Skip to Main content Skip to Navigation
Theses

Multi-component gauge-dependent quantum gases

Abstract : The first observation of Bose-Einstein condensation (BEC) in dilute atomic vapors has been a breakthrough both fundamentally, verifying theoretical concept predicted by Bose and Einstein several decades ago, revealing the statistical property of quantum particles. Since then, a new field has emerged and experimentalists are able to study this artificial matter in a very clean and controllable way. Cold-atom systems allows us to explore a whole range of fundamental phenomena that are extremely difficult or impossible to study in real materials, such as Bloch oscillation, Mott-superfluid transition, topology of band structure, orbital magnetism just to name a few. These progresses allow the quantum simulation of a large class of Hamiltonians subjected to magnetic field. Indeed, condensed matter phenomena under strong magnetic fields are still intriguing and are at the center of modern research. For instance, topological states of matter are realized in quantum Hall systems. A ladder is the simplest geometry where one can get some insight on two-dimensional quantum systems subjected to a synthetic gauge field.The first part of this thesis is dedicated to the study of double ring ladder subjected to gauge fluxes.Through both numerical and analytical calculation we explore the phase diagram of the system revealing known phases such as Meissner, vortex and biased ladder phase and the effect of commensurability of the total flux. Thanks to Bogoliubov approximation we are able to derive the excitation spectrum of the system and the nature of the low energy modes in the different phases revealing supersolid features as well as Josephson oscillation between the rings. The regime of infinite interaction between the boson enabled us to use exact mapping into fermions using Jordan-Wigner transformation to characterize the properties of the ground state. We explore the intermediate regime of interactions. Thanks to mode expansion and re-fermionization approach of the bosonized Hamiltonian of the double ring under gauge flux, we show the peculiarities of finite size periodic boundary condition on the current in the double ring with a rotating barrier inducing gauge flux.Exciton-polaritons in semiconductor microcavities constitute an amazing playground to study quantum fluids of light where remarkable effects, similar to those observed in cold atoms experiments, arise. Even though this quantum fluid of light is assumed to be composed, almost, upon pure condensate, the non-equilibrium nature of the gas make the comparison with typical condensates in cold atom experiment rather non trivial.The second part of the thesis is devoted to the study of excitons-polariton in honeycomb lattice. One of the most interesting aspect of the honeycomb lattice problem is that its low-energy excitations are massless, chiral, Dirac particles. Exciton-polariton, which are composite particle of light, in this lattice get back the relativist character of light but in a context where condensation is possible. Features of bosons in honeycomb lattice including retarded Green’s functions, Brillouin-zone selection mechanism and link between geometry of the lattice. We show that decay mode are suppressed as a consequence of the symmetry of the lattice leading to the possibility to engineer polaritonic dark-state. Then we obtain the Bogoliubov excitation spectrum of exciton-polariton. The usual bistability curve is shown to be unstable above C point showing the break-down of mean-field theory because of possible highly non-classical state. Finally experiment and theory are compared.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-02513450
Contributor : Abes Star :  Contact
Submitted on : Friday, March 20, 2020 - 4:25:09 PM
Last modification on : Wednesday, October 14, 2020 - 4:19:11 AM
Long-term archiving on: : Sunday, June 21, 2020 - 4:44:22 PM

File

VICTORIN_2019_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02513450, version 1

Collections

STAR | UGA | CNRS

Citation

Nicolas Victorin. Multi-component gauge-dependent quantum gases. Quantum Gases [cond-mat.quant-gas]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAY049⟩. ⟨tel-02513450⟩

Share

Metrics

Record views

97

Files downloads

60