, 4.1.1. Principe de la technique d'échantillonnage séquentiel

, 4.2.2.1. Relation entre l'indice d'échantillonnage réel n et l'indice d'échantillonnage virtuel k, p.61

, Simulation ADS de la technique d'échantillonnage cohérent

C. .. Le, Mesure d'un signal ULB avec la technique CS appliquée dans le domaine fréquentiel

, Comparaison entre l'échantillonnage séquentiel SS et l'échantillonnage cohérent

I. Chapitre, Mise en oeuvre d'un Radar ULB impulsionnel

, 2.2. Techniques de génération des impulsions ultra-courtes

, 22 I.2.1. Définition d'un signal ULB et réglementation

, 26 I.2.2.1.1. Radar FMCW (Frequency Modulated Continuous Wave)

, Radar à saut de fréquence SFCW

, 2.2.3. Catégorisation des architectures radar ultra-large bande

, 3.2. Radar à ouverture synthétique (SAR : Synthetic Aperture Radar), Les topologies des systèmes radar ULB

S. .. Le-principe-de-l'imagerie,

G. Systèmes and . .. Sar,

, Mesure d'un signal RF impulsionnel ultra-large bande

, Comparaison entre l'échantillonnage séquentiel SS et l'échantillonnage cohérent

, 2.2. Techniques de génération des impulsions ultra-courtes

, Comparaison du démonstrateur Radar SAR UWB proposé avec un Radar à impulsion (PulsON P410)

. Bibliographie,

V. Ilya, D. M. Buynevich, and . Fitzgerald, Ground-Penetrating Radar, vol.8, 2017.

J. L. Davis and A. R. Annan, Ground Penetrating Radar for high-resolution mapping of rock stratigraphy, Geophysical Prospecting, vol.37, pp.531-551, 1989.

A. M. Zoubir, L. J. Chant, L. C. Brown, B. Barkat, and C. Abeynayake, Signal Processing Techniques for LandMine Detection Using Impulse Ground Penetrating Radar, IEEE sensors journal, vol.2, pp.41-51, 2002.

X. Wei-zhao, A. Gaugue, C. Lièbe, J. Khamlichi, and M. Ménard, Through the Wall Detection and Localization of a Moving Target with a Bistatic UWB Radar System, p.7

, European Radar Conference, vol.4, pp.204-207, 2010.

X. Zhao, Détection et localisation de cibles derrière un mur avec un système radar ULB, vol.3, 2012.

M. Vincent, G. Alain, L. Georges, and M. Michel, Through-the-wall UWB pulse radar for micro-motion detection, SPIE Security & Defence, 2016.

A. Gaugue, J. Khamlichi, M. Et, and . Ménard, Localization and tracking of targets hidden by an opaque environment: UWB radar, Laboratoire Informatique, Image et Interaction (L3i), 2014.

, The Federal Communications Commission, First Report and Order, vol.118, 2002.

. Et-docket, Revision of Part 15 of the Comission's Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission, 2010.

, on the conditions for use of the radio spectrum by ground and wall probing radar (gpr/wpr) imaging systems, ECC, 2019.

, ECC Decision of 2 November 2012 on the harmonised conditions for UWB applications onboard aircraft, ECC, 2012.

T. Mohamed, Conception d'un système de transmission ultra-large bande par impulsions orthogonales, 2014.

J. Zhu and Y. Hong, An Analysis of Through-Wall Radar Based on UWB Impulse Technique, 11-th INTERNATIONAL RADAR SYMPOSIUM, vol.5, 2010.

J. Sachs, Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications, 2012.

G. Santiago-egea, Investigation in Pulse Compression Techniques for radar systems, 2014.

N. Maaref, Ultra-wideband Frequency Modulated Continuous Wave Synthetic Aperture radar for Through-the-Wall localization, pp.609-612, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00524928

A. Traille, FLEXIBLE MONOLITHIC ULTRA-PORTABLE GROUND PENETRATING RADAR USING INKJET PRINTING TECHNOLOGY, 2014.

T. Collins and T. Atkins, Nonlinear frequency modulation chirps for active sonar, Radar, Sonar and Navigation, lEE Proceedings, vol.5, pp.312-316, 1999.

D. A. Noon, I. D. Longstaff, and R. J. Yelf, Advances in the Development of Step Frequency Ground Penetrating Radar, the Fifth Int. Conf. on Ground Penetrating Radar (GPR '94), pp.117-132, 1994.

D. Andrew-noon, Stepped-Frequency Radar Design and Signal Processing Enhances Ground Penetrating Radar Performance, The University of Queensland and Cooperative Research Centre for Sensor Signal and Information Processing, 1996.

K. Damodar-v-kadaba, . Bachina, . Sa-subhan, . Bansal, G. Gowtham et al., Real-time Through-wall Imaging Using SFCW Radar System, 9th International Radar Symposium India, vol.6, 2013.

J. Wu, Compressive sensing for sense-through-wall UWB noise radar signal, pp.979-983, 2011.

L. Guosui, G. Hong, and S. Weimin, Development of random signal radars, IEEE Transactions, pp.770-777, 1999.

J. Sachs, M. Kmec, H. C. Fritsch, M. Helbig, R. Herrmann et al., Ultra-Wideband Pseudo-Noise Sensors, Applied Radio Electronics, vol.12, 2013.

G. Beltrao, L. Pralon, M. Menezes, P. Vyplavin, B. Pompeo et al., Subpulse Processing for Long Range Surveillance Noise Radars, International Conference on Radar Systems, pp.1-4, 2017.

K. A. Lukin, P. L. Vyplavin, O. V. Zemlyaniy, P. Volodymyr, S. K. Palamarchuk et al., High Resolution Noise Radar without Fast ADC, INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, vol.58, pp.135-140, 2012.

P. Piljae, An analysis of through-wall radar based on UWB impulse technique, 11th International Radar Symposium, pp.1-5, 2010.

G. Adrien, Conception et Réalisation d'un Radar Ultra-Large Bande Impulsionnel Agile (300MHz-3GHz), 2009.

A. Chernenko and E. Ziganshin, PULSE-DOPPLER UWB RADAR, Ultrawideband and Ultrashort Impulse Signals, pp.145-147, 2006.

M. Strackx, Pulsed UWB Radar Design for Remote Sensing, ARENBERG doctoral school, Faculty of Engineering Science, 2015.

Y. Wang, Frequency Modulated Continuous Wave Radar System at ISM Band for Short Range Indoor Positioning, 2017.

O. Bjorndal, Single Bit Radar Systems for Digital Integration, Norwegian Defence Research Establishment (FFI), 2017.

R. Zetik and R. S. Thoma, Monostatic imaging of small objects in UWB sensor networks, vol.2, pp.191-194, 2008.

Y. Yu, A. P. Petropulu, and H. V. Poor, MIMO radar using compressive sampling, IEEE Journal of Selected Topics in Signal Processing, vol.4, pp.146-163, 2010.

D. W. Bliss, GMTI MIMO radar, 2009 International Waveform Diversity and Design Conference, pp.118-122, 2009.

C. L. Guellaut, Prototypage d'un système MIMO MC-CDMA sur plate-forme hétérogène, 2009.

R. Giret, Imagerie radar par synthèse d'ouverture pour la gestion du trafic autoroutier, Institut National des Sciences Appliquées, 2013.

A. Rajula, SAR imaging with a hand-held UWB radar system, 2012.

T. Viet, T. K. Vu, M. I. Sjogren, A. Pettersson, and . Gustavsson, Definition on sar image quality measurements for uwb SAR, SPIE -The International Society for Optical Engineering, vol.7109, 2008.

T. Viet, T. K. Vu, M. I. Sjogren, and . Pettersson, A comparison between fast factorized backprojection and frequency-domain algorithms in UWB lowfrequency SAR, International Geoscience and Remote Sensing Symposium (IGARSS), vol.4, pp.1284-1287, 2008.

S. Pisa, Comparison Between Delay and Sum and Range Migration Algorithms for Image Reconstruction in Through-the-Wall Radar Imaging Systems, JOURNAL OF ELECTROMAGNETICS, RF, AND MICROWAVES IN MEDICINE AND BIOLOGY, vol.2, pp.270-276, 2018.

M. Sato, T. Kobayashi, and X. Feng, IMAGING OF BURIED LANDMINES BY SAR-GPR, pp.215-217, 2004.

M. Harry and . Jol, Ground penetrating radar Theory and applications, p.544, 2008.

L. Qiao, Y. Qin, X. Ren, and Q. Wang, Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis, Sensors, pp.30340-30350, 2015.

D. J. Daniels, Unexploded Ordnance Detection and Mitigation Part of the series NATO Science for Peace and Security Series B: Physics and Biophysics, pp.89-111, 2009.

D. J. Daniels, Chapter 4-antennas. Ground Penetrating Radar Applications, pp.99-139, 2009.

L. Carin, N. Geng, M. Mcclure, J. Sichina, and L. Nguyen, Ultra Wide Band Synthétique Aperture Radar for Mine Field Detection, IEEE Antennas and Propagation Magazine, vol.41, 1999.

, Radiodetection's RD1500 Ground Penetrating Radar

J. Chenchen, H. Li, and . Ling, Synthetic Aperture Radar Imaging Using a Small Consumer Drone, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp.685-686, 2015.

F. María-garcía, Synthetic Aperture Radar Imaging System for Landmine Detection Using a Ground Penetrating Radar on Board a Unmanned Aerial Vehicle, pp.2169-3536, 2018.

S. Dill, E. Schreiber, and M. Engel, A drone carried multichannel Synthetic Aperture Radar for advanced buried object detection, 2019 IEEE Radar Conference (RadarConf), 2019.

W. K. Lee and K. W. Lee, Experimental operation of drone micro-SAR with efficient time-varying velocity compensation, ELECTRONICS LETTERS, vol.53, pp.682-683, 2017.

J. Colorado, C. Devia, M. Perez, I. Mondragon, D. Mendez et al., Low-altitude autonomous drone navigation for landmine detection purposes, 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp.540-546, 2017.

E. Zaugg and I. Crocker, Using the MicroASAR on the NASA SIERRA UAS in the Characterization of Arctic Sea Ice Experiment, IEEE National, 2014.

A. Aguasca, R. Acevo-herrera, A. Broquetas, J. Jordi, X. Mallorqui et al., ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs, Sensors, vol.13, pp.3204-3216, 2013.

M. E. Hines and H. E. Stinehelfer-sr, Time domain oscillographic microwave network analysis using frequency domain data, IEEE Trans. Microwave Theory Tech, vol.22, issue.3, 1974.

. Li-ming, . Xiao-juan, . Hai-feng, and . Wu-shun-jun, Design ofUWB Radar Receiver Based on Intersection of Frequency Spectrum, 2006.

S. Penglang and B. Zheng, A Pulse Compression Method of UWB Radar Based on Intersection of Frequency Spectrum, Acta Electronic Sinica, vol.27, pp.51-54, 1999.

X. Zeng, Time Domain Systems for Microwave Imaging: Accuracy Evaluations and Prototype Design, 2013.

M. Jridi, L. Bossuet, B. L. Gal, and D. Dallet, An offset and gain calibration method for timeinterleaved analog to digital converters, IEEE International Conference on Electronics, Circuits and Systems, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00183654

G. Ferré, M. Jridi, L. Bossuet, B. L. Gal, and D. Dallet, A New Orthogonal Online Digital Calibration for Time-Interleaved Analog-to-Digital Converters, IEEE International Symposium on Circuits and Systems, 2008.

J. Maher and . Etude, Modélisation et Amélioration des Performances des Convertisseurs Analogique Numérique Entrelacés dans le Temps, 2007.

H. Packard, Hp54720, hp54722

. Agilent and . Agilent,

, TimeDomain Corporation, n.d., 'P410 Integratable Module Data Sheet

W. Black and D. Hodges, Time interleaved data arrays, IEEE Journal of Solid State Circuit, vol.15, pp.1022-1029, 1980.

V. Mérelle, A. Gaugue, J. Khamlichi, G. Louis, and M. Ménard, A new high speed, high bandwidth acquisition platform for impulse UWB see through-the-wall radar, 2014 IEEE International Conference on Ultra-WideBand (ICUWB), pp.202-206, 2014.

M. Vincent, UWB Pulse Radar for Micro-Motion Detection, 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), 2016.

Y. Masui, Differential equivalent time sampling receiver for breast cancer detection, IEEE Biomedical Circuits and Systems Conference (BioCAS), 2017.

S. Ahmed, Système de mesures temporelles 4-canaux à échantillonnage entrelacé ultra haute fréquence basé sur des amplificateurs « Track & Hold» pour la caractérisation impulsionnelle d'amplificateurs de puissance non linéaires, 2012.

M. Vincent, Concept de Radars novateurs pour la vision à travers les milieux opaques, vol.3, 2018.

X. Zeng, A. Fhager, M. Persson, P. Linner, and H. Zirath, An Ultrawideband Microwave Medical Diagnostic System: Design Considerations and System Performance, 6th European Conference on Antennas and Propagation (EUCAP), pp.3664-3668, 2012.

, 54750A User's Guide, www.agilent.com, 1998.

, WaveMaster 8 Zi Series 4GHz -30GHz-World's Fastest Real-time Oscilloscope

S. Bi and Y. Lv, Analysis of Sampling Clock Jitter Effect on The SNR of Two RF Sampling Receivers, ICCP, 2013.

E. L. Kassem and . Akhdar, Contribution à la mesure temporelle calibrée ultra-large bande de multipôles non linéaires microondes, 2013.

, 1321TH data sheet

. Hittite,

, FMAX Technologies Inc.,«FX331A data sheet

, 1821TH data sheet

. Hittite, HMC1061LC5 data sheet

. Teledyne, RTH090 data sheet

M. Strackx, E. D'agostino, P. Leroux, and P. Reynaert, Analysis of a digital UWB receiver for biomedical applications using equivalent-time sampling, 2011.

S. Schuster, S. Scheiblhofer, R. Feger, and A. Stelzer, Signal Model and Statistical Analysis for the Sequential Sampling Pulse Radar Technique, 2008.

A. Lotfi, Contribution au développement d'un banc de mesures temporelles 4-canaux pour la caractérisation avancée de composants et de sous-systèmes RF non linéaires, 2016.

Y. Zhao, J. Liu, and X. Zhuang, A Sparse Signal Reconstruction Approach For Sequential Equivalent Time Samplin, 2016.

, Multiply your sampling rate with time-interleaved data converters, pp.1-6, 2001.

«. Tektronix and . Oscilloscope,

G. N. Stenbakken and J. P. Deyst, Comparison of time base nonlinearity measurement techniques, IEEE Transactions on Instrumentation and Measurement, vol.47, pp.34-39, 1998.

B. Valtchanov, Enhanced TRNG based on the coherent sampling, Laboratoire Hubert Curien, vol.7, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00436108

M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits, 1987.

T. Lecroy, WaveExpert 100H datasheet, Wide Bandwidth Oscilloscopes for Next Generation Serial Data Standards: The New WaveExpert 100H Sampling Oscilloscope the Complete Workstation for Optimizing Serial Data Signal Integrity

T. Lecroy, Coherent Interleaved Sampling and FFT,» LAB_WE770, 2005.

, Tektronix 47W-7209, sampling oscilloscopes: Sampling oscilloscope techniques, 1989.

A. Dasgupta, A. Battikh, G. Neveux, D. Barataud, and C. Chambon, Nonlinear Modeling and Harmonic Balance Simulations of Track and Hold Amplifier, the 14th European Microwave Integrated Circuits Conference, pp.72-75, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02442068

M. Vincent, Concept de Radars novateurs pour la vision à travers les milieux opaques, vol.3, 2018.

M. Vincent, G. Alain, L. Georges, and M. Michel, Radar ULB impulsionnel pour la détection de micromouvements, Assemblée générale, Interférences d'Ondes, 2015.

X. Zeng, A. Fhager, P. Linner, M. Persson, and H. Zirath, Design and Performance Evaluation of a Time Domain Microwave Imaging System, International Journal of Microwave Science and Technology, 2013.

V. Merelle, A. Gaugue, J. Khamlichi, G. Louis, and M. Menard, A new high speed, high bandwidth acquisition platform for impulse UWB see through-the-wall radar, IEEE International Conference on Ultra-WideBand (ICUWB), 2014.
URL : https://hal.archives-ouvertes.fr/hal-01285222

A. Kamal, Low-Cost and Low-Ringing Microstrip based Ultra-Wideband Pulse Generators using Step-Recovery Diode for Ground Penetrating, 2014.

A. Ruengwaree, A. Ghose, J. Weide, and G. Kompa, Ultra-fast Pulse Transmitter for UWB Microwave Radar, 2006.

P. Protiva, J. Mrkvica, and J. Machá?, High Power Monocycle Pulse Generator for Throughthe-Wall Radar Transmitter, 2009.

C. Zhang and A. E. Fathy, Reconfigurable Pico-Pulse Generator for UWB Applications, 2006.

H. Zhao, Y. Wang, G. Cui, and X. Geng, Design of Picosecond Level Short Pulse Based on Dual NOT Gates Structure, The 2014 7th International Congress on Image and Signal Processing, 2014.

J. Naviner, Architectures radiofréquences pour l'émission de signaux impulsionnels à ultra large bande, Département Communications et Électronique Groupe Systèmes Intégrés Analogiques et Mixtes, 2007.

N. Beev, J. Keller, and T. E. Mehlstäubler, An avalanche transistor-based nanosecond pulse generator with 25 MHz repetition rate, 2017.

F. Saïd, Etude et mise en oeuvre d'un banc intégré et étalonné 4 canaux pour la caractérisation temporelle de dispositifs non-linéaires hyperfréquences, 2017.

, Analog Devices, AD9912 data sheet, en ligne

, Silicon Laboratories, SI530 data sheet

, Analog Devices, ADS54J66 data sheet, en ligne

, TSW14J56EVM data sheet

, PulsON P410 data sheet, en ligne

, Time Domain

B. Gulmezoglu and &. Radars, , 2014.

B. Annexe, un des deux modes, il suit le signal et dans l'autre, il le maintient. Généralement, le T&HA est connu sous le nom de circuit d'échantillonnage et de maintien (Sample and Hold S&H). En pratique, un circuit T&HA peut être réalisé avec un commutateur