Y. Nasser, J. Prévotet, and M. Hélard, Characterization Methodology for Low Power Consumption Components on FPGA, the 31st IEEE International Conference on Microelectronics, ICM 2019, pp.15-18

Y. Nasser, C. Sau, J. Prévotet, T. Fanni, F. Palumbo et al., NeuPow: artificial neural networks for power and behavioral modeling of arithmetic components in 45nm ASICs technology, Proceedings of the 16th ACM International Conference on Computing Frontiers (CF '19), pp.183-189, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165618

Y. Nasser, J. Prévotet, and M. Hélard, Power modeling on FPGA: a neural model for RT-level power estimation, Proceedings of the 15th ACM International Conference on Computing Frontiers (CF '18), pp.309-313, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01760342

Y. Nasser, J. Prévotet, and M. Hélard, Power Aware Framework for Fast & Early Power Estimation on FPGA, PhD Forum, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01734885

Y. Nasser, J. Prévotet, M. Hélard, and J. Lorandel, Dynamic power estimation based on switching activity propagation, 27th International Conference on Field Programmable Logic and Applications (FPL), pp.1-2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613447

Y. Nasser, J. Prévotet, M. Hélard, and J. Lorandel, Power estimation on FPGAs based on signal information propagation through digital operators, pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619924

Y. Nasser, J. Prévotet, and M. Hélard, NeuPow: Artificial Neural Networks for Power and Behavioral Modeling of Arithmetic Components in 45nm ASICs Technology, GdR SoC-SiP, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165618

Y. Nasser, J. Prévotet, and M. Hélard, A Neural Model for RT-Level Power Estimation on FPGAs, GdR SoC-SiP, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02021099

Y. Nasser, J. Prévotet, M. Hélard, and J. Lorandel, Statistical Information Propagation Across Operators for Dynamic Power Estimation on FPGAs, GdR SoC-SiP, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01567196

. Cisco, Cisco: Internet of things at-a-glance, 2018.

T. Fanni, Power and Clock Gating Modelling in Coarse Grained Reconfigurable Systems, Conf. on Computing Frontiers, 2016.

F. Palumbo, Modelling and Automated Implementation of Optimal Power Saving Strategies in Coarse-Grained Reconfigurable Architectures, JECE, vol.2016, issue.5, 2016.

A. Raghunathan, S. Dey, and N. K. Jha, Register-transfer level estimation techniques for switching activity and power consumption, Proceedings of International Conference on Computer Aided Design, pp.158-165, 1996.

S. Gupta and F. N. Najm, Power macromodeling for high level power estimation, Proceedings of the 34th annual Design Automation Conference, pp.365-370, 1997.

M. Barocci, L. Benini, A. Bogliolo, B. Riccó, and G. De-micheli, Lookup table power macro-models for behavioral library components, Proceedings IEEE Alessandro Volta Memorial Workshop on Low-Power Design, pp.173-181, 1999.

S. Gupta and F. N. Najm, Power modeling for high-level power estimation, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.8, issue.1, pp.18-29, 2000.

Y. A. Durrani, T. Riesgo, and F. Machado, Statistical power estimation for register transfer level, Proceedings of the International Conference Mixed Design of Integrated Circuits and System, pp.522-527, 2006.

R. Jevtic and C. Carreras, Power estimation of embedded multiplier blocks in fpgas, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.18, pp.835-839, 2010.

T. Jiang, X. Tang, and P. Banerjee, Macro-models for high level area and power estimation on fpgas, Proceedings of the 14th ACM Great Lakes Symposium on VLSI, GLSVLSI '04, pp.162-165, 2004.

L. Deng, K. Sobti, and C. Chakrabarti, Accurate models for estimating area and power of fpga implementations, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1417-1420, 2008.

B. M. Chalbi-najoua and B. Mohamed, Accurate dynamic power model for fpga basedimplementations, IJCSI International Journal of Computer Science Issues, vol.9, 2012.

A. Borovyi, V. Konstantakos, V. Kochan, V. Turchenko, A. Sachenko et al., Using neural network for the evaluation of power consumption of instructions execution, 2008 IEEE Instrumentation and Measurement Technology Conference, pp.676-681, 2008.

L. Hou, X. Wu, and W. Wu, Neural network based power estimation on chip specification, The 3rd International Conference on Information Sciences and Interaction Sciences, pp.187-190, 2010.

A. Association, Itrs-international technology roadmap for semiconductors, 2011 edition, system drivers, 2011.

J. Deschamps, Hardware implementation of finite-field arithmetic, 2009.

D. Tran, K. K. Kim, and Y. Kim, Power estimation in digital cmos vlsi chips, IEEE Instrumentation and Measurement Technology Conference Proceedings, vol.1, pp.317-321, 2005.

D. Helms, R. Eilers, M. Metzdorf, and W. Nebel, Leakage models for highlevel power estimation, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.37, pp.1627-1639, 2018.

G. Paim, L. M. Rocha, T. G. Alves, R. S. Ferreira, E. A. Da-costa et al., A power-predictive environment for fast and power-aware asic-based fir filter design, 2017 30th Symposium on Integrated Circuits and Systems Design (SBCCI), pp.168-173, 2017.

N. Nasirian, R. Soosahabi, and M. A. Bayoumi, Probabilistic analysis of power-gating in network-on-chip routers, IEEE Transactions on Circuits and Systems II: Express Briefs, pp.1-1, 2018.

J. Rabaey, Low Power Design Essentials, 2009.

P. Gaillardon, E. Beigne, S. Lesecq, and G. D. Micheli, A survey on lowpower techniques with emerging technologies: From devices to systems, J. Emerg. Technol. Comput. Syst, vol.12, pp.1-12, 2015.

P. Gupta and A. B. Kahng, Quantifying error in dynamic power estimation of cmos circuits, Fourth International Symposium on Quality Electronic Design, pp.273-278, 2003.

. Xilinx, About post-synthesis and post-implementation timing simulation, 2012.

G. I. Webb, M. J. Pazzani, and D. Billsus, User modeling and user-adapted interaction, vol.11, pp.19-29, 2001.

P. Harrington, Machine Learning in Action, 2012.

H. N. Mhaskar, Approximation properties of a multilayered feedforward artificial neural network, Advances in Computational Mathematics, vol.1, pp.61-80, 1993.

J. Attali and G. Pagès, Approximations of functions by a multilayer perceptron: a new approach, Neural networks, vol.10, issue.6, pp.1069-1081, 1997.

J. J. Moré, The levenberg-marquardt algorithm: implementation and theory, pp.105-116, 1978.

L. Shang, A. S. Kaviani, and K. Bathala, Dynamic power consumption in virtex TM -ii fpga family, Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-programmable gate arrays, pp.157-164, 2002.

. Xilinx, Ti power solutions for measuring power on xilinx evaluation kits, 2018.

A. Nafkha and Y. Louet, Accurate measurement of power consumption overhead during fpga dynamic partial reconfiguration, 2016 International Symposium on Wireless Communication Systems (ISWCS), pp.586-591, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413268

M. A. Rihani, F. Nouvel, J. Prévotet, M. Mroue, J. Lorandel et al., Dynamic and partial reconfiguration power consumption runtime measurements analysis for zynq soc devices, 2016 International Symposium on Wireless Communication Systems (ISWCS), pp.592-596, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413269

M. Kim, J. Kong, and S. W. Chung, Enhancing online power estimation accuracy for smartphones, IEEE Transactions on Consumer Electronics, vol.58, pp.333-339, 2012.

R. Jevtic and C. Carreras, Power measurement methodology for fpga devices, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.1, pp.237-247, 2011.

D. Elleouet, N. Julien, and D. Houzet, A high level soc power estimation based on ip modeling, Proceedings 20th IEEE International Parallel Distributed Processing Symposium, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105873

J. Oliver, F. Veirano, D. Bouvier, and E. Boemo, A low cost system for self measurements of power consumption in field programmable gate arrays, Journal of Low Power Electronics, vol.13, issue.1, 2017.

R. Bonamy, D. Chillet, S. Bilavarn, and O. Sentieys, Power consumption model for partial and dynamic reconfiguration, Reconfigurable Computing and FPGAs (ReConFig), 2012 International Conference on, pp.1-8, 2012.

L. W. Nagel, Spice2: A computer program to simulate semiconductor circuits, 1975.

C. X. Huang, B. Zhang, A. Deng, and B. Swirski, The design and implementation of powermill, Proceedings ofthe International Symposium on Low Power Design, 1995.

M. Bushnell and V. , Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits, vol.17, 2004.

A. Boliolo, L. Benini, G. D. Micheli, and B. Riccó, Gate-level power and current simulation of cmos integrated circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.5, issue.4, pp.473-488, 1997.

A. Bogliolo, L. Benini, and B. Riccò, Power estimation of cell-based cmos circuits, 1996.

B. George, Power analysis and characterization for semicustom design, Proc. Intl. Workshop on Low Power Design, pp.215-218, 1994.

R. Burch, F. N. Najm, P. Yang, and T. N. Trick, A monte carlo approach for power estimation, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.1, issue.1, pp.63-71, 1993.

T. Chou and K. Roy, Statistical estimation of sequential circuit activity, Proceedings of the 1995 IEEE/ACM international conference on Computer-aided design, pp.34-37, 1995.

L. Yuan, C. Teng, and S. Kang, Statistical estimation of average power dissipation in cmos vlsi circuits using nonparametric techniques, Proceedings of 1996 International Symposium on Low Power Electronics and Design, pp.73-78, 1996.

D. Marculescu, R. Marculescu, and M. Pedram, Stochastic sequential machine synthesis targeting constrained sequence generation, 33rd Design Automation Conference Proceedings, pp.696-701, 1996.

,. and M. Pedram, Stratified random sampling for power estimation, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.17, pp.465-471, 1998.

R. Burch, F. Najm, P. Yang, and T. Trick, Mcpower: A monte carlo approach to power estimation, ICCAD, vol.92, pp.90-97, 1992.

M. G. Xakellis and F. N. Najm, Statistical estimation of the switching activity in digital circuitsy, 31st Design Automation Conference, pp.728-733, 1994.

Y. Park and E. Park, Statistical power estimation of cmos logic circuits with variable errors, Electronics Letters, vol.34, issue.11, pp.1054-1056, 1998.

Z. Chen, K. Roy, and T. Chou, Efficient statistical approach to estimate power considering uncertain properties of primary inputs, IEEE Transactions on very large scale integration (VLSI) systems, vol.6, pp.484-492, 1998.

C. Tsui, M. Pedram, and A. M. Despain, Efficient estimation of dynamic power consumption under a real delay model, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD), pp.224-228, 1993.

R. Marculescu, D. Marculescu, and M. Pedram, Switching activity analysis considering spatiotemporal correlations, Proceedings of the, 1994.

, IEEE/ACM international conference on Computer-aided design, pp.294-299, 1994.

P. H. Schneider and S. Krishnamoorthy, Effects of correlations on accuracy of power analysis-an experimental study, Proceedings of 1996 International Symposium on Low Power Electronics and Design, pp.113-116, 1996.

S. Garg, S. Tata, and R. Arunachalam, Static transition probability analysis under uncertainty, IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp.380-386, 2004.

, Delivers accurate dynamic and leakage power analysis, 2018.

R. Cadence, Genus synthesis solution, 2018.

. Xilinx, Xilinx power estimator user guide: Ug440, 2017.

, Xpower analyzer overview, 2014.

P. E. Estimators,

J. Lamoureux and S. J. Wilton, Activity estimation for fieldprogrammable gate arrays, 2006 International Conference on Field Programmable Logic and Applications, pp.1-8, 2006.

J. B. Goeders and S. J. Wilton, Versapower: Power estimation for diverse fpga architectures, 2012 International Conference on Field-Programmable Technology, pp.229-234, 2012.

X. Tang, E. Giacomin, G. D. Micheli, and P. E. Gaillardon, FPGA-SPICE: A simulation-based architecture evaluation framework for FPGAs, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019.

C. Tsui, M. Pedram, and A. M. Despain, Exact and approximate methods for calculating signal and transition probabilities in fsms, 31st Design Automation Conference, pp.18-23, 1994.

J. Monteiro, S. Devadas, and B. Lin, A methodology for efficient estimation of switching activity in sequential logic circuits, 31st Design Automation Conference, pp.12-17, 1994.

F. N. Najm, Transition density: A new measure of activity in digital circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.12, issue.2, pp.310-323, 1993.

F. N. Najm, A survey of power estimation techniques in vlsi circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.2, issue.4, pp.446-455, 1994.

T. Arslan, A. Erdogan, and D. Horrocks, Low power design for dsp: methodologies and techniques, Microelectronics Journal, vol.27, issue.8, pp.731-744, 1996.

S. Reda and A. N. Nowroz, Power modeling and characterization of computing devices: A survey, Found. Trends Electron. Des. Autom, vol.6, pp.121-216, 2012.

P. Landman, High-level power estimation, Proceedings of the 1996 International Symposium on Low Power Electronics and Design, ISLPED '96, pp.29-35, 1996.

B. S. Landman and R. L. Russo, On a pin versus block relationship for partitions of logic graphs, IEEE Transactions on Computers, vol.20, pp.1469-1479, 1971.

F. N. Najm, A survey of power estimation techniques in vlsi circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.2, pp.446-455, 1994.

F. N. Najm, Transition density: a new measure of activity in digital circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.12, pp.310-323, 1993.

H. A. Hassan, M. Anis, and M. Elmasry, Total power modeling in fpgas under spatial correlation, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.17, pp.578-582, 2009.

J. A. Clarke, A. A. Gaffar, and G. A. Constantinides, Parameterized logic power consumption models for fpga-based arithmetic, International Conference on Field Programmable Logic and Applications, pp.626-629, 2005.

Z. Chen and K. Roy, A power macromodeling technique based on power sensitivity, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175), pp.678-683, 1998.

Z. Chen, K. Roy, and E. K. Chong, Estimation of power sensitivity in sequential circuits with power macromodeling application, 1998.

, Digest of Technical Papers, IEEE/ACM International Conference on Computer-Aided Design, pp.468-472, 1998.

R. Jevtic, B. Jovanovic, and C. Carreras, Power estimation of dividers implemented in fpgas, Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI, GLSVLSI '11, pp.313-318, 2011.

X. Tang, L. Wang, and H. Xu, An accurate dynamic power model on fpga routing resources, 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, pp.1-3, 2012.

J. Das, A. Lam, S. J. Wilton, P. H. Leong, and W. Luk, An analytical model relating fpga architecture to logic density and depth, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.19, pp.2229-2242, 2011.

K. K. Poon, S. J. Wilton, and A. Yan, A detailed power model for field-programmable gate arrays, ACM Trans. Des. Autom. Electron. Syst, vol.10, pp.279-302, 2005.

Y. Leow, A. Akoglu, and S. Lysecky, An analytical model for evaluating static power of homogeneous fpga architectures, ACM Transactions on Reconfigurable Technology and Systems, vol.6, p.2013

H. Mehri and B. Alizadeh, Analytical performance model for fpga-based reconfigurable computing, Microprocessors and Microsystems, vol.39, issue.8, pp.796-806, 2015.

Y. A. Durrani and T. Riesgo, Power estimation for intellectual propertybased digital systems at the architectural level, Journal of King Saud University-Computer and Information Sciences, vol.26, issue.3, pp.287-295, 2014.

S. Gupta and F. N. Najm, Power macro-models for dsp blocks with application to high-level synthesis, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477), pp.103-105, 1999.

G. Bernacchia and M. C. Papaefthymiou, Analytical macromodeling for high-level power estimation, IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers, issue.99CH37051, pp.280-283, 1999.

L. Shang and N. K. Jha, High-level power modeling of cplds and fpgas, Proceedings 2001 IEEE International Conference on Computer Design: VLSI in Computers and Processors. ICCD, pp.46-51, 2001.

A. Bogliolo, L. Benini, G. De-micheli, G. D. Micheli, and G. De-micheli, Regression-based rtl power modeling, ACM Trans. Des. Autom. Electron. Syst, vol.5, pp.337-372, 2000.

A. Lakshminarayana, S. Ahuja, and S. Shukla, High level power estimation models for fpgas, 2011 IEEE Computer Society Annual Symposium on VLSI, pp.7-12, 2011.

G. Verma, V. Khare, and M. Kumar, More precise fpga power estimation and validation tool (fpev_tool) for low power applications, Wireless Personal Communications, vol.106, pp.2237-2246, 2019.

J. Laurent, N. Julien, E. Senn, and E. Martin, Functional level power analysis: An efficient approach for modeling the power consumption of complex processors, Proceedings of the Conference on Design, Automation and Test in Europe, vol.1, p.10666, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00013979

E. Senn, J. Guillot, D. Chillet, C. Belleudy, S. Niar et al., Open Power and Energy Optimization Platform and Estimator (Open-People) ANR Project, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00741608

N. Abdelli, A. Fouilliart, N. Julien, and E. Senn, High-level power estimation of fpga, 2007 IEEE International Symposium on Industrial Electronics, pp.925-930, 2007.

F. Scarselli and A. C. Tsoi, Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results, Neural Netw, vol.11, pp.15-37, 1998.

W. Hsieh, C. Shiue, and C. Liu, A novel approach for high-level power modeling of sequential circuits using recurrent neural networks, 2005 IEEE International Symposium on Circuits and Systems, pp.3591-3594, 2005.

X. Gao, Y. Yan, Y. Cao, and W. Qiang, Neural network macromodel for high-level power estimation of cmos circuits, 2005 International Conference on Neural Networks and Brain, vol.2, pp.1009-1014, 2005.

K. Roy, Neural network based macromodels for high level power estimation, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), vol.2, pp.159-163, 2007.

A. Suissa, O. Romain, J. Denoulet, K. Hachicha, and P. Garda, Empirical method based on neural networks for analog power modeling, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.29, issue.5, pp.839-844, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01198824

A. A. Sagahyroon and J. A. Abdalla, Dynamic and leakage power estimation in register files using neural networks, Circuits and Systems, vol.3, issue.02, p.119, 2012.

P. Ramanathan, B. Surendiran, and P. Vanathi, Power estimation of benchmark circuits using artificial neural networks, Pensee, vol.75, issue.9, 2013.

J. Lorandel, J. Prévotet, and M. Hélard, Efficient modelling of fpgabased ip blocks using neural networks, 2016 International Symposium on Wireless Communication Systems (ISWCS), pp.571-575, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376302

L. Shang, A. S. Kaviani, and K. Bathala, Dynamic power consumption in virtex TM -ii fpga family, Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-programmable Gate Arrays, FPGA '02, pp.157-164, 2002.

K. K. Poon, A. Yan, and S. J. Wilton, A flexible power model for fpgas, International Conference on Field Programmable Logic and Applications, pp.312-321, 2002.

X. Liu and M. C. Papaefthymiou, Incorporation of input glitches into power macromodeling, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No. 02CH37353), vol.4, 2002.

B. C. Csáji, Approximation with artificial neural networks, vol.24, p.48, 2001.

F. Scarselli and A. C. Tsoi, Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results, Neural networks, vol.11, issue.1, pp.15-37, 1998.

I. Nangate, Nangate freepdk15 open cell library, 2018.

Y. Nasser, C. Sau, J. Prévotet, T. Fanni, F. Palumbo et al., Neupow: artificial neural networks for power and behavioral modeling of arithmetic components in 45nm asics technology, Proceedings of the 16th ACM International Conference on Computing Frontiers, pp.183-189, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165618

C. , C. Vaquer, and R. Jevtic, Analytical high-level power model for lut-based components, 2009.

Y. Nasser, J. Prevotet, and M. Hélard, Power modeling on fpga: a neural model for rt-level power estimation, Proceedings of the 15th ACM International Conference on Computing Frontiers, pp.309-313, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01760342

Y. Nasser, J. Prévotet, M. Hélard, and J. Lorandel, Dynamic power estimation based on switching activity propagation, 2017 27th International Conference on Field Programmable Logic and Applications (FPL), pp.1-2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613447

Y. Nasser, J. Prévotet, M. Hélard, and J. Lorandel, Power estimation on fpgas based on signal information propagation through digital operators, 2017 Sensors Networks Smart and Emerging Technologies (SENSET), pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619924