thus preferred here owing to

its ease of implementation in an industrial context. While the typical use of nanoindenta-

tion is to measure the reduced modulus Er = E/(1−ν2) and hardness H of the considered

sample, based on loading-unloading curves [4, 5], several studies have extended its range

of application to the extraction of plastic properties [6–9].

Aiming to provide the necessary input parameters to carry out numerical modeling of the

hybrid bonding (Chapter II), the mechanical behavior of an electroplated Cu thin film

(similar to those used in the processing of hybrid bonding interconnects) is characterized

by nanoindentation experiments. In particular, based on the reverse analysis approach

developed by Dao et al. [7] we present an estimation of the plastic properties, assuming a

power-law type hardening rule.
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B.3 Plastic properties

B.3.1 Materials and methods

To characterize the plastic properties of the measured Cu thin film, the reverse analysis

method developed by Dao et al. [7] is used, which enables to derive an estimate for the yield

stress σy and work hardening exponent n from a single loading-unloading nanoindentation

curve, assuming a Ludwik power-law hardening rule. Using dimensional analysis, they

proposed a set of dimensionless functions relating several characteristics of the P − h

force-displacement curve to the elastic-plastic properties of the indented material:
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where the loading curvature C = P/h2, the unloading slope S = dPu

dh

∣

∣

∣

hm

, the maximum

indentation load and depth Pmax and hmax, and the residual depth hr are parameters

obtained from the loading-unloading curve (Figure B.4b). The quantity σr is the flow

stress associated with a representative plastic strain1 of ǫr = 3.3%. This representative

flow stress is used in conjunction with the yield stress, both values being estimated from

the dimensionless functions, to determine the work hardening exponent n for the assumed

power-law hardening plastic behavior:

σ =







Eε, if σ ≤ σY ,

Rεn, if σ ≥ σY

(B.7)

where the parameter R = σY (E/σY )n is the work hardening rate. A J2-flow theory is used

for the description of the rate-independent plastic response, and under multiaxial loading

the stress and strain are replaced in Equation (B.7) by the equivalent von Mises stress and

strain. This kind of power-law hardening model is the most widely used in nanoindentation

1This notion of representative strain was introduced by Tabor [14], who experimentally evidenced a linear rela-
tionship between the Vickers hardness HV (average pressure under a square-based pyramidal diamond indenter)
and a representative flow stress σr, such that HV ≈ 3σr. The average or representative plastic strain ǫr associated
with this flow stress σr during indentation is equivalent to an additional strain of 8% on the tensile stress-strain
curve for the indented material, regardless of its initial work-hardening state. In the context of computational
modeling of the forward and reverse problem of sharp indentation, Giannakopoulos and Suresh [6] proposed to
use a representative strain ǫr = 29%, corresponding to the transition between the innermost plastic “cutting”
region below the indenter and its surroundings. In a subsequent work [7], they identified a characteristic plastic
strain of ǫr = 3.3%, which allows for the construction of a dimensionless description of the indentation loading
response (Π1 function) that is independent of the work-hardening exponent n. They went on to show that the
choice of a representative strain is essentially arbitrary and depends on the form of the Πi dimensionless functions
used, as well as the tip geometry.
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The phenomena highlighted for both of these extreme cases are believed to explain the ob-

served departure for the estimated elastic-plastic parameters in the associated indentation

ranges.

Uniqueness

The reverse analysis approach adopted here is an attractive technique, as it enables to es-

timate the elastoplastic properties based on a few simple parameters readily obtained from

nanoindentation loading-unloading curves. It has therefore been studied extensively in the

literature. Giannakopoulos and Suresh [6] were the first to propose a full set of analytical

closed-form functions and the associated methodology for a Berkovich tip. However, these

functions were obtained for small deformation cases in their analysis. An extension to large

deformation was proposed by Dao et al. [7], who developed a new set of dimensionless

functions. These were validated by carrying out the forward analysis, i.e. reproducing

experimental force-displacement responses with the elastoplastic properties obtained from

the reverse analysis. A major issue however is that of the uniqueness of the solution [20–

22]. Dao et al. [7] found their solutions to be unique for low-strength materials, such as

copper.

Precision

Uncertainties for the yield stress and work hardening exponent evaluated here using the

reverse analysis methodology are quite large. A solution to further improve the precision of

the technique could be to use of multiple indenters with different geometries. Chollacoop et

al. [23] and Bucaille et al. [8] independently proposed extensions of the work of Dao et al.,

with universal dimensionless functions dependent on the included tip angle of the indenter.

By using several tips with different included tip angles, several flow stress values can be

determined, each corresponding to a distinct representative strain ǫr, thereby enabling a

more precise fit for the power-law equation describing the hardening behavior.

Limitations

In addition to the limitations discussed above, it can be noted that the previous results are

obtained for a blanket Cu thin film, whereas for the intended application Cu interconnects

are considered. Plastic strain gradient effects are expected for these structures due to their

small size and additional lateral constraint, which could result in a significantly different

plastic behavior compared the obtained values, e.g. larger yield strength.
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B.5 Conclusion

In this appendix, the elastoplastic properties of thin Cu films used in the processing of

hybrid bonding pads were estimated by nanoindentation using a reverse analysis method

developed by Dao et al. [7]. This method is based on universal dimensionless functions

obtained by finite element modeling of Berkovich indentation. This set of empirical func-

tions enables an estimation of both elastic and plastic properties, based solely on a few

parameters extracted from experimental loading-unloading curves. The results were com-

pared with the more widespread continuous stiffness measurement technique, as well as

other similar measurements in the literature, and good agreement was obtained. The re-

duced modulus and hardness of the Cu thin film were found close to 140 GPa and 1.6 GPa

respectively. Assuming a power-law hardening behavior, the yield stress and work harden-

ing exponents were estimated within around 200–300 MPa and 0.2–0.3 respectively. The

uncertainty in the evaluation of the plastic properties is quite large, due to the sensitivity

to the chosen indentation depth for the considered thin film-on-substrate configuration.

However, it is expected that further precision could be gained by combining measurements

carried out using several indenters with different geometries, as was shown by several

authors [8, 23].
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Appendix C

General equations for the various

piezoresistive stress sensor

configurations on (100) Si wafers

In this appendix, the general equations relating the stress-induced resistance changes to

the stress components are detailed for each rosette configuration.

In the case of piezoresistive stress sensors embedded on a (100) Si substrate, a maximum

number of four stress components can be obtained from the measured resistance variations,

namely the three normal stresses σ11, σ22 and σ33, and the inplane shear stress σ12. Thus,

to extract all stress components, four resistors with distinct orientations are required,

forming a rosette structure, typically in the 0–45–90–135° configuration. However, since

for silicon there are only three independent piezoresistive coefficients (π11, π12 and π44),

resistors with two different doping types must necessarily be incorporated in the four-

element rosette, so that two sets of distinct piezoresistive coefficients are introduced, and

the obtained system of equations can be inverted. In the general case, there are twelve

possible combinations of N-type and P-type resistors in a four-element rosette enabling to

extract the stress components.

The corresponding equations are derived here, accounting for the effect of temperature on

the resistance change through the (first-order) thermal coefficient of resistance α. In the

following, the four resistors R1, R2, R3 and R4 are associated respectively with the x1 =

[100], x′
1 = [110], x2 = [010] and x′

2 = [1̄00] crystallographic directions (see Figure IV.1).

It is assumed that the piezoresistive coefficients and the thermal coefficients of resistance

are the same for all the resistors in the rosette structure.
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C.1 (3P1N) rosettes

Rosette configuration consisting of 3 P-type resistors and 1 N-type resistors are referred

to as (3P1N) rosettes. There are four possible cases, depending on the orientation of the

N resistor: 1N3P, 1P1N2P, 2P1N1P, 3P1N.

C.1.1 1N3P rosette: N resistor along [100]

C.1.1.1 Stress-induced resistance changes
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C.1.1.2 Stress components
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C.1.2 1P1N2P rosette: N resistor along [110]

C.1.2.1 Stress-induced resistance changes
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C.1.2.2 Stress components
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C.1.3 2P1N1P rosette: N resistor along [010]

C.1.3.1 Stress-induced resistance changes
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C.1.3.2 Stress components
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C.1.4 (3P1N) rosette: N resistor along [1̄10]

C.1.4.1 Stress-induced resistance changes
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C.1.4.2 Stress components
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C.2 (1P3N) rosettes

Rosette configurations consisting of 1 P-type resistors and 3 N-type resistors are referred

to as (1P3N) rosettes. There are four possible cases, depending on the orientation of the

P resistor: 1P3N, 1N1P2N, 2N1P1N, 3N1P. The equations can be obtained by permuting

the n and p indices in Section C.

C.3 (2P2N) rosettes

Rosette configurations consisting of 2 P-type resistors and 2 N-type resistors are referred

to as (2P2N) rosettes. There are four possible cases: 2N2P, 2P2N, (1N1P)2, (1P1N)2.

C.3.1 2N2P rosette: N resistors along [100] and [110]

C.3.1.1 Stress-induced resistance changes
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C.3.1.2 Stress components
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C.3.2 2P2N rosette: P resistors along [100] and [110]

The equations can be obtained by permuting the n and p indices in Equations (C.9) and

(C.10).

C.3.3 (1N1P)2 rosette: N resistors along x1 = [100] and x2 = [010]

C.3.3.1 Stress-induced resistance changes
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C.3.3.2 Stress components
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C.3.4 (1P1N)2 rosette: P resistors along [100] and [010]

The equations can be obtained by permuting the n and p indices in Equations (C.11) and

(C.12).





Résumé

Ces dernières années, un certain nombre de barrières physiques et économiques sont ap-

parues dans la course pour la miniaturisation et l’amélioration des performances des cir-

cuits intégrés. En effet, pendant plusieurs décennies, l’industrie des semiconducteurs a été

portée par une augmentation continue du nombre de composants semiconducteurs inté-

grés par unité de surface (typiquement, des transistors MOS). Cependant, alors que des

dimensions de longueur de grille inférieures à 10 nm sont atteintes pour les transistors des

dernières générations de circuits intégrés, les effets quantiques deviennent non-négligeables

et conduisent à une consommation électrique accrue ainsi que des phénomènes d’auto-

échauffement, en raison de courants de fuite plus importants. De plus, la nécessité d’une

densité d’interconnexions accrue entre des composants semiconducteurs toujours plus nom-

breux entraine une augmentation des délais de propagation du signal, à cause de la généra-

tion de capacités parasites entre les lignes d’interconnexions.

Pour dépasser ces limites, de nouvelles architectures sont continûment développées. En

particulier, on observe ces dernières années un tournant dans l’industrie de la microélec-

tronique vers les stratégies d’intégration 3D, comme une alternative à la réduction des

dimensions des transistors. Cette approche innovante consiste à combiner en un seul et

même module des puces de technologies ou fonctionnalités diverses. Une stratégie possible

pour réaliser ces systèmes hétérogènes est d’empiler verticalement les puces les unes sur

les autres plutôt que de les juxtaposer dans le plan, permettant ainsi des gains consid-

érables en terme de compacité et de polyvalence des circuits. Ceci vaut en particulier pour

les capteurs d’image, pour lesquels l’exploitation de la dimension verticale rend possible

l’incorporation de fonctionnalités supplémentaires, notamment pour le traitement d’image.

Parmi les nombreuses méthodes existantes pour réaliser des interconnexions verticales di-

rectes entre les puces empilées, le collage « hybride » cuivre/oxyde est une approche

prometteuse permettant de réaliser simultanément une connexion mécanique et électrique

entre les puces, avec un pas d’interconnexion submicronique car limité principalement par

la précision d’alignement atteignable entre les plots de collage métalliques au moment de

leur mise en contact.

Dans des travaux récents à STMicroelectronics et au CEA-Leti, un procédé de collage

hybride cuivre/oxyde (Cu/SiO2) a été développé à l’aide de plusieurs circuits de test, pour

lesquels la performance et la fiabilité électrique, ainsi que la morphologie de l’interface
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de collage ont été étudiés en détail1, rendant possible le transfert de cette technologie

de la phase de développement à la phase de production. Dans cette thèse, l’intégration

d’un système plus complexe est considérée, à savoir un capteur d’image éclairé par la face

arrière empilé sur un circuit logique. En comparaison des études précédentes, un champ

plus large de procédés de fabrication est donc étudié, incluant à la fois la fabrication du

circuit imageur et son encapsulation dans un boîtier à puce, en plus de l’empilement de

puces par le procédé de collage hybride cuivre/oxyde.

Un enjeu majeur pour ce type d’architecture innovante réside dans la tenue mécanique des

éléments de connexion électrique. Cette thèse vise à examiner la robustesse mécanique

d’un capteur d’image reporté sur un circuit logique par empilement 3D, dans le but de

prévenir un certain nombre de problèmes potentiels causés par les contraintes thermomé-

caniques générées pendant sa fabrication. Dans ce travail de thèse, les contraintes mé-

caniques générées dans le capteur d’image empilé pendant l’élaboration du circuit et son

encapsulation dans un boîtier à puce sont examinées, et les interactions entre les différents

composants du système analysées. L’intégrité mécanique de plusieurs structures clés est

étudiée, notamment : (i) les plots d’interconnexion à l’interface de collage hybride entre la

puce imageur et la puce logique, (ii) les plots d’assemblage filaire faisant le lien entre le cap-

teur d’image empilé et le substrat du boîtier, ainsi que (iii) les composants semiconducteurs

dans la zone active du substrat silicium du capteur d’image, à travers l’évaluation in situ

des contraintes mécaniques induites par les procédés de fabrication grâce à des capteurs

de contraintes piézorésistifs à base de silicium dopé. Pour ce faire, une approche combi-

nant caractérisations expérimentales et analyses numériques a été adoptée : les mesures

morphologiques, mécaniques et électriques effectuées sont systématiquement corrélées et

étendues à l’aide de simulations par la méthode des éléments finis, permettant de garantir

la bonne intégration des produits d’imagerie du point de vue thermomécanique.

Dans un premier temps, nous nous sommes concentrés sur l’interface de collage hybride

cuivre-oxyde entre le capteur d’image et sa puce-support, afin d’examiner la fermeture de

l’interface de collage cuivre-cuivre et les problèmes potentiels associés. Pour l’application

considérée dans cette thèse, le procédé de collage hybride est réalisé grâce au dépôt d’une

couche supplémentaire structurée cuivre/oxyde à la surface de l’empilement d’interconnexion

pour chacune des deux puces à assembler. Grâce à une préparation de surface et un

traitement thermique spécifiques, ces surfaces aux motifs assortis peuvent être collées

directement sans aucun matériau intermédiaire (ni colle, ni alliage de brasage). Cette

technique permet ainsi l’obtention d’une couche d’interconnexion compacte, rendant cette

technique particulièrement adaptée pour les applications d’intégration tridimensionnelle

à ultra-haute-densité. Toutefois, le procédé de collage hybride cuivre-oxyde requiert une

excellente planéité de surface, avec une conformité suffisante pour permettre une bonne

fermeture de l’interface hybride. La topographie de surface est donc un facteur clé pour le

1Taibi (2012) et Beilliard (2015)
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collage hybride cuivre-oxyde, et doit faire l’objet d’un suivi rigoureux afin de remplir les

critères de planéité stricts qui lui sont associés.

L’influence de diverses géométries et divers agencements pour les plots métalliques de

collage hybride sur l’état de surface après planarisation mécano-chimique a été évaluée

expérimentalement. L’impact de cette topographie de surface initiale sur la morphologie de

l’interface de collage cuivre-cuivre a ensuite été examiné. Une analyse thermomécanique du

procédé de collage a enfin été conduite à l’aide de simulations par la méthode des éléments

finis, dans le but de déterminer l’influence de paramètres supplémentaires liés aux règles

de dessin ou au procédé, et identifiés comme critiques pour les applications futures, comme

par exemple le pas d’interconnexion ou la précision d’alignement.

Pour des paramètres de polissage nominaux, l’analyse de la topographie des surfaces par

microscopie à force atomique avant collage a mis en évidence un surpolissage systéma-

tique des motifs d’interconnexion de cuivre (phénomène de dishing), en raison d’un taux

d’érosion plus important par rapport aux surface d’oxyde environnantes. Pour la plage de

dimensions considérée, une influence négligeable de la géométrie et de l’agencement des

plots d’interconnexion sur la topographie de la surface de collage a été observée. La mor-

phologie de l’interface de collage cuivre-cuivre a ensuite été examinée en imagerie 3D par

microscopie électronique à balayage couplée à un faisceau d’ions focalisés (3D FIB/SEM),

pour différents profils de surpolissage initiaux des motifs d’interconnexion. Les résultats

indiquent l’existence d’une valeur-seuil au-delà de laquelle seul un collage partiel a lieu

entre les surfaces métalliques. Même si les défauts de collage observés n’ont pas été iden-

tifiés comme pouvant représenter un risque significatif pour la performance électrique du

circuit intégré empilé, une fermeture partielle de l’interface cuivre-cuivre peut entraîner des

problèmes de robustesse mécanique, comme les précédents travaux l’ont montré (Beilliard,

2015).

Alors qu’une diminution du pas d’interconnexion pour la couche de collage hybride cuivre-

oxyde est attendue dans un futur proche, l’influence sur le collage d’un certain nombre de

paramètres de conception ou liés au procédé n’est pas encore totalement comprise. Afin

d’essayer d’apporter un éclairage sur les principaux paramètres influents pour prévenir le

collage partiel, des analyses thermomécaniques du collage cuivre-cuivre pendant le traite-

ment thermique de recuit de consolidation ont été conduites à l’aide de simulations par

la méthode des éléments finis. Un résultat important de cette étude est l’observation

d’une forte dépendance du collage à la courbure locale du profil de surpolissage, même

à profondeur de dishing constante. En fonction de la dépendance de la profondeur de

surpolissage aux dimensions latérales des motifs, une influence potentiellement néfaste

d’une augmentation du facteur de forme des interconnexions, ainsi que de leur densité

surfacique, a également été observée. Cette tendance, si elle s’avérait confirmée, pourrait

signifier que la compensation thermomécanique du surpolissage des plots d’interconnexions

ne serait plus assurée pour une très haute densité d’interconnexions. Les résultats mon-

trent cependant que cet effet néfaste potentiel pourrait être atténué par le choix d’un
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couple de matériaux métal/diélectrique maximisant la dilatation verticale du plot de col-

lage. Enfin, l’influence d’un désalignement des plots d’interconnexion au moment de leur

mise en contact a également été étudiée. Pour un désalignement suffisamment faible (typ-

iquement, inférieur à la demi-largeur du plot métallique), non seulement une diminution

de l’aire relative de contact n’a pas été observée, mais en réalité la fermeture de l’interface

cuivre-cuivre se trouve facilitée dans la région de contact restante. Cette étude numérique

a donc permis d’identifier les principaux paramètres influents pour la qualité de collage, et

de fournir des recommandations pour tenter de limiter les cas de collages partiels observés

dans l’étude expérimentale.

Nous nous sommes ensuite intéressés à la robustesse mécanique des plots d’assemblage

filaire du capteur d’image empilé, servant à réaliser la connexion électrique entre la puce

et le substrat du boîtier dans lequel elle est encapsulée. Ce type d’architecture pour un

circuit imageur éclairé par la face arrière donne lieu à de nouveaux défis. En effet, cette

configuration impose de former les connexions filaires sur la face arrière de la puce, avec

pour conséquence directe la présence des niveaux de métallisation inférieurs à proxim-

ité de la surface de connexion. Or, ces couches d’interconnexion locales contiennent les

lignes de métal aux dimensions les plus faibles en comparaison du reste de l’empilement

d’interconnexions, et l’on peut donc s’attendre dans cette nouvelle configuration à un

risque de fissuration ou de délaminage accru. Dans ces travaux de thèse, une compara-

ison expérimentale de différentes architectures d’empilements d’interconnexion sous les

plots d’assemblage filaire est réalisée, au moyen d’inspections de la surface de connexion

après le procédé de soudure thermosonique (cratering test) ou de coupes de l’empilement

d’interconnexion pour détecter de potentielles fissures ou délaminations. Notre attention

s’est portée sur l’influence de l’agencement des lignes d’interconnexions sous la connexion fi-

laire, ainsi que de l’introduction d’une couche intermédiaire entre la surface de connexion et

l’empilement, sur la tenue mécanique. Dans le but de fournir une meilleure compréhension

des résultats expérimentaux, une analyse mécanique multi-échelle d’un test de qualification

standard des connexions filaires a été réalisée par la méthode des éléments finis, à savoir le

test dit de wire pull. Ce modèle a ensuite été étendu dans le but d’étudier l’influence d’un

certain nombre de configurations de plot d’assemblage filaire sur la tenue mécanique, et

permettre d’établir des recommandations pour diminuer le risque de défaillance mécanique.

La plupart des fissures et délaminations observées dans l’étude expérimentale de l’intégrité

mécanique des empilement d’interconnexion après le procédé d’assemblage filaire sont con-

centrées dans les niveaux de métallisation inférieurs, au plus près de la surface de connexion.

L’introduction d’un bicouche épais Si/SiO2 entre la surface de connexion et l’empilement

d’interconnexions a permis d’améliorer considérablement la tenue mécanique, en agissant

comme une « couche tampon » absorbant le chargement exercé sur les interconnexions lors

du procédé de soudure thermosonique. Une nette influence de l’épaisseur de cette couche

de recouvrement a également été observée, avec une suppression complète des défaillances

mécaniques pour la configuration correspondant à l’épaisseur la plus importante.
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Afin d’examiner plus en détail l’influence de l’agencement des lignes d’interconnexion

présentes sous les plots d’interconnexion sur la tenue mécanique, un modèle éléments finis

d’un test standard de qualification mécanique des connexions filaires a été développé en

suivant une approche multi-échelle, permettant de tenir compte avec une plus grande préci-

sion des caractéristiques géométriques de l’empilement d’interconnexions. Un critère fondé

sur la moyenne volumique de la première contrainte principale dans les couches d’oxyde

fragiles a été proposé pour permettre une comparaison de la robustesse mécanique des

différentes architectures de plots de connexion. Une bonne corrélation avec les résultats

expérimentaux précédents a été obtenue, permettant de fournir des recommandations pour

optimiser la tenue mécanique des plots d’assemblage filaire. Bien qu’il ait été constaté que

l’introduction d’une « couche tampon » sous la surface de connexion reste le paramètre le

plus influent, l’agencement des interconnexions sous la surface de connexion joue également

un rôle important. En premier lieu, l’augmentation de la densité surfacique des motifs mé-

talliques pour les différentes des couches de l’empilement permet d’améliorer la robustesse

mécanique, grâce à une reprise de chargement par les lignes d’interconnexion au profit des

fragiles couches d’oxyde adjacentes. De plus, la « connexité » des motifs métalliques a été

identifiée comme un paramètre permettant un « renforcement structurel » de l’empilement,

en atténuant le chargement exercé sur la matrice d’oxyde. De la même manière, la présence

de vias métalliques entre les niveaux d’interconnexions contribue également à augmenter

la robustesse mécanique. Le procédé de soudure thermosonique génère de forts niveaux

de contraintes dans l’empilement d’interconnexions, et fait partie des étapes de fabrication

les plus critiques. Dans cette étude, une analyse détaillée des paramètres les plus influ-

ents pour la conception d’un plot d’assemblage filaire en terme de robustesse mécanique

a été conduite, permettant de fournir des recommandations pour l’optimisation de ces

structures, et d’assurer la connexion filaire par la face arrière du capteur d’image empilé.

Dans la dernière partie de cette thèse, une méthodologie reposant sur des capteurs de

contrainte piézorésistifs à base de silicium dopé a été proposée pour permettre un suivi

in situ des contraintes mécaniques dans les zones actives du substrat silicium du capteur

d’image empilé, à la fois pendant la fabrication de la puce imageur et son encapsulation

dans un boîtier.

Dans le contexte de l’industrie de la microélectronique, avec des temps de fabrication typ-

iques de l’ordre de plusieurs mois, il est nécessaire de mettre en place un contrôle en ligne

des différents paramètres d’intérêt pour le circuit intégré considéré, comme par exemple

l’alignement des masques de photolithographie, l’épaisseur des couches, la topographie de

surface ou encore les résistances électriques des différents composants. Ces paramètres sont

régulièrement suivis au cours de la fabrication des circuits intégrés, et permettent pendant

la phase de développement d’identifier d’éventuelles anomalies ou des étapes de fabrica-

tion critiques sans avoir à attendre la totalité du cycle, et pendant la phase de production

d’identifier les dérives des équipements ou de mettre en place un contrôle statistique des
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procédés. Cependant, une partie non-négligeable des problèmes potentiellement rencon-

trés pendant la fabrication des circuits sont en réalité liés à l’apparition de contraintes

mécaniques dans les dispositifs. On peut par exemple citer entre autres le gauchissement

des plaquettes de silicium, la propagation de fissures ou de délaminations dans les empile-

ment d’interconnexions, ou même des dérives dans les performances électriques ou optiques

des composants semiconducteurs, notamment les photodiodes intégrées dans les matrices

de pixels des capteurs d’images. Pour toutes ces raisons, il est donc particulièrement

souhaitable de pouvoir disposer d’une méthode permettant un suivi de la répartition et

de l’accumulation des contraintes mécaniques dans les dispositifs. L’accès à cette mesure

permettrait également de valider et calibrer les modèles numériques pour l’optimisation

des structures.

De nombreuses techniques ont été développées permettant la mesure du niveau de con-

trainte mécanique dans des couches minces, comme par exemple la diffraction des rayons

X ou encore la spectroscopie Raman. Cependant, ces méthodes sont relativement longues

et coûteuses dans un contexte industriel, nécessitant dans certains cas une préparation

d’échantillon poussée et destructive. Une solution plus répandue est l’évaluation de la con-

trainte à travers des mesures de flèche des plaquettes de silicium sur lesquels les circuits

sont fabriqués, effectuées régulièrement au cours des procédés de fabrication. Néanmoins,

cette méthode ne donne accès qu’à une contrainte moyenne et macroscopique dans le plan

du substrat, et peut ainsi s’avérer limitante pour l’étude de couches hétérogènes ou struc-

turées. Dans ce travail de thèse, des capteurs de contrainte piézorésistifs ont été développés

à partir de de résistances de silicium dopé disposées sous forme de rosette, avec pour ob-

jectif un suivi in situ du niveau de contrainte mécanique dans la zone active du substrat

silicium où sont intégrés les composants semiconducteurs du circuit imageur. Pour la pre-

mière fois à notre connaissance, ces capteurs sont implémentés dans un imageur éclairé par

la face arrière empilé sur une puce-support par un procédé de collage hybride cuivre-oxyde.

Le principe de ces capteurs de contrainte repose sur la mesure des variations de résistance

électrique au cours des différents procédés de fabrication, les variations de contraintes

associées pouvant être estimées à condition de disposer des coefficients piézorésistifs des

résistances de silicium dopé. Pour réaliser cette étape de calibration, un banc de flex-

ion quatre-point instrumenté précédemment développé à STMicroelectronics a été utilisé.

Même si les tendances obtenues pour les différents coefficients sont en accord avec celle rap-

portées dans la littérature, leur valeur absolue est en revanche bien plus faible en raison des

forts niveaux de dopages utilisés pour le circuit imageur considéré, avec des concentrations

en impuretés supérieures à 1020 cm−3 pour les résistances du capteur de contrainte. Une

conséquence directe de ces forts niveaux de dopage est une sensibilité réduite aux varia-

tions de contraintes, et une forte surestimation des valeurs mesurées. De plus, une possible

influence significative de la température a également été identifiée. En effet, les variations

de résistances dues à des fluctuations de température entre les différentes mesures ont été

estimées comme pouvant conduire à elles seules à des variations de contrainte comparables
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aux niveaux de chargement attendus pour la fabrication d’un circuit intégré typique, à

savoir près de 50 MPa pour 0.5 ◦C. Cette forte dépendance à la température suspectée

pour les capteurs considérés nous a conduit à travailler avec des combinaisons linéaires de

composantes de contrainte, afin de permettre une compensation en température.

Pour examiner plus en détail ces biais potentiels dans l’évaluation in situ des contrainte

mécaniques dans les zones actives de la puce, ces résultats expérimentaux ont été comparés

à des simulations thermomécaniques des procédés de fabrication et d’encapsulation du cap-

teur d’image empilé par la méthode des éléments finis. Des valeurs nettement inférieures

aux mesures ont en effet été obtenues, de l’ordre de quelques dizaines de mégapascals. De

plus, un bien meilleur accord entre les valeurs mesurées et simulées a été observé en consid-

érant les composantes de contrainte compensées en température, même si certaines valeurs

inexplicablement élevées ont été constatées en particulier pour l’étape d’encapsulation et

nécessitent des analyses complémentaires. Ainsi, des niveaux de dopage modérés à faible

sont recommandés afin d’augmenter la valeur des coefficients piézorésistifs, et donc la sen-

sibilité des capteurs aux variations de contraintes. Néanmoins, les valeurs de contrainte

relativement faibles obtenues par simulation, à la fois pour la fabrication et l’encapsulation

du circuit, tendent à montrer une influence modeste sur le fonctionnement des photodiodes

de la configuration empilement vertical avec éclairage par la face arrière d’un point de vue

thermomécanique pour le capteur d’image considéré.

Dans cette thèse, l’intégrité et la robustesse mécanique d’un capteur d’image éclairé par la

face arrière empilé sur un circuit logique par collage hybride cuivre-oxyde a été étudiée. Un

certain nombre de défaillances potentielles liées à cette architecture relativement nouvelle

pour une application industrielle ont été abordées, permettant d’assurer d’un point de vue

thermomécanique l’intégration de ce dispositif innovant.
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Titre: Étude expérimentale et numérique des contraintes mécaniques dans les architec-

tures tridimensionnelles sur silicium pour les applications d’imagerie

Mots-clés: Capteurs d’image CMOS - Collage hybride - Assemblage filaire - Capteurs de

contraintes piezorésistifs - Simulation par éléments finis

Résumé: Ces dernières années, un certain nombre de barrières physiques ou économiques ont fait

leur apparition dans la course pour la miniaturisation et l’amélioration des performances des cir-

cuits intégrés. Pour dépasser ces limites, de nouvelles architectures sont continûment développées.

En particulier, on observe un tournant dans l’industrie de la microélectronique vers les stratégies

d’intégration 3D, comme une alternative à la réduction des dimensions des transistors MOS. Cette

approche innovante consiste à combiner en un seul et même module des puces de technologies ou

fonctionnalités diverses. Une stratégie possible pour réaliser ces systèmes hétérogènes est d’empiler

verticalement les puces les unes sur les autres plutôt que de les juxtaposer dans le plan, permettant

des gains considérables en terme de compacité et de polyvalence des circuits. Ceci vaut en partic-

ulier pour les capteurs d’image, pour lesquels l’exploitation de la dimension verticale rend possible

l’incorporation de fonctionnalités supplémentaires, notamment pour le traitement d’image. Parmi

les nombreuses méthodes existantes pour réaliser des interconnexions verticales directes entre les

puces empilées, le collage « hybride » cuivre/oxyde est une approche prometteuse permettant de

réaliser simultanément la connexion mécanique et électrique, avec un pas d’interconnexion sub-

micronique car limité principalement par la précision d’alignement atteignable entre les plots de

collage métalliques au moment de leur mise en contact. Un enjeu majeur pour ce type d’architecture

innovante est la tenue mécanique des éléments de connexion électrique. Cette thèse vise à examiner

la robustesse mécanique d’un capteur d’image reporté sur un circuit logique de technologie plus

avancée par empilement 3D, dans le but de prévenir un certain nombre de problèmes potentiels

causés par les contraintes thermomécaniques s’accumulant pendant sa fabrication. Dans ce travail

de thèse, les contraintes mécaniques générées dans le capteur d’image empilé pendant l’élaboration

du circuit et son encapsulation dans un boîtier à puce sont examinées, et les interactions entre les

différents composants du système analysées. L’intégrité mécanique de plusieurs structures clés est

étudiée, notamment : (i) les plots d’interconnexion à l’interface de collage « hybride » entre la

puce imageur et la puce logique, (ii) les plots d’assemblage filaire faisant le lien entre le capteur

d’image empilé et le substrat du boîtier, ainsi que (iii) les composants électroniques dans la zone

active du substrat silicium du capteur d’image, à travers l’évaluation in-situ des contraintes mé-

caniques induites par les procédés de fabrication grâce à des capteurs de contraintes piézorésistifs

à base de silicium dopé. Pour ce faire, une approche combinant caractérisations expérimentales

et analyses numériques a été adoptée : les mesures morphologiques, mécaniques et électriques

effectuées sont systématiquement corrélées et étendues à l’aide de simulations par la méthode des

éléments finis, permettant de garantir la bonne intégration des produits d’imagerie du point de

vue thermomécanique.



Title: Numerical and Experimental Investigations on Mechanical Stress in 3D Stacked

Integrated Circuits for Imaging Applications

Keywords: CMOS Image Sensors - Hybrid Bonding - Wire Bonding - Piezoresistive

Stress Sensors - Finite Element Modeling

Abstract: In recent years, a number of physical and economical barriers have emerged in the

race for miniaturization and speed of integrated circuits. To circumvent these issues, new pro-

cesses and architectures are continuously developed. In particular, a progressive shift towards 3D

integration strategies is currently observed in the semiconductor industry as an alternative path

to further transistor downscaling. This innovative approach consists in combining chips of differ-

ent technologies or different functionalities into a single module. A possible strategy to realize

such heterogeneous systems is to stack chips on top of each other instead of tiling them on the

plane, enabling considerable benefits in terms of compactness and versatility, but also increased

performance. This is especially true for image sensor chips, for which vertical stacking allows

the incorporation of additional functionalities such as advanced image signal processing. Among

various methods to achieve direct vertical interconnections between stacked chips, a promising

method is Cu/SiO2 hybrid bonding, enabling simultaneous mechanical and electrical connection

with a submicron interconnection pitch mostly limited by photolithography resolution and align-

ment accuracy. The mechanical integrity of the different electrical connection elements for such a

3D integrated imager-on-logic device is of critical importance. The aim of this thesis is to investi-

gate the mechanical robustness of this relatively new architecture in semiconductor manufacturing

during its fabrication, aiming to address a number of possible issues from a thermomechanical

perspective. In this work, thermomechanical stresses building up in the image sensor during chip

processing and assembly onto a package are investigated, and the interactions between the differ-

ent system components analyzed. The mechanical integrity of several key structures is studied,

namely (i) interconnection pads at the hybrid bonding interface between the imager/logic chips, (ii)

bondpad structures below the wires connecting the imager to the package substrate, and (iii) semi-

conductor devices in the image sensor, through in-situ evaluation of process-induced mechanical

stresses using doped Si piezoresistive stress sensors. To do so, for each item a combined numerical

and experimental approach was adopted, using morphological, mechanical and electrical charac-

terizations, then correlated or extended by thermomechanical finite element analyses, allowing to

secure product integration from a thermomechanical perspective.



Titre: Étude expérimentale et numérique des contraintes mécaniques dans les architec-

tures tridimensionnelles sur silicium pour les applications d’imagerie

Mots-clés: Capteurs d’image CMOS - Collage hybride - Assemblage filaire - Capteurs de

contraintes piezorésistifs - Simulation par éléments finis

Résumé: Poursuivant la course vers la miniaturisation et la performance des produits de

la microélectronique, de nouvelles architectures sont continûment développées. Nous nous

intéressons ici à des procédés d’assemblage émergents appliqués à des produits spécifiques.

D’une part, les architectures sur silicium tridimensionnelles sont de plus en plus utilisées

aux dépens des empilements planaires. D’autre part, afin d’améliorer la performance des

imageurs CMOS, ces dernières années la technologie d’éclairage par la face arrière a été

développée, devant répondre à des spécifications d’intégration et de fonctionnement par-

ticulières. Un procédé innovant consiste dans l’empilement de ce type d’imageur sur un

circuit logique de technologie plus avancée, par connexion directe de plots métalliques.

Ces travaux portent sur l’évaluation des contraintes thermomécaniques engendrées lors

des procédés de fabrication pour cette architecture émergente.

**********

Title: Numerical and Experimental Investigations on Mechanical Stress in 3D Stacked

Integrated Circuits for Imaging Applications

Keywords: CMOS Image Sensors - Hybrid Bonding - Wire Bonding - Piezoresistive

Stress Sensors - Finite Element Modeling

Abstract: Pursuing the trend towards miniaturization and increased performance of in-

tegrated circuits, new processes and architectures are constantly developed. In this thesis,

we are interested in emerging assembly processes applied to specific products. On the

one hand, 3D integrated circuits are becoming an increasingly viable approach to enable

continuous downscaling, instead of conventional planar integration. On the other hand, to

improve the performance of CMOS image sensors, in recent years the backside-illumination

approach was developed, involving specific integration and operation requirements. An

innovative approach consists in the vertical stacking of such image sensors on a more ad-

vanced logic circuit using direct bonding of hybrid metal/oxide surfaces. This work inves-

tigates thermomechanical stress build-up during fabrication processes for these emerging

architectures.
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