, for some function F : Z 2 × {11, 10, 01} ? Z 2 which can be written down explicitly as F (x, 10) = 1 and F (x, 01) = 2 for every x in Z 2 , F (1, 11) = 2 and F (2, 11) = 1, We first note that the process (X t ) t 0 is such that X t = F (X t?1 , B t )

J. Droulez, La BM1à l'intérieur de la BM2, unpublished, 2016.

C. Appendix, . Proof, and . Gate,

, Homepage of the bambi project, pp.2019-2026, 2019.

, Homepage of the ibm q system one, pp.2019-2026, 2019.

, Homepage of the microbayes project funded by labex persyval-lab, pp.2019-2026, 2019.

, Homepage of the ppaml project, pp.2019-2026, 2019.

, Homepage of the probcomp team at mit, pp.2019-2026, 2019.

, Homepage of the upside project, pp.2019-2026, 2019.

. Aictx-inc, Dynamic neurormorphic asynchronous processor (dynap), pp.2019-2026, 2019.

A. Alaghi and J. P. Hayes, Exploiting correlation in stochastic circuit design, 2013 IEEE 31st International Conference on Computer Design (ICCD), pp.39-46, 2013.

A. Alaghi and J. P. Hayes, Survey of Stochastic Computing. ACM Trans. Embed. Comput. Syst, vol.12, issue.2s, pp.1-19, 2013.

A. Alaghi and J. P. Hayes, Fast and accurate computation using stochastic circuits, Proceedings of the Conference on Design, Automation & Test in Europe, DATE '14, vol.76, pp.1-76, 2014.

A. Alaghi, C. Li, and J. P. Hayes, Stochastic circuits for real-time image-processing applications, 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp.1-6, 2013.

R. Andraka, A survey of cordic algorithms for fpga based computers, Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, pp.191-200, 1998.

S. Araki, H. Sawada, R. Mukai, and S. Makino, Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Process, vol.87, pp.1833-1847, 2007.

A. Ardakani, F. Leduc-primeau, N. Onizawa, T. Hanyu, and W. J. Gross, VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing, IEEE Trans. Very Large Scale Integr. Syst, vol.25, issue.10, pp.2688-2699, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596545

B. Barrois, O. Sentieys, and D. Menard, The hidden cost of functional approximation against careful data sizing: A case study, Proceedings of the Conference on Design, Automation & Test in Europe, DATE '17, vol.3001, pp.181-186, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01423147

B. Behin-aein, V. Diep, and S. Datta, A building block for hardware belief networks, Scientific reports, vol.6, p.29893, 2016.

L. Benaroya, F. Bimbot, and R. Gribonval, Audio source separation with a single sensor, IEEE Transactions on Audio, Speech, and Language Processing, vol.14, issue.1, pp.191-199, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00544949

P. Bessière, E. Mazer, J. M. Ahuactzin, and K. Mekhnacha, Bayesian programming, 2013.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan et al., Pyro: Deep Universal Probabilistic Programming, Journal of Machine Learning Research, 2018.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

P. Bofill and M. Zibulevsky, Underdetermined blind source separation using sparse representations, Signal processing, vol.81, issue.11, pp.2353-2362, 2001.

M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques and Applications, vol.112, 2001.

R. K. Budhwani, R. Ragavan, and O. Sentieys, Taking advantage of correlation in stochastic computing, 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633725

H. Cai, W. Kang, Y. Wang, L. A. Naviner, J. Yang et al., High performance mram with spin-transfer-torque and voltage-controlled magnetic anisotropy effects, Applied Sciences, vol.7, issue.9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02287690

G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld et al., Machine learning and the physical sciences, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02101667

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich et al., Stan: A probabilistic programming language, Journal of statistical software, vol.76, issue.1, 2017.

L. N. Chakrapani, P. Korkmaz, B. E. Akgul, and K. V. Palem, Probabilistic system-on-a-chip architectures, ACM Trans. Des. Autom. Electron. Syst, vol.12, issue.3, p.28, 2008.

A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, Comparison of self-timed ring and inverter ring oscillators as entropy sources in fpgas, 2012 Design, Automation & Test in Europe Conference & Exhibition, DATE 2012, pp.1325-1330, 2012.
URL : https://hal.archives-ouvertes.fr/ujm-00667639

A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, A self-timed ring based true random number generator, 19th IEEE International Symposium on Asynchronous Circuits and Systems, ASYNC 2013, pp.99-106, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00840593

K. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, A very high speed true random number generator with entropy assessment, pp.179-196, 2013.
URL : https://hal.archives-ouvertes.fr/ujm-00859906

P. Comon and C. Jutten, Handbook of Blind Source Separation, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00460653

A. Coninx, P. Bessière, E. Mazer, J. Droulez, R. Laurent et al., Bayesian sensor fusion with fast and low power stochastic circuits, Proc. of IEEE Int. Conf. on Rebooting Computing, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374910

M. F. Cusumano-towner, F. A. Saad, A. K. Lew, and V. K. , Mansinghka. Gen: A general-purpose probabilistic programming system with programmable inference, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019), 2019.

M. , Ee292e lecture notes, 2013.

A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, Cpu db: Recording microprocessor history, Commun. ACM, vol.55, issue.4, pp.55-63, 2012.

M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao et al., Loihi: A neuromorphic 180 BIBLIOGRAPHY manycore processor with on-chip learning, IEEE Micro, vol.38, issue.1, pp.82-99, 2018.

A. Deleforge, R. Horaud, Y. Y. Schechner, and L. Girin, Co-localization of audio sources in images using binaural features and locally-linear regression, IEEE/ACM Trans. Audio, Speech, Language Process, vol.23, issue.4, pp.718-731, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01112834

A. Dempster, N. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, pp.1-38, 1977.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. Leblanc, Design of ion-implanted mosfet's with very small physical dimensions, IEEE Journal of Solid-State Circuits, vol.9, issue.5, pp.256-268, 1974.

Y. Dorfan and S. Gannot, Tree-based recursive expectationmaximization algorithm for localization of acoustic sources, IEEE/ACM Trans. Audio, Speech, Language Process, vol.23, issue.10, pp.1692-1703, 2015.

N. Duong, E. Vincent, and R. Gribonval, Under-determined reverberant audio source separation using a full-rank spatial covariance model, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00541865

H. El-derhalli, S. L. Beux, and S. Tahar, Stochastic computing with integrated optics, 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp.1355-1360, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02076189

R. R. Fay and A. N. Popper, Introduction to Sound Source Localization, pp.1-5, 2005.

C. Fevotte and J. Cardoso, Maximum likelihood approach for blind audio source separation using time-frequency gaussian source models, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp.78-81, 2005.

R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics, vol.21, issue.6, pp.467-488, 1982.

R. Frisch, R. Laurent, M. Faix, L. Girin, L. Fesquet et al., A bayesian stochastic machine for sound source localization, 2017 IEEE International Conference on Rebooting Computing (ICRC), pp.1-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01644346

R. Frisch, M. Faix, E. Mazer, L. Fesquet, and A. Lux, A cognitive stochastic machine based on Bayesian inference: A behavioral analysis, IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp.124-131, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01867789

R. Frisch, M. Faix, J. Droulez, L. Girin, and E. Mazer, Bayesian timedomain multiple sound source localization for a stochastic machine, Proceedings of the 27st European Conference on Signal Processing (EUSIPCO'2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02377220

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras et al., Overview of the spinnaker system architecture, IEEE Transactions on Computers, vol.62, issue.12, pp.2454-2467, 2013.

C. Févotte, N. Bertin, and J. Durrieu, Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis, Neural Computation, vol.21, issue.3, pp.793-830, 2009.

B. Gaines, Stochastic computing systems, Advances in information systems science, vol.2, pp.37-172, 1969.

S. Gannot, E. Vincent, S. Markovich-golan, and A. Ozerov, A consolidated perspective on multimicrophone speech enhancement and source separation, Speech, and Language Processing, vol.25, pp.692-730, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01414179

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett et al., Timit acoustic phonetic continuous speech corpus, Linguistic data consortium, 1993.

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.6, pp.721-741, 1984.

G. Gimenez, A. Cherkaoui, R. Frisch, and L. Fesquet, Self-timed ring based true random number generator: Threat model and countermeasures, pp.31-38, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627350

P. Gonzalez-guerrero, X. Guo, and M. Stan, Sc-sd: Towards low power stochastic computing using sigma delta streams, 2018 IEEE International Conference on Rebooting Computing (ICRC), pp.1-8, 2018.

N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum, Church: a language for generative models. CoRR, abs/1206, vol.3255, 2012.

A. Griffin, A. Alexandridis, D. Pavlidi, Y. Mastorakis, and A. Mouchtaris, Localizing multiple audio sources in a wireless acoustic sensor network, Signal Processing, vol.107, pp.54-67, 2015.

, Special Issue on ad hoc microphone arrays and wireless acoustic sensor networks Special Issue on Fractional Signal Processing and Applications

J. Grollier, V. Cros, and A. Fert, Synchronization of spin-transfer oscillators driven by stimulated microwave currents, Physical Review B, vol.73, issue.6, p.60409, 2006.

W. J. Gross, V. C. Gaudet, and A. Milner, Stochastic implementation of ldpc decoders, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, pp.713-717, 2005.

E. Habets, Room impulse response generator, 2006.

O. Häggström, Finite Markov Chains and Algorithmic Applications, 2000.

M. Horowitz, Computing's energy problem (and what we can do about it), 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.10-14, 2014.

A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, 2001.

B. Inc, Akida neuromorphic system-on-chip, pp.2019-2026, 2019.

E. T. Jaynes, Probability Theory: the Logic of Science, 2003.

E. Jonas, Stochastic Architectures for Probabilistic Computation, 2014.

E. Jonas, Stochastic Architectures for Probabilistic Computation, 2014.

E. Jonas and K. P. Kording, PLOS Computational Biology, vol.13, issue.1, p.2017

H. Kayser and J. Anemüller, A discriminative learning approach to probabilistic acoustic source localization, 14th International Workshop on Acoustic Signal Enhancement (IWAENC), pp.99-103, 2014.

C. H. Knapp and G. C. Carter, The Generalized Correlation Method for Estimation of Time Delay, IEEE Trans. Acoust, vol.2, pp.320-327, 1976.

W. Krauth, Statistical Mechanics : Algorithms and Computations, 2006.

P. Kulkarni, P. Gupta, and M. D. Ercegovac, Trading accuracy for power in a multiplier architecture, Journal of Low Power Electronics, vol.7, issue.4, pp.490-501, 2011.

D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol.401, p.1999

X. Li, L. Girin, R. Horaud, and S. Gannot, Estimation of the directpath relative transfer function for supervised sound-source localization, IEEE/ACM Trans. Audio, Speech, Language Process, vol.24, issue.11, pp.2171-2186, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349691

X. Li, L. Girin, R. Horaud, and S. Gannot, Multiple-speaker localization based on direct-path features and likelihood maximization with spatial sparsity regularization, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.25, issue.10, pp.1007-2012, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01413417

M. Lin, I. Lebedev, and J. Wawrzynek, High-throughput bayesian computing machine with reconfigurable hardware, Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '10, pp.73-82, 2010.

A. Lingamneni, C. Enz, J. Nagel, K. Palem, and C. Piguet, Energy parsimonious circuit design through probabilistic pruning, Design, Automation Test in Europe, pp.1-6, 2011.

S. Makino, Audio Source Separation, 2018.
URL : https://hal.archives-ouvertes.fr/inria-00544199

M. I. Mandel, R. J. Weiss, and D. P. Ellis, Model-based expectationmaximization source separation and localization, IEEE/ACM Trans. Audio, Speech, Language Process, vol.18, issue.2, pp.382-394, 2010.

V. K. Mansinghka, D. Selsam, and Y. Perov, Venture: A higherorder probabilistic programming platform with programmable inference, 2014.

G. Marcus, Deep learning: A critical appraisal, 2018.

H. Mccabe, S. M. Koziol, G. L. Snider, and E. P. Blair, Tunable, hardware-based quantum random number generation using coupled quantum dots, 2019.

D. Menard, G. Caffarena, J. A. Lopez, D. Novo, and O. Sentieys, Fixed-point refinement of digital signal processing systems, Digitally Enhanced Mixed Signal Systems, number Chapter, pp.1-37, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01941898

S. , A survey of techniques for approximate computing, ACM Comput. Surv, vol.48, issue.4, 2016.

D. S. Modha, Introducing a brain-inspired computer: Truenorth's neurons to revolutionize system architecture, IBM Research, 2014.

B. Moons and M. Verhelst, Energy-Efficiency and Accuracy of Stochastic Computing Circuits in Emerging Technologies, IEEE J. Emerg. Sel. Top. circuits Syst, vol.4, issue.4, pp.475-486, 2014.

G. E. Moore, Cramming more components onto integrated circuits, 1965.

J. Mouba and S. Marchand, A Source Localization/Separation/Respatialization System Based on Unsupervised Classification of Interaural Cues, Proceedings of the Digital Audio Effects (DAFx06) Conference, pp.233-238, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00307889

P. Mroszczyk and P. Dudek, The accuracy and scalability of continuoustime bayesian inference in analogue cmos circuits, 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1576-1579, 2014.

A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, Delayed stochastic decoding of ldpc codes, IEEE Transactions on Signal Processing, vol.59, issue.11, pp.5617-5626, 2011.

F. Nesta, P. Svaizer, and M. Omologo, Robust two-channel TDOA estimation for multiple speaker localization by using recursive ICA and a state coherence transform, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. -Proc, pp.4597-4600, 2009.

F. Neugebauer, I. Polian, and J. P. Hayes, Framework for Quantifying and Managing Accuracy in Stochastic Circuit Design, DATE, vol.9783981537086, pp.3-8, 2017.

V. Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable components, Automata Studies, pp.46-98, 1956.

A. Oppenheim, R. W. Schafer, and C. K. Yuen, Digital signal processing. Systems, Man and Cybernetics, IEEE Transactions on, vol.8, pp.146-146, 1978.

A. Ozerov and C. Fevotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.3, pp.550-563, 2010.

A. Ozerov, E. Vincent, and F. Bimbot, A general flexible framework for the handling of prior information in audio source separation, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.4, pp.1118-1133, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00626962

A. Pedram, S. Richardson, S. Galal, S. Kvatinsky, and M. Horowitz, Dark memory and accelerator-rich system optimization in the dark silicon era, 2016.

T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller et al., Six networks on a universal neuromorphic computing substrate, Frontiers in Neuroscience, vol.7, p.11, 2013.

W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, An architecture for fault-tolerant computation with stochastic logic, IEEE transactions on computers, vol.60, issue.1, pp.93-105, 2010.

R. Ragavan, B. Barrois, C. Killian, and O. Sentieys, Pushing the Limits of Voltage Over-Scaling for Error-Resilient Applications, Design, Automation & Test in Europe Conference & Exhibition (DATE 2017), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01417665

B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou, Low-power neuromorphic hardware for signal processing applications, 2019.

M. Raspaud, H. Viste, and G. Evangelista, Binaural source localization by joint estimation of ILD and ITD, IEEE/ACM Trans. Audio, Speech, Language Process, vol.18, issue.1, pp.68-77, 2010.

J. Rayleigh, The Theory of Sound. Macmillan, 1877, vol.1

S. Rickard, R. Balan, and J. Rosca, Real-time time-frequency based blind source separation, Proc. of International Conference on Independent Component Analysis and Signal Separation (ICA2001, pp.651-656, 2001.

N. Roman, D. Wang, and G. J. Brown, Speech segregation based on sound localization, The Journal of the Acoustical Society of America, vol.114, issue.4, pp.2236-2252, 2003.

A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Drémeau et al., Random projections through multiple optical scattering: Approximating kernels at the speed of light, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.6215-6219, 2016.

B. Sanguinetti, A. Martin, H. Zbinden, and N. Gisin, Quantum random number generation on a mobile phone, Phys. Rev. X, vol.4, p.31056, 2014.

H. Sawada, R. Mukai, S. Araki, and S. Makino, Frequency-Domain Blind Source Separation, pp.299-327, 2005.

A. Scherzer and K. Meier, Phase-locking on neuromorphic hardware, 2013.

J. Schnupp, I. Nelken, and A. King, Auditory Neuroscience: Making Sense of Sound

J. M. Shainline, The largest cognitive systems will be optoelectronic, 2018 IEEE International Conference on Rebooting Computing (ICRC), pp.1-10, 2018.

H. C. So, Source Localization: Algorithms and Analysis, pp.25-66, 2011.

N. D. Stein, Nonnegative Tensor Factorization for Directional Blind Audio Source Separation, 2014.

D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy et al., Deep probabilistic programming, 2017.

S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, Approximate computing and the quest for computing efficiency, Proceedings of the 52Nd Annual Design Automation Conference, DAC '15, vol.120, 2015.

B. Vigoda, Analog logic: Continuous-Time analog circuits for statistical signal processing, 2003.

E. Vincent, M. Jafari, S. Abdallah, M. Plumbley, and M. E. Davies, Probabilistic Modeling Paradigms for Audio Source Separation, pp.162-185, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00544016

E. Vincent, T. Virtanen, and S. Gannot, Audio Source Separation and Speech Enhancement, p.9781119279891, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881431

D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Principles, Algorithms, and Applications, 2006.

D. Wang and J. Chen, Supervised speech separation based on deep learning: An overview, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.26, issue.10, pp.1702-1726, 2018.

F. Wood, J. W. Meent, and V. Mansinghka, A New Approach to Probabilistic Programming Inference, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, vol.33, pp.22-25, 2014.

J. Woodruff and D. Wang, Binaural localization of multiple sources in reverberant and noisy environments, IEEE/ACM Trans. Audio, Speech, Language Process, vol.20, issue.5, pp.1503-1512, 2012.

Q. Xu, T. Mytkowicz, and N. S. Kim, Approximate computing: A survey, IEEE Design Test, vol.33, issue.1, pp.8-22, 2016.

O. Yilmaz and S. Rickard, Blind separation of speech mixtures via timefrequency masking, IEEE Transactions on Signal Processing, vol.52, issue.7, pp.1830-1847, 2004.

U. Zoelzer, DAFX: Digital Audio Effects, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00095922