
HAL Id: tel-02513927
https://theses.hal.science/tel-02513927

Submitted on 21 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monocular-SLAM dense mapping algorithm and
hardware architecture for FPGA acceleration

Abiel Aguilar-Gonzalez

To cite this version:
Abiel Aguilar-Gonzalez. Monocular-SLAM dense mapping algorithm and hardware architecture for
FPGA acceleration. Automatic. Université Clermont Auvergne [2017-2020]; Instituto Nacional de
Astrofisica, Optica y Electronica (Puebla, Mexique), 2019. English. �NNT : 2019CLFAC055�. �tel-
02513927�

https://theses.hal.science/tel-02513927
https://hal.archives-ouvertes.fr


 
 

 
 

Monocular-SLAM dense mapping algorithm and 

hardware architecture for FPGA acceleration 
 

by 
 

 M. Sc. Abiel Aguilar-González  

 
 

A thesis proposal submitted in partial fulfillment of 
the requirements for the degree of 

 
DOCTOR EN CIENCIAS EN LA ESPECIALIDAD DE 

CIENCIAS COMPUTACIONALES 

 
at the 

 
Instituto Nacional de Astrofísica, Óptica y Electrónica 

(INAOE) 

 

 INAOE, Computer science department 
Luis Enrique Erro #1 Sta. Ma. Tonantzintla, Puebla, Mexico.
                        Thèse soutenue le 13-06-2019 

 
 
 

Advisors: 
 

Dr. Miguel Octavio Arias-Estrada, INAOE, Mexico 
Prof. François Berry, Université Clermont Auvergne (UCA), France 

 
 
 
 
 

 
 
    
 
 
 
 
 
 
 
   Updated version at: 22/05/2019 
 
 
 
 
 



Abstract

Simultaneous Localization and Mapping (SLAM) is the problem of constructing a 3D map

while simultaneously keeping track of an agent location within the map. In recent years,

work has focused on systems that use a single moving camera as the only sensing mecha-

nism (monocular-SLAM). This choice was motivated because nowadays, it is possible to

find inexpensive commercial cameras, smaller and lighter than other sensors previously

used and, they provide visual environmental information that can be exploited to create

complex 3D maps while camera poses can be simultaneously estimated. Unfortunately,

previous monocular-SLAM systems are based on optimization techniques that limits the

performance for real-time embedded applications. To solve this problem, in this work, we

propose a new monocular SLAM formulation based on the hypothesis that it is possible to

reach high efficiency for embedded applications, increasing the density of the point cloud

map (and therefore, the 3D map density and the overall positioning and mapping) by

reformulating the feature-tracking/feature-matching process to achieve high performance

for embedded hardware architectures, such as FPGA or CUDA. In order to increase the

point cloud map density, we propose new feature-tracking/feature-matching and depth-

from-motion algorithms that consists of extensions of the stereo matching problem. Then,

two different hardware architectures (based on FPGA and CUDA, respectively) fully com-

pliant for real-time embedded applications are presented. Experimental results show that

it is possible to obtain accurate camera pose estimations. Compared to previous monocu-

lar systems, we are ranked as the 5th place in the KITTI benchmark suite, with a higher

processing speed (we are the fastest algorithm in the benchmark) and more than ×10 the

density of the point cloud from previous approaches.

i



ii



Resumen

La localización y mapeo simultáneo (SLAM, por sus siglas en inglés) es el problema de con-

struir un mapa en 3D mientras al mismo tiempo, se realiza un seguimiento de la ubicación

de un agente dentro del mapa. En los últimos años, el trabajo previo se ha centrado en

sistemas que utilizan una única cámara en movimiento como sensor (SLAM monocular).

Esta elección fue motivada porque hoy en d́ıa, es posible encontrar cámaras comerciales

económicas, mas pequeñas y livianas que otros sensores utilizados anteriormente, y pro-

porcionan información visual que puede ser explotada para crear mapas 3D complejos,

mientras que la posición de la cámara puede estimarse simultáneamente. Desafortunada-

mente, los sistemas SLAM monocular anteriores se basan en técnicas de optimización que

limitan el rendimiento en aplicaciones embebidas en tiempo real. Para resolver este prob-

lema, en este trabajo proponemos una nueva formulación de SLAM monocular basada en

la hipótesis de que es posible alcanzar una alta eficiencia para aplicaciones embebidas,

aumentando la densidad de los puntos utilizados para estimar el posicionamiento y mapeo

simultaneo mediante la reformulación del proceso de feature-tracking/feature-matching

para alcanzar un alto rendimiento para arquitecturas de hardware embebidas, como FPGA

o CUDA y al mismo tiempo, incrementar la densidad con respecto a los algoritmos ante-

riores. Para esto, proponemos nuevos algoritmos de feature-tracking/feature-matching y

depth-from-motion, ambos definidos como una extención del problema estéreo. Luego, se

presentan dos diferentes arquitecturas de hardware (basadas en FPGA y CUDA, respec-

tivamente) para aplicaciones embebidas en tiempo real. Los resultados experimentales

demuestran que es posible obtener estimaciones precisas de la posición de la cámara (con-

siderando los sistemas monoculares anteriores, estamos clasificados como el quinto lugar

en el conjunto de pruebas de KITTI) con una mayor velocidad de procesamiento (somos

el algoritmo más rápido en la prueba) y más de ×10 la densidad de la nube de puntos de

los enfoques anteriores (estatus en el benchmark de KITTI en enero de 2019).

iii



iv



Résumé

La localisation associée à une cartographie simultanées (SLAM) revient à un problème

de construction d’une carte 3D tout en conservant la trajectoire passée de “l’agent” dans

la carte. Ces dernières années, les travaux se sont concentrés sur des systèmes utilisant

une seule caméra mobile comme unique système de détection (monoculaire-SLAM). Ce

choix est motivé par le fait qu’il est aujourd’hui possible de trouver des caméras com-

merciales peu coûteuses, plus petites et plus légères que les capteurs utilisés auparavant

tout en fournissant des informations visuelles qui peuvent être exploitées pour créer des

cartes 3D complexes. Malheureusement, les systèmes de SLAM monoculaires sont basés

sur des techniques d’optimisation qui limitent les performances dans des contextes em-

barqués et temps réel. Pour cela, nous proposons une nouvelle formulation du SLAM

monoculaire permettant d’atteindre une efficacité élevée pour un système embarqué. Le

principe est d’augmenter la densité de la carte des nuages de points (et donc la densité

de la carte 3D et le positionnement et la cartographie d’ensemble) en reformulant le pro-

cessus de suivi et de correspondance des caractéristiques afin d’être complient avec des

architectures matérielles basée sur des processeur tel que des FPGA ou des GPU. Afin

d’augmenter la densité de la carte des nuages de points, nous proposons de nouveaux al-

gorithmes de suivi et de correspondance des caractéristiques et de profondeur à partir du

mouvement, qui revient à une extension du problème d’appariement stéréo. Ensuite, deux

architectures matérielles différentes (basées sur FPGA et GPU) entièrement compatibles

pour les applications embarquées temps réel sont présentées. Les résultats expérimentaux

démontrent qu’il est possible d’obtenir des estimations précises de la pose de la caméra.

Par rapport aux systèmes monoculaires de l’état de l’art, nous nous plaçons en 5ème posi-

tion dans les benchmarks KITTI, avec une vitesse de traitement et une densité du nuage

de points 10 fois plus élevée.

v



vi



Acknowledgments

I would like to thank to Dr. Miguel Octavio Arias Estrada and Dr. François Berry for

their support and guidance for the developing of this research work.

I would like to thank to the members of my academic committee for their comments.

Thanks to Dr. Luis Enrique Sucar Succar, Dr. René Armando Cumplido Parra, Dra.

Claudia Feregrino Uribe, Dr. Alfonso Mart́ınez Cruz. Dr. Vı́ctor Manuel Brea Sánchez,

Dr. Madáın Pérez Patricio and Dr. Jean-Philippe Diguet.

I would like to thank to the CONACyT (scholarship No. 567804) and Campus France

(“bourses d’excellence EIFFEL”, dossier No. MX17-00063) for the financial support for

the developing of this research work.

vii



Contents

Acronyms xv

1 Introduction 1

1.1 Monocular-SLAM: general formulation, performance and limitations . . . . 2

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Monocular-SLAM: traditional formulation 9

2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Keyframe validation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Fundamental matrix estimation . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Camera pose estimation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Visual feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 2D-2D data association (feature matching) . . . . . . . . . . . . . . 17

2.3 Pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Constant Velocity Motion Model (CVMM) . . . . . . . . . . . . . . 18

2.3.2 2D-3D/2D-2D data association (feature tracking) . . . . . . . . . . 21

2.3.3 Iterative pose optimization . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Map construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



Contents ix

2.4.3 Map refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Relocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Monocular-SLAM: a survey 31

3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Data association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Map construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Relocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.2 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Monocular-SLAM: limitations and future trends . . . . . . . . . . . . . . . 46

3.7.1 Performance and limitations of direct approaches . . . . . . . . . . 47

3.7.2 Performance and limitations of feature-based approaches . . . . . . 47

3.7.3 Performance and limitations of the initialization step . . . . . . . . 48

3.7.4 Performance and limitations of the data association step . . . . . . 49

3.7.5 Performance and limitations of the pose estimation step . . . . . . . 49

3.7.6 Performance and limitations of the map construction step . . . . . 50

3.7.7 Performance and limitations of the refinement step . . . . . . . . . 51

3.7.8 Performance and limitations of the loop closure step . . . . . . . . . 52

3.7.9 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 LT-SLAM: Lookup Table-based Monocular-SLAM 55

4.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Pixel tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Tracking template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Search parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents x

4.6 Lookup table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Depth from motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Linear triangulation and map construction . . . . . . . . . . . . . . . . . . 73

4.10 Performance of the proposed algorithm . . . . . . . . . . . . . . . . . . . . 74

4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 LT-SLAM: GPU implementation 79

5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Pixel tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Feature matching & Tracking template . . . . . . . . . . . . . . . . . . . . 82

5.5 Search parameters & Lookup table . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Depth from Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Linear triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 Performance and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8.1 The pixel tracking step: performance and limitations . . . . . . . . 86

5.8.2 The feature matching step: performance and limitations . . . . . . 87

5.8.3 The pose estimation step: the proposed dataset . . . . . . . . . . . 88

5.8.4 The pose estimation step: the KITTI dataset . . . . . . . . . . . . 91

5.8.5 The depth from motion step: performance and limitations . . . . . 96

5.8.6 The linear triangulation step: performance and limitations . . . . . 96

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 LT-SLAM: FPGA implementation 100

6.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Circular buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Pixel tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Curl estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Look-up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Depth from Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Pose estimation & map construction . . . . . . . . . . . . . . . . . . . . . 109

6.8 Performance and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8.1 The pixel tracking step: performance and limitations . . . . . . . . 111



Contents xi

6.8.2 The feature matching step: performance and limitations . . . . . . 113

6.8.3 The pose estimation step: the proposed dataset . . . . . . . . . . . 116

6.8.4 The pose estimation step: the KITTI dataset . . . . . . . . . . . . 119

6.8.5 The depth from motion step: performance and limitations . . . . . 120

6.9 DreamCam Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.10 Global performance: GPU vs FPGA . . . . . . . . . . . . . . . . . . . . . 123

6.10.1 Localization accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10.2 Processing speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.10.3 Hardware/power requirements . . . . . . . . . . . . . . . . . . . . . 125

6.10.4 Mapping density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.11 The proposed approach vs visual-SLAM algorithms in the current literature 127

6.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conclusions and future work 131

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Discussion on hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendices 137

A INAOE/DREAM benchmark dataset 138



List of Figures

1.1 Camera geometry of two viewpoints. . . . . . . . . . . . . . . . . . . . . . 2

1.2 Visual features extraction applying the FAST algorithm. . . . . . . . . . . 4

1.3 Feature matching applying the KLT algorithm. . . . . . . . . . . . . . . . 4

1.4 Example of a traditional solution in monocular-SLAM. . . . . . . . . . . . 4

2.1 Monocular-SLAM: traditional formulation. . . . . . . . . . . . . . . . . . . 10

2.2 Monocular-SLAM initialization step. . . . . . . . . . . . . . . . . . . . . . 11

2.3 Monocular-SLAM: the pose estimation step. . . . . . . . . . . . . . . . . . 19

2.4 Monocular-SLAM: the map construction step. . . . . . . . . . . . . . . . . 23

2.5 Multiple view triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Block diagram of the proposed algorithm. . . . . . . . . . . . . . . . . . . 56

4.2 Formulation of the feature extraction step. . . . . . . . . . . . . . . . . . . 56

4.3 The feature extraction process. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Formulation of the pixel tracking step. . . . . . . . . . . . . . . . . . . . . 59

4.5 The pixel tracking process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 The feature matching process. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 The tracking template process. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Hypothesis of the search parameters. . . . . . . . . . . . . . . . . . . . . . 66

4.9 Computation of the motion parameters. . . . . . . . . . . . . . . . . . . . . 67

4.10 The depth from motion process. . . . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Formulation of the depth from motion step. . . . . . . . . . . . . . . . . . 72

4.12 Performance for the KITTI dataset. . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Performance of the mapping step. . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Block diagram of the GPU implementation. . . . . . . . . . . . . . . . . . 79

5.2 GPU formulation for the feature extraction step. . . . . . . . . . . . . . . . 80

5.3 GPU implementation for the feature extraction step. . . . . . . . . . . . . 81

5.4 GPU formulation for the pixel tracking step. . . . . . . . . . . . . . . . . . 82

xii



List of Figures xiii

5.5 GPU implementation for the pixel tracking step. . . . . . . . . . . . . . . . 83

5.6 GPU implementation for the feature matching, tracking template, search

parameters and lookup table. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 GPU implementation for the depth from motion step. . . . . . . . . . . . . 85

5.8 GPU implementation for the linear triangulation step. . . . . . . . . . . . . 86

5.9 Accuracy performance for different GPU-based pixel tracking algorithms. . 87

5.10 Performance for the pose estimation step under the proposed dataset. . . . 89

5.11 Drift error for different reductions of the look up table. . . . . . . . . . . . 91

5.12 Performance for the KITTI dataset (training sequences). . . . . . . . . . . 94

5.13 Performance for the KITTI dataset (test sequences). . . . . . . . . . . . . 95

5.14 Depth from motion: results for the KITTI dataset. . . . . . . . . . . . . . 97

5.15 Performance of the mapping step. . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Block diagram of the FPGA implementation. . . . . . . . . . . . . . . . . . 101

6.2 FPGA implementation for the feature extraction step. . . . . . . . . . . . . 103

6.3 The circular buffers architecture. . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 FPGA implementation for the pixel tracking step. . . . . . . . . . . . . . . 106

6.5 FPGA architecture for the “Curl” unit. . . . . . . . . . . . . . . . . . . . . 107

6.6 FPGA implementation for the feature matching step. . . . . . . . . . . . . 107

6.7 FPGA implementation for the camera ego-motion step. . . . . . . . . . . . 108

6.8 FPGA implementation for the depth from motion step. . . . . . . . . . . . 109

6.9 DreamCam/GPStudio implementation for the developed FPGA architecture.110

6.10 Accuracy comparisons for different FPGA-based pixel tracking algorithms. 114

6.11 Pixel tracking results for the KITTI dataset. . . . . . . . . . . . . . . . . . 115

6.12 Performance for the pose estimation step under the proposed dataset. . . . 118

6.13 Performance for the KITTI dataset (training sequences). . . . . . . . . . . 120

6.14 Depth from motion: results for the KITTI dataset. . . . . . . . . . . . . . 121

6.15 The DreamCam FPGA prototype. . . . . . . . . . . . . . . . . . . . . . . . 122

6.16 The DreamCam validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1 INAOE/DREAM benchmark dataset setup. . . . . . . . . . . . . . . . . . 138



List of Tables

3.1 Monocular-SLAM systems in the current literature. . . . . . . . . . . . . . 31

4.1 Example of a lookup table by applying the proposed approach. . . . . . . . 69

4.2 Early results for the KITTI dataset. . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Early results of the proposed algorithm compared with previous works. . . 76

5.1 Accuracy of feature-matching algorithms used in SLAM formulations. . . . 88

5.2 Quantitative results for the pose estimation step under the proposed dataset. 90

5.3 Quantitative results for the KITTI dataset. . . . . . . . . . . . . . . . . . . 93

5.4 Hardware resource consumption for the developed implementation. . . . . 94

5.5 Quantitative results for the proposed algorithm compared with previous

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Hardware requirements for the developed FPGA architecture. . . . . . . . 111

6.2 Hardware requirements compared with previous FPGA-based approaches. . 112

6.3 Processing speed compared with previous FPGA-based approaches. . . . . 113

6.4 Accuracy comparisons for feature-matching algorithms used in SLAM for-

mulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Quantitative results for the pose estimation step under the proposed dataset.117

6.6 Quantitative results for the KITTI dataset. . . . . . . . . . . . . . . . . . . 119

6.7 Depth estimation compared with the current state of the art. . . . . . . . . 122

6.8 Localization accuracy for the KITTI dataset. . . . . . . . . . . . . . . . . . 124

6.9 Processing speed for the KITTI dataset. . . . . . . . . . . . . . . . . . . . 125

6.10 Hardware/power requeriments under the KITTI dataset. . . . . . . . . . . 126

6.11 Quantitative results for the proposed algorithm compared with previous

works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1 The INAOE/DREAM benchmark dataset. . . . . . . . . . . . . . . . . . . 139

xiv



Acronyms

SIFT (Scale-Invariant Feature Transform)

SURF Speeded Up Robust Features

ORB Oriented FAST and Rotated BRIEF

GPU Graphics Processing Unit

GPGPU General-Purpose Computing on Graphics Processing Units

BoW Bag of Words

CUDA Compute Unified Device Architecture

RGB Red, Green and Blue

CPU Central Processing Unit

GHz GigaHertz

RAM Random-Access Memory

GB GigaByte

PC Personal Computer

xv



Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is the problem of constructing a map

with respect to an unknown environment while simultaneously keeping track of an agent

location within the map. In general, the SLAM problem investigates two main areas: local-

ization and mapping [123]. Localization consists of determining the spatial position from

a moving agent within an unknown environment at a given time. On the other hand, the

mapping integrates partial observations from an unknown environment into maps (usually

3D reconstructions). In order to develop a SLAM solution, it is necessary to have sensors

that observe the environment and, if possible, sensors that provide information about the

trajectory of the agent. There are several sensors available for this purpose (odometers, gy-

rometers, laser rangefinders, cameras, sonars, etc.), and several SLAM solutions based on:

EKF (Extended Kalman filter), graph optimization and visual features are available in the

literature. In recent years, the most popular trend is for visual features-based solutions,

using a single camera in motion as the only detection mechanism (monocular-SLAM). In

this case, visual information such as color, texture and light intensity offers an impor-

tant advantage compared to other sensors, since the images can be exploited to create

appearance-based descriptions of the map components [119]. In addition, this approach

requires low power consumption and cost compared to other visual-SLAM formulations

(stereo-based, multi camera-based or RGBD-based solutions), and avoids addressing the

cameras synchronization, the interpretation of the different responses of each image sensor

to color/luminance and the mechanical alignment between cameras.

1



Chapter 1. Introduction 2

1.1 Monocular-SLAM: general formulation, perfor-

mance and limitations

SLAM systems that use a single camera as sensor (monocular-SLAM) have the problem of

estimating the pose of a moving camera simultaneously a 3D representation of the observed

scene is constructed. In all cases, real-time processing is desirable because most real-world

SLAM applications, such as autonomous vehicle navigation [131], mobile robotics [99, 130]

and augmented reality [28] require a real-time processing. In the monocular-SLAM formu-

lation, a single camera captures visual information of a scene. In this case, 3D information

is unknown [119], so to estimate the 3D position, it is necessary to consider at less two

different viewpoints of the same scene, as shown in Fig. 1.1.

Figure 1.1. Camera geometry of two viewpoints. The 3D position of
an observed scene point is unknown in a single image; however, this 3D
position can be estimated (thought optimization techniques) if the same
point is observed from different viewpoints.

In order to solve the monocular-SLAM problem, first, a 2D point-based set has to be

created by detecting feature points in an image (the first viewpoint). Common feature

points are corners, edges or intersections. Fig. 1.2 shows the feature points detected

by applying the FAST corner detection algorithm [112] over the first viewpoint (the first

frame) from a video sequence. After the feature points (from the first viewpoint) are

detected, they have to be tracked across different viewpoints (frames) captured by the

moving camera. There are several feature tracking algorithms in the literature. Algorithms

based on two viewpoints such as SIFT [82], ORB [113] or SURF [15], allow the tracking of



Chapter 1. Introduction 3

long trajectories. On the other hand, algorithms based on frame-by-frame tracking, such

as KL [83], KLT [132] and Mean Shift [29]; allow accurate results with sub pixel accuracy.

Fig. 1.3 shows the feature tracking across two consecutive frames from a video sequence

applying the KLT algorithm. The circles represent the feature points while lines show the

point correspondences between images. Finally, the point matches generated by any type

of feature tracking algorithm can be used to compute the 3D position of the tracked points

and, at the same time, to estimate the camera pose for each frame where the feature points

were tracked. For this purpose, there are two main approaches: stochastic-based methods

and optimization-based methods. Stochastic methods use the features observation in a

recursive way to estimate the camera pose and map [57]. Methods based on optimization

can be defined as an optimization problem where the variables to be optimized are the

camera pose and 3D positions [57]. Fig. 1.4 illustrates the SLAM solution obtained by

applying the Least Squares optimization technique over the feature tracking shown in Fig.

1.3.

In the last few years, monocular-SLAM algorithms have provided a useful tool for

several computer vision applications: augmented reality, autonomous vehicle navigation,

etc. Unfortunately, in previous work, monst monocular-SLAM solutions solutions have an

iterative behavior and requires relatively high computational resources. As a result, several

monocular-SLAM algorithms have limitations for embedded applications, since processing

speed is often limited between 5-10 estimations per second. On the other hand, traditional

monocular-SLAM systems extract feature points by applying any type of feature extraction

algorithm. For this purpose, several algorithms are available: FAST [112], SUSAN [120],

Harris [56], etc. Nevertheless, in most cases the maximum number of features that can

be extracted varies between 0.5% and 4.0% of all pixels in the image, depending on the

extraction algorithm of the selected function and its configuration. There are some works

that after the camera pose estimation, estimate the depth for all pixels in the image (dense

monocular-SLAM) [35, 55, 129]. However, these works have high hardware requirements

(at least two high-end GPUs in SLI) and this is a limitation for embedded applications. In

practice, traditional monocular-SLAM systems (suitable for embedded applications) work

with configurations that extract feature points that correspond to around 1% of the pixels

of the processed image [119]. This limits the performance of real-world applications,

since only 1% of the image points is used to obtain the 3D information, therefore, the

understanding of the visual environment, the application of high-level descriptors and the

recognition of objects/structures within the map have a low density (sparse point clouds)

and low stability in real-world scenarios.



Chapter 1. Introduction 4

(a) Input image (b) Feature points

Figure 1.2. Visual features extraction applying the FAST algorithm.

Figure 1.3. Feature matching applying the KLT algorithm.

Figure 1.4. Example of a traditional monocular-SLAM solution. Us-
ing the FAST algorithm as visual feature extractor, the KLT algorithm
as feature matching core and applying the Least Squares algorithm as
optimization technique.



Chapter 1. Introduction 5

1.2 Problem definition

The scientific problem that investigates this work consists in the “architectural limitations

for real-time embedded applications” in monocular-SLAM systems based on RGB image

sensors.

• Definition: In previous works, the most accurate and used solution is based on op-

timization techniques implemented in sequential processors. This makes it possible

to achieve high accuracy for the camera pose estimation but limits the processing

speed, the embedded capabilities and deliver sparse point clouds. In this research,

we reformulate the problem of monocular-SLAM to facilitate an FPGA/CUDA im-

plementation, suitable for embedded applications, real-time processing and dense

point cloud estimations.

1.3 Research question

Considering a single RGB camera, what approach could deliver a high point

density and high performance for embedded applications in real time? Previous

works reach high accuracy for the camera pose estimation but they limit the processing

speed, embedded capabilities and in addition, they deliver clouds of scattered points. In

order to achieve high performance in embedded applications, a new SLAM formulation

that complies with the embedded architectures such as FPGA or CUDA is required. On

the other hand, to increase the density of the point cloud, a new high density feature

matching algorithm is required.

1.4 Hypothesis

It is possible to achieve high efficiency for embedded applications by increasing the density

of the point cloud map (and therefore the 3D map density and overall positioning and

mapping) by reformulating the tracking/matching features process by matching a parallel

algorithm with an embedded architecture, such as FPGA or CUDA.



Chapter 1. Introduction 6

1.5 Objectives

Main objective: to develop a new monocular-parallel-SLAM algorithm that delivers

high performance and high density of 3D points for real-time embedded applications.

Particular objectives:

• Propose a highly parallelizable algorithm formulation that achieves efficient hardware

utilization for an FPGA/CUDA implementation.

• Reach dense mapping, superior to previous work.

• Validate the algorithm in an FPGA-based smart camera for monocular-SLAM.

1.6 Methodology

In order to estimate the camera pose (localization), we propose a new algorithm for es-

timating the pose of the camera in which the pixel displacements between frames are

used as linear/dependent parameters for the the estimation of the camera pose, for what

can be estimated the camera pose without iterative behavior and without geometric con-

straints and this makes possible the parallelism under FPGA/CUDA architectures. For

the point cloud (mapping): we propose a new depth-from-motion algorithm based on

a pixel-parallel/window-parallel configuration (similar to the stereo matching problem).

This makes it possible to deliver dense depth maps and, therefore, improves the point

cloud density.

To validate our hypothesis, we carried out accuracy measurement (localization), per-

formed in MatLab using benchmark datasets and real world scenarios. Further, we carried

out measurement of density (mapping), in MatLab, using small workspaces. In both cases,

promising results are obtained. Experimental results demonstrate that it is possible to

obtain accurate camera pose estimations. Compared to previous monocular systems, we

are ranked as the 5th place in the KITTI benchmark suite, with higher processing speed

(we are the faster algorithm in the benchmark) and more than ×10 the point cloud density

from most previous algorithms.



Chapter 1. Introduction 7

1.7 Contributions

Along this research work several contributions were published. We summarize them as

follows. A novel monocular-SLAM formulation suitable for embedded applications [2]. A

new feature tracking (pixel tracking) algorithm that provides a high density of 2D point

correspondences [1]. A new feature extraction algorithm that achieves a simple FPGA

implementation and that offers a high density of 2D feature points per frame [6]. A

new FPGA architecture for pixel tracking (feature matching) with straightforward FPGA

implementation and a high density of 2D point correspondences [5]. A novel approach to

camera pose estimation suitable for embedded systems [4]. And finally, a new hardware

architecture for embedded visual odometry, and a new hardware architecture for embedded

monocular depth estimation.

1.8 Organization of the thesis

The thesis is structured as follows. In Chapter 2 the background about monocular-

SLAM is presented while Chapter 3 a review of the current state of the art, performance

and limitations are discussed. Chapter 4 presents the proposed algorithms, describes

their properties, and we discuss about how these algorithms fulfil with our general and

particular objectives. In Chapters 5 and 6 the implementation results using CUDA

and FPGA respectively are presented and the performance of the proposed algorithms

with previous works are compared. Finally, in Chapter 7 the conclusions and possible

improvements are discussed.



Chapter 1. Introduction 8



Chapter 2

Monocular-SLAM: traditional

formulation

The aim of this chapter is to provide a introduction of monocular SLAM. All parts of

the traditional formulation are discussed in detail and are complemented with graphic

explanations. First, the visual features (blobs, corners, edges, etc.) have to be extracted

and tracked for at least two different frames form a video sequence. Then, the techniques

based on geometry that use the projective geometry between 3D points of the scene and

their projections in the plane of the image (visual features), are used to compute the

camera pose (localization) and the structure of the 3D scene (mapping) simultaneously.

In Fig. 2.1, the most popular monocular-SLAM formulation is shown [11, 39]. It consists

of six different steps: initialization, data association, pose estimation, map construction,

refinement and loop closure. At the beginning, there is not a priori information about

the camera pose or the 3D scene structure so, the initialization step establishes an initial

3D map and the first camera poses in the system. Then, when a new frame is available,

the data association deliver geometrical correspondences between the previous frames (at

least one) and the current frame. The pose estimation step uses the previous camera poses

and the geometrical correspondences previously computed in order to estimate the pose

for the current frame. This pose is used to establish associations with the 3D map (map

construction step). Then, in order to ensure the coherency of the map, reduce errors and

remove outliers, a refinement step and a loop closure step continuously optimizes the map

and the camera poses simultaneously.

9



Chapter 2. Monocular-SLAM: traditional formulation 10

Figure 2.1. Monocular-SLAM: traditional formulation. First, visual
features have to be extracted and tracked for at least two consecutive
frames form a video sequence. Then, geometry-based techniques are
used to compute the camera pose and the structure of the 3D scene
simultaneously. In order to ensure the coherency of the map, refinement
and loop closure steps should be computed as post-processing step.

2.1 Initialization

To compute the camera pose and the scene structure it is necessary to obtain/estimate the

depth in the scene which can be estimated through temporal stereoscopy. In the traditional

monocular-SLAM formulation these problems have to be solved in the initialization step.

Then, the SLAM problem can be solved by expanding the initial map, while keeping track

of the initial camera pose in the map. In early monocular-SLAM systems, such as in

MonoSLAM [35], the user has to initialize the SLAM system by keying in the distance

separating the camera from the square. However, in recent work, the researches adopted

the methods developed by Longuet-Higgins & H Christopher [81] to simultaneously recover

the camera pose and the 3D scene structure. In order to recover the scene structure and the

camera pose Higgins & Christopher proposed algebraically eliminating the depth from the

problem, obtaining the Essential and the Homography matrices. However, the elimination

of the depth involves several limitations on the recovered data: on one hand since, the real

camera motion cannot be recovered, it is computed in an unknown scale. On the other

hand, because of the motion vector between the two views defines the baseline used to

triangulate the visual features extracted from these views, the loss of scale is propagated

to the recovered data, as a results the scale in the 3D map is unknown.



Chapter 2. Monocular-SLAM: traditional formulation 11

In Fig. 2.2 the flowchart of the generic initialization step which is based on the

Longuet-Higgins & H Christopher algorithm is shown. First, visual features have to be

extracted and tracked across at least two different viewpoints from the same scene (data

association). In order to avoid degenerate matrices within the essential matrix estimation

a proper feature matching distribution is necessary. So, any feature matching has to

be validated using a key frame validation tread. Given feature matches for at least two

frames, those can be used to estimate the Fundamental matrix using a robust model

fitting method (RANSAC or MLESAC [133]). The estimated Fundamental matrix is then

decomposed as described in [57] into an initial scene structure and initial camera poses.

To minimize degenerate cases, a random depth initialization assigns depth values with

large variance and then, this random depth has to be updated iteratively over subsequent

frames until the depth variance converges. In the following subsections, details about

the Fundamental matrix estimation, camera pose estimation and triangulation algorithms

which are implemented inside the initialization step are given. For the data association

step, please see Section 2.2.

Figure 2.2. Monocular-SLAM initialization step. The first frame cap-
tured by the camera is set as the first keyframe. Then, subsequent frames
(at least one) are processed by establishing 2D-2D data associations.
These associations are used to estimate a Homography or a Fundamen-
tal matrix using a robust model fitting method. Finally, the estimated
Homography or the Fundamental matrix is then decomposed into an
initial scene structure and initial camera poses.



Chapter 2. Monocular-SLAM: traditional formulation 12

2.1.1 Keyframe validation

Triangulated 3D points are determined by the of the rays projected backwards from 2-D

image correspondences of at least two image frames. In perfect conditions, these rays would

intersect in a single 3D point. However, because of image noise, the camera model, the

calibration errors, and the feature matching uncertainty, they never intersect. Therefore,

the point at a minimal distance, in the least-squares sense, from all intersecting rays can

be taken as an estimate of the 3D point position. In this scenario the standard deviation

of the distances of the triangulated 3D point from all rays gives an idea of the quality

of the 3D point. Then, three-dimensional points with large uncertainty will be thrown

out. This happens especially when frames are taken at very nearby intervals compared

with the distance to the scene points. When this occurs, the 3D points exhibit very large

uncertainty. One way to avoid uncertainty consists of skipping frames until the average

uncertainty of the 3D points decreases below a certain threshold. The selected frames are

called keyframes, while the estimation process is called validation of keyframes. For the

mathematical formulation, a simple metric could be the average distance for the matching

process, where the mean distance d between q{i} and g{i} (the feature matching for two

different viewpoints of the same scene) is computed as shown in Eq. 2.1; where n is the

feature matching size. Then, the mean distance d is used to evaluate the robustness for

the estimation of the camera pose. This process is illustrated in Eq. 2.2; where σ is a

threshold value defined by the user.

d =
1

n

n∑
i=1

|q{i} − g{i}| (2.1)

keyframe =

{
1 if d > σ

0 otherwise
(2.2)

2.1.2 Fundamental matrix estimation

Let qn = {(x1, y1), (x2, y2) . . . (xn, yn)}, gn = {(x1, y1), (x2, y2) . . . (xn, yn)} 2D-2D data

associations for two different viewpoints from the same scene (Section 2.2), a matrix A

can be estimated as as illustrated in Eq. 2.3. Then, let [U D V ] be the singular value

decomposition (SVD) of A, the fundamental matrix F is computed as shown in Eq. 2.4.



Chapter 2. Monocular-SLAM: traditional formulation 13

A =


q(x1)g(x1) q(y1)g(x1) g(x1) q(x1)g(y1) g(y1) q(x1) q(y1) 1

...
...

...
...

...
...

...
...

q(xn)g(x2) q(yn)g(xn) g(xn) q(xn)g(yn) g(yn) q(xn) q(yn) 1

 (2.3)

F = U · diag([D(1, 1) D(2, 2)] 0) · V ′ (2.4)

2.1.3 Camera pose estimation

Let F be the fundamental matrix, computed by Eq. 2.4, the essential matrix E can

be estimated as E = K ′FK, where K is the calibration matrix for the imager [18]. To

estimate the initial camera pose, the Least Squares algorithm [57] estimates the translation

t and rotation R that minimizes the sum of the squared re-projection error, as shown in

Eq. 2.5, where q{n} and g{n} are feature matching for two different viewpoints from the

same scene (Section 2.2) while E is the esential matrix. To solve Eq. 2.5 first, the essential

matrix E has to be discomposed via singular value decomposition, [U D V ] = SVD(E).

Then, given e = (D(1, 1) + D(2, 2))/2, and set D(1, 1) = e, D(2, 2) = e, D(3, 3) = 0,

the E ′ matrix (E ′ = U ·D · V ′) has to be discomposed via singular value decomposition,

[U2 D2 V2] = SVD(E ′). Finally, the translation vector t and the rotation matrix R

are computed as shown in Eq. 2.6 and Eq. 2.7, respectively. In practice, there are

four possible solutions: when triangulating q{n} and g{n}, the correct solution is such it

minimizes the outliers within the 3D reconstruction.

E(R,t) =
1

n

n∑
i=1

‖ q{i} −Rg{i} − t ‖2 (2.5)

R = U2 ·W · V ′2 (2.6)

t = U2 · Z · U ′2 (2.7)

W =

 0 −1 0

1 0 0

0 0 1

 Z =

 0 1 0

−1 0 0

0 0 0

 (2.8)



Chapter 2. Monocular-SLAM: traditional formulation 14

2.1.4 Triangulation

Let R, t be the rotation matrix and the translation vector, two camera matrices P1, P2 are

defined as shown in Eq. 2.9 and 2.10. c1, c2 are defined as −R0/t0 and −R/t, respectively;

while, α1, α2 are defined as α1 = R/q{n}, α2 = R/g{n}, where q{n}, g{n} are 2D-2D

data associations for two different viewpoints from the same scene (Section 2.2). Finally,

q{n}, g{n} points are tringulated as shown in Eq. 2.11 and 2.12.

P1 = [R0, t0] =

 1 0 0 0

0 1 0 0

0 0 1 0

 (2.9)

P2 = [R, t] (2.10)

β = [c1 − c2]′ · [c1 − c2]/[c1 − c2]′ · [α1 − α2] (2.11)

p = (c1 + β(1) · α1 + c2 + β(2) · α2)/2 (2.12)

2.2 Data association

Given the monocular-SLAM formulation, the data association step often consists of two

different algorithms implemented sequentially. These algorithms are feature extraction and

feature matching. On the other hand, three different association types can be estimated,

2D-2D, 2D-3D, and 3D-3D:

• In the 2D-2D association, the 2D feature’s location in an I2 image is sought, given its

2D position in a previously acquired I1 image. Depending on the type of information

available, 2D-2D correspondences can be established in two ways: when a map is

not available and the camera transformation between the two frames and the scene

structure is not available (i.e. during system initialization), 2D-2D data association

is established through a search window that surrounds the feature’s location from I1

in I2. When the transformation related to I1 and I2 is known (i.e. the camera pose

is estimated successfully), the 2D-2D data correspondences are established through

the epipolar geometry, where a feature in I1 is mapped to a line in I2, and the two

dimensional search window collapses to a one dimensional search along a line. The



Chapter 2. Monocular-SLAM: traditional formulation 15

latter case often occurs when the system attempts to triangulate 2D features in 3D

features during generation of the map. In both methods, the visual features must be

extracted and then each feature have to be associated with a visual descriptor, which

can be used to provide a quantitative measure of similarity to other features. The

descriptor similarity measure varies with the type of descriptors used; for example,

for a local patch of pixels, it is typical to use the Sum of Squared Difference (SSD),

or a Zero-Mean SSD score (ZMSSD) to increase robustness against changes in ilu-

mination. For higher order feature descriptors such as, SIFT [82], or SURF [15],

the L1-norm, L2-norm, or Hamming distances may be used; however, establishing

matches using these measures is computationally intensive and may, if not carefully

applied, degrade real-time performance. In practice, it is the binary descriptors that

provide the best tradeoff between robustness and computationally requirements.

• In the 3D-2D data association, the pose of the camera and the 3D structure are

known, and the aim is to estimate correspondences between the 3D features and their

2D projection in a newly acquired frame, without the knowledge of the new camera

pose. This type of data association is typically used during the pose estimation phase

of the monocular-SLAM formulation. To solve this problem, the previous camera

poses are exploited in order to yield a hypothesis about the new camera pose and,

consequently, project the 3D features onto that frame. 3D-2D data association

then proceeds similarly to 2D-2D feature matching, by defining a search window

surrounding the projected location of the 3D features and searching for matching

feature descriptors.

• 3D-3D data association is typically employed to estimate and correct accumulated

drift along loops: when a loop closure is detected, 3D feature descriptors are used,

visible at both ends of the loop, to establish matches among features that are then

exploited to yield a similarity transform between the frames at both ends of the loop.

2.2.1 Visual feature extraction

For the feature extraction step, one algorithm often used in by the traditional monocular-

SLAM formulation is the the Harris & Stephens corners detection algorithm [56]. Given

an input image f(x, y), horizontal and vertical gradients are given by: Gx(x, y) = f(x, y)•
gx, Gy(x, y) = f(x, y) • gy, where the operation f(x, y) • g denotes the 2D spatial con-

volution between an input image f(x, y) and a fixed convolution kernel g, see Eq. 2.13.



Chapter 2. Monocular-SLAM: traditional formulation 16

Given the image gradients (Gx(x, y), Gy(x, y), image derivatives (A(x, y), B(x, y), C(x, y))

are computed as A(x, y) = Gx(x, y) ∗ Gx(x, y), B(x, y) = Gy(x, y) ∗ Gy(x, y), C(x, y) =

Gx(x, y) ∗ Gy(x, y). Then, a Gaussian filtering has to be applied on the image deriva-

tives (A(x, y), B(x, y), C(x, y)) in order to reduce noise and removing fine-scale struc-

tures that affect the performance of the corner response. This process is defined as

A′(x, y) = A(x, y) •G, B′(x, y) = B(x, y) •G, C ′(x, y) = C(x, y) •G, where the operator

• denotes the 2D spatial convolution between an input image (A(x, y), B(x, y), C(x, y))

and a fixed convolution kernel G. The convolution kernel has to be defined by the discrete

gaussian distibution, an example is shown in Eq. 2.14. Using the filtered image derivatives,

the corner metric response is computed as in Eq. 2.15. Finally, using the corner metric

response, the corner detection process is computed as shown in Eq. 2.16-2.17 where the

operation m′ ◦M denotes the matrix composition between patches in the corner response

image (m′ = m(x− 1 : x+ 1, y − 1 : y + 1)) and the matrix M (suppression matrix), i.e.,

a(1, 1) = m′(1, 1)∗M(1, 1), a(1, 2) = m′(1, 2)∗M(1, 2) . . . a(3, 3) = m(3, 3)∗M(3, 3). This

process is called non-maxima suppression step and its objective is to remove noise pixels

detected as corners and retain only one point/pixel at each corner. Finally, a threshold (σ)

has to be applied on m(x, y) (the corner metric image), delivering ones at corner points

retained after the non-maxima suppression step and zero otherwise, see Eq. 2.18.

gx =
(
−1 0 1

)
, gy =

 −1

0

1

 , (2.13)

G =


0.0178 0.0306 0.0367 0.0306 0.0178

0.0306 0.0525 0.0629 0.0525 0.0306

0.0367 0.0629 0.0753 0.0629 0.0367

0.0306 0.0525 0.0629 0.0525 0.0306

0.0178 0.0306 0.0367 0.0306 0.0178

 (2.14)

m(x, y) = A′(x, y)×B′(x, y)− C ′(x, y)2 − 0.04× (A′(x, y) +B′(x, y))2 (2.15)

a = m ◦M, b(x, y) = max(a) (2.16)



Chapter 2. Monocular-SLAM: traditional formulation 17

M =

 1 1 1

1 0 1

1 1 1

 (2.17)

h(x, y) =

{
1 if σ < m(x, y) > b(x, y)

0 otherwise
(2.18)

2.2.2 2D-2D data association (feature matching)

One feature matching algorithm often used by the monocular-SLAM formulation is BRIEF

[26]. In this case, Let ui(x, y) be the feature points from an image I1 while vi(x, y)

be the feature points from an image I2, each feature point have to be evaluated by a

binary test defined as shown in Eq. 2.19 and 2.20,where, the pa, pb variables are defined

as ui(x + µx, y + µy) for I1 and vi(x + µx, y + µy) for I2, where µx, µy is defined as a

random number less than S. Let S be the size of a patch (S × S) whose center is x, y.

Then, let n be the maximum number of binary tests, the BRIEF binary descriptor is

defined as shown in Eq. 2.20, giving as result a binary vector of dimension n. Finally,

let BRIEF(n)(ui(x, y)), BRIEF(n)(vi(x, y)) be the BRIEF descriptors for all points in

I1 and I2, these can be associated/matched using a ratio distance based on the Hamming

distances H, as illustrated in Eq. 2.23; where γ1, γ1 are the first and second minimum

Hamming distances, respectively while δ is a threshold value defined by the user (typically

δ = 1) and Hn represent the visual descriptor associations between ui and vi.

λ =

{
1 if pa < pb

0 otherwise
(2.19)

BRIEF(n) =
n∑
i=1

λn (2.20)

Hn =

{
arg minr if γ1 − γ1 > δ

0 otherwise
(2.21)

γr = H(BRIEF(n)(ui(x, y)),BRIEF(n)(vr(x, y))) (2.22)

BRIEF(n)(ui(x, y)) ∼ BRIEF(H(n))(vi(x, y)) (2.23)



Chapter 2. Monocular-SLAM: traditional formulation 18

2.3 Pose estimation

The flow diagram of the generic pose estimation step is shown in Fig. 2.3. Since data

association can be computationally expensive, most monocular-SLAM systems assume,

for the pose of each new frame, a prior, which guides and limits the amount of work

required for data association. Estimating this prior before is usually the first task in

pose estimation: data association between the two frames is not known yet and one seeks

to estimate a prior on the pose of the second frame (R,t), given previously estimated

poses. To solve this problem, most systems employ a constant velocity motion model that

involves a smooth movement of the camera and uses the pose changes in the two frames

followed previously to estimate the previous one for the current frame. Then, the pose of

the prior frame is used to guide the data association procedure in several ways. The prior

helps to determine a potentially visible set of map features in the current frame, which

reduces the computational expense of blindly projecting the entire map. Furthermore, it

helps establish a location of the estimated characteristic in the current frame, such that

feature matching takes place in small search regions, instead of across the entire image.

Finally, the prior serves as a starting point for the minimization procedure, which refines

the camera pose.

2.3.1 Constant Velocity Motion Model (CVMM)

The Kalman filter provides an estimate of the state of a discrete-time process defined in

the form of a linear dynamical system [25]: x(t+1) = F ×x(t)+w(t), with noise from the

process w(t). The Kalman filter operates by observing all or some of the state variables,

defined by the observation system y(t) = H × x(t) + v(t), where v(t) represents measure-

ment noise. It is assumed that the process and measurement noise is independent of each

other, white, with normal probability distributions: w ∼ BN(0, Q) and v ∼ BN(0, R).

In practice, the state and observation equations are constructed to define the process and

relate the corresponding measurements, and the noise variations are established according

to the characteristics of the process and the noise measurements. Then, the model can be

plugged into a generic form of the Kalman filter [25], which carries out the resulting alge-

bra to obtain a state estimate for any instance. In previous works, the Kalman filtering

has been employed in several fields of image processing such as video restoration, camera

motion modeling, image stabilization, etc.



Chapter 2. Monocular-SLAM: traditional formulation 19

Figure 2.3. Monocular-SLAM: the pose estimation step. First, a prior,
which guides and limits the amount of work required for data association
is computed. To address this problem, most systems employ a constant
velocity motion model that assumes a smooth camera motion and use
the pose changes across the two previously tracked frames to estimate
the prior for the current frame. Then, the pose of the prior frame is
used to guide 2D-3D data association procedure. Finally, a minimization
procedure refines the camera pose.

For the Constant Velocity Motion Model (CVMM), let W be the coordinate system

of fixed frames in the world, and R, the coordinate system of fixed frames with respect to

the camera. A non-minimal representation of 3D orientation and a quaternion is used to

define the position state (see Eq. 2.24). Then, to model the system, a constant angular

velocity model can be used. This means the assumption that the camera moves at a

constant velocity over all the time, but that the statistical model of its motion in a time

step expects indeterminated accelerations with a Gaussian profile. The implication of

this profile is that it imposes a certain smoothness in the camera motion. This model is

subtly effective and gives the whole system, robustness even when visual measurements

are sparse. So, to model the velocity of the camera, the position state vector with the

velocity terms to form the state vector is defined as shown in Eq. 2.25; were vW is the

linear velocity and ωWR the angular velocity; where the angular velocity is a vector whose

orientation denotes the axis of rotation and whose magnitude the rate of rotation in radians

per second (note that the redundancy in the quaternion part of the state vector means

that a normalization at each step of the EKF is necesary to ensure that each filtering step

results in a true quaternion satisfying q20 + q2x + q2y + q2z = 1; this normalization comes with

the corresponding Jacobian calculation affecting the covariance matrix.).



Chapter 2. Monocular-SLAM: traditional formulation 20

Considering that in each time step, unknown acceleration and angular acceleration

processes of zero mean and Gaussian distribution can cause an impulse of velocity and

angular velocity, as shown in Eq. 2.26; the covariance matrix of the noise vector n is

diagonal and represents uncorrelated noise in all linear and rotational components. Then,

the state update can be modeled with Eq. 2.27; where the notation q(ωW +ΩW )∆t denotes

the Quaternion defined by the angle-axis rotation vector ωW + ΩW . Finally, in order to

guarantee EKF robustness against noise, the new state estimate fv(xv, u) often considers

the increase in state uncertainty (process noise covariance) Qv for the camera after this

motion, where the Qv value is computed by the Jacobian calculation (see Eq. 2.28); where

Pn is the covariance of noise vector n (note that the EKF implementation also requires

calculation of the Jacobian ∂fv
∂xv

). Therefore, the rate of growth of uncertainty in this

motion model is determined by the size of Pn, and setting these parameters to small or

large values defines the smoothness of the expected motion. With a small Pn, smooth

motion with small accelerations is expected, and it would be well placed to track motions

of this type, but will not be able to cope with sudden rapid movements. On the other

hand, high Pn means that the uncertainty in the system increases significantly at each

time step, and while this gives the ability to cope with rapid accelerations the very large

uncertainty means that a lot of good measurements have to be made at each time step to

constrain estimates.

xp =

(
rW

qWR

)
= (x, y, z, q0, qx, qy, qz)

T (2.24)

xv =


rW

qWR

vW

ωW

 (2.25)

n =

(
V W

ΩW

)
=

(
aW∆t

αW∆t

)
(2.26)

fv =


rWnew

qWR
new

vWnew

ωWR
new

 =


rW + (vW + V W )∆t

qWR × q(ωW + ΩW )∆t

vW + V W

ωW + ΩW

 (2.27)



Chapter 2. Monocular-SLAM: traditional formulation 21

Qv =
∂fv
∂n

Pn
∂fv
∂n

T

(2.28)

2.3.2 2D-3D/2D-2D data association (feature tracking)

Let q{i} be visual features for the previous keyframe (they have to be extracted and as-

sociated with a visual descriptor through the initialization step or through the feature

matching step), the g = {i} visual features in the current frame are tracked by searching a

match in the current frame within a small search area around its position at the previous

keyframe. This process is called feature tracking and is compared with feature match-

ing (Section 2.2.2), feature tracking decreases the computational requirements because

one hand, the extraction and description of characteristics are calculated only in one box

instead of two and, on the other hand, because the tracking within small areas are less

exhaustive than feature matching between two images.

For the mathematical formulation, let q{i} be visual features for the previous keyframe,

g{i} (feature tracking for the current frame), can be obtained by minimizing any local sim-

ilarity metric between the previous and the current frame, as shown in Eq. 2.29 and 2.30;

where I1, I2 are the previous and the current frame, respectively. s is the search size

at the current frame while r is the patch size. Finally, to validate the feature tracking

step, visual features of the previous and the current keyframe ((q{i}, g{i}), respectively),

should be associated with their corresponding Xi, Yi, Zi real world coordinates (2D-3D

association) that can be obtained from the previous map. Then, using the camera pose

computed by the CVMM algorithm, it is possible to validated the 2D-2D data associa-

tions obtained through the feature-tracking step (q{i}, g{i}) by triangulate q{i} and g{i}
(Section 2.1.4) and comparing the results with Xi, Yi, Zi. In the case of finding enough

correspondences, i.e., the motion model is not violated, the camera pose and 3D map are

optimized (as shown in Section 2.3.3). In the case of not finding enough correspondences,

feature matching (Section 2.2.2) has to be computed and thereafter, the camera pose and

3D map have to be optimized.

SSD(a, b) =

a=s,b=s∑
a=−s,b=−s

u=r,v=r∑
u=−r,v=−r

(I1(q{i}+ (u, v))− I2(q{i}+ (u, v) + (a, b)))2 (2.29)



Chapter 2. Monocular-SLAM: traditional formulation 22

g{i} = arg mina,b(SSD(a, b)) (2.30)

2.3.3 Iterative pose optimization

Let rWnew and qWR
new be the camera pose for the current frame (these are obtained through the

CVMM algorithm, Section 2.3.1, and correspond with the transition vector t and the cor-

responding quaternion which can be converted in a rotation matrix R, respectively), and

let q{i}, g{i} ∼ Xi, Yi, Zi be 2D-2D/2D-3D data associations (feature matching/feature

tracking), traditional monocular-SLAM formulations refines the camera pose R, t and the

3D local map by minimizing the re-projection error of features from the map (Xi, Yi, Zi)

over the frame’s prior pose (rWnew, qWR
new ). The re-projection error is formulated as the

distance in pixels between a 3D feature projected in a frame, and its corresponding 2-D

position in the image. In order to obtain robustness against outliers, the minimization

takes place over an objective function that penalizes the features with big errors. There-

fore, the problem of optimization of camera pose is defined as shown in Eq. 2.31; where Tk

is a minimally represented Lie group [57] of either (Xi, Yi, Zi) feature or R, t camera pose.

Obi(.) is an objective function and ei is the error defined through the data association

for each matching feature q{i}, g{i} in the image. Finally, the system decides wheter the

new frame should be marked as a keyframe or not. Decisive criteria can be classified as

significant changes in pose or significant changes in the appearance of the scene; a decision

is usually made through a weighted combination of both criteria; i.e., the current frame is

flagged as a keyframe only if a significant change in the camera pose measurements (ro-

tation and/or translation) occurs, and when there are a significant number of 2D features

that are not observed in the current map.

Tk = arg minTk

∑
i

Obi(ei) (2.31)

2.4 Map construction

The step of the construction of the map is responsible for generating a representation of

the unexplored, and recently observed environment. Typically, the map construction step

represents the world as a sparse cloud of points. The flow diagram of the construction

step of the generic map is shown in Fig. 2.4. In general, the different viewpoints of an



Chapter 2. Monocular-SLAM: traditional formulation 23

unexplored scene are registered with their corresponding camera poses through the pose

tracking step (Section 2.3.2). The map construction step then re-establishes the data

association between the new keyframe and a set of keyframes surrounding it, looking for

matches. Then, triangulate 2D feature points into 3D features; it also keeps track of their

3D coordinates and expands the map within what is known to as a metric representation of

the scene. In order to guarantee consistency within the map, the global map is optimized

each time a keyframe is added.

Figure 2.4. Monocular-SLAM: the map construction step. First, the
map construction step gets data association between the new keyframe
and a set of keyframes surrounding it, looking for matches between the
previous map and the current keyframe. Then, 2D feature points for
the current kayframe are triangulated into 3D features using the camera
poses previously computed. Finally the previous map is expanded via
optimization techniques.

2.4.1 Data association

In previous monocular-SLAM formulations, map points have to be created by triangulat-

ing feature points in different keyframes. For that, a popular solution consists of trian-

gulating points between adjacent keyframes since parallax level is low and this decreases

the computational requirements for the data association process [28, 35, 103]. However,

recent works [94] have demonstrated that triangulating feature feature points between

N keyframes in the covisibility graph provides higher mapping density than the approach

based on adjacent frames. For the mathematical formulation, it is necessary to correspond

points between the current keyframe and N neighboring keyframes. For each feature point

in the current keyframe, it is necessary to search a match with another feature in other

keyframe simply by comparing the descriptors, as illustrated in Eq. 2.32 and 2.33; where

I is the current keyframe while IN are N adjacent keyframes in the covisibility graph that

share most feature points in I. x1{i} are feature points in I, xN{i}) are their 2D-2D data

associations for the N neighbor keyframes and s is the search size while r is the patch size.



Chapter 2. Monocular-SLAM: traditional formulation 24

SSDN(a, b) =

a=s,b=s∑
a=−s,b=−s

u=r,v=r∑
u=−r,v=−r

(I(x1{i}+ (u, v))− IN(x1{i}+ (u, v) + (a, b)))2 (2.32)

xN{i} = arg mina,b(SSDN(a, b)) (2.33)

2.4.2 Triangulation

First, two camera matrices P1, P2 are defined as shown in the Eq. 2.34 and 2.36; where

R1, t1 and R2, t2 are camera poses for the current and the previous keyframe, respectively

(these are obtained by the pose estimation step, Section 2.3). Then, let q{n}, g{n} be

2D-2D data associations between the current and the previous keyframe, the current map

is obtained via linear triangulation, as described in Section 2.1.4).

P1 = [R1, t1] (2.34)

P2 = [R2, t2] (2.35)

2.4.3 Map refinement

Due to noise/outliers in the data association step, the projection of the rays from two as-

sociated features probably not intersect in the 3D space and this generates inconsistencies

within the 3D map. To obtain resilience against outliers and to obtain better accuracy, the

triangulation is typically performed over features associated across more than two views

[41, 94]. This process is called multiple view triangulation and is illustrated in Fig. 2.5).

For the mathematical formulation, given N images of i fixed 3D points (xN,i = PN ·Xi),

the problem is defined as estimate N projection matrices PN and i 3D points Xi from the

N, i correspondences xN,i. In order to solve this problem, monocular-SLAM formulation

uses the Levenberg-Marquardt algorithm (Eq. 2.36); where the variable Xi is solved by

minimizing the re-projection error for 2D-2D data associations (xN,i) at N different view-

points from the same scene and PN camera matrices (obtained by the pose estimation

step, described in Section 2.3).



Chapter 2. Monocular-SLAM: traditional formulation 25

E(P,X) =

a=N,b=i∑
a=1,b=1

D(xa,b, Pa ·Xb)
2 (2.36)

Figure 2.5. Multiple view triangulation. Given N images of i fixed 3D
points (xN,i = PN ·Xi), the Levenberg-Marquardt algorithm is applied
in order to estimate N projection matrices PN and i 3D points Xi from
the N, i correspondences xN,i that minimizes the re-projection error.

2.5 Refinement

The refinement step is responsible for optimizing both the map and the camera poses. For

that, the monocular-SLAM formulation typically uses bundle adjustment as an optimiza-

tion technique. During map exploration, the new 3D features are triangulated according

to the camera pose estimates; after some time, the deviation of the system manifests it-

self in wrong camera pose measurements, due to accumulated errors in previous camera

poses that were used to expand the map. The refinement step continues by a establishing

data association between the full set of keyframes in the map or a subset of keyframes

and performing a global bundle adjustment (GBA) or a local bundle adjustment (LBA)

respectively. Outlier features flagged from the optimization are then culled (removed from

the map) while the values of the previously calculated camera poses are optimized simul-

taneously. To reduce the complexity of optimization, redundant keyframes are also culled.

Bundle adjustment is the problem of refining a visual reconstruction and camera poses to

produce a jointly optimal 3D structure and see parameter estimates (camera pose). This



Chapter 2. Monocular-SLAM: traditional formulation 26

mean the estimates of the parameters are found by minimizing some cost function that

quantifies the error of fit of the model, and that the solution is simultaneously optimal

with respect to the variations of the structure and the camera.

For the mathematical formulation of package adjustment, the cost function to be min-

imized is shown in the Eq. 2.37; where Ti is a pose estimate of keyframes and N is the

number of keyframes on the map or a subset of the map. Xj corresponds to the 3D pose

of a feature and Si represents the set of 3D features observed in Keyframe i. Finally,

e(Ti, Xj) is the reprojection error of a feature Xj in a keyframe Ti, in which it is observed.

In order to reduce the computational costs of bundle adjustment, several formulations

represent the monocular SLAM map using a Euclidean map for LBA, and a topological

map for pose graph optimization that explicitly distributes the accumulated drift along

the entire map. Then, the original formulation of Package Adjustment is rewritten as

shown in Eq. 2.38; where the optimization process takes place only in the keyframe that

represents (Ti).

arg minT,X

N∑
i=1

∑
j∈Si

Obj(e(Ti, Xj)) (2.37)

arg minT

N∑
i=1

∑
j∈Si

Obj(e(Ti, Xj)) (2.38)

2.6 Loop closure

Global localization is required when the camera loses track of its position and is required

to be located on a global map. Failure recovery and loop closure are considered a form

of global localization. It is worth mentioning that loop closure and fault recovery revolve

around the same problem and the solutions presented for any of them could be used for

the other.

2.6.1 Relocalization

Either due to improper movement of the user, such as abrupt changes in the camera pose

that result in motion blur, or due to observation a region without distinctive features, or

for any other reason, the monocular-SLAM formulation may eventually fail. Therefore,



Chapter 2. Monocular-SLAM: traditional formulation 27

an essential key module for the usability of any monocular-SLAM system is its ability

to recover correctly from such failures. To solve this problem, a relocalization algorithm

should be implemented. So, let q{i} be visual features for the previous keyframe, each

visual feature associated with a visual descriptor and in which the camera pose estimation

step was correct executed; g{i} visual features and visual descriptors are extracted at the

frame being processed, then, the system relocalization can be obtained by feature matching

between q{i} and g{i}. In order to evaluate the matching quality and therefore, guarantee

a non-degenerated result for the camera pose estimation, a threshold operation has to be

applied, using Eq. 2.39; where BRIEF(i)(ui(x, y)),BRIEF(Hi)(vi(x, y)) are the matched

descriptors between q{i} and g{i} (see Eq. 2.23) and Φ is the quality of coincidence

which is used to decide if the current frame can be located correctly, i.e., in case the

match quality is larger than a threshold value (Φ > σ), the camera pose can be obtained;

otherwise the system remain as standby mode and process the following frames until the

corresponding quality criteria is satisfied. In the last step (after the matching criterion is

satisfied), let q{i} ∼ g{i} be 2D-2D data associations for the previous keyframe in which

the camera pose estimation step it was correctly executed; the current camera pose and

3D reconstruction (mapping) can be estimated using the formulation presented above in

Sections 2.3 and 2.4.2.

Φ =
i=n∑
i=1

H(BRIEF(i)(ui(x, y)),BRIEF(Hi)(vi(x, y))) (2.39)

2.6.2 Loop closure

Since the traditional monocular-SLAM formulation consist of several optimization steps,

it is prone to changes in camera pose estimates. As a result, returning to a certain position

after an exploration phase may not generate the same measure of camera pose, as it did

at the start of the run. The camera pose drift can also manifest itself in a map scale drift,

which will eventually lead the system to erroneous measurements, and fatal failure. To

solve this problem, some algorithms detect loop closures in an offline monocular-SLAM

session, and optimize the loops track in an effort to correct the drift and the error in

the camera pose and in all relevant map data that were created during the loop. For

the mathematical formulation, similar to relocalization procedures, one way so solve the

loop closure problem is by matched descriptors between two keyframes, using Eq. 2.39.

However, different to relocalization, in loop closure the keyframes being matched are the



Chapter 2. Monocular-SLAM: traditional formulation 28

start frame and the current frame (in case of large maps with multiple loops the start

frame is replaced by the first frame of each map node). Finally, after a loop closure is

detected, all camera poses and features within the map are corrected. In all cases, there

are three consecutive step that must be carried out:

1. The first step to correct a loop is to compute the transformation from the current

keyframe camera coordinate system to the loop candidate one. This transformation

is the only way to know the accumulated drift, which in monocular-SLAM can occur

in seven degrees of freedom: three translations, three rotations and scale. Therefore

it is necessary to compute a similarity Sim(3) transformation from current keyframe

k to loop candidate l, see Eq. 2.40; where s ∈ R+ is the scale factor, R ∈ SO(3)

is a rotation matrix and t ∈ R3 is a translation vector. The computation of this

transformation serves as geometrical verification, if it is successful it is necessary to

correct the loop, otherwise the loop candidate is rejected.

Sk,l =

(
sk,lRk,l tk,l

0 1

)
(2.40)

2. All the poses are converted in their absolute transformation SE(3) while the keyframe

of origin Ti,ware converted in a similarity Sim(3); where Si,w maintains the rotation

and the translation and establishing the scale to 1. Then, the relative transfor-

mation ∆Si,j is computed, between one pose and the next, closing the loop with

the computed similarity transformation between the current keyframe and the loop

keyframe Sk,l. The basis of this process is the minimization of the residual error ri,j

between the poses ri,w and rj,w with respect to the constraint ∆Si,j in the tangent

space Sim(3) and in a minimal representation as illustrated in Eq. 2.41; where

logSim(3) is Sim(3) → sim(3), that maps from the overparametrized representation

of the transformation to the tangent space and (·)VSim(3) is sim(3)→ R7 is an opera-

tor that maps from the tangent space to the minimal representation with the same

elements as the degrees of freedom of the transformation. Initially all the residuals

are zero, except the loop. Then, these residues are optimized to distribute this er-

ror along the graph. The cost function to minimize the error is defined in the Eq.

2.42; where
∧
i,j is the inverse covariance of the residual ri,j and is established in

the identity. Then, for each point xj a keyframe of origin Ti,w is associated and the

point is mapped using the optimized using Eq. 2.43. The last step is to convert the

corrected similarity transformations (Scori,w) back to 3D rigid body transformations



Chapter 2. Monocular-SLAM: traditional formulation 29

T cori,w . To eliminate the scale factor in similarity and maintain rotation since it is not

affected by the scale; the scale factor of similarity should be scaled again (see Eq.

2.44). Finally, the poses and points are optimized together with this seed.

rj,w = (logSim(3)(∆Si,j · Sj,w · S−1i,j ))vsim(3) (2.41)

χ2 =
∑
i,j

rTi,j
∧
i,j

ri,j (2.42)

xcorj = (Scori,w)−1 · Ti,w · xj (2.43)

Scori,w =

(
sR t

0 1

)
→ T cori,w =

(
sR 1

s
t

0 1

)
(2.44)

3. The last step in closing the loop is to inform the frontend about the closure of

the loop and correct the location and velocity of the camera. First the relative

transformation of the the current camera pose Tc,w to the non-corrected pose of the

current keyframe Tk,w is computed, see Eq. 2.45. Then, the translation of ∆Tc,k

should be scaled by the scale factor sk,l of the similarity transformation defined in

the Eq. 2.46; then, by applying T corc,k to the corrected current keyframe pose T cork,w

the corrected camera poses are recover, see Eq. 2.47. Finally the velocity motion

for the CVMM algorithm, (Section 2.3.1) is corrected dividing the linear speed by

sk,l.

∆Tc,k = Tc,w · T−1k,w (2.45)

∆Tc,k =

(
sRc,k tc,k

0 1

)
→ ∆T corc,k =

(
sRc,k

1
sc,k

tc,k

0 1

)
(2.46)

T cork,w = ∆T corc,w · T cork,w (2.47)



Chapter 2. Monocular-SLAM: traditional formulation 30

2.7 Summary

In this chapter we have provided an overview of state of the art monocular-SLAM tech-

niques. All parts of the traditional formulation were discussed in detail and were comple-

mented with graphical explanations.



Chapter 3

Monocular-SLAM: a survey

This section details the previous monocular-SLAM systems in the literature. Table 3.1

lists all the monocular-SLAM systems that, to our knowledge, exist to date. In the

following subsections, more details on all of these approaches are presented.

Table 3.1. Monocular-SLAM systems in the current literature.

Year Name
Feature

extraction

Feature

matching

Optimization

choice

2006
Real-time Localization and 3D

Reconstruction [92]

Harris &

Stephens

Local

patch

Bundle

Adjustment

2007
Parallel tracking and mapping

for small AR workspaces [69]
FAST

Local

patch
Tukey-biweight

2008
An Efficient Direct Approach to

Visual SLAM [117]

Intensity

gradient

Local

patch
Gauss Newton

2010
Scale Drift-Aware Large Scale

Monocular SLAM [125]
FAST

Local

patch

Bundle

Adjustment

2010
Live dense reconstruction with a

single moving camera [96]
FAST

Local

patch

Bundle

Adjustment

2011
Dense Tracking and Mapping in

Real-Time(DTAM) [97]

Intensity

gradient

Local

patch
Gauss Newton

2011

Omnidirectional dense

large-scale mapping and

navigation based on meaningful

triangulation [110]

Harris &

Stephens

and Cany

Local

patch

Bundle

Adjustment

31



Chapter 3. Monocular-SLAM: a survey 32

2011

CD SLAM-continuous

localization and mapping in a

dynamic world [108]

SIFT SIFT
Bundle

Adjustment

2011 Online environment mapping [79]
Harris &

Stephens

KLT

trackers

Bundle

Adjustment

2011

Homography-based planar

mapping and tracking for mobile

phones [105]

FAST
Local

patch

Bundle

Adjustment

2013
Robust monocular SLAM in

Dynamic environments [127]
SIFT SIFT

Bundle

Adjustment

2013
Handling pure camera rotation

in keyframe-based SLAM [106]
FAST

Local

patch

Bundle

Adjustment

2014
Efficient keyframe-based

real-time camera tracking [38]

Harris &

Stephens

KLT

trackers

Bundle

Adjustment

2014
SVO: Fast semi-direct monocular

visual odometry [46]
FAST

Local

patch
Gauss Newton

2014
LSD-SLAM: Large-scale direct

monocular SLAM [41]

Intensity

gradient

Local

patch
Gauss-Newton

2014

DT-SLAM: deferred

triangulation for robust SLAM

[60]

FAST
Local

patch

Bundle

Adjustment

2014

Real-Time 6-DOF Monocular

Visual SLAM in a Large Scale

Environment [78]

FAST BRIEF
Bundle

Adjustment

2015
Robust large scale monocular

Visual SLAM [24]
SURF SURF

Bundle

Adjustment

2015

ORB-SLAM: a versatile and

accurate monocular SLAM

system [95]

FAST ORB
Bundle

Adjustment

2015

DPPTAM: Dense piecewise

planar tracking and mapping

from a monocular sequence [33]

Intensity

gradient

Local

patch
Gauss-Newton

2016
Multi-level mapping: Real-time

dense monocular SLAM [55]

Intensity

gradient

Local

patch

Bundle

Adjustment



Chapter 3. Monocular-SLAM: a survey 33

2016

Robust

Keyframe-basedMonocular

SLAM for Augmented Reality

[80]

FAST Homography
Bundle

Adjustment

2017

CNN-SLAM: Real-time dense

monocular SLAM with learned

depth prediction [129]

- - CNN

2017

ORB-SLAM2: An Open-Source

SLAM System for Monocular,

Stereo, and RGB-D Cameras [94]

FAST ORB
Bundle

Adjustment

2017

PL-SLAM: Real-time monocular

visual SLAM with points and

lines [111]

FAST/Cany ORB
Bundle

Adjustment

2017

NID-SLAM: Robust Monocular

SLAM using Normalised

Information Distance [100]

Intensity

gradient
NID

NID-based

optimization

2018
Polarimetric Dense Monocular

SLAM [141]

Intensity

gradient

Polarimetric

distance

Azimuth-based

optimizations

2018
Loosely-Coupled Semi-Direct

Monocular SLAM [74]
FAST ORB

Bundle

Adjustment

2018 Direct sparse odometry [43]
Intensity

gradient

Local

patch
Gauss-Newton

2018

Undeepvo: Monocular visual

odometry through unsupervised

deep learning [76]

- - CNN

Most previous works used as basis of their algorithms the traditional formu-

lation presented in Chapter 2. Then they made modifications in some parts

of the traditional formulation in order to improve the performance under spe-

cific application domains. So, in the following subsections we present a survey

based on the processing steps of the traditional formulation and how the previ-

ous works modified these processing steps in order to fulfill with their specific

constraints.



Chapter 3. Monocular-SLAM: a survey 34

3.1 Initialization

Initially, PTAM [69] proposed using the five-point algorithm [98] to estimate and de-

compose a Fundamental matrix in a SE(3) transformation that relates both initializing

keyframes. The transformation is then used to triangulate a supposed non-planar initial

scene. The initialization of PTAM was subsequently changed to a Homography estimate

[45], where the scene is assumed to be composed of 2D planes. Because the 2D-2D match-

ing process is performed through ZMSSD without warping the features, establishing cor-

rect matches is susceptible to both motion blur and significant changes in the appearance

of the features as a result of camera rotations. Therefore, strict requirements on user’s

motion during initialization are required. The initial map generated is scaled, for example,

the estimated translation between the first two keyframes corresponds to 0.1 units, before

the structure of only BA takes place. SVO [106] adopted a Homography for initialization

with the same procedure as PTAM. SVO extracts the FAST features and tracks them

using KLT [132] (Kanade-Lucas-Tomasi feature tracker) across incoming frames. To avoid

the need for a second input by the user, SVO monitors the median of the baseline distance

of the features, tracked between the first keyframe and the current frame; and whenever

this value reaches a certain threshold, sufficient parallax is assumed, and the Homography

can be estimated.

DT-SLAM [60] does not have an explicit initialization phase; rather, it is integrated

into its tracking module as an essential matrix estimation method. In LSD-SLAM [41],

and later in DSO-SLAM [43], a scene depth randomly initialized from the first viewpoint,

both systems use an initialization method that does not require two view geometry. i.e.,

the initialization step in LSD-SLAM [41] and DSO-SLAM [43] takes place on a single

frame: pixels of interest (i.e., image locations that have high intensity gradients) in the first

keyframe are given a random depth value with an associated large variance. This results in

an initially erroneous 3D map. The pose estimation methods are then invoked to estimate

the pose of newly incoming frames using the erroneous map, which in return results in

erroneous pose estimates. However, as the system process more frames of the same scene,

the originally erroneous depth map converges to a stable solution. The initialization is

considered complete when the depth variance of the initial scene converges to a minimum.

DPPTAM [33], borrows from LSD SLAM’s initialization procedure, and therefore also

suffers from the problem of random depth initialization, where several keyframes must be

added to the system before a stable configuration is reached.



Chapter 3. Monocular-SLAM: a survey 35

Finally, ORB-SLAM [95] deals with the limitations arising from all the above methods

by computing, in parallel, both a Fundamental matrix and a Homography [45]. In order to

select the appropriate model, each model is penalized according to its symmetric transfer

error [57]. If the chosen model produces poor tracking quality, and there are very few

feature correspondences in the next frame, the initialization is discarded, and the system

restarts with a different pair of frames.

3.2 Data association

In the first formulation of monocular SLAM [92] the Harris corners detection algorithm

[56] was used as the basis of the feature extraction step. This trend is now considered

as the feature-based approaches and in several subsequent works ([79, 110]) the Harris

detector was used as the basis of the feature extraction step. Other works, for example,

PTAM [69] and DT SLAM [60] use the FAST functions to achieve a high processing

speed. Then, these FAST features are associated with a local patch of pixels and the data

association is carried out using binary comparisons. In ORB-SLAM [95], ORB features

with associated ORB descriptors ([113]) demonstrated a good tradeoff between accuracy

and speed processing. Therefore, there are other works which have used the same approach

[94, 111]. Finally, in some works such as [108, 127] high order features (SIFT) were used

to improve the accuracy of the system when decreasing matching outliers.

In other trend (direct-based approaches) algorithms such as, LSD-SLAM [41] and DPP-

TAM [33], extract and use all pixels that have a photometric gradient (Intensity gradient).

DSO [43] shown that the use of all the pixel information with a photometric gradient in-

troduces redundancy in the system, and requires a step of regularization; therefore, DSO

proposed to sub-sample the pixels by dividing the image into blocks, maintaining a fixed

number of pixels with the highest gradient in each block. This ensures that, in the first

place, the sampled pixels are well distributed in the image, and second, that the sampled

pixels have sufficiently high image gradients with respect to their immediate surroundings.

The sampled pixels are known as candidate points. Different than other systems, SVO

[106] employs a hybrid approach in which it sequentially alternates between direct and

feature-based methods. i.e., in a first attempt a direct-based approach tries to establish

data associations for the current time. Then, if the data association quality is lower than

a threshold value, this result is refined using a feature-based model as keystone of the

association process.



Chapter 3. Monocular-SLAM: a survey 36

For the association of 2D-2D data, PTAM [69] generates a pyramid representation of

4 levels of every incoming frame and uses it to enhance the features robustness to scale

changes, and to increase the convergence radius of the pose estimation module. In PTAM,

FAST features are extracted at each level with a Shi-Tomasi score [116]. Then, features

with a relatively smaller score are removed and then non-maximum suppression takes

place. Once 2D features are extracted, the 3D features are projected in the new frame,

using a previous camera pose estimation (from motion model). Then, the 3D-2D data

association is then employed. The descriptor used for data association is extracted from

the 2D image from which the 3D feature was first observed. To take account of changes in

views, the local patch of pixel descriptors is deformed through an affine projection, which

simulates how it would appear in the current frame. However, this constitutes a limitation

in the PTAM, since, for large changes in camera viewpoints, the warping transform fails

to accurately reflect the correct distortion, therefore causing data association failure.

For DT-SLAM [60], when a new Ti frame is processed, it estimates a 2D similarity

transformation through the image registration with the previous frame Ti−1, and trans-

forms, using the estimated 2D similarity, the features extracted from Ti into Ti−1. The

3D features are then projected in Ti−1 and the data association takes place, similarly to

how it is done in PTAM. DT SLAM also tracks 2D features, which are features that were

previously observed but were not triangulated in 3D features due to the lack of parallax

between the different frames observing them (i.e. when the camera undergoes a pure

rotation motion). For each 2D feature, the Euclidean distance between its epipolar line

and the transformed feature is estimated; if it falls below a threshold, the characteristic is

considered as a possible coincidence with the 2D feature. The association of data through

Zero Mean Sum of Squared Distance (ZMSSD) attempts to validate the matches. SVO

[106] generates a pyramidal representation of five levels of the incoming frame; the data

association is first established through the iterative direct image alignment, from the high-

est level of the pyramid to the third level. Preliminary data association of this step is used

as a FAST feature comparison procedure, similar to PTAM’s warping technique, with a

Zero-Mean SSD score.

ORB-SLAM [94, 95] extracts FAST corners in eight levels of a pyramid. To ensure a

homogeneous distribution throughout the entire image, each level of the pyramid is divided

into cells and the parameters of the FAST detector are tuned online to ensure a minimum of

five corners are extracted per cell. Then, a 256-bit ORB descriptor is computed for each

extracted feature. ORB-SLAM discretizes and stores the descriptors in bags of words,



Chapter 3. Monocular-SLAM: a survey 37

known as visual vocabulary, which are used to speed up image and feature matching by

constraining those features that belong to the same node in the vocabulary tree. To

deal with viewpoint changes, ORB SLAM proposes to keep track of all the keyframes in

which a feature is observed and the algorithm choose the descriptor from the keyframe

that has the smallest viewpoint difference with the current frame. Finally, in DSO-SLAM

[43], the candidate points, sampled through the image, are represented by eight pixels

spread around the target point. Then, the algorithm claims that the use of this number

of pixels in a specific pattern was was found empirically to return a good compensation

between three objectives: computational time, sufficient information for tracking to take

place, and resilience to motion blur. Each of the selected pixels around the candidate point

contributes to the energy function, which it seeks to minimize during tracking. Within this

formulation, he association of data is still inherent in the direct image alignment scheme;

however, use only the candidate points and their selected surrounding pixels, instead of

using all the pixels with gradients in an image.

3.3 Pose estimation

In PTAM [69], pose estimation starts by estimating a position before the frame using a

decreasing constant velocity motion model, as described in Section 2.3.1. Then the pre-

vious one is refined using a Small Blurry Image (SBI)–the smallest image resolution in the

pyramid representation of the frame—by applying an Efficient Second Order minimization

[17]. If the speed is high, PTAM anticipates that a rapid movement is taking place, and

hence, the presence of fuzzy motion and, and therefore, the tracking to take place only

at the highest pyramid levels (most resilient to motion blur) in what is known as a rough

follow-up stage. Otherwise, the coarse tracking stage is followed by a fine tracking stage.

However, when the camera is stationary, the thick stage can cause a change in camera

posture and, therefore, turn off. The initial camera pose prior is refined by minimizing a

tukey-biweight [86] objective function of the re-projection error that reduces the weight

of observations with large residuals. To determine the the quality of tracking, PTAM

monitors the proportion of features matching successfully in the frame, against the total

number of matching attempts of FAST features.

SVO [106] assumes the pose of the new frame to be the same as the previous one;

then, it looks for the transformation that minimizes the photometric error of the pixels

of the image with the associated depth measurements in the current frame, with respect



Chapter 3. Monocular-SLAM: a survey 38

to its location in the previous one. The minimization takes place through thirty Gauss

Newton iterations of the inverse compositional image alignment method. Once the image

alignment is performed, features that are expected to be visible in the current frame, are

projected onto the image. To decrease the computational complexity and to maintain

only the strongest features, the frame is divided into a grid, and only the strongest feature

per grid cell is used. The 2D location of the projected function is adjusted by minimiz-

ing the photometric error between its associated patch from its location in the current

frame, and a warp of the feature generated from the nearest keyframe observing it. This

minimization violates the epipolar constraint for the entire frame, and further processing

in the tracking module is required: motion-only bundle adjustment takes place, followed

by a structure only bundle adjustment that refines the 3D location of the features, based

on the refined camera pose. Finally, a joint (pose and structure) local bundle adjustment

adjusts the reported camera position estimate. During this last stage, the tracking quality

is continuously monitored and, if the number of observations in a frame, or the number

of features between consecutive frames drop, tracking quality is deemed insufficient, and

failure recovery methods are initiated.

DT-SLAM [60] maintains a camera position based on three tracking modes: full pose

estimation, essential matrix estimation, and pure rotation estimation. When there is a

sufficient number of 3D matches, a full pose can be estimated; otherwise, if a sufficient

number of 2D matches showing small translations is established, an Essential matrix is

estimated; and finally, if a pure rotation is shown, two points are used to estimate the

absolute orientation of the matches. Pose estimation aims, in an iterative manner, to min-

imize the error vector of both 3D-2D re-projections, and 2D-2D matches. When tracking

failure occurs, the system initializes a new map and continues to collect data to track on

a different map; however, the map making thread continues to look for possible matches

between the keyframes of the new map and the old one, and once a match is established,

both maps are fused together, thereby allowing the system to handle multiple sub-maps,

each at a different scale.

The tracking thread in LSD-SLAM [41] is responsible for estimating the pose of the

current frame with respect to the current active keyframe in the map, using the position of

the previous frame as before. The required pose is represented by a SE(3) transformation,

and is found by an iteratively re-weighted Gauss-Newton optimization that minimizes the

residual normalized error of the variance, as described in [40]. A keyframe is considered

active if it is the most recent keyframe hosted on the map. To minimize outlier effects,

measurements with large residuals are down-weighted from one iteration to the next.



Chapter 3. Monocular-SLAM: a survey 39

The estimation of the position in ORB SLAM [94, 95] is established through a previous

constant velocity movement model (Section 2.3.1), followed by a refinement of the posture

by optimization. Since the motion model is expected to be easily violated through abrupt

motions, ORB SLAM detects such failures by tracking the number of matched features;

if it falls below a certain threshold, the points on the map are projected in the current

frame, and a wide-range feature search is performed around the projected locations. In

an effort to make ORB SLAM operate in large environments, a subset of the global map,

known as the local map, is defined by all features corresponding to the set of all keyframes

that share edges with the current frame, as well as all neighbors of this set of keyframes

from the pose graph. The selected features are filtered out to keep only the features that

are most likely to be matched in the current frame. Furthermore, if the distance from the

camera’s center to the feature is beyond the range of the valid features, the feature is also

discarded. The remaining set of features is then searched for and matched in the current

frame, before a final camera pose refinement step.

Similar to LSD-SLAM, DPPTAM [43] optimizes the photometric error of high gradient

pixel locations between two images, using the ICIA formulation over the SE(3) transform

that relates the corresponding points. Minimization is initiated using a constant velocity

motion model, unless the photometric error increases after its application. If the latter is

true, the motion model is not taken into account and the pose of the last frame followed is

used. Similar to PTAM, optimization in DPPTAM takes place in the tangent space Sξ(3)

that minimally parametrizes the transformation of the rigid body by six parameters.

In DSO-SLAM [43], all the frames tracked simultaneously and used in the map update

process; however, each frame contributes differently, and is treated according to whether

a key frame is considered or not. DSO-SLAM uses two parallel threads: a front-end

thread, and a mapping thread. Front-end initializes the system at startup using random

depth initialization: it computes the intensity gradients, and tracks the current frame

with respect to the currently active keyframe. Different than other systems, DSO-SLAM

does not use a single frame pose prior; rather, it attempts a direct image alignment by

looping over multiple pose guesses, in a pyramidal implementation, and removes guesses

that yield higher residuals between iterations. The final pose estimate that yields the

smallest residual error is then assigned to the current frame. Finally, in recent works

[76, 129], the camera pose estimation is solved via CNN implementations. Different to

previous approaches, in [76, 129] the feature extraction and matching steps are avoided;

instead a CNN can compute the camera poses and the 3D map in a direct form.



Chapter 3. Monocular-SLAM: a survey 40

3.4 Map construction

When a new keyframe is added in PTAM [69], all bundle adjustment operations are halted,

and the new keyframe inherits the pose from the coarse tracking stage. The potentially

visible set of features estimated by the tracker are then re-projected onto the new keyframe,

and feature matches are established. Correctly matched features are marked as seen again;

this is done to keep track of the quality of the features and to allow for the map refinement

step to remove corrupt data. New features are generated by establishing and triangulating

feature matches between the newly added keyframe and its nearest keyframe (in terms of

position) from the map. Landmarks that are already existent in the map are projected

onto both keyframes, and feature matches from the current keyframe are searched for along

their corresponding epipolar lines in the second keyframe, at regions that do not contain

projected features. The average depth of the projected features is used to constrain the

epipolar search, from a line to a segment.

SVO [106] parametrizes the 3D features using an inverse depth parameterization model

[31]. When inserting a new keyframe, features possessing the highest Shi-Tomasi scores

are chosen to initialize a number of depth filters. These features are referred to as seeds,

and are initialized along a line propagating from the camera center to the 2D location of

the seed in the originating keyframe. The only parameter that remains to be solved for is

the depth of the feature, which is initialized to the mean of the scene’s depth, as observed

from the keyframe of origin. During the times when no new keyframe is processed, the map

management thread monitors and updates map seeds through subsequent observations,

similar to [137]. The seed is searched in new frames along an epipolar search line, which

is limited by the uncertainty of the seed, and the average depth distribution observed

in the current frame. As the filter converges, its uncertainty decreases, and the epipolar

search range decreases. If the seeds do not coincide frequently, if they diverge to infinity

or, if a long time has passed since their initialization, they are removed from the map.

This process however limits SVO to operate in environments of relatively uniform depth

distributions. Since the initialization of features in SVO relies on many observations in

order for the features to be triangulated, the map contains few, if any, outliers, and hence

no outlier deletion method is required. However, this occurs at the expense of a delay

time before the features are initialized as features and added to the map.

DT-SLAM [60] aims to add keyframes when enough visual change has occurred; the

three criteria for keyframe addition are (1) for the frame to contain a sufficient number



Chapter 3. Monocular-SLAM: a survey 41

of new 2D features that can be created from areas not covered by the map, or (2) a

minimum number of 2D features can be triangulated into 3D features, or (3) a given

number of already existing 3D features have been observed from a significantly different

angle. The map in DT-SLAM contains both 2D and 3D features, where the triangulation

of 2D features into 3D features is done through two view triangulation by optimization,

and is deferred until enough parallax between the keyframes is observed.

In LSD-SLAM [41] the map generation module is mainly responsible for the selection

and accommodation of new keyframes into the map. Its functions can be divided into

two main categories, depending on whether the current frame is a keyframe or not; if

it is, depth map creation takes place by keyframe accommodation as described below;

if not, the creation of the depth map is done on regular frames. When the system is

accommodating a new keyframe, the estimated depth map from the previous keyframe is

projected onto it, and serves as its initial guess. Spatial regularization then takes place,

by replacing each projected depth value with the average of its surrounding values, and

the variance is chosen as the minimal variance value of the neighboring measurements.

The Sim(3) of a newly added keyframe is then estimated and refined in a direct, scale-

drift aware image alignment scheme with respect to other keyframes in the map, over the

seven degree of freedom Sim(3) transform. Due to the non-convexity of the direct image

alignment method on Sim(3), an accurate initialization to the minimization procedure is

required; for such a purpose, ESM (Efficient Second Order minimization) and a coarse to

fine pyramidal scheme with very low resolutions proved to increase the convergence radius

of the task.

In ORB SLAM [94, 95] the local mapping thread is responsible for keyframe insertion,

map point triangulation, map point culling, keyframe culling, and local bundle adjustment.

ORB SLAM incorporates a hybrid map, one metric and two topological maps. However,

the two topological maps, referred to as co-visibility and essential graphs, are built using

the same nodes (keyframes) however, with different edges (connections) between them.

The co-visibility graph allows for as many connections as available between nodes; in

contrast to the essential graph that allows every node to have at most two edges, by only

keeping the strongest two edges. The mapping thread is responsible for updating the

co-visibility and essential graphs with the appropriate edges, as well as computing the

bag of words representing the newly added keyframes in the map. The metric map is

propagated by triangulating new features from ORB features, which appear in at least

two nodes connected to the new keyframe in the co-visibility graph. To prevent outliers,

triangulated features are tested to determine positive depth, re-projection error, and scale



Chapter 3. Monocular-SLAM: a survey 42

consistency in all keyframes they are observed in, before finally incorporating them into

the map.

The triangulation of reference points in DPPTAM [43] takes place over several overlap-

ping observations of the scene using inverse depth parametrization; the map maker aims

to minimize the photometric error between a high gradient pixel patch in the last added

keyframe, and the corresponding patch of pixels, found by projecting the feature from the

keyframe onto the current frame. The minimization is repeated ten times for all high gra-

dient pixels, when the frame exhibits enough translation; the threshold for translation is

increased from one iteration to the next, to ensure sufficient baseline distance between the

frames. The end result is ten hypotheses for the depth of each high gradient pixel. To de-

duce the final depth estimate from the hypotheses, three consecutive tests are performed,

including gradient direction test, temporal consistency, and spatial consistency.

Finally, in DSO [43] all frames are used in the map building process; while keyframes

are used to expand the map and perform optimize the window, regular frames (non-

keyframe) are used to update the depth of the already existing candidate points. DSO

maintains two thousand candidate points per keyframe. The estimated pose of the sub-

sequent regular frames, the location of the candidate points in the active keyframe and

their variance, are all used to establish an epipolar search segment in the regular frame.

The image location along the epipolar segment, which minimizes the photometric error,

is used to update the depth and the variance of the candidate point, using a filter-based

triangulation, similar to LSD SLAM [41]. DSO adopts the inverse depth paradigm as a

parameterization for the 3D world which reduces the parameters to optimize to one vari-

able; therefore reducing computational cost. This estimated depth is used as a prior for a

subsequently activated candidate point in a windowed optimization. In its active window

of optimization, DSO maintain seven active keyframes, along with two thousand active

points, equally distributed across the active keyframes. As new keyframes and candidate

points are accommodated by the system, older ones are marginalized: where the number

of active keyframes exceeds 7, the system chooses a keyframe from the active window

and marginalizes it. The choice of keyframe is made by maximizing a heuristic designed

distance score, which ensures that the remaining active keyframes to be well distributed

across the space between the first and last keyframes in the active window, and closer

to the most recently added keyframe. Also if ninety-five percent of a frame’s points are

marginalized, the frame is removed from the system.



Chapter 3. Monocular-SLAM: a survey 43

3.5 Refinement

When the map making thread is not processing new keyframes, PTAM [69] performs

several optimizations and maintenance of the map and camera poses, such as a Local

Bundle Adjustment for local map convergence and a Global Bundled Adjustment for the

global convergence of the map. The computational cost in PTAM is scaled with the map

and becomes intractable as the number of keyframes increases; for this reason, PTAM

is designed to work in small workspaces. Finally, the optimization thread applies the

refinement of the data by first searching and updating feature observations in all the

keyframes, and then by removing all the features that failed, many times, to match the

characteristics successfully. For reasons of runtime efficiency, SVO [106] keeps only a

fixed number of keyframes on the map and removes the distant ones when new keyframes

are added. This is performed so that the algorithm maintains real-time performance

after prolonged periods of operation over large distances. DT SLAM [60] employs a third

thread that continuously optimizes the entire map and the camera poses in the background

through a sparse Global Bundled Adjustment. LSD SLAM [41] runs a third parallel thread

that continuously optimizes the map and the camera poses in the background by a generic

implementation of a pose graph optimization using the g2o-framework [72]. However, this

leads to a low accuracy compared to other methods. Atypical values are detected by

monitoring the probability of the projected depth hypothesis at each pixel of being an

outlier or not. To make the outliers detection step possible, LSD-SLAM keeps records

of each successfully matched pixel during the tracking thread, and increases or decreases

accordingly the probability of it being an outlier.

ORB-SLAM [94, 95] employs rigorous feature culling to ensure few outliers in the map.

A feature must be correctly matched to twenty-five percent of the frames in which it is

predicted to be visible. It must also be visible from at least three keyframes after more

than one keyframe has been accommodated on the map, since it was spawned. Otherwise,

the feature is removed. To maintain lifelong operation and to counter the side effects

of the presence of a high number of keyframes in the map, a rigorous keyframe culling

procedure takes place as well. Keyframes that have ninety percent of their associated

features observed in three other keyframes are deemed redundant, and removed. The local

mapping thread also performs a Local Bundle Adjustment over all keyframes connected to

the last accommodated keyframe in the co-visibility graph, and all other keyframes that

observe any feature present in the current keyframe.



Chapter 3. Monocular-SLAM: a survey 44

DPPTAM [43] produces dense maps in real time by employing a dense mapping thread

that exploits planar properties of manmade indoor environments. Keyframes are first seg-

mented into a set of 2D superpixels, and all 3D features from the map are projected onto

the keyframe, and assigned to different superpixels according to the distance of their pro-

jections to the appropriate superpixel in the keyframe. 3D points belonging to contours

of the superpixels are used to fit 3D planes to each superpixel. To determine if the su-

perpixel’s plane is to be added into the map, three tests are performed: the normalized

residual test, the degenerate case detection, and the temporal consistency test. Then, a

full dense map is reconstructed, using the depth priors of the 3D planes associated with

the superpixels. Finally, DSO [43] performs a windowed optimization on the photomet-

ric combination (intensity) and geometric residual of all active points between the set of

active keyframes, using six iterations of Gauss-Newton. If the resulting residual of the

most recently added keyframe after the optimization is large, the newly added keyframe is

dropped. Map maintenance in DSO is also responsible for the detection and management

of atypical values at an early stage of the DSO formulation.

3.6 Loop closure

3.6.1 Relocalization

Upon detecting a fault, the PTAM [69] tracker initiates a recovery procedure, where the

SBI of each incoming frame is compared to the SBI database (Small-Blurry-Image) for all

keyframes. If the intensity difference between the incoming frame and its closest looking

keyframe is below a certain threshold, the current frame’s pose is assumed to be equivalent

to that of the corresponding keyframe. ESM tracking takes place to estimate the rotational

change between the keyframe and the current frame. If converged, the tracker attempts

to match the features to the features in the frame. If a sufficient number of features are

correctly matched, the tracker resumes normally; otherwise, a new frame is acquired and

the tracker remains lost. In SVO [106] the first procedure in the recovery process is to

apply image alignment between the incoming frame and the closest keyframe to the last

known correctly tracked frame. If more than thirty features are correctly matched during

this image alignment step, then the re-localizer considers that is converged and continues

tracking regularly; otherwise, it attempts to relocalize using new incoming frames.



Chapter 3. Monocular-SLAM: a survey 45

The LSD-SLAM [41] recovery procedure first chooses, at random, from the pose graph,

a keyframe that has more than two adjacent keyframes connected to it. Then, LSD-SLAM

tries to align the currently missing frame. If the ratio of outlier to inlier is large, the

keyframe is discarded, and replaced by another random keyframe; otherwise, all neighbor-

ing keyframes connected to it are verified in the pose graph. If the number of neighbors

with a large inlier-to-outlier ratio is larger than the number of neighbors with a large

outlier-to-inlier ratio, or if there are more than five neighbors with a large inlier-to-outlier

ratio, the neighboring keyframe with the largest ratio is set as the active keyframe, and

regular tracking resumes.

Upon running, the ORB SLAM [94, 95] re-localizer transforms the current frame into

a bag of words and queries the database of keyframes for all possible keyframes that might

be used to relocalize from. The place recognition module implemented in ORB SLAM,

used for loop detection and failure recovery, is based on bags of words, since frames that

observe the same scene share a large number of common visual vocabulary. In contrast to

other bag of words methods that return the best hypothesis consulted from the keyframe

database, the ORB-SLAM place recognition module returns all possible hypotheses that

have a probability of being a match larger than seventy-five percent of the best match. The

combined added value of the ORB features, along with the bag of words implementation

of the place recognition module, manifest themselves in a real-time, high recall, and rel-

atively high tolerance to viewpoint changes during relocalization and loop detection. All

hypotheses are then tested through a RANSAC implementation of the PnP algorithm [75],

which determines the camera pose from a set of 3D to 2D correspondences. The camera

pose with the most inliers is then used to establish more matches to features associated

with the candidate keyframe, before an optimization over the camera’s pose takes place.

Finally, in DSO [43], there is no world-based fault recovery method. When the mini-

mization of DSO pose tracking is diverted, the last successfully tracked camera pose is used

to generate multiple arbitrary random rotations around it. The generated poses are used

in an attempt to locate at the thickest pyramid level with the most recent active keyframe;

if the photometric minimization is successful, regular tracking resumes, otherwise, tracking

fails.



Chapter 3. Monocular-SLAM: a survey 46

3.6.2 Loop closure

Whena tracking error occurs in DT-SLAM [60], a new secondary map begins and DT-

SLAM start tracking it while a loop closure thread attempts to establish data associations

across different sub-maps. Therefore, the DT-SLAM loop closure module is a modified

version of the PTAM failure recovery module [69] employed across DT-SLAM sub maps.

When a sufficient number of data associations are successfully established between two

keyframes, their corresponding sub-maps are merged together through a similarity trans-

form optimization. When a keyframe is processed by LSD-SLAM [41], loop closures are

searched for within its ten nearest keyframes as well as through the appearance based

model of FABMAP [51] to establish both ends of a loop. Once a loop edge is detected, a

pose graph optimization minimizes the similarity error established at the loop’s edge, by

distributing the error over the poses of the loop’s keyframes.

Loop detection in ORB SLAM [94, 95] takes place via a global place recognition module,

that returns all hypotheses of keyframes, from the database that might correspond to the

opposing loop end. All features associated with the queried keyframe and its neighbors

are projected to, and searched for, in all keyframes associated with the current keyframe

in the co-visibility graph. The initial set of inliers, as well as the matches found, are used

to update the co-visibility and Essential graphs, thereby establishing many edges between

the two ends of the loop. Finally, an optimization of the pose graph is carried out, similar

to that of LSD-SLAM [41], which minimizes and distributes the closing error of the loop

along the nodes of the loop. Finally, keyframes and marginal points in DSO [43] are

permanently removed from the system and never used again.

3.7 Monocular-SLAM: limitations and future trends

Each different solution of monocular-SLAM is favored by different operating conditions.

For example, SVO [106] prefers the high frame rate inputs of down-facing cameras, DPP-

TAM [43] can only operate in indoor environments where most of the observed scene is

composed of planar surfaces. DT-SLAM [60] requires that the scene be observed repeat-

edly. Furthermore, there is no public data set in the literature that allows us to make an

impartial experimental comparison in all systems. Therefore, in this section, we discuss

and evaluate the ramifications of the decisions made in each component of the different

monocular-SLAM systems, providing a theoretical view of the limitations of the different

module designs.



Chapter 3. Monocular-SLAM: a survey 47

3.7.1 Performance and limitations of direct approaches

Direct methods take advantage of all the information available in the image and, therefore,

are more robust than the methods based on characteristics in regions with little texture and

blur. Nevertheless, direct methods are susceptible to changes in the lighting of the scene,

of the assumption of underlying brightness consistency. In an effort to gain resistance

to this failure mode, the recently launched direct approaches model the imaging process

and attempt to incorporate the irradiance of the scene into functional energy, at the cost

of adding a calibrated imaging model that is used to correct images in a preprocessing

step. In practice, this model is estimated through an additional offline calibration process

described in [43].

During the non-linear optimization process, it is linearized through a first order Taylor

expansion. While the linearization is valid when the parameters of the warping transform

tends to zero, higher order terms become dominant and the linearization becomes invalid

for large transforms. Therefore, a second disadvantage of direct methods is the assumption

of small motions between the images (typically not more than 1 pixel). To relax this

constraint, direct monocular-SLAM systems employ a pyramidal implementation, where

the image alignment process takes place sequentially from the highest pyramid level to the

lowest, using the results of every level as a prior to the next level. Several authors also

suggest the use of high fame rate cameras to alleviate this issue; some systems employ

an efficient second order minimization to estimate a rotation prior that helps increase

the convergence radius. Despite these efforts, the tolerated baseline for data association

in direct methods is considerably smaller than the tolerated baseline in feature-based

methods. Finally, another disadvantage of the direct methods is that the calculation of

the photometric error in each pixel is computationally intensive; therefore, until recently,

real-time SLAM monocular applications of direct methods were not considered feasible.

However, with the recent advancements in parallel processing and with the introduction

of semi-dense reverse depth filtering, it was possible to integrate direct methods into real-

time solutions [42, 46], unfortunately, the processing is less than if based on characteristics

approaches.

3.7.2 Performance and limitations of feature-based approaches

Feature-based methods are relatively robust to changes in illumination and can tolerate

wider baselines; however, the extraction processes that make them resilient to these fac-



Chapter 3. Monocular-SLAM: a survey 48

tors are generally computationally expensive. For real-time operation constraints, most

systems employ an exchange between a type of entity to use in one hand, and robustness

and resistance to environmental factors in the other. To mitigate this constraint, other

systems, such as the work of [127], resort to parallelized GPU implementations for feature

detection and extraction. Another disadvantage of feature-based methods is that even

the top performing feature descriptors are limited in the amount of scene change (lighting

and viewpoint) they can handle before failure. Feature matching is also prone to failure

in similar-self repeating texture environments, where a feature in I1 can be ambiguously

matched to multiple other features in I2. Outliers in the data association module can sig-

nificantly degrade system performance by inducing errors in both the camera postures and

the generated map to the point of failure. Feature-based methods also suffer from lack of

features in textureless regions, causing feature-based approaches to fail in texture-deprived

environments.

3.7.3 Performance and limitations of the initialization step

Aside from the random depth initialization of LSD-SLAM [41] and DSO [43], all the sug-

gested methods described above suffer from degeneration under certain conditions, such

as under low parallax movements of the camera, or when the structure of the scene is

assumed is violated. The PTAM [69] initialization procedure is brittle and remains tricky

to perform, especially for inexperienced users. Furthermore, it is subject to degeneracies

when the planarity of the initial scene’s assumption is violated, or when the user’s motion

is inappropriate; thereby crashing the system, without means of detecting such degenera-

cies. As is the case in PTAM, the initialization of SVO [106] requires the same type of

motion and is prone to sudden movements, as well as to non-planar scenes. Furthermore,

monitoring the median of the baseline distance between features is not a good approach

to automate the initial keyframe pair selection, as it is prone to failure against degenerate

cases, with no means of detecting them. The initialization model of ORB-SLAM [94, 95]

attempts to automatically initialize the system by monitoring the baseline and the scene

across a window of images. If the observed scene is relatively far away, while the camera

slowly translates into the scene, the system is not capable of detecting such scenarios, and

fails to initialize. While a random depth initialization from a single image does not suffer

from the degeneracies of two view geometry methods, the depth estimation requires that

the processing of the subsequent frames converge, resulting in an intermediate follow-up

phase in which the map generated is not reliable.



Chapter 3. Monocular-SLAM: a survey 49

3.7.4 Performance and limitations of the data association step

In general, establishing data associations remains one of the biggest challenges in monocular-

SLAM. Systems that limit the search range along the epipolar line using the observed depth

information, implicitly assume a relatively smooth depth distribution. The violation of

this assumption (that is, when the scene includes significance variance in the observed

depth) causes the 2D features corresponding to potential future 3D features to fall outside

the boundaries of the epipolar segment, and the system ends up neglecting them. Other

limitations for data association arise from large erratic accelerations in the camera’s mo-

tion, also causing features to fall outside the scope of the search window. Such a scenario

is common when the camera is operated by an untrained user. Under the same type of

motions, image pollution with motion blur also negatively impacts the performance of

data association methods to the point of failure. Erroneous data association is also a

very common problem that can cause false positives in self-repeating environments. Most

current implementations of data association address this problem through a bottom-up

approach, where low level information from image pixels or from features, is used to es-

tablish correspondences. To mitigate some of these issues, a number of systems have

attempted to use more important geometric features, such as lines [21, 70, 146], superpix-

els or planar features [32, 88], or priors on 3D shapes in the scene [48]. Recent advances in

machine learning are promising alternatives to remedy some of the data association issues

by automatically learning to extract and match features [118, 135].

3.7.5 Performance and limitations of the pose estimation step

Systems based on constant motion models, such as PTAM [69] and ORB-SLAM [94, 95]

are prone to tracking failure when abrupt changes in the direction of the camera’s motion

occurs. While both employ a recovery of such failures, the tracking performance of PTAM

is exposed to a false positive recovery; as opposed to ORB-SLAM , which first tries to

increase the search window before invoking its fault recovery module. Another limitation

of feature-based pose estimation is the detection and handling of occlusions. As the

camera translates in the scene, some features in the background are prone to occlusions

from objects in the foreground. When the system projects the 3D map points onto the

current frame, it fails to match the occluded features, and counts them toward the camera

tracking quality assessment. In extreme cases, the tracking quality of the system might be

deemed bad and tracking failure recovery procedures are invoked even though camera pose



Chapter 3. Monocular-SLAM: a survey 50

tracking did not fail. Furthermore, occluded points are flagged as outliers and passed to

the map maintenance module to be removed, depriving the map from valid useful features

that were erroneously flagged due to occlusions in the scene.

Other systems, that use the previously tracked pose as a prior for the new frame’s pose,

are also prone to the same limitations of constant velocity models. Furthermore, they re-

quire small displacements between frames, limiting their operation to relatively expensive

high frame rate cameras (typically > 70 fps) such that the displacement limitation is not

exceeded. Another limitation of these methods is inherent from their use of direct data

association. Their tracking module is susceptible to variations in the lighting conditions.

To gain some resilience to lighting changes in direct methods, DSO authors [43] suggest

an off-line photometric calibration process to parametrize and incorporate lighting varia-

tions within the camera pose optimization process. Finally, a common limitation in most

tracking modules is the presence of dynamic objects in the observed environment. The use

of multiple cameras (multi-camera visual SLAM) could solve this issue. Since dynamic

objects can be detected and removed via multiple-view motion models. However, in the

case of monocular-SLAM the limitation of a single moving camera makes it not possible

to use these motion models.

As most monocular-SLAM systems assume a static scene, the tracking modules of most

systems suffer from tracking failures: a significantly large dynamic object in the scene

could trick the system into thinking that the camera itself is moving, while it did not

move relative to the environment. Small, slow-moving objects can introduce noisy outlier

features on the map and require subsequent processing and handling to be removed. On

the other hand, small and fast moving objects do not affect the tracking module as much.

Finally, small rapidly moving objects tend to violate the epipolar geometry of the pose

estimation problem, and are easily flagged and removed from the camera pose optimization

thread; however, they can occlude other features.

3.7.6 Performance and limitations of the map construction step

A major limitation in the method of optimization by triangulation is the requirement of a

significant baseline that separates two points of view by observing the same characteristic.

Hence, it is prone to failure when the camera’s motion is made of pure rotations. To counter

such modes of failure, DT-SLAM [60] introduced 2D features that can be used to expand

the map during pure rotations, before they are triangulated into 3D features. However,

the observed scene during the rotation motion is expected to be re-observed with more



Chapter 3. Monocular-SLAM: a survey 51

baseline, for the features to transition from 2D to 3D. Unfortunately, in many applications

this is not the case; for example, a camera mounted on a car making a turn cannot

re-observe the scene, and eventually tracking failure occurs. DT-SLAM addresses such

cases by generating a new sub map and attempts to establish connections to previously

created sub-maps by invoking a thread to look for similar keyframes across sub-maps, and

establish data associations between them. Meanwhile, it resumes tracking in the new world

coordinate frame of the new sub-map. However, this makes the pose estimates obsolete;

at every tracking failure, the tracking is reset to the new coordinate frame, yielding useless

pose estimates until the sub-maps are joined together, which may never occur.

In filter-based triangulation methods, outliers are easily flagged as features whose dis-

tribution remains approximately uniform after several observations have been incorporated

in the framework. This reduces the need for a subsequent processing step to detect and

handle outliers. Also, features at infinity feature parallax values that are too small for

triangulation purposes; but still, it can be used to improve the camera’s rotation esti-

mates, stay on the map and go from infinity to the metric map, when enough parallax is

recorded between the views observing them. However, these benefits come at the expense

of increased complexity in implementing a probabilistic framework, which keeps track and

updates the uncertainty in the depth distribution of every pixel with a gradient in the

system. Furthermore, while the dense and semi-dense maps can capture a much more

meaningful representation of a scene than a sparse set of 3D features, the added value is

diminished by the challenges of handling immense amounts of data in 3D. Therefore, it is

necessary to have additional top-level semantic information to reason about the observed

scene and to improve the overall performance of the system. While monocular SLAM

systems have been shown to improve the results of semantic labeling [103], the feedback

from the latter to the former remains a challenging problem. Previous work on the subject

includes, among others, [12, 73, 142].

3.7.7 Performance and limitations of the refinement step

Pose Graph Optimization (PGO) returns inferior results to those produced by GBA

(Global Bundle Adjustment), while PGO optimizes only for the poses of keyframes, that

is, adjusts the 3D structure of the visual features; GBA and LBA (Local Bundle Ad-

justment) are optimized together for keyframe poses and the 3D structure. The stated

advantage comes at the cost of computational time, with PGO exhibiting a significant

speed up compared to the other methods. PGO is often employed during the closure of



Chapter 3. Monocular-SLAM: a survey 52

the loop since the computational cost of running a full packet adjustment is often unsuit-

able in large-scale loops; however, pose graph optimization may not yield optimal result

if the errors accumulated over the loop are distributed along the entire map, leading to

locally induced inaccuracies in regions that were not originally wrong.

3.7.8 Performance and limitations of the loop closure step

For successful re-localization or loop detection, the global location methods employed by

PTAM [69], SVO [106] and DT-SLAM [60] require that the camera’s pose be close to the

recorded keyframe’s pose, and would otherwise fail when there is a large displacement

between the two. Furthermore, they are highly sensitive to any change in the lighting

conditions of the scene, and may yield many false positives when the observed environ-

ment is composed of self-repeating textures. Other methods that rely on bags of words

representation of high dimensional features are susceptible to failure when the training set

of the bag of words classifier is not representative of the working environment in which

the system is operating.

3.7.9 Challenges

Although extensive research has been dedicated to the monocular-SLAM formulation, each

of the building blocks discussed above could benefit from many improvements of which we

list the following:

• Robust data association against illumination changes, dynamic scenes, and occluded

environments.

• A robust initialization method that can operate without an initial scene assumption.

• An accurate camera pose estimate that is not affected by sudden movements, blur,

noise, large depth variations, nor moving objects.

• A map making module capable of generating an efficient dense scene representation

in regions of little texture, while incorporating a higher level of perception.

• A map maintenance method that improves the map, with resilience against dynamic,

changing environments.

• A failure recovery procedure capable of recovering the system from significantly large

changes in camera viewpoints.



Chapter 3. Monocular-SLAM: a survey 53

• A mathematical formulation that allows efficient embedded implementation.

These are all desired properties that remain challenging topics in the field of monocular-

SLAM. Furthermore, with the recent advancements in machine learning, researchers are

moving towards integrating semantic data within the context of monocular-SLAM. While

the incorporation of semantic data into SLAM is undoubtedly the next step in the right

direction, we argue that such integration requires a hybrid fusion approach that tightly

integrates metric, topological and semantic representations in a symbiotic relationship, a

research area relatively uncharted.

3.8 Discussion

In previous works, several contributions for the essential building blocks of the generic

monocular-SLAM formulation were made; including data association, visual initializa-

tion, pose estimation, topological/metric map generation, BA/PGO/map maintenance,

and global localization. Although extensive research has been dedicated to improve those

blocks and currently monocular-SLAM systems reach high accuracy and a relatively high

processing speed, it is our opinion that each of the building blocks discussed above could

benefit from many improvements. In our case, we are interested in monocular-SLAM solu-

tions suitable for embedded systems. In this context, in previous works (PTAM, SVO, DT

SLAM, LSD SLAM, ORB SLAM, DPPTAM, and DSO) the most accurate and used solu-

tion is based on optimization techniques implemented in sequential processors. This makes

possible to reach high accuracy for the camera pose estimation but limits the processing

speed, embedded capabilities and deliver sparse point clouds. So, in order to reach high

efficiency under embedded systems, in this research, we reformulate the monocular-SLAM

problem in order to facilitate an FPGA/CUDA implementation, suitable for embedded

applications, real-time processing and dense point cloud estimations. For the camera pose

estimation, we will explore about a dense feature matching as linear/dependent pattern

for the pose estimation. For the feature matching algorithm, we will explore about a new

pixel tracking/feature matching algorithm which consists in an extension of the stereo

matching problem; for that, we will use a pixel-parallel/window-parallel approach based

on a Sum of Absolute Difference and, in order to improve the correlation performance,

we will explore the curl of the intensity gradient as preprocessing step. Finally, to re-

cover depth in the scene, we propose the norm of the pixel tracing (optical flow) as linear

dependent to depth.



Chapter 3. Monocular-SLAM: a survey 54

3.9 Summary

In this chapter a detailed discussion about the state of the art was presented. Performance

and limitations of the current monocular-SLAM systems and the current open and pos-

sible future trends/strategies for the solution of each of these limitations were discussed.

In order to address the embedded capabilities limitations (which is the main research

interest of this work); in the following chapter, several algorithmic reformulations, new

theoretical knowledge for monocular-SLAM and several hardware implantation strategies

for FPGA/CUDA architectures will be presented.



Chapter 4

LT-SLAM: Lookup Table-based

Monocular-SLAM

In Fig. 4.1 an overview of the proposed algorithm is shown. First, feature points (corners)

are extracted in the reference image (ft(x, y)), for which a parallel version of the Harris

corner detection algorithm was developed [56]. Then, pixel tracking uses a dynamic model

to compute 2D pixel displacements between ft(x, y) and ft+1(x, y) (two consecutive frames

from a video sequence). Given pixel tracking for all pixels in the reference image, depth

from motion is estimated. Further, feature matching for ft(x, y) and ft+1(x, y) is computed.

Then, search parameters are computed, these parameters are used as searching criteria

within a lookup table. Given the search parameters for two consecutive frames, a look

up table delivers preliminary pose estimations. Finally, preliminary pose estimations are

refined and the map construction is computed in a stream post-processing step.

4.1 Feature extraction

For the feature extraction step, we developed a parallel version of the Harris & Stephens

corner detection algorithm [56], see Fig. 4.2. Our formulation consists of three steps

executing in sequential form. Given an input image f(x, y), first, image derivatives

A(x, y), B(x, y), C(x, y) are computed. Then, a corner metric response m(x, y) delivers

high pixel values for corner points and low pixel values otherwise. Finally, a thresholding

operation delivers a one at corner points retained after a non-maxima suppression step

and zero otherwise (h(x, y)).

55



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 56

Figure 4.1. Block diagram of the proposed algorithm. First, visual
features are extracted and matched. Then, eight search parameters are
used as searching criteria within a lookup table, delivering preliminary
pose estimations. Finally, preliminary pose estimations are refined and
the map construction is computed in a stream post-processing step.

Figure 4.2. Formulation of the feature extraction step. First, image
derivatives are computed. Then, a corner metric response delivers high
pixel values for corner points and low pixel values otherwise. Finally, a
thresholding operation finalizes the feature extraction process.

For the first step: given an input image f(x, y), horizontal and vertical gradients are

given by: Gx(x, y) = f(x, y) • gx, Gy(x, y) = f(x, y) • gy, where the operation f(x, y) • g
denotes the 2D spatial convolution between an input image f(x, y) and a fixed convo-

lution kernel g. For the convolution kernels, we use the Sobel convolution kernels de-

fined as shown in Eq. 4.1. Given the image gradients (Gx(x, y), Gy(x, y), image deriva-

tives (A(x, y), B(x, y), C(x, y)) are computed as A(x, y) = Gx(x, y) ∗ Gx(x, y), B(x, y) =

Gy(x, y) ∗Gy(x, y), C(x, y) = Gx(x, y) ∗Gy(x, y).

gx =

 −1 0 1

−2 0 2

−1 0 1

 , gy =

 −1 −2 −1

0 0 0

1 2 1

 , (4.1)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 57

For the second step, a Gaussian filtering is applied on the image derivatives (A(x, y),

B(x, y), C(x, y)) in order to reduce noise and removing fine-scale structures that affect

the performance of the corner response. This process is defined as A′(x, y) = A(x, y) •
G, B′(x, y) = B(x, y) • G, C ′(x, y) = C(x, y) • G, where the operator • denotes the 2D

spatial convolution between an input image (A(x, y), B(x, y), C(x, y)) and a fixed convo-

lution kernel G. The convolution kernel is defined as shown in Eq. 4.2. Finally, using the

filtered image derivatives, the corner metric response is computed as in Eq. 4.3.

G =


0.0178 0.0306 0.0367 0.0306 0.0178

0.0306 0.0525 0.0629 0.0525 0.0306

0.0367 0.0629 0.0753 0.0629 0.0367

0.0306 0.0525 0.0629 0.0525 0.0306

0.0178 0.0306 0.0367 0.0306 0.0178

 (4.2)

m(x, y) = A′(x, y)×B′(x, y)− C ′(x, y)2 − 0.04× (A′(x, y) +B′(x, y))2 (4.3)

In the third step, the corner detection process is computed with Eq. 4.4; where the

operation m′ ◦M denotes the matrix composition between patches in the corner response

image (m′ = m(x− 2 : x+ 2, y − 2 : y + 2)) and the matrix M (suppression matrix), i.e.,

a(1, 1) = m′(1, 1)∗M(1, 1), a(1, 2) = m′(1, 2)∗M(1, 2) . . . a(5, 5) = m(5, 5)∗M(5, 5). This

process is called non-maxima suppression step and its objective is to remove noise pixels

detected as corners and retain only one point/pixel at each corner. For that, a threshold

(ζ) has to be applied on m(x, y) (the corner metric image), delivering ones at corner points

retained after a non-maxima suppression step and zero otherwise. In Fig. 4.3 an example

of the feature extraction step is shown, a threshold ζ = 1× 105 retained more than 15000

visual features (corners) after the non-maxima suppression step.

h(x, y) =

{
1 if ζ < m(x, y) > b(x, y)

0 otherwise
(4.4)

where

b(x, y) = max(a)

a = m ◦M



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 58

M =


1 1 1 1 1

1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1



(a)

(b)

Figure 4.3. Example of the feature extraction process. (a) Input.
(b) Using the Harris corner metric response a thresholding operation
(ζ = 1× 105) delivers ones at corner points retained after a non-maxima
suppression step.



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 59

4.2 Pixel tracking

In previous works, visual descriptors such as, SIFT [82], SURF [15], ORB [113] have been

used to compute feature tracking in video sequences. Unfortunately, in order to get a

robust feature tracking, these algorithms use high order metrics such as, the Jacobian or

Laplacian of the patch that is processed, which limits the processing speed. To solve this

problem, feature tracking should be performed only for a few pixels in the input image,

generating a sparse tracking. To obtain dense tracking, as established in our hypothesis,

in this work we propose a new pixel tracking algorithm which consists in an extension

of the stereo matching problem. To achieve high performance for hardware architectures

(FPGA/CUDA), a pixel-parallel/window-parallel approach based on a local correlation

function is used. In order to improve the correlation performance, the curl of the intensity

gradient as preprocessing step is proposed. In Fig. 4.4 an overview of the pixel tracking

algorithm is shown. It consists of three steps in sequential form. The first step improves

the input images robustness: let (ft(x, y), ft+1(x, y) be two consecutive frames from a video

sequence, the curl of the intensity gradient df(x,y)
dx

are computed using Eq. 4.5. Let curl be

a vector operator that describes the infinitesimal rotation, then, at every pixel the curl of

that pixel is represented by a vector whose attributes (length and direction) characterize

the rotation at that point. In our case, we use only the norm of Curl(x, y), as shown in

Eq. 4.6. For implementation purposes, we divide the curl operation into two parts, first,

image gradients (Gx(t), Gy(t), Gx(t+1), Gy(t+1)) are computed, then, in the second part, the

curl operation is completed.

Figure 4.4. Formulation of the pixel tracking step.

Curl(x, y) = ∇× df(x, y)

dx
=

∂

∂y

∂f(x, y)

∂x
− ∂

∂x

∂f(x, y)

∂y
(4.5)

where

∂f(x, y)

∂x
= Gx(x, y) = f(x+1, y)−f(x−1, y),

∂f(x, y)

∂y
= Gy(x, y) = f(x, y+1)−f(x, y−1)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 60

∂

∂x

∂f(x, y)

∂y
= Gy(x+ 1, y)−Gy(x− 1, y),

∂

∂y

∂f(x, y)

∂x
= Gx(x, y + 1)−Gx(x, y − 1)

Curl(x, y) = | ∂
∂y

∂f(x, y)

∂x
− ∂

∂x

∂f(x, y)

∂y
| (4.6)

Given the curl images for two consecutive frames
(
Curlt(x, y) Curlt+1(x, y)

)
, dense

pixel tracking
(
∆′x(x, y), ∆′y(x, y)

)
, illustrated in Fig. 4.5b) in the reference image is

computed as shown in Fig. 4.5a. This process assumes that pixel displacements between

frames is such that it exists an overlap on two successive “search regions”. A search region

is defined as a patch around a pixel to track. Considering that between ft and ft+1, the

image degradation is low, any similarity-based metric have to provide good accuracy. In

our case, the similarity is computed by a SAD (Sum of Absolute Difference), Eq. 4.7;

where r is the patch size (see Fig. 4.5a). (Curlt(x, y),Curlt+1(x, y)) are curl images on

two consecutive frames. x, y are the spatial coordinates of pixels in ft and, a, b are the

spatial coordinates within a search region constructed in ft+1 (see Eq. 4.8 and 4.9); where

∆′′x(t−1),∆
′′
y(t−1) are a dynamic search template, computed as shown in Section 4.4. k is

the search size and s is a sampling value defined by the user. Finally, dense pixel tracking

at the current time (∆′x(x, y), ∆′y(x, y)) is computed by Eq. 4.10.

SAD(a, b) =

u=r,v=r∑
u=−r,v=−r

|Curlt(x+ u, y + v)−Curlt+1(x+ u+ a, y + v + b)| (4.7)

a = ∆′′x(t−1)(x, y)− k : 1 : ∆′′x(t−1)(x, y) + k, (4.8)

b = ∆′′y(t−1)(x, y)− k : 1 : ∆′′y(t−1)(x, y) + k (4.9)

[∆′x(x, y),∆′y(x, y)] = arg min(a,b)SAD(a, b) (4.10)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 61

(a)

(b)

Figure 4.5. The pixel tracking process. (a) The pixel-parallel/window-
parallel formulation. For each pixel in the reference image ft, n over-
lapped regions are constructed in ft+1, then, n region center that mini-
mizes a SAD correlation fucntion is the tracked position of the pixel(x, y)
at ft+1. (b) Pixel tracking example. Let ft, ft1 be two consecutive frames
of a video sequence; the pixel tracking components (∆′x(x, y), ∆′y(x, y))
represents the 2D spatial displacements between the origin (ft) and the
current frame (ft1).



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 62

4.3 Feature matching

The pixel tracking step is computed for all pixels in the reference image (Section 4.2),

however, it does not consider the occlusion problem. To solve this problem, a feature

matching step is used as filtering outliers. Let ht+1(x, y) be the features extracted in the

search image, and ht(x, y) the features extracted in the reference image (see Section 4.1);

we propose an outlier filter based on the hypothesis that a “good” feature has to be isolated

from other key points (this should avoid the confusion in the matching process). For the

mathematical formulation, each feature point and its surrounding neighbors are tested in

order to quantify the number of features within a 3×3 neighborhood, see Eq. 4.11-4.12.

Ten, a “good” feature point has to be associated with a unique feature at the center of the

3×3 neighborhood. On the other hand, to validate the pixel tracking robustness and to

ensure not occlusion, we use the hypothesis that a “good” feature in ht(x, y) should have a

corresponding feature in ht+1(x−∆′x(x, y), y−∆′y(x, y)). This means that for each feature

point in the reference image, there has to exist the same feature point (isolated from

other key points) in the tracked position in ht+1(x, y). For the mathematical formulation

see Eq. 4.13 - 4.14, where ∆x(x, y),∆y(x, y) are the feature matching being computed

while ∆′x(x, y),∆′y(x, y) are the corresponding pixel tracking (Section 4.2). In Fig. 4.6

an example of feature matching in shown.

pt(x, y) =
u=1∑
u=−1

v=1∑
v=−1

ht(x+ u, y + v) (4.11)

pt+1(x−∆′x(x, y), y −∆′y(x, y)) =
u=1∑
u=−1

v=1∑
v=−1

ht+1(x+ u, y + v) (4.12)

∆x(x, y) =

{
∆′x(x, y) if pt(x, y) == pt+1(x, y) == 1

0 otherwise
(4.13)

∆y(x, y) =

{
∆′y(x, y) if pt(x, y) == pt+1(x, y) == 1

0 otherwise
(4.14)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 63

Figure 4.6. The feature matching process. Only pixel tracking for
“good” features (corners) extracted in the reference image are retained.

4.4 Tracking template

Let p be a pixel in the reference image (ft(xt, yt)) the same pixel in the tracked image

(ft+1(xt+1, yt+1)) has to satisfy xt+1 ∈ xt − k : 1 : x + k, yt+1 ∈ y − k : 1 : yt + k, where k

is the search size for the pixel tracking step. In practice, large search size areas increase

the tracking performance since feature tracking could be carried out in both slow and

fast camera movements. However, large search windows decrease accuracy. On the other

hand, small search size areas reach accurate and fast tracking but it is limited to slow

camera movements. To address this problem we use the feedback of the previous feature

matching step (Fig. 4.7) in a fashion that if camera movement in t−1 is slow, a fixed small

size search window closer to the pixel being tracked (xt, yt) is used. On the other hand, for

fast camera movements, a fixed small size search windows far to the pixel being tracked

is defined. For implementation purposes we use a 9×9 search window since it provides a

good tradeoff between robustness/accuracy and computational resources usage. For the



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 64

mathematical formulation, let define ∆x(x, y),∆y(x, y) as the feature matching for the

time t − 1 (see Eq. 4.13 - 4.14). Search template for the current time is computed as

shown in Eq. 4.15 - 4.16, where k is the template size, in this case k = 9, which means a

window search area of 19× 19.

∆′′x(x+ u, y + v) =

u=k,v=k∑
u=−k,v=−k

(mean

u=k,v=k∑
u=−k,v=−k

∆x(x+ u, y + v)) (4.15)

∆′′y(x+ u, y + v) =

u=k,v=k∑
u=−k,v=−k

(mean

u=k,v=k∑
u=−k,v=−k

∆y(x+ u, y + v)) (4.16)

Figure 4.7. The tracking template process. This template is used as
a prior knowledge for the current pixel tracking step. Then, pixels in
the reference image are searched based on the predicted locations at the
search image. This decreases the tracking confusion and guarantees an
efficient hardware resources usage for FPGA/CUDA architectures.



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 65

4.5 Search parameters

In previous works the classical solution for the problem of visual odometry consisted of

geometric methods applied to 3D points of the scene and its projection in the plane of the

image [66, 102, 128, 138]. However, recent works [46, 54, 67, 71] have shown that there

is some information such as optical flow, motion vectors, etc., that can be successfully

used to develop simpler solutions. In this work, we propose dense feature matching as

a linear/dependent pattern for the ego-motion estimation, as shown in Fig. 4.8. In pre-

vious works, geometric algorithms required feature matching for at least 5 characteristic

points that were no closer and non-coplanar, and then, iterate until a ”good” result for a

geometric minimization function is achieved. Our approach uses the combination of dense

features (more than 1000 features per image are matched) and this makes it possible to

estimate the camera ego-motion without an iterative behavior and without geometric con-

strains. In practice, dense feature matching (based on previous works such as KTL [132],

KL [83], Horn Schunck [63]) involves exhaustive operations and iterative behavior that

limits its implementation into dedicated hardware. Similar to KTL and KL, our approach

involves exhaustive operations, i.e., it makes relatively complex operations for all pixels in

the input images, however, instead of the iterative optimization criterion used within the

KL or KLT search windows, our algorithm is an extension of the stereo matching problem,

that is, we compute a local correlation function instead of a local optimization. This makes

possible for an efficient prallellization in FPGA/CUDA architectures. For the mathemati-

cal formulation, let ∆x(x, y), ∆y(x, y) be the feature matching for two consecutive frames

(see Fig. 4.6), we propose eight different motion parameters Q = [s1, s2 . . . s8]. These pa-

rameters are defined as the median value within the discrete histogram at eight different

regions, as shown in Fig. 4.9 and, as defined in Eq. 4.17 and 4.18, where H(∆(x, y)R) are

feature matching histograms for each regions in (∆x(x, y), (∆y(x, y)).

median(H) =
Hb#k/2c −Hb#k/2+0.5c

2
(4.17)

sR = median(H(∆x(x, y)R)) (4.18)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 66

(a) (b)

(c) (d)

Figure 4.8. Hypothesis of the search parameters. Given dense feature
matching as input, in all cases, unique motion patterns could be recover,
for example: (a) Camera movement in the x axis deliver high (positive
or negative) ∆x(x, y) values and at the same time low ∆y(x, y) values.
(b) Camera movement in the y axis deliver low ∆x(x, y) values and high
∆y(x, y) values. (c) (d) Even for the rotation movements (α, γ) unique
motion patterns can be recover



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 67

(a)

(b)

Figure 4.9. Computation of the motion parameters. (a) Input data for
the motion parameters computation. In all cases, the feature matching
images are divided in eight different regions (R1, R2 · · ·R8). (b) Example
of the motion parameter computation at R1. The corresponding motion
parameter (S1), is defined as the median (the middle value in distribu-
tion) within the discrete histogram at R1.



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 68

4.6 Lookup table

Let Q = [s1, s2 . . . s8] be the motion parameters that are linearly dependent to the camera

movement, j the known camera displacements (obtained from datasets) that can be associ-

ated with its corresponding Qj parameters using Eq. 4.19; where Cj{x, y, z, α, θ, β} is the

camera movement with six degree of freedom (known camera movements). Then, given

Qj, (Cj) non repeated elements in a lookup table, any unknown camera movement can be

estimated as shown in Eq. 4.20 and 4.22; where Q′ is the Q parameter for the pose being

computed and Ck is the camera pose of the element that minimizes the absolute difference

between the Q′ and Qj. Finally, in order to construct the lookup table, an element Qj is

included only if it satisfies |Q(k)−Qi(k)| < σ1, |α− αi < σ2|, |θ − θ < σ2| , |β − β < σ2|,
where σ1, σ2 are threshold values defined by the user. High threshold values result in small

lookup tables and this makes the search faster, however, accuracy due to the drift error is

increased. On the other hand, low threshold values deliver accurate results but the search

time is increased. For practical purpouses we recomend σ1 = 4, σ2 = 0.5 because these

values deliver a good tradeoff between accuracy and speed. These values were empirically

obtained and may be different for particular scenarios. As example, given the first training

sequence of the KITTI dataset [50], which consist of a video sequence with 4541 frames,

the full lookup table size has to be 4541. Using the proposed reduction and setting (σ1 = 4

and σ2 = 0.5), the lookup table size decreases to 1151 (near to 25% of the full size), as

illustrated in Table 4.1.

Qj =̂ Cj{x, y, z, α, θ, β} (4.19)

Tj = |Qj −Q′| (4.20)

k = arg minj(Tj) (4.21)

pose{x, y, z, α, θ, β} = Ck (4.22)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 69

Table 4.1. Example of a lookup table by applying the proposed ap-
proach. Setting σ1 = 4 and σ2 = 0.5, the lookup table size is 1151 (near
to 25% of the full size).

Qj Cj
j S1 S2 · · · S8 x y z α θ β

1 -1.87 7.37 · · · 2.62 -0.04 -0.02 0.85 -0.02 -0.01 -0.11
2 -1.50 9.50 · · · 2.50 -0.04 -0.02 0.85 -0.02 -0.01 -0.11
...

...
...

...
...

...
...

...
...

...
...

1151 -6.12 1.25 · · · 4.62 -0.05 -0.03 1.13 0.08 -0.04 0.04

4.7 Pose estimation

Let poset be the camera ego-motion for the time t, computed by Eq. 4.22. This result

is refined using a mean filter (Eq. 4.23-4.25). ν, µ are threshold values defined by the

user. In order to improve the algorithmic implementation, Eq. 4.24 is implemented as

the average value within a shift window, so, mean values are computed as stream. Finally,

the current camera ego-motion ∆m, is computed as in Eq. 4.26.

k = min(Tj) (4.23)

posef =
1

4

t=−1∑
t=−4

poset = mean(poset−4:t−1) (4.24)

{α′, β′, γ′} = |{αt−1, βt−1γt−1} − {αt, βtγt}| (4.25)

∆m =

{
poset k < ν, α′ < µ, β′ < µ, γ′ < µ

posef otherwise
(4.26)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 70

4.8 Depth from motion

In the last decade, several works have demonstrated that depth information is highly useful

for embedded robotic applications, such as intelligent surveillance, autonomous navigation

for unmanned aerial vehicles, etc. [22, 59, 124]. In recent years, the most popular solution

is the use of active vision to estimate the depth information of the scene [84, 114, 145],

that is, LIDAR sensors or RGBD cameras that can deliver accurate depth maps in real

time. However, those sensors increase the systems size and cost and are limited to in-

door scenarios, in which the objects distribution and controlled illumination guarantees

the correct propagation for the structured light. In order to reach high performance for

embedded applications and high robustness for indoor/outdoor scenarios, in this work, we

introduce a tracking/depth transformation inspired in the epipolar geometry. However, in

order to recover the depth in the scene it is necessary to have assumptions about the scene

and its 2D images. In the case of the epipolar geometry, it is assumed that the scene is

rigid and they epipolar geometry error is close to zero.

In our case, the unique assumption is that the environment within the scene is rigid,

then, given the pixel tracking for two consecutive frames (Section 4.2), we lay down the

hypothesis that depth in the scene is proportional to the 2D pixel displacements (pixel

tracking) between frames. That is, far objects must be associated with a low displacement

values, while closest objects are associated with high displacement values. This could

be considered as an extension of the epipolar geometry in which disparities values are

proportional with the depth in the scene, as shown in Fig. 4.11. For the mathematical

formulation, let ∆x(x, y), ∆y(x, y) be the pixel tracking at t time. Depth (depth(x, y))

in the scene is computed using Eq. 4.27, where depth(x, y) is the norm of the pixel

tracking, as illustrated in Fig. 4.10. This is Inspired by the Euclidean vector operations

in which the Z component is proportional to norm of the X, Y components. Then, for

a single moving camera, the depth in the scene z is proportional to the norm of the x, y

components of the pixel tracking step.

depth(x, y) = ||[∆x(x, y),∆y(x, y)]|| =
√

∆x(x, y)2 + ∆y(x, y)2 (4.27)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 71

(a)

(b)

Figure 4.10. The depth from motion process. (a) Input data for the
depth from motion computation. We lay down the hypothesis that depth
in the scene is proportional to the ∆′x(x, y),∆′y(x, y) of the pixel tracking
computed from two adjacent frames (ft, ft+1). (b) Example of depth
estimation. We propose the norm of the ∆′x(x, y),∆′y(x, y) components
as linear dependent of the depth in the reference image (ft).



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 72

(a)

(b)

Figure 4.11. Formulation of the depth from motion step. (a) Epipolar
geometry: depth in the scene is proportional to the disparity value, i.e.,
far objects have low disparity values while closer objects are associated
with high disparity values. To compute the disparity map (disparities for
all pixels in the image) a stereo pair (two images with epipolar geometry)
are needed. (b) Single moving camera: in this work we suppose that
depth in the scene is proportional to the pixel velocity across the time.
To compute the pixel velocity, optical flow across two consecutive frames
has to be computed.



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 73

4.9 Linear triangulation and map construction

In order to get the scene reconstruction (map of the SLAM problem), it is necessary to

triangulate points/pixels whose spatial location for at least two different viewpoints (fea-

ture matching) are known or points/pixels whose relative depth (depth with unknown

scale factor) is known. In our case, we have the relative depth for all pixels in the scene

(obtained via depth from motion, Section 4.8), then, dense scene reconstruction can be

estimated. Let depth(x, y) be the depth from motion for the current frame, while x, y

be the spatial locations within the frame, all corresponding pixels within the frame are

triangulated using Eq. 4.28 - 4.34. First, the undistorted pixel coordinates are computed

as shown in Eq. 4.30 - 4.31, where K is the camera calibration matrix (it can be obtained

using camera calibration algorithms [93] within the monocular-SLAM initialization step).

The scale correction matrix is computed by Eq. 4.33, where the scale factor (β) has to

be estimated at the monocular-SLAM initialization step. Finally, the real world coordi-

nates (3D reconstruction) are obtained via the linear triangulation algorithm [58], using

Eq. 4.34. Then, given local 3D reconstructions (for two consecutive frames) the map

construction step bundles them in a single global 3D reconstruction. For that, we use the

Iterative closest point (ICP) algorithm [19]. Finally, the global 3D reconstruction (map)

can be displayed.

xy1(x, y) = [x, y, 1] (4.28)

xy2(x, y) = [x− depth(x, y), y, 1] (4.29)

K1(x, y) = K−1 × xy′1(x, y) (4.30)

K2(x, y) = K−1 × xy′2(x, y) (4.31)



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 74

A(x, y) = [K1,−K2] (4.32)

sF(x, y) = (A′(x, y)× A(x, y)−1 × (A(x, y)× [β, 0, 0]′) (4.33)

xyz(x, y) =

{
KL(x, y) · sF(x, y)[1], depth(x, y) > 0

0 otherwise
(4.34)

4.10 Performance of the proposed algorithm

In this section, simulation results of the proposed algorithms are shown. We present re-

sults for the proposed camera pose estimation algorithm (localization) and for the linear

triangulation (mapping) step. For that, we implement our algorithm in MATLAB 2017b.

In practice, the simulation results are not feasible and suitable for any real world ap-

plication since our algorithm was formulated for parallel implementation using hardware

architectures, such as FPGA or CUDA. Then, any CPU-based implementation, could de-

liver low processing speed, limiting the real-rime processing of the whole system. So, the

aim of this section is to obtain early results for the proposed algorithm and compare them

with the current state of the art; demonstrating the effectiveness of the proposed approach

regarding to localization accuracy and mapping density. In addition, the results presented

in this sections will be used as reference for the expected performance (in terms of local-

ization accuracy and mapping density) of the developed hardware implementations (based

on FPGA and CUDA, respectively) which will be presented in the following chapters.

For the visual odometry estimation, the KITTI dataset [50] provides 11 training se-

quences (00-10) with public truth while another 11 sequences (11-21), without public

ground truth, that will be used for our evaluations. In an early experiment, we carried

out a cross validation for the training sequences, i.e., we built the lookup table using all

sequences in the training set, except the sequence that is being evaluated, (see Table

4.2). Given the training sequences and given their corresponding ground truth, 21732 Qj

elements are available. For σ1 = 4, σ2 = .5, a lookup table of 13791 elements is used.



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 75

This configuration delivers accuracy around 97%. For σ1 = 8, σ2 = 1, average accuracy

of 95% is achieved, in this case, the lookup table was reduced to 7371 elements. Fi-

nally, for σ1 = 15, σ2 = 2, a lookup table with 1749 elements was used, average accuracy

around to 84% For all cases, a relatively high accuracy was obtained. In particular, for

σ1 = 4, σ2 = .5, σ1 = 8, σ2 = 1, accuracy around 96% is possible. However, for all

cases, a low speed processing is required (more than 11 hours per video sequence). In

Fig. 4.12, we present qualitative results for the “Sequence00” of the KITTI dataset. In

Table 4.3 quantitative comparisons with the current state of the art are shown. In most

cases, our algorithm outperforms previous works in terms of localization accuracy which

demonstrates the effectiveness of the proposed approach.

Table 4.2. Early results for the KITTI dataset. Large look-up tables
(σ1 = 4, σ2 = .5) deliver error lower than 3% but the look-up table size is
high. Look-up tables using 10-15% of the training data (σ1 = 8, σ2 = 1),
deliver a good tradeoff between accuracy and look-up table size (mean
error of 5%).

Accuracy

σ1 = 4, σ2 = .5 σ1 = 8, σ2 = 1 σ1 = 15, σ2 = 2

00 97.47 95.83 84.65

01 97.48 95.13 84.07

02 97.16 96.35 85.99

03 97.58 95.73 84.15

04 97.92 95.22 84.88

05 97.27 95.62 85.21

06 97.21 95.46 84.92

07 97.09 96.12 84.00

08 97.13 95.11 85.54

09 97.35 95.93 85.63

10 97.83 96.35 84.73



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 76

Figure 4.12. Performance for the KITTI dataset. Sequence 00, σ1 =
4, σ1 = .5, accuracy = 97.47 %.

Table 4.3. Early results of the proposed algorithm compared with previous works. In
most cases, our algorithm outperforms previous works in terms of localization accuracy.

Algorithm Accuracy

Geiger et al (2011) [49] 83.71%

Ciarfuglia et al (2014) [30] 85.56%

Costante et al (2016) [34] 91.04%

Costante et al (2016) [34] 91.04%

Mohanty et al(2016) [91] 94.50%

Holzmann et al (2016) [61] 91.94%

Weber et al (2017) [139] 88.53%

Pillai and Leonard (2017) [104] 99.72%

This work 97.37%



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 77

For the mapping performance, Fig. 4.13 shows an example of 3D reconstruction using

our approach. Previous works triangulate the depth of 2 to 7% of all image pixels, while

ours triangulate 80% of the image pixels. Then, our algorithm improves about 15 times (in

terms of mapping density) the current state of the art which demonstrates the effectiveness

of the proposed approach.

(a)

(b)

Figure 4.13. Performance of the mapping step. The KITTI dataset:
Sequence 00. (a) Our depth from motion algorithm (Section 4.8) pro-
vides dense depth maps and this improves the mapping density. (b)
3D reconstruction by the proposed approach. Compared with previous
works, our algorithm improves them about 15 times in terms of mapping
density.



Chapter 4. LT-SLAM: Lookup Table-based Monocular-SLAM 78

4.11 Summary

In this Chapter, details about the proposed algorithms were presented. For the feature

extraction step, we have developed a parallel version of the Harris corners detection al-

gorithm suitable for embedded applications. Further, we have proposed a novel camera

pose estimation approach that consists of using look-up tables and a new feature matching

algorithm.

For the for the estimation of the pose., we have proposed dense feature matching as

linear/dependent pattern for the estimation of the pose. In previous works, geometric al-

gorithms require feature matching for at least 5 no-closer and non-coplanar feature points,

and then, iterate until a ”good” result for a geometric minimization function is achieved.

In this work, our approach uses dense feature matching (more than 1000 features per

match) and this makes it possible to estimate the camera pose in a direct form, that is,

without iterative behavior and without geometric constrains.

For the feature matching algorithm, a new feature tracking / pixel tracking algorithm

which consists in an extension of the stereo matching problem was proposed. A pixel-

parallel/window-parallel approach based on a Sum of Absolute Difference was proposed.

Further, in order to improve the correlation performance, the curl of the intensity gradient

as preprocessing step was proposed. Finally, to recover depth in the scene, we propose

the norm of the pixel tracing (optical flow) as a linear dependent to the depth. This was

Inspired by the Euclidean vector operations in which the Z component is proportional

to the norm of the X, Y components. So, for a single moving camera, we supposed that

depth in the scene z is proportional to the norm of the x, y pixels velocities across the

time.



Chapter 5

LT-SLAM: GPU implementation

A general description of the developed GPU architecture is shown in Fig. 5.1. Feature

extraction, pixel tracking, feature matching, template tracking, search parameters, lookup

table, depth from motion and linear triangulation steps are parallelized and computed

inside GPU dedicated hardware, while map construction and pose estimation steps are

computed in a sequential processor (CPU). For all the experiments, we implemented our

algorithm in an Alienware 15 laptop, Intel Core i7-4710HQ @ 2.5 GHz (CPU), GTX 970M

(GPU) with 1280 CUDA cores and 1024 max treads per block.

Figure 5.1. Block diagram of the GPU implementation. All exhaustive
operations are parallelized and computed inside GPU dedicated hard-
ware, while non parallelizable operations, such as map construction and
pose estimation are computed in a sequential processor (CPU).

79



Chapter 5. LT-SLAM: GPU implementation 80

5.1 Definitions

In order to simplify the mathematical formulation, all the equations are presented in

the classical form (using matrices and 2D dimension notation), however, some definitions

regarding to the GPU parallelization have to be established:

1. In all cases the maximum parallelization level is defined asN = b(Y/
√
T )c∗b(X/

√
T )c;

where X, Y is the input image resolution and T is the maximum threads per block

(defined by the GPU used for implementation).

2. In all cases, 2D image coordinates (x, y) are mapped into a single dimension (K),

suitable for CUDA implementations. For this purpose we define v(K) = v(x+X ∗y)

as the mapping into a single dimension K for a X, Y input dimensions; where X is

the horizontal 2D resolution and x, y are 2D spatial coordinates.

5.2 Feature extraction

For the feature extraction step, our GPU implementation consists of three CUDA kernels

executing in sequential form, as shown in Fig. 5.2. For the first CUDA kernel: given

an input image f(x, y), horizontal and vertical gradients (Gx(x, y), Gy(x, y)) and image

derivatives (A(x, y), B(x, y), C(x, y)) are parallelized in all threads in the grid, as shown

in Fig. 5.3a. For the second kernel, the Gaussian filtering and the corner metric response

steps are parallelized as shown in Fig. 5.3b. Finally, in the third CUDA kernel, corner

detection process is parallelized in all threads in the grid, as shown in Fig. 5.3c. In all

cases, 2D images (x, y) are mapped into a single dimension vector (N), suitable for CUDA

implementation. For the detailed mathematical formulation see Section 4.1. For the

parallelism level, in all cases N pixels are convolved and multiplied in parallel, please see

the mathematical definitions lay down at the beginning of this section.

Figure 5.2. GPU implementation for the feature extraction step. Three
CUDA kernels are executing in sequential form. Each kernel parallelize
a different part of the feature extraction formulation.



Chapter 5. LT-SLAM: GPU implementation 81

(a)

(b)

(c)

Figure 5.3. GPU parallelization for the feature extraction step. For all
CUDA kernels, N pixels are processed in parallel (please see the math-
ematical definitions lay down at the beginning of this section.). That
means, image derivatives for N different pixels are computed in parallel
(a), same for the Corner metric response (b) and the corner detection
process (c). In all cases, the 2D convolution operation is computed se-
quentially.



Chapter 5. LT-SLAM: GPU implementation 82

5.3 Pixel tracking

In Fig. 5.4 an overview of the developed GPU architecture is shown. It consists of three

CUDA kernels launched in sequential. We divide the curl operation into two CUDA

kernels, first, image gradients (Gx(t), Gy(t), Gx(t+1), Gy(t+1)) are computed. Then, in the

second CUDA kernel, the curl operation is completed. For the parallelism level, this

operation is parallelized in all threads in the grid, as shown in Fig. 5.5a and 5.5b. Finally,

in the third CUDA kernel, the pixel tracking process (Fig. 4.5a) is parallelized in all

threads in the grid, as shown in Fig. 5.5c. In all cases, 2D images (x, y) are mapped

into a single dimension vector (N), suitable for CUDA implementation. For the detailed

mathematical formulation see Section 4.2. For the parallelism level, in all cases N pixels

are convolved and multiplied in parallel, please see the mathematical definitions lay down

at the beginning of this section.

Figure 5.4. GPU implementation for the pixel tracking step. Three
CUDA kernels are executing in sequential form. Each kernel parallelize
a different part of the feature extraction formulation.

5.4 Feature matching & Tracking template

For the feature matching and tracking template steps, our mathematical formulations

(Sections 4.3 - 4.4) are parallelized using all threads in the grid, as shown in Fig. 5.6a-

5.6b, respectively.

5.5 Search parameters & Lookup table

We use CUDA atomic operations in order to get the discrete histogram for each of the

eight motion parameter previously proposed (Fig. 4.9), see Fig. 5.6c. Then, the motion

parameters value (the median value of the k discrete histograms) are computed using a

mean function. For the k variable, it defines the index for the k motion parameter and



Chapter 5. LT-SLAM: GPU implementation 83

it is computed by an if statement inside each parallel thread. On the other hand, for the

lookup table step, (Section 4.6) we parallelized it as shown in Fig. 5.6d. First, absolute

differences between the motion parameters and the N elements in the look up table are

computed in parallel, then, the minimum value of the N absolute differences is computed.

For that, we use the MATLAB min function since for a small lookup table size (lower

than 10000 elements), it has a “good” performance (in terms of processing speed but

without GPU hardware requirements). Considering that in most cases our lookup table

size is between 5000 to 8000 elements, the MATLAB min function should deliver a good

tradeoff between computational resources consumption and processing speed. Of course,

for a larger lookup table size (> 10, 000), a CUDA parallel reduction should be more

efficient (in terms of processing speed). Finally, the camera motion associated with the

minimum value (Cmin) is the current camera ego-motion (the relative camera pose for the

current frame). For the detailed mathematical formulation see Sections 4.5 and 4.6.

(a)

(b)

(c)

Figure 5.5. GPU parallelization for the pixel tracking step. For all
CUDA kernels, N pixels are processed in parallel. i.e., image derivatives
and Curl for N different pixels are computed in parallel (a) and (b),
respectively. Same for the pixel tracking process in which N different
pixels are processed in parallel.



Chapter 5. LT-SLAM: GPU implementation 84

(a) (b)

(c) (d)

Figure 5.6. GPU parallelization for the feature matching, tracking
template, search parameters and lookup table. For the feature matching
and tracking template ((a) and (b), respectively), N pixels are processed
in parallel. For the search parameters (c), CUDA atomic operations
and a CUDA-based mean function compute the eight search parameters
proposed by this work. Finally, for the lookup table (d), absolute parallel
differences and a minimum MATLAB function compute the current
camera ego-motion.



Chapter 5. LT-SLAM: GPU implementation 85

5.6 Depth from Motion

For the Depth from Motion step, our mathematical formulation (Sections 4.8) is paral-

lelized using all threads in the grid, as shown in Fig. 5.7. that is, Eq. 4.27 is evaluated

N times in parallel and, therefore, the depth in the scene for N pixels are estimated in

parallel.

Figure 5.7. GPU implementation for the depth from motion step. N
pixels are processed in parallel, therefore, depth for N different pixels
are computed simultaneously.

5.7 Linear triangulation

In Fig. 5.8 an overview of the developed GPU architecture is shown. First, the undistorted

pixel coordinates are computed. Then, the scale correction matrix is computed, for that

several matrix multiplications and inverse operations are computed sequentialy. Finally,

the real world coordinates are obtained by multiplying the correction matrix with the

spatial 2D coordinates. For the detailed mathematical formulation see Section 4.9

5.8 Performance and limitations

In this section, the results of the GPU implementation of the proposed algorithms are

shown. First, we present results for our pixel tracking algorithm. The results for the

feature matching step are shown below. Finally, we present the results for the proposed

camera pose estimation algorithm (localization) and for the linear triangulation (mapping)

step.



Chapter 5. LT-SLAM: GPU implementation 86

Figure 5.8. GPU implementation for the linear triangulation step. N
pixels are processed in parallel, then, N different pixels are triangulated
in parallel.

5.8.1 The pixel tracking step: performance and limitations

In Fig. 5.9, quantitative and qualitative results for our pixel tracking algorithm compared

with previous work are shown. To carried out these comparisons, we use the KITTI optical

flow dataset [134] since previous GPU-based algorithms [36, 65, 90, 109, 115, 149] used

this dataset as reference. In order to estimate the error, we codified the pixel tracking

result as a flow map [14], then we compute and compare the RMS error (our algorithm

reaches an RMS error equal to 4.91%). When compared with previous work (Fig. 5.9), our

algorithm provides high performance under real world scenarios, it reach similar accuracy

then several previous work [65, 90, 149] and outperforms other GPU-based feature tracking

algorithms [36, 109, 115].



Chapter 5. LT-SLAM: GPU implementation 87

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9. Accuracy performance for different GPU-based pixel track-
ing algorithms. (a) Input data. (b) Ground truth. (c) Hui et al. [65]
(error = 3.27 %). (d) Meister et al. [90] (error = 4.28%). (e) Zweig and
Wolf [149] (error = 4.94%). (f) Demetz et al. [36] (error = 6.52%). (g)
Plyer et al. [109] (error = 19.31%). (h) This work (error = 4.91%).

5.8.2 The feature matching step: performance and limitations

In Table 5.1, accuracy comparisons with several feature-matching algorithms previously

used in SLAM formulations are shown. In the case of the SURF/ORB [15, 113] algo-

rithms, the image degradation between viewpoints introduces data inconsistences that

introduce erroneous matches. For the KLT algorithm, accurate tracking can be reached,

however, previous works have demonstrated that iterative operations inside the original

KLT formulation limits the processing speed [28]. For our algorithm, it allows high accu-

racy, superior to SURF/ORB algorithms and with the capability to be implemented inside

GPU devices. This makes possible to reach real-time processing, with higher processing

speed than KLT-based algorithms.



Chapter 5. LT-SLAM: GPU implementation 88

Table 5.1. Accuracy of feature-matching algorithms used in SLAM
formulations (errors are measured in pixels).

TUM dataset [126]
SURF

[15]
ORB
[113]

KLT [83] proposed

fr1/room 79.38 76.24 0.21 1.97
fr2/desk 81.12 73.63 0.45 1.76
fr1/plant 77.74 75.24 0.39 1.83
fr1/teddy 83.53 76.73 0.47 1.94
fr2/coke 80.78 75.28 0.32 1.73

fr2/dishes 78.25 74.19 0.01 1.67
fr3/cabinet 79.87 74.02 0.42 1.71
fr3/teddy 79.10 75.21 0.46 1.83

mean error = 79.97 75.08 0.34 1.63

5.8.3 The pose estimation step: the proposed dataset

For evaluation purposes, several sets of reference data, such as KITTI [50], TUM [126]

etc. are available, however, most of them focused on a particular application of the real

world (autonomous vehicle navigation, indoor navigation, etc.). Then, the movement of

the camera is limited between two or three degrees of freedom. Therefore, to test our

algorithm under more complex movements, a new benchmark dataset is required. To

address this problem in this work we introduce a benchmark dataset which consists of

indoor video sequences for each possible combination of movements given six degree of

freedom (130 different video sequences with ground truth where all possible movement

(65) were recorded at two different locations). For more details about our benchmark

dataset please see [9].

In Table 5.2 quantitative results for the developed GPU implementation, tested on our

dataset are shown. For practical purposes we present 33 possible movements (from a total

of 65) so, in the first column we indicate the sequence within the proposed dataset, then,

the next 6 columns (Movement), indicate which kind of movement is addressed in than

sequence. Finally, the last three columns show quantitative results for different look up

tables. When σ1 = 4, σ2 = .5 are applied, the full lookup table is reduced to 7343 elements

(19.59% of the full lookup table without thresholding). This reduced lookup table includes

all the basic movements in the dataset, achieving average accuracy of 96%. Furthermore,

the maximum processing speed is 77 fps. In other experiment, σ1 = 8, σ2 = 1, an average

accuracy of 95% is obtained, however, in this case, the lookup table can be reduced to



Chapter 5. LT-SLAM: GPU implementation 89

5394 elements (14.59% of the full lookup table without thresholding), this makes possible

to increase the processing speed to 81 fps. Finally, in another test, when σ1 = 15, σ2 = 2

were applied, a lookup table with 3749 elements (10.59% of the full lookup table) delivers

an average accuracy around 80% combined with processing speed of 97 fps. For all cases,

it was demonstrated that a relatively high accuracy for complex movements is possible. In

particular, given σ1 = 4, σ2 = .5 or σ1 = 8, σ2 = 1, accuracy around 95% and processing

speed between 77-81 fps are achieved. In Fig. 5.10, we present qualitative results and

finally, in Fig. 5.11 the drift error is shown.

(a) (b)

(c) (d)

Figure 5.10. Performance for the pose estimation step under the pro-
posed dataset. Sequence 48 which consists of a x, y, α camera movement
and validates the performance under loop trajectories. σ1, σ2 are the
threshold values used for the look up table reduccion (Section 4.6).
(a) σ1 = 4, σ2 = .5: Large look-up tables (using 20% of the training
data) makes possible accurate ego-motion estimation (close to the ground
truth) but processing speed decrease. (d) σ1 = 20, σ2 = 4: Small look-up
tables (using 5% of the training data) reach high processing speed but
accuracy is low. In practice, look-up tables using 10-15% of the training
data (σ1 = 8, σ2 = 1, σ1 = 15, σ2 = 2) deliver a good tradeoff between
accuracy and processing speed, as shown in (b) and (c).



Chapter 5. LT-SLAM: GPU implementation 90

Table 5.2. Quantitative results for the pose estimation step under the
proposed dataset. σ1, σ2 are the threshold values used for the look up
table reduccion (Section 4.6). In all cases, high accuracy (close to 95%)
is possible, using between 15 to 20% of the training data (σ1 = 4, σ2 =
.5). Even with a small look-up table (σ1 = 15, σ2 = 2), which uses
10.59% of the training data, a relatively high accuracy (about 80%) can
be obtained.

Movement Accuracy

x y z α β γ
σ1 =

4, σ2 = .5
σ1 =

8, σ2 = 1
σ1 =

15, σ2 = 2

0 - - - - - - 99.58 97.25 79.35

3 - - - - × × 95.5 97.76 82.05

7 - - - × × × 98.99 96.35 82.46

12 - - × × - - 98.55 97.38 81.89

15 - - × × × × 97.41 94.68 82.21

19 - × - - × × 98.68 97.7 81.27

24 - × × - - - 94.07 95.75 78.28

27 - × × - × × 98.77 95.63 77.2

31 - × × × × × 97.61 96.85 81.99

36 × - - × - - 96.7 95.7 77.29

39 × - - × × × 99.48 95.05 77.67

43 × - × - × × 99.98 96.92 78.05

48 × × - - - - 94.02 97.86 82.61

51 × × - - × × 99.22 94.92 82.78

55 × × - × × × 98.8 95.58 79.74

60 × × × × - - 94.87 97.66 80.69

63 × × × × × × 97.48 95.05 81.4



Chapter 5. LT-SLAM: GPU implementation 91

Figure 5.11. Drift error for different reductions of the look up table.
The proposed dataset, sequence 48. σ1, σ2 are the threshold values used
for the look up table reduccion (Section 4.6). For all cases, it was
demonstrated that a relatively high accuracy for complex movements is
possible.

5.8.4 The pose estimation step: the KITTI dataset

For the visual odometry estimation, the KITTI [50] provides 11 training sequences (00-10)

with public truth while another 11 sequences (11-21), without public ground truth, are

used for evaluation. In a first experiment, we carried out a cross validation for the training

sequences, i.e., we built the lookup table using all sequences in the training set, except the

sequence that is being evaluated, (see Table 5.3). Given the training sequences and given

their corresponding ground truth, 21732 Qj elements are available. For σ1 = 4, σ2 = .5, a

lookup table of 13791 elements is used. This configuration delivers accuracy around 96%

while camera egomotion is computed at 79 fps. For σ1 = 8, σ2 = 1, average accuracy of

95% is achieved, in this case, the lookup table was reduced to 7371 elements, increasing

the processing speed up to 88 fps. Finally, for σ1 = 15, σ2 = 2, a lookup table with 1749

elements was used, average accuracy around to 80% combined with possessing speed of

107 fps was achieved. For all cases, a relatively high accuracy was obtained. In particular,

for σ1 = 4, σ2 = .5, σ1 = 8, σ2 = 1, accuracy around 95% and processing speed between

80-90 fps are possible. In Fig. 5.12, we present qualitative results for the data presented

in Table 5.3.



Chapter 5. LT-SLAM: GPU implementation 92

In a second experiment, performance comparisons with previous work were made. For

previous work, we obtained the performance data from the corresponding references. For

the proposed algorithm, we have submitted to the KITTI benchmark suite our results

for the test sequences (11-21), reaching an average error of 4% (please see [8]). For the

leader table we are ranked in the 82th place, however, most algorithms in the leader table

are stereo-based approaches, RGB D-based approaches (single camera combined with a

depth sensor) or SLAM algorithms in which re-localization and loop closure improves the

accuracy. For the monocular VO algorithms, the most accurate approach is the FVO

algorithm [134], ranked in the 43th place of the leader table. In Table 5.5 quantitative

comparisons are shown. For traditional approaches [30, 49], our algorithm outperforms

previous work in both, accuracy and processing speed, our algorithm is ×2 more accurate

and ×15 faster than those works. This is because most of the work uses binary-based fea-

ture description and matching techniques and, these are sensible to image degradations.

In our case, the proposed pixel tracking/feature matching steps (Sections 4.2 and 4.3)

provide high robustness for image degradations (it is possible to recover ×10 more features

than in previous works) and this improves the performance.

For recent works [34, 91, 104, 139], our algorithm reach a good tradeoff between ac-

curacy and processing speed, similar accuracy and higher processing speed than those

works. Compared to CNN-based approaches [34, 139] our algorithm outperforms those

works in terms of accuracy, 4% more accurate than [34] and 7% more accurate than [139].

For processing speed, we achieve a speed up of 2 times (67 fps) compared with [34]. For

[139] outperforms our algorithm in terms of processing speed (+71 fps), however, the GPU

used in that work is highly powerful (2888 CUDA cores) compared than used in this work

(1664 CUDA cores). For [91], our algorithm reaches similar accuracy and processing speed

than that work, nevertheless, lower hardware resources are required, 1664 CUDA cores

compared with the 1280 CUDA cores used in this work. Finally, [104] outperforms our

algorithm in terms of accuracy (4% more accurate than that work), but with lower pro-

cessing speed because the reported value (333.3 fps), does not consider the image readout,

feature extraction and feature tracking steps, and these are the heaviest operations in the

VO formulation. In Fig. 5.13, we present qualitative results for test sequences 11-14 of

the KITTI dataset.



Chapter 5. LT-SLAM: GPU implementation 93

Table 5.3. Quantitative results for the KITTI dataset. σ1, σ2 are the
threshold values used for the look up table reduccion (Section 4.6).
Large look-up tables (σ1 = 4, σ2 = .5) deliver error lower than 4% while
small look-up tables (σ1 = 15, σ2 = 2) reach high processing speed. Look-
up tables using 10-15% of the training data (σ1 = 8, σ2 = 1), deliver a
good tradeoff between accuracy and processing speed (mean eror of 7%).

Accuracy

σ1 = 4, σ2 = .5 σ1 = 8, σ2 = 1 σ1 = 15, σ2 = 2

00 95.77 93.16 82.65

01 95.93 93.60 82.07

02 95.12 93.26 82.99

03 95.56 93.65 81.15

04 95.46 93.68 81.88

05 95.01 93.74 81.21

06 95.33 93.45 82.92

07 95.16 93.08 81.00

08 95.79 93.22 82.54

09 95.31 93.91 82.63

10 95.52 93.15 82.73

For hardware resources usage, in Table 5.4 the average resources consumption is

shown. For all the experiments presented in this work, low hardware requirements (around

26 % of a GPU GTX970M) is needed. The GPU GTX970M is a portable version of the

popular GPU GTX970 and given the proposed algorithm it requires 26 % of the maxi-

mum processing clock. We believe that an efficient implementation into embedded GPU

processors such as the NVIDIA TX2 (around 256 CUDA cores) is feasible and will be part

of our future work.



Chapter 5. LT-SLAM: GPU implementation 94

(a) (b)

(c) (d)

Figure 5.12. Performance for the KITTI dataset (training sequences).
σ1, σ2 are the threshold values used for the look up table reduccion
(Section 4.6). Setting σ1 = 4, σ2 = .5: For video sequences in which
most of the time the environment is rigid, high accuracy (near to 96%)
can be reached as in (a) (b) and (c). For video sequences with dynamic
objects (d) the accuracy level decreases (accuracy of 87% can be reached).

Table 5.4. Hardware resource consumption for the developed imple-
mentation. σ1, σ2 are the threshold values used for the look up table
reduccion (Section 4.6). For the GPU GTX970M, the proposed algo-
rithm requires near to 26% of the hardware resources. i.e., our algorithm
requires around the 26% of the maximum processing clock.

Consumption/σ1, σ2
Resource σ1 = 4, σ2 = .5 σ1 = 8, σ2 = 1 σ1 = 15, σ2 = 2

GPU Core 26% 27% 29%
GPU Memmory 15% 17% 21%

GPU Video engine 0% 0% 0%
GPU Memmory controller 7% 7% 7%



Chapter 5. LT-SLAM: GPU implementation 95

(a) Sequence 11, σ1 = 4, σ1 = .5 (b) Sequence 12, σ1 = 8, σ1 = 1

(c) Sequence 13, σ1 = 15, σ1 = 2 (d) Sequence 14, σ1 = 20, σ1 = 4

Figure 5.13. Performance for the KITTI dataset (test sequences).
σ1, σ2 are the threshold values used for the look up table reduccion
(Section 4.6). Setting σ1 = 4, σ2 = .5: For video sequences in which
most of the time the environment is rigid, high accuracy (near to 96%)
can be reached (a) For video sequences with dynamic objects (b) the
accuracy level decreases (accuracy of 91% can be reached). In most of
the cases (c) and (d), high level of accuracy can be reached (near 94%).



Chapter 5. LT-SLAM: GPU implementation 96

Table 5.5. Quantitative results for the proposed algorithm compared with previous works. In
most cases, our algorithm outperforms previous works in terms of accuracy and processing speed.

Algorithm Accuracy Speed Hardware

Geiger et al (2011) [49] 83.71% 16.39 fps CPU (i7-4720HQ)

Ciarfuglia et al (2014) [30] 85.56% 9.09 fps CPU (i7-4720HQ)

Costante et al (2016) [34] 91.04% 3.27 fps CPU (i7-4720HQ)

Costante et al (2016) [34] 91.04% 20.83 fps GPU (Tesla K40)

Mohanty et al (2016) [91] 94.50% 111.11 fps
Intel Xeon @4 +
GPU (GTX 970)

Holzmann et al (2016) [61] 91.94% 20.30 fps CPU (i7-4820K)

Weber et al (2017) [139] 88.53% 158.73 fps GPU (GTX 970)

Pillai et al (2017) [104] 99.72% 333.3 fps* CPU (i7-3920XM)

This work 95.07% 87.34 fps GPU (GTX 970M)

*This value is only for the ego-motion computation step, other steps such as feature tracking via the KLT algorithm are
not considered.

5.8.5 The depth from motion step: performance and limitations

In Fig. 5.14, quantitative and qualitative results (RMS error and depth maps, respec-

tively) for the KITTI dataset [50], are shown. In order to compute the error, we use the

ground truth depth map as reference and then we computed the RMS error. In all cases

our algorithm provides rough depth maps compared with stereo-based or deep learning

approaches but with real-time processing and with the capability to be implemented in

hardware, suitable for smart cameras or embedded robotic applications.

5.8.6 The linear triangulation step: performance and limitations

Finally, in Fig. 5.15 an example of 3D reconstruction using our approach is shown. Pre-

vious works such as the ORB-SLAM [95] or LSD-SLAM [41] compute motion and depth

in 2 to 7% of all image pixels, while ours compute 80% of the image pixels. Then, our

algorithm improves about 15 times the current state of the art, making 3D reconstructions

possible in real time and with the capability to be implemented within FPGA devices,

suitable for smart cameras.



Chapter 5. LT-SLAM: GPU implementation 97

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5.14. Depth from motion: results for the KITTI dataset. (a)
Sequence 02, reference image. (b) Ground truth. (c) Depth estimation
(error = 22%). (d) Sequence 03, reference image. (e) Ground truth.
(f) Depth estimation (error = 21%). (g) Sequence 04, reference image.
(h) Ground truth. (i) Depth estimation (error = 22%). (j) Sequence
05, reference image. (k) Ground truth. (l) Depth estimation (error =
21%). (m) Sequence 06, reference image. (n) Ground truth. (o) Depth
estimation (error = 21%). (p) Sequence 09, reference image. (q) Ground
truth. (r) Depth estimation (error = 22%). In all cases our algorithm
provides rough depth maps with the capability to be implemented in
hardware, suitable for smart cameras or embedded robotic applications.



Chapter 5. LT-SLAM: GPU implementation 98

(a)

(b)

Figure 5.15. Performance of the mapping step. The KITTI dataset:
Sequence 06. (a) Our depth from motion algorithm (Section 4.8) pro-
vides rough depth maps (lower accuracy compared with previous algo-
rithms) but with real-time processing and with the capability to be imple-
mented in embedded hardware. (b) 3D reconstruction by the proposed
approach. Compared with previous works, our algorithm improves them
about 15 times (in terms of mapping density), as a result, real-time dense
3D reconstructions can be obtained and, these can be exploited by sev-
eral real world applications such as, augmented reality, robot vision and
surveillance, autonomous flying, etc.



Chapter 5. LT-SLAM: GPU implementation 99

5.9 Summary

In this chapter, we have presented the results of the GPU implementation of our monocular-

SLAM formulation. Our GPU-based feature tracking/matching algorithm delivers dense

tracking (more feature points than previous algorithms) and without outliers. This avoid

the use of RANSAC outliers filtering and allows full parallelization in dedicated GPU

hardware. We have developed a GPU-based monocular-SLAM system which deliver high

efficiency in terms of algorithmic parallelization. Therefore, unlike previous work, the

camera ego-motion (localization) can be estimated without iterative behavior and with-

out geometric constraints, suitable for embedded applications. The experimental results

shown that our algorithm reaches high accuracy (95.07%), in comparison with previous

monocular VO algorithms such as CNN and depth learning-based algorithms (which reach

90% of accuracy) and with a processing speed up to 17 times faster than previous works.

We have presented a new set of reference data for visual odometry (VO). The dataset

can be used for researchers to test and evaluate their VO algorithms in complex movements.

This dataset provides 144 video sequences with public ground truth and they were recorded

considering all possible motions given six degree of freedom. For download: images, ground

truth, documentations and scripts, please see [9].

We have developed a new depth from motion/linear triangulation algorithm whose

GPU implementation deliver high efficiency in terms of algorithmic parallelization. So,

unlike previous works, the depth information is estimated in real time inside a compact

GPU device. Faster and with lower hardware resources than previous works. It makes it

possible to reach dense 3D reconstruction, improving by around 15 times the current state

of the art.



Chapter 6

LT-SLAM: FPGA implementation

In Fig. 6.1, a general description of the developed FPGA architecture is shown. The

architecture focuses on an FPGA implementation where all recursive/parallelizable oper-

ations are accelerated in the FPGA fabric. First, the “feature extraction” unit reads the

pixel stream (pix [7:0]) delivered by the imager and extracts the visual features (corners)

by applying a parallelized version of the Harris algorithm [56]. The “frame buffer” unit

reads the pixel stream (pix [7:0]) delivered by the imager. In this block, frames captured

by the imager are fed to/from an external DRAM memory and delivers pixel streams for

two consecutive frames in parallel (pix1 [7:0], pix2 [7:0]). Then, the pixel stream for two

consecutive frames (pix1 [7:0], pix2 [7:0]) are used to computed pixel tracking for all pixels

in the reference image (∆x [7:0], ∆y [7:0]). In the next step, feature matching (∆xy [7:0])

and depth from motion are computed in parallel, for that, (∆x [7:0], ∆y [7:0]) are used to

compute the depth in the scene (d [7:0]). In the last step, feature matching (∆xy [7:0]) is

used to compute the relative camera pose for the current frame. “Circular buffers” imple-

mented inside the local processors (feature extraction, pixel tracking, feature matching,

etc.) are used to hold local sections of the frames that are being processed and allow

for local parallel access that facilitates parallel processing. In the following subsections,

details about the algorithm parallelization are presented.

100



C
hapter

6.
L

T
-S

L
A

M
:

F
P

G
A

im
plem

en
tation

101

Figure 6.1. Block diagram of the FPGA implementation. All exhaustive operations are parallelized
and computed inside an FPGA hardware architecture, while non parallelizable operations, such as map
construction and pose estimation are computed in a sequential processor (CPU).



Chapter 6. LT-SLAM: FPGA implementation 102

6.1 Feature extraction

A general description of the developed FPGA architecture is illustrated in Fig. 6.2. The

structure of the architecture consists of four steps: image gradients, derivatives, corner

response and corner detection. First, data/parts of the frames are stored in circular

buffers that can hold rows temporarily as cache, store image rows from the input images,

and that can deliver parallel data to the image preprocessing module. In the next step the

FPGA architecture computes the vertical and horizontal gradients. Then, given the image

gradients the image derivatives are computed. For the next step, circular buffers delivers

image pixels for the smoothing operations and, reconfigurable convolution units (see [3])

compute the smoothing operation. In the next step, the FPGA architecture computes the

corner metric response. Finally, corner detection delivers ones at corner points retained

after a non-maxima suppression step and zero otherwise. For the detailed mathematical

formulation see Section 4.1.

6.2 Circular buffer

In [3] we proposed a circular buffer scheme in which input data from the previous n rows

of an image can be stored using memory buffers (block RAMs/BRAMs) up to the moment

when a n × n neighborhood is scanned n × n in the subsequent rows. In this work, we

follow a similar approach to achieve high data reuse and high level of parallelism. Then,

our algorithm is processed in modules where all the image patches can be read in parallel.

First, a shift mechanism “control” unit manages the read/write addresses of n+1 BRAMs.

In this formulation, n BRAMs are in read mode and one BRAM is in write mode in each

clock cycle. Then, the data, inside the read mode BRAMs can be accessed in parallel

and each pixel within a n × n region is delivered in parallel a n × n buffer, as shown in

Fig. 6.3, where the “control” unit delivers control data (address and read/write enable)

for the BRAM modules. Then, one entire row is stored in each BRAM, finally, the “data”

unit delivers n × n pixels in parallel. In our implementation, there is 1 circular buffer of

13×13 pixels/bytes, 1 circular buffer of 17×17 and 2 circular buffers of 3×3. For more

details on the formulation and behavior of the circular buffer see [3].



C
hapter

6.
L

T
-S

L
A

M
:

F
P

G
A

im
plem

en
tation

103

Figure 6.2. FPGA implementation for the feature extraction step. First, the vertical/horizontal gradients
and the image gradient derivatives are computed in parallel. Then, the corner metric response is computed.
Finally, using the corner metric response, the corner detection process is carried out. Circular buffers
attached to the local processors hold temporarily as cache and deliver parallel data to the processors.



Chapter 6. LT-SLAM: FPGA implementation 104

(a)

(b)

Figure 6.3. The circular buffers architecture. (a) General formula-
tion of a 3 × 3 circular buffer. (b) FPGA architecture for the circular
buffers. For a n × n patch, a shift mechanism “control” unit manages
the read/write addresses of n+1 BRAMs. In this formulation n BRAMs
are in read mode and one BRAM is in write mode in each clock cycle.
Then, the n × n buffer delivers logic registers with all pixels within the
patch in parallel.



Chapter 6. LT-SLAM: FPGA implementation 105

6.3 Pixel tracking

For the “pixel tracking” unit, we consider that the tracking/flow estimation problem can be

a generalization of the dense stereo matching problem. That is, stereo matching algorithms

track (searching on the horizontal axis around the search image window), all the pixels

in the reference image window. Pixel tracking aims to track all the pixels between two

consecutive frames from a video sequence (searching around spatial coordinates of the

pixels in the search image). Then, it is possible to extend previous stereo matching FPGA

architectures to fulfil with our application domain. In this work, we extended the FPGA

architecture presented in [101], since it has low hardware requirements and high parallelism

level. In Fig. 6.4, the developed architecture is shown. First, the “curl” units compute

the curl (Section 4.2) and deliver curl pixel stream of the reference/search images in

parallel. More details about the FPGA architecture of this unit are shown in Section

6.3.1. The “circular buffer” units are responsible for data transfers in segments of the

image. So, the core of the FPGA architecture are the circular buffers attached to the local

processors that can hold temporarily as cache, image sections from two frames, and that

can deliver parallel data to the processors. Then, given optical flow previously computed,

121 search regions (defined by the search size defined by the user) are constructed in

parallel (see Fig. 4.5a). For our implementation, the search region size is equal to 10,

therefore, the center of the search regions are all the sampled pixels within the reference

region. Given the reference region in ft(x, y) and 121 search regions in ft+1(x, y), the search

regions are compared to the reference region in parallel. For that, a pixel-parallel/window-

parallel scheme is implemented. Finally, in the “flow estimation” unit a multiplexer tree

can determine the indices a, b that minimize the corresponding correlation function and,

therefore, the tracking of pixels for all the pixels in the reference image. For the detailed

mathematical formulation see Section 4.2.

6.3.1 Curl estimation

In Fig. 6.5, the curl architecture is shown. First, one “circular buffer” holds 3 rows of the

frame being processed and allows for local parallel access of a 3× 3 patch that facilitates

parallel processing. Then, image gradients (∂f(x,y)
∂x

, ∂f(x,y)
∂y

) are computed. Another “cir-

cular buffer” holds 3 rows of the gradient image previously computed and delivers a 3× 3

patch for the next step. Second derivatives ( ∂
∂y

∂f(x,y)
∂x

, ∂
∂x

∂f(x,y)
∂y

) are computed inside the

“derivative” unit. Finally, the curl of the input image is computed by the “curl” unit.



C
hapter

6.
L

T
-S

L
A

M
:

F
P

G
A

im
plem

en
tation

106

Figure 6.4. FPGA implementation for the pixel tracking step. In order to achieve high performance for
hardware architectures, an FPGA-based pixel-parallel/window-parallel approach is used.



Chapter 6. LT-SLAM: FPGA implementation 107

Figure 6.5. FPGA architecture for the “Curl” unit. Each block paral-
lelize a different part of the original “curl” formulation.

6.4 Feature matching

In Fig. 6.6, the feature matching architecture is shown. Let pix1 [7;0], pix2 [7:0], pix3

[7:0] be the pixel tracking at current frame ∆x, ∆y and the feature extraction for the

search frame (ft+1(x, y)), respectively; first, the “circular buffer” unit holds 3 rows of the

feature extraction at (ft+1(x, y)) and allows for local parallel access of a 3× 3 patch that

facilitates parallel processing. Then, the “feature matching” unit carries out the feature

matching process by using comparators and a shift window approach; delivering pix4 [7;0],

pix4 [7:0] which corresponds with ∆x(x, y), ∆y(x, y) respectively. For the detailed math-

ematical formulation see Section 4.3.

Figure 6.6. FPGA implementation for the feature matching step. First,
a circular buffer delivers a 3 × 3 window centered in the pixel being
processed. Then, the “Feature matching” block carries out the matching
operation using comparators and a shift window approach.



Chapter 6. LT-SLAM: FPGA implementation 108

6.5 Look-up table

In Fig. 6.7, the FPGA architecture for Camera ego-motion is shown. Let pix1 [7;0],

pix2 [7:0] be the feature matching at current frame ∆x, ∆y, respectively; first, the “dis-

crete histogram” unit computes the discrete histogram for the eight motion parameters

previously proposed (Section 4.5). Then, the “MAX” unit computes the motion param-

eters as the maximum value within the eight regions of the discrete histogram, as follows:

sR = MAX(H(∆x(x, y)R)). This equation simplifies the previously proposed formulation

(Eq. 4.18) since the “MAX” function is implemented as a multiplexer tree, decreasing

the hardware resources during FPGA implementation, facilitating parallel/pipeline design

and with low compromise compared with the original formulation. Finally, a “CASE”

structure searches within the lookup table in order to get the current camera ego motion.

For the detailed mathematical formulation see Sections 4.5 and 4.6.

Figure 6.7. FPGA implementation for the camera ego-motion step. A
“MAX” function implemented as a multiplexer tree computes the max-
imum value within the discrete histogram. Then, a “CASE” structure
searches within the lookup table and gets the camera ego motion.

6.6 Depth from Motion

In Fig. 6.8, the depth estimation architecture is shown. Let pix1 [7;0], pix2 [7:0] be

the pixel stream for the pixel tracking at current frame (∆′x,∆
′
y); first, the “multiplier”

unit computes the square value of the input data. Then, the “adder” unit carries out

the addition process for both components (∆2′
x ,∆

2′
y ). Finally, the “sqrt” unit computes

the depth in the scene by computing the square root for ∆2′
x + ∆2′

y . In order to achieve

high efficiency in the square root computation, we adapted the architecture developed by

Yamin Li and Wanming Chu [77]. This architecture uses a shift register mechanism and

compares the more significant/less significant bits to achieving the root square operation

without using embedded multipliers.



Chapter 6. LT-SLAM: FPGA implementation 109

Figure 6.8. FPGA implementation for the depth from motion step.

6.7 Pose estimation & map construction

Our FPGA architecture delivers two outputs the current camera ego-motion and the cur-

rent depth map, p[7:0] and d[7:0], respectively. In order to estimate the camera pose

(localization) and the scene reconstruction (mapping), we use GPU archuitectures previ-

ously presented, Sections 5.5 and 5.5; where p[7:0] is mapped with poset, Eq. 4.24 and

4.26 while d[7:0] is mapped with depth(x, y), Eq. 4.29 and 4.34. The reason of a GPU

implementation instead of an FPGA architecture is due to the mathematical complexity

of the proposed formulation (matrix multiplications, inverse matrix, decimal operations,

etc.) so, a GPU implantation is more suitable for this purpose. All operations could be

implemented in CPU; maintaining high processing speed and requiring only an FPGA

device to solve the monocuar-SLAM problem.

6.8 Performance and limitations

In this section, the results of the implementation of the proposed algorithms are shown.

First,we present the results of the implementation of our pixel tracking algorithm. The

results for the feature matching step are shown. Finally, we present the results of the im-

plementation of the proposed camera ego-motion estimation algorithm and for the depth

from motion algorithm. For all experiments the developed FPGA architecture was im-

plemented in an FPGA Cyclone IV EP4CGX150CF23C8 of Altera. All modules were

designed via Quartus II Web Edition version 10.1SP1 and GPStudio [27]. All modules

were validated via post-synthesis simulations performed in ModelSim Altera. In Fig. 6.9

an overview of the developed FPGA architecture implemented inside the DreamCam [20]

via GPStudio is shown.



C
hapter

6.
L

T
-S

L
A

M
:

F
P

G
A

im
plem

en
tation

110

Figure 6.9. DreamCam/GPStudio implementation for the developed FPGA architecture. An MT9M031
imager: 1.2-mega pixel (1280 960) CMOS image sensor manufactured by Aptina, provides full 1280 960-
pixel resolution at 45fps. The “featureExtractor” unit extracts the corners in the current image. Two 16
M-bit static RAMs are used inside the “frameBuffer” unit. Then, Feature tracking/feature matching are
carried out inside the “featureTracking” unit. Finally, the “cameraPose” and “depthMotion” units estimate
the current camera ego-motion and depth map respectively.



Chapter 6. LT-SLAM: FPGA implementation 111

The full hardware resource consumption of the architecture is shown in Table 6.1.

Our algorithm formulation allows for a compact system design, it requires 66% of the

total logic elements of the FPGA Cyclone IV EP4CGX150CF23C8. For memory bits,

our architecture uses 74% of the total resources, this represents 26 block RAMs consumed

mainly in the circular buffers. This hardware utilization enables to target a relatively small

FPGA device and therefore could be possible a small FPGA-based smart camera, suitable

for real-time embedded applications. In the following subsections comparisons with previ-

ous work are presented. For pixel tracking, comparisons with previous FPGA-based pixel

tracking/optical flow algorithms are presented. For depth estimation, previous FPGA-

based approaches are limited; there are several CPU-based approaches but in these cases

most of the effort was for accuracy improvements and real-time processing or embedded

capabilities were not considered, therefore, proper comparisons are not possible so, only

qualitative results are presented. Finally, for the camera ego-motion, simulation results

using the KITTI dataset [50] and validations under real world scenarios are presented.

Table 6.1. Hardware requirements for the developed FPGA architec-
ture.

Consumption/image resolution
Resource 640×480 320×240 256×256

Total logic elements 69,879 (59%) 37,059 (31%) 21,659 (18%)
Total pins 16 (3%) 16 (3%) 16 (3%)

Total Memory Bits 618,392 (15%) 163,122 (4%) 85,607 (2%)
Embedded multiplier

elements
0 (0%) 0 (0%) 0 (0%)

Total PLLs 1 (25%) 1 (25%) 1 (25%)

6.8.1 The pixel tracking step: performance and limitations

Compared with the previous work, in Table 6.2 we present the utilization of hardware

resources between our FPGA architecture and previous FPGA based optical flow algo-

rithms. There are several works [13, 37, 87, 140] whose implementations of FPGA aim

to parallelize all recursive operations in the original mathematical formulation. Unfor-

tunately, most popular formulations such as those based on KTL [83] or Horn-Schunck

[63], have iterative operations that are hard to parallelize. As result, most previous works

have relatively high hardware occupancy/implementations compared with a full paralleliz-

able design approach. Compared with previous works, our FPGA architecture outperform



Chapter 6. LT-SLAM: FPGA implementation 112

most previous works, for similar image resolution, less logic elements and memory bits than

[37, 62]. And less logic elements and memory bits than [13]. [13] decreases the memory

usage by a multiscale coding which makes possible to store only half of the original image,

however, this reduction involves pixel interpolation for some cases and this increases the

logic elements usage. For, [87], the authors introduced an iterative-parallel approach; this

makes possible to achieve low hardware requirements but processing speed is low. Finally,

for [140] a filtering-based approach makes it possible to achieve low hardware requirements

with relatively high accuracy and high processing speed but the algorithmic formulation

requires to store several entire frames, which requires a large external memory (near 250

MB for store 3 entire frames), this increase the system size and cost.

Table 6.2. Hardware requirements compared with previous FPGA-
based approaches. In most cases, our FPGA architecture outperforms
the current state of the art.

Method
Logic

elements
Memory bits

Image
resolution

Mart́ın et al. [87] (2005) 11,520 147,456 256×256
Dı́az et al. [37] (2006) 513,216 685,670 320×240
Wei et al. [140] (2007) 10,288 256 MB (DDR) 640×480

Barranco et al. [13] (2012) 82,526 573,440 640×480
Honegger et al. [62] (2012) 49,655 1,111,000 376×240

Our work* 69,879 624,244 640×480
Our work* 37,059 163,122 320×240
Our work* 21,659 85,607 256×256

*Operating frequency = 50 MHz. Three different versions of the developed
algorithm were synthetized, setting the input image resolution as 640×480,
320×240 and 256×256, respectively.

In Table 6.3, speed processing for different image resolutions is shown. We synthesized

different versions of our FPGA architecture (Fig. 6.4), and we adapted the circular buffers

in order to work with all tested image resolutions (Table 6.2). Then, we carried out post-

synthesis simulation in ModelSim Altera. In all cases, our FPGA architecture reached real-

time processing. When compared with previous work (Table 6.3), our algorithm provided

the highest speed processing, it outperforms several previous work [13, 37, 62, 87, 140],

and for HD images, our algorithm reaches real-time processing: more than 60 fps for

1280×1024 image resolution.



Chapter 6. LT-SLAM: FPGA implementation 113

Table 6.3. Processing speed compared with previous FPGA-based ap-
proaches. In all cases, our FPGA architecture outperforms the current
state of the art.

Method Resolution Frames/s Pixels/s

Mart́ın et al. [87] 256×256 60 3,932,160
Dı́az et al. [37] 320×240 30 2,304,000
Wei et al. [140] 640×480 64 19,550,800

Barranco et al. [13] 640×480 31 9,523,200
Honegger et al. [62] 376×240 127 11,460,480

Our work* 1280×1024 68 90,129,200
Our work* 640×480 297 91,238,400
Our work* 320×240 1,209 92,880,000
Our work* 256×256 1,417 92,876,430

*Four different versions of the developed algorithm were synthetized, setting
the input image resolution as 1280×1024, 640×480, 320×240 and 256×256,
respectively.

In Fig. 6.10, qualitative results for this work compared with previous work are shown.

We used the “Garden” dataset since previous work [37, 87, 140] used this dataset as

reference. When compared with previous work (Fig. 6.10), our algorithm provides high

performance under real world scenarios, it outperforms several previous work [37, 87, 140],

quantitatively closer to the ground truth (error near to 9%) compared with other FPGA-

based approaches. In Fig. 6.11, quantitative and qualitative results for the KITTI dataset

[50], are shown. In all cases our algorithm provides high performance, it reaches an

acceptable error near to 10% with several test sequences.

6.8.2 The feature matching step: performance and limitations

In Table 6.4, accuracy comparisons are shown. In the case of the SURF/ORB [15, 113]

algorithms, the image degradation between viewpoints introduces data inconsistences that

generate erroneous matches. For the KLT algorithm, accurate tracking can be reached, as

shown in Table 6.4, however, previous works have demonstrated that iterative operations

inside the original KLT formulation [83] limits the processing speed [28]. For our algorithm,

it allows high accuracy, superior to SURF/ORB algorithms and with the capability to be

implemented inside GPU devices. This makes possible to reach real-time processing, higher

processing sped than KLT-based algorithms.



Chapter 6. LT-SLAM: FPGA implementation 114

(a) (b)

(c) (d)

(e) (f)

Figure 6.10. Accuracy comparisons for different FPGA-based pixel
tracking algorithms. (a) Input data. (b) Ground truth. (c) Mart́ın
et al. [87]. (d) Wei et al. [140]. (e) Dı́az et al. [37]. (f) This work (error
= 9%). In all cases, our algorithms outperforms the current state of the
art.



Chapter 6. LT-SLAM: FPGA implementation 115

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.11. Pixel tracking results for the KITTI dataset. (a) Sequence
00, reference image. (b) Ground truth. (c) Tracking result (error = 11%).
(d) Sequence 01, reference image. (e) Ground truth. (f) Tracking result
(error = 12%). (g) Sequence 02, reference image. (h) Ground truth. (i)
Tracking result (error = 11%). (j) Sequence 04, reference image. (k)
Ground truth. (l) Tracking result (error = 12%).

Table 6.4. Accuracy comparisons for feature-matching algorithms used
in SLAM formulations. Eerrors are measured in pixels, all sequences
were obtained from [126]).

TUM dataset
SURF

[15]
ORB
[113]

KLT [83] proposed

fr1/room 79.38 76.24 0.21 1.97
fr2/desk 81.12 73.63 0.45 1.76
fr1/plant 77.74 75.24 0.39 1.83
fr1/teddy 83.53 76.73 0.47 1.94
fr2/coke 80.78 75.28 0.32 1.73

fr2/dishes 78.25 74.19 0.01 1.67
fr3/cabinet 79.87 74.02 0.42 1.71
fr3/teddy 79.10 75.21 0.46 1.83

mean errors = 79.97 75.08 0.34 1.63



Chapter 6. LT-SLAM: FPGA implementation 116

6.8.3 The pose estimation step: the proposed dataset

We introduce a new dataset that contains monocular video sequences and ground-truth

data with the goal to establish a novel benchmark for the evaluation of visual odometry

(VO) algorithms under complex camera movements. Our dataset consists of 130 monoc-

ular sequences provided with ground truth trajectories for all sequences. The data was

recorded at full frame rate (60 Hz) and, the ground-truth trajectory was obtained from a

high-accuracy motion-capture system with eight high-speed tracking cameras (Vicon V8,

8MP, 2000Hz, [136]), for more details please see Appendix A. In Table 6.5 quantitative

results for the proposed dataset are shown. For practical purposes, we present 33 possible

movements (from a total of 65), so in the first column we indicate the sequence within the

proposed dataset, then, the next 6 columns (Movement), indicate what type of movement

is addressed in sequence. Finally, the last three columns show quantitative results for

different look up tables. For each possible movement, our dataset provides two different

sequences recorded at different spatial locations (one for training, another for test).

Given the training sequences shown in Table 6.4 (1, 4, 7, . . . 58) and given their corre-

sponding ground truth, 37482 Qj elements (see Eq. 4.19) could be included in the lookup

table. However, there are several repeated or similar elements, then, when σ1 = 4, σ2 = .5

are applied, the lookup table is reduced to 7343 elements (19.59% of the full lookup table

without thresholding). This reduced lookup table includes all the basic movements in the

training sequence and therefore, any other sequences with similar movements, such as in

the test sequences, have to be processed with high accuracy, as shown in Table 6.4, where

average accuracy of 85% is reported. Furthermore, camera egomotion is computed at 77

fps. In other experiment, σ1 = 8, σ2 = 1, an average accuracy of 80% is obtained, however,

in this case, the lookup table can be reduced to 5394 elements (14.59% of the full lookup

table without thresholding), this makes possible to increase the processing speed to 81

fps. Finally, in another test, when σ1 = 15, σ2 = 2 were applied, a lookup table with 3749

elements (10.59% of the full lookup table) delivers an average accuracy around 71% com-

bined with processing speed of 97 fps. For all cases, it was demonstrated that a relatively

high accuracy for complex movements is possible. In particular, given σ1 = 4, σ2 = .5,

σ1 = 8, σ2 = 1 accuracy around 80% and processing speed between 77-81 fps are achieved.

In Fig. 6.12, we present qualitative results for the proposed dataset.



Chapter 6. LT-SLAM: FPGA implementation 117

Table 6.5. Quantitative results for the pose estimation step under the
proposed dataset. σ1, σ2 are the threshold values used for the look up
table reduccion (Section 4.6). In all cases, a realtively high accuracy
(close to 85%) is possible, using between 15 to 20% of the training data
(σ1 = 4, σ2 = .5). With a small look-up table (σ1 = 15, σ2 = 2), which
uses 10.59% of the training data, accuracy about 75% can be obtained.

Movement Accuracy

x y z α β γ σ1 = 4, σ2 = .5 σ1 = 8, σ2 = 1
σ1 = 15, σ2 =

2

0 - - - - - - 81 85 73

1 - - - - - × 81 80 71

3 - - - - × × 81 81 69

6 - - - × × - 80 82 72

7 - - - × × × 80 85 70

9 - - × - - × 85 82 75

12 - - × × - - 88 80 73

13 - - × × - × 83 82 74

15 - - × × × × 83 83 74

18 - × - - × - 88 81 74

19 - × - - × × 88 79 73

21 - × - × - × 86 83 73

24 - × × - - - 88 82 73

25 - × × - - × 86 81 71

27 - × × - × × 83 79 72

30 - × × × × - 85 81 75

31 - × × × × × 82 80 69

33 × - - - - × 82 80 72

36 × - - × - - 86 84 72

37 × - - × - × 84 81 75

39 × - - × × × 83 79 73

42 × - × - × - 85 81 75

43 × - × - × × 86 84 73

45 × - × × - × 85 80 74

48 × × - - - - 84 85 72

49 × × - - - × 85 81 72

51 × × - - × × 84 81 70

54 × × - × × - 80 80 73

55 × × - × × × 86 84 75

57 × × × - - × 88 79 72

60 × × × × - - 83 85 72

61 × × × × - × 88 80 74

63 × × × × × × 83 81 69



Chapter 6. LT-SLAM: FPGA implementation 118

(a) (b)

(c) (d)

Figure 6.12. Performance for the pose estimation step under the pro-
posed dataset. Sequence 48 which consists of a x, y, α camera movement
and validates the performance under loop trajectories. σ1, σ2 are the
threshold values used for the look up table reduccion (Section 4.6).
(a) σ1 = 4, σ2 = .5: Large look-up tables (using 20% of the training
data) makes possible accurate ego-motion estimation (close to the ground
truth) but processing speed decrease. For (c) σ1 = 25, σ2 = 4 and (d)
σ1 = 30, σ2 = 5: Small look-up tables (using 5% of the training data)
reach high processing speed but accuracy is low. In practice, look-up
tables using 10-15% of the training data (σ1 = 8, σ2 = 1) deliver a good
tradeoff between accuracy and processing speed, as shown in (b).



Chapter 6. LT-SLAM: FPGA implementation 119

6.8.4 The pose estimation step: the KITTI dataset

In a first experiment, we carried out a cross validation for the training sequences (se-

quences 00-10 with public ground truth), that is, we construct the lookup table using all

sequences in the training set, except the sequence being evaluated, (see Table 6.6). Given

the training sequences and given their corresponding ground truth, 21732 Qj elements are

available. For σ1 = 4, σ2 = .5, a lookup table of 13791 elements is used. This configuration

delivers accuracy around 91%. For σ1 = 8, σ2 = 1, average accuracy of 88% is achieved, in

this case, the lookup table was reduced to 7371 elements. Finally, for σ1 = 15, σ2 = 2, a

lookup table with 1749 elements was used, average accuracy around to 75% was achieved.

For all cases, relatively high accuracy was obtained. In particular, for σ1 = 4, σ2 = .5,

σ1 = 8, σ2 = 1, accuracy around 91% and processing speed equal to 200 fps are possible. In

all cases high processing speed is (200 fps) is possible. In Fig. 6.13, we present qualitative

results for the data presented in Table 6.6.

Table 6.6. Quantitative results for the KITTI dataset. σ1, σ2 are the
threshold values used for the look up table reduccion. Large look-up
tables (σ1 = 4, σ2 = .5) deliver error lower than 8% while small look-
up tables (σ1 = 15, σ2 = 2) reach high processing speed. Look-up tables
using 10-15% of the training data (σ1 = 8, σ2 = 1), deliver a good tradeoff
between accuracy and processing speed (mean eror of 11%).

Accuracy

σ1 = 4, σ2 = .5 σ1 = 8, σ2 = 1 σ1 = 15, σ2 = 2

00 90.35 88.92 76.30

01 92.60 88.15 75.90

02 90.48 87.12 76.09

03 89.44 87.47 75.59

04 92.12 87.70 76.49

05 90.56 88.65 75.37

06 89.96 87.03 76.38

07 90.61 87.08 75.36

08 89.38 87.33 75.74

09 89.52 88.30 76.25

10 92.77 88.47 76.56



Chapter 6. LT-SLAM: FPGA implementation 120

(a) (b)

(c) (d)

Figure 6.13. Performance for the KITTI dataset (training sequences).
σ1, σ2 are the threshold values used for the look up table reduccion
(Section 4.6). Setting σ1 = 4, σ2 = .5: For video sequences in which
most of the time the environment is rigid, high accuracy (near to 92%)
can be reached (a) (b) and (c). For video sequences with dynamic objects
(d) the accuracy level decreases (accuracy of 89% can be reached).

6.8.5 The depth from motion step: performance and limitations

In Fig. 6.14, the quantitative and qualitative results (RMS error and depth maps, respec-

tively) are shown for the KITTI dataset [50]. In all cases our algorithm provides rough

depth maps compared with stereo-based or deep learning approaches [23, 47] but with real-

time processing and with the capability to be implemented in embedded hardware, suitable

for smart cameras. To our knowledge, previous FPGA-based approaches are limited; there

are several GPU-based approaches but in these cases most of the effort was for accuracy

improvements and real-time processing or embedded capabilities were not considered so,

in several cases, details about the hardware requirements or the processing speed are not

provided [144, 147]. In Table 6.7 quantitative comparisons between our algorithm and



Chapter 6. LT-SLAM: FPGA implementation 121

the current state of the art are presented. For previous works, the RMS error, hardware

specifications and processing speed were obtained from the published manuscripts while

for our algorithm we computed the RMS error as indicated by the KITTI dataset, [134].

For accuracy comparisons, most of the previous works [85, 143, 144, 147, 148] outperform

our algorithm (almost 15% more accurate than ours); however, our algorithm outperforms

all of them in terms of processing speed (a processing speed up to 128 times faster than

previous works) and with embedded capabilities (making it possible to develop a smart

camera/sensor suitable for embedded applications).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.14. Depth from motion: results for the KITTI dataset. (a)
Sequence 00, reference image. (b) Ground truth. (c) Depth estimation
(error = 22%). (d) Sequence 01, reference image. (e) Ground truth. (f)
Depth estimation (error = 22%). (g) Sequence 02, reference image. (h)
Ground truth. (i) Depth estimation (error = 22%). (j) Sequence 05,
reference image. (k) Ground truth. (l) Depth estimation (error = 23%).
In all cases our algorithm provides rough depth maps with the capability
to be implemented in hardware, suitable for smart cameras or embedded
robotic applications.



Chapter 6. LT-SLAM: FPGA implementation 122

Table 6.7. Depth estimation compared with the current state of the
art. Training sequences of the KITTI dataset. Most of the previous
works outperform our algorithm in terms of accuracy; however, our al-
gorithm outperforms all of them in terms of processing speed. Further,
our approach provides the unique algorithm with embedded capabilities.

Method Error (RMS) Speed Image resolution Hadware

[147] 6.8% - 128×416 -
[143] 6.5% 5 fps 128×416 GTX 1080 (GPU)
[85] 6.2% 100 fps 128×416 Titan X (GPU)
[144] 6.2% - 830×254 Titan X (GPU)
[148] 5.6% 1.25 fps 576×160 Tesla K80 (GPU)

Our work 21.5% 192 fps 1241×376 Cyclone IV (FPGA)

6.9 DreamCam Validation

DreamCam is a robust/flexible smart camera [20], see Fig. 6.15. In a final experiment,

we have validated our FPGA architecture inside the DreamCam Fig. 6.16 where it was

demonstrated the effectivity of our algorithmic approach.

Figure 6.15. The DreamCam FPGA prototype.



Chapter 6. LT-SLAM: FPGA implementation 123

Figure 6.16. The DreamCam validation. High performance under real
world indoor scenarios is possible. For a video demo please see [7].

6.10 Global performance: GPU vs FPGA

In previous sections, the performance and limitations for each step of our algorithmic for-

mulation were presented. It was demonstrated that in most of the cases, our formulation

improves the current state of the art (in terms of accuracy, embedded capabilities or pro-

cessing speed). The aim of this section is to determine the global performance and scope

of the full formulation presented in this work. For that, we consider the full formulation

as a monocular-SLAM system in which the global performance can be estimated by mea-

suring four different variables, localization accuracy, processing speed, hardware/power

requirements and mapping density.

6.10.1 Localization accuracy

For localization accuracy, in Table 6.8 we show quantitative comparisons between simu-

lation results and implemented results in FPGA and CUDA. For σ1 = 4, σ2 = .5, a lookup

table of 13791 elements is used. This configuration delivers accuracy around 97% for the

CPU simulation. It is the highest accuracy that our monocular-SLAM system can reach

but the formulation uses double-precision floating-point format (which is not feasible and

suitable under GPU/FPGA hardware architectures), and eliminates the real-time process-

ing constrain from the system. The GPU implementation reaches 95% of accuracy that



Chapter 6. LT-SLAM: FPGA implementation 124

is the closest to the simulation results. In this case the formulation uses single-precision

floating-point format and this is the main reason of the accuracy detriment. For the FPGA

implementation, the implementation uses integer format in order to fulfill the VHDL lim-

itations. However, this involves an important detriment in the level of accuracy. As a

result, the accuracy decreases to 91%

Table 6.8. Localization accuracy for the KITTI dataset. σ1, σ2 are the
threshold values used for the look up table reduction: σ1 = 4, σ2 = .5 al-
low accuracy around 97% for the CPU simulation while for the GPU and
FPGA implementations, accuracy around 95% and 91%, respectively, are
achieved.

Accuracy (compared to ground truth)

CPU GPU FPGA

00 97.47 95.77 90.35

01 97.48 95.93 92.60

02 97.16 95.12 90.48

03 97.58 95.56 89.44

04 97.92 95.46 92.12

05 97.27 95.01 90.56

06 97.21 95.33 89.96

07 97.09 95.16 90.61

08 97.13 95.79 89.38

09 97.35 95.31 89.52

10 97.83 95.52 92.77

6.10.2 Processing speed

Regarding processing speed, in Table 6.9 quantitative comparisons between CPU, GPU

and FPGA are shown. For σ1 = 4, σ2 = .5, a lookup table of 13791 elements is used.

For the simulation results, the processing speed is unfeasible and unsuitable for practical

purposes. It requires several hours to process a single training sequence whose average

lengths are 30 seconds. The GPU implementation reaches real-time processing. And in

most of the cases, this speed should be enough for several real world applications. On the

other hand, for the FPGA implementation, it delivers the highest processing speed that

our monocular-SLAM system can reach.



Chapter 6. LT-SLAM: FPGA implementation 125

Table 6.9. Processing speed for the KITTI dataset. σ1, σ2 are the
threshold values used for the look up table reduction: σ1 = 4, σ2 = .5
allow real-time processing only for the GPU and FPG implementations.

Processing speed (measured in fps)

CPU GPU FPGA

00 0.11 fps 87.34 fps 192 fps

01 0.12 fps 86.45 fps 192 fps

02 0.11 fps 83.15 fps 191 fps

03 0.11 fps 87.74 fps 191 fps

04 0.12 fps 86.22 fps 192 fps

05 0.12 fps 87.45 fps 192 fps

06 0.11 fps 85.54 fps 192 fps

07 0.11 fps 83.13 fps 191 fps

08 0.10 fps 86.49 fps 192 fps

09 0.11 fps 87.92 fps 191 fps

10 0.12 fps 85.11 fps 192 fps

6.10.3 Hardware/power requirements

For hardware/power requirements, in Table 6.10 we show quantitative comparisons be-

tween simulation requirements and implementation requirements in FPGA and CUDA.

For the CPU simulation, we have used an intel i7-8700K processor whose power consump-

tion while running our algorithm is 65 W, which is a reasonable power requirement for a

monocular-SLAM system. The GPU implementation uses a GPU GTX 970M of NVIDIA

and, it has the highest power consumption since 292 W are required. For the FPGA

implementation, it has the lowest power requirements since only 6.3 W are necessary.

6.10.4 Mapping density.

For the mapping step, its density depends on the performance of the pixel tracking and

depth from motion steps. In both cases, the single-precision floating-point format or

the integer format involve a minimum accuracy detriment compared with the simulation

results. Therefore, in both cases (GPU/FPGA), accurate dense mapping (as presented

above in Section 4.10) is obtained.



Chapter 6. LT-SLAM: FPGA implementation 126

Table 6.10. Hardware/power requirements under the KITTI dataset.
σ1, σ2 are the threshold values used for the look up table reduction: using
σ1 = 4, σ2 = .5 only the CPU and the FPGA implementations enable
embedded capabilities.

Power requeriments (measured in watts)

CPU (i7-8700K) GPU (GTX 970M)
FPGA (Cyclone IV

EP4CGX150CF23C8)

00 65 W 292 W 6.32 W

01 65 W 292 W 6.32 W

02 65 W 292 W 6.32 W

03 65 W 292 W 6.32 W

04 65 W 292 W 6.32 W

05 65 W 292 W 6.32 W

06 65 W 292 W 6.32 W

07 65 W 292 W 6.32 W

08 65 W 292 W 6.32 W

09 65 W 292 W 6.32 W

10 65 W 292 W 6.32 W

6.10.5 Discussion

For localization accuracy, the CPU simulation achieves the higher accuracy that our

monocular-SLAM system can reach but due to it uses double-precision floating-point

format, this formulation is unfeasible and suitable under GPU/FPGA hardware archi-

tectures. Further, this formulation eliminates the real-time processing constrain from the

system, that is the one of the most important constrain in a real world application. The

GPU implementation reaches similar accuracy than the simulation results and, with real-

time processing. In most of the cases, the processing speed of the GPU implementation

should be enough for real world applications such as, autonomous navigation for unmanned

aerial vehicles, augmented reality, etc. Unfortunately, the power requirements are high.

Therefore, embedded capabilities are low. As a result, for a real world application, the

monocular-SLAM system should be implemented in a remote device (PC, laptop) while

the system (aerial vehicle, glasses of augmented reality) only receives a feedback of the

SLAM system and carries out the process action.



Chapter 6. LT-SLAM: FPGA implementation 127

FPGA implementation reaches the lowest performance in terms of localization accuracy

(near 91% of accuracy). Even though 91%, is a relatively high and acceptable accuracy

compared with the GPU implementation. To our knowledge it is the first monocular-

SLAM formulation implemented fully in hardware and this makes possible to outperform

the GPU version in terms of processing speed (reaching a processing speed near to 200

fps). This could be useful in high speed applications, for example: mobile virtual and

augmented reality systems in which processing speed higher than 100 fps is desirable.

On the other hand, the FPGA implementation enables embedded capabilities (only 6.32

W are required). This makes possible to develop and FPGA-based smart camera for

monocular-SLAM. As a result, for a real world application, the monocular-SLAM system

could be implemented inside a sensor (smart camera) and then, this sensor could be

connected directly to the system (aerial vehicle, glasses of virtual reality, etc.), eliminating

the external device requirement.

6.11 The proposed approach vs visual-SLAM algo-

rithms in the current literature

In a final analysis, we compare our algorithmic formulation (monocular) with other visual-

based approaches (stereo, LiDAR, RGBD) in the current literature. Performance com-

parisons with previous visual-SLAM algorithms were made using the KITTI dataset [50].

For previous work, we obtained the performance data from the published manuscripts.

For the proposed algorithm, we have submitted to the KITTI benchmark suite our re-

sults for the test sequences (11-21), for more details about our algorithmic performance

(qualitative results, drift error graph), please see [8]. For the leader table we are ranked in

the 82th place, however, most algorithms in the leader table are stereo-based approaches

[10, 42, 44, 52, 64, 68, 89, 94, 107, 121, 122], or LiDAR-based approaches [16, 53]. In these

cases, the disparity map or the rangefinder map make possible to compute accurate cam-

era poses (localization) but in most cases, processing speed is low (near 15 fps), as shown

in Table 6.11. For monocular-based approaches [30, 49], our algorithm outperforms most

previous monocular approaches in both, accuracy and processing speed. This is because

most previous work uses binary-based feature description and binary-based matching and,

these are sensitive to image degradations (illumination changes, rotation, blur, etc.). In

our case, the proposed pixel tracking/feature matching steps provide high robustness for

image degradations and this improves the performance.



Chapter 6. LT-SLAM: FPGA implementation 128

For previous hardware-based implementations [34, 91, 104, 139], our algorithm reach

a good tradeoff between accuracy and processing speed. Compared to [34, 139] our al-

gorithm outperforms those works in terms of accuracy, 4% more accurate than [34] and

7% more accurate than [139]. For processing speed, we achieve a speed up of 2 times (67

fps) compared with [34] which reaches 30 fps. [139] outperforms our algorithm in terms of

processing speed (+71 fps), however, the GPU used in previous work is highly powerful

(2888 CUDA cores) compared to the one used in this work (1664 CUDA cores). For [91],

our algorithm reaches similar accuracy and processing speed than that work. Nevertheless,

lower hardware resources are required in our case: 1280 CUDA cores in our case compared

with the 1664 CUDA cores used in that work. Finally, [104] outperforms our algorithm

in terms of accuracy (4% more accurate than our work), but with lower processing speed

because the reported value (333.3fps), does not consider the image readout, feature extrac-

tion and feature tracking steps, which are the heaviest operations in the VO formulation.

For our FPGA implementation, at our knowledge, it is the first FPGA architecture that

addressees all the steps in the monocular-SLAM formulation, outperforming all previous

works in terms of processing speed and reaching a relatively high accuracy compared with

previous monocular-SLAM algorithms, around 91% of accuracy for the test sequences of

the KITTI dataset.

Table 6.11. Quantitative results for the proposed algorithm compared
with previous works.

Algorithm Accuracy Speed Density Hardware Approach

Graeter et al

(2018) [53]
98.78% 2 fps Dense CPU LiDAR

Behley &

Stachniss (2018)

[16]

98.61% 10 fps Dense CPU LiDAR

Mur-Artal et al

(2017) [94]
98.85% 16.66 fps Semi-dense CPU Stereo

Pire et al (2017)

[107]
98.81% 10 fps Semi-dense CPU Stereo

Engel et al

(2015) [42]
98.80% 14.28 fps

Semi-

Dense
CPU Stereo

Meiqing et al

(2017) [89]
98.74% - Semi-dense CPU Stereo



Chapter 6. LT-SLAM: FPGA implementation 129

Huai et al

(2015) [64]
98.24% 2 fps Semi-dense CPU Stereo

Fanfani et al

(2016) [44]
97.86% 2 fps Semi-dense CPU Stereo

Shiyu et al

(2012) [122]
97.46% 20 fps Semi-dense CPU Stereo

Alcantarilla et

al (2012) [10]
97.31% 1.78 fps Semi-dense CPU Stereo

Gomez-Ojeda &

Gonzalez-

Jimenez (2016)

[52]

96.74% 5 fps Semi-dense CPU Stereo

Kaess et al

(2012) [10]
95.83% 1.9 fps Semi-dense CPU Stereo

Holzmann et al

(2016) [61]
91.94% 20.30 fps Sparse CPU Monocular

Geiger et al

(2011) [49]
83.71% 16.39 fps Sparse CPU Monocular

Ciarfuglia et al

(2014) [30]
85.56% 9.09 fps Sparse CPU Monocular

Costante et al

(2016) [34]
91.04% 3.27 fps Sparse CPU Monocular

Costante et al

(2016) [34]
91.04% 20.83 fps Sparse GPU Monocular

Mohanty et

al(2016) [91]
94.50% 111.11 fps Sparse GPU Monocular

Weber et al

(2017) [139]
88.53% 158.73 fps Sparse GPU Monocular

Pillai and

Leonard (2017)

[104]

99.72% 333.3 fps Sparse GPU Monocular

Our work 95.07% 87.34 fps Semi-dense GPU Monocular

Our work 91.01% 206 fps Semi-dense FPGA Monocular



Chapter 6. LT-SLAM: FPGA implementation 130

6.12 Summary

In this chapter, we have presented the results of FPGA implementation for our monocular

SLAM formulation. Our algorithm of tracking / matching functions based on FPGA offers

a dense tracking (more feature points than previous algorithms) and no outliers. This

avoids the use of RANSAC outliers filtering and allows a fully parallelization inside FPGA

architectures. We have developed an FPGA-based architecture suitable for a smart camera

which deliver high efficiency in terms of algorithmic parallelization [7]. So, unlike previous

work, the camera ego-motion (localization) can be estimated without iterative behavior

and without geometric constraints, suitable for embedded applications. Experimental

results demonstrated that our algorithm reaches high accuracy (91.07%), compared with

previous monocular VO algorithms such as CNN and depth learning-based algorithms

(which reach 90% of accuracy) and with a processing speed up to 30 times faster than

previous works.

We have developed a new depth from motion/linear triangulation algorithm whose

hardware implementation deliver high efficiency in terms of algorithmic parallelization.

Different to previous works, the depth information is estimated in real time within a

compact FPGA device. Faster and with fewer hardware resources than previous works. It

makes it possible to achieve a dense 3D reconstruction via GPU-based linear triangulation,

improving by around 50 times the current state of the art.



Chapter 7

Conclusions and future work

In this chapter, a summary of the proposed algorithm is presented, as well as the con-

tributions obtained from this doctoral research. Then, the conclusions drawn from this

work are presented, and a discussion on the hypothesis of this work is carried out. Finally,

the limitations of the proposed approach and the future work derived from this work are

discussed.

7.1 Summary

Simultaneous Localization and Mapping (SLAM) is the problem of constructing a 3D map

while simultaneously tracking the location of an agent within the map. In recent years, the

work has focused on monocular-SLAM since it requires only requires a camera in motion

and provides visual environmental information that can be exploited to create complex

3D maps while camera poses can be simultaneously estimated. Unfortunately, previous

algorithms are based on optimization techniques implemented in sequential processors

where sparse tracking has to be used in order to reach real-time processing. This makes

possible to reach high accuracy for the camera pose estimation but limits the embedded

capabilities and deliver sparse point clouds. To solve this problem, in this work we have

proposed a new formulation of monocular-SLAM based on the hypothesis that it is pos-

sible to reach high efficiency for embedded applications, increasing the tracking density

(and therefore 3D map density and overall positioning and mapping) by reformulating the

feature-tracking/feature-matching process in order to reach high performance for embed-

ded hardware architectures, such as FPGA or CUDA.

131



Chapter 7. Conclusions and future work 132

To obtain dense tracking, as established in our hypothesis, we have proposed a new

pixel tracking algorithm that consists of an extension of the stereo matching problem.

A pixel-parallel/window-parallel approach based on a Sum of Absolute Differences was

proposed. Further, in order to improve the performance of the correlation, the curl of

the intensity gradient as preprocessing step was introduced. To validate our hypothesis,

two different hardware architectures (FPGA-based and CUDA-based) full compliant for

real-time embedded applications were presented. The experimental results shown that it

is possible to obtain accurate camera pose estimations. Compared to previous monocular

systems, we are ranked as the 5th place in the KITTI benchmark suite, with higher

processing speed (we are the faster algorithm in the benchmark) and more than ×10 the

point cloud density from previous approaches.

7.2 Discussion on hypothesis

The hypothesis of this work is that it is possible to achieve a high efficiency for integrated

applications of monocular SLAM, increasing the point density (and therefore 3D map den-

sity and overall positioning and mapping) by reformulating the feature-tracking/feature-

matching process. Furthermore, the feature matching process can be parallelized to reach

real time performance in an FPGA or CUDA architecture. The experimental results

demonstrate the effectiveness of the proposed pixel-tracking/feature matching algorithms

in terms of its embedded monocular-SLAM capabilities. With that algorithms, a novel ap-

proach for the ”ego-motion challenge” makes possible to estimate the camera ego-motion

(localization) with no iterative loop and no geometrical constraints. Furthermore, using

the proposed pixel-tracking algorithm, a novel depth from motion algorithm based on a

flow/depth transformation delivers depth maps and 3D scene reconstructions with more

than ×10 pixels density compared with previous approaches. Finally, the experimental re-

sults demonstrated that our FPGA/GPU implementation deliver high efficiency in terms

of algorithmic parallelization and this makes possible high efficiency under embedded

monocular-SLAM applications.



Chapter 7. Conclusions and future work 133

7.3 Main Contributions

The main contributions of this thesis are:

1. A pixel tracking/feature matching algorithm that provides dense feature tracking/

feature matching. Previous works use high order metrics such as, the Jacobian or

Laplacian of the patch being processed to obtain a robust feature tracking, however,

this limits the processing speed. To address this problem, feature tracking has to be

carried out only for a few pixels in the input image, generating sparse tracking. In our

case, we carried out feature tracking for all pixels in the input image, for that, a local

correlation function such as, SAD (Sum of Absolute Differences) was used, although

local correlation functions have low robustness under image degradations. In order

to improve the SAD performance, we have proposed the curl of the input image as

a preprocessing step. Then, a pixel-parallel/window-parallel approach based on a

SAD correlation function was proposed.

2. A parallel algorithm for the “ego-motion challenge”. Previous algorithms are based

on optimization techniques that require a high order of iterations to converge. In

embedded systems where the clock speed is limited, this decreases the performance

for real-time processing. To address this limitation, we have proposed a novel algo-

rithm that consists of using look-up tables and a new feature matching algorithm.

Unlike the previous, the movement of the camera is estimated with no iterative loop

and no geometrical constraints which makes possible an efficient parallelization for

embedded architectures such as, FPGA or CUDA.

3. An algorithm of depth from the movement based on a transformation of flow /

depth. In recent years, the most popular solution is the use of active vision to

estimate the depth information of the scene. However, this approach increases the

size and cost of the system and is limited to indoor scenarios, in which the objects

distribution and controlled illumination guarantees the correct propagation for the

structured light. In order to reach high performance for embedded applications and

high robustness for indoor/outdoor scenarios, in this work, we have introduced a

flow/depth transformation inspired by the epipolar geometry. Then, depth in the

scene is computed as the norm of the optical flow. This was Inspired by the Euclidean

vector operations in which the Z component is proportional to the norm of the X, Y



Chapter 7. Conclusions and future work 134

components. So, for a single moving camera, we supposed that depth in the scene z

has to be proportional to the norm of the x, y pixels velocities across time.

4. A Visual Odometry (VO) benchmark dataset. Several well know benchmark datasets

such as the KITTI [50], TUM [126] etc. are available, however, most of them were

focused on a particular real world application (autonomous vehicle navigation, in-

door navigation, etc.). Then, camera movement is limited between two or three

degrees of freedom. In order to test our algorithm under more complex movements,

a new benchmark dataset was developed. Our benchmark dataset provides camera

movements for each possible combination of movements given six degree of freedom

(130 different video sequences with ground truth where all possible movement (65)

were recorded at two different locations). For download: images, ground truth,

documentations and scripts, please see [9].

5. A GPU hardware architecture for our monocular-SLAM formulation. Previous GPU-

based approaches have parallelized only some parts of the original monocular-SLAM

formulation, for example, the camera pose or the refinement have iterative opera-

tions that cannot be parallelized. In our case, our formulation was designed for a

parallel implementation then, all parts of our monocular-SLAM formulation can be

parallelized. As a result, our approach provides a processing speed up to 17 times

faster than in previous works. Furthermore, we can provide high accuracy (95.07%),

and making possible to reach dense 3D reconstruction, improving by around 15 times

the current state of the art in terms of map density.

6. An FPGA hardware architecture for our monocular-SLAM formulation. To our

knowledge our FPGA architecture is the first to solve the monocular-SLAM prob-

lem fully in hardware. It offers dense tracking (more feature points than previous

CPU/GPU-based algorithms) and without outliers. We have validated our FPGA

architecture in an FPGA-based smart camera where experimental results demon-

strated that our approach reaches high accuracy (91.07%), compared with previous

monocular systems such as CNN and depth learning-based algorithms (which reach

90% of accuracy); with a processing speed up to 30 times faster than previous works

and improving around 50 times the current state of the art in terms of map density.

Based on these characteristic, we believe that several embedded applications such as

augmented reality, mobile robotics, autonomous flying, etc., can obtain advantages

by applying and exploiting the embedded capabilities of our approach.



Chapter 7. Conclusions and future work 135

7.4 Future work

The results obtained in this thesis have shown a high efficiency for embedded monocular-

SLAM applications. From these results, we propose as future work:

1. To improve the use of hardware resources for the FPGA architecture. As a future

work, we will reformulate our FPGA architecture using a popcount-based correlation

function (a codification in which a eight bit register is converted based on its number

of bits equal to one) into the pixel-tracking step. We believe that this reformulation

can reduce the use of logical elements near to 75%, therefore, achieving a higher

resolution of follow-up.

2. In order to achieve a better scene understanding, as future work we will investigate

the semantic segmentation within the depth from motion step. We believe that

depth maps combined with semantic labels could be useful to construct semantic

3D reconstructions (semantic-monocular-SLAM) and, these maps can be exploited

by several reald world applications such as, augmented reality, autonomous vehicle

navigation, service robots, etc.

7.5 Publications

The following publications were generated as result of this doctoral research:

JCR Journals:

1. Aguilar-González, A., Arias-Estrada, M., & Berry, F. (2019). Monocular-SLAM:

A survey. International Journal of Advanced Robotic Systems (IJARS). IF: 0.952

Submitted.

2. Aguilar-González, A., Arias-Estrada, M., Berry, F., & Osuna-Coutiño, J. A. de Jesús

(2019). The Fastest Visual Ego-motion Algorithm in the West. Microprocessors and

Microsystems, 67, 103-116. IF: 1.049 .

3. Aguilar-González, A., Arias-Estrada, M., & Berry, F. (2019). Depth from motion

algorithm and hardware architecture for smart cameras. Sensors - Special Issue

“Depth Sensors and 3D Vision”. IF: 2.475



Chapter 7. Conclusions and future work 136

4. Aguilar-González, A., Arias-Estrada, M., & Berry, F. (2018). Robust feature extrac-

tion algorithm suitable for real-time embedded applications. Journal of Real-Time

Image Processing, 14(3), 647-665. IF: 2.011

Conference proceedings:

1. Aguilar-González, A., & Arias-Estrada, M. (2016, September). Towards a smart

camera for monocular SLAM. In Proceedings of the 10th International Conference

on Distributed Smart Camera (pp. 128-135). ACM. Best Paper Award

2. Aguilar-González, A., & Arias-Estrada, M. (2016, October). Dense mapping for

monocular-SLAM. In Indoor Positioning and Indoor Navigation (IPIN), 2016 Inter-

national Conference on (pp. 1-8). IEEE.

3. Aguilar-González, A., Arias-Estrada, M., & Berry, F. (2017, September). Dense

Feature Matching Core for FPGA-based Smart Cameras. In Proceedings of the

11th International Conference on Distributed Smart Cameras (pp. 41-48). ACM.

4. Osuna-Coutiño, J. A. de Jesús, Aguilar-González, A., & Arias-Estrada, M. (2017,

September). GPU-based Visual Odometry for Autonomous Vehicle Applications.

In Proceedings of the 11th International Conference on Distributed Smart Cameras

(pp. 210-211). ACM.

5. Aguilar-González, A., Arias-Estrada, M., & Berry, F. (2017, September). Camera

Pose Estimation Suitable for Smart Cameras. In Proceedings of the 11th Interna-

tional Conference on Distributed Smart Cameras (pp. 202-204). ACM.



Appendices

137



Appendix A

INAOE/DREAM benchmark dataset

We provide a new dataset that contains monocular video sequences and ground-truth

data with the goal to establish a novel benchmark for the evaluation of visual odometry

algorithms under complex camera movements. Our dataset consists of 130 monocular

sequences provided with ground truth trajectories for all the sequences. The data was

recorded at full frame rate (60 Hz) and, the ground-truth trajectory was obtained from a

high-accuracy motion-capture system with eight high-speed tracking cameras (Vicon V8,

8MP, 2000Hz, [136]), a shown in Fig. A.1.

Figure A.1. INAOE/DREAM benchmark dataset setup. The data
was recorded at full frame rate (60 Hz) and, the ground-truth trajectory
was obtained from a high-accuracy motion-capture system with eight
high-speed tracking cameras Vicon V8, 8MP, 2000Hz.

138



INAOE/DREAM benchmark dataset 139

How can I use the INAOE/DREAM Benchmark dataset?

1. Download one or more benchmark sequences

2. Run your favorite visual odometry/visual SLAM algorithm

3. Save the estimated camera trajectory to a file

4. Evaluate your algorithm by comparing the estimated trajectory with the ground

truth trajectory.

In the following table you can download all the benchmark sequences. Each sequence

involve complex camera movements, where the dominant movements are as defined in

the table. Each file contains both a folder with the image sequence and a .txt file with

the corresponding ground truth. For the ground truth file each row correspond with the

camera pose for the current frame (p1,1; p1,2; p1,3; x; p2,1; p2,2; p2,3; y; p3,1; p3,2;

p3,3; z), where p(n,m) are the nine elements of the rotation matrix while (x,y,z) are the

translation matrix. For the online version please see [9].

Table A.1. The INAOE/DREAM benchmark dataset.

Movement Download

x y z α β γ 1 2

0 - - - - - - donwload donwload

1 - - - - - × donwload donwload

2 - - - - × - donwload donwload

3 - - - - × × donwload donwload

4 - - - × - - donwload donwload

5 - - - × - × donwload donwload

6 - - - × × - donwload donwload

7 - - - × × × donwload donwload

8 - - × - - - donwload donwload

9 - - × - - × donwload donwload

10 - - × - × - donwload donwload

11 - - × - × × donwload donwload

12 - - × × - - donwload donwload

13 - - × × - × donwload donwload

https://dream.ispr-ip.fr/wp-content/uploads/dataset/00a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/00b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/01a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/01b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/02a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/02b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/03a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/03b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/04a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/04b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/05a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/05b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/06a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/06b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/07a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/07b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/08a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/08b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/09a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/09b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/10a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/10b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/11a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/11b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/12a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/12b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/13a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/13b.rar


INAOE/DREAM benchmark dataset 140

14 - - × × × - donwload donwload

15 - - × × × × donwload donwload

16 - × - - - - donwload donwload

17 - × - - - × donwload donwload

18 - × - - × - donwload donwload

19 - × - - × × donwload donwload

20 - × - × - - donwload donwload

21 - × - × - × donwload donwload

22 - × - × × - donwload donwload

23 - × - × × × donwload donwload

24 - × × - - - donwload donwload

25 - × × - - × donwload donwload

26 - × × - × - donwload donwload

27 - × × - × × donwload donwload

28 - × × × - - donwload donwload

29 - × × × - × donwload donwload

30 - × × × × - donwload donwload

31 - × × × × × donwload donwload

32 × - - - - - donwload donwload

33 × - - - - × donwload donwload

34 × - - - × - donwload donwload

35 × - - - × × donwload donwload

36 × - - × - - donwload donwload

37 × - - × - × donwload donwload

38 × - - × × - donwload donwload

39 × - - × × × donwload donwload

40 × - × - - - donwload donwload

41 × - × - - × donwload donwload

42 × - × - × - donwload donwload

43 × - × - × × donwload donwload

44 × - × × - - donwload donwload

45 × - × × - × donwload donwload

46 × - × × × - donwload donwload

https://dream.ispr-ip.fr/wp-content/uploads/dataset/14a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/14b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/15a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/15b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/16a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/16b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/17a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/17b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/18a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/18b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/19a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/19b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/20a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/20b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/21a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/21b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/22a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/22b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/23a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/23b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/24a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/24b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/25a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/25b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/26a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/26b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/27a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/27b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/28a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/28b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/29a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/29b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/30a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/30b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/31a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/31b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/32a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/32b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/33a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/33b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/34a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/34b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/35a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/35b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/36a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/36b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/37a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/37b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/38a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/38b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/39a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/39b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/40a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/40b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/41a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/41b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/42a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/42b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/43a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/43b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/44a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/44b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/45a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/45b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/46a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/46b.rar


INAOE/DREAM benchmark dataset 141

47 × - × × × × donwload donwload

48 × × - - - - donwload donwload

49 × × - - - × donwload donwload

50 × × - - × - donwload donwload

51 × × - - × × donwload donwload

52 × × - × - - donwload donwload

53 × × - × - × donwload donwload

54 × × - × × - donwload donwload

55 × × - × × × donwload donwload

56 × × × - - - donwload donwload

57 × × × - - × donwload donwload

58 × × × - × - donwload donwload

59 × × × - × × donwload donwload

60 × × × × - - donwload donwload

61 × × × × - × donwload donwload

62 × × × × × - donwload donwload

63 × × × × × × donwload donwload

https://dream.ispr-ip.fr/wp-content/uploads/dataset/47a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/47b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/48a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/48b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/49a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/49b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/50a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/50b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/51a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/51b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/52a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/52b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/53a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/53b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/54a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/54b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/55a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/55b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/56a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/56b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/57a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/57b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/58a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/58b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/59a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/59b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/60a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/60b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/61a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/61b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/62a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/62b.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/63a.rar
https://dream.ispr-ip.fr/wp-content/uploads/dataset/63b.rar


Bibliography

[1] A. Aguilar-González and M. Arias-Estrada, “Dense mapping for monocular-SLAM”,

In Proceedings of the 2016 IEEE International Conference on Indoor Positioning and

Indoor Navigation, IPIN 2016, Alcala de Henares, Spain, Oct. 2016, pp. 1–8.

[2] A. Aguilar-González and M. Arias-Estrada, “Towards a smart camera for monocular-

SLAM”, In Proceedings of the 10th International Conference on Distributed Smart

Cameras, ICDSC 2016, Paris, France, Sep. 2016, pp. 128–135.

[3] A. Aguilar-González, M. Arias-Estrada, M. Pérez-Patricio, and J.L. Camas-Anzueto,

“An FPGA 2D-convolution unit based on the CAPH language”, Journal of Real-

Time Image Processing, 2015, pp. 1–15.

[4] A. Aguilar-González, M. Arias-Estrada, and F. Berry, “Camera pose estimation

suitable for smart cameras”, In Proceedings of the 11th International Conference

on Distributed Smart Cameras, ICDSC 2017, Stanford, CA, USA, Sep. 2017, pp.

202–204.

[5] A. Aguilar-González, M. Arias-Estrada, and F. Berry, “Dense feature matching

core for FPGA-based smart cameras”, In Proceedings of the 11th International

Conference on Distributed Smart Cameras, ICDSC 2017, Stanford, CA, USA, Sep.

2017, pp. 41–48.

[6] A. Aguilar-González, M. Arias-Estrada, and F. Berry, “Robust feature extraction al-

gorithm suitable for real-time embedded applications”, Journal of Real-Time Image

Processing, vol. 14(3), pp. 647–665, 2018.

[7] A. Aguilar-González, “Visual Odometry Algorithm and Architecture for

FPGA Acceleration”, 2018. [Online]. Available: https://dream.ispr-ip.fr/

monocular-slam-algorithm-architecture-fpga-acceleration-2/. [Accessed:

10-Feb-2019].

142

https://dream.ispr-ip.fr/monocular-slam-algorithm-architecture-fpga-acceleration-2/
https://dream.ispr-ip.fr/monocular-slam-algorithm-architecture-fpga-acceleration-2/


Bibliography 143

[8] A. Aguilar-González, “The Fastest Visual Ego-motion Algorithm in the West”, 2018.

[Online]. Available: http://www.cvlibs.net/datasets/kitti/eval_odometry_

detail.php?&result=fee1ecc5afe08bc002f093b48e9ba98a295a79ed, [Accessed:

10-Feb-2019].

[9] A. Aguilar-González. “INAOE/DREAM benchmark dataset”, 2018. [Online]. Avail-

able: https://dream.ispr-ip.fr/ispr-benchmark-dataset/ [Accessed: 10-Feb-

2019].

[10] P. F. Alcantarilla, J. J. Yebes, J. Almazán, and L. M. Bergasa, “On combining

visual SLAM and dense scene flow to increase the robustness of localization and

mapping in dynamic environments”, In Proceedings of the 2012 IEEE International

Conference on Robotics and Automation, ICRA 2012, Saint Paul, MN, USA, Jun.

2012, pp. 1–6.

[11] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM):

Part II”, IEEE Robotics & Automation Magazine, vol. 13(3), pp.108–117, 2006.

[12] S. Y. Bao, M. Bagra, Y. W. Chao, and S. Savarese, “Semantic structure from motion

with points, regions, and objects”, In Proceedings of the 2012 IEEE International

Conference on Computer Vision and Pattern Recognition, CVPR 2012, Providence,

RI, USA, Jun. 2012, pp. 2703–2710.

[13] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, and E. Ros, “Parallel architecture for

hierarchical optical flow estimation based on FPGA”, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 20(6), pp.1058–1067, 2012.

[14] J. L. Barron and N. A. Thacker, “Tutorial: Computing 2D and 3D optical flow”,

Technical report, Imaging Science and Biomedical Engineering Division, Medical

School, University of Manchester, Jan. 2007.

[15] H. Bay, A. Ess, T. Tuytelaars, and L. Van-Gool, “Speeded-Up Robust Features

(SUFR)”, Computer vision and image understanding, , vol. 110(3), pp.346–359,

2008.

[16] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3D laser range data

in urban environments”, In Proceedings of Robotics: Science and Systems (RSS),

Pittsburgh, PA, USA, Jun. 2018, pp. 1–10.

http://www.cvlibs.net/datasets/kitti/eval_odometry_detail.php?&result=fee1ecc5afe08bc002f093b48e9ba98a295a79ed
http://www.cvlibs.net/datasets/kitti/eval_odometry_detail.php?&result=fee1ecc5afe08bc002f093b48e9ba98a295a79ed
https://dream.ispr-ip.fr/ispr-benchmark-dataset/


Bibliography 144

[17] S. Benhimane and E. Malis, “Homography-based 2D visual tracking and servoing”,

The International Journal of Robotics Research, vol. 26(7), pp.661–676, 2007.

[18] P. Bergmann, R. Wang, and D. Cremers, “Online photometric calibration of auto

exposure video for realtime visual odometry and SLAM”, IEEE Robotics and Au-

tomation Letters, vol. 3(2), pp.627–634, 2018.

[19] P. J. Besl and N. D. McKay, “Method for registration of 3D shapes”, Sensor Fusion

IV: Control Paradigms and Data Structures, vol. 1611, pp.586–607, 1992.

[20] M. Birem and F. Berry, “Dreamcam: A modular FPGA-based smart camera archi-

tecture”, Journal of Systems Architecture, vol. 60(6), pp.519–527, 2014.

[21] S. R. Bista, P. R. Giordano, and F. Chaumette, “Appearance-based indoor navi-

gation by using line segments”, IEEE Robotics and Automation Letters, vol. 1(1),

pp.423–430, 2016.

[22] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot localization and

navigation”, In Proceedings of the 2012 IEEE International Conference on Robotics

and Automation, ICRA 2012, Saint Paul, MN, USA, Jun. 2012, pp. 1697–1702.

[23] B. Li, Y. Dai and M. He, “Monocular depth estimation with hierarchical fusion of

dilated CNNs and soft-weighted-sum inference”, Pattern Recognition, vol. 83, pp.

28-339, 2018.

[24] G. Bourmaud and R. Megret, “Robust large scale monocular visual SLAM”, In

Proceedings of the 2015 IEEE International Conference on Computer Vision and

Pattern Recognition, CVPR 2015, Boston, MA, USA, Oct. 2012, pp. 1638–1647.

[25] R. G. Brown, P. Y. C. Hwang, “Introduction to random signals and applied Kalman

filtering”, Wiley New York, 1992.

[26] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Inde-

pendent Elementary Features”, In Proceedings of the 2010 European conference on

computer vision, ECCV 2010, Crete, Greece, Sep. 2010, pp. 778–792.

[27] S. Caux, E. Hendrickx, F. Berry, M. Pelcat, and J. Sérot, “Demo GPStudio: a

toolchain for FPGA-based smart cameras”, In Proceedings of the 10th International

Conference on Distributed Smart Camera, ICDSC 2016, Paris, France, Sep. 2016,

pp. 778–792.



Bibliography 145

[28] D. Chekhlov, A. P. Gee, A. Calway, and W. Mayol-Cuevas. “Ninja on a plane:

Automatic discovery of physical planes for augmented reality using visual SLAM”,

In Proceedings of the 6th IEEE and ACM International Symposium on Mixed and

Augmented Reality, ISMAR 2007, Nara, Japan, Nov. 2007, pp. 1–4.

[29] Y. Cheng, “Mean shift, mode seeking, and clustering”, IEEE transactions on pattern

analysis and machine intelligence, vol. 17(8), pp. 790–799, 1995.

[30] T. A. Ciarfuglia, G. Costante, P. Valigi, and E. Ricci, “Evaluation of non-geometric

methods for visual odometry”, Robotics and Autonomous Systems, vol. 62(12), pp.

1717–1730, 2014.

[31] J. Civera, A. J. Davison, and J. M. Martinez-Montiel, “Inverse depth parametriza-

tion for monocular SLAM”, IEEE transactions on robotics, vol. 24(5), pp. 932–945,

2008.

[32] A. Concha and J. Civera, “Using superpixels in monocular-SLAM”, In Proceedings

of the 2014 IEEE International Conference on Robotics and Automation, ICRA

2014, Hong Kong, China, May 2014, pp. 365–372.

[33] A. Concha-Belenguer and J. Civera-Sancho, “DPPTAM: Dense Piecewise Planar

Tracking And Mapping from a monocular sequence”, In Proceedings of the 2015

IEEE International Conference on Intelligent Robots and Systems, IROS 2015, Ham-

burg, Germany, Sep. 2015, pp. 1–8.

[34] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, “Exploring representation

learning with cnns for frame-to-frame ego-motion estimation”, IEEE robotics and

automation letters, vol. 1(1), pp. 18–25, 2016.

[35] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-time single

camera SLAM”, IEEE Transactions on Pattern Analysis & Machine Intelligence,

vol. 6, pp. 1052–1067, 2007.

[36] O. Demetz, D. Hafner, and J. Weickert, “The complete rank transform: A tool for

accurate and morphologically invariant matching of structure”, In Proceedings of

the 2013 British Machine Vision Conference, BMVC 2013, Bristol , U.K., Sep. 2013,

pp. 1–12.



Bibliography 146

[37] J. Dı́az, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota, “FPGA-based real-time

optical-flow system”, IEEE transactions on circuits and systems for video technology,

vol. 16(2), pp. 274–279, 2006.

[38] Z. Dong, G. Zhang, J. Jia, and H. Bao, “Efficient keyframe-based real-time camera

tracking”, Computer Vision and Image Understanding, vol. 118, pp. 97–110, 2014.

[39] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I”,

IEEE robotics & automation magazine, vol. 13, pp. 99–110, 2006.

[40] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a monocular

camera”, In Proceedings of the 2013 IEEE International Conference on Computer

Vision, ICCV 2013, Sydney, NSW, Australia, Dec. 2013, pp. 1449–1456.

[41] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct monocular-

SLAM”, In Proceedings of the 2014 European Conference on Computer Vision,

ECCV 2014, Zurich, Switzerland, Sep. 2013, pp. 834–849.

[42] J. Engel, Jörg Stückler, and D. Cremers, “Large-scale direct SLAM with stereo

cameras”, In Proceedings of the 2015 IEEE International Conference on Intelligent

Robots and Systems, IROS 2015, Hamburg, Germany, Sep. 2015, pp. 1935–1942.

[43] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry”, IEEE transactions

on pattern analysis and machine intelligence, vol. 40(3), pp. 611–625, 2018.

[44] M. Fanfani, F. Bellavia, and C. Colombo. “Accurate keyframe selection and keypoint

tracking for robust visual odometry”, Machine Vision and Applications, vol. 27(6),

pp. 833–844, 2016.

[45] O. D. Faugeras and F. Lustman, “Motion and structure from motion in a piecewise

planar environment”, International Journal of Pattern Recognition and Artificial

Intelligence, vol. 2(3), pp. 485–508, 1988.

[46] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-direct monocular Visual

Odometry”, In Proceedings of the 2014 IEEE International Conference on Robotics

and Automation, ICRA 2014, Hong Kong, China, May 2014, pp. 15–22.

[47] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep Ordinal Regression

Network for Monocular Depth Estimation”, In Proceedings of the 2018 IEEE In-



Bibliography 147

ternational Conference on Computer Vision and Pattern Recognition, CVPR 2018,

Salt Lake City, United States, 2018, pp. 1–8.

[48] D. Gálvez-López, M. Salas, J. D. Tardós, and J. M. Montiel, “Real-time monocular

object SLAM”, Robotics and Autonomous Systems, vol. 75, pp. 435–449, 2016.

[49] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3D reconstruction in real-

time”, In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium, Baden-

Baden, Germany, 2011, pp. 963–968.

[50] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI

dataset”, The International Journal of Robotics Research, vol. 32, pp. 1231–1237,

2013.

[51] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford and G. Wyeth, “Open-

fabmap: An open source toolbox for appearance-based loop closure detection”, In

Proceedings of the 2012 IEEE International Conference on Robotics and Automation,

ICRA 2012, Saint Paul, MN, USA 2012, pp. 4730–4735.

[52] R. Gomez-Ojeda and J. Gonzalez-Jimenez, “Robust Stereo Visual Odometry

through a Probabilistic Combination of Points and Line Segments”, In Proceed-

ings of the 2016 IEEE International Conference on Robotics and Automation, ICRA

2016, Stockholm, Sweden, May 2016, pp. 1130–1137.

[53] J. Graeter, A. Wilczynski, and M. Lauer, “LIMO: Lidar-Monocular Visual Odom-

etry”, In Proceedings of the 2018 IEEE International Conference on Intelligent

Robots and Systems, IROS 2018, Madrid, Spain, Oct. 2018, pp. 1–8.

[54] A. Graves, S. Lim and T. Fagan, “Visual odometry using convolutional neural

networks”, The Kennesaw Journal of Undergraduate Research, vol. 5(3), pp. 1–10,

2017.

[55] W. N. Greene, K. Ok, P. Lommel, and N. Roy, “Multi-level mapping: Real-time

dense monocular-SLAM”, In Proceedings of the 2016 IEEE International Conference

on Robotics and Automation, ICRA 2016, Stockholm, Sweden, May 2016, pp. 833–

840.

[56] C. Harris and M. Stephens, “A combined corner and edge detector”, In Proceedings

of the 4th Alvey vision conference, Manchester, U.K., Aug. 1988, pp. 23.1–23.6.



Bibliography 148

[57] R. Hartley and A. Zisserman, “Multiple view geometry in computer vision”, Cam-

bridge university press, 2003.

[58] R. I. Hartley and P. Sturm. “Triangulation”, Computer vision and image under-

standing, vol. 68, pp. 146–157, 1997.

[59] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan, “Mesheye: a hybrid-resolution

smart camera mote for applications in distributed intelligent surveillance”, In Pro-

ceedings of the 6th International Conference on Information Processing in Sensor

Networks, ICIPSN 2007, Cambridge, Massachusetts, USA, Apr. 2007, pp. 360–369.

[60] C. D. Herrera, K. Kim, J. Kannala, K. Pulli, and J. Heikkilä, “DT-SLAM: Deferred

Triangulation for robust SLAM”, In Proceedings of the 2nd International Conference

on 3D Vision, 3DV 2014, Tokyo, Japan, Dec. 2014, pp. 609–616.

[61] T. Holzmann, F. Fraundorfer, and H. Bischof, “Direct stereo visual odometry based

on lines”, In Proceedings of the 11th International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Applications, VISAPP 2016,

Rome, Italy, Feb. 2016, pp. 1–11.

[62] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and M. Pollefeys, “Real-time

velocity estimation based on optical flow and disparity matching”, In Proceedings of

the 2012 IEEE International Conference on Intelligent Robots and Systems, IROS

2012, Vilamoura, Algarve, Portugal, Oct. 2012, pp. 5177–5182.

[63] B. K. P. Horn and B. G. Schunck, “Determining optical flow”, Artificial intelligence,

vol. 17, pp. 185–203, 1981.

[64] J. Huai, C. Toth, and D. Grejner-Brzezinska, “Stereo-inertial odometry using non-

linear optimization”, In Proceedings of the 27th International Technical Meeting of

The Satellite Division of the Institute of Navigation, ION GNSS+ 2015, Tampa,

Florida, USA, Sep. 2015, pp. 1–8.

[65] T. W. Hui, X. Tang, and C. C. Loy, “Liteflownet: A lightweight convolutional neural

network for optical flow estimation”, In Proceedings of the 2018 IEEE International

Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, United States, 2018, pp. 1–8.



Bibliography 149

[66] A. Jaegle, S. Phillips, and K. Daniilidis, “Fast, robust, continuous monocular ego-

motion computation”, In Proceedings of the 2016 IEEE International Conference on

Robotics and Automation, ICRA 2016, Stockholm, Sweden, May 2016, pp. 773–780.

[67] K. Jo, M. Gupta, and S. K. Nayar, “Spedo: 6 DOF ego-motion sensor using speckle

defocus imaging”, In Proceedings of the 2015 IEEE International Conference on

Computer Vision, ICCV 2015, Santiago, Chile, Dec. 2015, pp. 4319–4327.

[68] M. Kaess, K. Ni, and F. Dellaert, “Flow separation for fast and robust stereo

odometry”, Kobe press, Japan, 2009.

[69] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces”,

In Proceedings of the 6th IEEE and ACM International Symposium on Mixed and

Augmented Reality, ISMAR 2007, Nara, Japan, Nov. 2007, pp. 225–234.

[70] G. Klein and D. Murray, “Improving the agility of keyframe-based SLAM”, In

Proceedings of the 2008 European Conference on Computer Vision, ECCV 2008,

Florence, Italy, Oct. 2018, pp. 802–815.

[71] K. R. Konda and R. Memisevic, “Learning visual odometry with a convolutional net-

work”, International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications., VISAPP 2015, Berlin, Germany, Mar. 2015, pp.

486–490.

[72] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A

general framework for graph optimization”, In Proceedings of the 2011 IEEE In-

ternational Conference on Robotics and Automation, ICRA 2011, Shanghai, China,

May 2011, pp. 3607–3613.

[73] A. Kundu, Y.Li, F. Dellaert, F. Li, and J. M. Rehg, “Joint semantic segmentation

and 3D reconstruction from monocular video”, In Proceedings of the 2014 European

Conference on Computer Vision, ECCV 2014, Zurich, Switzerland, Sep. 2014, pp.

703–718.

[74] S. H. Lee and J. Civera, “Loosely-coupled semi-direct monocular SLAM”, In Pro-

ceedings of the 2018 European Conference on Computer Vision, ECCV 2018, Mu-

nich, Germany, Sep. 2018, pp. 1–8.



Bibliography 150

[75] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n) solution to the

pnp problem”, International Journal of Computer Vision, vol. 81(155), pp. 185–203,

2009.

[76] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: Monocular visual odometry

through unsupervised deep learning”, In Proceedings of the 2018 IEEE International

Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 2018,

pp. 7286–7291.

[77] Y. Li and W. Chu, “A new non-restoring square root algorithm and its VLSI

implementations”, In Proceedings of the 1996 IEEE International Conference on

Computer Design: VLSI in Computers and Processors, ICCD’96, Austin, TX, USA,

1996, pp. 538–544.

[78] H. Lim, J. Lim, and H. J. Kim, “Real-time 6-DOF monocular visual SLAM in a

large-scale environment”, In Proceedings of the 2014 IEEE International Conference

on Robotics and Automation, ICRA 2014, Hong Kong, China, May 2014, pp. 1532–

1539.

[79] Jo. Lim, J. M, Frahm, and M, Pollefeys, “Online environment mapping”, In Proceed-

ings of the 2011 IEEE International Conference on Computer Vision and Pattern

Recognition, CVPR 2011, Colorado Springs, CO, USA, Jun. 2011, pp. 1–6.

[80] H. Liu, G. Zhang, and H. Bao, “Robust keyframe-based monocular SLAM for

augmented reality”, In Proceedings of the 15th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality, ISMAR 2016, Merida, Mexico, Sep. 2016,

pp. 1–10.

[81] H. C. Longuet-Higgins. “A computer algorithm for reconstructing a scene from two

projections”, Nature, vol. 293, pp. 133–135, 1981.

[82] D. G. Lowe, “Object recognition from local scale-invariant features”, In Proceedings

of the 1999 IEEE International Conference on Computer Vision, ICCV 1999, Corfu,

Greece, Sep. 1999, pp. 1150–1157.

[83] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision”, In Proceedings of the 7th International Joint Confer-

ence on Artificial Intelligence, IJCAI’81, Vancouver, BC, Canada, Aug. 1981, pp.

674–679 .



Bibliography 151

[84] W. Maddern and P. Newman, “Real-time probabilistic fusion of sparse 3D LiDAR

and dense stereo”, In Proceedings of the 2016 IEEE International Conference on

Intelligent Robots and Systems, IROS 2016, Daejeon, Korea, Oct. 2016, pp. 2181–

2188.

[85] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised learning of depth and

ego-motion from monocular video using 3D geometric constraints”, In Proceedings

of the 2018 International Conference on Computer Vision and Pattern Recognition,

ICPR 2018, Beijing, China, Aug. 2018, pp. 5667–5675.

[86] R. A. Maronna, D. Martin, and R. S. Yohai, “Robust Statistics: Theory and Meth-

ods”, Wiley series in probability and statistics, Wiley New York, 2006.

[87] J. L. Mart́ın, A. Zuloaga, C. Cuadrado, J. Lázaro, and U. Bidarte, “Hardware

implementation of optical flow constraint equation using FPGAs”, Computer Vision

and Image Understanding, vol. 98(3), pp. 462–490, 2005.

[88] J. Mart́ınez-Carranza and A. Calway, “Unifying planar and point mapping in

monocular-SLAM”, In Proceedings of the 2010 British Machine Vision Conference,

BMVC 2010, Aberystwyth, U.K., Sep. 2010, pp. 1–11.

[89] W. Meiqing, L. Siew-Kei, and S. Thambipillai, “A framework for fast and robust

visual odometry”, IEEE Transaction on Intelligent Transportation Systems, vol.

18(12), pp. 3433 - 3448, 2017.

[90] S. Meister, J. Hur, and S. Roth, “Unflow: Unsupervised learning of optical flow

with a bidirectional census loss”, In Proceedings of the 2016 British Machine Vision

Conference, BMVC 2016, York, U.K., Sep. 2016, pp. 1–11.

[91] V. Mohanty, S. Agrawal, S. Datta, A. Ghosh, V. .t Sharma, and D. Chakravarty,

“Deepvo: a deep learning approach for monocular visual odometry”, In Proceedings

of the 2017 British Machine Vision Conference, BMVC 2017, London, U.K., Sep.

2017, pp. 1–11.

[92] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real time local-

ization and 3D reconstruction”, In Proceedings of the 2006 International Conference

on Computer Vision and Pattern Recognition, ICPR 2006, Hong Kong, China, Aug.

2006, pp. 363–370.



Bibliography 152

[93] A. Mulloni, M. Ramachandran, G. Reitmayr, D. Wagner, R. Grasset, and S. Diaz,

“User friendly SLAM initialization”, In Proceedings of the 12th IEEE and ACM

International Symposium on Mixed and Augmented Reality, ISMAR 2013, Adelaide,

Australia, Sep. 2013, pp. 153–162.

[94] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM system

for monocular, stereo, and RGB-D cameras”, IEEE Transactions on Robotics, vol.

33(5), pp. 1255–1262, 2017.

[95] R. Mur-Artal, J. M. Martinez-Montiel, and J. D. Tardos, “ORB-SLAM: a versatile

and accurate monocular-SLAM system”, IEEE Transactions on Robotics, vol. 31(5),

pp. 1147–1163, 2015.

[96] R. A Newcombe and A. J. Davison, “Live dense reconstruction with a single moving

camera”, In Proceedings of the 2010 IEEE International Conference on Computer

Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, Jun. 2010,

pp. 1498–1505.

[97] R. A Newcombe, S. J Lovegrove, and A. J. Davison, “DTAM: Dense Tracking and

Mapping in real-time”, In Proceedings of the 2011 IEEE International Conference

on Computer Vision, ICCV 2011, Barcelona, Spain, Nov. 2011, pp. 2320–2327.

[98] D. Nistér. “An efficient solution to the five-point relative pose problem”, IEEE

transactions on pattern analysis and machine intelligence, vol. 26(6), pp. 756–770,

2004.

[99] C. F. Olson, L. H. Matthies, J. R. Wright, R. Li, and K. Di, “Visual terrain mapping

for mars exploration”, Computer Vision and Image Understanding, vol. 105, pp. 73–

85, 2007.

[100] G. Pascoe, W. Maddern, M. Tanner, P. Piniés, and P. Newman, “NID-SLAM: Ro-

bust monocular SLAM using Normalised Information Distance”, In Proceedings of

the 2017 IEEE International Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2017, Honolulu, Hawaii, USA, Jul. 2017, pp. 1–8.

[101] M. Pérez-Patricio, A. Aguilar-González, M. Arias-Estrada, H. R. Hernandez-de

Leon, J. L. Camas-Anzueto, and J.A. de Jesús Osuna-Coutiño, “An FPGA stereo

matching unit based on fuzzy logic”, Microprocessors and Microsystems, vol. 42, pp.

87–99, 2016.



Bibliography 153

[102] M. Persson, T. Piccini, M. Felsberg, and R. Mester, “Robust stereo visual odometry

from monocular techniques”, In Proceedings of the 2015 IEEE Intelligent Vehicles

Symposium, Seoul, Korea, Jun. 2015, pp. 686–691.

[103] S. Pillai and J. Leonard, “Monocular slam supported object recognition”, In Pro-

ceedings of the 2016 British Machine Vision Conference, BMVC 2016, York, U.K.,

Sep. 2016, pp. 1–10.

[104] S. Pillai and J. J. Leonard. “Towards visual ego-motion learning in robots”, In

Proceedings of the 2017 IEEE International Conference on Intelligent Robots and

Systems, IROS 2017, Vancouver, BC, Canada, Sep. 2017, pp. 1–6.

[105] C. Pirchheim and G. Reitmayr, “Homography-based planar mapping and tracking

for mobile phones”, In Proceedings of the 10th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality, ISMAR 2011, Basel, Switzerland, Oct.

2011, pp. 27–36.

[106] C. Pirchheim, D. Schmalstieg, and G. Reitmayr, “Handling pure camera rotation in

keyframe-based SLAM”, In Proceedings of the 12th IEEE and ACM International

Symposium on Mixed and Augmented Reality, ISMAR 2013, Adelaide, Australia,

Oct. 2013, pp. 229–238.

[107] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. Jacobo-Berlles. “S-

PTAM: Stereo Parallel Tracking and Mapping”, Robotics and Autonomous Systems

(RAS), vol. 93, pp. 27–42, 2017.

[108] K. Pirker, M. Rüther, and H. Bischof, “Cd-SLAM: Continuous localization and

mapping in a dynamic world”, In Proceedings of the 2015 IEEE International Con-

ference on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA,

Sep. 2011, pp. 3990–3997.

[109] A. Plyer, G. Le-Besnerais, and F. Champagnat, “Massively parallel lucas kanade

optical flow for real-time video processing applications”, Journal of Real-Time Image

Processing, vol. 11(4), pp. 713–730, 2014.

[110] A. Pretto, E. Menegatti, and E. Pagello, “Omnidirectional dense large-scale mapping

and navigation based on meaningful triangulation”, In Proceedings of the 2011

IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai,

China, May 2011, pp. 3289–3296.



Bibliography 154

[111] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, “PL-

SLAM: Real-time monocular visual SLAM with points and lines”, In Proceedings of

the 2017 IEEE International Conference on Robotics and Automation, ICRA 2017,

Singapore, Singapore, May 2017, pp. 4503–4508.

[112] E. Rosten and T. Drummond, “Fusing points and lines for high performance track-

ing”, In Proceedings of the 2005 IEEE International Conference on Computer Vi-

sion, ICCV’05, Beijing, China, Oct. 2005, pp. 1508–1515.

[113] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative

to SIFT or SURF”, In Proceedings of the 2011 IEEE International Conference on

Computer Vision, ICCV 2011, Barcelona, Spain, Nov. 2011, pp. 2564–2571.

[114] S. Schubert, P. Neubert, and P. Protzel, “Towards camera based navigation in

3D maps by synthesizing depth images”, In Proceedings of the Anual Conference

Towards Autonomous Robotic Systems, TAROS 2017, Guildford, UK, Jul. 2017, pp.

601–616.

[115] T. Senst, J. Geistert, I. Keller, and T. Sikora, “Robust local optical flow estima-

tion using bilinear equations for sparse motion estimation”, In Proceedings of the

20th IEEE International Conference on Image Processing, ICIP 2013, Melbourne,

Australia, Sep. 2013, pp. 1–8.

[116] J. Shi and C. Tomasi, “Good features to track”, Technical report, Cornell University,

1993.

[117] G. Silveira, E. Malis, and P. Rives, “An efficient direct approach to visual SLAM”,

IEEE transactions on robotics, vol. 24(5), pp. 969–979, 2008.

[118] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer,

“Discriminative learning of deep convolutional feature point descriptors”, In Pro-

ceedings of the 2015 IEEE International Conference on Computer Vision, ICCV

2015, Santiago, Chile, Sep. 2015, pp. 118–126.

[119] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in

robotics”, In Proceedings of the 1987 IEEE International Conference on Autonomous

robot vehicles, Raleigh, NC, USA, Mar. 1987, pp. 167–193.



Bibliography 155

[120] S. M Smith and J. M. Brady, “Susan—a new approach to low level image processing”,

International Journal of Computer Vision, vol. 23(1), pp. 45–78, 1997.

[121] S. Song and M. Chandraker, “Robust scale estimation in real-time monocular SfM

for autonomous driving”, In Proceedings of the 2014 IEEE International Conference

on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA,

Oct. 2014, pp. 24-27.

[122] S. Song, M. Chandraker, and C. C. Guest, “Parallel real-time monocular visual

odometry”, In Proceedings of the 2013 IEEE International Conference on Robotics

and Automation, ICRA 2013, Karlsruhe, Germany, May 2013, pp. 1–6.

[123] C. Stachniss, “Robotic mapping and exploration”, Springer-Verlag, 2009.

[124] J. Stowers, M. Hayes, and A. Bainbridge-Smith, “Altitude control of a quadrotor

helicopter using depth map from microsoft kinect sensor”, In Proceedings of the

2011 IEEE International Conference on Mechatronics, ICM 2011, Istanbul, Turkey,

Apr. 2011, pp. 358–362.

[125] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large scale monocular-

SLAM”, Robotics: Science and Systems, vol. 1(1), pp. 1–8, 2010.

[126] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark

for the evaluation of RGB-D SLAM systems”, In Proceedings of the 2012 IEEE

International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura,

Algarve, Portugal, Oct. 2012, pp. 573–580.

[127] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, “Robust monocular-SLAM in

dynamic environments”, In Proceedings of the 12th IEEE and ACM International

Symposium on Mixed and Augmented Reality, ISMAR 2013, Adelaide, Australia,

Sep. 2013, pp. 209–218.

[128] J. J. Tarrio and S. Pedre, “Realtime edge-based visual odometry for a monocular

camera”, In Proceedings of the 2015 IEEE International Conference on Computer

Vision, ICCV 2015, Santiago, Chile, Dec. 2015, pp. 702–710.

[129] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-time dense

monocular-SLAM with learned depth prediction”, In Proceedings of the 2017 IEEE



Bibliography 156

International Conference on Computer Vision and Pattern Recognition, CVPR 2017,

Honolulu, Hawaii, USA, Jul. 2017, pp. 1–8.

[130] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard, C.

Baker, Z. Omohundro, S. Thayer, and W. Whittaker, “A system for volumetric

robotic mapping of abandoned mines”, In Proceedings of the 2003 IEEE Interna-

tional Conference on Robotics and Automation, ICRA 2003, Taipei, Taiwan, Sep.

2003, pp. 4270–4275.

[131] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, and G. Hoffmann “Stanley: The robot that won the darpa

grand challenge”, Journal of field Robotics, vol. 23(9), pp. 661–692, 2006.

[132] C. Tomasi and T. Kanade, “Detection and tracking of point features”, Technical

Report CMU-CS-91-132, 1991.

[133] P. H. S. Torr and A. Zisserman, “Mlesac: A new robust estimator with application

to estimating image geometry”, Computer vision and image understanding, vol. 78,

pp. 138–156, 2000.

[134] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger. “Depth

Prediction Evaluation”, 2017. [Online]. Available: http://www.cvlibs.net/

datasets/kitti/eval_depth.php?benchmark=depth_prediction, [Accessed: 10-

Feb-2019].

[135] Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “Tilde: A temporally invariant learned

detector”, In Proceedings of the 2015 IEEE International Conference on Computer

Vision, ICCV 2015, Santiago, Chile, Dec. 2015, pp. 5279–5288.

[136] VICON. “Vantage: Cutting edge, flagship camera with intelligent feedback

and resolution”, 2018. [Online]. Available: https://www.vicon.com/products/

camera-systems/vantage, [Accessed: 10-Feb-2019].

[137] G. Vogiatzis and C. Hernández, “Video-based, real-time multi-view stereo”, Image

and Vision Computing, vol. 29, pp. 434–441, 2011.

[138] Y. Wang, J. Fan, C. Qian, and L. Guo, “Ego-motion estimation using sparse SUFR

flow in monocular vision systems”, International Journal of Advanced Robotic Sys-

tems, vol. 13(6), pp. 1–9, 2016.

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction
https://www.vicon.com/products/camera-systems/vantage
https://www.vicon.com/products/camera-systems/vantage


Bibliography 157

[139] M. Weber, C. Rist, and J M. Zöllner, “Learning temporal features with CNNs for

monocular visual ego motion estimation”, In Proceedings of the 2017 IEEE Inter-

national Conference on Intelligent Transportation Systems, ITSC 2017, Yokojama,

Japan, Oct. 2017, pp. 1–6.

[140] Z. Wei, D. J. Lee, and B. E. Nelson, “FPGA-based real-time optical flow algorithm

design and implementation”, Journal of Multimedia, vol. 2(5), pp. 38–45, 2007.

[141] L. Yang, F. Tan, A. Li, Z. Cui, Y. Furukawa, and P. Tan, “Polarimetric dense

monocular-SLAM”, In Proceedings of the 2018 IEEE International Conference on

Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, United

States, 2018, pp. 3857–3866.

[142] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: Semantic monocular

plane SLAM for low-texture environments”, In Proceedings of the 2016 IEEE Inter-

national Conference on Intelligent Robots and Systems, IROS 2016, Daejeon, Korea,

Oct. 2016, pp. 1222–1229.

[143] Z. Yang, P. Wang, W. Xu, L. Zhao, and R. Nevatia, “Unsupervised learning of

geometry with edge-aware depth-normal consistency”, In Proceedings of the The

Thirty-Second AAAI Conference on Artificial Intelligence, AAAI-18, New Orleans,

LA, USA. Feb. 2017, pp. 1222–1229.

[144] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia, “Lego: Learning edge with

geometry all at once by watching videos”, In Proceedings of the 2018 IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt

Lake City, United States, 2018, pp. 225–234.

[145] J. Zhang and S. Singh, “Visual-LiDAR odometry and mapping: Low-drift, robust,

and fast”, In Proceedings of the 2015 IEEE International Conference on Robotics

and Automation, ICRA 2015, Seattle, WA, USA, May 2015, pp. 365–372.

[146] L. Zhang and R. Koch, “Hand-held monocular SLAM based on line segments”,

In Proceedings of the 2011 Irish Machine Vision and Image Processing Conference,

IMVIP 2011, Dublin, U.K., Sep. 2011, pp. 7–14.

[147] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe,. “Unsupervised learning of depth

and ego-motion from video”, In Proceedings of the 2017 IEEE International Confer-



Bibliography 158

ence on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, Hawaii,

USA, Jul. 2017, pp. 7–12.

[148] Y. Zou, Z. Luo, and J. B. Huang, Df-net: Unsupervised joint learning of depth and

flow using cross-task consistency. In Proceedings of the 2018 European Conference

on Computer Vision, ECCV 2018, Munich, Germany, Sep. 2018, pp. 38–55.

[149] S. Zweig and L. Wolf, “Interponet, a brain inspired neural network for optical flow

dense interpolation”, In Proceedings of the 2017 IEEE International Conference on

Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, Hawaii, USA,

Jul. 2017, pp. 79–86. .


	Acronyms
	Introduction
	Monocular-SLAM: general formulation, performance and limitations
	Problem definition
	Research question
	Hypothesis
	Objectives
	Methodology
	Contributions
	Organization of the thesis

	Monocular-SLAM: traditional formulation
	Initialization
	Keyframe validation
	Fundamental matrix estimation
	Camera pose estimation
	Triangulation

	Data association
	Visual feature extraction
	2D-2D data association (feature matching)

	Pose estimation
	Constant Velocity Motion Model (CVMM)
	2D-3D/2D-2D data association (feature tracking)
	Iterative pose optimization

	Map construction
	Data association
	Triangulation
	Map refinement

	Refinement
	Loop closure
	Relocalization
	Loop closure

	Summary

	Monocular-SLAM: a survey
	Initialization
	Data association
	Pose estimation
	Map construction
	Refinement
	Loop closure
	Relocalization
	Loop closure

	Monocular-SLAM: limitations and future trends
	Performance and limitations of direct approaches
	Performance and limitations of feature-based approaches
	Performance and limitations of the initialization step
	Performance and limitations of the data association step
	Performance and limitations of the pose estimation step
	Performance and limitations of the map construction step
	Performance and limitations of the refinement step
	Performance and limitations of the loop closure step
	Challenges

	Discussion
	Summary

	LT-SLAM: Lookup Table-based Monocular-SLAM
	Feature extraction
	Pixel tracking
	Feature matching
	Tracking template
	Search parameters
	Lookup table
	Pose estimation
	Depth from motion
	Linear triangulation and map construction
	Performance of the proposed algorithm
	Summary

	LT-SLAM: GPU implementation
	Definitions
	Feature extraction
	Pixel tracking
	Feature matching & Tracking template
	Search parameters & Lookup table
	Depth from Motion
	Linear triangulation
	Performance and limitations
	The pixel tracking step: performance and limitations
	The feature matching step: performance and limitations
	The pose estimation step: the proposed dataset
	The pose estimation step: the KITTI dataset
	The depth from motion step: performance and limitations
	The linear triangulation step: performance and limitations

	Summary

	LT-SLAM: FPGA implementation
	Feature extraction
	Circular buffer
	Pixel tracking
	Curl estimation

	Feature matching
	Look-up table
	Depth from Motion
	Pose estimation & map construction
	Performance and limitations
	The pixel tracking step: performance and limitations
	The feature matching step: performance and limitations
	The pose estimation step: the proposed dataset
	The pose estimation step: the KITTI dataset
	The depth from motion step: performance and limitations

	DreamCam Validation
	Global performance: GPU vs FPGA
	Localization accuracy
	Processing speed
	Hardware/power requirements
	Mapping density.
	Discussion

	The proposed approach vs visual-SLAM algorithms in the current literature
	Summary

	Conclusions and future work
	Summary
	Discussion on hypothesis
	Main Contributions
	Future work
	Publications

	Appendices
	INAOE/DREAM benchmark dataset

