
HAL Id: tel-02513349
https://theses.hal.science/tel-02513349

Submitted on 20 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic machines dedicated to Bayesian inference for
source localization and separation

Raphael Frisch

To cite this version:
Raphael Frisch. Stochastic machines dedicated to Bayesian inference for source localization and sep-
aration. Statistics [math.ST]. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM044�.
�tel-02513349�

https://theses.hal.science/tel-02513349
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministérial : 25 mai 2016

Présentée par

Raphael Frisch

Thèse dirigée par Laurent Fesquet
et codirigée par Emmanuel Mazer

préparée au sein Laboratoire Informatique de Grenoble
et de École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Machines stochastiques dédiées à
l’inférence Bayésienne pour la lo-
calisation et séparation de sources

Stochastic machines dedicated to
Bayesian inference for source
localization and separation

Thèse soutenue publiquement le 14 novembre 2019,
devant le jury composé de :

Madame, Marie-Christine Rousset
Professeur, Université Grenoble Alpes, Présidente
Monsieur, Olivier Sentieys
Professeur, Université de Rennes 1, Rapporteur
Monsieur, Sylvain Marchand
Professeur, Université de La Rochelle, Rapporteur
Monsieur, Eric Jonas
Assistant Professeur, Université de Chicago, Examinateur
Monsieur, Laurent Fesquet
Maître de conférences, Institut Polytechnique de Grenoble, Directeur de thèse
Monsieur, Emmanuel Mazer
Directeur de recherche, CNRS, Co-Encadrant de thèse, Invité

Résumé

L’ordinateur est sans aucun doute l’une des inventions les plus importantes
du siècle dernier, dont l’impact ne peut être surestimé. Au fil des années,
ils sont devenus de plus en plus puissants grâce à l’optimisation constante
des processeurs. Avec un besoin croissant en puissance de calcul, et notam-
ment à cause de l’IA, les processeurs sont devenus plus rapides que jamais.
Cependant, à cause des limites physiques, la loi de Moore touche à sa fin.
Par conséquent, il est nécessaire de proposer des alternatives. C’est le but de
la communauté rebooting computing. Dans ce travail, nous nous proposons
d’utiliser le calcul stochastique pour construire des architectures dédiées à
l’inférence bayésienne visant une faible consommation d’énergie. Nous avons
développé deux machines, à savoir la Bayesian machine (BM) et la Bayesian
sampling machine (BSM). Dans cette thèse, nous nous intéresserons à deux
applications de traitement du signal : la localisation de sources sonores (SSL)
et la séparation de source. Pour la SSL, nous présentons trois méthodes
utilisant la Bayesian machine. La première méthode fonctionne dans le
domaine temps-fréquence, nécessitant le calcul de la transformée de Fourier.
La deuxième est entièrement dans le domaine temporel. La troisième ap-
proche est une méthode de localisation multi-sources qui est basée sur la
seconde. De plus, nous proposons une technique permettant d’accélérer le
calcul stochastique d’un facteur 103. Nous avons également développé une
méthode de calcul des vraisemblances afin de réduire la mémoire de notre
machine. Nous avons simulé les trois méthodes et fait des expérimentations
en environnement réel. Nous présentons la consommation d’énergie obtenue
via des simulations ASIC. Pour la seconde application, la séparation de
source, nous introduisons une machine plus générale, la Bayesian sampling
machine, qui est basée sur l’échantillonnage de Gibbs. Nous présentons une
méthode basée sur l’échantillonnage pour séparer des sources sonores. Cette
méthode a été validée en simulation.

ii

Abstract

Computers are without doubt one of the most important invention of the
last century, whose impact cannot be overestimated. Over the years they
became powerful, due to the constant optimization of their processors. With
the growing need of computing power due to AI, processors have become
faster than ever. However, since we are reaching the power wall, Moore’s law
is coming to an end. Therefore, a young research community called rebooting
computing is looking for alternative computation architectures. In this work,
we propose to use stochastic computing to build architectures dedicated to
Bayesian inference aiming low-power consumption. We develop two machines,
namely the Bayesian machine (BM) and the Bayesian sampling machine
(BSM). In this thesis, we look at two signal processing applications: Sound
Source Localization (SSL) and Source Separation (SS). For SSL, we introduce
three methods using the BM. The first one is working in the time-frequency
domain and hence uses the Fourier transform. The second one is running
entirely in the temporal domain. The third one is a multi-source localization
approach based on the previous method. We present a technique to speed up
the stochastic computation by a factor of up to 103. Moreover, we designed
an on-chip likelihoods computation mechanism to reduce the memory needs
of our machine. Furthermore, we ran simulations and real world experiments
to validate our methods. We made ASIC simulations to evaluate the power
consumption. For the second problem, the source separation, we introduce a
more general machine, the Bayesian sampling machine, which is based on
the Gibbs sampling approach. We present a sampling method to solve source
separation and run simulations to show the effectiveness of this technique.

iii

iv

Contents

1 Introduction 1
1.1 Context . 2
1.2 Overview . 3
1.3 Thesis outline . 3
1.4 Contribution . 5

2 Related Work - rebooting computing 7
2.1 Birth of rebooting computing 7
2.2 Approximate computing . 9
2.3 Alternatives based on physical phenomena 10
2.4 Neuromorphic computing . 11
2.5 Stochastic computing . 11

2.5.1 Accuracy . 12
2.5.2 Correlation . 13
2.5.3 Applications . 13
2.5.4 Improvements . 13
2.5.5 Random number generators 14

2.6 Probabilistic programming . 14
2.7 Conclusion . 16

3 Mathematical foundations 17
3.1 Bayesian programming . 17

3.1.1 Discrete variables . 17
3.1.2 Probability . 18
3.1.3 Normalization . 18
3.1.4 Conditional probability 18
3.1.5 Variable conjunction 19
3.1.6 Bayes theorem . 19
3.1.7 Marginalization rule 19

v

CONTENTS

3.1.8 Joint distribution . 20
3.1.9 Decomposition . 20
3.1.10 Parametric form . 20
3.1.11 Inference . 20

3.2 Exact inference . 21
3.3 Approximate inference: Sampling algorithms using Markov

chains . 22
3.3.1 Markov chains . 22
3.3.2 Perron-Frobenius theorem 24
3.3.3 Stationarity . 25
3.3.4 Detailed balance . 26
3.3.5 MCMC algorithms . 26
3.3.6 Metropolis algorithm 27
3.3.7 Metropolis-Hastings algorithm 28
3.3.8 Connection between transition matrix and Markov chain 29
3.3.9 Gibbs sampler . 29

3.4 Notations . 30

4 Stochastic sampling machines for Bayesian inference 31
4.1 Stochastic computing . 31
4.2 Bayesian machine . 34

4.2.1 Bayesian fusion . 35
4.2.2 Architecture of the machine 35
4.2.3 OP block . 37
4.2.4 Tackling temporal dilution 38
4.2.5 Max-Normalization . 39
4.2.6 Application: boat localization 41

4.3 Approximate inference - Bayesian sampling machine 44
4.3.1 Draw-gate . 47
4.3.2 Application: boat localization with a large grid 48

4.4 Conclusion & discussion . 50

5 Audio foundations 53
5.1 Sound Source Localization (SSL) 53

5.1.1 Task definition . 54
5.1.2 Basics of audio processing 54
5.1.3 State of the art of source localization 58

5.2 Source separation . 60
5.2.1 Task definition . 60
5.2.2 State of the art of source separation 61

vi

CONTENTS

5.2.3 Independent Component Analysis 62
5.2.4 Binary Masking . 63
5.2.5 Probabilistic Models for source separation 64

5.3 Discussion . 66

6 Mono-Sound Source Localization in the time-frequency do-
main 69
6.1 Signal pre-processing . 69
6.2 Probabilistic model . 72
6.3 Bayesian machine adapted to SSL 74

6.3.1 Improvement of the Bayesian Machine: BM-sliced . . 76
6.4 Implementation on FPGA . 77

6.4.1 Circuit design in VHDL 78
6.4.2 On-chip likelihood computation 80

6.5 Simulation environment . 85
6.5.1 Simulation data flow 85
6.5.2 Sound pre-processing 86
6.5.3 BM simulation tools 87
6.5.4 Standard experimental setup 88

6.6 Simulated experiments . 89
6.6.1 Localization performance 89
6.6.2 BM-standard vs. BM-sliced 90
6.6.3 Impact of the probability discretization 93
6.6.4 Impact of the sensor precision 95
6.6.5 Impact of the LFSR 96
6.6.6 Computation accuracy depending on the number of

slices . 96
6.6.7 Power consumption measurements 98

6.7 Real world experiments . 101
6.7.1 Pre-processing on chip 101
6.7.2 Experimental set up 102
6.7.3 Results . 104
6.7.4 Optimization - filtering 104
6.7.5 Optimization - bypass 104
6.7.6 Optimization - learned model 105
6.7.7 Circuit area . 106

6.8 Conclusion . 106

vii

CONTENTS

7 Mono-Source localization in the temporal domain 111
7.1 Probabilistic model with attenuation 111

7.1.1 Bayesian machine adapted to SSL 114
7.1.2 Simulations . 114
7.1.3 VHDL implementation 117
7.1.4 Experimentations . 119

7.2 Probabilistic model without attenuation 124
7.2.1 Modified setup . 125
7.2.2 Localization map . 126

7.3 Conclusion . 126

8 Multi-Source localization in the temporal domain 129
8.1 Localization method . 129

8.1.1 Probabilistic model for single-frame single-source SSL 130
8.1.2 Fusion of frame-wise results for multiple-source SSL . 131

8.2 Implementation on the Bayesian machine 132
8.3 Simulations . 134

8.3.1 Setup . 134
8.3.2 Localization performance 135
8.3.3 Robustness to various source locations 137

8.4 Conclusion . 137

9 Source separation 139
9.1 General model . 139
9.2 Sampling using Gibbs . 141
9.3 Bayesian Sampling Machine adapted to perform the source

separation . 143
9.4 Simulations . 144

9.4.1 Simplified sound simulator 144
9.4.2 Standard experimentation setup 145
9.4.3 Sampling space . 146
9.4.4 Separation result . 146
9.4.5 Separation result with noise 149
9.4.6 Separation result using only two microphones 152

9.5 Running the Bayesian sampling machine 154
9.5.1 Simulations on the modified Bayesian sampling machine156

9.6 Conclusion . 156

10 Conclusion & Discussion 159
10.1 Discussion . 161

viii

CONTENTS

A Notations 163
A.0.1 Specific notations for probabilistic inference 163
A.0.2 Specific notations for audio signal processing 164
A.0.3 Specific notations for the applications (SSL and source

separation) . 164

B LFSR issue 167

C Proof draw gate 169

ix

CONTENTS

x

List of Figures

2.1 Evolution of the CPU performance and clock speed between
1985 and 2015. Figures taken from [63]. 8

2.2 Illustration of the power limit. 8
2.3 The potential of dedicated hardware for more energy efficient.

Each point represents one particular architecture. Each sub-
figure covers the period from 2009 to 2013. Taken from [34]. . 9

4.1 The multiplication of 3 probabilities p1, p2 and p3 using
stochastic bit streams. 32

4.2 Probability of a value depending on the length of a stochastic
bit stream for a bit stream representing the value 0.8. In blue,
a 5 bits bit stream. In orange, a 10 bits bit stream. In green,
a 40 bits bit stream. 33

4.3 An example of a 16-bit Galois LFSR. 34
4.4 Architecture of the BM including a zoom on a single OP block

of the machine. Bit streams are represented by red arrows.
Blue arrows illustrate fixed-point numerical values. 36

4.5 Detailed overview of the Bayesian machine architecture in-
cluding the counters. 37

4.6 Example of an SBG using a 16-bit Galois LFSR. 38
4.7 Example of a max-normalization on a column of 5 lines. . . . 40
4.8 Setup for the boat localization example with a 16 by 16 grid. 42
4.9 Distribution of the different sensors which are fused by the

Bayesian machine. 44
4.10 Computed distribution for different lengths of bit streams. . . 45
4.11 Architecture of the Bayesian sampling machine. 46
4.12 Setup for the boat localization example with a 1024 by 1024

grid. 49

xi

LIST OF FIGURES

4.13 Plot of the likelihood distributions for the different sensors.
In blue the distance sensors. In orange the bearing sensors. . 51

4.14 Plot of the different explored positions to localize the boat
placed in (512,512). 52

5.1 The mixing process of two sources recorded by two microphones. 60
5.2 Flow of the binary masking method. Figure taken from [13]. . 64
5.3 NMF example for xylophone notes. Figure taken from [97]. . 65

6.1 Schema of the source-to-microphones wave propagation. . . . 71
6.2 Architecture of the Standard-BM including a zoom on a single

OP block of the machine. Bit streams are represented by red
arrows. Blue arrows illustrate fixed-point numerical values. . 75

6.3 Architecture of a BM-sliced with two slices of q = n/2 columns
each and 1 re-sampling unit in between. 76

6.4 Re-sampling unit showing and example of max-normalization
with the line 2 being at the maximum. 77

6.5 Filter-like implementation of the machine for the VHDL design. 78
6.6 The simplified architecture of the VHDL implementation of

the BM-sliced for the SSL. 80
6.7 The automata of the global FSM of the BM. 81
6.8 The OP block before introducing the on-chip normalization

processing with the memory block containing an entry for
each sensor value. 82

6.9 The mechanism used for the on-chip computation of the likeli-
hood value for each OP block. 82

6.10 The detailed architecture of the VHDL implementation of the
BM-sliced for the SSL. 83

6.11 The principle of the pipelining technique used to speed up the
initialization phase. 85

6.12 Simulation data flow showing the different simulation possi-
bilities. 86

6.13 Setup of the room simulated to generate the sound for our
experiments. 88

6.14 Probability map for BM-sliced at 5.000.000 steps. Maximum
points of Ground truth source position (red), Source position
estimated by the BM-sliced (green) which stays stable after
10.000 steps, Source position estimated by the EM algorithm
of [40] (orange), Source position estimated by exact inference
method (blue). 91

xii

LIST OF FIGURES

6.15 Sum of all output counters (on a log-scale) as a function of
the number of computation steps. 92

6.16 Comparison of the Kullback-Leibler divergence between the
distribution computed by the BM (standard and sliced version)
and the exact distribution as a function of the number of
computation steps. 93

6.17 KLD as a function of the re-sampling threshold value for
different n_bit. n00p04t being the exact inference. 94

6.18 KLD as a function of the re-sampling threshold value for
different discretization of the sensor data. 95

6.19 KLD as a function of the re-sampling threshold value for runs
with LFSR as random number generators (t) and with the
random number generator of C++ (f). 97

6.20 KLD as a function of the re-sampling threshold value for
different number of columns per slice. 98

6.21 Overview of the different modules present in the global system
and their connections. 102

6.22 Phase difference computation module for 1 microphone pair. . 102
6.23 Sound acquisition set up. 103
6.24 Microphone set up in the room. 103
6.25 Localization map obtained using the free field model. 104
6.26 Evolution of the localization map after filtering over 4 frames. 105
6.27 Examples of localization when using no threshold (NT), a

medium threshold (MT) and a high threshold (HT) using the
filtering method (F) or without filtering (no filtering - NT). . 108

6.28 Localization map using the learning method at position 54. . 109
6.29 Comparison between the original free field model and the

learned model at position 0. 109
6.30 Comparison between the original free field model and the

learned model at position 7. 109
6.31 Comparison between the original free field model and the

learned model at position 36. 110
6.32 Comparison between the original free field model and the

learned model at position 56. 110
6.33 Comparison between the original free field model and the

learned model at position 63. 110

7.1 Architecture of the Bayesian machine used for the temporal
localization method. 114

xiii

LIST OF FIGURES

7.2 Setup of the room simulated to generate the sound for our
experiments. 115

7.3 Localization map with for a frame of 30 samples. 117
7.4 Different microphones used for the hardware implementation

of the SSL method. 118
7.5 Preprocessing of the likelihood on-chip for the temporal local-

ization method. 119
7.6 Examples of localization when using different size of frames

(recording time T). 121
7.7 Examples of localization when adding noise to the recorded

signal. 122
7.8 Microphone signals obtained in a real world recording. 122
7.9 Setup of the room simulated to generate the sound for our

experiments for the model without attenuation. 125
7.10 Localization maps provided by method using temporal com-

parison without attenuation model. 126

8.1 Simplified representation of the Bayesian machine architecture
used to compute the inference equation for SSL and the fusion.133

8.2 Simulated room setup for our multi-source localization method.134
8.3 (a) to (c): Posterior distribution map obtained for 3 very short

time-frames of a given 50-frame bloc. (d) Final distribution
map after fusion over 50 frames. The two black squares
correspond to the actual positions of the two sources. 136

9.1 Architecture of the Bayesian sampling machine (BSM) adapted
to the source separation problem. 143

9.2 Position of the speakers and the microphones to simulate the
sound for our experiments. 145

9.3 Visualization of the sampling space. 146
9.4 Signal recorded by microphone 1. 147
9.5 Mean squared distance between the original source signal and

the reconstructed signal as a function of the number of sweeps.147
9.6 Reconstructed signal of source 1 after sweep 0. 148
9.7 Reconstructed signal of source 1 after sweep 1. 148
9.8 Reconstructed signal of source 1 after sweep 7. 148
9.9 Quality of the estimated result: original signal in red, esti-

mated signal in green and blue the difference between the
original and the estimated signal. 149

9.10 Signal recorded by microphone 1 with added Gaussian noise. 150

xiv

LIST OF FIGURES

9.11 Mean squared distance between the original source signal and
the reconstructed signal as a function of the number of sweeps
when adding Gaussian noise to the recorded signal. 150

9.12 Reconstructed signal of source 1 after sweep 15. 151
9.13 Quality of the result: original signal in red, estimated signal

in green and blue the difference between the original and the
estimated signal. 151

9.14 Spectrogram of the estimated signal for source 1. 152
9.15 Position of the speakers and the two microphones. 152
9.16 Mean squared distance between the original source signal and

the reconstructed signal as a function of the number of sweeps.153
9.17 Reconstructed signal of source 1 after sweep 6. 153
9.18 The four Gaussian distributions of the likelihoods separated

in two main groups. 155
9.19 The four Gaussian distributions of the likelihoods superposed. 155
9.20 Mean squared distance between the original source signal and

the reconstructed signal as a function of the number of sweeps.157
9.21 Reconstructed signal of source 1 after sweep 20. 157

B.1 Example of bit streams generated using and 32 bits LFSR. . 168

xv

LIST OF FIGURES

xvi

List of Tables

4.1 Output of the draw gate in case of w = 3. Each line of the
table is associated to a 3-bit input to the draw-gate at time t.
The output is given depending on the previous output of the
draw-gate Xt−1 which is associated to the columns of the table. 48

6.1 Results of the ASIC simulations for both architectures: the
original and the optimized version. 100

6.2 Circuit area measurement of the system mapped on the FPGA.106

7.1 Circuit area measurement of the system mapped on the FPGA
for the SSL without Fourier transform. 123

7.2 Circuit area measurement of the system mapped on the FPGA
for the SSL without Fourier transform (in red) compared to
the SSL with Fourier transform (in blue). 124

xvii

xviii

Chapter 1

Introduction

Computers are without doubt a most important invention of the last century,
whose impact cannot be overestimated. The evolution of their computing
power has been awesome and the applications now running on them are
astonishing. Processors, which are their heart, have been optimized again
and again, allowing their resulting performances to improve literally every
year. However, one can ask whether this purely "brute force" evolution is
the only way forward, and, first of all, whether it can go on forever.

Over the years, the race of providing more and more computing power
has pushed the researchers to make choices on hardware specific concepts.
This resulted in some concepts to be neglected. One of these technologies
which has been less investigated in the past is stochastic computing. Now that
the Moore’s law1 has come to an end, one can feel the need for some alterna-
tive computing schemes. Preparing the post Von Neumann era, rebooting
computing is a research movement, which aims to develop unconventional
computing schemes.

Stochastic computing allows to design low power circuits, which in the
age of the Internet of Things (IoT) have promising advantages. The IoT will
suffer from the communication network bottleneck as the expected amount of
data transmitted to the cloud will increase drastically. Therefore it is crucial
to process the data on-site close to the sensor to reduce the transmitted data.
We will move from sensor data processing to systems, which incorporate
enough intelligence to make adequate decisions. This forms the concept of
Artificial Intelligence of Things (AIoT) which combines Artificial Intelligence
(AI) with the Internet of Things (IoT) to accomplish more efficient IoT
operations.

1Moore’s law is the observation that the computing power doubles every 18 months.

1

CHAPTER 1. INTRODUCTION

For IoT, enormous amounts of sensor data must be processed. Sensors,
which are the interface to the real world can provide faulty data. Especially
when using low budget sensors, the amount of inaccurate data increases.
Therefore, it is imperative to use robust models to process the data. Bayesian
models are robust to faulty sensor data. Using Bayesian programming
constitutes a strong foundation to develop a tolerant system. We mix
Bayesian programming with stochastic computing to realize an alternative
computing approach.

1.1 Context
The use of non-standard architectures to process uncertain information has
experienced a remarkable growth in recent years, see for example the MIT
Probabilistic Computing Project [5] and the DARPA projects PPAML [4] and
UPSIDE [6]. A European counterpart is the European project BAMBI [1]
(Bottom-up Approaches to Machines dedicated to Bayesian Inference) during
which we proposed some first machines dedicated to Bayesian inference.
The Bambi project revealed the potential of stochastic computing when
considered at the bit level.

The work presented in this thesis is part of the MicroBayes project [3]. The
project consortium consists of experts of different disciplines: mathematics,
computer science, signal processing, micro-electronics.

The development of modern computers is mainly based on the increase
of performances and the decrease of area and energy consumption. This
incremental evolution is notable, but it involves no notable modification
of the basic principles of computation. In particular, all the components
perform deterministic and exact operations on sets of binary signals. These
constraints obviously impede further sizable progresses in terms of speed,
miniaturization and power consumption. The goal of the MicroBayes project
is twofold:

• to investigate a different approach to perform computations, namely
stochastic computing using stochastic bit streams.

• to show that stochastic architectures can outperform standard com-
puters to solve complex inference problems both in terms of execution
speed and of power consumption.

In this thesis, we demonstrate the interest and feasibility of stochastic
computing on two applications involving low-level information processing
from sensor signals, namely sound source localization and separation. This

2

1.2. OVERVIEW

radical change of current computation models, at their deepest design level,
may very well lead to the elaboration of low power reactive systems directly
connected to their environment through noisy sensors.

1.2 Overview

Two architectures dedicated to Bayesian inference have been developed in
this thesis. As they are simple, it makes them ideal candidates for low power
architectures. Since they are based on stochastic computing, they are robust.
Due to this simple design, the circuit area is small, hence they are cheap to
produce. In this thesis, we go beyond the conceptual development and show
how to solve typical signal processing problems using our Bayesian machines.
Our solutions detail the structure and includes simulations and hardware
design and implementation.

The first architecture, the Bayesian machine is devoted to inference
problems having a reasonably small search space. Typically, it can be
used for sensor fusion applications. This architecture has been utilized
for a classical signal processing task: sound source localization. Several
approaches under specific assumptions have been proposed. All methods
have been tested in simulation and some in more realistic environments.
These experimentations lead to a first realization of an ASIC prototype,
currently under development.

A second machine, the Bayesian sampling machine has also been designed
and is dedicated to more complex and general inference problems having,
larger sampling spaces. It is based on sampling methods such as the Gibbs
sampler. Source separation, which is the second application in our project,
has been successfully run on the Bayesian sampling machine. High level
simulations and circuit level simulations have been performed to evaluate
the performances of this machine. Note that for both signal processing
applications, we do not aim to achieve the state of the art performance but
the main objective of this work is to show the potential of Bayesian machines.

1.3 Thesis outline

This thesis is organized into three main parts: an overview of the related
work (chapter 2 and 5) is followed by background knowledge (chapter 3 and
chapter 5) to finally present our machines (chapter 4) adapted to the different
applications (chapters 6 to 9). Since this thesis is multi-disciplinary, we aim
to introduce all the necessary concepts to understand the contributions

3

CHAPTER 1. INTRODUCTION

presented in this document. The expertises of this work range from computer
science to electrical engineering and signal processing.

Chapter 2 presents the work related to the rebooting computing research
community. With the growing need of alternative computing architectures,
several approaches have been proposed. The main alternative computing
schemes are reviewed in this chapter.

The background on Bayesian modelling is provided in chapter 3. We
present Bayesian programming as well as the notion of exact inference. Also,
approximate inference methods are explained. Sampling methods are at the
heart of our second machine, namely the Bayesian sampling machine.

The central part of our project, the stochastic machines for Bayesian infer-
ence, called Bayesian machines, are shown in chapter 4. First, the stochastic
computing approach is introduced. Both our machines are presented in this
chapter including their components.

Since our project aims to run signal processing applications on our
machines, we need to introduce the required basic concepts of this thesis in
signal processing. The presentation of the signal processing background is
provided in chapter 5. The applications are sound source localization and
source separation. Besides defining the tasks, we also review the approaches
that have been proposed over the years by the signal processing community.

Chapter 6 is the first chapter presenting a Bayesian machine that deals
with the sound source localization problem. The approach described in this
chapter is based on the Fourier transform. The machine and its optimizations
are presented. Some simulation results and real world experiments are
demonstrated. Finally, the circuit of the machine is simulated to obtain its
power consumption and circuit area.

Since a large part of the electrical circuit of the approach from the
previous chapter is dedicated to the Fourier transform, we propose a more
lightweight solution in chapter 7. This method works in the temporal domain
to reduce the circuit area. Simulated experiments are provided.

Using the method of chapter 7 and enhancing the system, we are able
to achieve multi-source localization. The approach is presented in detail in
chapter 8. The modifications of the machine are stated. Simulations have
been run and the results are shown.

Finally, dealing with the second application, chapter 9 presents the work
done on source separation. For this purpose we introduce the second machine,
namely the Bayesian sampling machine is introduced as well as its adaptation
to the application. A large number of simulations have been conducted to
determine the strengths and limitations of the proposed system.

Finally, chapter 10 concludes on the presented work. The different

4

1.4. CONTRIBUTION

proposed methods are summarized and some future work is proposed.
Due to the different aspects of the work, our aim has been to deliver a

manuscript as complete as possible to provide all the background knowledge
required to understand our contributions.

1.4 Contribution
The goal of my thesis is the development of Bayesian machines, using Bayesian
modeling and stochastic computing to solve Bayesian inference problems.
Within the Microbayes project, Bayesian machines mainly were a theoretical
construct, my work addresses real world applications to show the potential
of these architectures.

I dealt with two signal processing applications, namely the sound source
localization and the source separation. For each problem, I designed a
dedicated Bayesian model and adapted the hardware to that task. I validated
the proposed model on a high level software simulation before running
simulations at circuit level. Moreover, I run experiments in a real world
setup to show the performance of the system. Lastly, I implemented the
circuit in VHDL to run it on FPGA. I also performed ASIC simulations
to obtain a realistic evaluation of the power consumption. Currently, a
prototype is under development to produce an ASIC.

Although stochastic computing has many strengths, the temporal dilution
problem still remains present. I addressed this problem and provided an
optimization to speed up the computation time and hence reduce the required
energy by the machine. Moreover, the memory needs of the initial machine
were tremendous. I proposed an on-chip likelihood computation method
to decrease the memory in the circuit, which is the main power consumer.
Furthermore, I designed a more generic machine dedicated to more complex
inference problems, which I used for source separation.

My work resulted in four peer-reviewed conference articles, which I
published in [46], [47], [48] and [55]. I also co-organized an IEEE workshop
dedicated to "Emerging technology for probabilistic inference" at the 2019
IEEE International Nanodevices & Computing Conference in Grenoble where
is presented my latest results.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Related Work - rebooting
computing

As the aim of this thesis is to develop alternative computing architectures,
we dedicate this chapter to provide an overview of the different computing
approaches that have been proposed over the years. Note that the state of
the work of the signal processing part of this work is provided in chapter 5.
First, let us understand why there is a need of new computing approaches.

2.1 Birth of rebooting computing

Computing has tremendously evolved over the years. Both, needs and
performance keep increasing. Due to the effort of the research community,
we are now able to design machines which are smaller, more efficient and less
power consuming.

Many predictions have been made about the evolution of processor speed
and especially Moore’s law from 1965 made CPU cheaper over time. It
stated that the number of transistors per chip are going to double every 18
months at constant cost [88]. Moreover, Dennard in 1974 predicted, based
on physical observations, that the processors will become faster and more
energy efficient [39].

In figure 2.1a one can see an overview of the performance of the CMOS
processors of the last 30 years. One can see the performance increasing by
nearly four order of magnitude. This picture has been taken from [63]. As
the performance of a CPU is depending on the clock frequency, it increased
as well, as shown in figure 2.1b. These figures were made possible thanks
to the CPU database from Stanford [35] which reviewed all available CPUs

7

CHAPTER 2. RELATED WORK - REBOOTING COMPUTING

(a) Increase in performance. (b) Evolution of clock frequency.

Figure 2.1: Evolution of the CPU performance and clock speed between
1985 and 2015. Figures taken from [63].

from Intel’s first single-chip microprocessor Intel 4004 in 1971 to now.

W
atts/m

m
2

Figure 2.2: Illustration of the power limit.

However, because of physics, this increase can not continue forever. In
fact, since 2005 the clock speed of the processors stopped increasing, as
shown in figure 2.1b. The reason is the power density, which also increased
along the years, illustrated in figure 2.2. Due to physical reasons, in 2005
we hit the so called power wall as it is physically not possible to augment
the processor frequency because it generates too much heat that has to be
dissipated. The energy required for cooling becomes too important and
makes it unviable.

Over the years different techniques have been developed to increase
the energy efficiency in hardware. The Graphics Processing Unit (GPU),

8

2.2. APPROXIMATE COMPUTING

Figure 2.3: The potential of dedicated hardware for more energy efficient.
Each point represents one particular architecture. Each sub-figure covers the
period from 2009 to 2013. Taken from [34].

which have originally been designed for image and video processing, became
heavily used for deep learning. The counterpart in signal processing is the
Digital Signal Processor (DSP), which is an optimized micro-processor for
signal processing applications. All this new hardware allowed to become
more efficient in specific applications. The trends for application specific
and dedicated hardware is getting further and ameliorates the efficiency, as
illustrated in figure 2.3.

When looking at the computing energy problem explained in this sec-
tion, one clearly sees the motivation of the development of new computing
paradigms. This gave birth to the rebooting computing community, which
aims to propose and design alternatives to the existing CPUs. Many different
approaches have been presented. In the upcoming sections, we provide an
overview of selected methods. A very simple idea is to study the impact on
the energy consumption when reducing the accuracy of the system. Some
investigate a totally unusual approaches based on new physical phenomena.
A part of the community is basing its research on the human brain and focus
on how it can be imitated. Moreover, stochastic computing, which uses an al-
ternative representation of numbers is reviewed in detail. It can be seen as an
human inspired approach. Finally, we look at the probabilistic programming
community, which is working on software and hardware solutions.

2.2 Approximate computing

In recent years, a straightforward approach to reduce computing power called
approximate computing has emerged [124]. It is also called good enough
computing [116]. By taking conventional architectures and reducing certain

9

CHAPTER 2. RELATED WORK - REBOOTING COMPUTING

parameters, one could save energy. In some scenarios, the accuracy of the
results computed by conventional computing methods can be reduced. The
goal is to find an appropriate trade-off between the level of accuracy of
the application and the precision of the architecture to accomplish certain
optimizations [85]. By accepting a drop of accuracy, one can save resources.
Applications of approximate computing reach from video processing and
signal processing to machine learning [124]. There are different methods
to achieve power reduction. One can reduce the precision of the hardware
by reducing the data representation (i.e. fixed-point arithmetic) in the
system [84]. Moreover, approximated operators have been proposed [78]
and [73]. Loop perforation is an example of what can be done on the software
side. One can also scale the supply voltage which results in a quadratic
reduction of the energy consumption. However, such techniques, i.e. voltage
over-scaling, introduce timing errors. Dedicated hardware addressing this
issue has been proposed in [101]. A detailed study of the impact of the
fixed-point arithmetic and approximate operators has been presented in [15].

2.3 Alternatives based on physical phenomena

Many researchers are working on exploiting physical phenomena to achieve
more efficient computing. The most popular right now is quantum computing,
which is based on quantum mechanics. The potential of this approach could
overcome conventional computing methods [45]. This is the reason why
many projects deal with this method and plenty of companies invest in it.
The biggest existing quantum processors have been designed by IBM (50
qubits), Intel (49 qubits) and Google (72 qubits). In 2019 a first commercial
circuit-based quantum computer has been presented [2]: System One from
IBM Q.

Although quantum computers are getting more and more attention of
the research community, some people prefer to use quantum mechanics to
accelerate certain parts of conventional computing. Moreover, in conventional
machine learning quantum computing could be used as an accelerator [25].
Beside quantum, optical computing represents another major option. The
power of light, i.e. photons, is already identified by the community. For
information processing electrons are complimentary to photons [112].

In machine learning, one can also use optics to speed up computing. For
example, some specific part of the computing can be done using analog optic
devices in order to get a faster computation. Random projections allow
to reduce the dimensionality of certain problems. However, it requires a

10

2.4. NEUROMORPHIC COMPUTING

random matrix. Using light going through several layers of scattering material
provides random matrices. This technique has been presented in [107] and is
currently developed by the startup LightOn. A first Optical Processing Unit
(OPU) has been built. This method provides a very large amount of random
matrices at high speed.

2.4 Neuromorphic computing

Another computing approach, called neuromorphic computing aims to imitate
the human brain and build some dedicated hardware to achieve a more
efficient computation. Some more on the neuroscience part in order to
understand the human brain such as the BRAIN initiative or in [69]. Some
research projects aim to build specific hardware such as the Spiking Neural
Network Architecture, called SpiNNaker [49] of the Human Brain Project
(HBP). Moreover, several companies recognized the potential of neuromorphic
computing. Therefore, new dedicated chips have been developed. Some latest
presented chips are TrueNorth from IBM [86] or the lately announced chips
such as Loihi from Intel [36], the neuromorphic processor called Akida from
BrainChip [65] and the Dynamic Neurormorphic Asynchronous Processor
(DYNAP) from aiCTX [7].

Also, some interesting work, addressing the same application as we do, has
been proposed in [110]. The goal is to imitate the barn owl’s phase-locking on
the Spikey chip [99]. The Spikey chip is an add-on for conventional computers
plugged via USB to perform neuromorphic computing. In that work, the
authors show that it is possible to achieve phase-locking on neuromorphic
hardware, which provides an angular information with high azimuthal pre-
cision. This constitutes a first step towards sound source localization on
neuromorphic hardware. Moreover, the usability of neuromorphic computing
to be used for signal processing applications has been reviewed in [102].

Another approach close to neuromorphic computing is also human cen-
tered but more high level. It is called bio inspired computing. It does not
only impact the computation but also the sensing and everything around
the decision making.

2.5 Stochastic computing

The last computing approach we want to review is called stochastic computing
(SC). We will have a more detailed look at it since the architectures we propose
are based on it. It has originally been proposed by Gaines in 1969 in [51]

11

CHAPTER 2. RELATED WORK - REBOOTING COMPUTING

and uses another data representation than conventional computing. Its Von
Neumann, who introduced in 1956 the concept of using random processes
in computers made of unreliable components and exploiting parallelism [94].
In stochastic computing, one represents the numbers as a bit stream of "0"s
and "1"s, called stochastic bit streams. In theory, stochastic bit streams have
an infinite length. However, as in practice they are finite, this introduces
an uncertainty in the representation (cf. figure 4.2). Also, the stochastic
bit streams can be seen as a neuron-like system [67]. It allows to perform
robust and low-cost computing. Due to its specific data representation, it is
very easy to implement more advanced operators such as multiplications [9].
For instance, the multiplication of two bit streams is performed by a logic
AND gate. Moreover, as these circuits are very simple it represents a cheap
alternative to conventional processors. SC is mainly used for applications
where process variations and soft errors are not a big problem [100]. One
main advantage of SC is to modify the precision of the computation since
it is directly related to the length of the stochastic bit streams. This way,
using very short stochastic bit streams allows to achieve fast (sometimes
imprecise) computation [10]. This feature can, in certain domains, be very
useful as shown in section 2.5.3.

2.5.1 Accuracy

Due to its data representation, SC allows to have significant power consump-
tion reduction and build small circuits. However, it introduces inaccuracy
in the computed result. The accuracy of the output of a stochastic system
highly depends on two parameters. The first one is noise, which can typically
be due to radiation or change of the supply voltage or even simple bit-flips.
The second parameter is the number of stages in the system. A stage is one
level of AND gates. When having several AND gates in a row, the system is a
multi-stage system [87]. As the numbers encoded are between 0 and 1, when
multiplying them, the result is a smaller value than the input. This results
in a decease of the signal power (number of "1"s in the bit stream) and hence
a decrease of the Signal-to-Noise Ratio (SNR). We call this phenomena the
temporal dilution and addressed it in [46] (see chapter 6). In this situation,
the system is more vulnerable to noise due to the small SNR. This problem
of accuracy has been addressed and quantified [87]. In [93] the authors
proposed a framework to manage accuracy in SC systems during the design
phase.

12

2.5. STOCHASTIC COMPUTING

2.5.2 Correlation

In order to obtain accurate results, the input bit streams have to be inde-
pendent and uncorrelated. This comes with the cost of having separated
and dedicated random number generators for each bit stream. Therefore the
conversion of the binary numbers to the stochastic bit streams represents
a significant portion of a stochastic circuit. In order to reduce the circuit
area and to have a more scalable technology, researchers reviewed the basic
principles of stochastic computing [8]. However, for certain operations it
is possible to take advantage of correlation by sharing the random number
generator among the different input streams. Therefore, the number of
random number generators is reduced. However, this requires to review the
basic stochastic operators [23]. In case of an image processing application,
the circuit area has been reduced up to 90% [23].

2.5.3 Applications

The application field of stochastic computing is vast. Historically, its use was
more focused on control or machine learning applications. In recent years,
it has been used for embedded encoding/decoding hardware or in image
processing for edge detection. In the following, we aim to provide a brief
overview of some applications. For example, in image processing dedicated
stochastic hardware for edge detection using the Robert cross operator has
been described in [11]. Another approach for edge detection including its
orientation has been presented in [23]. In [14], an implementation of a
Deep Neural Network (DNN) has been proposed using SC. Here, compared
to conventional architectures a 21% reduction in energy consumption has
been achieved according to the authors. Moreover, SC as been used in
telecommunication applications for low-density parity check (LDPC) decoding
such as presented in [60] and [91]. Finally, in [87] the described system has
been tested as Discrete Cosine Transform (DCT) block as part of a JPEG
encoder.

2.5.4 Improvements

An asynchronous SC approach has been proposed in [56]. The idea is to
remove the clock and design an asynchronous circuit in order to reduce energy
consumption. Asynchronous design is often used in low-power systems. It
consists of removing the clock of the circuit which requires a lot of energy.
The authors apply this method to an IOT sensor which needs to be low power
consuming. However, their concept aims to do an end-to-end asynchronous

13

CHAPTER 2. RELATED WORK - REBOOTING COMPUTING

design which is highly questionable as the transmitter requires to have the
binary version of the stochastic bit streams. Hence the need to have a
stream-to-binary conversion module which requires a clock.

Another way to speed up stochastic computing is to use optics. One could
use the optical domain to overcome the intrinsic serial aspect of stochastic
computing. Light has the physical property of having a low latency and
high bandwidth. In [42], a stochastic circuit has been implemented in the
light domain. They implemented a second order polynomial function and
operated it at 1GHz. Their power consumption was around 20.1pJ laser
consumption per computed stochastic bit.

2.5.5 Random number generators

Generating stochastic bit streams requires to have random number generators
(RNG). The research area of RNGs is immense since they are used for many
different applications. However, in SC the quality of the random numbers
does not need to be cryptographic. Hence one can utilize more simple RNGs
such as pseudo-RNGs. In hardware implementations, the most prominent
example is the Linear Feedback Shift Registers (LFSR) which provides a
good enough quality for SC is widely used [9].

Unfortunately, the energy required to run LFSRs is still very high. There-
fore, a lot of effort is put into developing RNGs based on physical phenomena.
For example, Magnetic Tunnel Junctions (MTJs) form a promising alterna-
tive for low-power RNGs [59]. Moreover, entropy extractors can also be used
for massive random bit generation [30], [29] and [28]. Also, image sensing
sensors have been proposed as RNGs [108]. Finally, quantum RNGs using
coupled quantum dots for SC have been investigated [83]. All these efforts
combined open new possibilities in designing truly stochastic computers.

2.6 Probabilistic programming
Nowadays a lot of artificial intelligence tasks are done by Deep Learning (DL)
approaches using Neural Networks (NN). Beside its strengths and potential,
DL has drawbacks which make a lot of people question its future. For example,
DL needs a lot of data in the training phase and during the inference its
decisions can not be explained due to its "black box" behavior [82]. Therefore
other more flexible solutions have been investigated.

Probabilistic programming (PP) forms a encouraging alternative to DL
since probabilistic models are able to deal with incomplete data or sensor
uncertainty [66]. Many efforts are currently done to develop better and faster

14

2.6. PROBABILISTIC PROGRAMMING

PP languages. Hence, the list of new PP languages is growing. Some examples
are Church [57], Venture [81] and its newer version Gen [33], Anglican [122],
Pyro [19], Edwards [115] with a newer version Edwards2 released in 2018
and Stan [26]. This long list shows the interest and the potential of PP.

However, whereas on the software side research is currently moving
forward at a fast pace, developments on the hardware side are still slow.
Nonetheless, a few concepts have been presented in the literature. One
approach is to perform Bayesian inference on analog signals, which can be
seen as a hardware accelerator for belief propagation such as presented in [90].
Another example working on analog Bayesian inference is the work from
Benjamin Vigoda presented in his thesis [117]. He proposed some analog com-
ponents for his continuous-time circuits to perform various message-passing
algorithms in binary factor graphs. His circuits were dedicated to wireless
transceivers and were later developed by its company Lyrics, which has been
acquired by Analog Devices. On the digital side, a Bayesian Computing
Machine (BCM) has been proposed in [77]. It can be adapted to several
applications, from AI to signal processing, and has been successfully tested
on FPGA. Moreover, at circuit level, a probabilistic CMOS (Complementary
Metal Oxide Semiconductor) has been proposed in [27]. They turned con-
ventional CMOS into probabilistic CMOS by using noise. Furthermore, at
transistor level, spintronic can push probabilistic hardware forward due to
its intrinsic probabilistic properties. Therefore the p-bit (probabilistic bit)
can be used as a building block for Bayesian inference hardware presented
in [16].

The concept of using stochastic computing to perform probabilistic in-
ference has been published by Eric Jonas in 2014 in his thesis [68]. To our
knowledge, this concept has never been investigated before. The idea is to
build dedicated hardware performing fast approximate Bayesian inference us-
ing components, which are intentionally stochastic. Several specific modules
have been presented which produce samples from a conditional probability
distribution based on stochastic computing. These gates can be scaled to
face more challenging applications with several variables. Moreover, massive
parallelism is used in the circuit to speed up the computation. For instance,
a depth and motion perception task has been addressed. The corresponding
probabilistic model has more than 10000 latent variables. Due to its simple
low-power components, the system runs in real time with a 1000x speed
up compared to conventional microprocessors. A second task has also been
treated with a dedicated circuit. It consists of recognizing handwritten digits,
from the MNIST database. The designed circuit achieved a 2000x speedup
compared to the state of the art software solutions due to its parallelism.

15

CHAPTER 2. RELATED WORK - REBOOTING COMPUTING

The idea of using intentionally stochastic circuits to perform probabilistic
inference is the concept we also use in our work.

2.7 Conclusion
In this chapter, we presented an overview of the related work on the hardware
part of this thesis. First, we discussed the motivation of the development of
new computing paradigms, which launched the rebooting community. Then,
we reviewed the different approaches that has been proposed by the research
community. Approximate computing uses conventional hardware but reduces
power consumption by decreasing the accuracy of the data representation.
Other approaches, such as quantum or optic computing are based on physical
phenomena to accelerate computation. Moreover, by looking at the human
brain, researchers developed neuromorphic computing hardware. Stochastic
computing uses a different data representation than processors and aims to
achieve more robust, low-power devices. Finally, we looked at probabilistic
programming and the dedicated hardware, which has been proposed for
probabilistic inference.

16

Chapter 3

Mathematical foundations

This chapter aims to define all the mathematical concepts needed to under-
stand the upcoming chapters of this thesis. It is split into three parts. First,
the principal concepts for probabilistic programming are explained. Second,
the concept of exact inference is defined. Third, the idea of approximate
inference is described.

There are by choice no examples in this chapter to help to understand the
presented concepts since two detailed examples will illustrate the machines
explained in the upcoming chapter. These examples are using the formalism
defined in this chapter.

The first section in this chapter is mainly based on the book Bayesian
Programming [18]. For more details, please refer to this book.

3.1 Bayesian programming

Mathematic models suffer from two main problems, which are incompleteness
and uncertainty of the obtained sensor data. Therefore, probability theory is
a mathematical structure, which unifies rational reasoning with the presence
of both incompleteness and uncertainty [66].

In this chapter, we will introduce the key notions of Bayesian program-
ming.

3.1.1 Discrete variables

In this work, we focus on problems with discrete and finite variables. There
are three main categories of variables:

17

CHAPTER 3. MATHEMATICAL FOUNDATIONS

• S: the searched variables of which we are searching the probability
distribution.

• K: the known variables which incorporate the known part of our model.
They often consist of the sensor data.

• F : the free variables which are variables present in the model but are
not related to the inference we are computing.

3.1.2 Probability

Probability quantifies the level of uncertainty given to the value of a variable.
A probability is a value between 0 and 1. For example, the fact that the
probability of a variable S will have the value s is 0.5 will be written as
follows:

P (S = s) = 0.5

3.1.3 Normalization

The sum of the probabilities of all possible realizations of a variable is equal
to 1. Therefore, for discrete variables one can write:∑

s∈S
P (S = s) = 1 (3.1)

However, we will us a more simplified notation:∑
s

P (s) = 1 (3.2)

3.1.4 Conditional probability

In probabilistic models you can have dependences based on conditions. A
probability of a given variable may change depending on a value of another
variable. Therefore we have the conditional probability: P (S|K). This can
be read as "probability of S conditioned on K". The sign | divides the
variables into two parts. On the right are the variables with a defined value.
On the left are the searched variables.

Based on the normalization rule, for every possible value k of K, we can
write: ∑

s

P (s|K = k) = 1 (3.3)

which can be abbreviated into:∑
s

P (s|k) = 1 (3.4)

18

3.1. BAYESIAN PROGRAMMING

3.1.5 Variable conjunction

Probabilistic variables can also be united in a so called conjunction. The
conjunction of all the variables of a probabilistic model can be interesting
to study. The conjunction is noted as the logic "and": S ∧K ∧ F . When
analyzing the conjunction of all variables, the possible values of the probability
distribution of a conjunction is Card(S)×Card(K)×Card(F) with Card(S)
the cardinality of the variable S. Note that the following notations are
equivalent:

P (S ∧K ∧ F) = P (SKF) = P (S,K, F) (3.5)

For the sake of simplicity we will mainly use the latter one in this document.
For every suitable triple (s, k, f), we will often use the shortening P (S =
s,K = k, F = f) = P (s, k, f)

3.1.6 Bayes theorem

The Bayes theorem is a central theorem for Bayesian inference. It is based
on the conjunction and is known in two forms. The first one:

P (S,K) = P (S) · P (K|S) (3.6)
= P (K) · P (S|K) (3.7)

The more famous form under which the Bayes theorem is known is:

P (S|K) = P (S) · P (K|S)
P (K) (3.8)

3.1.7 Marginalization rule

The marginalization rule is often used. It is based on the normalization and
the Bayes theorem. It expresses:∑

s

P (s,K) = P (K) (3.9)

Using the normalization or the Bayes theorem it can be rewritten as:∑
s

P (s,K) =
∑
s

P (K)P (s|K) (3.10)

= P (K)
∑
s

P (s|K) (3.11)

= P (K) (3.12)

19

CHAPTER 3. MATHEMATICAL FOUNDATIONS

3.1.8 Joint distribution

The joint distribution of two probabilistic variables S andK is the distribution
of their conjunction. The joint distribution fully determines the marginals,
using the marginalization rule in section 3.1.7.

3.1.9 Decomposition

Defining the best way to calculate the joint distribution on a probabilistic
model is the main challenge as one may want to have an easy way of
computing the distribution using a good model and being able to learn
it easily. Therefore, the decomposition is defined which rewrites the joint
distribution as a product of simpler distributions.

3.1.10 Parametric form

Finally, to compute the inference on the decomposition, one has to define
the mathematical form of each distribution present in the decomposition. In
practice this step specifies the different distributions of the decomposition.
Priors are often set to be uniform when one does not have any a priori
knowledge on them.

3.1.11 Inference

After having defined the probabilistic model, its decomposition and the
parametric form one has everything needed to calculate inference on that
model. Computing an inference is similar to asking a question to the model.

Inference is based on logical deduction. Therefore, from the assumptions
considered true one draws conclusions that are also considered true. In fact,
computers are based on the same deducible logic, better known as Boolean
algebra. It is also a way of making decisions based on binary true-false
proposals.

Probabilistic inference can be seen as an extension of Boolean algebra
since it allows uncertainty on variables to be considered and its premises
to be updated. The hypothesis can still be considered as Boolean values.
However, the conclusion can take all the values between zero and one. The
term inference relates to drawing conclusions based on a series of hypotheses
or observations. These conclusions take the form of probability distributions
on the possible values of the inferred variables.

There are two types of inference in probability theory:

20

3.2. EXACT INFERENCE

• Exact inference: it consists in using the properties described above to
calculate the exact distribution.

• Approximate inference: it provides an approximation of the desired
distribution. It is used when the cardinality of the searched variables
is too large.

The next sections will present these two types of inference more in detail.
Especially, the mathematical concepts for approximate inference are more
deeply described.

3.2 Exact inference
Now that all the required tools for Bayesian programming have been defined,
one want to compute the inference. Given the joint distribution

P (S, F,K) (3.13)

One wants to compute:
P (S|K) (3.14)

In practice, one always executes the same steps. First, using the marginal-
ization rule, one can write:

P (S|K) =
∑
f

P (S, f |K) (3.15)

Second, using the Bayes theorem one obtains:

P (S|K) =
∑
f

P (S, f,K)
P (K) (3.16)

Finally, one replace the denominator by a constant independent of S:

P (S|K) = 1
Z

∑
f

P (S, f,K) (3.17)

Using the decomposition, one can simplify the joint distribution P (S, F,K)
into a product of distributions easier to compute. One general decomposition
is:

P (S, F,K) = P (S) · P (K|S) · P (F |K,S) (3.18)

When computing the distribution P (S|K), one has to compute the probabil-
ity for each possible value of the searched variable S. The feasibility of this

21

CHAPTER 3. MATHEMATICAL FOUNDATIONS

computation mainly depends on the number of values of S. In other words,
it is possible to compute P (S|K) for S having a small cardinality Card(S).
Computing P (S|K) for each possible value is called exact inference. How-
ever, many problems have a large search space and in these cases exact
inference becomes impractical. In case of too large search spaces, one may
use approximate inference algorithms which are presented in the upcoming
section.

3.3 Approximate inference: Sampling algorithms
using Markov chains

When computing a probability distribution, the search space can be very
large and hence it becomes impossible to compute the desired distribution
using the exact inference described in the previous section. Therefore, a lot
of researches have been done to develop methods for approximate inference.
Among all these methods, we will focus on sampling.

This section is based on different books: [62], [20] and [72]. For more
details, we refer to these books.

This section introduces some Markov chain Monte-Carlo (MCMC) meth-
ods. First, the Markov chains are described including the different properties
of the transition matrix needed for further works. Second, the Perron-
Frobenius theorem is presented ensuring stationarity of the Markov chain.
Finally, some MCMC algorithms are presented such as the Metropolis algo-
rithm, the Metropolis-Hastings algorithm, the Gibbs sampler.

3.3.1 Markov chains

Markov processes are random processes such that the next upcoming value
of the process depends only on the current value and not on the previous
ones. This property is called the Markov property.

Markov processes are used for stochastic simulation methods such as
MCMC algorithms (Metropolis algorithm and Gibbs sampling), which will
be presented in this document. Markov chains where first introduced in 1906
by Andreï Andreïevitch Markov. They are useful to study random processes
due to their transition probabilities.

A Markov chain is specified by its state space. The state space defines
the possible values that the process can take, each mapped to a state. To
determine a Markov chain, we need a set of states S = {s1, s2, ..., se}. The
given Markov process starts in a specific state si and then transits to a next

22

3.3. APPROXIMATE INFERENCE: SAMPLING ALGORITHMS USING
MARKOV CHAINS

state sj given a certain probability pij . Due to the Markov property, the
next state of the process only depends on the current state. Therefore, the
probability to move from state si to state sj is given by pij . Notice that it is
possible that i = j in order to stay in the same state. The probability pii
gives the probability of this transition.

Transition matrix

The Markov transition matrix, also called Markov matrix or stochastic
matrix, is a compact way of describing the transitions of a Markov chain.
The matrix M is constituted of the transition probabilities of the Markov
chain.

M = (pi,j),∀ i, j ∈ [1, e] pi,j ≥ 0

The entries of the matrix M are composed by the probabilities of moving
from si to state sj .

Using the transition matrix M , one can easily calculate the probability
of being in one specific state sj after n steps while being currently in state
si which is an entry of the matrix Mn, namely Mn

i,j .
Similarly, calculating the probability of one state si after n steps using a

given starting distribution stored in the vector v can be achieved using:

v(n) = v.Mn

A stochastic matrix describing a Markov chain is a right stochastic
matrix. Since the sum of the transition probabilities from a state i to all
other states must be 1, this matrix is a right stochastic matrix, so that the
elements of each row sum up to 1:

e∑
j=1

Mi,j = 1

Moreover, any product of stochastic matrices is also a right stochastic
matrix.

Matrix properties

Stochastic matrices can have several properties. The ones needed for our
further work will be defined in the following.

M is regular (also often called primitive) if there exist a k ∈ N such
that Mk

ij > 0 for every (i, j). A Markov chain is called a regular chain
if some power of the transition matrix has only positive elements. Any

23

CHAPTER 3. MATHEMATICAL FOUNDATIONS

transition matrix that has no zeros determines a regular Markov chain.
However, it is possible for a regular Markov chain to have a transition matrix
that has zeros.

M is ergodic (also called irreducible in some litterature) if for all (i, j)
there exist a k ∈ N with (Mk)ij > 0. A Markov chain is called an ergodic
chain if it is possible to go from every state to every state (not necessarily
in one move).

Notice that a regular matrix is ergodic. However the opposite statement
is false like shown by this as example:

M =
(

0 1
1 0

)
(3.19)

It is clear that it is possible to move from any state to any state, so the
chain is ergodic. However, if n is odd, then it is not possible to move from
state 0 to state 0 in n steps. If n is even, it is not possible to move from
state 0 to state 1 in n steps, so the chain is not regular.

For a matrix M , the set of eigenvalues is called the spectrum σ(M) of
M . The spectral radius ρ of M is defined as ρ = max {|λ1|, ..., |λn|}. An
eigenvalue λ of M is simple if dimC ker(M − λIn) = 1. The eigenvalue λ
is dominant if ∀α ∈ σ(M) \ {λ} , |λ| > |α|.

3.3.2 Perron-Frobenius theorem

The Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg
Frobenius (1912), asserts that a real square matrix with positive entries has
a unique largest real eigenvalue and that the corresponding eigenvector can
be chosen to have strictly positive components.

Let M be the stochastic matrix of the given Markov chain and ρ = ρ(M)
be spectral radius of M . The Perron-Frobenius theorem states that:

• Suppose M is regular, then ρ > 0 , ρ is a dominant and simple
eigenvalue of M . Furthermore, there exists a unique vector v, which is
strictly positive such that vM = ρv and ||v||1 = 1

• Suppose M is ergodic, then ρ > 0 and ρ is a simple eigenvalue of M .
Furthermore, there exists a unique vector v, which is strictly positive
such that vM = ρv and ||v||1 = 1

Note that the matrix M from equation 3.19 is not regular but ergodic.
Therefore ρ is not dominant.

The vector v is called the Perron-Frobenius vector of M .

24

3.3. APPROXIMATE INFERENCE: SAMPLING ALGORITHMS USING
MARKOV CHAINS

3.3.3 Stationarity

Processes described by Markov chains can be stationary. The stationary
distribution vector P is defined as a row vector that does not vary when
applying the transition matrix M to it.

P ·M = P

The distribution vector P (also called the equilibrium distribution) is a
row eigenvector of the transition matrix associated with eigenvalue 1.

Intuitively, a stochastic matrix represents a Markov chain. The applica-
tion of the stochastic matrix to a probability distribution redistributes the
probability mass of the original distribution while preserving its total mass.
If the Markov chain is aperiodic and ergodic, it has a unique stationary
distribution. And, when applying this process repeatedly, the distribution
for the Markov chain converges to its stationary distribution.

The Perron-Frobenius theorem ensures that every ergodic stochastic
matrix has such a stationary vector, and that the largest absolute value of
an eigenvalue is always 1.

More formally, let P be the stationary distribution with P = PM . P is
an eigenvector of Mk. Since M is a stochastic matrix, 1 is an eigenvalue of
M . This means 1 is also the eigenvalue of Mk. As ||Mk|| = 1, the spectral
radius ρ(Mk) = 1. This means

1 · (1 ... 1) = (1 ... 1) ·MT

Due to the Perron-Frobenius theorem, if the transition matrix M is
ergodic, there exists a unique stationary distribution P with Pi > 0 for all i.
Furthermore, ifM is regular, for every initial stationary distribution D, DMk

converges exponentially fast to P , in the sense that ||DMk − P ||1 = O(τk)
with τ < 1 defined as τ = max {|λ| : λ ∈ σ(M), λ 6= 1}

While running a sampling algorithm to find the stationary distribution
of a Markov chain, one can test the stationarity of the computed chain using
the following algorithm. The goal is to find a distribution P ′ such that

|P ′i − Pi| ≈ 0

To sample P ′, one uses this following algorithm:

1. Set the number of samples one want to make Nsamples and initialize
n = 1

2. Choose a start state si. Set Ni = 1

25

CHAPTER 3. MATHEMATICAL FOUNDATIONS

3. Choose a state sj which can be reached from si according to the
transition probabilities stored in the line i of the transition matrix

4. Increase Nj = Nj + 1 and n = n+ 1

5. Go back to step 3 until n = Nsamples

6. Finally calculate P ′i = Ni
Nsamples

3.3.4 Detailed balance

A Markov chain is called reversible if its stationary distribution P fulfills
the detailed balanced equation:

∀a, b : P (a) Mab = P (b) Mba

If a distribution P fulfills the detail balanced equation then it is a
stationary distribution of M . However, while all ergodic Markov chains have
a stationary distribution, all of them are not reversible.

Detailed balance implies that, around any closed cycle of states, there
is no net flow of probability. For example, it implies that, for all states i, j
and k,

MijMjkMki = MikMkjMji

Furthermore, for positive transition matrices, the condition of "net flow"
implies detailed balance. Moreover, transition matrices that are symmetric
always have detailed balance.

3.3.5 MCMC algorithms

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for
sampling from a probability distribution P based on constructing a Markov
chain that has P as its stationary distribution. The state of the chain after a
number of steps is then used to sample the desired distribution. The quality
of the approximation of P improves as a function of the number of steps.

In this section we will look at three MCMC algorithms. First, the
Metropolis algorithm. Second, the more general version of the previous
algorithm, the Metropolis-Hastings algorithm. Third, a derived version of
the Metropolis-Hastings algorithm, the Gibbs sampler.

26

3.3. APPROXIMATE INFERENCE: SAMPLING ALGORITHMS USING
MARKOV CHAINS

3.3.6 Metropolis algorithm

We now introduce the Metropolis algorithm. The idea is to define a transition
matrix M such that P is the stationary distribution of M , that is, such that
P = PM . Let be X the state space of the Markov chain.

During each iteration of the Metropolis algorithm the following steps are
computed:

1. Start with an initial element x and its probability P (x).

2. Draw a new element x′ from a uniform distribution onX. Its probability
is P (x′).

3. If P (x′) > P (x), then output x′.

4. Otherwise, draw a random of α ∈ [0, 1].

5. Furthermore, compute β = P (x′)
P (x) .

6. If β < α, choose x′ as a new sample.

7. Else, choose x.

When looking at the transition probability going from x to x′, one sees
that its value is:

Mx,x′ = 1
Card(X) ·min

[
1, P (x′)
P (x)

]
if
P (x′)
P (x) ≥ 1

Let us show that P is the stationary distribution of M . A sufficient
condition for P to be the stationary distribution of the Markov chain with
transition matrix M is that P verifies the detailed balanced equation. Let us
consider two distinct states x and x′ of the Markov chain having respectively
P (x) and P (x′) as probability values. Let us assume without loss of generality
P (x′) ≥ P (x). A simple computation shows that

P (x)Mx,x′ = P (x)
Card(X) = P (x′)Mx′,x

and so P verifies the detailed balance equation:

P (x)Mx,x′ = P (x′)Mx′,x (3.20)

which also proves that P is the stationary distribution of the Markov
chain defined by M .

27

CHAPTER 3. MATHEMATICAL FOUNDATIONS

3.3.7 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a more general version of the Metropolis
algorithm. In addition to the Metropolis algorithm, an a priori probability
A is used modeling the probability of considering a specific transition.

Let A(x′|x) be the probability of considering the transition of moving
from state x to x′.

The a priori probability distribution A is used to select x′ and in the
step 5 of the algorithm when calculating β. Remember in the Metropolis
algorithm β was calculated as follows:

β = P (x′)
P (x)

In the more general case, the Metropolis-Hastings algorithm, β is computed
using the a priori distribution:

β = P (x′)
A(x′|x) ·

A(x|x′)
P (x)

Using the Metropolis-Hastings algorithm, the probability of going from x
to x′ is:

Mx,x′ = A(x′|x) ·min
[
1, P (x′)
A(x′|x) ·

A(x|x′)
P (x)

]
Again we can show that P verifies the detailed balanced equation of the

Markov chain defined by M . Let us consider two states x and x′ of the
Markov chain having P (x) and P (x′) as probability values. Let us assume
without loss of generality:

P (x′)
A(x′|x) ≥

A(x|x′)
P (x)

We have:

Mx,x′ = A(x′|x)
P (x)Mx,x′ = P (x)A(x′|x)

Mx′,x = A(x|x′) · P (x)
A(x|x′) ·

A(x′|x)
P (x′)

P (x′)Mx′,x = P (x)A(x′|x)

(3.21)

and so P verifies the detailed balanced equation:

P (x)Mx,x′ = P (x′)Mx′,x (3.22)

28

3.3. APPROXIMATE INFERENCE: SAMPLING ALGORITHMS USING
MARKOV CHAINS

a fact which also proves that P is the stationary of the Markov chain defined
by M .

The difference between these two algorithms is the a priori distribution
A. When looking at the factor β of the Metropolis-Hastings algorithm:

β = P (x′)
A(x′|x) ·

A(x|x′)
P (x)

One notices that the a priori distribution A was added to the term. If
A is symmetric : A(x′|x) = A(x|x′), then we obtain a generalization of the
previous algorithm (the basic Metropolis algorithm) replacing the initial
uniform choice of x′ by A.

3.3.8 Connection between transition matrix andMarkov chain

Looking back at the Metropolis algorithm, we will present an example to
analyze the transition matrix of the built Markov chain.

Let us look at an example with a matrix of dimension 3. First, M is
empty.

M =


1 2 3

1 · · · · · · · · ·
2 · · · · · · · · ·
3 · · · · · · · · ·


While running the algorithm, let us look at the row M2j . Let us assume

for example P (1) ≥ P (2) ≥ P (3). By the definitions above, M21 = 1/3
since P (1) ≥ P (2). Likewise, P (3) ≤ P (2), hence M23 = 1/3 · P (3)

P (2) . Finally,
M22 = 1−M21 −M23, hence M22 = 1

3 + 1
3(1− P (3)

P (2)) = 2
3 −

P (3)
P3(2) . Now, the

transition matrix looks like:

M =


1 2 3

1 · · · · · · · · ·
2 1

3
2
3 −

P (3)
P3(2)

P (3)
3P (2)

3 · · · · · · · · ·


One sees that, indeed, the Metropolis algorithm uses a stochastic matrix.

3.3.9 Gibbs sampler

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm. It
has been introduced in 1984 in [54]. We will first look at the Gibbs algorithm
itself before analyzing the similarity to the Metropolis-Hastings algorithm.

29

CHAPTER 3. MATHEMATICAL FOUNDATIONS

The basic idea is to split the complex search spaces into separate blocks to
simplify the computation. We sample each block independently, conditioned
on the most recent values of the other blocks. The Gibbs sampler simplifies
a complex high-dimensional problem by breaking it down into more simple,
low-dimensional problems.

Algorithm

The computation is done as follows:

1. Start with an initial sample (x0
1, ..., x

0
n) and t = 0

2. Choose i such that i = t mod n

3. Update all variables by xtj = xt−1
j except xti which will be computed in

the next step

4. Draw xti according to P (Xi|xt1, ..., xti−1, x
t
i+1, ..., x

t
n)

5. Set t = t+ 1

6. Go back to step 2

One can check that the detailed balance equation holds for the Gibbs
sampler.

3.4 Notations
We now introduce the notations we will use throughout this document. The
notations are also reproduced in the appendix A. When using a capital letter,
we denote the probabilistic variable: S. Small letter are used to express the
value of a variable such as s for example. However, in many applications, we
do not only have one variable and we can designate a variable as a conjunction
of variables. In this case, we use bold capital letters: S. Similarly to the
one dimensional variable, we have a realization of the variable S, which is
expressed with s. Note that S does often represent a full collection, often
ordered as a vector or a matrix.

30

Chapter 4

Stochastic sampling
machines for Bayesian
inference

This chapter aims to introduce the stochastic machines for Bayesian inference.
They will be used for the applications treated in this document. The
mathematical concepts presented in the previous chapter are the basis of the
machines. There are two types of machines, which are both using stochastic
computing. The first one is called Bayesian machine and is dedicated to
simple inference problems. The second one, called the Bayesian sampling
machine, uses sampling techniques to solve high dimensional inferences.

Since both machines are based on stochastic computing, we will first
introduce the concept of stochastic computing before presenting in detail the
machines.

4.1 Stochastic computing
Both our Bayesian machines are based on stochastic computing. Probability
values are encoded by streams of stochastic bits, drawn from a Bernoulli
distribution. This concept has first been introduced in [51]. Each stochastic
bit stream encodes a probability p, a number between 0 and 11. Discrete
temporal integration over nT steps gives an approximation of p: this is done
by counting the number n1 of 1 and dividing by nT , so we have:

n1
nT
−−−−→
nT→∞

p. (4.1)

1Note that this is called unipolar stochastic computing in the literature [9]

31

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

A stochastic bit stream is a Bernoulli process which is based on a Bernoulli
distribution with probability value p. The expectation, variance and standard
deviation of a Bernoulli process are given by:

E
(
n1
nT

)
= p (4.2)

σ

(
n1
nT

)
=
√
V
(
n1
nT

)
=
√
p(1− p)
nT

=
√
p(1− p)
√
nT

(4.3)

The standard deviation depends on the probability p. However, it highly
depends on the length of the bit stream which is in O

(
1√
nT

)
. Moreover,

O
(

1√
nT

)
means a slow convergence due to the representation of the bit

stream.

1101110111

0110010101
0100010101

1101001001
0100000001
p1.p2.p3=0.2

p3=0.5
p2=0.5

p1=0.8
p1.p2=0.4

Figure 4.1: The multiplication of 3 probabilities p1, p2 and p3 using stochastic
bit streams.

The main advantage of the bit stream representation is that it allows
to perform a probability product computation with a simple AND gate.
Note that in order to multiply two stochastic bit streams, they need to
be independent, which requires to generate them using two independent
random number generators. As illustrated in figure 4.1, let p1 and p2 be two
probability values respectively encoded by their bit stream chains B1 and
B2. The result of their multiplication p1 × p2 is the output of the AND gate,
which takes B1 and B2 as inputs.

Stochastic computing is often used in approximate computing hardware
since it allows to stop the computation at any time and adapt the precision
of the result depending of the importance of the computation. In theory,
stochastic bit streams have infinite lengths. In practice, the bit streams have
a finite length.

A stochastic bit stream represents a probability distribution for value p,
which varies with the length of the stream. This is illustrated by figure 4.2.
We plotted the probability as a function of the given value. Note that
the distributions are max-normalized. In this case we want to generate a
stochastic bit stream p = 0.8. Therefore, we provide the probability for
different bit stream lengths. In blue, a bit stream of length 5 has been

32

4.1. STOCHASTIC COMPUTING

Figure 4.2: Probability of a value depending on the length of a stochastic
bit stream for a bit stream representing the value 0.8. In blue, a 5 bits bit
stream. In orange, a 10 bits bit stream. In green, a 40 bits bit stream.

generated. More precisely, in this stream, there are one "0" and four "1"s.
One see that the distribution of is very broad and wide. The probability that
others values can be deduced based on this bit stream is high. Moreover, in
orange the distribution of a bit stream of a 10 bit length is shown. The bit
stream is made out of 2 "0"s and 8 "1"s. One can see that the distribution
is getting thinner. Finally, in green the distribution of a 40 bits bit stream
is provided. The distribution gets peaky and hence the precision of the
stochastic computing is more precise. Due to this figure, one can see how
the precision of a bit stream evolves depending on its length. As a numerical
representation bit streams are radically different from "classical" number
representations. They are much more limited by their very nature. For
instance, there is no equality operator for bit streams. Showing that this
representation can be technically competitive is one challenge for our work.

In order to generate stochastic bit streams it is crucial to have a good
enough random number generator (RNG). Otherwise, the computation using
the stochastic bit streams is not valid. There are two main classes of random
number generators (RNG), which are the pseudo RNGs (PRNG) and the
true RNGs (TRNG). They mainly differ on the manner the random bits are
generated and also on the quality of the generated numbers. Pseudo RNGs
are based on algorithms and can hence be predicted as they are deterministic.
On the other hand, true RNGs are based on physical phenomena and can

33

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

not be predicted.
Several algorithms exist to generate random numbers. The random num-

bers generated by PRNGs typically have a period after which the generated
numbers become redundant. Linear Feedback Shift Registers (LFSRs) are
one of them.

16 14 13 11 1

Figure 4.3: An example of a 16-bit Galois LFSR.

LFSR are linear feedback shift registers which means that the input bit of
the shift register is a linear function of the previous state. We use the Galois
LFSR which is using the exclusive-or (XOR) as linear function. Figure 4.3
shows an example of a 16-bit Galois LFSR 2. In practice, the XOR of certain
bits and of the overall output is used as input. The feedback polynomial
specifies which bits are used for the XOR. In the example of the figure, the
feedback polynomial is: x16 + x14 + x13 + x11 + 1. The value used to start
the LFSR is called the seed. As the LFSR is deterministic, after a certain
period, the output of the LFSR is repeated. This period depends on the
feedback polynomial. For example, for the 16-bit Galois LFSR the maximum
period one can achieve is a period of 216 − 1. The goal is to use LFSRs with
a large enough period in order to avoid the repetition of the output. For our
applications, we mainly use 32-bit Galois LFSRs.

4.2 Bayesian machine

In this section the first machine, the Bayesian machine, is introduced as
well as all its components. It is dedicated to simple inference problems. In
other words, it is usable for applications where the cardinality of the search
variable S is small enough. This machine samples in parallel the distribution
of S for all the possible values of S. As it is using stochastic computing, it
estimates a kernel of the distribution. Therefore, when Card(S) becomes too
big the size of the machine increases and becomes too large. Hence, the need
of a sampling machine, which will be introduced in section 4.3, is mandatory.

2Original figure taken from commons.wikimedia.org/w/index.php?curid=59986939.

34

commons.wikimedia.org/w/index.php?curid=59986939

4.2. BAYESIAN MACHINE

4.2.1 Bayesian fusion

In order to properly explain the Bayesian machine, let first define a model on
which the machine could infer. Let us consider a discrete searched variable
S, a discrete known variable K, and their joint distribution P (S,K). S
and K can be themselves conjunction of variables. Let us define the joint
distribution:

P (S,K) = P (S,K1, . . . ,Kn) = P (S)
n∏
i=1

P (Ki|K1, . . . ,Ki−1, S) (4.4)

where P (S) is the prior, P (Ki|K1, . . . ,Ki−1, S) are the conditional distribu-
tions. The machine is dedicated to solve the following inference problems:

P (S|K1, . . . ,Kn) = 1
Z
P (S)

n∏
i=1

P (Ki|K1, . . . ,Ki−1, S) (4.5)

where Z is a normalization constant. One can see that the representation
of the probabilistic model in such way leads to an inference, which can be
made by multiplying all the terms.

In the case of naive Bayesian fusion, each conditional distribution is seen
as a likelihood of one variable (so-called evidence) and (4.5) simplifies to:

P (S|K1, . . . ,Kn) = 1
Z
P (S)

n∏
i=1

P (Ki|S). (4.6)

The corresponding conditional discrete distribution P (Ki|S) is defined ac-
cording to the application. A typical case of Bayesian fusion is sensor data
fusion.

4.2.2 Architecture of the machine

In this section, we present the architecture of the Bayesian machine (BM).
It has originally been presented in [32].

First, for the sake of simplicity, let us focus on a specific value of the
discrete search variable S = sj . From (4.6), the machine approximates:

P (S = sj |k1, . . . , kn) = 1
Z
P (S = sj)

n∏
i=1

P (ki|S = sj). (4.7)

To be more precise, the BM estimates the kernel ker(sj) of P (S = sj |k1, . . . , kn).
The kernel of a probability distribution is the form of the distribution in

35

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

which any factors that do not depend on the probabilistic variables are
neglected. They become part of the normalization factor of the probability
distribution. For many applications, they are useless as the goal is often to
localize the maximum of the distribution. In our case the kernel is:

Ker(sj) = P (S = sj)
n∏
i=1

P (ki|S = sj) (4.8)

This computation (for line-index j) is represented on the second line of the
left part of figure 4.4.

k
i

OP(j-1,i-1)

OP(j,i-1)

OP(j+1,i-1)

OP(j,i)

OP(j-1,i)

OP(j+1,i) OP(j+1,i+1)

OP(j,i+1)

OP(j-1,i+1)

k
i+1

k
i-1

S j-1

S j

S j+1

b
j-1,i-2

b
j,i-2

b
j+1,i-2

b
j-1,i-1

b
j,i-1

b
j+1,i-1

b
j-1,i

b
j,i

b
j+1,i

b
j-1,i+1

b
j,i+1

b
j+1,i+1

Standard-BM

Memory

b
j,i-1 b

j,i

k
i SB Gen.

OP(j,i)

Figure 4.4: Architecture of the BM including a zoom on a single OP block
of the machine. Bit streams are represented by red arrows. Blue arrows
illustrate fixed-point numerical values.

Indeed, as shown in this figure, the architecture of the machine is shaped
as a matrix of elementary blocks. The OP block will be described in detail
in the upcoming section. Every block represents an individual probability
product operator. Each evidence ki is associated to a column. Hence, the
different columns correspond to different evidences. In the case of a sensor
fusion problem, each column gets the data of one sensor. The different lines
of the matrix correspond to the different values of the search variable S. In
summary, each column-wise process updates the current state of knowledge
with a new evidence.

The machine generates samples at each calculation step, for each value
of the searched variable. For each line, i.e for each value of the searched
variable sj , the result of the n cascaded AND gates after nT calculation
steps is accumulated in counters which are located at the end of each line,
as shown in figure 4.5. This discrete temporal integration allows to recover
the target kernel. An approximation of the kernel P (S = sj |k1, . . . , kn) may
be obtained by normalizing the counter values counterj∑

l
counterl

.

36

4.2. BAYESIAN MACHINE

k
n,i+1

OP(j-1,i-1)

OP(j,i-1)

OP(j+1,i-1)

OP(j,i)

OP(j-1,i)

OP(j+1,i) OP(j+1,i+1)

OP(j,i+1)

OP(j-1,i+1)

k
n,i+2

k
n,i

s j-1

s j

s j+1 1111111111

0011010000

1111111111

1111111111

1011001111

1011111111

0000100100

0001011101

1111110111

0000001000

0011001011

1111111101

Memoryk
n,i+1

SB Gen.
AND

OP(j,i)

Counter

Counter

Counter

Counterbank
 frame

Figure 4.5: Detailed overview of the Bayesian machine architecture including
the counters.

4.2.3 OP block

This section aims to describe in detail the components and the function of
the OP block in the Bayesian machine.

The machine is organized as a matrix, as shown in figure 4.4. Typically,
a block at position (j, i) in the matrix takes as inputs:

1. the evidence value ki

2. the stochastic bit stream bj,i−1 (in red in the figure) representing the
product (4.7) up to index i − 1, which is the output of the previous
column for the same line.

The right part of figure 4.4 details the basic operator (OP). It is composed
of the AND gate to perform the stochastic product between bj,i−1 and the
stochastic bit stream representing the likelihood value P (Ki|S) corresponding
to the evidence ki. The likelihood is stored in the memory block of the OP
block. This memory can be programmed depending on the application that
is treated by the machine. Then, a Stochastic Bit stream Generator (SBG)
generates samples according to a Bernoulli distribution corresponding to
the likelihood value. The SBG is composed of a random number generator
(RNG), which is in our case a 32-bit Galois LFSR. The output of the
RNG is compared to the likelihood value to generate the correct Bernoulli
distribution.

Figure 4.6 provides and example of the SBG which is using a 16-bit Galois
LFSR. We do not take the output of the LFSR, which is normally only one
bit. But instead we use the 8 first bits which are currently in the registers (in

37

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

16 14 13 11 1

Likelihood value

8 first bits of the LFSR 8 bit
comparator

Rand ≤ Likelih. Output of SBG

Figure 4.6: Example of an SBG using a 16-bit Galois LFSR.

red in the figure). These 8 bits are compared to the likelihood value, which is
stored in a register. We choose to encode our likelihood values in 8 bits. To
generate the output of the SBG, we use a comparator, which compares the 8
bits of both numbers and generates the output. The obtained stochastic bit
is then used as input of the AND gate to perform the multiplication. The
output of the AND gate is the new bit stream bj,i, shown in figure 4.8.

However, since in all stochastic computing architectures, the computation
using AND gates is valid if the AND gate is processed with two independent
bit streams. Thus, one can not use the same Random Number Generator
(RNG) for these two bit streams. Note that if this hypothesis is not fulfilled,
the computation can heavily fail.

Using LFSRs to generate stochastic bit streams can lead to faulty bit
streams. This concern is discussed in appendix B.

4.2.4 Tackling temporal dilution

The data representation used in our Bayesian machines is one of the strengths
since it helps to substantially accelerate the computation. However in certain
situations, this strength can quickly become a downside of the system. This
problem is called the temporal dilution.

In this section, we first explain this phenomenon before describing the
mechanism that we implemented to tackle the temporal dilution. The
Bayesian machines often suffer from the data representation they use, namely
the stochastic bit streams. All probabilities encoded in the machine are
represented by a stochastic bit stream for the computation. The stochastic
bit streams pass through a lot of AND gates in our machines. This inevitably
leads to a decrease of the number of "1" in the output since the probability
gets smaller after the multiplication. We call this effect the temporal dilution.
In particular, since we mainly deal with low probability values, the bit stream
representation requires long streams to represent such small values.

Figure 4.1 illustrates this problem. The product between p1 = 0.8,

38

4.2. BAYESIAN MACHINE

p2 = 0.5 and p3 = 0.5 is performed with two cascaded AND gates. The
resulting bit stream, encoding p1 × p2 × p3 = 0.2, is composed of only two
"1" in a chain of 10 bits.

Moreover, when the number of AND gates in one line increases, this
problem gets worse. Typically, our machines typically have 100 columns
in our standard case (see chapter 6), which means that in each line of the
machine, there are 100 AND gates to multiply the probabilities. Thus, the
temporal dilution is present and rapidly leads to an increase of computation
time of several thousands of steps.

4.2.5 Max-Normalization

Knowing that the temporal dilution has an heavy impact on the performance
of the machine, we propose a mechanism to deal with that issue. The goal is
to increase the number of "1"s in the stochastic bit streams. It is crucial to
not modify the final probability distribution. However, we can modify the
global normalization term 1/Z that can be found in equation (4.6).

Therefore, we propose to column-wise maximize each set of probability
values (priors and likelihoods) while keeping unchanged the ratios between
the different values. To this aim, each prior value is normalized by the
maximum of all the prior values of the same column and the same is done
for every column of the likelihoods:

Max-normalized priors : P (S = sj)
Max
s∈S
{P (S = s)} ,

Max-normalized likelihoods : P (Ki = ki|S = sj)
Max
s∈S
{P (Ki = ki|S = s)} .

(4.9)

This process is referred to as max-normalization. At the end of each line
of the BM computation matrix, one can evaluate the max-normalized kernel
of the distribution:

Ker(sj) = P (S = sj)
Max
s∈S
{P (S = s)}

n∏
i=1

P (ki|S = sj)
Max
s∈S
{P (ki|S = s)} . (4.10)

Therefore, the "true" posterior probabilities can be obtained by conven-
tional normalization of (4.10). However, most of the time, the computation
done by the machine, which is proportional to the desired distribution, is
enough since one mainly wants to find the maximum of the distribution.

39

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

K = k1

SB Gen.P(K=k1|S=s0)S0

S1

S2

S3

S4

SB Gen.P(K=k1|S=s1)

P(K=k1|S=s1)

SB Gen.P(K=k1|S=s2)

SB Gen.P(K=k1|S=s3)

SB Gen.P(K=k1|S=s4)

10010101100011

11111111111111

00001010000111

01110100011100

11101111101110

P(K=k1|S=s1)

P(K=k1|S=s1)

P(K=k1|S=s1)

P(K=k1|S=s1)

Max

Figure 4.7: Example of a max-normalization on a column of 5 lines.

To demonstrate the efficiency of the max-normalization, let us take a
simple example with a uniform distribution on priors and likelihoods. For
simplicity, let w be the dimension of the search space and let n be the number
of evidences corresponding to the number of columns of the matrix. Assume
the probability of generating a "1" for each prior and each likelihood is p = 1

m .
Through the n AND gates, the probability for each line to finally emit a "1",
and fill the corresponding counter, is pout = 1

mn+1 . This probability quickly
tends towards "0" even with small values for n and m. In this case, the
machine needs a very long time to obtain useful information incrementing
the counters. Yet, in this example, the important information is that all
counters encode the same value. Using the max-normalization technique over
both priors and likelihoods, each maximum of each probability distribution
are equal to 1. Then, all the corresponding OP blocks of the matrix output a
bit stream only composed of "1" encoding the value 1.0. At each computation
step, all counters are incremented, hence the values of the different counters
remain equal. To get the approximate value of P (S = sj |k1, . . . , kn), again,
we compute the ratio counterj∑

l
counterl

= counterj
m×counterj = 1

m which is the expected
result of the uniform law.

To illustrate the max-normalization, figure 4.7 gives a small example of a
column containing 5 lines. In the memory block, the normalized probability

40

4.2. BAYESIAN MACHINE

values are stored. Over the 5 lines, the line S1 is the one which has the
highest probability value P (K = ki|S = s1). For that reason every line is
divided by P (K = ki|S = s1):

P (K = ki|S = si)
P (K = ki|S = s1)

Therefore, as shown in the figure, the line S1 provides an output bit stream
containing only "1"s since it contains the maximum.

Moreover, note that in figure 4.5 the priors, which are sent to the column
of the machine are all equal to 1. This is due to the fact that most of the time
we do not have any prior knowledge on the search distribution and hence
let it follow the uniform distribution. Once max-normalized, the uniform
distribution remains in sending "1"s in all the stochastic bit streams in all
lines.

4.2.6 Application: boat localization

In this section, we go through an example of an application which uses the
Bayesian machine. The task is to localize a boat based on sensors which
are capable of getting an angular and a distance information of the three
lighthouses placed along the coast. This problem is a sensor fusion where one
need to fuse the data of the six noisy sensors to estimate the boat position.
The setup is shown in figure 4.8

The area where the boat is localized is discretized into a grid of 16×16 =
256 cells. The lighthouses are located at the origin and at the middle of the
X and Y-axes.

We have to introduce the probabilistic model. First the needed proba-
bilistic variables which are:

• X: the variable associated to the coordinate of the boat on the X-axis.
This value is discretized on 16 different values.

• Y : the variable associated to the coordinate of the boat on the Y-axis.
This value is discretized on 16 different values.

• B1, B2, B3: the variables associated to the sensor values of the angular
(bearing) sensor

• D1, D2, D3: the variables associated to the sensor values of the distance
sensor

41

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

X

Y

Figure 4.8: Setup for the boat localization example with a 16 by 16 grid.

The joint distribution of our model is:

P (X,Y,B1, B2, B3, D1, D2, D3) (4.11)

The decomposition can be written as follows:

P (X,Y,B1, B2, B3, D1, D2, D3) = P (X,Y)
3∏
i=0

P (Bi|X,Y) · P (Di|X,Y)

(4.12)
As we do not have any a priori knowledge on the position of the boat,

P (X,Y) is set as a uniform distribution. The other distributions P (Di|X,Y)
and P (Bi|X,Y) are assumed to follow a normal distribution. In summary,
the decomposition is based on the following distributions:

P (X,Y) = U (4.13)

P (Di|X,Y) ∼ N (
√

(X −Xo)2 + (Y − Yo)2, σ2
dist) (4.14)

P (Bi|X,Y) ∼ N (arctan X −Xo

Y − Yo
, σ2

bear) (4.15)

where Xo and Yo are the coordinates of the sensor o.

42

4.2. BAYESIAN MACHINE

For the inference, as we want to estimate the position of the boat, we
want to compute the distribution P (X,Y |B1, B2, B3, D1, D2, D3). Therefore,
using the Bayes theorem, the condition distribution can be written as:

P (X,Y |B1, B2, B3, D1, D2, D3) = 1
Z
P (X,Y)

3∏
i=0

P (Bi|X,Y) · P (Di|X,Y)

(4.16)
where Z is a normalization constant. For the inference we will focus on
simplified form which is:

P (X,Y |B1, B2, B3, D1, D2, D3) ∝ P (X,Y)
3∏
i=0

P (Bi|X,Y) · P (Di|X,Y)

(4.17)
In total there are six multiplications to perform to compute the probability

for one position (x, y) given the sensor values b1, b2, b3, d1, d2, d3. As our grid
has 16 by 16 cells, we have in total 256 positions to evaluate and compute
the formula (4.17). Thinking about the Bayesian machine, it has 6 columns
(one for each sensor) and 256 lines (one for each position of the grid).
The likelihoods are computed according to (4.13) and max-normalized as
explained in section 4.2.5.

To illustrate the task of the machine, figure 4.9 shows the max-normalized
likelihoods of the different sensors based on the evidences (or recorded sensor
values). The three bearing sensors (figures 4.9a, 4.9b and 4.9c) provide an
angular information which becomes uncertain as the distance to the boat
increases. Moreover, the three distance sensors (figures 4.9d, 4.9e and 4.9f)
provide a distance information. The goal is to fuse all these sensor information
and estimate the position of the boat.

As the Bayesian machine uses stochastic computing, it is possible to
adapt the precision of the computed distribution by modifying the length of
the stochastic bit streams. Therefore, one can plot the computed distribution
for the different bit stream lengths. Figure 4.10 shows the estimated kernel
by the Bayesian machine for different lengths of the stochastic bit stream.
After a few steps, the maximum of the estimated kernel is located at the boat
position as shown by the figures 4.10a and 4.10b. The more the machine
runs, the more precise the estimated kernel is. Figures 4.10c, 4.10d and 4.10e
show how the kernel fine-tunes and the final result takes shape. After 50
steps, the result slightly changes but the shape of the kernel is not modified
as shown by the figures 4.10f to 4.10i. Note that after 1000 steps, the final
result is obtained and the kernel does not change anymore. This example
has been presented in [32] and in [18].

43

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

(a) Bearing sensor 1 (b) Bearing sensor 2 (c) Bearing sensor 3

(d) Distance sensor 1 (e) Distance sensor 2 (f) Distance sensor 3

Figure 4.9: Distribution of the different sensors which are fused by the
Bayesian machine.

4.3 Approximate inference - Bayesian sampling ma-
chine

Until now the Bayesian machine has been presented which can be used for
simple inference problems where the searched variable has a small cardinality.
However, the number of lines in the Bayesian machine (which each represents
a value of the searched variable) can not increase indefinitely. Hence, there
is a need of another type of machine dedicated to high dimensional problems.
In this section, we introduce the Bayesian sampling machine, which is based
on a sampling method. This machine uses the Gibbs sampler, which has been
introduced in chapter 3. The goal is to estimate a probability distribution
when the dimension of the searched variable becomes too large for our
Bayesian machine introduced in section 4.2.2. Therefore, sampling the
distribution becomes the only possible way.

Like the Gibbs sampler, the machine focuses on one dimension of the
searched variable at a time. Moreover, in presence of free variables F , the
searched variable can be seen as a conjunction of the search S and the free

44

4.3. APPROXIMATE INFERENCE - BAYESIAN SAMPLING MACHINE

(a) Result after 1 bit (b) Result after 5 bits (c) Result after 10 bits

(d) Result after 20 bits (e) Result after 50 bits (f) Result after 100 bits

(g) Result after 200 bits (h) Result after 500 bits (i) Result after 1000 bits

Figure 4.10: Computed distribution for different lengths of bit streams.

F variables. Let be P (S|K) the distribution one wants to sample. The
Gibbs algorithm will draw from the following distribution for each value of
u ∈ {1, ...,Card(S)}:

P (Su|s 6=u,K) (4.18)

where s 6=u is the set of variables including all variables s except the value
su. For example, the first four steps of the Gibbs algorithm will be drawing

45

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

respectively from these distributions:

P (S1|s 6=1,K) = P (S1|s2, s3, s4,K) (4.19)
P (S2|s 6=2,K) = P (S2|s1, s3, s4,K) (4.20)
P (S3|s 6=3,K) = P (S3|s1, s2, s4,K) (4.21)
P (S4|s 6=4,K) = P (S4|s1, s2, s3,K) (4.22)

(4.23)

Once each of the searched variables has been drawn once (for each u ∈
{1, ...,Card(S)}), one so called sweep of the Gibbs algorithm is finished. In
one sweep of the Gibbs algorithm, the machine will draw once from each
distribution for every value of u ∈ {1, ...,Card(S)}.

Sampling space

Sampling unit

Likelihoods

Sampled value

Sampled
value

Index

Current sampling space

Gibbs
control
block

Likelihood
computation

block

OP(1,1)

OP(2,1)

OP(w,1)

OP(2,2)

OP(1,2)

OP(w,2) OP(w,n)

OP(2,n)

OP(1,n)s1

s2

sw

Core matrix

Draw-
Gate

Memory SB Gen.

OP(2,2)

Figure 4.11: Architecture of the Bayesian sampling machine.

The Bayesian sampling machine implements the approach of the Gibbs
sampling which is by drawing step by step of the distributions. Figure 4.11
shows the overall architecture of the machine. Its main component is the sam-
pling unit (in blue) which is concerned with each distribution P (Su|s 6=u,K).
The sampling unit is organized as the core of the Bayesian machine (BM)
introduced in section 4.2. However, contrary to the BM, here the counters at

46

4.3. APPROXIMATE INFERENCE - BAYESIAN SAMPLING MACHINE

the end of each line are replaced by the draw-gate. As we have to draw from
the distribution and do not need to compute the entire distribution for all
the values of S, one sample of the distribution is sufficient. In other words,
the draw-gate waits for one bit at "1" in a stochastic bit stream among all the
lines of the core matrix of the sampling unit. Once at least one line has sent
a "1" in its stochastic bit stream to the draw-gate, the draw-gate is activated
and provides the desired sample su. The detailed way of operating will be
explained in the upcoming section, section 4.3.1. This sample su is stored in
a dedicated memory which stores all the current sampled values (sampling
space in orange). Then, the Gibbs control block changes the index u and the
likelihoods for the new distribution are computed to run the sampling unit to
draw from the new distribution. Note that at each step, the machine takes
all the current values in the sampling space into account. Hence, the need of
an on-chip likelihood computation unit is required, which is not needed in
case of the Bayesian machine.

4.3.1 Draw-gate

The draw-gate is one of the principal modules in the Bayesian sampling
machine. The core of the sampling machine is stopping when only one line is
set to "1". The corresponding value is chosen as the new sample su. However,
the output of the draw-gate when several lines are activated simultaneously,
needs to be defined.

Let Xt be the output of the draw-gate at time step t. Consider now the
draw-gate to have w input lines, indexed by k in Zw = {1, 2, . . . , w}. The
lines correspond to the w possible values of the variable Su. All lines of the
core matrix produce a w-bits stream (Bt)t≥0 at each step of the machine.

Each w-tuple of bits Bt = B1
tB

2
t · · ·Bw

t is in Bw = {0, 1}w \{(0, 0, . . . , 0)}.
Each time some Bt is sent to the draw-gate, the draw-gate emits one single
signal Xt in Zw, defined as

Xt = min{k ≥ Xt−1 + 1 | Bk
t = 1}

Here, an important convention is that one examines the values Bk
t starting

immediately after the position Xt−1, in their order of succession for the
natural succession order on the discrete circle Zw (thus, each k 6= w in Zw is
followed by k + 1 and w is followed by 1), and that one stops at the position
of the first 1 that one encounters (there is always at least one). This line
index is set as the output Xt of the draw-gate.

The process (Xt)t≥0 is such that Xt = Fn(Xt−1, Bt), for some function
Fw : Zw × Bw → Zw which can be explicitly written down.

47

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

Let us consider a little example with three lines (w = 3). In this case,
the function F3, which provides the output of the draw-gate is defined as
shown in table 4.1.

Bt Xt−1 = 1 Xt−1 = 2 Xt−1 = 3
001 3 3 3
010 2 2 2
011 2 3 2
100 1 1 1
101 3 3 1
110 2 1 1
111 2 3 1

Table 4.1: Output of the draw gate in case of w = 3. Each line of the table
is associated to a 3-bit input to the draw-gate at time t. The output is given
depending on the previous output of the draw-gate Xt−1 which is associated
to the columns of the table.

The formal mathematical proof of that this algorithm indeed yields the
desired distribution is provided in appendix C. It is due to Didier Piau, as a
member of the MicroBayes project.

4.3.2 Application: boat localization with a large grid

In this section, an example is explained in order to illustrate the Bayesian
sampling machine. The example is based on the boat localization problem
which has been exposed in section 4.2.6. However, in this case, the grid
becomes much larger and hence the need for the Bayesian sampling machines
becomes real. In this example a grid of 1024 × 1024 is used and the six
sensors are as in the previous setup of this problem in section 4.2.6 (the
sensors 2 and 3 are located at the middle of the X-axis and Y-axis).

Figure 4.12 shows the chosen setup. Note that the grid is much bigger
than on the picture. Moreover, the boat is located in the middle of the grid,
at cell (512,512).

Again, the goal is to compute the follow distribution:

P (X,Y |B1, B2, B3, D1, D2, D3) (4.24)

However, since the cardinality of X ∧ Y is too large, we can not compute
the distribution using exact inference methods. Therefore, for one sweep of

48

4.3. APPROXIMATE INFERENCE - BAYESIAN SAMPLING MACHINE

X

Y

Figure 4.12: Setup for the boat localization example with a 1024 by 1024
grid.

the Gibbs algorithm, using the current value for y, we draw from:

P (X|y, b1, b2, b3, d1, d2, d3). (4.25)

We use the sampling unit of the Bayesian sampling machine to perform
this draw. Each column in the matrix of OP blocks in the sampling unit
represents one sensor (b1, b2, b3, d1, d2, d3). Each line corresponds, in this
particular case, to each value of the searched variable X. Then, taking into
account the drawn value for x in the previous step, we draw from:

P (Y |x, b1, b2, b3, d1, d2, d3) (4.26)

The draw unit launches the computation of the kernel which results in 6
multiplications of the max-normalized likelihoods to fuse the data of the six

49

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

sensors.

Ker(X|y, b1, b2, b3, d1, d2, d3) ∝ P (X, y)
3∏
i=0

P (Bi|X, y) · P (Di|X, y) (4.27)

The different distributions needed to compute the likelihoods are defined as
follows:

P (X,Y) = U (4.28)

P (Di|X,Y) ∼ N (
√

(X −Xo)2 + (Y − Yo)2, σ2
dist) (4.29)

P (Bi|X,Y) ∼ N (arctan X −Xo

Y − Yo
, σ2

bear) (4.30)

where Xo and Yo are the coordinates of the sensor o and x or y is fixed.
This results in sampling the value of Y given a currently fixed value

of x. Figure 4.13 shows the likelihoods for the different sensors in the
situation where the current value of y is 512 and we are drawing P (X|y =
512, b1, b2, b3, d1, d2, d3). In blue are the likelihood distributions P (Di|X,Y =
512) for the distance sensors whereas in orange are the likelihood distributions
P (Bi|X,Y = 512) of the bearing sensors. One can see that they are all
Gaussian distributions except in figure 4.13c for the bearing sensor located in
(512,0) which is uniform since we are currently sampling the column which
is in front of the sensor.

When running the system for several sweeps, one can plot the sampled
positions which were drawn according to the Gibbs algorithm. Each step
in the plot represents one sweep of the algorithm. Note that the initial
position is always chosen randomly. The plot of the exploration is provided
in figure 4.14. The system runs for 20 sweeps and quickly converges to the
desired position in (512,512).

4.4 Conclusion & discussion

In this chapter, both our Bayesian machines have been described. They
are both based on stochastic computing. The first one, called the Bayesian
machine, is dedicated to simple inference problems, which are characterized
by the searched variables having a small enough cardinality. The second one,
called the Bayesian sampling machine, is more generic and is used to solve
higher dimensional inferences. Examples have been presented to explain the
different machines.

50

4.4. CONCLUSION & DISCUSSION

(a) Likelihood for sensor located in (0,0) (b) Likelihoods for sensor located in
(0,512)

(c) Likelihoods for sensor located in
(512,0)

Figure 4.13: Plot of the likelihood distributions for the different sensors. In
blue the distance sensors. In orange the bearing sensors.

Although stochastic computing has historically failed compared to other
computing methods, it has several strengths beside it drawbacks. Since our
machines are using stochastic computing, we aim to optimize our architectures
to use the strengths of randomness while minimizing its weaknesses. More
precisely, stochastic computing allows to perform a multiplication of two
probabilities using a simple AND gate. Since for our inferences, we need
to compute a lot of multiplications, we use stochastic computing. However,
when representing a probability using a stochastic bit streams and using
an AND gate to multiply two probabilities, the computing could require a
lot of time, especially in case of low probabilities. Since in each column,
two probabilities are multiplied and the result is a multiplication of all the
likelihoods, the result decreases exponentially with the number of columns. In

51

CHAPTER 4. STOCHASTIC SAMPLING MACHINES FOR BAYESIAN INFERENCE

Figure 4.14: Plot of the different explored positions to localize the boat
placed in (512,512).

stochastic computing, this phenomenon is called temporal dilution. Therefore,
we optimized the architectures to avoid low probabilities by max-normalizing
the likelihoods. This leads to a significant speed up of the computing.

To generate the stochastic bit streams for our machine, we chose to use
Linear Feedback Shift Registers (LFSRs). LFSRs produce random numbers
but they are part of a category called pseudo-random generators since their
output is deterministic and can be predicted. However, for our applications,
LFSRs generate good enough random numbers. Nonetheless, since LFSRs
take a considerable space in our circuit, we would like to replace them by
some other smaller random number generators in the future.

Until now, the Bayesian sampling machine has been used for applications
where the searched variables have all the same cardinality. For example,
in the boat localization example, both searched variables (X and Y) were
discretized on the same number of values. Having different cardinalities for
these variables would require simple changes in the control of the sampling
unit of the Bayesian sampling machine.

52

Chapter 5

Audio foundations

The main goal of this thesis is to promote and develop alternative computing
architectures. In the scope of this work, we presented two machines in chap-
ter 4. Furthermore, in this project we aim to address two signal processing
applications with our machines, namely the sound source localization and
the sound source separation problem. Since this thesis mainly focuses on
the tuning of these architectures and on their adaptation to the applications,
this chapter’s intention is to provide the necessary background knowledge of
signal processing to understand the algorithms presented in this document.
Moreover, a set of existing representative techniques from the state-of-the-art
for both applications are described.

Note that the notations used in this section differ from the typical
notations used by the community. The reason is that we aim to use a
uniform notation across the whole document.

5.1 Sound Source Localization (SSL)

The first application that will be treated with our Bayesian machines is Sound
Source Localization (SSL). This section is dedicated to SSL. There exist
various different approaches to deal with this problem. The problem is defined
before providing an overview of the methods proposed by the community.
Since it is an old problem, there exists a lot of literature introducing this
topic: [22], [43] and [113].

53

CHAPTER 5. AUDIO FOUNDATIONS

5.1.1 Task definition

The goal of sound source localization is to estimate the position of a sound
source in a room (or another specific environment) given audio recordings
from that source. A sound source can typically be a speaker or a person
standing in the room. The signals are recorded using various microphones
which can be put in pairs. These microphones can be placed across the
room along the walls or in the corners depending on the setup. Setup with
microphone arrays in the middle of the room (for example on a table) can also
be found. Moreover, for some methods, it is crucial to place the microphones
in pairs.

Although SSL is often seen as a signal processing problem, researchers
from other fields also get involved. For example, neuroscientists try to under-
stand how humans localize sound sources [111]. Historically, John William
Strutt, 3rd Baron Rayleigh, was the first to study human sound localization.
His duplex theory of human sound localization has been published in 1877
in [104]. It attempts to model the way humans localize sounds using their
ears. It states that humans use the Inter-channel Time Difference (ITD)
or the Inter-channel Level Difference (ILD) depending on the frequency of
the sound. Below 1.5 kHz, the ITD would be used to localize a source. For
sounds above 1.5 kHz, humans would use ILD to estimate a sound source
position.

SSL can be performed in anechoic environment which means that there
are no reverberations. In more realistic setups, reverberations are taken into
consideration. Moreover, the number of present sound sources is also an
important parameter. Single source localization aims to localize one sound
source. Whereas multi-source localization deals with several sound sources
that can be simultaneously active.

5.1.2 Basics of audio processing

In this section, we define the basic concepts of audio signal processing used
in this work. Moreover, some commonly used features for sound source
localization are introduced.

Fourier transform

This work is mainly done in the frequency domain. Therefore, the Fourier
transform is used to transform a temporal signal into the frequency domain.
More precisely, we use the Short-Time Fourier Transform (STFT), i.e. a
sequence of Discrete Fourier Transforms (DFT) calculated using a sliding

54

5.1. SOUND SOURCE LOCALIZATION (SSL)

analysis window [95]. Given the microphone signals, which are sampled
at sampling rate fs = 1/Ts with Ts the sampling interval we compute the
STFT. In order to not deviate too much from existing signal processing
conventions, i.e. capital letters for time-frequency domain whereas lower
case designates signals in the time domain, we introduced the following
notation for the Fourier transform in this document. The STFT of a signal
m1 from microphone 1 is noted with a calligraphic capital letterM1. For a
specific frame l, the Fourier transform which is the DFT computed for that
given frame is notedM1

l . Using this notation, the DFT for the signal m1 is
computed as follows:

M1
k,l = DFT(m1

(lTs)) =
N−1∑
i=0

m1
((i+lH)Ts)e

−j2π ik
N (5.1)

where k, l are the frequency and time-frame indexes, N is the size of the
analysis window, and H is the size of the window shift.

Signal processing

Since most of techniques for SSL use features based on two microphones, we
will consider the microphone pair composed of microphones m1 and m2. The
signal m1

n captured by microphone 1 at sample n is represented by a linear
convolution ∗ of the Room Impulse Response (RIR) from the source position
to the microphone 1 position u1

n with the signal emitted by the source sn:

m1
n = u1

n ∗ sn =
Z∑
i=0

u1
i · s(n−i) (5.2)

where Z is the size of the analysis window.
To transpose the signal into the time-frequency domain for further analy-

sis, the signal is approximated by:

M1
k,l ' U1

k · Sk,l. (5.3)

When recording the signal with two microphones, we get two signals m1

and m2 defined as in Eq. 5.2:

m1
n = u1

n ∗ sn =
Z1∑
i=0

u1
i · s(n−i)

m2
n = u2

n ∗ sn =
Z2∑
i=0

u2
i · s(n−i)

(5.4)

55

CHAPTER 5. AUDIO FOUNDATIONS

Once transformed into the frequency domain we obtain:

M1
k,l ' U1

k · Sk,l
M2

k,l ' U2
k · Sk,l

(5.5)

To calculate U1
k and U2

k we use the Fast Fourier Transform (FFT) which is
an implementation of the Discrete Fourier Transform (DFT):

Uk = DFT (un)

=
N−1∑
i=0

ui · e−j2πik/N

= |Uk| · ejΦk

(5.6)

where Φk is the phase of the RIR.
For source localization, we use the Relative Transfer Function (RTF)

needed to obtain the inter-microphone information from which several features
can be extracted. The RTF is defined as:

Rk = U
2
k

U1
k

(5.7)

However, in practice, the RIR U1 and U2 are unknown since they are specific
to the setup. Therefore, we approximate the RTF by using the microphone
signals such as:

M2
k,l

M1
k,l

' U
2
k · Sk,l
U1
k · Sk,l

= U
2
k

U1
k

= Rk (5.8)

Features for sound source localization

As mentioned previously, sound source localization needs at least two mi-
crophones because some inter-microphone information is used. In practice,
several pairs of microphones are placed at different positions in the room. In
the literature, arrays of microphones are often used.

There are different features that can be deduced from the microphone
pairs. These features can all be used in certain ways for source localization.
Namely, the features are:

• Inter-channel Level Difference (ILD)

• Inter-channel Phase Difference (IPD)

• Inter-channel Time Difference (ITD)

56

5.1. SOUND SOURCE LOCALIZATION (SSL)

For each of these features, at least two microphones need to be used.
However, the precision of the localization increases with the number of
microphone pairs when combining the features obtained from the different
pairs of microphones. The distance between the microphones of a given pair
is d. The features are based on the comparison of the two signals recorded
by the microphones. Note that in the literature the word inter-channel is
sometimes replaced by inter-microphone or interaural.

Inter-channel Level Difference (ILD)

The Inter-channel Level Difference (ILD) is the modulus of Rk defined in
Eq. 5.7.

ILDk = |Rk| =
|U2
k |
|U1
k |

(5.9)

More precisely, in dB the ILD can be written as:

ILDk(dB) = 20 log10 |U2
k | − 20 log10 |U1

k | (5.10)

Inter-channel Phase Difference (IPD)

The Inter-channel Phase Difference (IPD) defined as the phase of the RTF:

IPDk = arg(Rk)
= arg(U2

k)− arg(U1
k)

= ∆Φk

= Φ2
k − Φ1

k

(5.11)

The IPD provides an angular information of the sources related to the
microphone pair position. Note that this feature has been used in our work.

Inter-channel Time Difference (ITD)

The ITD measures the delay ∆tk between the arrival of the two sound waves
to the different microphones. After sampling, since we deal with digital
signals, the ITD becomes ∆nk.

ITDk = ∆nk = ∆Φk + 2πq
2π k

N

(5.12)

with q ∈ N. Since the IPD can only be measured with a 2π accuracy, the
ITD is impacted by this ambiguity, hence the 2πq factor.

57

CHAPTER 5. AUDIO FOUNDATIONS

Free field model

To solve the source localization problem, it is known that one can use a
simplified acoustic model, namely the free field model. This model assumes
that the reflections of the sound waves on every wall of the room have
negligible effects, that all microphones are "floating" in the room and the
sound waves are delayed and have the same attenuation since the microphones
are located closely (d is small compared to the source to microphone distance).

Hence, the ILD feature is not usable anymore since

u1
n1 ' u

2
n2 ⇔ ILD = 1.

This implies

Rk = U
2
k

U1
k

' e−j2π
k
N

(n2−n1) (5.13)

Notice that ∆n = n2 − n1 does not depend on the frequency k contrary to
∆Φk = 2π k

N (n2 − n1).

5.1.3 State of the art of source localization

As previously mentioned, Sound Source Localization (SSL) is a very old
research topic since the first work has been published in 1877 in [104] by
Rayleigh. Since then, many other researchers worked on it and published
interesting results.

An important historical reference working on sound source localization
is [71]. The authors propose a Time Difference Of Arrival (TDOA) estimation
based on Generalized Cross Correlation(GCC). The TDOA is the time
difference between the arrival time of the two microphone signals. It will
depend on the frequencies with the highest energy. In this paper, a maximum
likelihood estimator is presented to estimate the source location based on
the time delay between the noisy signals recorded by the microphones.

Many probabilistic methods have been proposed inspired by the human
binaural hearing [103], [123] and [37]. They use microphone pairs in order to
use common features such as the IPD and the ILD, introduced in section 5.1.2.

In [80], the Model-Based Expectation Maximization Source Separation
and Localization (MESSL) method is presented. It aims to localize and
separate multiple sound sources from an under-determined reverberant two-
channel recording. An EM algorithm [38] is used to compute the maximum-
likelihood parameters which leads to localizing the multiple sources. As a
byproduct of this method, masks are created which can directly be applied

58

5.1. SOUND SOURCE LOCALIZATION (SSL)

on the spectrogram to separate the source in a second step. Another example
of a model-based localization using the EM algorithm is given in [89].

Introducing a new aspect in classical sound source localization, the
authors of [40] intent to also analyze their proposed algorithms in terms of
complexity, latency and memory needs. Note that this is totally in the spirit
of our project. They propose two new Distributed Expectation-Maximization
(DEM) algorithm which are the Batch-DEM (BDEM) and the Recursive-
DEM (RDEM). In this case distributed means that the localization task
is distributed on the different microphone pairs. They are both used in a
distributed manner, hence their name. The BDEM processes the data after
it has entirely been acquired. Whereas the RDEM constantly updates its
result based on the current data. In terms of performance and also regarding
the other criteria mentioned above, the RDEM achieved better results since
it processes the data along the way.

In [76], the authors propose a multi-source localization method dedicated
to noisy and reverberant environments. It is initially based on [40] but adds
some interesting points. It uses Complex-Valued Gaussian Mixture Model
(CGMM) where all components correspond to the possible potential source
positions. To build robust binaural features they use a Direct-Path Relative
Transfer Function (DP-RTF) used in [75] which is the ratio of the direct
path of the acoustic transfer function between both binaural microphones.
Here, it is extended to multi-source problems. Interestingly, instead of an
Expectation Maximization (EM) algorithm, they opted for a more efficient
method, the convex-concave optimization procedure. At the end, they use
a simple peak selection procedure to select the multiple estimated source
locations in the final distribution.

Another multi-source localization approach is presented in [58]. They
work in Wireless Acoustic Sensor Networks (WASNs) where each node pro-
vides an Direction Of Arrival (DOA) estimation. The DOA is the direction
from which the sound waves arrive to the microphones. The problem ad-
dressed by the author happens when two nearby sources are estimated as two
separated sources and needs to be merged. Moreover, they work on DOA
estimation error modeling. The method has a very low complexity which
allows it to be real-time. However, the complexity measurements are done
on estimating the CPU time, still a very high-level and inaccurate analysis.

All the work presented in this section is using the time-frequency signal
representations. Although it is popular in the signal processing community
to use the Fourier transform, it has some drawbacks. The approximation of
equation 5.5 becomes better as the analysis window of the Fourier transform
N increases. However, having a large analysis window generates a lot of

59

CHAPTER 5. AUDIO FOUNDATIONS

processed data. The window size used to compute the Fourier transform can
impact the overall performance of the system. When designing dedicated
hardware for signal processing application such as in this project, the resources
are very limited. Therefore, operating on small analysis windows allows to
reduce the activity of the system and hence reduce the power consumption.
One of such models is presented in [70].

5.2 Source separation

In this project, we aim to treat two different applications with our Bayesian
machines. The second task, namely the source separation, is presented in
this section as well as an overview of the current developed techniques. A lot
of literature is providing a good overview on this research domain including
several books [31], [126], [119] and [79].

5.2.1 Task definition

The goal of source separation is to recover the signals originally emitted
by some sound sources and mixed together based on the observation of the
resulting mixture signals. Generally, the sources are placed in a room and
the mixtures are recorded by microphones also present in the room. The
typical example of source separation is the cocktail party problem which was
first analyzed by Colin Cherry at the beginning of the 20th century. Some
people are talking at the same time in a room and another person attempts
to focus on one speech signal emitted by a specific speaker. Although the
human brain can easily handle this situation, the problem remains difficult
for digital signal processing.

Mixing
process

s1

s2 m2

m1

Figure 5.1: The mixing process of two sources recorded by two microphones.

Figure 5.1 illustrates the mixing process which defines the signals recorded
by the microphones. Assume there are two sources, namely s1 and s2,
speaking at the same time. Their signals are mixed according to the mixing

60

5.2. SOURCE SEPARATION

process and the only information we obtain are the signals recorded by our
microphones m1 and m2. The task consists of estimating the original source
signals based on the recorded signals. Moreover, the mixing process which is
typically specified by the mixing matrix A is also unknown.

A sub-area of source separation focuses on blind source separation (BSS).
BSS is the separation of sources with very little information or without any
information. Information could be the number of sources, the position of the
sources, the mixing process. Let J be the number of sources to separate and
I the number of microphones.

The difficulty of the problem may vary depending on several parameters.
The dimensions are an important factor. There are 3 types of mixtures:

• Over-determined mixture: I > J . There are more microphones than
sources.

• Determined mixture: I = J . There are as many microphones as
sources.

• Under-determined mixture: I < J . There are less microphones than
sources.

The under-determined case is the most difficult.

5.2.2 State of the art of source separation

Source separation is a vast research area. Several books and papers have
been published over the years. In 2009, already 22,000 papers were recorded
by Google Scholar [31]. Now, there are more than 1,480,000 results when
searching for Blind source separation techniques. Several approaches exist
which are using multiple different mathematical tools and provide solutions
depending on different type of assumptions. However, this domain is still very
much in progress. Due to the high number of techniques and publications,
this present section is nothing but a short introduction to source separation.

There exist different mixture models which define the mixture process.
There are two main mixing models. The first one is the instantaneous model:

mi
t =

J∑
j=1

a(i,j) · sjt + bt (5.14)

where ai,j is an element of A which is the mixing matrix. bt is the microphone

61

CHAPTER 5. AUDIO FOUNDATIONS

noise at time t. The second one is the convolutive model:

mi
t =

J∑
j=1

∑
τ

a(i,j)
τ · sjt−τ (5.15)

where a(i,j) is a Finite Impulse Response (FIR) filter. In other words,
the model is performing a linear time-invariant filtering. The convolutive
model is more suitable for indoor audio tasks with reverberations than the
instantaneous model.

Although the mixing process of the sources is performed in the time
domain, most of the separation techniques work in the time-frequency domain.
They take advantage of the parsimonious representation of sources in the
time-frequency domain which facilitates the separation. In the TF domain,
few source coefficients have a lot of energy and therefore the sources overlap
less than in the time domain.

The audio source separation methods can be categorized into three main
families:

• Independent Component Analysis (ICA)

• Binary Masking (BM) and Computational Auditory Scene Analysis
(CASA)

• Probabilistic Model (PM) and Bayesian inference

In the following, an overview of these three groups of techniques is provided.
Note that these groups are not exclusive. There are many approaches which
could be affiliated to more than one family.

5.2.3 Independent Component Analysis

Independent Component Analysis (ICA) is one of the first techniques which
has been developed for source separation. The method is to apply a matrix
on the mixture which separates the signals and provides the independent
source signals [22]. It assumes the (pair-wise) independence of the source
signals [64]. Using these filters allows to select one source, to enhance it,
and attenuate the other, based on their positions. Moreover, one has to
consider that sources generate echoes as well which need to be removed
from the mixture [126, Chapter 14] and [119]. This technique is also called
beamforming. Therefore, one has to obtain the Direction Of Arrival (DOA)
before applying beamforming techniques. The estimation of the DOA is more
a localization task which has been presented in the first part of this chapter.

62

5.2. SOURCE SEPARATION

Some localization algorithms are very powerful to detect the DOA of multiple
sources such as [92]. However, they perform well in an echo-free environment
but their efficiency decreases operating in real-world environments.

There are different types of beamformers. Some simple fixed approaches
are the delay-and-sum beamformer, the null beamformer [22]. They need a
strong knowledge of the source DOA otherwise the source which should be
attenuated can be amplified by error. Other approaches have been proposed
which are more flexible and adapt to the recorded data [119]. However, all
these approaches still require a precise information of the target DOA which
in real-world environments can be inaccurate [119].

Therefore, some other approaches exist which are based on the entire
mixing matrix A. Hence, if one is able to estimate the unmixing matrix
W = A−1, one can easily apply W to the recorded signals. However, in
this case, the mixing matrix needs to be invertible (which is not the case in
under-determined mixtures). Also, to apply these techniques, one needs to
assume that all sources are independent. In Frequency-Domain Independent
Component Analysis (FDICA) one considers one mixing matrix A for each
frequency. Some work has been published which is based on the assumption
that, for a given frequency bin, signals in the sources are present in several
time-frames, i.e. [109] and [118].

Unfortunately, beamforming and FDICA are methods which work well
for over-determined or determined setups, when the number of sources is
equal or smaller than the number of channels [119].

5.2.4 Binary Masking

Another type of method that exists for source separation is called binary
masking. The concept is to apply masks on the time-frequency representation
of the recorded signal to unmix the source signals. The masks can be binary
or continuous masks. Each mask is specific to one given source and hence
represents its time-frequency profile. The masks are each applied on the
spectrogram to obtain the desired source signal. At the end, one obtains
J channels with each a single source. This method is suitable for under-
determined mixtures, where I < J . It is the most difficult configuration
since the mixing matrix is not invertible.

Figure 5.2 shows the different steps of the binary masking approach. The
figure is taken from [13]. Note that this method assumes that the sources
are sparse to ensure that only one source is dominant in each time-frequency
frame. In [105] the authors present a real-time implementation of binary
masking.

63

CHAPTER 5. AUDIO FOUNDATIONS

x(f,t)
STFT

Feature
extraction

Θ(f,t)

Clustering
Mask
design

ISTFT
yk(f,t)

yk(t)
x1(t)

xM(t)

Ck

Mk(f,t)

Figure 5.2: Flow of the binary masking method. Figure taken from [13].

The most famous method of binary masking is called Degenerate Unmix-
ing Estimation Technique (DUET) [125]. It assumes a 2-channel anechoic
mixture and a single source present in each time-frequency bin. The sepa-
ration has a fair quality with respect to the simplicity of the method. It is
representative of other more complex time-frequency binary masking meth-
ods, i.e. [106] and [80]. However, it is limited to anechoic conditions and is
not robust to reverberations.

The sparse component analysis takes advantage of the sparsity of the
signals, hence it is not a completely BSS method due to a priori knowledge.
In case of sparse sources, scatter plots provide a clear information which helps
to estimate the mixing matrix. The method of Bofill and Zibulevsky [21] is
using the above mentioned method. It assumes at most two sources present
in each time-frequency bin and a 2-channel convolutive mixture. It estimates
the mixing matrix A using scatter plots followed by clustering. Once A
has been estimated, a minimal L1-norm representation of the sources is
computed. It is a kind of shortest path estimation of the source signal. This
method provides poor separation quality and unfortunately it is not robust
to reverberations.

More recently deep-learning based methods were developed which use
Deep Neural Networks (DNNs) to estimate the binary masks. An overview
of the methods using neural network for source separation and speech en-
hancement is provided [121].

5.2.5 Probabilistic Models for source separation

A third large family of techniques for sound source separation is made of the
Bayesian approaches. They use a probabilistic model to perform Bayesian
inference to estimate the mixing matrix A and simply model it as a random
variable in the probabilistic model. This allows to address cases where A
is not invertible. Moreover, it enables to integrate a priori knowledge on

64

5.2. SOURCE SEPARATION

the sources. Typically, these approaches make an extensive use of the EM
algorithm [38]. The sources are modeled as complex Gaussian distributions.
This was originally proposed in [44] and [17]. The sources are assumed to be
mutually independent. They are also assumed to be individually independent
across frequency bins and time frames.

Since in general there is no closed-form solution for typical machine learn-
ing solutions, one uses the Expectation-Maximization (EM) algorithm [38].
Furthermore, the EM algorithm is often used in combination with non-
negative matrix factorization (NMF) technique to model the variance of
the source signals and thus reduce the dimension of the problem. NMF is
frequently used in audio processing [74]. It is especially used to model the
time-frequency power distribution [50].

Figure 5.3: NMF example for xylophone notes. Figure taken from [97].

Figure 5.3 shows an example of NMF for a spectrogram of several xylo-
phone notes. The NMF decomposition allows to decompose the variance (or
power spectral density) of the source signals in the time-frequency domain
into two matrices: the characteristic spectral pattern (spectrogram C in the
figure) and the spectral patterns activation (spectrogram D in the figure).

A first example of an EM algorithm which estimates the sound source
signals using a Gaussian source model combined with NMF is presented
in [96]. Here, the authors are modeling the source components corresponding
to the NMF decomposition of the source variance. The components belonging
to the same source are mixed with the same filter. It assumes a convolutive
mixture. Another example is given in [41]. This work aims to model setups
with reverberations for under-determined mixtures.

65

CHAPTER 5. AUDIO FOUNDATIONS

Moreover, some authors augment the NMF method by an additional
feature which leads to an array of matrices, called a tensor [114]. In this case,
they added the directionality of the sound into the NMF. Then, the NMF
method becomes the Non-negative Tensor Factorization (NTF) method. This
work has been developed by a company called Analog1. They implemented
the approach presented in [114] on a Digital Signal Processor (DSP) to
perform source separation on low-power devices. This could have been a
good benchmark for our work. Unfortunately this was developed internally
and no details were publicly released, hence we have not been able to use it.

Overall, one can say that the Bayesian approaches are excellent to insert
a priori knowledge [97]. For example, the Computational Auditory Scene
Analysis (CASA) approaches use informations extracted from image or
video [120]. These features are then added to the Bayesian model for source
separation. However, the performance of the EM algorithm highly depends
on its initialization. The initialization of the EM approaches is still a crucial
problem which remains unsolved for reverberant under-determined setups.

For example in [89] the authors propose a CASA-EM system. In a first
step, the DOA of the sources is computed using the ILD and ITD features.
Each source present in the mixture is described using a Gaussian representa-
tion. Then, an EM algorithm estimates the weight, mean, and variance of
each sources representation in order to apply a Gaussian filtering algorithm
to separate the sources. This work is a great example of a simultaneous
localization and separation method.

5.3 Discussion

The intention of this chapter was to provide an introduction to audio signal
processing and define the concepts needed for the upcoming chapters. The
sound source localization (SSL) problem has been defined. An overview of
the different existing approaches in literature dealing with SSL has been
described. Moreover, the source separation task has been stated and the
most common methods have been presented.

Researchers someday started with looking at the human ear in order to
imitate it and building an artificial way to localize sources. This led to a
broad use of the Fourier transform as this mathematical tool is modeling
the cochlea, the part in the human ear which performs frequency filtering.
The cochlea can be described as a biological Fourier analyzer [111]. However,
is this mathematical tool, which we are so extensively using, really exactly

1Analog devices: https://www.analog.com/.

66

https://www.analog.com/

5.3. DISCUSSION

doing what humans do by default? One could argue that we frequently use
the Fourier transform as it is the only tool we were able to develop in order
to keep up with nature. Especially, when thinking about simple systems, one
might have to rethink the use of the Fourier transform twice. Computing
the Fourier transform always adds some time, resources and energy required
by the system. Since we aim to build low-power system we really asked
ourselves if we need the Fourier transform and showed that in the temporal
domain there are still some opportunities.

67

CHAPTER 5. AUDIO FOUNDATIONS

68

Chapter 6

Mono-Sound Source
Localization in the
time-frequency domain

In this chapter, a first sound source localization (SSL) method will be
presented. It estimates the position of one sound source located in one
room and works in the time-frequency domain. This means that the Fourier
transform is necessary as a pre-processing step.

This concept was presented in an conference paper at the 2017 IEEE
International Conference on Rebooting Computing (ICRC) in Washington,
USA [46]. Further experiments were presented at the 2018 IEEE International
Conference on Cognitive Informatics & Cognitive Computing in Berkeley,
USA [47].

The overall layout of this chapter is as follows. First, the probabilistic
model and the needed signal processing are described. Second, the Bayesian
machine adapted to this application and its implementation in VHDL are
introduced. Third, the simulated experiments and real world experiments
and their respective results are presented.

6.1 Signal pre-processing

In order to set up the probabilistic model used for the SSL, we need to define
a few basic concepts used in the model. Moreover, the signal is preprocessed
before we can start to infer on the model.

The probabilistic model is based on the Inter-channel Phase Difference
(IPD), which was introduced in section 5.1.2. It is a feature commonly used

69

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

for sound source localization. The IPD provides an angular information.
Therefore, microphones need to be placed in pairs in the room with a fixed
inter-microphone distance. As each microphone pair gives the direction of
the sound source, this model uses several microphone pairs to fuse all their
angular informations using the Bayesian machine described in 4.2.

The free field model is assumed as acoustic model. This means that the
microphones are omni-directional and fixed on stands that have no effect on
the sound propagation (in other words, all microphones are "floating" in the
room). Also, the reverberations on the walls are assumed to be negligible, and
the distance from the source to the microphone is large enough to consider
the acoustic waves reaching the microphones as plane waves.

For the sake of simplicity, let us first look at one microphone pair formed
by microphone 1 and 2. The values recorded at time t on microphones 1 and
2 are given by m1

t and m2
t . The signal emitted at time t by the sound source

is given by st.
Due to the free field model, both microphone signals are attenuated and

delayed versions of the source signal st , and m2
t is a delayed version of m1

t :

m1
t = a · s(t−ts), with 0 < a < 1,

m2
t = m1

(t−t0).
(6.1)

The delay ts represents the delay due to the distance L between the source
and the microphonem1. The delay t0 corresponds to the wave path difference
between the two microphones (we assume that the attenuation on this part
of the wave path is negligible). It depends on the azimuth θ of the source,
which is defined as the angle between the axis perpendicular to the inter-
microphone axis and the source direction (see figure 6.1). Assuming the
source-to-microphone distance L much larger than the the inter-microphone
distance d, we have:

t0 = d

v
sin(θ), (6.2)

where v is the speed of sound (' 340 m.s−1 in the air). Therefore, a measure
of t0 (or an equivalent information) can lead to an estimation of the source
azimuth. Merging the azimuth information provided by several microphone
pairs (at least two) can then lead to an estimate of the absolute source
position using the probabilistic model explained in the upcoming section.

To this aim, the microphone signals are sampled at sampling rate
fs = 1/Ts with Ts the sampling interval and we calculate their Short-Time
Fourier Transform (STFT), i.e. a sequence of Discrete Fourier Transforms
(DFT) calculated on a sliding analysis window [95]. In order to not deviate

70

6.1. SIGNAL PRE-PROCESSING

d

D

M1 M2

ϑ
ϑ

Figure 6.1: Schema of the source-to-microphones wave propagation.

too much from existing signal processing conventions, i.e. capital letters are
used for the time-frequency domain whereas lower case designates signals
in the time domain. We introduced the following notation for the Fourier
transform in this document. The STFT of a signal m1 is noted with a
calligraphic capital letter M1

k,l where k is the frequency index and l the
time-frame index. Using this notation, the Fourier transform of the signals
m1 and m2:

M1
k,l = STFT(m1

(lTs)) =
N−1∑
i=0

m1
((i+lH)Ts)e

−j2π ik
N

M2
k,l = STFT(m2

(lTs)) =
N−1∑
i=0

m2
((i+lH)Ts)e

−j2π ik
N ,

(6.3)

where k, l are the frequency and time-frame indexes, N is the size of the
analysis window, and H is the size of the window shift. Inserting model (6.1)
into (6.3), we obtain:

M2
k,l 'M1

k,le
−j2π kt0

NTs . (6.4)

Eq. (6.4) is an approximation mainly because of the finite size of the STFT
window, but if model (6.1) holds, (6.4) is a very good approximation in
particular for STFT bins that contain a significant amount of energy.

Furthermore, we define a grid of 2D source positions to discretize the
room. Usually we use 8×8 or 32×32 or 64×64 grids. The coordinates of the
sound source estimated by this model are represented by the probabilistic

71

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

variable C which is a conjunction of two variables Cx and Cy. For every
candidate source position (cx, cy), we calculate the corresponding source
azimuth θm(x, y) with respect to each microphone pair indexed by m with
a inter-microphone distance d. The corresponding (theoretical) candidate
delay is given by (6.2) with θ = θm(x, y). Using (6.4) the corresponding
(theoretical) inter-channel STFT coefficient ratio Rm(k,l) for microphone pair
m is given by:

Rm(k,l) =
M(2,m)

(k,l)

M(1,m)
(k,l)

' e−j2π
kd

NvTs
sin(θm(x,y)) (6.5)

From (6.5), we can extract the theoretical IPD αm(k,l) which depends on the
a specific frequency k and the position of the cell (x, y):

αm(k,l)(x, y) = arg(Rm(k,l)) ' −2π kd

NvTs
sin(θm(x, y)) (6.6)

Note that here, αm(k,l) is not depending on the time-frame index l. It only
depends on the position of the source (x, y) and the frequency bin k. Hence,
we can write the theoretical IPD as:

αmk (x, y) = arg(Rmk) ' −2π kd

NvTs
sin(θm(x, y)). (6.7)

6.2 Probabilistic model
In this section we introduce the probabilistic model used for the SSL method.
Therefore, we first need to defined the probabilistic variables:

• C = (Cx, Cy) : the probabilistic variables associated to coordinates of
the sound source with Cx ∈ [0, dimy] and Cy ∈ [0, dimy] with dimx and
dimy the dimensions of the room in the x and y axis. Both variables
are discretized on respectively dimx and dimy values. The cardinality
of this probabilistic variable is w = card(Cx)× card(Cy).

• φ = {φmk,l}: the set of probabilistic variables associated to the measure-
ment of each IPD for each microphone pair m with m ∈ {1, 2}, each
frequency bin k ∈ {1,K} and each time frame l ∈ {1, L}. The value of
the IPD is an angular information discretized in the interval [0, 2π[.

Having specified the probabilistic variables, we can defined the decom-
position on the probabilistic model. Knowing the localization of the source,

72

6.2. PROBABILISTIC MODEL

the IPD variables are independent and since conditioned on C the φ are
independent, the decomposition on C,φ is written as follows:

P (C,φ) = P (C)P (φ) = P (C)
∏
m,k,l

P (φmk,l|C) (6.8)

Since we do not have any prior knowledge on the localization of the
source, we model P (C) as the uniform distribution.

Given an acoustic source emitting from position (x, y), φm(k,l) is assumed
to follow a Gaussian distribution centered on αmk (given by (6.6)) and of
variance σ2

φ:
φmk,l ∼ N (αmk (cx, cy), σ2

φ). (6.9)

Note that the choice of having a variance that is independent of k and l and
c is just a simplifying assumption, which does not prevent this model to work
well. It would be possible to adapt the variance to the different values of c.
For the hardware implementation it is better to have the same variance for
all the values of k, l and c as it will be described later in this chapter. In
practice, (6.6) and thus (6.9) hold for all STFT bins that contain significant
signal energy. We thus have a large set of STFT ratios that inform about
the source location. However, since ϕm(k,l) is a phase measure calculated from
sensor signals, it actually consists of a principal angle value within [0, 2π[.
To ensure that (6.6) and (6.9) are not spoiled by phase ambiguity, a simple
solution consists in i) setting d to a small value to minimize t0, and ii) given
d and other parameters, selecting the low-frequency bins for which t0 is
assumed to be less than a period of the spectral component,1 i.e:

kd

NCTs
� 1⇔ k � NCTs

d
. (6.10)

In practice, we set d = 5 cm and (6.10) is verified for a large range of
frequency bins k.

In summary, P (φm(k,l)|(cx, cy)) is modeled as a normal distribution

P (φm(k,l)|(cx, cy)) = N (αmk (cx, cy), σ2
φ) (6.11)

where αmk (cx, cy) is the theoretical mean value of the IPD for a source located
at (cx, cy) and σφ the precision of the measure of the IPD. Our probabilistic

1Another solution would be to use a circular distribution such as the von Mises
distribution instead of (6.9), but in the present study it is very easy to ensure (6.10) and
thus using (6.9) is fine.

73

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

model for SSL consists of a series of distribution values defined as:

P (ϕm(k,l)|cx, cy) = 1√
2πσφ

exp
(
−

(ϕm(k,l) − α
m
k (cx, cy))2

2σ2
φ

)
(6.12)

They are conditioned on source position (cx, cy) through (6.6), and evaluated
i) for each point of the w = card(Cx)× card(Cy) source position grid, ii) for
a series of low-frequency TF bins where the sensor signals are assumed to
have significant energy and (6.10) holds.

Given the signal recorded by the microphone pair m, we can compute
ϕm(k,l) using the STFT for all m, k, l using equations 6.4 and 6.5 and use
the evidences ϕ from equation 6.11 to compute the posterior probability
distribution over C using:

P (C|ϕ) = 1
Z

∏
m,k,l

P (ϕm(k,l)|C) (6.13)

In the next section, we describe how to evaluate this expression with a
Bayesian Machine (BM). The above defined values of 6.12 will from now on
represent the likelihoods of the Bayesian model for the naive fusion. Because
the BM uses probability values corresponding to discrete variables, in our
practical implementation the measured IPDs ϕm(k,l) are actually quantized
(with a resolution that is appropriate for the SSL problem), and values of
the continuous distribution 6.12 are turned into probability values.

6.3 Bayesian machine adapted to SSL

Once the probabilistic model was validated using high-level simulations in
python, we focused on the development of the adapted hardware. Since the
sampling space, i.e. the grid size place in the room, is reasonably small, we
used the parallel Bayesian machine for exact inference described in section 4.2
to compute the inference.

The machine was adapted to the current application. To remember the
global architecture of the Bayesian machine figure 6.2 shows the organization
of the machine in a simplified manner. One can recognize the matrix-wise
organization of the core. As explained in the section 4.2, each column of
the machine represents a sensor which provides an additional information to
take into consideration for the fusion. Note that the word sensor might be
confusing because it does not automatically mean a real hardware sensor. For
the current application, each column of the machine takes into account the

74

6.3. BAYESIAN MACHINE ADAPTED TO SSL

φ2

OP(1,1)

OP(2,1)

OP(w,1)

OP(2,2)

OP(1,2)

OP(w,2) OP(w,n)

OP(2,n)

OP(1,n)

φnφ 1

C1

C2

Cw

b
1,1

b
2,1

b
w,1

b1,2

b2,2

bw,2

b
1,n

b
2,n

b
w,n

b1,n+1

b2,n+1

bw,n+1

Standard-BM

Counter1

Counter2

Counterw

Memory

b
2,2

b2,3

φ2
SB Gen.

OP(2,2)

Figure 6.2: Architecture of the Standard-BM including a zoom on a single
OP block of the machine. Bit streams are represented by red arrows. Blue
arrows illustrate fixed-point numerical values.

measured Inter-channel Phase Difference (IPD) ϕm(k,l) of a given microphone
pair m and a given time-frequency bin k in the current time frame l. The
corresponding likelihood for the column is computed as defined in the previous
section in equation 6.12. In practice, for a single frame, we take 50 different
frequency bins which approximately represent the frequencies between 200Hz
and 1000Hz. We focused on this interval since human voice is mainly active
between these two frequencies. Since we have two microphone pairs, we
obtain 100 columns: 50 frequency bins from microphone pair 1 and 50 more
frequency bins from the microphone pair 2. In the machine, the columns are
organized in pairs. This means that for each frequency bin, the IPDs will be
of both microphone pairs will be consecutive.

Regarding the lines of the machine, each line represents one possible
realization value of the searched variable whose probability distribution needs
to be computed: the coordinates of the source: (cx, cy). In all the lines, the
machine computes in parallel the probability distribution over the searched
variable S. In our case, each line is responsible for a cell in the grid placed
in the room in which the sound source localization runs. The machine has
w = card(Cx) × card(Cy) lines. Typically, the coordinates are discretized
into a grid of 8× 8 or 32× 32.

In practice, before performing the inference on the BM, the likelihoods
are precomputed as defined in equation 6.12 and stored in the memory blocks
in each OP block as shown in figure 6.2.

Due to the high number of columns (100 columns) in our application,
we noticed that the low probabilities slow down the stochastic computation
since the number of "1"s in the stochastic bit stream decreased drastically
after a few columns. This phenomenon is called temporal dilution. Therefore,
to tackle the temporal dilution problem, we improved the existing BM

75

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

architecture to perform several times a max-normalization to speed up the
computation.

6.3.1 Improvement of the Bayesian Machine: BM-sliced

Based on the previous considerations, we propose an improved BM, so-called
the BM-sliced. This architecture was first presented in a conference paper at
the 2017 IEEE International Conference on Rebooting Computing (ICRC)
in Washington, USA [46].

The architecture of the BM-sliced is shown in figure 6.3. It is composed
of multiple standard Bayesian machines (described in section 4.2) of limited
number of columns, called slices, with a re-sampling unit between each
consecutive slices. Figure 6.3 presents a BM-sliced with two slices. In the
experiments, we will run a BM-sliced with 10 slices to solve our SSL problem.

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP OP

OP

OP OP

OP

OP

φ2 φqφ1

C1
SB Gen.

SB Gen.

SB Gen.

C
o
u
n
te

r
b
a
n
k

C2

Cw

φq+2 φnφq+1

SB Gen.

SB Gen.

SB Gen.

Counter

Counter

Counter

Re-sampling unit

Standard-BM Standard-BM

RT

Figure 6.3: Architecture of a BM-sliced with two slices of q = n/2 columns
each and 1 re-sampling unit in between.

To limit the temporal dilution, we apply the max-normalization described
in section 4.2.5 over all probability distributions. The max-normalization
allows to have at least one line per column with only "1"s as input which
maximizes the probability of having a "1" at the corresponding output and
thus accelerate the stochastic signal propagation. However, when the number
of evidences, and hence the number of columns of the matrix, becomes large,
the temporal dilution problem is still present.

The concept of dynamic re-sampling is used to tackle this problem. It
consists in regenerating the stochastic signal after a subset of groups of
evidences (i.e. here after a slice). In the same way that the Standard-BM
uses an output counter bank to store the samples of the target distribution,
the BM-sliced uses a counter bank in each re-sampling unit to regenerate
signals with more "1"s. To implement the max-normalization in each re-
sampling unit, as shown in figure 6.4, we set a re-sampling threshold (RT)
value for all counters. When a counter reaches this value, the machine

76

6.4. IMPLEMENTATION ON FPGA

b
1

Counterbank

b
2

b
w

SB Gen.

SB Gen.

SB Gen.

Re-sampling unit

Counter1

Counter2

Counterw

Resampling threshold (RT)

p = Counter1/RT

p = Counter2/RT

111111111111

100001100101

011000101100
p = Counterw/RT

Figure 6.4: Re-sampling unit showing and example of max-normalization
with the line 2 being at the maximum.

activates the process for the next slice, with prior probability

pj = counterj
RT

for line j.
The re-sampling unit maximizes and normalizes the output probability

of a slice, and hence maximizes the number of "1"s in the stochastic bit
stream (useful information) as input of the next slice. In other words, the
re-sampling unit performs a max-normalization as described in section 4.2.5.
We illustrate this particular case of a line reaching the threshold value in
figure 6.4: the stochastic bit stream generated in line 2 is composed of only
"1"s since line 2 is the first one with a counter having reached the RT value.

The overall effect of this dynamic re-sampling is shown in the experiment
section.

6.4 Implementation on FPGA
Now that the overall architecture of the machine has been described in
the previous sections, we will now focus on the implementation of the
Bayesian machine in VHDL (VHSIC Hardware Description Language). Using
this VHDL implementation, we were able to run the Bayesian machine
on an FPGA (Field-Programmable Gate Array) and get more realistic
experimentations. First, the implementation of the Bayesian machine in
VHDL for SSL will be described. Second the on-chip likelihood computation
process used on the FPGA is presented.

77

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

Note that this part is kept as generic as possible. Therefore, the figures
showing the machine, as kept as generic as in section 4.2. The searched
variable S which is C in the case of the SSL application. The known variable
K (also called the observation of the model) are the phase difference φ in
the SSL application presented in this chapter.

6.4.1 Circuit design in VHDL

Our Bayesian machine was implemented in VHDL to make more realistic
experiments on FPGA and also to perform ASIC simulations to estimate the
power/energy consumption of the architecture.

k
2

OP(1,1)

OP(2,1)

OP(w,1)

OP(2,2)

OP(1,2)

OP(w,2) OP(w,q)

OP(2,q)

OP(1,q)

k
q

k
1

S
1

b1,1

b2,1

bw,1

b
1,2

b
2,2

b
w,2

b
1,q-1

b
2,q-1

b
w,q-1

SB Gen.

SB Gen.

SB Gen.

Counter

Counter

Counter

S
2

S
w

index

Figure 6.5: Filter-like implementation of the machine for the VHDL design.

When creating an electrical circuit, it is essential to analyze the length of
the critical path in order to keep it as short as possible to be able to run the
circuit at a faster pace. Also, the smaller the circuit is, the cheaper it will
be to produce. A more filter-like architecture was implemented to obtain
a smaller circuit. Basically, only one slice of the machine was coded while
finite state machines (FSM) control the inputs of the implemented slice to
adapt it to the other slices of the real machine. A simplified diagram of the
circuit can be seen in figure 6.5. Due to the "filter"-like architecture, one
can see that the output of the counters does not go to the next slice but is
used as the input of the same slice (black line). An additional "index" wire
controls the index of the current slice. The operator OP was adapted to this
implementation and will be described more precisely later in this section.

The machine was split into columns for better modulability as shown
in figure 6.6. The prior block generates the stochastic bit stream for each
line. Note that the prior block provides the uniform distribution when the

78

6.4. IMPLEMENTATION ON FPGA

machine is in the first slice and then the values of the counters in all the
upcoming slices.

Each column has a certain number of OP (operator) blocks which each
mainly contain the AND-gate for the multiplication. In our circuit each
column shares the same Random Number Generator (RNG). This means that
the same random bit is shared among all OPs of a same column. Note that
the input bit streams of a give AND gates are still independent since they
are generated using two different RNGs. Since RNGs are circuits taking a
lot of place and energy, we reduced the number of RNGs in order to decrease
the circuit size.

The random bit can be shared among a column since, mathematically
speaking, each line corresponds to a parallel independent sampling of the
searched variable C which relates to the grid positions. However, it is
important to have independent random bits in a same line as we perform
stochastic multiplication. Each line samples the search distribution for a
specific position C = cj . Due to this optimization, we considerably reduced
the number of RNGs needed in the machine. Previously, we used m ∗ (p+ 1)
RNGs with p the number of columns and m the number of lines. Currently,
only p+ 1 RNGs are required as we need one per column of the machine and
one for the prior column.

In the BM-sliced, the main improvement was to perform re-sampling
between each slice to obtain a faster computation time and decrease the
temporal dilution problem. The re-sampling process described in figure 6.4
is done by taking the counter value of the previous slice and simply give
them as input to the priors of the next slice. The counter values describe the
probability distribution computed until the end of the previous slice. Since the
counters are encoded in the same bit width nbit_prob than the probabilities
in the prior, passing the counters values to the priors performs the max-
normalization. The probabilities are encoded between 0 and 2nbit_prob − 1
where 0 is the lowest possible probability value and 2nbit_prob − 1 the highest
value: 1.

Note that each column possesses its own control block which communi-
cates with the global control block. The action of the global control block
can be illustrated by a Finite State Machine (FSM) which is provided in
figure 6.7. When the machine receives the start_init_gfsm signal, it starts
the memory initialization in order to calculate the likelihoods needed for the
current slice. The exact procedure will be described later. Once this phase is
over, the computation for the slice can begin. Once one counter has reached
the re-sampling threshold (RT), the computation of the current slice ends
and the counters are stored and given to the priors for the next slice. This is

79

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

k1

Prior

RBG

Prior

Prior

OP

RBG

Control

OP

OP

Global Control

Counter

Counter

Counter

k2

OP

RBG

Control

OP

OP

k
q

OP

RBG

Control

OP

OP

Figure 6.6: The simplified architecture of the VHDL implementation of the
BM-sliced for the SSL.

repeated until the last slice is reached. At the end of the computation, the
machine returns the counter values and turns back into idle state.

6.4.2 On-chip likelihood computation

When designing an electrical circuit of a computing architecture, one has to
keep in mind where to place the memory and which type of memory to be
used. Memory close to the computation module is very expensive but it is
much more energy efficient to access data in SRAM than in DRAM. In fact,
SRAM is several orders of magnitude more energy-consuming than memory
accessing data in DRAM [98].

In CPUs nowadays the storage of the data in memory take up to half of
the energy consumption of the global processor [63]. Therefore, it is crucial
to reduce the memory need of an architecture when designing it. In other
words, our Bayesian Machine still needs a lot of memory. In this section we
present a memory optimization for our application.

Figure 6.8 shows the OP block used in the machine. One can see the
memory block which stores the probability values of the max-normalized
likelihoods that were pre-calculated. It allows to use the right probability
depending on the incoming sensor value. The required size of memory is
proportional to the discretization of the sensor value in order to have the
corresponding likelihood value for each possible sensor value. When working
with sensors having a fine discretization, the memory in the BM quickly
increases. Hence this architecture is not scalable due to its tremendous
required amount of memory.

80

6.4. IMPLEMENTATION ON FPGA

Idlestart

Init
memory

Start
computation

End
computation

Store
counter

start_init_gfsm

end_init_mem

max_cnt_reached

end_comp

final_slice_reached

compute_next_slice

Figure 6.7: The automata of the global FSM of the BM.

For the SSL application, the memory usage is to high when running the
circuit on an FPGA. Therefore, a memory optimization method is required.
We noticed that the distributions tabulated in the memories were all Gaussian
distributions having the same variance σ2

φ but with a different mean value µij .
Each OP block has its own mean µij depending on the column (microphone
and frequency) and on the line (grid position).

To overcome the memory issue, a natural way is to only store each mean
µij of each OP block (this memory block is called "ROM µ"). In this case,
it is sufficient to tabulate the standard normal distribution computed with
µ = 0 and a specific σ2

φ. This normal distribution is stored in a memory
called Rom Gaussian. The probability value for each OP can be calculated
by doing:

k − µ

with k the sensor value and µ the corresponding mean value for the Gaussian
distribution for the given column and line of the machine. This obtained value
is taken as an address to the Rom Gaussian to obtain the final probability
value. Instead of computing k − µ to calculate the address, the absolute
value is taken |k − µ|. Since the Normal distribution is symmetric around
its mean value, by taking the absolute, we only need to store the positive

81

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

b
j,i-1

b
j,i

k
i,j

SB Gen.

Memory

Figure 6.8: The OP block before introducing the on-chip normalization
processing with the memory block containing an entry for each sensor value.

part of the Gaussian distribution centered in 0 and divide by 2 the needed
registers. Finally, the value provided by the Gaussian distribution is stored
in a register in the actual OP, as illustrated in figure 6.9.

Register

Memory

ROM Gaussian
b
j,i-1

b
j,i

SB Gen.| k - μ |

Memory

ROM μ

Sensor k

Figure 6.9: The mechanism used for the on-chip computation of the likelihood
value for each OP block.

Naturally, this introduced the need to compute the probability value for
each OP block prior to the computation which is done during an initialization
phase. The initialization phase is triggered by the global control block whose
behavior is described in figure 6.7. Due to the "filter"-like architecture of
our VHDL circuit, the machine has to go through this initialization phase
when switching to a new slice. Hence, the computation of the probability
value can be parallelized. In order to achieve a reasonable trade-off between
memory usage and duration of initialization phase, we decided to parallelize
among all columns. Hence, we store p identical Rom Gaussian memories
with p the number of columns. The detailed architecture can be seen on the
picture 6.10.

In the past, when the likelihood values were pre-calculated off-line, the
values were max-normalized as described in section 4.2.5 before being stored
in the memory. As presented above, the probability values are now computed

82

6.4. IMPLEMENTATION ON FPGA

k1

Prior

RBG

Prior

Prior

OP

RBG

Control

OP

OP

Global Control

Counter

Counter

Counter

k2

OP

RBG

Control

OP

OP

kq

OP

RBG

Control

OP

OP

Gaussian

ROM μ

Gaussian

ROM μ

Gaussian

ROM μ

Figure 6.10: The detailed architecture of the VHDL implementation of the
BM-sliced for the SSL.

on-line. Hence, the max-normalization needs to be performed on-chip as
well before computing the inference. However, the max-normalization is
very expensive in computation power when performing it on the hardware.
Therefore, to avoid the additional computation power, we max-normalized
the normal distribution stored in the Rom Gaussian. This is simply done by
removing the normalization term in the definition of the normal distribution.
The obtained distribution is max-normalized with its highest value being 1:

f(x|µ, σ2) =
Z
Z

Z
Z

1√
2πσ2

e
−(x−µ)2

2σ2

Let us calculate how much memory is saved using this method. Looking
at our standard setup, we will calculate the necessary memory in the past
and the memory requirements using the developed on-chip method explained
above.

Let nb_bits be the number of bits used to represent a probability value,
nb_word_tb the number of values the sensor can have (this will give the
number of lines in each memory block), nb_line the number of lines of
the Bayesian machine (for the SSL task, this represents the cells in the
localization grid), nb_col the number of columns in each slice and nb_slice
the number of slices.

In the original version of the machine, without Rom Gaussian, we needed:

83

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

nb_bits ∗ nb_word_tb ∗ nb_line ∗ nb_col ∗ nb_slice
= 8 ∗ nb_word_tb ∗ 64 ∗ 10 ∗ 10
= nb_word_tb ∗ 512 ∗ 100 bits
= nb_word_tb ∗ 6, 4 kByte

(6.14)

Now, using the Rom Gaussian, we need:

nb_bits_mu ∗ nb_line ∗ nb_col ∗ nb_slice+ nb_bit_G ∗ nb_word_G ∗ nb_col
= 10 ∗ 64 ∗ 10 ∗ 10 + 8 ∗ 1024 ∗ 10
= 64 ∗ 103 + 80 ∗ 103

≈ 144 ∗ 103 ≈ 18 kByte
(6.15)

with nb_bits_mu the number of bits used to represent the mean value µ of
each OP block, nb_bit_G the number of bits used to represent each value
stored in the Rom Gaussian memory and nb_word_G the number of values
stored in the Rom Gaussian.

One can easily notice that the memory usage was nb_word_tb∗6, 4 kBytes
without Rom Gaussian compared to roughly 18kBytes with the memory
optimization using the Rom Gaussian. When the sensor is discretized on
more than 3 possible values, the improved version of computation is cheaper
in terms of memory. In practice, the number of possible sensor values is high
and thus the memory usage increases accordingly.

However, as mentioned before, the on-chip computation of the probability
values requires an initialization phase between each slice which needs some
time during, which the BM can not start computation. In the current
implementation, the initialization phase takes 192 computation steps in each
block in parallel for each column. Since we have 64 lines in each column, we
need 192/64 = 3 steps per OP block. The 3 steps per line are:

1. looking up the mean value µ

2. calculating the |k − µ|

3. look up the probability value in the dedicated Rom Gaussian memory.

Using pipelining techniques, we can speed up the initialization phase.
The pipelining principle is to parallelize the phase as much as possible

instead of performing the computation sequentially, as showed in figure 6.11.
Assuming the computation for the different lines is independent, we can
parallelize the computation. Every line needs 3 computation steps which

84

6.5. SIMULATION ENVIRONMENT

A1 A2 A3 B1 B2 B3 C1 C2 C3

A1 A2 A3

B1 B2 B3

C1 C2 C3

time

with pipelining

sequentially

Figure 6.11: The principle of the pipelining technique used to speed up the
initialization phase.

are done sequentially. Instead of waiting the end of the computation of the
3 steps for line A (as shown in the figure), we can start the computation
for the line B once the first step of line A is done. Using this technique, we
reduce the required steps to nb_line+ (nb_steps− 1) = 64 + (3− 1) = 66
steps with nb_steps the number of steps required for one line. In total
for one slice, the machine needs the time needed to compute the inference
and the steps needed for the initialization phase. However, the 66 steps for
the initialization phase are negligible beside the computation time. Hence,
the length of the initialization phase is linear to the number of lines in the
machine. Note that in theory the initialization phase of a given slice can
already be started while the previous slice is still processing. This would
only require additional registers to store the computed likelihoods for the
next slice.

6.5 Simulation environment

In this section we provide an overview of the different simulation tools used
to validate the different parts of the systems.

6.5.1 Simulation data flow

Figure 6.12 aims to provide a schematic overview of the different possibilities
to simulate the system. In blue all the blocks that are computed on a laptop.
In green the parts that can be simulated on an FPGA. In red, the parts that
can be run in real world.

To obtain the sounds recorded by the microphones, we can simulate the

85

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

Laptop

Sound source
in room

MicrophonesSound simulator

Recorded sound
source

Likelihood
pre-processing

BM simulation
on laptop

Fourier transform

Phase difference

BM on FPGA

On-chip likelihood
computation

BM on FPGA

Computed probability map

FPGA

Real world

Fixed-point likelihood
pre-processing

BM fixed-point
simulation

Fourier transform

Phase difference

Figure 6.12: Simulation data flow showing the different simulation possibili-
ties.

sound by the sound simulator as described in section 6.5.2 or record the
sound using microphones in the experimental setup described in section 6.7.2.
To compute the inter-channel phase differences (IPDs) needed to perform the
inference, we can compute the Fourier transform and the IPDs on a laptop
or on-chip as described in section 6.7.1.

The computation of the likelihoods can be performed by our simulator
(described in section 6.5.3) in floating point or in fixed-point to be as close
as the electrical circuit. Moreover, the likelihoods can be computed on
chip as explained in section 6.4.2. Finally, to compute the inference on the
probabilistic model, it can be computed on our BM simulator in fixed-point
precision or in floating point. The Bayesian machine can also be run on
FPGA to emulate the electrical circuit.

6.5.2 Sound pre-processing

Prior to the Bayesian Machine, which computes the sound localization,
pre-processing is needed to generate the input for the BM.

Since for the experiments, we need to run the SSL for different source

86

6.5. SIMULATION ENVIRONMENT

positions, we decided to generate artificial recordings. Moreover, we used
a sound simulator to be able to easily test different acoustic setups. There-
fore, we used the room impulse response (RIR) simulator of AudioLabs
Erlangen [61]. As input for the RIR simulator, we used a mono-channel
16-kHz source speech signals which was recorded in an anechoic chamber.
Given a specific room size, microphone positions and source position, the
RIR simulator generates the recorded sound of the different microphones
containing the reverberations.

Once the recordings for the different microphones are generated, the
system preprocesses the signal in order to obtain the right input format
required by the BM. Furthermore, for each microphone, the Fourier transform
is computed in order to calculate the InterChannel Phase Difference (IPD).
The IPD is saved into .mat files which can be imported by the simulation tools
described in section 6.5.3 or converted into .mif files (Memory Instantiation
File) to be run on the FPGA. The RIR simulator and the pre-processing are
done in Matlab.

We also run experiments in real environment, which will be described in
a dedicated section.

6.5.3 BM simulation tools

In order to validate the concept of the BM-sliced, we first coded it in a
software simulation tool. A software simulator of the BM and the BM-sliced
was developed using Python. The core of the computation was implemented
in C++ using the Swig 2 interface to speed up the simulations. Using our
simulator, we are able to get an early fast and deep insight of the internal
behavior of the machine. Moreover, we can print the value of each variable
present in the architecture and validate their correct values. This allows us
to quickly test a set of parameters and find the best suited value for each
parameter.

Furthermore, this step is important to test the principles of the algorithm
and before validating the prototype in VHDL and run it on an FPGA, as
presented in section 6.4.1.

A second version of the simulator was implemented to simulate the circuit
at the bit level. Therefore, the LFSR and the fixed point operators were
implemented in python/C++. This also allowed us to validate the circuit
and be sure that the VHDL implementation of the circuit did not contained
any bugs.

2Swig interface generator: http://www.swig.org/

87

http://www.swig.org/

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

Moreover, we can compare the different versions of the BM with and
without slices and analyze for which configuration the sliced version of the
machine accelerates the computation.

6.5.4 Standard experimental setup

To test our SSL system, we mainly used the same standard set of parameters
which contains parameters for the audio part in Matlab for the sound
generation and pre-processing but also parameters for the BM computing
the SSL.

In the following, we will describe these parameters and split them into
the two categories mentioned before.

6,4m

6,4m

Figure 6.13: Setup of the room simulated to generate the sound for our
experiments.

For the sound generation and the audio pre-processing, our standard case
contains the parameters:

• Room size: 6.4m x 6.4m

• Source position: (1.2,4.4)

• Reverberation time: 150ms

• Sound: F1 (sound file used given to the RIR simulator)3

• Frame: 1 (number of the frame of the FFT used for the SSL)
3this sound file is recorded in an anechoic chamber without reverberations

88

6.6. SIMULATED EXPERIMENTS

• Reverberation order: -1 (maximum order of reverberations computed
by the sound simulator)

• Microphone positions: (0,3.175), (0,3.225), (3.175,0) and (3.225,0)

• Inter-microphone distance: 5cm

Figure 6.13 shows the setup use for our standard case. The parameters for
the BM for the standard case are:

• Grid size: 8 x 8 tiles = 64 lines in BM

• Number of slices: 10 slices

• Columns per slices: 10 columns

• Counter max: 8 bits 4

• Bits for probability representation: 8 bits

• Shared random number generator: 1 LFSR per column

Note that the room size is 6.4m x 6.4m and the grid size is 8 x 8. This
results in a localization in a grid whose tiles squares of 80cm side length.
However, the grid size is not fixed. Depending on the experiments, the grid
size was changed.

6.6 Simulated experiments
The goal of this section is to evaluate the sound source localization system
described previously in simulation. We focus on a few experimentations on
simulators that show the most interesting insights.

6.6.1 Localization performance

In this section we look at the localization performance of the developed
system. In this particular case we took a 64 x 64 grid. Figure 6.14 shows the
probability map obtained after running the BM-sliced for 5,000,000 steps.
Typically, running the machine for such a large number of steps provides
a probability map with high precision. The green point gives the position
of the maximal counter, i.e. the line of the BM-sliced with the highest
counter, representing the maximum of the probability distribution. The real

4this represents the Resampling Threshold (RT) between each slice

89

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

position of the source is given by the red point. Clearly the localization
is not perfect, though the two points are globally in the same region. It
is important to note that the localization obtained with the BM-sliced is
similar to the one obtained with the SSL state-of-the-art EM (Expectation
Maximization) algorithm of [40] using the same setup (shown as orange
point in figure 6.14). It also is very close to the localization provided by
exact inference (i.e. blue point which shows the floating-point calculation of
(6.13)). Of course all methods were fed with the same sensor information).
Therefore, the difference between estimated and true localization is not due
to the accuracy of the inference of the BM-sliced but it is rather due to i)
the low amount of used STFT frames, ii) the limited number of microphone
pairs, and iii) the approximations made by the SSL model are not sufficient
for this situation. In particular, room reverberations which are neglected
in the model probably perturb the localization, since the speaker is located
relatively close to the walls.

6.6.2 BM-standard vs. BM-sliced

One of the major improvements done on the Bayesian Machine was the
introduction of the slices in the BM to obtain the BM-sliced, described
in section 6.3.1. In this section, we aim to deeply analyze the impact of
the slices on the computation and its impact on the temporal dilution.
Since the distributions provided by Bayesian machines are approximate and
the accuracy increases with computation time, it is interesting to inspect
the results at different computation steps. Therefore, we will compare
the computation speed and output accuracy of the BM-standard and the
BM-sliced.

First, figure 6.15 displays the sum of all output counters of the machine
as a function of the number of computation steps. This plot illustrates the
temporal dilution since it shows how many "1"s are produced at the output
of the machine. One can observe that both architectures have a certain
"warm-up" time before providing a first significant approximated result. The
BM-sliced bars (lightblue) raise considerably between 1,000 and 5,000 steps.
This is due to the re-sampling threshold (RT) which is set to 128 for this
experiment. Since we have 10 slices in the machine, we need to wait at
least 10× 128 = 1,280 steps before getting a first output. The standard BM
architecture (red bars) exhibits a much longer warm-up time which is clearly
due to the time dilution problem. Moreover, the sum of all output counters
reaches a much higher value after 5,000,000 steps with the BM-sliced (about
1,728,000,000) than with the Standard-BM (only 31,741).

90

6.6. SIMULATED EXPERIMENTS

Ground truth source position
Sliced-BM
EM algorithm
Exact inference method

Figure 6.14: Probability map for BM-sliced at 5.000.000 steps. Maximum
points of Ground truth source position (red), Source position estimated by
the BM-sliced (green) which stays stable after 10.000 steps, Source position
estimated by the EM algorithm of [40] (orange), Source position estimated
by exact inference method (blue).

Now, we inspect the accuracy of the posterior probability distribution
computed by the BMs, denoted Pexp. To this aim, we first calculate the
theoretical probability distribution Pth corresponding to an exact inference
method, directly combining (6.12) and (6.13). Then we calculate the Kullback-
Leibler divergence (KLD) between Pexp and Pth:

KLD(Pth, Pexp) =
∑
i

Pth(i) log Pth(i)
Pexp(i)

. (6.16)

The KLD is a classical measure of the "distance” between two probability
distributions.5 figure 6.16 displays the KLD values for both Standard-BM
and BM-sliced, as a function of the number of computing steps. Note that,

5Although not symmetric, the KLD behaves as a distance. In particular it is positive
and a KLD equal to 0 indicates that the two distributions are identical.

91

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

Figure 6.15: Sum of all output counters (on a log-scale) as a function of the
number of computation steps.

since each BM needs some "warm-up” time as shown in figure 6.15, the
plotted bars start at the number of steps where the machine computed
enough useful information for comparison with the exact inference. The KLD
value difference between Standard-BM (in red) and BM-sliced (in lightblue) is
due to the re-sampling method which strongly reduces the temporal dilution.
In the Standard-BM, the number of "1s" present at the end of all columns
(and incrementing the final counters) is very low. However, in the BM-sliced,
the number of "1s" is much higher so is the number of incremented counters
at the output level. This allows to obtain a much faster and a much better
approximation of the target distribution. For example, after only 5,000 steps
the BM-sliced nearly gets the same KLD value as the Standard-BM after
5,000,000 steps, hence an acceleration factor of 103.

92

6.6. SIMULATED EXPERIMENTS

Figure 6.16: Comparison of the Kullback-Leibler divergence between the
distribution computed by the BM (standard and sliced version) and the
exact distribution as a function of the number of computation steps.

6.6.3 Impact of the probability discretization

This section will analyze how the machine behaves when varying the number
of bits used to represent the probability values, namely n_bit. Moreover,
the impact on the quality of the probability distribution is measured using
the KLD. Notice, that the n_bit parameter directly impacts the size of the
corresponding circuit of the machine and hence its power consumption. It
also defines the width of the memory blocks of the BM since the likelihoods
P (Ki|S) are stored in registers in each OP block of the machine. Furthermore,
we analyze how the KLD evolves for different values for the re-sampling
threshold (RT). The RT is the maximum value reached by at least one
counters (one line of the machine) before moving to the next slice. Since
we target a low-power architecture, it is crucial to find the optimal trade-
off between the resulting precision and the circuit activity to minimize
consumption.

93

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 172 -15

2 -13

2 -11

2 -9

2 -7

2 -5

2 -3

2 -1

n03p04t

n04p04t

n05p04t

n06p04t

n08p04t

n10p04t

n16p04t

Float

Resampling Threshold (RT)

KLD

Figure 6.17: KLD as a function of the re-sampling threshold value for
different n_bit. n00p04t being the exact inference.

Figure 6.17 shows the results of the experiments. The plot shows the
KLD value (Y-axis) as a function of the re-sampling threshold value (X-axis)
for the different values of n_bit (different lines). The sensor discretization
was set to 4 bits in all cases (p04) which means that there were 16 different
possible values for the measured phased difference. A linear feedback shift
register (LFSR) was used as a random number generator (RNG) which leads
to the extension of the name p04t (’t’ for use_LFSR = True). For each
value of the probability discretization n_bit (n03 to n16) 20 runs of the same
experiment were made to calculate a mean value, which is given by the thick
line. The minimal and maximal KLD of each the 20 runs is provided by the
dashed lines respectively underneath and above the line of the mean value
(thick line). The black line (n00p04t) represents the float computation of the
probability distribution as a reference of a maximal precision. Notice the
logarithmic scale in both dimensions for a better presentation of the obtained
data. The experiments were made for re-sampling thresholds varying from
27 = 128 up to 217 = 131072.

Looking at the mean lines (thick lines), one can clearly observe a con-
vergence to a maximal precision which depends on the value of n_bit. The
precision of the distribution improves with n_bit. Moreover, in all cases, the

94

6.6. SIMULATED EXPERIMENTS

increment of the re-sampling threshold (RT) leads to a better KLD. This is
due to the fact that with a higher RT, the discretization of the probability
value increases and hence the distribution can be represented with more
detail. However, an high RT means a longer execution time for the inference
since each slice of the machine will take more time to reach its RT. Therefore,
it is crucial to adapt the RT to the given n_bit to avoid useless computation
and consequently reduce the activity of the circuit.

6.6.4 Impact of the sensor precision

This section analyzes the impact on the computation when the sensor pre-
cision changes. Depending on the application that is treated by the BM,
sensors may have different precisions. Therefore, it is important to analyze
the overall result for different discretization of the sensor data.

2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 172 -12

2 -11

2 -10

2 -9

2 -8

2 -7

2 -6

2 -5

2 -4

2 -3

2 -2

2 -1

n04p04t

n04p10t

n08p04t

n08p10t

n16p04t

n16p10t

Resampling Threshold (RT)

KLD

Figure 6.18: KLD as a function of the re-sampling threshold value for
different discretization of the sensor data.

Figure 6.18 provides the results for different sensor precisions p04 and
p10 which correspond respectively to 4 and 10 bits of precision for the sensor
data. As the plot shows, the sensor precision does not massively impact
the computation as the KLD value for each value of the RT does not vary
much between p04 and p10 for a given value of n_bit (remember that both
axes are in a logarithmic scale). Notice that for the clarity of the plot, we
removed the plots for p06 and p08 since they were partially or completely

95

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

overlapping with the lines for p10. As a conclusion, one can say that the
sensor precision does not have a strong influence on the computation result
whereas the choice of the n_bit heavily impacts the final result. This is not
as astonishing as it might seem at first sight: given the large number of
sensors in our application (the BM has a total of 100 columns), the exact
product in (6.13) has a precision of 400 bits for 4-bit sensors, much more
than can effectively be computed. Our computation is necessarily affected by
rounding, and going to higher sensor precision cannot improve this situation.

6.6.5 Impact of the LFSR

Since, as explained in section 4.2.3, in the current implementation of the
circuit, linear feedback shift registers (LFSR) are used as random number
generators (RNG) to generate the stochastic bit streams. Therefore, we want
to study the impact of the LFSR on the computed probability distribution.
A succession of runs were made for fixed (n02p08, n06p08 and n08p08)
parameters of n_bit and sensor precision p. The computation is compared
when using our standard RNG which is a 32 bit LFSR in the BM (i.e. lines
with t at the end) as opposed to when the BM uses the RNG included in
C++ (i.e. lines with f at the end). C++ uses Mersenne Twister as its
internal RNG. Like in the previous sections, 20 runs were made for each
value of RT (X-axis) and the mean value of all runs is plotted.

Figure 6.19 shows the KLD value as a function of the different values for
the re-sampling threshold (RT). The precision of the computed distribution
improves with increasing RT. However, one can see a notable difference in
the KLD between the purple line (n08p08f) and the yellow line (n08p08t).
At the RT value 216, a factor 16 between both lines can be observed which
is clearly not negligible.

Therefore, as future work, we have to explore other and better ways to
generate random bits while keeping the power consumption low. RNGs can
sometimes require a large area on the circuit. For this reason, exploiting
physical phenomena to build RNGs might be an important task in future for
us.

6.6.6 Computation accuracy depending on the number of
slices

One major parameter which was introduced with the Sliced-BM architecture
is the number of slices contained in the machine. As the number of slices
impacts the number of columns in each slice, this parameter determines the

96

6.6. SIMULATED EXPERIMENTS

2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 172 -17

2 -16

2 -15

2 -14

2 -13

2 -12

2 -11

2 -10

2 -9

2 -8

2 -7

2 -6

2 -5

2 -4

2 -3

n02p08f

n02p08t

n06p08f

n06p08t

n08p08f

n08p08t

Resampling Threshold (RT)

KLD

Figure 6.19: KLD as a function of the re-sampling threshold value for runs
with LFSR as random number generators (t) and with the random number
generator of C++ (f).

circuit size of the machine. Moreover, in terms of computation speed, the
number of slices is a key parameter since a low number of slices means that
re-sampling is performed only a few times and hence the risk of loosing time
due to temporal dilution grows. On the opposite, when having many slices
in the machine, the inference will take more time because the re-sampling
will occupy a large part of the total computation time. The goal is to find
a trade-off between the minimal circuit size and a reasonable computation
time.

Figure 6.20 shows the evolution of the precision for different numbers of
columns per slice in the machine considering the machine has 100 columns
in total. The graph shows that the quality of the results improves with the
number of columns per slice. However, if the slices become too large, the
computation time of the machine can significantly increase due to temporal
dilution. Hence, the need to find a reasonable trade-off.

To summarize the results presented in the previous sections, it has been
shown that the discretization of sensor data has a lower influence on the
computation. Furthermore, the discretization of the probability values in the
machine, which has an important impact on the quality of results and impacts

97

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 172 -11

2 -10

2 -9

2 -8

2 -7

2 -6

2 -5

2 -4

2 -3

2 -2

2 -1

2 0

colsPerSlice01

colsPerSlice02

colsPerSlice04

colsPerSlice05

colsPerSlice10

colsPerSlice20

Resampling Threshold (RT)

KLD

Figure 6.20: KLD as a function of the re-sampling threshold value for
different number of columns per slice.

the activity. This parameter directly defines the circuit size. Moreover, it
has been shown that the higher the re-sampling threshold (RT), the better
the distribution computed by the machine. Furthermore, the impact of the
quality of the random number generator (RNG) has been illustrated. Lastly,
the evolution of the accuracy of the computation when the number of slices
changes has been observed.

6.6.7 Power consumption measurements

Since we are working on new computing units and suggesting alternatives to
conventional processors, we do a lot of basic experimentations to compare
the developed architectures to the existing ones. Therefore, this section aims
to analyze the power consumption of the proposed Bayesian machine. The
easiest way to have the most realistic consumption measurements is to run
ASIC (Application-specific integrated circuit) simulations. We performed
ASIC simulations to obtain more realistic numbers about power consumption,
circuit size and the maximal frequency we can run the circuit.

Since our architecture needs a lot of memory, we wanted to measure the
impact of our optimization. For that reason, we compared both architectures,
the original and the optimized one using the on-chip likelihood computation
explained in section 6.4.2.

98

6.6. SIMULATED EXPERIMENTS

The design flow has been set up to synthesize the VHDL description
of both circuits. The ASIC simulations were made using the FDSOI 28nm
technology from STMicroelectronics.

The setup used for these measurements was close to the standard experi-
mentation setup described before in section 6.5.4:

• 2 microphone pairs

• 50× 2 = 100 columns in the Bayesian machine

• 10 columns per slice

• Grid: 8× 8 = 64 tiles ⇒ 64 lines per column

In terms of the architecture, the BM had:

• 64× 10 OP blocks with each a registers of 8 bits to store the likelihood
and an AND gate

• 11 LFSR as random number generators (1 per column + 1 for the prior
column)

• 10 control blocks, each having 1 Finite State machine (FSM)

• Counters: 64 registers of 8 bits at the end of the 10 columns (at the
end of each slice)

• Priors:

– 64 registers of 8 bits
– 64 AND gates

The memory was simulated by the Static Random Access Memory
(SRAM) memory compiler of STMicroelectronics. Let us compare the mem-
ory needs in both architectures. In the original architecture (without the
on-chip likelihood computation), each column (10 in total) requires

nb_bits ∗ nb_word_tb ∗ nb_line ∗ nb_slice
= 8 ∗ nb_word_tb ∗ 64 ∗ 10
= nb_word_tb ∗ 5120 bits
= nb_word_tb ∗ 640 Byte

(6.17)

with nb_bits the number of bits used to represent a probability value,
nb_word_tb the number of values the sensor can have, nb_line the number

99

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

of lines of the Bayesian machine (for the SSL task, this represents the cells
in the localization grid), nb_col the number of columns in each slice and
nb_slice the number of slices. Typically nb_word_tb is set to 32 which
leads to a memory need of 160 kByte per column.

The optimized machine needs a reduced amount of memory. To allow
the on-chip likelihood computation, the machine needs 2 different memories
per column, namely the Rom MU and the Rom Gaussian.

Each of the 10 Rom MU memory block has the following size:

nb_bits_mu ∗ nb_line ∗ nb_slice
= 10 ∗ 64 ∗ 10
= 64 ∗ 102 bits
= 0.8 kByte

(6.18)

with nb_bits_mu the number of bits used to represent the mean value µ of
each OP block.

The size of each of the 10 Rom Gaussian memory blocks is:

nb_bit_G ∗ nb_word_G
= 8 ∗ 1024
≈ 8 kByte

(6.19)

with nb_bit_G the number of bits used to represent each value stored in the
Rom Gaussian memory and nb_word_G the number of values stored in the
Rom Gaussian.

Circuit Original Optimized
Area (µm2) 184,978 132,510
Max. Frequency (MHz) 1111 1136
Static consumption (µW) 356.72 149.61
Dynamic consumption (mW) 8.76 5.62

Table 6.1: Results of the ASIC simulations for both architectures: the
original and the optimized version.

The results are given in table 6.1. The obtained numbers show that the
optimized version of the circuit reduces the circuit area by approximately
30% and the power consumption by approximately 35%. This impressive
reduction in area and consumption is achieve because memory represents a
significant part of the circuit. In the optimized version, nearly 60% of the

100

6.7. REAL WORLD EXPERIMENTS

area is dedicated to memory and more than 55% of the power consumption
is absorbed by the memory.

A remaining question is how the existing memory technology that we
used in this experimentation could be replaced. As mentioned above, we
used SRAM in the current set up. However, exploring alternatives such as
Magnetic Random Access Memory (MRAM) form a promising replacement
since the memory area could be replaced by a factor of 20 [24] and hence
reduce significantly the power consumption. Note that both architectures
have not been optimized for the simulation in terms of place and route and
all the different optimization strategies that can be done to reduce power
consumption.

6.7 Real world experiments
All experiments presented above were performed using sound generated by
the (RIR) simulator of AudioLabs Erlangen [61]. Moreover, a not negligible
amount of pre-processing was done on the laptop before feeding the FPGA
with the appropriate information.

However, in order to get closer to the real world with our localization
method, we worked on the realization of an autonomous demonstrator.

This work was mainly done by Jérémy Belot during his Master 2 internship
during which I co-supervised him. Later he joined the team as an engineer
to finalize the real world set up and perform additional experiments.

6.7.1 Pre-processing on chip

Until now, the pre-processing was performed by a computer before giving
the phase difference information to the FPGA in order to make the adequate
inference. In this section, all the modules that were added to the system are
described.

Figure 6.21 provides a good overview of the implemented system. We
mainly focused on the BM1 block which is the Bayesian machine and thus the
core of the system. However, the pre-processing in red and the microphones
in blue were added to do the experiments in real environment. A central
control block has been added for synchronizing the sound acquisition, the
pre-processing, and the inference.

One major step in this work was to implement the Fourier transform
on the FPGA. We used the Cordic algorithm which computes the Fourier
transform and computes the phase of the signal at the same time. Using this
method allows to implement the FFT on a very small circuit area and thus

101

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

Figure 6.21: Overview of the different modules present in the global system
and their connections.

DFT1

DFT2

sample1_in Vector
Cordic1

x_FFT1_out

y_FFT1_out

Vector
Cordic2

x_FFT2_out

y_FFT2_out

-
Δφ

φ1

φ2

18 bits

18 bits

18 bits

18 bits

16 bits

16 bits

sample2_in

20 bits

20 bits

20 bits

Figure 6.22: Phase difference computation module for 1 microphone pair.

be cheap to produce [12]. As shown in figure 6.22, the FFT using the Cordic
algorithm is done in parallel for 2 microphones of the same microphone pair
before computing the Inter-channel Phase Difference (IPD).

6.7.2 Experimental set up

To test the system, we installed an experimental set up in a 3m x 3m room
in which we put a 8x8 grid for the localization which leads to squared grid
cells of 37.5cm side. Two pairs of microphones have been placed in the room
as shown in figure 6.23 (a). In figure 6.23 (b), one can see the cables of the
4 microphones getting into the Analog/Digital Converter (at the bottom
left). The digital information go to the external sound card (in white) via

102

6.7. REAL WORLD EXPERIMENTS

an optical connector. More precisely, we used a RME Babyface Pro as sound
card. It is connected via USB to the laptop which loads the sound without
any transformation into MIF files (Memory Instantiation File) on the FPGA
to run the Bayesian machine. Note that the laptop is only used as a control
unit and does not perform any sound pre-processing.

Analog/Digital

Converter PC FPGA

XLR

USB USB

y

x

0
1

2 3

(a) Room (b) Microphones

Figure 6.23: Sound acquisition set up.

Figure 6.24 shows how the microphones are mounted (a) and placed in
the room (b). Note that 2 walls of the room are simulated by a thick curtain
(in gray). The localization is performed in a plane at approximately 1.5m
height. The source is simulated by a UE BOOM 2 bluetooth speaker. Thanks
to the special mount for the microphones, the inter-microphone distance can
be easily changed if needed.

y

x

(a) Room (b) Microphones

Figure 6.24: Microphone set up in the room.

103

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

6.7.3 Results

The localization results on a single frame is provided in figure 6.25. In red
the real sound position. In green the center of gravity of the distribution.
In blue the cell with the maximum counter in the distribution. Note that
the system is performing well for source positions close to the center of the
room. However, when moving closer to the walls and the corners, the systems
performance decreases, as shown in the figure.

y (m)

x (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

Figure 6.25: Localization map obtained using the free field model.

Moreover, it is important to consider the size of the time-frames used for
the localization, which is very small.

6.7.4 Optimization - filtering

Considering the big changes in the performance of the system from one frame
to the other, a filtering method was added to the system. The result of one
frame is used as a prior to start the computation of the next frame.

Using this filtering method, the result quality considerably increases after
only a few frames. As shown in figure 6.26, the result is already acceptable
after frame 3 and becomes perfect at frame 4.

However, some frames are using a signal portion without a lot energy in
the signal. The current system does not analyze the obtained signal by the
microphones and simply runs the localization method.

6.7.5 Optimization - bypass

Adding a threshold to use signal portion which is useful for the system
was the aim of this optimization. The module responsible for the Fourier
transform also provides the Fourier coefficient which provides the information
of the amount of energy present in the signal for a give frequency. Using this

104

6.7. REAL WORLD EXPERIMENTS

Source position

Center of gravity

255

0

Counter value

Max counter value

y (m)

x (m)

y (m)

x (m)

y (m)

x (m)

y (m)

x (m)

Frame 1 Frame 2

Frame 3 Frame 4

Figure 6.26: Evolution of the localization map after filtering over 4 frames.

information, we introduced a bypass signal which bypasses a specific column
of the machine when the signal at the specific frequency is underneath a
certain threshold.

Figure 6.27 shows how the system performs for different threshold values.
Figures (a) and (b) show the results when using no threshold (NT) and
filtering (F) or no filtering (NF). Figures (c) and (d) shows the performance
when using a medium threshold (MT). When using the medium threshold,
approximately 50% of the columns are bypassed. However, the system
performs the best when using a high threshold (HT) where only 10 out of
the 100 columns remain used for the sensor fusion. One can see that using
filtering and a high threshold allows the system to perform perfectly even in
the corners of the room, i.e. figure (f).

6.7.6 Optimization - learned model

A third optimization was done to test another probabilistic model on the
machine. This approach is based on learning. Moreover, the theoretical
Inter-channel Phase Differences (IPD) are learned to improve the localization
performance. Therefore, on every possible position on the grid, a sound is
emitted to learn the IPD for all the frequencies at this location. Due to the
learning, the theoretical IPDs used in the model are much better quality

105

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

and hence improve the system’s performance. We trained by using a sound
which consists of the sum of all the sinus signals at the frequencies which we
use to localize the sources.

The results of the localization drastically improved due to this approach
as illustrated in figure 6.28.

In order to provide an overview of the performance of this method,
the results for a few source positions are given in figure 6.29, figure 6.30,
figure 6.31, figure 6.32 and figure 6.33.

Even though the performance is remarkable, one have to keep in mind
how restrictive the learning process is since when installing the system in
a room, the learning process has to be done every time. Also, one should
emphases how bad this method scales when the grid size increases.

6.7.7 Circuit area

Beside the localization performance of the system, we are also interested
by having a system which is as small as possible in terms of circuit area.
Therefore, it is important to look in the area of the different modules of the
machine. When mapping the circuit on an FPGA, we can easily obtain the
area of each part of the system by looking at the number of Adaptive Logic
Modules (ALMs) needed by each module.

Hierarchy Resources FPGA (Comb ALUTs) Memory RAM (bits)

top_SSL_FPGA 15039 381605
→ top_SSL 13923 (100%) 315432
→ top_preprocess 4927 (35%) 131112
→ top_BM1 8931 (64%) 184320
→ BM1_core 7030 (50%) 0
→ Control 92 (0.7%) 0
→ Memory_module 1803 (13%) 184320

Table 6.2: Circuit area measurement of the system mapped on the FPGA.

In table 6.2, one can see that the Bayesian machine does only occupy
66% of the system. Unfortunately, 32% is needed for the preprocessing. Due
to the Fourier transform, this module is very large.

6.8 Conclusion
In this chapter, a probabilistic method to perform sound source localization
has been presented. This method is working in the time-frequency domain.

106

6.8. CONCLUSION

The probabilistic model has been introduced as well as the adjustments on
the Bayesian machine to run the inference on this Bayesian model. Moreover,
an optimization of the machine has been described, which speeds up the
computation by a factor of up to 103. Also, to run the machine on an FPGA,
the architecture has been implemented in VHDL and an on-chip likelihood
computation method has been presented in order to reduce the memory
usage of the machine. Further more, several simulations have been performed
to analyze the impact of the different parameters of the machine and study
the power consumption of this hardware. Finally, the localization system
has been confronted with the real world using a test environment with real
microphones placed in a room.

Moreover, to increase the performance of the system, one could have
used some additional pre-processing such as dereverbation algorithms to
compute the measured phase difference (IPD). However as the performance
of the system is already very good, we do not aim to achieve state of the art
results in the localization. The main goal of our project was more focused
on proposing alternative computing architectures and use them to deal with
common tasks.

As this method is working in the time-frequency domain, it requires to
compute the Fourier transform for the recorded signals. Analyzing the VHDL
circuit for the SSL application, we noticed the significant area dedicated to
the Fourier transform. Therefore, in the next chapter we present another
sound source localization method which works in the temporal domain and
hence does not require anymore the computation of the Fourier transform.

107

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

(a) NT NF (b) NT F

(c) MT NF (d) MT F

(e) HT NF (f) HT F

Figure 6.27: Examples of localization when using no threshold (NT), a
medium threshold (MT) and a high threshold (HT) using the filtering method
(F) or without filtering (no filtering - NT).

108

6.8. CONCLUSION

y (m)

x (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

Figure 6.28: Localization map using the learning method at position 54.

y (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

x (m)

y (m)

x (m)

Theoretical model Learned model

Figure 6.29: Comparison between the original free field model and the
learned model at position 0.

y (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

x (m)

y (m)

x (m)

Theoretical model Learned model

Figure 6.30: Comparison between the original free field model and the
learned model at position 7.

109

CHAPTER 6. MONO-SOUND SOURCE LOCALIZATION IN THE
TIME-FREQUENCY DOMAIN

y (m)

x (m)

y (m)

x (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

Theoretical model Learned model

Figure 6.31: Comparison between the original free field model and the
learned model at position 36.

y (m)

x (m)

y (m)

x (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

Theoretical model Learned model

Figure 6.32: Comparison between the original free field model and the
learned model at position 56.

y (m)

x (m)

y (m)

x (m)

Source position

Center of gravity

255

0

Counter value

Max counter value

Theoretical model Learned model

Figure 6.33: Comparison between the original free field model and the
learned model at position 63.

110

Chapter 7

Mono-Source localization in
the temporal domain

In the previous chapter, a solution for sound source localization (SSL) has
been presented. This work was based on using the free field hypothesis and
the Inter-channel Phase Difference (IPD) as features for the localization.
However, the computation of this features require the Fourier transform of
the signals recorded by the microphones. Since nowadays most of the source
localization methods are working in the time-frequency domain, we decided
to work on that concept.

However, as shown at the end of the previous chapter, we analyzed the
area of the circuit of the different modules in the final system and noticed
the important area of the module responsible for the Fourier transform. This
component is taking approximately 35% of the entire circuit area. As our
research project aims to design more lightweight solutions, we worked on
algorithms for sound source localization without using the Fourier transform.

The two methods presented in this chapter works entirely in the temporal
domain. The basic idea is to compare the temporal signal recorded by the
different microphones and extract the location of the source. One method
uses the attenuation to compute the source position whereas the second
method does not but assumes several pairs of nearby microphones.

7.1 Probabilistic model with attenuation

For this model we consider the following stochastic variables will be used:

• M : the matrix of the stochastic variables associated to the sounds

111

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

recorded by the microphones withM i
t the stochastic variable associated

to microphone i at time t and mi
t its value.

• C = (Cx, Cy) : the probabilistic variables associated to coordinates of
the sound source with Cx ∈ [0, dimy] and Cy ∈ [0, dimy] with dimx and
dimy the dimensions of the room in the x and y axis. The cardinality
of this probabilistic variable is w = card(Cx)× card(Cy).

Let be T the total recording time expressed in number of samples, I
the number of microphones used. The values of the stochastic variables
associated to the sounds recorded by the microphones are discretized between
−mmax and mmax and so, the values of the mi

t are taken in this discrete set :
mi
t ∈ {−mmax, . . .− 1, 0, 1, . . . ,mmax}.
The localization is made in small time intervals called frames. A frame is

a set of T consecutive samples taken during this time window. It is assumed
that during each frame the sound source does not move.

The basic idea is to analyze the offset between one selected microphone
and the other microphones. For the sake of simplicity, let microphone 0 be
the reference microphone. For each position on the grid, one can compute
the offsets between the microphone 0 and the other microphones.

First, before going into details, let us define two functions needed in
the model. Given the source location c = (cx, cy), and the position of the
reference microphone 0 and the microphone i, one can compute the "ideal"
signal TDOA (time difference of arrival) in between the two microphones
expressed in number of samples. Physically, τ i2i1 (c) gives you the number of
samples for the microphone i2 and microphone i1 to receive the same signal:

τ i2i1 (c) = (d(c, i2)− d(c, i1)) · Fs
v

(7.1)

where d(c, i) is the distance between the source and the microphone i, v is
the speed of sound (' 340 m.s−1 in the air) and Fs is the sampling frequency.
Note that τ i(c) = τ i0(c) is the short form that gives you the number of
samples for the microphone i and microphone 0 to receive the same signal.

Moreover, we need the function a(c, i) which provides the attenuation
factor for a given distance. It follows the attenuation model which can be
found in Equation (1) in [52]:

a(c, i) = 1√
4π · d(c, i)

(7.2)

Having specified the probabilistic variables and the helping functions,
we can defined the decomposition of the probabilistic model. Knowing the

112

7.1. PROBABILISTIC MODEL WITH ATTENUATION

localization of the source and the recording on the reference microphone, the
stochastic variables attached to the other microphones are independent due
to the free field hypothesis and the joint distribution on C,M is written as
follows:

P (C,M) = P (C)P (M0|C)
I∏
i=1

T∏
t=0

P (M i|C,M0) (7.3)

As we do not have any prior knowledge on the localization of the source,
we model P (C) as the uniform distribution. Moreover, P (M0|C) is not
needed since M0 is in the evidences. Given a sound source emitting from
position c, M i

t−τ i(c) only depends on M0
t . It follows a Gaussian distribution

centered on a(c,i)
a(c,0) ·m

0
t with a variance σ2, where σ2 represents the precision

of the microphone:

M i
t−τ i(c) ∼ N (a(c, i)

a(c, 0) ·m
0
t , σ

2) (7.4)

In practice, our probabilistic model for SSL consists of a series of distri-
bution values

P (mi
(t−τ i(c))|m

0c) = 1√
2πσ

exp
(
−

(mi
(t−τ i(c)) −

a(c,i)
a(c,0) ·m

0
t)2

2σ2

)
(7.5)

which are evaluated for

1. each point of the 64× 64 source position grid

2. a series of time samples t.

Given the signal recorded by the microphones m, we can use the likeli-
hoods P (mi

(t−τ i(c))|m
0c) from equation 7.5 to compute the posterior proba-

bility distribution over C using:

P (C|m) ∝
T∏
t=0

I∏
i=1

P (mi
(t−τ i(c))|m

0
t ,C) (7.6)

The goal is to run the inference on the Bayesian Machine (BM). Therefore,
the machine has been adapted to evaluate the expression above, which will
be described in the next section.

113

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

7.1.1 Bayesian machine adapted to SSL

The architecture used for the inference is the Bayesian machine which was
also used in the SSL with the Fourier transform. However, the inputs changed
since now the signal recorded by the microphones was directly provided to
the machine to compute the likelihoods and perform the inference.

In practice, we used 4 microphones in total where m0 was used as the
reference microphone. This means that for each time sample t, the signal of
the reference microphone is compared to the 3 others microphones using the
likelihoods of 7.5. Moreover, as we work on frames of T samples, we obtain
3× T likelihoods to multiply and have 3× T columns in the BM.

OP(1,1)

OP(2,1)

OP(w,1)

OP(2,2)

OP(1,2)

OP(w,2)

C1

SB Gen.

SB Gen.

SB Gen.

Counter

Counter

Counter

C2

Cw

index
m1,m0

OP(2,2)

OP(1,2)

OP(w,2)

m2,m0 m3,m0

Figure 7.1: Architecture of the Bayesian machine used for the temporal
localization method.

We used the BM-sliced machine with 3 columns per slice, as shown in
figure 7.1. Each column is dedicated to a specific microphone m1, m2 or m3

and is responsible for the temporal comparison of this microphone with the
reference microphone m0.

7.1.2 Simulations

To validate the algorithm and run the machine for different parameters, the
machine has been implemented using our simulator presented in section 6.5.3.

Our sound simulator computes the sound mixture according to the
location of the microphones and the source. It uses the sound propagation
model described in [52] as:

mi
t = 1√

4π · d(c, i)
s(t−d(c,i)/v) (7.7)

114

7.1. PROBABILISTIC MODEL WITH ATTENUATION

Note that our sound simulator does not compute the reverberations.
However, we added Gaussian noise to the signals to test the system robustness.

Localization map

In this section, a first example of a result provided by our localization method
is presented. First, the different parameters of our system are explained.

The room size has been changed to 3.0m× 3.0m in order to simulate the
same room as the room used for the real world experiments.

Due to the attenuation model of our microphones which is close to the
function described in equation 7.7, the energy in the signal significantly
decreases as the source to microphone distance increases. We placed the
microphones in the four corners of the room to maximize the performance
of the system. Also, maximizing the inter-microphone distance increases
the quality of the results. Therefore, in our standard configuration the
microphones are placed in the corners of the room. Figure 7.2 illustrates the
setup.

3,0m

3,0m

Figure 7.2: Setup of the room simulated to generate the sound for our
experiments.

Moreover, the frame length which corresponds to the number of samples
used for the localization is an important parameter for our system. It is also
known as the recording time. Typically, in our tests, the size of the time
interval used to localize the speaker is 30 samples.

In summary the parameters for our standard simulator setup are as
follows:

115

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

• Room size: 3.0m x 3.0m

• Sound position: (2.0625,0.9375)

• Sound: F1 (sound file used given to the sound simulator)1

• Microphone positions: (0.1875,0.1875), (0.0,2.8125), (2.8125,0.0) and
(2.8125,2.8125)

• Frame length: 30 samples

The parameters for the BM for the standard case are:

• Grid size: 8 x 8 tiles = 64 lines in BM

• Number of slices: 30 slices

• Columns per slices: 3 columns

• Counter max: 8 bits 2

• Bits for probability representation: 8 bits

• Bits for offset: 8 bits

• Bits for attenuation fraction: 8 bits (4 bits before the comma and 4
bits after the comma)

• Shared random number generator: 1 LFSR per column

When running the Bayesian machine with the method presented in
this chapter on our simulator, we obtain the localization map presented in
figure 7.3. As one can see, the method works well as the maximum of the
probability distribution is located in the cell where the sound source was
positioned. Moreover, there are no cells close to the maximum which have a
high probability value, hence the distribution is peaky.

1this sound file is recorded in an anechoic chamber without reverberations
2this represents the Resampling Threshold (RT) between each slice

116

7.1. PROBABILISTIC MODEL WITH ATTENUATION

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 7.3: Localization map with for a frame of 30 samples.

7.1.3 VHDL implementation

The machine was implemented in the VHDL to simulate the circuit of the
architecture and also run it on an FPGA. The architecture is similar to the
one of the machine used for the SSL method with the Fourier transform
presented in chapter 6. The core of the machine was reduced to 3 columns,
as shown in figure 7.1. Thus, each slice has 3 columns where each of the 3
columns compares the value of the signal of it respective microphone m1,
m2, m3 with the reference microphone m0.

However, the preprocessing module for the on-chip likelihood computation
was modified and adapted to the new probabilistic model. The goal is to
design a module which computes the likelihoods on chip according to the
probabilistic model described in section 7.1. Remember, we want to compute
the likelihoods as defined in equation 7.5:

P (mi
(t−τ i(c))|m

0c) = 1√
2πσ

exp
(
−

(mi
(t−τ i(c)) −

a(c,i)
a(c,0) ·m

0
t)2

2σ2

)
As in chapter 6, we tabulate the Gaussian distribution to avoid the on-

chip computation of the exponential of the normal distribution. Nevertheless,
we need to compute the following difference to address the right value of the
ROM Gaussian:

mi
(t−τ i(c)) −

a(c, i)
a(c, 0) ·m

0
t (7.8)

117

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

In the equation above, we can see that the τ i(c) is applied to each microphone
mi to compute the right time index t− τ i(c). If we do so, one might notice
that we need to store a lot of microphone values since the interval for which
we will need the samples is T + 2τmax with τmax = maxi∈I,c∈C τ i(c) the
maximal delay which can occur in this setup. However, if we apply the offset
on the reference microphone 0, we will only have to store m0 on the big
interval. Hence equation (7.8) changes into:

mi
t −

a(c, i)
a(c, 0) ·m

0
(t−τ i(c)) (7.9)

Note that the function τ i(c) is previously computed and stored in a table as
it depends on the microphone mi and the position c. Moreover, the memory
needs is decreased and can be illustrated as shown in figre 7.4.

M0

M1

M2

M3

Max delay Max delayRecording time

Figure 7.4: Different microphones used for the hardware implementation of
the SSL method.

Thinking about the on-chip implementation of this computation, one can
speed up the computation equation (7.9) by parallelizing the steps. Therefore,
we rewrite the equation as:

a(c, 0)
a(c, i) ·m

i
t −m0

t−τ i(c) (7.10)

Using this trick, the time index t− τ i(c) for microphone m0 and the multipli-
cation a(c,0)

a(c,i) ·m
i
t can be computed at the same time. Note that we tabulate

the fraction a(c, 0)/a(c, i) to avoid to do this division on chip. This depends
of the pair of microphones mi and m0 which is considered and also the
position c. Therefore, as we have a total of 4 microphones including the
reference microphone m0, we have for each of the 3 pairs a table having
the dimx × dimy lines in our memory block. Next, the global subtraction
is calculated. The result of the subtraction is used to address the Rom

118

7.1. PROBABILISTIC MODEL WITH ATTENUATION

Gaussian to obtain the final likelihood value. The computation is performed
in parallel for all the columns. Each column is running sequentially. The
overall process is shown in figure 7.5.

Register

Memory

ROM Gaussian

ROM 𝜏i(c)

ROM A0/Ai

b
j,i-1

b
j,i

SB Gen.

Memory

Memory

Line index

Time index t

Memory

Memory

OP(j,i)

t - 𝜏i(c)

ROM Mi

ROM M0

G(0,σ2)

Figure 7.5: Preprocessing of the likelihood on-chip for the temporal local-
ization method.

However, when doing so we change the variance σ2 as we need to divide
by the attenuation value a(c, i) and hence this modifies the variance. Luckily,
after studying the impact of this modification on the formula, we noticed
that the result does not change as long as we are only interested by the
maximum of the distribution. The distribution remains extremely peaky.

Due to this technique we are able to compute on chip the likelihoods. To
reduce the circuit area and hence the power consumption, the computation
is performed in fixed point. Both the offset and the attenuation fraction is
represented on 8 bits. However, since the attenuation fraction is a comma
value, it is represented with 4 bits before and 4 bits after the comma.

7.1.4 Experimentations

In this section, different experiments are presented to analyze the impact of
the different parameters of the system on the overall localization performance.
The first part of the presented results were obtained in simulations. The
second part of the experiments are done using the VHDL implementation of
the Bayesian machine.

Impact of the size of the frame

One very important parameter of our system is the frame size. In this section
we present different results obtained while modifying the size of the frame,
i.e. the recording time T. The number of samples T used by the systems
directly impacts the performance of the system. When T increases, the

119

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

system requires more time to process the data and hence more energy to
perform that localization. However, it is critical to have a minimum amount
of samples that are studied to localize the source as it significantly changes
the quality of the result.

In figure 7.6 the probability distributions for different frame sizes are
provided. We run the system with frames of size 1, 5, 10, 15, 20, 30, 50
and 100 samples. As the results show, a minimum amount of samples is
necessary. When using 30 samples and more to localize the source, the
quality is acceptable and the distribution becomes peaky. Therefore, our
standard test case uses 30 sound samples.

However, as figure 7.6h shows, using 100 samples drastically increases
the obtained localization quality. Nevertheless, on have to keep in mind
that using 100 samples requires more than 3 times the time required by our
standard case.

In conclusion, the most appropriate frame size has to be chosen according
to the setup. It is a clear trade off between the computation time and the
result quality.

Robustness to noise

As our homemade sound simulator does not compute the reverberations,
we tested our system by adding noise to the signal. As we can consider
reverberations as noise to our system.

We add independent Gaussian noise to each of the simulated signals
recorded by the microphones. In this section we run the system for different
values of sigma σnoise.

Figure 7.7 provides localization maps for different values of σnoise for
σnoise = 1, σnoise = 2 and σnoise = 10.

One can see that adding more noise to the signals decreases the quality
of the result. Especially for σnoise = 10 in figure 7.7c, the result has 2 peaks
at 2 different distant places on the map with the first one at 255 and the
second at 229.

In conclusion we can say that the system is robust to noise. However,
too much noise increases the error rate of the method. Moreover, the added
noise does not change the phase difference between the different microphone
signals, which can be the case with real reverberations.

120

7.1. PROBABILISTIC MODEL WITH ATTENUATION

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) 1 sample
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) 5 samples
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) 10 samples

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d) 15 samples
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(e) 20 samples
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(f) 30 samples

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(g) 50 samples
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(h) 100 samples

Figure 7.6: Examples of localization when using different size of frames
(recording time T).

Running in the real world

As in chapter 6, we confronted the system with the real world. Therefore, we
modified the setup in our experimentation room. We recorded some signals
with the setup as shown in figure 7.2.

In figure 7.8, a small portion of the signal is provided. The signals of
the four microphones are each plotted in a separate color. This illustration
shows how different the signals are although they recorded the same signal
by the sound source. As the microphones are located in the corners of the

121

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) Sigma = 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) Sigma = 2
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) Sigma = 10

Figure 7.7: Examples of localization when adding noise to the recorded
signal.

Figure 7.8: Microphone signals obtained in a real world recording.

room, it is obvious that the signals are shifted in time. However, our sound
source localization method does not work in the real environment. This
is due to the used attenuation, defined in equation (7.2). The attenuation
model we encounter in the real world in our microphones is very different.
As our method is extremely sensitive to the attenuation, it does not perform
well. Especially because the gain on the microphones differ from each other
and it is impossible to tune them precisely.

Therefore, it might be interesting to find a method which is not dependent
of a precise attenuation model.

122

7.1. PROBABILISTIC MODEL WITH ATTENUATION

Circuit area

One of the main motivation for this localization method working without
the Fourier transform is to reduce the circuit area and hence the power
consumption. We studied the circuit area as we did for the SSL method
presented in chapter 6.

Hierarchy Resources FPGA (Comb ALUTs) Memory RAM (bits)

top_SSL_FPGA 5219 44906
→ top_SSL 4342 (100%) 43008
→ top_preprocess 0 (0%) 0
→ top_BM1 4306 (99%) 43008
→ BM1_core 3383 (80%) 0
→ Control 92 (0.2%) 0
→ Memory_module 828 (19%) 43008

Table 7.1: Circuit area measurement of the system mapped on the FPGA
for the SSL without Fourier transform.

In table 7.1 we provide the numbers about the circuit resources in terms
of ALUTs and required memory. One can see that the preprocessing part
(top_preprocess) is non-existing since we removed the Fourier transform by
using this method. Moreover, numbers are much small than in the method
of chapter 6. However, one has to consider that in this case the circuit has
only three columns since each slice is dedicated to the temporal comparison
on one specific time sample t. Therefore, the comparison is not very doable
like that.

We modified the parameters of the circuit to generate the simulation
for a circuit of 10 columns and 10 slices as the circuit of chapter 6 did
have. Table 7.2 provides the measurements. In blue, the method of chap-
ter 6, using the Fourier transform. In red, the method presented in this
chapter which does not utilize the Fourier transform. The preprocessing
part disappears in the new method since the Fourier transform is not used.
Note that the on-chip likelihood computation is done in the memory module
(memory_module). Both circuits implement a Bayesian machine with 64
lines, 10 columns and 10 slices. The total circuit area (top_SSL) has been
reduced by approximately 30% and the memory needs were reduced by 55%.
However, this came at a cost of the increasing memory module since the
on-chip likelihood computation is more complex for this method since we
compute a multiplication and several substractions. This made the memory
module increase by approximately 60%.

123

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

Architecture Comb ALUTs RAM (bits)
15039 381605top_FPGA 11223 145257
13923 315432→ top_SSL 9996 143360
4927 131112→ preprocess — —
8931 184320→ top_BM1 9992 143360
7030 0→ BM1_core 7004 0
92 0→ control 100 0

1803 184320→ memory_module 2884 143360

Table 7.2: Circuit area measurement of the system mapped on the FPGA
for the SSL without Fourier transform (in red) compared to the SSL with
Fourier transform (in blue).

7.2 Probabilistic model without attenuation

In the previous sections, the probabilistic model using the attenuation was
introduced and also analyzed. However, the testing in real environment
showed us how sensitive the method is to the attenuation model since a
small variance in the gain of the microphone changes a lot in the overall
performance of the method. As it is very difficult to set the same gain for
all microphones due to the analog part of the system, we studied another
method which does not used the attenuation to localize the source.

This method does also entirely work in the temporal domain. It is based
on the temporal comparison of two recorded signals. As the model with
attenuation compares all microphones to one reference microphone, in this
model the microphones signals are compared in pairs. The microphones of
one pair are placed close to each other to compare their signals and extract
an angular information.

We use 2 microphone pairs. More precisely, m0 and m1 form the first
pair and m2 and m3 form the other pair.

In overall, given the signal recorded by the microphones m, the posterior

124

7.2. PROBABILISTIC MODEL WITHOUT ATTENUATION

probability distribution over C is computed as follows:

P (C|m) ∝
T∏
t=0

P (m1
(t−τ1

0 (c))|m
0
t ,C) · P (m3

(t−τ3
2 (c))|m

2
t ,C) (7.11)

The likelihoods P (mi1
(t−τ i(c))|m

0c) and P (mi2
(t−τ i2i1 (c))

|mi1c) are computed

differently:

P (mi2
(t−τ i2i1 (c))

|mi1c) = 1√
2πσ

exp
(
−

(
mi2

(t−τ i2i1 (c))
−mi1

t

)2

2σ2

)
(7.12)

To compute the distribution, equation (7.11) is evaluated for each point
of the 64× 64 source position grid and for a series of time samples t.

7.2.1 Modified setup

As mentioned above, the setup was changed to run this method as the
microphones work in pairs and are closer located. Therefore, the setup is
close to the one used in chapter 6. The microphones are located in the middle
of the walls of the room with an inter-microphone distance equal to 20cm.
Figure 7.9 illustrates the modified setup.

6,4m

6,4m

Figure 7.9: Setup of the room simulated to generate the sound for our
experiments for the model without attenuation.

125

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

7.2.2 Localization map

In this section we show the result when running the Bayesian machine to
perform the inference. Not that the following results are obtained in a setup
in which we do not add any noise to the microphones.

Figure 7.10 shows the result for different recorded signals. In some portion
of the signal, the localization method works a poor result quality, as shown
in figure 7.10a. However, as for example in figure 7.10b, in other signal
portion the system localizes the sound source much better and the obtained
distribution gets peaky. Note that there are two cells in the grid with a
maximum. This is due to parameters which have to be tuned to obtain
a more peaky distribution. Moreover, as the figure 7.10c illustrates, some
signal portions provide an extremely peaky distribution. Note that the max
in this case is in the cell next to the real sound source which is located in
the cell above ths black one.

(a) Start at 1100 (b) Start at 1800
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) Start at 2500

Figure 7.10: Localization maps provided by method using temporal compar-
ison without attenuation model.

7.3 Conclusion

In this chapter, two probabilistic methods to perform sound source localiza-
tion in the temporal domain have been presented. The first one uses the
attenuation of the signal as additional feature to localize the source. The
probabilistic model of the first method has been introduced as well as the
adjustments on the Bayesian machine to compute the probability distribution.
Moreover, the VHDL implementation has been described, which also includes
the on-chip likelihood computation method to be adapted. Experiments
have been run to study the performance of this method. Also, the hardware
implementation of the machine allowed to compare the circuit area to the

126

7.3. CONCLUSION

method presented in chapter 6.
A second method has been introduced which does not use the attenuation

of the signal in the model. Simulation results using this method have been
presented. Although both presented methods provided promising results
in simulation, their performance still needs to be shown in a real world
environment.

Presenting these two methods showed that the Bayesian machine can be
used for different applications and different models and easily be adapted to
them. Moreover, the final implementation of the methods are very lightweight
in terms of circuit area.

127

CHAPTER 7. MONO-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

128

Chapter 8

Multi-Source localization in
the temporal domain

Contrary to the methods presented in chapter 6 and chapter 7 were dealing
with the mono-sound source localization task, this chapter presents a method
for localizing multiple sound sources speaking at the same time. The original
goal in our research project was to localize a sound source. However, while
working on the sound source separation task, which will be presented in
chapter 9, we noticed the need of having a sound source localization method
able to deal with two sound sources. The method presented in this chapter
is based on the mono-source localization method working in the temporal
domain with attenuation presented in previous chapter, chapter 7. This
concept was presented in an conference paper at the 2019 European Signal
Processing Conference (EUSIPCO) in A Coruña, Spain [48].

This chapter is organized as follows. First, the localization method is
presented. Second, the implementation in hardware is described. Third,
simulations are done to show the performance of the system as well as it
robustness to several setups.

8.1 Localization method

The method presented in this chapter is working in two major steps. In the
first step, it performs sound source localization on a single (very) short time
frame. This first step provides a probability distribution containing mainly
one peak. It is run on several small time frames. In the second step, we fuse
the localization information obtained by the first step for all the frames.

In the first step, we use the method with attenuation presented in chapter 7

129

CHAPTER 8. MULTI-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

and perform the localization as there would only be one sound source in the
room. As the size of the time frames is very small (i.e. only a few samples),
we assume that the signal contains the energy of one of both sources.

Let F be the total number of frames, T the total recording time for the
frame expressed in number of samples, I the number of microphones used and
J the number of sources placed in the room. The probabilistic variables are
are the same as in the previous chapter with M the matrix of the stochastic
variables associated to the sounds recorded by the microphones. Moreover,
Cj = (Cjx, Cjy) is the probabilistic variables associated to coordinates of the
sound source j with Cjx.

The localization is made in small time intervals called frames. A frame is
a set of T consecutive samples taken during this time window. It is assumed
that during each frame the sound source does not move.

This section is split into the two main parts of the system. First, the
probabilistic model used in each frame performing mono-source localization
is described. Second, the fusion method is described.

8.1.1 Probabilistic model for single-frame single-source SSL

In this section the probabilistic model used in the first step of the localization
system is described. The inference on this model is performed for each of
the frames. The probabilistic model is based on the model presented in
chapter 7. If you skipped chapter 7 while reading this document, please refer
to chapter 7, more precisely to section 7.1 where the probabilistic model is
described in a more detailed manner.

In short, in each frame f we compute the following distribution using the
Bayesian machine:

P (C|mf) ∝
T∏
t=0

I∏
i=1

P (mi
f,(t−τi(c))|m

0
f ,C) (8.1)

where each conditional distribution P (mi
f,(t−τi(c))|m

0
f ,C), also called likeli-

hood, is given by:

P (mi
(t−τi(c))|c,m

0) = N (a(c, i)
a(c, 0) ·m

0
t , σ

2) (8.2)

where N (µ, σ2) denotes the Gaussian distribution with mean µ and vari-
ance σ2. Source location c is estimated on a very short time-frame basis by
finding the maximum value of the product in the right part of (8.1).

130

8.1. LOCALIZATION METHOD

A keypoint of this method is that this approach to SSL works for a
reasonable number of very short frames even if the microphone signals are
composed of overlapping speech signals produced by two speakers speaking
simultaneously from two different locations. Indeed, for a reasonable amount
of such frames, the speech signal energy from one speaker has much larger
energy than the signal from the other speaker, even if the speakers are
speaking simultaneously. This is because a speech signal is a centered signal
with fluctuating energy. For example, in a vowel, some successive samples
have high energy, corresponding to a vocal fold pulse, and some successive
samples have low energy, corresponding to the end of the vocal tract response
to the pulse (before the next pulse reinjects energy). Therefore, at many
occasions a few successive speech samples with high energy produced by one
speaker correspond to a few successive samples with low energy produced by
the other speaker, and vice versa. For very short time-frame containing such
portions of speech signals, the localization method will work well. Moreover,
due to the probabilistic approach and the facility of modelizing uncertainty
using probabilistic models, one can say that our model does treat the second
source present in the recorded signal as noise.

In practice, we have to find a trade-off between limiting the number of
samples (for the above assumption to remain valid) and ensuring robust
calculation of the posterior (8.1). Since the signals are recorded at 8-kHz
sampling frequency and 8-bit quantization, our typical frame size of T = 30
samples is equivalent to 3.75ms. This indeed corresponds to less than one
period of voiced speech with fundamental frequency within 100-200Hz. Note
that this comes in contrast with the usual short-term frames used in the
STFT-based SSL methods and in speech/audio analysis in general (typically
within 20-30ms).

Of course, frame-wise localization will not work well on frames where the
signals from the two speakers are both of either same energy level. However,
the fusion process described in the next section deals with this problem.

8.1.2 Fusion of frame-wise results for multiple-source SSL

The next step of the SSL method is the fusion of the information provided
by the probabilistic model on very short time-frames, in order to provide
multi-speaker localization.

First, as stated in the previous subsection, a frame-wise source location
estimate ĉf is computed for each frame f , as the candidate location which

131

CHAPTER 8. MULTI-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

has the maximum posterior probability in that frame:

ĉf = argmax
c∈C

P (c|mf). (8.3)

Then a global distribution map Pglob is created which counts for each candi-
date position c ∈ C, how many times it was selected as the most probable
position ĉf over all F frames. Typically, this counting process is done for a
"reasonably large" number of frames, F = 50 in our simulations. Moreover,
we spaced the frames with an interval of 70 samples (8.75 ms) in order to
maximize the chance to capture different configurations of speech signal
mixtures from the two speakers (see previous subsection). A bloc of mi-
crophone signal used to perform multi-source localization thus represents
0.625 s, which is quite reasonable for such a task.

As a result of choosing a sufficiently large number of very short time-
frames, the obtained global distribution Pglob is in general very peaky and
the locations of the two sources are clearly visible on the map (examples are
provided in section 8.3.2). Final multi-source SSL then simply consists in
selecting the two predominant peaks in the map. Note that, by doing so,
we assume an a priori that there are two sources in the scene and we thus
select two peaks. The alternative way is the unsupervised mode where a
threshold is set for peak selection, see e.g. [76]. This latter approach has the
advantage to automatically provide an estimate of the number of sources,
which is generally unknown in practice, but it has the drawback of being
sensitive to the threshold setting. However, as for our application, the two
peaks corresponding to the two speakers are generally predominant in Pglob,
the boundary between the supervised and unsupervised modes gets thin.

After each multi-source localization on a bloc of F frames, the map Pglob
is reset to zero, and a new counting is processed on the next bloc.

8.2 Implementation on the Bayesian machine
In this section, the Bayesian machine used to perform the inference of the
probabilistic model is presented. It is based on the architecture presented
chapter 6. Since the architecture uses stochastic computing, the likelihoods
which are multiplied in the inference equation (8.1) are represented as stochas-
tic bit streams and multiplied using AND-gates.

For this aim, the BM is structured as a w × (T × (I − 1)) matrix, where
w = card(Cx)× card(Cy) is the number of source location candidates on the
grid. Figure 8.1 shows a schematic representation of the BM architecture
for 3 lines and 3 columns (for all 3 microphones i, i+ 1 and i+ 2 at a given

132

8.2. IMPLEMENTATION ON THE BAYESIAN MACHINE

OP(1,1)

OP(2,1)

OP(w,1)

OP(2,2)

OP(1,2)

OP(w,2) OP(w,n)

OP(2,n)

OP(1,n)C1

C2

Cw

b
1,1

b
2,1

b
w,1

b1,2

b2,2

bw,2

b
1,n

b
2,n

b
w,n

b1,n+1

b2,n+1

bw,n+1

Counter1

Counter2

Counterw

Counterbank
 frame

Counter1

Counter2

Counterw

Counterbank
global fusion

Memory

b
2,2

b2,3

SB Gen.

OP(2,2)

m1,m0 m2,m0 m3,m0

m2,m0

Figure 8.1: Simplified representation of the Bayesian machine architecture
used to compute the inference equation for SSL and the fusion.

time sample t). Each line of the machine computes (8.1) for a specific value
of source location c. In each column one microphone i ∈ [2, I] at a given
time t ∈ [1, T] is compared to microphone 1 which leads to the evaluation
of P (mi

(t−τi(c))|cm
0). An AND-gate is present in each OP-block, which

represents the multiplication in stochastic computing. In our simulations we
used I = 4 microphones. The machine had thus N×(I−1) = 30×(4−1) = 90
columns and 1, 024 lines considering a grid of 32×32 possible source locations.
At the end of each line, counters (in blue) count the number of "1"s in the
output stochastic bit stream.

However, the fusion method is new in the architecture and needs to be
added in our circuit design. As the fusion method was developed with the
final architecture in mind, it was kept as simple as possible. Therefore, an
additional counterbank (in green in the figure) was added to the existing one
(the blue counters). At the end of each frame, the line with the maximum
counting activates the corresponding counter in the further global fusion
counterbank (in green), which implements the fusion process explained in
section 8.1.2, and frame-wise (blue) counters are reset to zero.

133

CHAPTER 8. MULTI-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

8.3 Simulations

In this section, we present the simulations conducted to evaluate the SSL
method.

8.3.1 Setup

Simulations have been processed with a 6.4m× 6.4m room discretized in
20 cm× 20 cm tiles, leading to a grid of 32× 32 = 1,024 candidate 2D source
positions (x, y) for c.

3,0m

3,0m

Figure 8.2: Simulated room setup for our multi-source localization method.

As shown in figure 8.2, I = 4 microphones have been placed in the
room. Each pair was located in the middle of two adjacent walls. The
inter-microphone distance was 20 cm. For our first simulations, the sources
have been placed in the middle of the grid cells indexed by (8, 24) and (24, 8),
as illustrated in figure 8.2.

Utterances from the TIMIT database [53], resampled at 8 kHz, have
been used as speech material. To generate the multichannel mixture signal
recorded at the microphone array, a simple spatial sound simulator has been
used which implements the spherical wave model as defined in equation (1)
in [52] (see equation 7.7).

Let us remind that in our simulations, we performed the "individual"
frame-wise localization on F = 50 frames of T = 30 time samples each (i.e.
3.75ms) and the multi-source localization with frame-wise results fusion is
performed on successive blocs of 0.625 s.

As previously mentioned, the design of our localization method was driven
by the low-power stochastic architecture that computes the inference of our
probabilistic model.

134

8.3. SIMULATIONS

8.3.2 Localization performance

Let us first present the localization results obtained on single very short
time-frames, before showing the final distribution obtained by the fusion
process explained in section 8.1.2.

Figure 8.3 shows the posterior distribution P (C|m) obtained for 3 dif-
ferent frames, as a function of candidate 2D source location on the 32 × 32
room grid. The goal is to detect the two sources, which in the grid cells are
indexed by (8, 24) and (24, 8). The darker a cell is, the higher the probability
for this cell (in other words, 1 is black and 0 is white). For the purpose
of well illustrating the behavior of the mehod, we selected 4 frames with
quite different, though representative, type of results. Indeed, as one can see,
frame 1 and frame 3 each locate perfectly one of the two sources. However,
in some frames, the localization does not provide a clear maximum position,
as shown in frame 29 and frame 46. However, most frames provide results
similar to frame 1 and frame 3.

When fusing the information from 50 frames following the strategy
explained in section 8.1.2, the resulting map shows two clear maxima located
at the actual source positions, as seen in figure 8.3(d). The map has two black
dots which correspond to the two source locations. Some cells are in light
grey (representing a low probability) which shows that these cells obtained
the maximum of the posterior distribution P (C|m) for some frame(s). The
localization method is robust in the sense that the contrast between the
detected/actual sources locations (black dots) and the other cells with non-
zero probability (light grey) is strong enough. Quantitatively, for this example,
the source located at (24, 8) is detected by the frame-wise posterior maximum
in 16 frames, and the source at (24, 8) is detected in 15 frames. All other
cells (in light grey) are counted at most 3 times as frame-wise maximum.
This means that the remaining randomly-positioned 19 frame-wise maxima
do not impact on the final result. This shows the importance to find a good
setting for the frame size T and for the number of frames F .

In summary, due to the fusion process over the F frames, a robust blind
source localization method is obtained.

As briefly mentioned in section 8.1.2, because of this high contrast between
the two main peaks and the other non-zero values in the global localization
map, the system could automatically determine the number of sources by
counting the number of peaks over a certain threshold. However, this was
not systematically tested in the present simulations.

135

CHAPTER 8. MULTI-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

(a) Frame 1 (b) Frame 3

(c) Frame 29 (d) Final distribution map after fusion

Figure 8.3: (a) to (c): Posterior distribution map obtained for 3 very short
time-frames of a given 50-frame bloc. (d) Final distribution map after fusion
over 50 frames. The two black squares correspond to the actual positions of
the two sources.

136

8.4. CONCLUSION

8.3.3 Robustness to various source locations

To analyze the performance of the localization method more quantitatively,
simulations with 2 sources were conducted for various source locations. In
total, 12 different setups have been evaluated with different randomly chosen
source positions. The true source position has been compared to the estimated
sources positions.

Results show that out of the 12 setups, in 4 cases, both sources were
located at the right position in the grid. Moreover, in 6 out of the 12
cases, one source was estimated at the true position and the other one was
estimated in an adjacent cell in the grid. Finally, in 2 cases, both sources
were positioned in a neighbouring cell next to their respective true position.
In practice, considering that one cell is 20 cm wide, the maximum error done
by the system is about 28 cm (in case of a diagonal neighbor cell). Analyzing
the error distance over the 24 estimated positions (2× 12), an overall average
error distance of 0.12 m between the estimated position and the true position
is obtained.

8.4 Conclusion
In this chapter, a multiple sound source localization method has been pre-
sented. The method works in two main steps. First, we use the method
described in the previous chapter (chapter 7) to localize one sound source
in very short time frames (only a few signal samples are required 3.75ms).
Second, the results of the different frames are fused to obtain the global
probability distribution, which includes the different sources. The method
has been implemented on the Bayesian machine. The fusion process has
been added to the existing architecture. Note that the fusion process is very
simple to implement in hardware and thus not requiring a lot of resources.
Simulations have been presented to show the performance of the system
and the robustness in various setups, which is based on the peakiness of the
global localization map.

137

CHAPTER 8. MULTI-SOURCE LOCALIZATION IN THE TEMPORAL DOMAIN

138

Chapter 9

Source separation

The idea of this thesis is to work on two different applications in the signal
processing area, namely the sound source localization and the sound source
separation. Both applications require different kinds of algorithms, which
results in another type of machine for us.

Opposed to the previous chapters dealing with the sound source localiza-
tion application, i.e. chapter 6, chapter 7 and chapter 8, this chapter presents
a way to perform audio source separation. The chosen method described in
this chapter is based on a MCMC sampling method: the Gibbs algorithm.

The presented method is working in two main parts. First, the sources
need to be localized. Second, the separation is computed knowing the source
positions. A solution for the first step has already been described in chapter 8.
This method delivers the source positions to the separation method, which
is the second part of the system.

This chapter is organized as follows. First, the general model is presented
before describing how we apply the Gibbs sampler on it. Then, the Bayesian
sampling machine for this specific application is introduced. Moreover, high
level simulations are shown. Finally, simulations of the machine dedicated
to this application are described.

9.1 General model
In this section we introduce the probabilistic model used for the source
localization and separation method. Therefore, we first need to define the
probabilistic variables:

• M : the matrix of the stochastic variables associated to the sounds
recorded by the microphones withM i

t the stochastic variable associated

139

CHAPTER 9. SOURCE SEPARATION

to microphone i at time t and mi
t its value.

• S: the matrix of stochastic variables associated to all the sounds
emitted by the sources with Sjt is the stochastic variable associated to
the sound emitted by source j at time t and sjt its value. Each value of
S is discretized on g = dims values.

• Cj = (Cjx, Cjy) : the probabilistic variables associated to coordinates
of the sound sources. Cj denotes the position of source j with Cjx ∈
[0,dimy] and Cjy ∈ [0, dimy] with dimx and dimy the dimensions of the
room in the x and y axis.

Let T be the total recording time on which we are working expressed in
number of samples, I the number of microphones used and J the number of
sources placed in the room. The values of the stochastic variables associated
to the sounds recorded by the microphones are discretized between −mmax
and mmax and so, the values of the mi

t are taken in this discrete set :
mi
t ∈ {−mmax, . . . − 1, 0, 1, . . . ,mmax}. The same applies to the stochastic

variables associated to the sound emitted by the sources: sit ∈ {−smax, . . .−
1, 0, 1, . . . , smax}.

Given a source location cj , and the position of microphone i, the time
difference expressed in number of samples:

δji = d(j, i) · Fs
v

(9.1)

where d(j, i) is the distance between source j and microphone i, v is the
sound celerity, and Fs is the sampling frequency.

We can compute the maximal time difference δmax, which is the maximal
time difference occurring between any microphone and any source in the
chosen setup. In practice, −δmax denotes the time before which no signal
will ever reach any microphone at time 0:

δmax = max
i,j∈I×J

δji (9.2)

Moreover, as we recorded the microphone signals on the time interval {0, ..., T},
we have to take into consideration the source signals on the time inter-
val {−δmax, ..., 0, ..., T} since at time 0 we will receive the source signals
emitted at time −δmax. In other words, when using the free field model, only
the values of sj

t−δji
should be considered when computing M j

t . This means

that if t− δji < −δmax, the source j is not taken into account as the sound
can physically not be received by microphone i.

140

9.2. SAMPLING USING GIBBS

The joint distribution of our model P (S,C,M) can be written as:

P (S,C,M) = P (S)P (C)P (M |S,C) (9.3)

When discretizing the variable M , we can rewrite the decomposition in
the equation 9.3 as:

P (S,C,M) = P (S)P (C|S)
I∏
i=1

T∏
t=1

P (M i
t |S,C) (9.4)

= P (S)P (C)
I∏
i=1

T∏
t=1

P (M i
t |S,C) (9.5)

To compute the equation 9.4, we assume that we have no knowledge about
the sources Sjt , which leads to a uniform distribution on S. Considering
P (C) we also define it as a uniform distribution. Since the microphone value
is the mixture of the different signals emitted by the different sources and we
assume it to follow a normal distribution, we define P (M i

t |c, s) as follows:

P (M i
t |c, s) = P (M i

t |c, s0
t−δji

, ..., sj
t−δji

, ..., sJ−1
t−δji

) (9.6)

= N (mi
t;

J∑
j=0

a(cj , i)sj
t−δji

, σ) (9.7)

with a(cj , i) the attenuation factor between a source j and a microphone i.
This function is defined according to equation (1) in [52] (see equation 7.7).
The signal on microphone i is the weighted sum of all the emitted signals
with a given noise σ.

The boundary condition is as follow:

sj
t−δji

= 0 if t− δji < −δmax (9.8)

9.2 Sampling using Gibbs
The goal in this application is to separate the sources which are recorded as
a mixture by the microphones. Therefore, we need to sample the distribution
P (C,S|m) to obtain samples for the signals and for the positions of the
sources using the model previously described. Using the Gibbs algorithm,
one could sample the distribution P (C,S|m), which samples the positions
and the signals of the sources at the same time. However, for several
reasons, we decided to focus on a sub-problem which is P (S|cF,m) where

141

CHAPTER 9. SOURCE SEPARATION

cF are the positions of the sources estimated by our multi-source localization
method presented in chapter 8. Some other problems such as sampling from
P (C,S|m) directly or from P (C|sF,m) were not considered in this work.
The different reasons will be discussed at the end of this chapter.

Using the Gibbs algorithm to sample the distribution P (S|cF,m) does
require to draw a sample from

P (Sjt |s
6=j
6=t , c

F,m) (9.9)

for each j ∈ {0, ..., J} and for each t ∈ {0, ..., T} where s 6=j6=t is the set of
variables including all variables s except the value sjt . Using our probabilistic
model, more precisely the joint distribution defined in equation 9.3:

P (Sjt |s
6=j
6=t , c

F,m) = 1
z
P (Sjt , s

6=j
6=t)P (cF)P (m|Sjt , s

6=j
6=t , c

F)

= 1
z′

i=I∏
i=1

l=T∏
l=1

P (mi
l|S

j
t , s
6=j
6=t , c

F) (9.10)

since P (Sjt , s
6=j
6=t) is uniform as we do not have any further information on

this distribution. However, P (cF) is a peaky distribution considered to be a
dirac in the locations of the sources such as P (C) = δc=cF).

Since most of the terms of the product found in equation 9.10 are constant
for all the values taken by Sjt , this allows to reduce equation 9.10 to:

P (Sjt |s
6=j
6=t , c

F,m) = 1
z′

i=I∏
i=1
N (mi

t+δji
; a(cFj , i)·sjt+

∑
l 6=j a(cFl, i)·sl

t+δji−δ
l
i

, σ2)

(9.11)
Equation 9.11 can be interpreted as follows: to get the information on

Sit we use the signal of each microphone i at time t+ δji . Also, we have to
consider the other sources l at time t+ δji − δli and sum all of them to obtain
the likelihood on M i

t+δji
Moreover, looking at the boundary conditions, equation 9.11 is not valid

when:

• t + δji < 0 : because the sound of source j will reach microphone i
before the recording starts

• t+ δji > T : because the recording ends before the sound emitted by
the source j could reach it

142

9.3. BAYESIAN SAMPLING MACHINE ADAPTED TO PERFORM
THE SOURCE SEPARATION

As mentioned in section 9.1, it is crucial to ensure:

t+ δji − δ
l
i < −δmax ∀j, l ∈ {1 . . . J} (9.12)

The separation method using Gibbs computes equation 9.11, for all values
of S (for all j ∈ {0, ..., J} and all t ∈ {0, ..., T}). At each Gibbs iteration, it
takes into account the current values for all elements of S and computes the
equation 9.11. Each entire iteration over all the variables of S is called a
sweep.

9.3 Bayesian Sampling Machine adapted to per-
form the source separation

In this section, we describe how the Bayesian sampling machine (BSM) has
been adapted to perform the sound source separation. The machine we use
for this task is different from the architecture we used for the localization
problem in the previous chapters. It was introduced in section 4.3.

S1
0

S2

Sampling space
S1

1 S2
1S2

0S1
T S2

T

S1

Gibbs
control

Likelihood
computation

block

Likelihoods

Sampled value
Index

Sampled
value

Current sampling space

OP(1,0)

OP(2,0)

OP(w,0)

OP(2,1)

OP(1,1)

OP(w,1) OP(w,3)

OP(2,3)

OP(1,3)s1

s2

sw

OP(2,2)

OP(1,2)

OP(w,2)

Core matrix

Sampling unit

Draw-
Gate

Memory SB Gen.

OP(2,2)

Figure 9.1: Architecture of the Bayesian sampling machine (BSM) adapted
to the source separation problem.

Figure 9.1 shows how the architecture of the BSM was adapted to the
source separation problem. In orange one can see the module, which is
mainly a memory block storing the current values in the sampling space.

143

CHAPTER 9. SOURCE SEPARATION

This memory is initialized with random numbers. Once one value has been
sampled from the distribution 9.11, the value is stored in the memory in
orange.

The sampling unit, in blue, is the heart of the machine, which is respon-
sible to compute equation 9.11. The core matrix is close to the Bayesian
machine we used for the sound source localization problem. However, in this
case the unit does not compute the overall probability distribution. It draws
a value of the distribution. This is the reason why there are no counters
at the end of the lines. They are replaced by the draw-gate, explained
in section 4.3.1. Once the value has been sampled by the sampling unit,
the value is given to the Gibbs control unit (in red), which stores it in the
sampling space memory (in orange). The Gibbs control block sets which
Sjt we want to sample and at each step the likelihoods of equation 9.11 are
computed by the likelihood computation unit (in green) which calculates
the likelihoods depending of the current values in the sampling space before
giving them to the sampling unit (in blue). The likelihoods are stored in the
memory in the right OP blocks in the sampling unit. Once all the likelihoods
are computed, the sampling unit starts its computation.

This iteration is done for every variable Sjt . Once all the variables in
the sampling space have been sampled, one sweep of the Gibbs algorithm is
completed. Typically, the Gibbs algorithm performs several sweeps before
converging.

9.4 Simulations

We have run simulations of our system to evaluate its performance. The
simulations were done in two steps. First, we implemented the algorithm
in C++/Python to test the system with different sets of parameters. In
a second step, we have run the Bayesian Sampling Machine adapted as
explained in section 9.3 to perform the source separation.

9.4.1 Simplified sound simulator

To generate the sound mixture of different microphones, we used our sound
simulator, which computes the sound signals according to the location of the
microphones and the sources. It uses the sound propagation model described
in Equation (1) in [52] (see equation 7.7). The signals of the different sources
are added to generate the final signal recorded by the microphones. Note
that our simulator does not compute reverberations. However, in some of

144

9.4. SIMULATIONS

our simulations, we added Gaussian noise to the signals to test the system
robustness.

9.4.2 Standard experimentation setup

To test our source separation system, we use a standard set of parameters
defined below.

6,4m

6,4m

Figure 9.2: Position of the speakers and the microphones to simulate the
sound for our experiments.

For the sound generation and the audio pre-processing, our standard case
contains the following parameters:

• Room size: 6.4m x 6.4m

• Number of sources: 2

• Source positions: (1.2 , 4.4) and (4.4 , 1.2)

• Sound for source 1: F1 (utterances from the TIMIT database [53])

• Sound for source 2: F2 (utterances from the TIMIT database [53])

• Microphone positions: (0.0 , 0.0), (0.0 , 6.4), (6.4 , 0.0) and (6.4 , 6.4)

• Sampling rate: 8 kHz

• Recording time: 80,000 samples (10 seconds)

• Signal discretization: g = dimS ={-128,...,0,...,+128}

145

CHAPTER 9. SOURCE SEPARATION

Figure 9.2 shows the setup use for our standard case. Note that we use
the same setup as for the multi-source localization method (presented in
chapter 8) since both systems will interact and run in the same setup. First
we localize the sources before starting the separation.

9.4.3 Sampling space

In this section, we want to illustrate the search space in which the Bayesian
sampling machine is sampling to find the signals.

S1 S2

Recording time

Signal
discretization

Recording time

S1
0 S1

1 S2
1S2

0S1
T S2

T

g

Figure 9.3: Visualization of the sampling space.

As stated in the previous section, section 9.4.2, in our standard experiment
setup, we separate 10 seconds of signal. Since our sample rate is 8 kHz, we
obtain 8000 samples per second. This means we have 80000 samples of signal
to compute for each source. We have two sources in our setup. Therefore,
we have 160000 samples to compute for both sources.

The signals are discretized on g values between {-128,...,0,...,+128}. In
total our search space contains 160, 000× 256 = 40, 960, 000 possible values.
Figure 9.3 illustrates the different dimensions of the sampling space.

Initially, the sampling rate was 16 kHz. As the sampling rate directly
defines the size of the sampling space, we reduced the sampling rate to 8 kHz,
which is commonly used for telephones as it is still suitable for human voice.
Moreover, we reduced the signal discretization to 8-bit signed as this also
reduces the dimension of the search space.

9.4.4 Separation result

In this section, we present a first result of a source separation. The setup for
this experiment is as described in section 9.4.2. We did not add any noise to

146

9.4. SIMULATIONS

the recorded signal as we want to study the separation performance of the
system. The performance when adding noise will be studied in an upcoming
section.

Figure 9.4: Signal recorded by microphone 1.

Figure 9.4 shows the 10 seconds of signal recorded by microphone 1. In
this signal, both sources speak simultaneously. One can see the that there
is no noise added to the signal recorded by the microphone since at some
points the signals is equal to 0 as both sources do not speak (i.e. signal at
t=3 seconds).

Sweep

Error

Figure 9.5: Mean squared distance between the original source signal and
the reconstructed signal as a function of the number of sweeps.

In total, we ask the system to compute 15 sweeps. In other words, the
Gibbs algorithm iterates 15 times over the entire set of searched variables. As
the number of iterations increases, the quality of the results becomes better.
Figure 9.5 illustrates the error depending on the number of iterations. The
plot shows the mean squared distance between the original source signal and

147

CHAPTER 9. SOURCE SEPARATION

the sampled signal. One can see that the error significantly decreases during
the first iterations and starts to be constant after sweep 6. The improvements
in the signal due to the sweeps 4,5 and 6 are very limited compared to the
first 4 sweeps.

Figure 9.6: Reconstructed signal of source 1 after sweep 0.

Figure 9.7: Reconstructed signal of source 1 after sweep 1.

Figure 9.8: Reconstructed signal of source 1 after sweep 7.

Figure 9.6 shows the signal of source 1 estimated by the separation system
after one sweep by the Gibbs algorithm. One can see a lot of noise in the
signal. After the second sweep, the noise is reduced, as shown in figure 9.7.

148

9.4. SIMULATIONS

Finally, after only 7 sweeps, the noise is completely removed from the signal
of source 1, as illustrated by figure 9.8.

Figure 9.9: Quality of the estimated result: original signal in red, estimated
signal in green and blue the difference between the original and the estimated
signal.

To illustrate the quality of the final result, figure 9.9 plots 200 samples
of the original signal and the estimated signal. In red the original signal, in
green the estimated signal and in blue the difference of them. As both the
original and the estimated signal totally overlap, one can not see the original
signal (in red).

In total, the computation time required to separate the 2 sources on 10
seconds of signal is 6.80 seconds. This is the time needed to perform the 15
iterations of Gibbs. However, the signals were already perfectly separated
after 7 sweeps. In practice, one could stop the computation after the first 7
sweeps. Moreover, when considering that the system only needs 7 sweeps,
the total computation time would be 2.67 seconds. Note that this is much
faster than real time since we are estimating 10 seconds of signal.

9.4.5 Separation result with noise

As our sound simulator does not add any reverberation in the computed
signal, we tested the system by adding Gaussian noise to the signal of the
microphones. This also shows the robustness of the system.

149

CHAPTER 9. SOURCE SEPARATION

Figure 9.10: Signal recorded by microphone 1 with added Gaussian noise.

Figure 9.10 shows the 10 seconds of the signal recorded by microphone 1.
One can see that the signal does never get completely to 0 (silence) as we
have added some Gaussian noise to the signal.

Figure 9.11: Mean squared distance between the original source signal and
the reconstructed signal as a function of the number of sweeps when adding
Gaussian noise to the recorded signal.

We run the Gibbs algorithm for 15 sweeps. Figure 9.11 shows the
evolution of the mean squared distance between the original source signal
and the estimated signal as a function of the number of sweeps. The error
decreases very quickly and already after 5 sweeps the final result is obtained.

Figure 9.12 shows the signal of source 1 estimated by the separation
system after 15 sweeps (same signals as after 5 sweeps as the algorithm
already converged). One can see that the signal still has a lot of noise.
This obtained noise is due to the Gaussian noise added to the system when
simulating the recorded signals.

150

9.4. SIMULATIONS

Figure 9.12: Reconstructed signal of source 1 after sweep 15.

Figure 9.13: Quality of the result: original signal in red, estimated signal in
green and blue the difference between the original and the estimated signal.

Moreover, figure 9.13 shows the quality of the estimated signal. Compared
to figure 9.9, the difference (plotted in blue) is not completely equal to zero.
This means the system is not capable to remove the Gaussian noise from the
signal.

Another way to visualize the noise still present in the signal is to analyze
the spectrogram of the estimated signal. Figure 9.14 shows the spectrogram.
In the spectrogram, dark means no energy in the signal. Red means a bit
of energy and the brighter the higher the energy in the signal. One can see
that there are a few bright zone along the signal which represent the actual
source signal. However, the spectrogram is mainly red due to the noise.

In conclusion, we can say that when Gaussian noise is added to the

151

CHAPTER 9. SOURCE SEPARATION

Figure 9.14: Spectrogram of the estimated signal for source 1.

recorded signals, the system still performs well. However, the noise is still
present in the estimated signals of the sources.

9.4.6 Separation result using only two microphones

The results presented in the previous sections were using the four microphones
presented in our standard setup in section 9.4.2. This setup was chosen
due to the setup used for the multi-source localization method described in
chapter 8. However, such a setup is called a over-determined setup as we use
four microphones to separate two sources.

6,4m

6,4m

Figure 9.15: Position of the speakers and the two microphones.

In this section, we want to analyze the system performance when using
only two microphones. Therefore, the setup has been slightly modified. We

152

9.4. SIMULATIONS

only use two microphones each placed in the middle of two adjacent walls
of the room. For this experiment, we generate the sound according to the
setup illustrated in figure 9.15.

Figure 9.16: Mean squared distance between the original source signal and
the reconstructed signal as a function of the number of sweeps.

When running the separation algorithm, we can see that the convergence
of the Gibbs algorithm is as fast as with four microphones, as illustrated in
figure 9.16.

Figure 9.17: Reconstructed signal of source 1 after sweep 6.

The final result is shown in figure 9.17. One can see the signal to be
separated. However, as in the previous section, the final result still contains a
lot of noise, which has been added to the signals recorded by the microphones
as our sound simulator does not simulate reverberations.

153

CHAPTER 9. SOURCE SEPARATION

9.5 Running the Bayesian sampling machine

Until now all the simulations presented above were performed to validate the
algorithm and show the impact of different parameters on the result. How
the Bayesian sampling machine was adapted to the sound source separation
problem was already described in section 9.3. However, no simulations or
experiments implemented the machine. This is the purpose of this section.

In the overall architecture illustrated in figure 9.1, one can recognize
the matrix-wise placement of the OP-blocks as it is done in the Bayesian
machine used for the sound source localization task. Here, this machine is
not used to compute the entire distribution but to draw from the desired
distribution. Hence the replacement of the counters at the end of the lines
by the draw-gate.

Remember, for each j ∈ {0, ..., J} and for each t ∈ {0, ..., T}, we draw
from equation 9.11 which is rewritten here:

P (Sjt |s
6=j
6=t , c

F,m) = 1
z′

i=I∏
i=1
N (mi

t+δji
; a(cFj , i)·sjt+

∑
l 6=j a(cFl, i)·sl

t+δji−δ
l
i

, σ2)

(9.13)
In this equation, there are mainly four likelihoods to multiply and, as stated
above, the likelihoods are following Gaussian distributions. The draw-gate
and its specific way of operating, as explained in section 4.3.1, guarantees
the Gibbs algorithm to converge. However, while implementing the machine,
we looked closer at the Gaussian distributions and noticed that the variance
of these normal distributions had a huge impact on the result.

In some cases, the four Gaussian distributions are clearly separated into
two groups, as shown in figure 9.18. In this figure, all the g possible values
from -128 to +128 are on the X-axis. On the Y-axis, the probability is
provided. Naturally, the product of these likelihoods is zero, as illustrated
by the purple line in the graph. In this case, the stochastic machine, which
computes the maximum of the overlap of these four normal distributions
would run indefinitely since there is no overlap. Typically, for such cases
the variance needs to be bigger. Moreover, to avoid waiting too long for a
potential result of the draw-unit, we set a maximal bit streams size after
which the draw of the distribution is stopped and a random number is taken
instead. In our simulations, the parameter maxstep was set to 300.

Opposed to the cases mentioned above with no result computed by
the draw-gate, we also encounter situations in which the four Gaussian
distributions nearly entirely overlap. Note that these cases constitute the
majority of the encountered cases, which helps the algorithm to converge

154

9.5. RUNNING THE BAYESIAN SAMPLING MACHINE

Figure 9.18: The four Gaussian distributions of the likelihoods separated in
two main groups.

Figure 9.19: The four Gaussian distributions of the likelihoods superposed.

quickly. Such an example is shown in figure 9.19. The product, which is
equal to the geometrical overlap of these Gaussian distributions is very high,
as shown by the purple line in the graph. In this case, when running the
draw-gate, we would have several lines, which very quickly provide a 1 in

155

CHAPTER 9. SOURCE SEPARATION

the stochastic bit stream. Typically, we have the whole intervals (as in this
example the lines equivalent to the signal values between -19 and +19) of
lines which are at 1. In this case, the draw-gate follows a specific algorithm,
explained in section 4.3.1. However, for our application, following the original
method of the draw gate would slow down the convergence of the machine as
the most probable value (the maximum of the purple line in the graph) would
rarely be drawn. Therefore, we replaced the original draw-gate by simply
taking the mean value of the min and the max of the obtained interval. In
the current example, we obtained the interval [−19; +19] and hence the value
0 would be taken. In the graph, this is the same as taking value on which
the Gaussian distribution is centered.

Moreover, we noticed that the variance chosen for the Gaussian distribu-
tion of the likelihoods in the equation 9.13 highly depends on the setup in
the room. More precisely, the positions of the microphones affect the result.
We still have to improve the method to set the variance.

9.5.1 Simulations on the modified Bayesian sampling ma-
chine

We simulated the modified Bayesian sampling machine using the standard
experimental setup, described in section 9.4.2. The machine computed 20
sweeps of the Gibbs algorithm. The recording time was set to 2 seconds
(16000 samples). The BSM was implemented in our simulator in Python
using a some C++ code to accelerate the computation. For the 20 sweeps,
the simulation takes around 15.05 seconds.

Note that, the machine converged very quickly to a result. The graph in
figure 9.20 shows that already after nine sweeps the quality of the obtained
result became very good. Moreover, one can observe the stochastic side
of the machine as the quality of the result does not stagnate but slightly
changes after sweep 10. This is due to the random choices in the machine.

The computed result for source 1 is provided in figure 9.21. In red, the
original signal. In red the original signal, in green the estimated signal and
in blue the difference of them. Beside the errors at the beginning and the
end of the recording interval, the numbers of samples where the blue line
(different between original and estimated signal) is not zero is very low.

9.6 Conclusion
In this chapter, a probabilistic method to perform sound source separation has
been presented. The probabilistic model has been introduced. To perform

156

9.6. CONCLUSION

Figure 9.20: Mean squared distance between the original source signal and
the reconstructed signal as a function of the number of sweeps.

Figure 9.21: Reconstructed signal of source 1 after sweep 20.

approached inference on this model, the Gibbs algorithm has been used
to sample the searched space. Therefore, the Bayesian sampling machine,
introduced in section 4.3, has been used. Multiple high-level simulations
have been presented to show the performance of the algorithm. Finally,

157

CHAPTER 9. SOURCE SEPARATION

the Bayesian sampling machine has been implemented in the simulator and
simulations have been run to demonstrate the overall effectiveness of the
system.

This method works entirely in the temporal domain. The Gibbs algorithm
samples the source signal to estimate it based on the recorded microphone
signals.

As mentioned in section 9.2, we focused on a subproblem of the main
problem P (C,S|m) which aims to use Gibbs to estimate the source positions
and source signals at the same time. We did so because when we first tested
to run the Gibbs algorithm on P (C,S|m), the algorithm was not converging
and hence not finding any solution. This is due to the search space which
became bigger and especially due to the fact that we would sample two
different types of variables. Therefore, we identified two sub-problems, which
we worked on:

1. P (C|sF,m) : sampling the position of the sound sources knowing
the actual emitted signals sF and the signals recorded by the micro-
phones m

2. P (S|cF,m): sampling the signals of the sound sources knowing their
actual position cF and the signals recorded by the microphones m

The first sub-problem is actually very unrealistic as this method needs the
source signals sF to work. However, we still implemented that method and
noticed that the Gibbs algorithm does not converge neither.

P (Cj |cj 6=isF,m)
So we decided to focus on the second sub-problem for which the Gibbs

algorithm converges. Moreover, using the multi-source localization method
presented in chapter 8, one can estimate the source positions cF and then
run the sampling method to estimate the source signals. This is the core of
this chapter.

158

Chapter 10

Conclusion & Discussion

This work tries to address the present need for alternative computing archi-
tectures. We proposed two types of machines dedicated to different kinds of
applications. The first one, called the Bayesian machine (BM), is dedicated
to inference problems with small search spaces such as in sensor fusion ap-
plications. The second one, which is a more general machine, is called the
Bayesian sampling machine (BSM). It is devoted to more general inference
problems having a large sampling space and is based on the Gibbs sampling
method.

We focused on two audio signal processing applications, namely Sound
Source Localization (SSL) and source separation. For both tasks, the problem
has been modeled using a probabilistic model and a dedicated machine has
been designed to perform the Bayesian inference.

We presented the current efforts done by the rebooting computing com-
munity in chapter 2. Then, in chapter 3, we defined all the mathematical
tools, such as Bayesian programming, required to design our machines. Both
our architectures are described in chapter 4, including two simple pedagogical
examples to illustrate the different dimensions and parts of each machine.
Chapter 5 introduces background knowledge for audio signal processing
and defines the signal processing tasks we treated, before providing a short
overview of the existing techniques. Chapters 6 to 9 are dedicated to the
methods we propose to solve both signal processing applications.

A first approach for SSL is presented in chapter 6. A probabilistic model
is defined, which fuses the Inter-channel Phase Difference (IPD) features to
estimate the position of the source. The BM was adapted to the current
problem. Two optimizations were made to improve the BM. First, we
addressed the temporal dilution problem by introducing the slicing technique,

159

CHAPTER 10. CONCLUSION & DISCUSSION

which speeds up the computation time by a factor of up to 103 and hence
reduces the energy required by the machine. Second, we reduced the memory
need of the machine since it is large part of the circuit area requiring a lot of
power. Therefore we developed an on-chip likelihood computation method.
Several simulations were presented to show the impact of the different
parameters of the machine on the overall result. The localization performance
was tested in simulation and in real world experiments. Furthermore, the
circuit was implemented in VHDL to emulate the system on an FPGA. We
also performed ASIC simulations to quantify the circuit activity.

As this method uses the IPD, it requires to compute the Fourier transform
since the IPD computation needs the time-frequency representation of the
signal. Our simulations on FPGA showed that the component corresponding
to the Fourier transform and the IPD calculation takes approximately 35% of
the entire circuit area. Therefore we developed another method in chapter 7,
which works entirely in the temporal domain. A probabilistic model was
proposed to run this temporal method on our BM. The on-chip likelihood
computation method was modified and simulations showed the potential
of this method. However, when dealing with real microphone signals, the
quality of the results we obtained is not very satisfying. This is partly due to
the probabilistic model, which relies on an attenuation model to localize the
source. The attenuation model is a limiting factor to this approach. Therefore
we proposed another version, which omits the need of an attenuation model.
This method was tested in simulations.

The source separation method proposed in chapter 9 awaits the source
positions as input. This motivated the work in chapter 8, which is about a
multi-source localization method. This approach uses the temporal mono-
source localization method of chapter 7 as a basic block but adds a frame-
wise fusion module to achieve multi-source localization. The proposed
improvement necessitates to add a simple circuit (an additional counter
bank) to the existing circuit of chapter 7. Note that this multi-source
localization method was designed with the circuit design in mind. The
method was validated in simulations.

Chapter 9 was devoted to the second signal processing application, namely
the sound source separation. For this task, the sampling space is very large.
For example, to separate 10 seconds of microphone signals and estimate
the 2 source signals, we must determine 160000 variables to specify the
model, each being discretized on 256 values. Hence, one needs a different
inference method since the exact inference method is not suitable for such
a large search space. Therefore we used a Gibbs sampler. We defined a
probabilistic model for this application and used our second architecture,

160

10.1. DISCUSSION

which is a more generic sampling machine: the Bayesian sampling machine
(BSM). We adapted the BSM to our source separation problem and ran the
machine on our simulator. The simulations showed a great performance in
the separation result.

10.1 Discussion
The goal of this project is to promote a non conventional way of computing.
We developed two stochastic machines dedicated to Bayesian inference. As
they are using stochastic computing, they may be suitable for low-power
applications. However, we still need to compare our architectures to low-
power microprocessors or other dedicated hardware. For this purpose, we
are currently developing an ASIC prototype of the Bayesian machine. The
first hardware simulations presented in this work showed some encouraging
results.

Usually, the results of computer programs are numerical values. Taking
into account the uncertainty of the model and of the data is one step further.
In this case, we are not any more interested in values but in probability
distributions on the possible values. Sampling machines aim at providing
Independent and Identically Distributed (IID) samples of these probability
distributions. In chapter 9, we proposed a way to sample probability distribu-
tions in high dimensional spaces using stochastic computing. In some cases,
for example for source separation, the approach works very well. However, for
other problems such as the simultaneous separation and localization problem,
the method fails to converge. In this case, the temporal dilution problem may
stop the production of samples revealing regions of low probability density.
Here, even conventional machines have numerical problems. Until now, we
did not find any general technique to escape from these low density regions.
Such general purpose strategy probably does not exist as it is related to the
curse of dimensionality and NP problems. We conjecture that making better
and more informative models is the only way out in this case.

We hope this work represents a useful and further step in providing an
alternate computation scheme to conventional processors. Moreover, we
hope it will push probabilistic programming forward by providing dedicated
hardware for inference. Finally, this could foster the simultaneous use of
models and data.

161

CHAPTER 10. CONCLUSION & DISCUSSION

162

Appendix A

Notations

In this part the notations used in the different parts of this thesis will be
defined. Due to the multidisciplinary nature of the work, some notations differ
from the conventional notations used in the specific domain and community.

A.0.1 Specific notations for probabilistic inference

In the area of probabilistic inference we need the following notations:

• M denotes a stochastic variable.

• m denotes a value of the stochastic variable M .

• M denotes an array of stochastic variables.

• m denotes values of M .

• Mk denotes k-th line of M .

• mk denotes values of Mk

• M j
k denotes an element ofM (note that since it is not multidimensional,

the variable is not in bold).

• mj
k denotes its value (note that since it is not multi-dimensional, the

variable is not in bold).

• V denotes a multidimensional vector

• Vk denotes k-th element of a multidimensional vector

163

APPENDIX A. NOTATIONS

• vk denotes its value (note that since it is not multi-dimensional, the
variable is not in bold)

• M 6=k denotes all the elements of a multidimensional matrix except the
elements in the k-th line

• M 6=j
6=k denotes all the elements of an array except the variable in the

k-th line and j-th column

A.0.2 Specific notations for audio signal processing

• M is the Fourier transform of a signal m

• M1
k,l is the value of the microphone 1 m in the time-frequency domain

for the k-th frequency in the l-th time frame

A.0.3 Specific notations for the applications (SSL and source
separation)

• M is the matrix of the stochastic variables associated to the sounds
recorded by the microphones.

• m is a particular realization of the conjunction of M .

• M i
t is the stochastic variable associated to microphone i at time t.

• mi
t is a value of the microphone i at time t.

• S is the matrix of stochastic variables associated to all the sounds
emmited by the sources.

• s is a particular realization of the conjunction S.

• Sjt is the stochastic variable associated to the sound emmited by source
j at time t.

• sjt is a value of the source j at time t.

• C is the matrix of the stochastic variables associated to the coordinates
of the different sources.

• c is a particular realization of the conjunction C.

• Cj is the tupple of the stochastic variables associated to the coordinates
of the source j.

164

• cj is a particular realization of the conjunction Cj .

• Cjx and Cjy are the stochastic variables associated associated to the
coordinates in x-axis and y-axis of source j

• cjx and cjy are possible realization of Cjx and Cjy .

165

APPENDIX A. NOTATIONS

166

Appendix B

LFSR issue

In this appendix, an LFSR issue is discussed which occurs when using the
LFSR to generate the stochastic bit streams. Stochastic bit streams, which
are one of the principal components of both our Bayesian machines are
generated using RNGs (Random Number Generators). Luckily, the machines
do not require random numbers with cryptographic quality. Therefore, more
simple mechanisms can be used to generate the random numbers. Currently,
we use a 32-bit Galois LFSR in our implementations. The Galois LFSR has
a specific period of 232 after which the output repeats. This period is big
enough for our applications as we perform various techniques to speed up
the computation such as the max-normalization presented above.

However, when generating the stochastic bit stream with the LFSR as
RNG, we noticed that depending on the seeds, we can obtain very bad
results, as shown in figure B.1a and figure B.1b. In both figures, the value of
the computed stochastic bit stream is provided in green while the reference
probability value is given by the purple line.

One can notice the offset present in both lines, even after 4000 steps.
Looking at the percentage of the offsets, one can see that the lower probability
in figure B.1a is generated with an error of approximately 10%. Fortunately,
concerning the bigger probability, the percentage is smaller.

Using the max-normalization technique described in section 4.2.5, we
modify the probabilities to obtain higher probabilities for the computation.
This luckily leads to probabilities that are better generated by the LFSR,
as illustrated in figure B.1b. Hence, the issue described above for lower
probabilities is not a big problem. Especially since we are mainly interested
in the maximum of the probability distribution for our application. For
reproducibility, we used a Galois 32-bit LFSR to obtain these graphs. The

167

APPENDIX B. LFSR ISSUE

0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000 3500 4000

0.09765625

LFSR

(a) LFSR generating a probability of
0.09765625.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 500 1000 1500 2000 2500 3000 3500 4000

0.8984375

LFSR

(b) LFSR generating a probability of
0.8984375.

Figure B.1: Example of bit streams generated using and 32 bits LFSR.

chosen seed was 424569598. According to 1, the feedback polynomial is

x32 + x22 + x2 + 1.

1http://www.xilinx.com/support/documentation/application_notes/xapp052.
pdf

168

http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf

Appendix C

Proof draw gate

In this appendix, the mathematical proof for the correctness of the algorithm
implemented by the draw gate in the Bayesian sampling machine is provided.
This proof was done by Didier Piau as a member of the MicroBayes project.

169

On the action of the D-door on multiple lines

Did – MicroBayes

June 6, 2019

Abstract

The D-door combines independent i.i.d. bitstreams of known pa-
rameters, to produce an output bitstream with some specific one-
dimensional asymptotic marginal distribution.

First, following Droulez, we describe the action of the D-door on
pairs of bitstreams of parameters p1 and p2 and we revisit the exist-
ing proof that the D-door then outputs a Markovian bitstream with
parameter p1/(p1 + p2). Then we extend this result to n independent
bitstreams of given parameters, for every n > 2. Finally, we present
some more conjectural remarks.

1 Action of the D-door on two lines

Our first aim is to (re)prove Result 1, due to Droulez [1], using an approach
that we will next adapt to encompass the multiline case:

Result 1. If the input of the D-door is made of two independent lines 1 and
2 and if each line is i.i.d. Bernoulli, then the output line is a non degenerate
Markov chain on {1, 2}, whose stationary distribution is proportional to the
parameters of the input lines 1 and 2.

1.1 First version of the model

Consider some lines 1 and 2, that produce bitstreams (B1
t)t>0 and (B2

t)t>0,
in a synchronized way, and send them to a door. Each time a pair of bits
Bt = B1

tB
2
t in {0, 1}2 = {00, 01, 10, 11} is sent to the door, the door emits

one single signal Xo
t in {0, 1, 2}, defined as follows.

- If Bt = 00 then Xo
t = 0.

- If Bt = 10 then Xo
t = 1.

1

- If Bt = 01 then Xo
t = 2.

- If Bt = 11 and if the last nonzero signal emitted by the
door is 1 then Xo

t = 2.

- If Bt = 11 and if the last nonzero signal emitted by the
door is 2 then Xo

t = 1.

We call this mechanism the D-door (for two lines) and we are interested
in the properties of the process (Xo

t)t>0 restricted to the times t such that
Xo

t 6= 0.

We assume that (B1
t)t>0 and (B2

t)t>0 are independent sequences of inde-
pendent and identically distributed bits of respective Bernoulli distributions
Pr(B1

t = 1) = p1, Pr(B1
t = 0) = q1, Pr(B2

t = 1) = p2, Pr(B2
t = 0) = q2, for

some given (p1; p2) in]0, 1[, where we denote qk = 1− pk for every k.

1.2 Revised model

We now provide a simpler description of the process (Xo
t)t>0 when Xo

t 6= 0.
Consider that the pair of lines produces a sequence (Bt)t>0 of independent
and identically distributed symbols 11, 10 and 01, with distribution

Pr(Bt = 11) = p1p2s Pr(Bt = 10) = p1q2s Pr(Bt = 01) = q1p2s

where s is a normalizing factor, defined as

1

s
= 1− q1q2 = p1 + p2 − p1p2 = q1p2 + p1 = p1q2 + p2

Then the D-door acts as follows:

- If Bt = 10 then Xt = 1.

- If Bt = 01 then Xt = 2.

- If Bt = 11 and Xt−1 = 1 then Xt = 2.

- If Bt = 11 and Xt−1 = 2 then Xt = 1.

The process (Xt)t>0, with values in Z2 = {1, 2}, corresponds to the process
(Xo

t)t>0, with values in {0, 1, 2}, observed only when Xt 6= 0. From now on,
we use the stream (Xt)t>0.

2

1.3 Proof of Result 1

We first note that the process (Xt)t>0 is such that Xt = F (Xt−1, Bt), for
some function F : Z2×{11, 10, 01} → Z2 which can be written down explic-
itly as F (x, 10) = 1 and F (x, 01) = 2 for every x in Z2, F (1, 11) = 2 and
F (2, 11) = 1. Since each Bt is independent of (Xu)u6t−1, this representation
proves that (Xt)t>0 is a Markov chain on Z2.

As for every finite irreducible Markov chain, the transition matrix p =
(px,y)x,y of the chain, indexed by Z2 × Z2 and defined as

px,y = Pr(Xt = y | Xt−1 = x)

for every x and y in Z2, determines the unique stationary distribution π
of the chain, indexed by Z2, through the fact that π has total mass 1 and
satisfies the identity πt = πtp, that is, for every y in Z2,

πy =
∑

x∈Z2

πxpx,y

In the present case, the transition matrix is

p1,1 = Pr(Bt = 10) = p1q2s p1,2 = Pr(B2
t = 1) = p2s

and
p2,1 = Pr(B1

t = 1) = p1s p2,2 = Pr(Bt = 01) = q1p2s

hence
π1 = π1p1q2s+ π2p1s π2 = π1p2s+ π2q1p2s

Plugging (π1, π2) = (p1, p2) in these equations yields true identities hence,
the solution such that π1 + π2 = 1 being unique, all this shows that

π1 =
p1

p1 + p2
π2 =

p2
p1 + p2

as desired.

2 Action of the D-door on multiple lines

Consider now n lines, indexed by k in Zn = {1, 2, . . . , n}, which together
produce a stream of n-bits (Bt)t>0 in a synchronized way, and send them to
the D-door.

Each n-tuple of bits Bt = B1
tB

2
t · · ·Bn

t is in Bn = {0, 1}n \ {(0, 0, . . . , 0)}.
Each time some Bt is sent to the D-door, the D-door emits one single signal
Xt in Zn, defined as

Xt = min{k > Xt−1 + 1 | Bk
t = 1}

3

Here, an important convention is that one examines the values Bk
t starting

immediately after the position Xt−1, in their order of succession for the
natural succession order on the discrete circle Zn (thus, each k 6= n in Zn is
followed by k+ 1 and n is followed by 1), and that one stops at the position
of the first 1 that one encounters (there is always at least one).

When n = 2, one recovers the dynamics described differently previously,
now described more compactly.

Compared to the construction when n = 2, we omitted the Xo version
with values in {0, 1, 2, . . . , n}, jumping directly to the X version which is
equivalent to observing Xo only when Xo

t 6= 0. But again, this new, more
general and more convenient, description is strictly equivalent to the model
described above when n = 2.

Again, the process (Xt)t>0 is such that Xt = Fn(Xt−1, Bt), for some function
Fn : Zn × Bn → Zn which can be written down explicitly.

For example, if n = 3, then F3(x, 100) = 1, F3(x, 010) = 2, F (x, 001) = 3,
F3(x, 011) = 2, F3(x, 101) = 3, F3(x, 110) = 2, and F3(x, 111) = x + 1 for
every x in Z3, with the convention that 3 + 1 = 1.

The sequence (Bt)t>0 is i.i.d. and, for every b = (bk)16k6n in Bn,

Pr(Bt = b) = s
n∏

k=1

(
pbkk q

1−bk
k

)

where s is the normalizing factor, defined as

1

s
= 1−

n∏

k=1

qk

Note that each factor pbkk q
1−bk
k in the product is simply pk if bk = 1 and qk

if bk = 0.

Each Bt is independent of (Xu)u6t−1 hence the formula involving Fn proves
that (Xt)t>0 is a Markov chain on Zn, with transition matrix p and unique
stationary distribution π, entirely characterized by the fact that π has total
mass 1 .and satisfies the identity πt = πtp, that is, for every y in Zn,

πy =
∑

x∈Zn

πxpx,y

To compute each px,y, note that a transition from x to y occurs if and only
if every site strictly between x and y is at 0 and the site y is at 1, thus,

px,y = spy
∏

x<z<y

qz

4

where the product enumerates every site starting at x + 1 and ending at
y − 1, walking along Zn along the naturel succession order.

For example, if n = 5, the product over 3 < z < 2 uses the terms z = 4,
z = 5 and z = 1. Thus, the transition probabilities starting from 3 are

p3,1 = sq4q5p1 p3,2 = sq4q5q1p2 p3,3 = sq4q5q1q2p3 p3,4 = sp4 p3,5 = sq4p5

As a consequence, π solves the system

πy = s
∑

x∈Zn

πxpy
∏

x<z<y

qz

for every y, where, once again, the sums and products use the circular
succession order on Zn. To show that (πx)x is proportional to (px)x, it
sremains to check that (px)x solves this system, that is, that, for every y,

py = s
∑

x∈Zn

pxpy
∏

x<z<y

qz

or, equivalently, dividing by spy, that

1−
∏

x∈Zn

qx =
1

s
=
∑

x∈Zn

px
∏

x<z<y

qz

Using the identity px = 1− qx, one sees that the RHS is

∑

x∈Zn

(1− qx)
∏

x<z<y

qz =
∑

x∈Zn


 ∏

x<z<y

qz −
∏

x6z<y

qz




hence the last sum concatenates nicely to get the LHS (recall that the empty
product is 1, just like the empty sum would be 0), as desired. Thus:

Result 2. Result 1 holds for n lines, for every n > 2.

3 Miscellanea

1. If one uses a new D-door on the output streams of some previous D-
doors, even independent, the previous analysis fails. To see why, note that,
in this situation, the process (Xt, Bt)t>0 is again a Markov chain, the pro-
cess (Bt)t>0 is now a Markov chain (and not i.i.d.), but (Xt)t>0 is not a
Markov chain anymore since the distribution of Bt depends on Bt−1 and the
distribution of Xt depends on (Xt−1, Bt) (this is the typical setting of a hid-
den Markov chain of order 1, often called an M1M1 model). To summarize,
(Xt)t>0 again has a stationary distribution, (Xt)t>0 again converges to this
stationary distribution, but nothing ensures that this stationary distribution

5

depends on the stationary distribution of Bt only through the parameters
Pr(B1

t = 1) and Pr(B2
t = 1).

2. In the models solved here, if the probability to observe Bt = 00 · · · 0 is
large, one throws away a large proportion of the input bitstreams. In some
related models, ways of reusing the discarded portions of the samples were
devised. For example, the well-known von Neumann algorithm producing
i.i.d. unbiased bits from i.i.d. biased can be refined to use the 00s and the
11s bits, all discarded in the classical version of the algorithm, to produce
more unbiased bits from the same sample. But, first, the range of parameters
that are common in the present context might make this venue uninteresting
because 00 · · · 0s are rare, and, second, the way to apply such ideas to the
present setting is not obvious (to me, at present).

3. The convergence in distribution of the Markovian output stream to its
stationary distribution is ruled, at least when not too many steps are in-
volved, by the Perron-Frobenius eigenvalue of the transition matrix of the
output. Since any circular order of inlines yields the same stationary dis-
tribution, one can wonder whether some particular circular orders would be
more effective and if so, what makes them such.

4. More generally, and somewhat more vaguely, there are (n− 1)! non iso-
morphic ways of ordering circularly n input streams, each of these orderings
most probably produces a different stationary Markovian measure but with
the same marginals. One might try to describe this set of measures, or the
convex polytope it generates, or the measure closest to being independent
amongst them, to name a few natural questions.

References

[1] Jacques Droulez, La BM1 à l’intérieur de la BM2, unpublished, 2016.

6

APPENDIX C. PROOF DRAW GATE

176

Bibliography

[1] Homepage of the bambi project, 2019. URL https://www.bambi-fet.
eu/. Accessed: 2019-07-07.

[2] Homepage of the ibm q system one, 2019. URL https://www.
research.ibm.com/ibm-q/system-one/. Accessed: 2019-07-07.

[3] Homepage of the microbayes project funded by labex persyval-lab
(anr-11-labx-0025-01), 2019. URL https://persyval-lab.org/en/
sites/content/microbayes. Accessed: 2019-07-07.

[4] Homepage of the ppaml project, 2019. URL http://www.darpa.mil/
program/probabilistic-programming-for-advancing-machine-
Learning. Accessed: 2019-07-07.

[5] Homepage of the probcomp team at mit, 2019. URL http://probcomp.
csail.mit.edu/. Accessed: 2019-07-07.

[6] Homepage of the upside project, 2019. URL http://www.darpa.
mil/program/unconventional-processing-of-signals-for-
intelligent-data-exploitation. Accessed: 2019-07-07.

[7] aiCtx Inc. Dynamic neurormorphic asynchronous processor (dynap),
2019. URL https://aictx.ai/technology/. Accessed: 2019-07-07.

[8] A. Alaghi and J. P. Hayes. Exploiting correlation in stochastic circuit
design. In 2013 IEEE 31st International Conference on Computer
Design (ICCD), pages 39–46. IEEE, 2013.

[9] A. Alaghi and J. P. Hayes. Survey of Stochastic Computing. ACM
Trans. Embed. Comput. Syst., 12(2s):1–19, may 2013. ISSN 15399087.
doi: 10.1145/2465787.2465794. URL http://dl.acm.org/citation.
cfm?doid=2465787.2465794.

177

https://www.bambi-fet.eu/
https://www.bambi-fet.eu/
https://www.research.ibm.com/ibm-q/system-one/
https://www.research.ibm.com/ibm-q/system-one/
https://persyval-lab.org/en/sites/content/microbayes
https://persyval-lab.org/en/sites/content/microbayes
http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning
http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning
http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning
http://probcomp.csail.mit.edu/
http://probcomp.csail.mit.edu/
http://www.darpa.mil/program/unconventional-processing-of-signals-for-intelligent-data-exploitation
http://www.darpa.mil/program/unconventional-processing-of-signals-for-intelligent-data-exploitation
http://www.darpa.mil/program/unconventional-processing-of-signals-for-intelligent-data-exploitation
https://aictx.ai/technology/
http://dl.acm.org/citation.cfm?doid=2465787.2465794
http://dl.acm.org/citation.cfm?doid=2465787.2465794

BIBLIOGRAPHY

[10] A. Alaghi and J. P. Hayes. Fast and accurate computation using
stochastic circuits. In Proceedings of the Conference on Design, Au-
tomation & Test in Europe, DATE ’14, pages 76:1–76:4, 3001 Leuven,
Belgium, Belgium, 2014. European Design and Automation Association.
ISBN 978-3-9815370-2-4. URL http://dl.acm.org/citation.cfm?
id=2616606.2616700.

[11] A. Alaghi, C. Li, and J. P. Hayes. Stochastic circuits for real-time
image-processing applications. In 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2013.

[12] R. Andraka. A survey of cordic algorithms for fpga based computers.
In Proceedings of the 1998 ACM/SIGDA sixth international symposium
on Field programmable gate arrays, pages 191–200. ACM, 1998.

[13] S. Araki, H. Sawada, R. Mukai, and S. Makino. Underdetermined
blind sparse source separation for arbitrarily arranged multiple sensors.
Signal Process., 87(8):1833–1847, Aug. 2007. ISSN 0165-1684. doi:
10.1016/j.sigpro.2007.02.003. URL http://dx.doi.org/10.1016/j.
sigpro.2007.02.003.

[14] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J.
Gross. VLSI Implementation of Deep Neural Network Using Integral
Stochastic Computing. IEEE Trans. Very Large Scale Integr. Syst., 25
(10):2688–2699, 2017.

[15] B. Barrois, O. Sentieys, and D. Menard. The hidden cost of functional
approximation against careful data sizing: A case study. In Proceedings
of the Conference on Design, Automation & Test in Europe, DATE ’17,
pages 181–186, 3001 Leuven, Belgium, Belgium, 2017. European Design
and Automation Association. URL http://dl.acm.org/citation.
cfm?id=3130379.3130420.

[16] B. Behin-Aein, V. Diep, and S. Datta. A building block for hardware
belief networks. Scientific reports, 6:29893, 2016.

[17] L. Benaroya, F. Bimbot, and R. Gribonval. Audio source separa-
tion with a single sensor. IEEE Transactions on Audio, Speech, and
Language Processing, 14(1):191–199, Jan 2006. ISSN 1558-7916. doi:
10.1109/TSA.2005.854110.

[18] P. Bessière, E. Mazer, J. M. Ahuactzin, and K. Mekhnacha. Bayesian
programming. CRC Press, 2013.

178

http://dl.acm.org/citation.cfm?id=2616606.2616700
http://dl.acm.org/citation.cfm?id=2616606.2616700
http://dx.doi.org/10.1016/j.sigpro.2007.02.003
http://dx.doi.org/10.1016/j.sigpro.2007.02.003
http://dl.acm.org/citation.cfm?id=3130379.3130420
http://dl.acm.org/citation.cfm?id=3130379.3130420

BIBLIOGRAPHY

[19] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman.
Pyro: Deep Universal Probabilistic Programming. Journal of Machine
Learning Research, 2018.

[20] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN
0387310738.

[21] P. Bofill and M. Zibulevsky. Underdetermined blind source separation
using sparse representations. Signal processing, 81(11):2353–2362, 2001.

[22] M. Brandstein and D. Ward. Microphone Arrays: Signal Processing
Techniques and Applications, volume 112. 2001. ISBN 9783642075476.
doi: 10.1121/1.1500757. URL https://www.springer.com/us/book/
9783540419532.

[23] R. K. Budhwani, R. Ragavan, and O. Sentieys. Taking advantage
of correlation in stochastic computing. In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–4, May 2017.
doi: 10.1109/ISCAS.2017.8050807.

[24] H. Cai, W. Kang, Y. Wang, L. A. D. B. Naviner, J. Yang, and
W. Zhao. High performance mram with spin-transfer-torque and
voltage-controlled magnetic anisotropy effects. Applied Sciences, 7
(9), 2017. ISSN 2076-3417. doi: 10.3390/app7090929. URL http:
//www.mdpi.com/2076-3417/7/9/929.

[25] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby,
L. Vogt-Maranto, and L. Zdeborová. Machine learning and the physical
sciences. arXiv preprint arXiv:1903.10563, 2019.

[26] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Be-
tancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A
probabilistic programming language. Journal of statistical software, 76
(1), 2017.

[27] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem.
Probabilistic system-on-a-chip architectures. ACM Trans. Des. Au-
tom. Electron. Syst., 12(3):29:1–29:28, May 2008. ISSN 1084-4309.
doi: 10.1145/1255456.1255466. URL http://doi.acm.org/10.1145/
1255456.1255466.

179

https://www.springer.com/us/book/9783540419532
https://www.springer.com/us/book/9783540419532
http://www.mdpi.com/2076-3417/7/9/929
http://www.mdpi.com/2076-3417/7/9/929
http://doi.acm.org/10.1145/1255456.1255466
http://doi.acm.org/10.1145/1255456.1255466

BIBLIOGRAPHY

[28] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet. Comparison
of self-timed ring and inverter ring oscillators as entropy sources in
fpgas. In 2012 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012,
pages 1325–1330, 2012. doi: 10.1109/DATE.2012.6176697. URL http:
//dx.doi.org/10.1109/DATE.2012.6176697.

[29] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet. A self-timed
ring based true random number generator. In 19th IEEE International
Symposium on Asynchronous Circuits and Systems, ASYNC 2013,
Santa Monica, CA, USA, May 19-22, 2013, pages 99–106, 2013. doi:
10.1109/ASYNC.2013.15. URL http://dx.doi.org/10.1109/ASYNC.
2013.15.

[30] K. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet. A very high speed
true random number generator with entropy assessment. Workshop on
Cryptographic Hardware and Embedded Sys., pages 179–196, 2013.

[31] P. Comon and C. Jutten. Handbook of Blind Source Separation. Elsevier
Ltd, 2010. ISBN 9780123747266. doi: 10.1016/C2009-0-19334-0.

[32] A. Coninx, P. Bessière, E. Mazer, J. Droulez, R. Laurent, M. A. Aslam,
and J. Lobo. Bayesian sensor fusion with fast and low power stochastic
circuits. In Proc. of IEEE Int. Conf. on Rebooting Computing, 2016.

[33] M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mans-
inghka. Gen: A general-purpose probabilistic programming system with
programmable inference. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2019), Phoenix, AZ, USA, 2019. (To Appear).

[34] M. D. Ee292e lecture notes, lecture 5, 2013.

[35] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz.
Cpu db: Recording microprocessor history. Commun. ACM, 55(4):
55–63, Apr. 2012. ISSN 0001-0782. doi: 10.1145/2133806.2133822.
URL http://doi.acm.org/10.1145/2133806.2133822.

[36] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic

180

http://dx.doi.org/10.1109/DATE.2012.6176697
http://dx.doi.org/10.1109/DATE.2012.6176697
http://dx.doi.org/10.1109/ASYNC.2013.15
http://dx.doi.org/10.1109/ASYNC.2013.15
http://doi.acm.org/10.1145/2133806.2133822

BIBLIOGRAPHY

manycore processor with on-chip learning. IEEE Micro, 38(1):82–99,
January 2018. ISSN 0272-1732. doi: 10.1109/MM.2018.112130359.

[37] A. Deleforge, R. Horaud, Y. Y. Schechner, and L. Girin. Co-localization
of audio sources in images using binaural features and locally-linear
regression. IEEE/ACM Trans. Audio, Speech, Language Process., 23
(4):718–731, 2015.

[38] A. Dempster, N. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39:1–38, 01 1977.

[39] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, Oct
1974. ISSN 0018-9200. doi: 10.1109/JSSC.1974.1050511.

[40] Y. Dorfan and S. Gannot. Tree-based recursive expectation-
maximization algorithm for localization of acoustic sources. IEEE/ACM
Trans. Audio, Speech, Language Process., 23(10):1692–1703, 2015.

[41] N. Duong, E. Vincent, and R. Gribonval. Under-determined reverberant
audio source separation using a full-rank spatial covariance model.
arXiv e-prints, art. arXiv:0912.0171, Dec 2009.

[42] H. El-Derhalli, S. L. Beux, and S. Tahar. Stochastic computing
with integrated optics. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1355–1360, March 2019. doi:
10.23919/DATE.2019.8714875.

[43] R. R. Fay and A. N. Popper. Introduction to Sound Source Localization,
pages 1–5. Springer New York, New York, NY, 2005. ISBN 978-0-387-
28863-5. doi: 10.1007/0-387-28863-5_1. URL https://doi.org/10.
1007/0-387-28863-5_1.

[44] C. Fevotte and J. . Cardoso. Maximum likelihood approach for blind
audio source separation using time-frequency gaussian source models.
In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 2005., pages 78–81, Oct 2005. doi: 10.1109/ASPAA.2005.
1540173.

[45] R. P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21(6):467–488, Jun 1982. ISSN 1572-

181

https://doi.org/10.1007/0-387-28863-5_1
https://doi.org/10.1007/0-387-28863-5_1

BIBLIOGRAPHY

9575. doi: 10.1007/BF02650179. URL https://doi.org/10.1007/
BF02650179.

[46] R. Frisch, R. Laurent, M. Faix, L. Girin, L. Fesquet, A. Lux,
J. Droulez, P. Bessière, and E. Mazer. A bayesian stochastic ma-
chine for sound source localization. In 2017 IEEE International Con-
ference on Rebooting Computing (ICRC), pages 1–8, Nov 2017. doi:
10.1109/ICRC.2017.8123681.

[47] R. Frisch, M. Faix, E. Mazer, L. Fesquet, and A. Lux. A cognitive
stochastic machine based on Bayesian inference: A behavioral analysis.
In IEEE International Conference on Cognitive Informatics & Cognitive
Computing (ICCI*CC), pages 124–131, 2018. doi: 10.1109/ICCI-CC.
2018.8482028.

[48] R. Frisch, M. Faix, J. Droulez, L. Girin, and E. Mazer. Bayesian time-
domain multiple sound source localization for a stochastic machine.
In Proceedings of the 27st European Conference on Signal Processing
(EUSIPCO’2019), 2019.

[49] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown. Overview of the spinnaker system
architecture. IEEE Transactions on Computers, 62(12):2454–2467, Dec
2013. ISSN 0018-9340. doi: 10.1109/TC.2012.142.

[50] C. Févotte, N. Bertin, and J. Durrieu. Nonnegative matrix factorization
with the itakura-saito divergence: With application to music analysis.
Neural Computation, 21(3):793–830, March 2009. ISSN 0899-7667. doi:
10.1162/neco.2008.04-08-771.

[51] B. Gaines. Stochastic computing systems. In Advances in information
systems science, volume 2, pages 37–172. Springer, 1969.

[52] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov. A con-
solidated perspective on multimicrophone speech enhancement and
source separation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 25(4):692–730, 2017. ISSN 2329-9290. doi:
10.1109/TASLP.2016.2647702.

[53] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
N. L. Dahlgren, and V. Zue. Timit acoustic phonetic continuous speech
corpus. In Linguistic data consortium, 1993.

182

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179

BIBLIOGRAPHY

[54] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-6(6):721–741, Nov 1984.
ISSN 0162-8828. doi: 10.1109/TPAMI.1984.4767596.

[55] G. Gimenez, A. Cherkaoui, R. Frisch, and L. Fesquet. Self-timed ring
based true random number generator: Threat model and countermea-
sures. pages 31–38, 07 2017. doi: 10.1109/IVSW.2017.8031541.

[56] P. Gonzalez-Guerrero, X. Guo, and M. Stan. Sc-sd: Towards low
power stochastic computing using sigma delta streams. In 2018 IEEE
International Conference on Rebooting Computing (ICRC), pages 1–8,
Nov 2018. doi: 10.1109/ICRC.2018.8638611.

[57] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and
J. B. Tenenbaum. Church: a language for generative models. CoRR,
abs/1206.3255, 2012. URL http://arxiv.org/abs/1206.3255.

[58] A. Griffin, A. Alexandridis, D. Pavlidi, Y. Mastorakis, and
A. Mouchtaris. Localizing multiple audio sources in a wireless
acoustic sensor network. Signal Processing, 107:54 – 67, 2015.
ISSN 0165-1684. doi: https://doi.org/10.1016/j.sigpro.2014.08.
013. URL http://www.sciencedirect.com/science/article/pii/
S0165168414003764. Special Issue on ad hoc microphone arrays and
wireless acoustic sensor networks Special Issue on Fractional Signal
Processing and Applications.

[59] J. Grollier, V. Cros, and A. Fert. Synchronization of spin-transfer
oscillators driven by stimulated microwave currents. Physical Review
B, 73(6):060409, 2006.

[60] W. J. Gross, V. C. Gaudet, and A. Milner. Stochastic implementation
of ldpc decoders. In Conference Record of the Thirty-Ninth Asilomar
Conference onSignals, Systems and Computers, 2005., pages 713–717,
Oct 2005. doi: 10.1109/ACSSC.2005.1599845.

[61] E. Habets. Room impulse response generator. Technical report, 01
2006.

[62] O. Häggström. Finite Markov Chains and Algorithmic Applications.
Cambridge University Press, 2000.

183

http://arxiv.org/abs/1206.3255
http://www.sciencedirect.com/science/article/pii/S0165168414003764
http://www.sciencedirect.com/science/article/pii/S0165168414003764

BIBLIOGRAPHY

[63] M. Horowitz. Computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 10–14, Feb 2014. doi:
10.1109/ISSCC.2014.6757323.

[64] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component
Analysis. Wiley and Sons, 2001.

[65] B. Inc. Akida neuromorphic system-on-chip, 2019. URL
https://www.brainchipinc.com/products/akida-neuromorphic-
system-on-chip. Accessed: 2019-07-07.

[66] E. T. Jaynes. Probability Theory: the Logic of Science. Cambridge
University Press, 2003.

[67] E. Jonas. Stochastic Architectures for Probabilistic Computation. PhD
thesis, Massachusetts Institute of Technology, 2014.

[68] E. Jonas. Stochastic Architectures for Probabilistic Computation. PhD
thesis, Massachusetts Institute of Technology, 2014. URL http://
ericjonas.com/images/pdfs/thesis.pdf.

[69] E. Jonas and K. P. Kording. Could a neuroscientist understand a
microprocessor? PLOS Computational Biology, 13(1):1–24, 01 2017.
doi: 10.1371/journal.pcbi.1005268. URL https://doi.org/10.1371/
journal.pcbi.1005268.

[70] H. Kayser and J. Anemüller. A discriminative learning approach to
probabilistic acoustic source localization. In 2014 14th International
Workshop on Acoustic Signal Enhancement (IWAENC), pages 99–103,
Sep. 2014. doi: 10.1109/IWAENC.2014.6953346.

[71] C. H. Knapp and G. C. Carter. The Generalized Correlation Method
for Estimation of Time Delay. IEEE Trans. Acoust., 2:320–327, 1976.

[72] W. Krauth. Statistical Mechanics : Algorithms and Computations.
Oxford University Press, 2006.

[73] P. Kulkarni, P. Gupta, and M. D. Ercegovac. Trading accuracy for
power in a multiplier architecture. Journal of Low Power Electronics,
7(4):490–501, 2011.

[74] D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401:788–91, 11 1999. doi:
10.1038/44565.

184

https://www.brainchipinc.com/products/akida-neuromorphic-system-on-chip
https://www.brainchipinc.com/products/akida-neuromorphic-system-on-chip
http://ericjonas.com/images/pdfs/thesis.pdf
http://ericjonas.com/images/pdfs/thesis.pdf
https://doi.org/10.1371/journal.pcbi.1005268
https://doi.org/10.1371/journal.pcbi.1005268

BIBLIOGRAPHY

[75] X. Li, L. Girin, R. Horaud, and S. Gannot. Estimation of the direct-
path relative transfer function for supervised sound-source localization.
IEEE/ACM Trans. Audio, Speech, Language Process., 24(11):2171–
2186, 2016.

[76] X. Li, L. Girin, R. Horaud, and S. Gannot. Multiple-speaker localization
based on direct-path features and likelihood maximization with spatial
sparsity regularization. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 25(10):1007–2012, 2017.

[77] M. Lin, I. Lebedev, and J. Wawrzynek. High-throughput bayesian
computing machine with reconfigurable hardware. In Proceedings
of the 18th Annual ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’10, pages 73–82, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-911-4. doi: 10.1145/1723112.
1723127. URL http://doi.acm.org/10.1145/1723112.1723127.

[78] A. Lingamneni, C. Enz, J. Nagel, K. Palem, and C. Piguet. Energy
parsimonious circuit design through probabilistic pruning. In 2011
Design, Automation Test in Europe, pages 1–6, March 2011. doi:
10.1109/DATE.2011.5763130.

[79] S. Makino. Audio Source Separation. Springer, 2018.

[80] M. I. Mandel, R. J. Weiss, and D. P. Ellis. Model-based expectation-
maximization source separation and localization. IEEE/ACM Trans.
Audio, Speech, Language Process., 18(2):382–394, 2010.

[81] V. K. Mansinghka, D. Selsam, and Y. Perov. Venture: A higher-
order probabilistic programming platform with programmable inference.
arXiv preprint, arXiv:1404.0099, 2014.

[82] G. Marcus. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631, 2018.

[83] H. McCabe, S. M. Koziol, G. L. Snider, and E. P. Blair. Tunable,
hardware-based quantum random number generation using coupled
quantum dots. arXiv preprint arXiv:1907.00795, 2019.

[84] D. Menard, G. Caffarena, J. A. Lopez, D. Novo, and O. Sentieys.
Fixed-point refinement of digital signal processing systems. In Digitally
Enhanced Mixed Signal Systems, number Chapter 1, pages 1–37. The
Institution of Engineering and Technology, May 2019. URL https:
//hal.inria.fr/hal-01941898.

185

http://doi.acm.org/10.1145/1723112.1723127
https://hal.inria.fr/hal-01941898
https://hal.inria.fr/hal-01941898

BIBLIOGRAPHY

[85] S. Mittal. A survey of techniques for approximate computing. ACM
Comput. Surv., 48(4):62:1–62:33, Mar. 2016. ISSN 0360-0300. doi:
10.1145/2893356. URL http://doi.acm.org/10.1145/2893356.

[86] D. S. Modha. Introducing a brain-inspired computer: Truenorth’s
neurons to revolutionize system architecture. IBM Research, 2014.

[87] B. Moons and M. Verhelst. Energy-Efficiency and Accuracy of Stochas-
tic Computing Circuits in Emerging Technologies. IEEE J. Emerg. Sel.
Top. circuits Syst., 4(4):475–486, 2014.

[88] G. E. Moore et al. Cramming more components onto integrated circuits.
Electronics, 1965.

[89] J. Mouba and S. Marchand. A Source Localization/Separation/Respa-
tialization System Based on Unsupervised Classification of Interaural
Cues. In Proceedings of the Digital Audio Effects (DAFx06) Conference,
pages 233–238, Canada, Sept. 2006. URL https://hal.archives-
ouvertes.fr/hal-00307889.

[90] P. Mroszczyk and P. Dudek. The accuracy and scalability of continuous-
time bayesian inference in analogue cmos circuits. In 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), pages
1576–1579. IEEE, 2014.

[91] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross. Delayed stochastic
decoding of ldpc codes. IEEE Transactions on Signal Processing, 59
(11):5617–5626, Nov 2011. ISSN 1053-587X. doi: 10.1109/TSP.2011.
2163630.

[92] F. Nesta, P. Svaizer, and M. Omologo. Robust two-channel TDOA es-
timation for multiple speaker localization by using recursive ICA and a
state coherence transform. In ICASSP, IEEE Int. Conf. Acoust. Speech
Signal Process. - Proc., pages 4597–4600, 2009. ISBN 9781424423545.
doi: 10.1109/ICASSP.2009.4960654.

[93] F. Neugebauer, I. Polian, and J. P. Hayes. Framework for Quantifying
and Managing Accuracy in Stochastic Circuit Design. In DATE, pages
3–8, 2017. ISBN 9783981537086.

[94] V. Neumann. Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components. In Automata Studies, pages 46–98,
Princeton Press, 1956.

186

http://doi.acm.org/10.1145/2893356
https://hal.archives-ouvertes.fr/hal-00307889
https://hal.archives-ouvertes.fr/hal-00307889

BIBLIOGRAPHY

[95] A. Oppenheim, R. W. Schafer, and C. K. Yuen. Digital signal processing.
Systems, Man and Cybernetics, IEEE Transactions on, 8:146–146, 03
1978. doi: 10.1109/TSMC.1978.4309917.

[96] A. Ozerov and C. Fevotte. Multichannel nonnegative matrix factor-
ization in convolutive mixtures for audio source separation. IEEE
Transactions on Audio, Speech, and Language Processing, 18(3):550–
563, March 2010. ISSN 1558-7916. doi: 10.1109/TASL.2009.2031510.

[97] A. Ozerov, E. Vincent, and F. Bimbot. A general flexible framework
for the handling of prior information in audio source separation. IEEE
Transactions on Audio, Speech, and Language Processing, 20(4):1118–
1133, May 2012. ISSN 1558-7916. doi: 10.1109/TASL.2011.2172425.

[98] A. Pedram, S. Richardson, S. Galal, S. Kvatinsky, and M. Horowitz.
Dark memory and accelerator-rich system optimization in the dark
silicon era. CoRR, abs/1602.04183, 2016. URL http://arxiv.org/
abs/1602.04183.

[99] T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petrovici,
M. Schmuker, D. Brüderle, J. Schemmel, and K. Meier. Six networks
on a universal neuromorphic computing substrate. Frontiers in Neuro-
science, 7:11, 2013.

[100] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An
architecture for fault-tolerant computation with stochastic logic. IEEE
transactions on computers, 60(1):93–105, 2010.

[101] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys. Pushing the Limits
of Voltage Over-Scaling for Error-Resilient Applications. In Design,
Automation & Test in Europe Conference & Exhibition (DATE 2017),
Lausanne, Switzerland, Mar. 2017. URL https://hal.archives-
ouvertes.fr/hal-01417665.

[102] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleft-
heriou. Low-power neuromorphic hardware for signal processing appli-
cations. arXiv preprint arXiv:1901.03690, 2019.

[103] M. Raspaud, H. Viste, and G. Evangelista. Binaural source localization
by joint estimation of ILD and ITD. IEEE/ACM Trans. Audio, Speech,
Language Process., 18(1):68–77, 2010.

187

http://arxiv.org/abs/1602.04183
http://arxiv.org/abs/1602.04183
https://hal.archives-ouvertes.fr/hal-01417665
https://hal.archives-ouvertes.fr/hal-01417665

BIBLIOGRAPHY

[104] J. Rayleigh. The Theory of Sound. Number vol. 1 in The Theory
of Sound. Macmillan, 1877. URL https://books.google.fr/books?
id=fj0DAAAAQAAJ.

[105] S. Rickard, R. Balan, and J. Rosca. Real-time time-frequency based
blind source separation. In in Proc. of International Conference on
Independent Component Analysis and Signal Separation (ICA2001,
pages 651–656, 2001.

[106] N. Roman, D. Wang, and G. J. Brown. Speech segregation based on
sound localization. The Journal of the Acoustical Society of America,
114(4):2236–2252, 2003. doi: 10.1121/1.1610463.

[107] A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Drémeau, S. Gi-
gan, and F. Krzakala. Random projections through multiple optical
scattering: Approximating kernels at the speed of light. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6215–6219. IEEE, 2016.

[108] B. Sanguinetti, A. Martin, H. Zbinden, and N. Gisin. Quantum
random number generation on a mobile phone. Phys. Rev. X, 4:
031056, Sep 2014. doi: 10.1103/PhysRevX.4.031056. URL http:
//link.aps.org/doi/10.1103/PhysRevX.4.031056.

[109] H. Sawada, R. Mukai, S. Araki, and S. Makino. Frequency-Domain
Blind Source Separation, pages 299–327. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005. ISBN 978-3-540-27489-6. doi: 10.1007/3-540-
27489-8_13. URL https://doi.org/10.1007/3-540-27489-8_13.

[110] A.-C. Scherzer and K. Meier. Phase-locking on neuromorphic hardware.
2013.

[111] J. Schnupp, I. Nelken, and A. King. Auditory Neuroscience: Making
Sense of Sound. 01 2010. ISBN 9780262289757. doi: 10.7551/mitpress/
7942.001.0001.

[112] J. M. Shainline. The largest cognitive systems will be optoelectronic. In
2018 IEEE International Conference on Rebooting Computing (ICRC),
pages 1–10. IEEE, 2018.

[113] H. C. So. Source Localization: Algorithms and Analysis, chapter 2,
pages 25–66. 2011. ISBN 9781118104750. doi: 10.1002/9781118104750.
ch2. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781118104750.ch2.

188

https://books.google.fr/books?id=fj0DAAAAQAAJ
https://books.google.fr/books?id=fj0DAAAAQAAJ
http://link.aps.org/doi/10.1103/PhysRevX.4.031056
http://link.aps.org/doi/10.1103/PhysRevX.4.031056
https://doi.org/10.1007/3-540-27489-8_13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118104750.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118104750.ch2

BIBLIOGRAPHY

[114] N. D. Stein. Nonnegative Tensor Factorization for Directional Blind
Audio Source Separation. nov 2014. URL http://arxiv.org/abs/
1411.5010.

[115] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy,
and D. M. Blei. Deep probabilistic programming. arXiv preprint
arXiv:1701.03757, 2017.

[116] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan.
Approximate computing and the quest for computing efficiency. In
Proceedings of the 52Nd Annual Design Automation Conference, DAC
’15, pages 120:1–120:6, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3520-1. doi: 10.1145/2744769.2751163. URL http://doi.acm.
org/10.1145/2744769.2751163.

[117] B. Vigoda. Analog logic: Continuous-Time analog circuits for statistical
signal processing. PhD thesis, Massachusetts Institute of Technology,
2003.

[118] E. Vincent, M. G Jafari, S. Abdallah, M. Plumbley, and M. E Davies.
Probabilistic Modeling Paradigms for Audio Source Separation, pages
162–185. 01 2011. ISBN 978-1-61520-919-4. doi: 10.4018/978-1-61520-
919-4.ch007.

[119] E. Vincent, T. Virtanen, and S. Gannot. Audio Source Separation
and Speech Enhancement. Wiley Publishing, 1st edition, 2018. ISBN
1119279895, 9781119279891.

[120] D. Wang and G. J. Brown. Computational Auditory Scene Analysis:
Principles, Algorithms, and Applications. Wiley-IEEE Press, 2006.
ISBN 0471741094.

[121] D. Wang and J. Chen. Supervised speech separation based on deep
learning: An overview. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 26(10):1702–1726, 2018.

[122] F. Wood, J. W. Meent, and V. Mansinghka. A New Approach to Prob-
abilistic Programming Inference. In S. Kaski and J. Corander, editors,
Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, volume 33 of Proceedings of Machine Learn-
ing Research, pages 1024–1032, Reykjavik, Iceland, 22–25 Apr 2014.
PMLR. URL http://proceedings.mlr.press/v33/wood14.html.

189

http://arxiv.org/abs/1411.5010
http://arxiv.org/abs/1411.5010
http://doi.acm.org/10.1145/2744769.2751163
http://doi.acm.org/10.1145/2744769.2751163
http://proceedings.mlr.press/v33/wood14.html

BIBLIOGRAPHY

[123] J. Woodruff and D. Wang. Binaural localization of multiple sources
in reverberant and noisy environments. IEEE/ACM Trans. Audio,
Speech, Language Process., 20(5):1503–1512, 2012.

[124] Q. Xu, T. Mytkowicz, and N. S. Kim. Approximate computing: A
survey. IEEE Design Test, 33(1):8–22, Feb 2016. ISSN 2168-2356. doi:
10.1109/MDAT.2015.2505723.

[125] O. Yilmaz and S. Rickard. Blind separation of speech mixtures via time-
frequency masking. IEEE Transactions on Signal Processing, 52(7):
1830–1847, July 2004. ISSN 1053-587X. doi: 10.1109/TSP.2004.828896.

[126] U. Zoelzer. DAFX: Digital Audio Effects, 2nd Edition. Wiley, 2011.
ISBN 9780470665992. doi: 10.1002/9781119991298.ch14.Link.

190

Titre : Machines stochastiques dédiées à l’inférence Bayésienne pour la localisation et
séparation de sources

Résumé : L’ordinateur est sans aucun doute l’une des inventions les plus importantes du siècle dernier, dont l’impact ne
peut être surestimé. Au fil des années, ils sont devenus de plus en plus puissants grâce à l’optimisation constante des
processeurs. Avec un besoin croissant en puissance de calcul, et notamment à cause de l’IA, les processeurs sont
devenus plus rapides que jamais. Cependant, à cause des limites physiques, la loi de Moore touche à sa fin. Par
conséquent, il est nécessaire de proposer des alternatives. C’est le but de la communauté rebooting computing. Dans
ce travail, nous nous proposons d’utiliser le calcul stochastique pour construire des architectures dédiées à l’inférence
bayésienne visant une faible consommation d’énergie. Nous avons développé deux machines, à savoir la Bayesian
machine (BM) et la Bayesian sampling machine (BSM). Dans cette thèse, nous nous intéresserons à deux applications
de traitement du signal : la localisation de sources sonores (SSL) et la séparation de source. Pour la SSL, nous
présentons trois méthodes utilisant la Bayesian machine. La première méthode fonctionne dans le domaine temps-
fréquence, nécessitant le calcul de la transformée de Fourier. La deuxième est entièrement dans le domaine temporel.
La troisième approche est une méthode de localisation multi-sources qui est basée sur la seconde. De plus, nous
proposons une technique permettant d’accélérer le calcul stochastique d’un facteur 10³. Nous avons également
développé une méthode de calcul des vraisemblances afin de réduire la mémoire de notre machine. Nous avons simulé
les trois méthodes et fait des expérimentations en environnement réel. Nous présentons la consommation d’énergie
obtenue via des simulations ASIC. Pour la seconde application, la séparation de source, nous introduisons une machine
plus générale, la Bayesian sampling machine, qui est basée sur l’échantillonnage de Gibbs. Nous présentons une
méthode basée sur l’échantillonnage pour séparer des sources sonores. Cette méthode a été validée en simulation.

Mots-clés : Machine stochastique, Inférence bayésienne, Localisation de source sonore, Séparation de source sonore

Title: Stochastic machines dedicated to Bayesian inference for source localization and
separation

Abstract: Computers are without doubt one of the most important invention of the last century, whose impact cannot be
overestimated. Over the years they became powerful, due to the constant optimization of their processors. With the
growing need of computing power due to AI, processors have become faster than ever. However, since we are reaching
the power wall, Moore’s law is coming to an end. Therefore, a young research community called rebooting computing is
looking for alternative computation architectures. In this work, we propose to use stochastic computing to build
architectures dedicated to Bayesian inference aiming low-power consumption. We develop two machines, namely the
Bayesian machine (BM) and the Bayesian sampling machine (BSM). In this thesis, we look at two signal processing
applications: Sound Source Localization (SSL) and Source Separation (SS). For SSL, we introduce three methods using
the BM. The first one is working in the time-frequency domain and hence uses the Fourier transform. The second one is
running entirely in the temporal domain. The third one is a multi-source localization approach based on the previous
method. We present a technique to speed up the stochastic computation by a factor of up to 10³. Moreover, we designed
an on-chip likelihoods computation mechanism to reduce the memory needs of our machine. Furthermore, we ran
simulations and real-world experiments to validate our methods. We made ASIC simulations to evaluate the power
consumption. For the second problem, the source separation, we introduce a more general machine, the Bayesian
sampling machine, which is based on the Gibbs sampling approach. We present a sampling method to solve source
separation and run simulations to show the effectiveness of this technique.

Keywords: Stochastic machine, Bayesian calculus, Source localization, Source separation

Thèse préparée aux laboratoires / Thesis prepared at

LIG (Laboratoire informatique de Grenoble),
655 avenue de l’Europe, 38330 Montbonnot et

TIMA (Techniques de l’Informatique et de la Microélectronique pour l’Architecture des ordinateurs),
46 Avenue Félix Viallet, 38031, Grenoble Cedex, France

ISBN: 978-2-11-129260-4

