. .. , Illustration de l'effet Mullins dans un élastomère chargé

, Illustration de l'effet Payne dans un élastomère chargé

T. Expérience-théorie-simulation and .. .. ,

, Evolution du CPU des années 1970 à aujourd'hui

, Approche « bottom up ». De l'atome aux modèles éléments finis

.. .. Structure,

. .. Procédure-de-nivellement-d'une-chaîne-de-cpb, , p.17

U. .. Jeu-typique-de-polynômes-de-bernstein, , vol.18

. .. , Vraisemblance du meilleur jeu de paramètres (linéaires) et masse volumique mesurée en DPD en fonction du délimiteur r m pour ? = 1, vol.21

, en fonction des facteurs d'écrantage des interactions de paire non-liée conservatives

?. .. /m-en-fonction-du-degré-de-nivellement-?, , p.24

. .. , Fonctions de distribution radiale non-liée en fonction de ?, p.28

, Distribution de la distance bout-à-bout

, Décorrélation du vecteur bout-à-bout et MSD des chaînes de polymère, p.31

. .. Illustration-de-la-méthode-bayésienne-dans-le-choix-de-?, 33 2.15 MSD pour ? = 5 en fonction du pas de temps ?t de la DPD, p.34

, Forme et orientation d'un gros grain pour ? = 5

, Deux visions du nivellement d'une chaîne polymère à ? = 5, p.38

, Limites de la transferabilité en température proche de la T g pour les modèles DPD

, Nivellement d'une chaîne de cPB à ? = 1

. .. , Potentiels d'interaction de paire non-liée en fonction de T, p.49

, Distribution des liaisons, distribution des angles, et fonction de distribution radiale non-liée

, Fonction de distribution radiale non-liée pour différentes températures, p.54

. .. Fondus-de-cpb-monodisperses, , p.56

, Décorrélation du vecteur bout-à-bout

. .. Transferabilité-en-température-et-en-pression, , p.59

, Module de relaxation G(t)

, MSD du centre de masse des chaînes de polymère et des monomères, p.64

, Normalisation (Rouse) du module de relaxation G(t) et du MSD(t) des grains 65

D. .. , Rapports caractéristiques ? R /? e , ? rep /? e, p.66

. .. Chemin-primitif-de-chaînes-de-polymère, , p.68

. .. , Structure locale des trois surfaces de silice considérées, p.77

.. .. Structure,

. .. , Structure chimique du triéthoxy(octyl)silane (OCTEO), p.79

, Structure chimique des agrégats à base de triéthoxy(octyl)silane (OCTEO), p.80

. .. Profil-de-masse-volumique-typique-polymère-silice, , p.82

. .. , Équilibre thermomécanique de l'interface polymère-silice, p.83

, Effet de la structure du substrat sur l'adsorption du polymère, p.85

, Effet de la structure du substrat sur les conformations du polymère, p.86

. .. Effet, , vol.87

, Profils de masse volumique de chaînes C 240 libres et C 120 greffées, p.89

, Hauteur de brosse h et largeur d'interpénétration chaînes libres-greffées w, p.91

. .. , Normalisation de h et w par un comportement de type UMS, p.92

, Profils des composantes ?r 2 g, ? et ?r 2 g,? ? de chaînes cPB libres et greffées, p.93

, Profils de masse volumique de chaînes C 240 libres et C 120 greffées, p.95

, Profils de masse volumique de chaînes C 240 libres et C 240 greffées, p.96

, Profils de masse volumique de chaînes C 240 libres et C 120 greffées ? gft = 0.09 nm ?2 , en présence d'OCTEO greffé ? OCTEO = 0.84 nm ?2, p.98

, Profils de masse volumique de chaînes C 240 libres et C 120 greffées ? gft = 0.58 nm ?2 , en présence d'OCTEO greffé ? OCTEO = 0.84 nm ?2, p.99

, Hauteur de brosse h et largeur d'interpénétration chaînes libres-greffées w

, Profils de masse volumique de chaînes C 240 libres, C 120 greffées, et d'OCTEO greffé ? OCTEO = 0

, Effet de l'agrégation superficielle de l'agent de recouvrement, p.102

. .. Représentation, , p.108

, 2 Représentation atomistique et gros grain des nanoparticules de silice, p.109

, Vraisemblance du meilleur jeu de paramètres (linéaires) et masse volumique mesurée en DPD en fonction du choix de forme fonctionnelle des interactions 110

, Vraisemblance du meilleur jeu de paramètres (linéaires) en fonction du rapport ? ps /? et du délimiteur r m

, Potentiels conservatifs non-liés cPB-silice

, Profils d'adsorption cibles (MDCG) du cPB en fonction de la courbure de l'interface

, Équilibre thermomécanique de l'interface polymère-silice en DPD, p.113

C. .. De-la-nanoparticule, , p.114

.. .. Msd-de-la-nanoparticule-de-silice,

A. ;. , Distribution des charges dans le champ force des silanes, p.124

B. , Polynômes de Bernstein pour ? = 1

T. and M. .. Multi-lint, Paramètres optimaux des modèles Single, p.128

C. Deux and .. .. ,

, Angle formé par trois particules i, j et k

, Masse volumique et pression mesurées à l'équilibre, Liste des tableaux 2.1 Importantes fonctions de base, p.30

, Masse molaire du gros grain requise en fonction du choix de ? et de ?t, p.34

, Coefficient de dilatation thermique ? P et compressibilité isotherme ? T, p.61

.. .. Masse-d'enchevêtrement,

. Propriétés-thermodynamiques and . .. De-cpb, , vol.84

G. De and . .. Octeo, , p.101

A. , Champ de force atomistique de la silice

, Champ de force atomistique du cPB

. .. , Champ de force atomistique des silanes (OCTEO), p.123

B. , 1 Paramètres optimaux du champ de force gros grain Multi-LinT Multi-P, p.127

T. Puchong, S. Pongdhorn, and S. Chakrit, Effects of silanization temperature and silica type on properties of silica-filled solution styrene butadiene rubber (SSBR) for passenger car tire tread compounds, Journal of Applied Polymer Science, vol.133, issue.17, 2016.

O. Takahiro and K. Kurt, Comparison of two coarse-grained models of cispolyisoprene with and without pressure correction, Polymer, vol.130, pp.88-101

Y. Narayan, P. , G. J. Papakonstantopoulos, and D. Manolis, Polymer :Nanoparticle Interactions : Bridging the Gap. Macromolecules, vol.46, pp.5097-5106

H. Jonathan, R. Hentschke, N. W. Hojdis-et-hossein-ali, and K. Varzaneh, Computer Simulation of Particle-Particle Interaction in a Model Polymer Nanocomposite. Macromolecules, vol.48, pp.9039-9049, 2015.

S. Pragati, R. Sudip, K. Et-hossein-ali, and . Varzaneh, Validation of Force Fields of Rubber through Glass-Transition Temperature Calculation by Microsecond Atomic-Scale Molecular Dynamics Simulation, The Journal of Physical Chemistry B, vol.120, issue.7, pp.1367-1379, 2016.

M. Jan, H. Reinhard, J. Hager, N. W. Hojdis-et-hossein-ali, and K. Varzaneh, Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica-Silica Contact in Filled Rubber, Macromolecules, 2017.

W. Hitoshi, K. Seiji, T. Mamoru, O. Toshihide, N. Noriaki et al., Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation, Faraday Discussions, vol.156, issue.0, pp.279-291

S. Loehlé, C. Matta, C. Minfray, T. Le, R. Mogne et al., Mixed lubrication of steel by C18 fatty acids revisited. Part II : Influence of some

B. Soumi, C. Colette, B. Nawel, R. Stéphanie, L. Fabien et al., Modeling of Polyelectrolyte Adsorption from Micellar Solutions onto Biomimetic Substrates, The Journal of Physical Chemistry B, vol.121, issue.37, pp.8638-8651, 2017.

W. David, D. E. Borhani, and . Shaw, The future of molecular dynamics simulations in drug discovery, Journal of Computer-Aided Molecular Design, vol.26, issue.1, pp.15-26, 2012.

M. L. Williams, R. F. Landel, and J. D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, Journal of the American Chemical Society, vol.77, issue.14, pp.3701-3707

D. E. Hanson, M. Hawley, H. Robert, C. Kiran, R. Philip et al., Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect, Polymer, vol.46, issue.24, pp.10989-10995, 2005.

J. F. Sanders, J. D. Ferry, and R. H. Valentine, Viscoelastic properties of 1,2-polybutadiene-comparison with natural rubber and other elastomers, Journal of Polymer Science Part A, vol.2, issue.5, pp.967-980, 1968.

P. Rasika, K. Rasmus, A. Grigori, J. M. Medvedev, and . Caruthers, A Critical Analysis of the Effect of Crosslinking on the Linear Viscoelastic Behavior of Styrene-Butadiene Rubber and Other Elastomers, Journal of Polymer Science. Part B, vol.51, issue.8, pp.687-697, 2013.

L. Mullins, Effect of Stretching on the Properties of Rubber. Rubber Chemistry and Technology, vol.21, pp.281-300

D. Rodrigo, J. D. Pierre, and G. , Physical interpretation of the Mullins softening in a carbon-black filled SBR, Polymer, vol.55, pp.4942-4947, 2014.

F. Bueche, Molecular basis for the mullins effect, Journal of Applied Polymer Science, vol.4, issue.10, pp.107-114, 1960.

R. Houwink, Slipping of Molecules during the Deformation of Reinforced Rubber, Rubber Chemistry and Technology, vol.29, issue.3, pp.888-893

G. Kraus, C. W. Childers, and K. W. Rollmann, Stress softening in carbon black-reinforced vulcanizates. Strain rate and temperature effects, Journal of Applied Polymer Science, vol.10, issue.2, pp.229-244, 1966.

F. Yoshihide, New progress in the theory and model of carbon black reinforcement of elastomers, Journal of Applied Polymer Science, vol.95, issue.1, pp.60-67, 2005.

M. Samy, P. Sotta, R. Didier, and . Long, A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects), Macromolecules, issue.21, pp.8252-8266, 2008.

D. Julie, F. Bruno, and G. Pierre, A review on the Mullins effect, European Polymer Journal, vol.45, issue.3, pp.601-612, 2009.

Y. Ruiquan, S. Yihu, and Z. Qiang, Payne effect of silica-filled styrene-butadiene rubber, Polymer, vol.116, pp.304-313

A. R. Payne, A note on the existence of a yield point in the dynamic modulus of loaded vulcanizates, Journal of Applied Polymer Science, vol.3, issue.7, pp.127-127, 1960.

A. R. Payne, Effect of Dispersion on Dynamic Properties of Filler-Loaded Rubbers, Rubber Chemistry and Technology, vol.39, issue.2, pp.365-374, 1966.

H. Montes, T. Chaussée, A. Papon, F. Lequeux, and L. Guy, Particles in model filled rubber : Dispersion and mechanical properties, The European Physical Journal E, vol.31, issue.3, pp.263-268, 2010.

L. Binquan, H. Tien, and Z. Ruhong, Nanopore-Based Sensors for Ligand-Receptor Lead Optimization, The Journal of Physical Chemistry Letters, vol.6, issue.3, pp.331-337, 2015.

E. K. Benedict, . Snodin, R. Flavio, R. Lorenzo, T. E. Ouldridge et al.,

, ACS Nano, vol.10, issue.2, pp.1724-1737, 2016.

W. Jirasak and K. Mikko, The good, the bad and the user in soft matter simulations, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1858, issue.10, pp.2529-2538, 2016.

B. Chris, A. Stephan, A. Sandro, and R. Knut, MSSimulator : Simulation of Mass Spectrometry Data, Journal of Proteome Research, vol.10, issue.7, pp.2922-2929, 2011.

S. Herb, The Free Lunch Is Over : A Fundamental Turn Toward Concurrency in Software, Dr. Dobb's Journal, vol.10, issue.3, 2005.

R. Karl, 42 Years of Microprocessor Trend Data, 2018.

L. I. Ying, B. C. Abberton, K. Martin, and L. Wing-kam, Challenges in Multiscale Modeling of Polymer Dynamics, vol.5, pp.751-832, 2013.

E. Pep and P. B. Warren, Perspective : Dissipative particle dynamics, The Journal of Chemical Physics, vol.146, issue.15, p.150901

J. T. Padding and W. J. Briels, Systematic coarse-graining of the dynamics of entangled polymer melts : the road from chemistry to rheology, Journal of Physics : Condensed Matter, vol.23, issue.23, p.233101, 2011.

M. Gaëtan, G. Florent, S. Benoit, and M. Patrice, Prediction of structural and thermomechanical properties of polymers from multiscale simulations, vol.5, pp.14065-14073, 2015.

P. J. Hoogerbrugge and J. M. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhysics Letters), vol.19, issue.3, p.155, 1992.

J. Siewert, A. H. Marrink, A. E. De-vries, and . Mark, Coarse Grained Model for Semiquantitative Lipid Simulations, The Journal of Physical Chemistry B, vol.108, issue.2, pp.750-760, 2004.

R. Dirk, P. Mathias, and M. Florian, Deriving effective mesoscale potentials from atomistic simulations, Journal of Computational Chemistry, vol.24, issue.13, pp.1624-1636, 2003.

G. Maurel, B. Schnell, F. Goujon, M. Couty, and P. Malfreyt, Multiscale Modeling Approach toward the Prediction of Viscoelastic Properties of Polymers, Journal of Chemical Theory and Computation, vol.8, issue.11, pp.4570-4579, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786125

E. Tiago, P. A. Oliveira, . Netz, K. Kurt, J. Christoph et al., Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids, The Journal of Chemical Physics, vol.144, issue.17, p.174106, 2016.

H. Carmen, E. Pep, V. Eric, and R. Delgado-buscalioni, Mori-Zwanzig formalism as a practical computational tool, Faraday Discussions, vol.144, issue.0, pp.301-322, 2009.

C. A. Lemarchand, C. Marc, and R. Bernard, Coarse-grained simulations of cis-and trans-polybutadiene : A bottom-up approach, The Journal of Chemical Physics, vol.146, issue.7, p.74904, 2017.

A. Dequidt, G. Jose, and C. Solano, Bayesian parametrization of coarse-grain dissipative dynamics models, The Journal of Chemical Physics, vol.143, issue.8, p.84122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212243

G. José, A. D. Solano-canchaya, G. Florent, and M. Patrice, Development of DPD coarse-grained models : From bulk to interfacial properties, The Journal of Chemical Physics, vol.145, issue.5, p.54107, 2016.

P. Steve, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol.117, issue.1, pp.1-19, 1995.

D. Robert, P. B. Groot, and . Warren, Dissipative particle dynamics : Bridging the gap between atomistic and mesoscopic simulation, The Journal of Chemical Physics, vol.107, issue.11, pp.4423-4435, 1997.

P. Gennes, Scaling Concepts in Polymer Physics, 1979.

G. Ivo, M. Andrey, K. Binder, and P. Wolfgang, A new off-lattice Monte Carlo model for polymers : A comparison of static and dynamic properties with the bond-fluctuation model and application to random media, The Journal of Chemical Physics, vol.98, issue.8, pp.6526-6539, 1993.

K. Kremer, S. Gary, and . Grest, Dynamics of entangled linear polymer melts : A moleculardynamics simulation, The Journal of Chemical Physics, vol.92, issue.8, pp.5057-5086, 1990.

A. E. Likhtman, Single-Chain Slip-Link Model of Entangled Polymers : Simultaneous Description of Neutron Spin-Echo, Rheology, and Diffusion, Macromolecules, vol.38, issue.14, pp.6128-6139, 2005.

A. Vagelis, . Harmandaris, and K. Kurt, Predicting polymer dynamics at multiple length and time scales, Soft Matter, vol.5, issue.20, pp.3920-3926, 2009.

M. Florian, Coarse-Graining in Polymer Simulation : From the Atomistic to the Mesoscopic Scale and Back, vol.3, pp.754-769, 2002.

F. Ercolessi and J. B. Adams, Interatomic Potentials from First-Principles Calculations : The Force-Matching Method, Europhysics Letters), vol.26, issue.8, p.583, 1994.

I. Sergei, M. Parrinello, C. J. Burnham, and G. A. Voth, Effective force fields for condensed phase systems from ab initio molecular dynamics simulation : A new method for force-matching, The Journal of Chemical Physics, vol.120, issue.23, pp.10896-10913, 2004.

L. I. Zhen, B. Xin, Y. Xiu, G. Em, and K. , A comparative study of coarsegraining methods for polymeric fluids : Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization, The Journal of Chemical Physics, vol.145, issue.4, p.44102, 2016.

B. Beste and F. Roland, Modeling of Polystyrene under Confinement : Exploring the Limits of Iterative Boltzmann Inversion, Macromolecules, vol.46, pp.7957-7976, 2013.

G. Maurel, F. Goujon, B. Schnell, and P. Malfreyt, Multiscale Modeling of the Polymer-Silica Surface Interaction : From Atomistic to Mesoscopic Simulations, The Journal of Physical Chemistry C, vol.119, issue.9, pp.4817-4826, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212240

R. L. Henderson, A uniqueness theorem for fluid pair correlation functions, Physics Letters A, vol.49, issue.3, pp.90847-90847, 1974.

P. Raffaello, Is Henderson's Theorem Practically Useful, Journal of Unsolved Questions, vol.3, pp.13-15, 2013.

L. Brandon, K. Peters, . Michael, . Salerno, A. Anupriya et al., Coarse-Grained Modeling of Polyethylene Melts : Effect on Dynamics, Journal of Chemical Theory and Computation, 2017.

L. Flavien and R. Bernard, Influence of the adjustable parameters of the DPD on the global and local dynamics of a polymer melt, Polymer, vol.48, issue.12, pp.3584-3592, 2007.

T. Sébastien, S. Benoît, P. Laurent, C. Marc, and R. Bernard, Conservative and dissipative force field for simulation of coarse-grained alkane molecules : A bottom-up approach, The Journal of Chemical Physics, vol.140, issue.13, p.134113, 2014.

P. Español and P. Warren, Statistical Mechanics of Dissipative Particle Dynamics. EPL (Europhysics Letters), vol.30, p.191, 1995.

P. Riccardo, K. James, and T. Blackwell, Particle swarm optimization. Swarm Intelligence, vol.1, issue.1, pp.33-57, 2007.

R. Michael, H. Ralph, and . Colby, Polymer physics

D. Grant, . Smith, and P. Wolfgang, United Atom Force Field for Molecular Dynamics Simulations of 1,4-Polybutadiene Based on Quantum Chemistry Calculations on Model Molecules

, The Journal of Physical Chemistry A, vol.102, issue.7, pp.1200-1208, 1998.

T. Georgia, G. Vlasis, . Mavrantzas, N. Doros, and . Theodorou, Detailed Atomistic Molecular Dynamics Simulation of cis-1,4-Poly(butadiene), Macromolecules, vol.38, issue.4, pp.1478-1492, 2005.

V. Loup, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, vol.159, issue.1, pp.98-103, 1967.

C. William, H. C. Swope, . Andersen, H. Peter, K. R. Berens et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules : Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, pp.637-649, 1982.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.

T. Schneider and E. Stoll, Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Physical Review B, vol.17, issue.3, pp.1302-1322, 1978.

D. Burkhard and P. Wolfgang, Brownian dynamics simulations without gaussian random numbers, International Journal of Modern Physics C, vol.02, issue.03, pp.817-827, 1991.

I. P. Natanson, Constructive Function Theory I : Uniform Approximation, volume I, 1964.

T. W. Sirk, Y. R. Slizoberg, J. K. Brennan, M. Lisal, and J. W. And-zelm, An enhanced entangled polymer model for dissipative particle dynamics, The Journal of Chemical Physics, vol.136, issue.13, p.134903, 2012.

P. J. Flory, The Configuration of Real Polymer Chains, The Journal of Chemical Physics, vol.17, issue.3, pp.303-310, 1949.

S. Gary, . Grest, H. Morrel, and . Cohen, Liquids, Glasses, and the Glass Transition : A Free-Volume Approach, Advances in Chemical Physics, pp.455-525, 2007.

G. Milano and M. Florian, Mapping Atomistic Simulations to Mesoscopic Models : A Systematic Coarse-Graining Procedure for Vinyl Polymer Chains, The Journal of Physical Chemistry B, vol.109, issue.39, pp.18609-18619, 2005.

K. Praveen, . Depa, and K. Janna, MARANAS : Speed up of dynamic observables in coarse-grained molecular-dynamics simulations of unentangled polymers, The Journal of Chemical Physics, vol.123, issue.9, p.94901, 2005.

L. I. Zhen, B. Xin, L. I. Xiantao, G. Em, and K. , Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism, The Journal of Chemical Physics, vol.143, issue.24, p.243128, 2015.

I. Sergei, Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit, Physical Review E, vol.95, issue.1, p.13303

R. Joseph and G. George, The Shapes of Random Walks, Science, vol.237, issue.4813, pp.1095-9203, 1987.

D. E. Hanson and L. John, BARBER : A new paradigm for the molecular basis of rubber elasticity, Contemporary Physics, vol.56, issue.3, pp.319-337, 2015.

Y. Leonid, M. Marcus, P. Wolfgang, and K. Binder, How Well Can Coarse-Grained Models of Real Polymers Describe Their Structure ? The Case of Polybutadiene, Journal of Chemical Theory and Computation, vol.2, issue.3, pp.588-597, 2006.

X. Guerrault, B. Rousseau, and J. Farago, Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene, The Journal of Chemical Physics, vol.121, issue.13, pp.6538-6546, 2004.

L. I. Xuejin, M. A. Xiaojing, H. Lei, and L. Haojun, Developing coarse-grained force fields for cis-poly(1,4-butadiene) from the atomistic simulation, Polymer, vol.46, issue.17, pp.6507-6512, 2005.

T. Strauch, L. Yelash, and W. Paul, A coarse-graining procedure for polymer melts applied to 1,4-polybutadiene, Physical Chemistry Chemical Physics, vol.11, issue.12, pp.1942-1948, 2009.

A. Soldera and M. Noureddine, Glass transition of polymers : Atomistic simulation versus experiments, Physical Review E, vol.74, issue.6, p.61803, 2006.

B. Schnell, H. Meyer, C. Fond, J. P. Wittmer, and J. Baschnagel, Simulated glass-forming polymer melts : Glass transition temperature and elastic constants of the glassy state, The European Physical Journal E, vol.34, issue.9, p.97, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00679038

J. M. Kropka, G. Victoria, P. F. Sakai, and . Green, Local Polymer Dynamics in Polymer-C60 Mixtures, vol.8, pp.1061-1065, 2008.

N. Makhiyanov and E. V. , TEMNIKOVA : Glass-transition temperature and microstructure of polybutadienes, Polymer Science Series A, vol.52, issue.12, pp.1292-1300, 2010.

C. A. Marsh and J. M. Yeomans, Dissipative particle dynamics : The equilibrium for finite time steps, Europhysics Letters), vol.37, issue.8, p.511, 1997.

I. Pagonabarraga, M. H. Hagen, and D. Frenkel, Self-consistent dissipative particle dynamics algorithm, Europhysics Letters), vol.42, issue.4, p.377, 1998.

B. Gerhard, V. Ilpo, K. Mikko, and J. M. Polson, Towards better integrators for dissipative particle dynamics simulations, Physical Review E, vol.62, issue.6, pp.7611-7614, 2000.

I. Vattulainen, M. Karttunen, G. Besold, and J. M. Polson, Integration schemes for dissipative particle dynamics simulations : From softly interacting systems towards hybrid models, The Journal of Chemical Physics, vol.116, issue.10, pp.3967-3979, 2002.

G. M. , AMDAHL : Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities, Spring Joint Computer Conference, AFIPS '67 (Spring), pp.483-485, 1967.

L. John, D. A. Hennessy, and . Patterson, Computer Architecture : A Quantitative Approach

M. Kaufmann, . Cambridge, and . Ma,

T. A. Witten, S. T. Milner, and Z. Wang, Theory of Stress Distribution in Block Copolymer Microdomains. In Bill M. CULBERTSON, éditeur : Multiphase Macromolecular Systems, 1989.

L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. Macromolecules, vol.27, pp.4639-4647, 1994.

J. Paul, M. Flory, and . Volkenstein, Statistical mechanics of chain molecules, Biopolymers, vol.8, issue.5, pp.699-700, 1969.

L. J. Fetters, D. J. Lohse, and R. H. Colby, Chain Dimensions and Entanglement Spacings, éditeur : Physical Properties of Polymers Handbook, pp.447-454, 2007.

L. I. Xianfeng and R. A. Latour, A systematic procedure to build a relaxed dense-phase atomistic representation of a complex amorphous polymer using a coarse-grained modeling approach, Polymer, vol.50, issue.16, pp.4139-4149, 2009.

S. Carsten, H. Ali, K. Nils, H. Frank, F. Ralf et al., Multiscale approach to equilibrating model polymer melts, Physical Review E, vol.94, issue.3, 2016.

A. Rolf, R. E. , G. S. Grest, K. Kremer, J. Steven et al., Equilibration of long chain polymer melts in computer simulations, The Journal of Chemical Physics, vol.119, issue.24, pp.12718-12728, 2003.

Y. R. Sliozberg and J. W. Andzelm, Fast protocol for equilibration of entangled and branched polymer chains, Chemical Physics Letters, vol.523, pp.139-143, 2012.

A. T. Dibenedetto, Molecular properties of amorphous high polymers. I. A cell theory for amorphous high polymers, Journal of Polymer Science Part A : General Papers, vol.1, issue.11, pp.3459-3476, 1963.

D. R. Paul and A. T. , DIBENEDETTO : Diffusion in amorphous polymers, Journal of Polymer Science Part C : Polymer Symposia, vol.10, issue.1, pp.17-44, 1965.

J. W. Barlow, Measurement of the PVT behavior of cis-1,4-polybutadiene, Polymer Engineering & Science, vol.18, issue.3, pp.238-245, 1978.

T. Georgia, A. Vagelis, . Harmandaris, G. Vlasis, and . Mavrantzas, Temperature and Pressure Effects on Local Structure and Chain Packing in cis-1,4-Polybutadiene from Detailed Molecular Dynamics Simulations, Macromolecular Theory and Simulations, vol.15, issue.5, pp.381-393, 2006.

G. D. Smith, W. Paul, M. Monkenbusch, L. Willner, D. Richter et al., Molecular Dynamics of a 1,4-Polybutadiene Melt. Comparison of Experiment and Simulation

, Macromolecules, vol.32, issue.26, pp.8857-8865, 1999.

J. E. Anderson, D. D. Davis, and W. P. Slichter, Pressure Dependence of Molecular Motion in Some Elastomers, Macromolecules, vol.2, issue.2, pp.166-169, 1969.

L. J. Fetters, D. J. Lohse, S. T. Milner, and W. W. Graessley, Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights. Macromolecules, vol.32, pp.6847-6851, 1999.

D. Masao and S. F. Edwards, The Theory of Polymer Dynamics, 1988.

R. G. Larson, T. Sridhar, L. G. Leal, G. H. Mckinley, A. E. Likhtman et al., MCLEISH : Definitions of entanglement spacing and time constants in the tube model, Journal of Rheology, vol.47, issue.3, pp.809-818, 2003.

B. D. Todd, J. Peter, and . Daivis, Homogeneous non-equilibrium molecular dynamics simulations of viscous flow : techniques and applications, Molecular Simulation, vol.33, issue.3, pp.189-229, 2007.

C. Pastorino, T. Kreer, M. Müller, and K. Binder, Comparison of dissipative particle dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems, Physical Review E, vol.76, issue.2, p.26706

J. Peter, D. J. Daivis, and . Evans, Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane, The Journal of Chemical Physics, vol.100, issue.1, pp.541-547, 1994.

W. Bo, L. Kurt, and K. , Entangled Polymer Melts : Relation between Plateau Modulus and Stress Autocorrelation Function, Macromolecules, vol.42, issue.16, pp.6270-6276, 2009.

A. P. Thompson, S. J. Plimpton, and M. William, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, The Journal of Chemical Physics, vol.131, issue.15, p.154107, 2009.

J. Ramírez, K. Sathish, . Sukumaran, V. Bart, and A. E. , LIKHTMAN : Efficient on the fly calculation of time correlation functions in computer simulations, The Journal of Chemical Physics, vol.133, issue.15, p.154103, 2010.

A. E. Likhtman, K. Sathish, J. Sukumaran, and . Ramirez, Linear Viscoelasticity from Molecular Dynamics Simulation of Entangled Polymers, Macromolecules, vol.40, issue.18, pp.6748-6757, 2007.

E. Prince, ROUSE : A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, pp.1272-1280

P. G. Gennes, Reptation of a Polymer Chain in the Presence of Fixed Obstacles, The Journal of Chemical Physics, vol.55, issue.2, pp.572-579

H. Michael, S. Xaver, R. Michael, O. Krichevsky, and R. R. Netz, End-Monomer Dynamics in Semiflexible Polymers, Macromolecules, vol.42, issue.3, pp.860-875, 2009.

V. R. Raju, E. V. Menezes, G. Marin, W. W. Graessley, and L. J. , FETTERS : Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers, Macromolecules, vol.14, issue.6, pp.1668-1676, 1981.

J. M. Carella, W. W. Graessley, and L. J. Fetters, Effects of chain microstructure on the viscoelastic properties of linear polymer melts : polybutadienes and hydrogenated polybutadienes, Macromolecules, vol.17, issue.12, pp.2775-2786, 1984.

M. Baumgaertel, M. E. De, R. , J. Machado, M. Masse et al., The relaxation time spectrum of nearly monodisperse polybutadiene melts, Rheologica Acta, vol.31, issue.1, pp.1435-1528, 1992.

A. E. Likhtman, K. Sathish, and . Sukumaran, Entangled Polymer Melts : Relation between Plateau Modulus and Stress Autocorrelation Function, Comment on, vol.43, pp.3980-3983, 2010.

C. R. Bartels, C. Buckley, and W. W. Graessley, Self-diffusion coefficient in melts of linear polymers : chain length and temperature dependence for hydrogenated polybutadiene, Macromolecules, vol.17, issue.12, pp.2702-2708, 1984.

C. Buckley, P. F. Green, A. L. Richard, E. J. Jones, and . Kramer, Self-diffusion of hydrogenated polybutadiene by forward recoil spectroscopy, Macromolecules, vol.22, issue.6, pp.2857-2858, 1989.

J. Von, S. Seggern, H. J. Klotz, and . Cantow, Reptation and constraint release in linear polymer melts : an experimental study, Macromolecules, vol.24, issue.11, pp.3300-3303, 1991.

D. S. Pearson, L. J. Fetters, W. W. Graessley, V. Gary, . Strate et al., Viscosity and self-diffusion coefficient of hydrogenated polybutadiene, Macromolecules, vol.27, issue.3, pp.711-719, 1994.

P. Timothy, LODGE : Reconciliation of the Molecular Weight Dependence of Diffusion and Viscosity in Entangled Polymers, Physical Review Letters, vol.83, issue.16, pp.3218-3221, 1999.

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, vol.322, issue.8, pp.549-560, 1905.

E. Ralf, K. Sathish, G. S. Sukumaran, . Grest, S. Carsten et al., Rheology and Microscopic Topology of Entangled Polymeric Liquids, vol.303, pp.1095-9203, 2004.

S. F. Edwards, The statistical mechanics of polymerized material, Proceedings of the Physical Society, vol.92, issue.1, p.9, 1967.

K. Martin, Shortest multiple disconnected path for the analysis of entanglements in twoand three-dimensional polymeric systems, Computer Physics Communications, vol.168, issue.3, pp.209-232, 2005.

C. Tzoumanekas, N. Doros, and . Theodorou, Topological Analysis of Linear Polymer Melts : A Statistical Approach, vol.39, pp.4592-4604, 2006.

R. S. Hoy, F. Katerina, and K. Martin, Topological analysis of polymeric melts : Chain-length effects and fast-converging estimators for entanglement length, Physical Review E, vol.80, issue.3, p.31803, 2009.

S. Rios, L. Chicurel, and . Castillo, Potential of particle and fibre reinforcement of tyre tread elastomers, Materials & Design, vol.22, issue.5, pp.369-374, 2001.

L. Mark, J. L. Kralevich, and . Koenig, FTIR Analysis of Silica-Filled Natural Rubber. Rubber Chemistry and Technology, vol.71, pp.300-309, 1998.

Z. Zhiyong, T. Thaddeus, W. Shi-qing, and D. Ernst, von MEERWALL et Adel HALASA : Investigating Linear and Nonlinear Viscoelastic Behavior Using Model Silica-Particle-Filled Polybutadiene, vol.38, pp.8816-8824, 2005.

A. Botti, W. Pyckhout-hintzen, D. Richter, V. Urban, and E. Straube, A microscopic look at the reinforcement of silica-filled rubbers, The Journal of Chemical Physics, vol.124, issue.17, p.174908, 2006.

E. P. Mamunya, V. V. Davidenko, and E. V. Lebedev, Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black, Composite Interfaces, vol.4, issue.4, pp.169-176, 1996.

J. Thomasset, P. J. Carreau, B. Sanschagrin, and G. Ausias, Rheological properties of long glass fiber filled polypropylene, Journal of Non-Newtonian Fluid Mechanics, vol.125, issue.1, pp.25-34, 2005.

D. Florent, C. Jean-yves, C. G. Laurent, C. Rémy, and D. , Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions, Composites Science and Technology, vol.67, issue.5, pp.829-839, 2007.

N. Rattanasom, T. Saowapark, and C. Deeprasertkul, Reinforcement of natural rubber with silica/carbon black hybrid filler, Polymer Testing, vol.26, issue.3, pp.369-377, 2007.

J. L. Leblanc, Rubber-filler interactions and rheological properties in filled compounds, Progress in Polymer Science, vol.27, issue.4, pp.627-687, 2002.

M. Patrice, M. Sandrine, D. Brown, Y. Et-nicole-dominique, and A. , Reinforcement effects in fractal-structure-filled rubber, vol.43, pp.385-388

J. Fröhlich, W. Niedermeier, and H. D. , LUGINSLAND : The effect of filler-filler and filler-elastomer interaction on rubber reinforcement, Composites Part A : Applied Science and Manufacturing, vol.36, issue.4, pp.449-460, 2005.

S. Yihu and Z. Qiang, Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics, Progress in Materials Science, vol.84, pp.1-58

C. S. Chouchaoui and M. L. Benzeggagh, The effect of interphase on the elastic behavior of a glass/epoxy bundle, Composites Science and Technology, vol.57, issue.6, pp.133-142, 1997.

G. Shushan, C. Quan, J. F. Moll, K. Sanat, R. H. Kumar et al., Segmental Dynamics of Polymer Melts with Spherical Nanoparticles. ACS Macro Letters, vol.3, issue.8, pp.773-777, 2014.

J. Nicolas, J. F. Moll, M. Dong, W. Kendra, R. Stacy et al., Bound Polymer Layer in Nanocomposites, ACS Macro Letters, vol.2, issue.5, pp.371-374, 2013.

P. Aurélie, M. Hélène, H. Mohamed, L. François, G. Laurent et al., Glass-Transition Temperature Gradient in Nanocomposites : Evidence from Nuclear Magnetic Resonance and Differential Scanning Calorimetry, Physical Review Letters, vol.108, issue.6, p.65702

D. Long and F. Lequeux, Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films, The European Physical Journal E, vol.4, issue.3, pp.371-387, 2001.

A. Serghei, H. Huth, C. Schick, and F. Kremer, Glassy Dynamics in Thin Polymer Layers Having a Free Upper Interface, Macromolecules, vol.41, issue.10, pp.3636-3639, 2008.

G. B. , MCKENNA : Ten (or more) years of dynamics in confinement : Perspectives for 2010, The European Physical Journal Special Topics, vol.189, issue.1, pp.285-302, 2010.

B. Julien, M. Hélène, L. François, L. Didier, and S. Paul, Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers, Macromolecules, vol.35, issue.26, pp.9756-9762, 2002.

J. Berriot, H. Montes, F. Lequeux, D. Long, and P. Sotta, Gradient of glass transition temperature in filled elastomers, Europhysics Letters), vol.64, issue.1, p.50, 2003.

J. Mattsson, J. A. Forrest, and L. Börjesson, Quantifying glass transition behavior in ultrathin free-standing polymer films, Physical Review E, vol.62, issue.4, pp.5187-5200, 2000.

P. Guilhem, A. Baeza, C. D. Genix, P. Laurent, G. Jérémie et al., Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM. Macromolecules, vol.46, pp.317-329, 2013.

S. Fateme, . Emami, P. Valeria, R. J. Berry, V. Vikas et al., Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution, Chemistry of Materials, vol.26, issue.8, pp.2647-2658, 2014.

A. D. Mackerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck et al.,

C. Lau, S. Mattos, T. Michnick, D. T. Ngo, B. Nguyen et al.,

D. Yin and M. Karplus, All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, The Journal of Physical Chemistry B, vol.102, issue.18, pp.3586-3616, 1998.

D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Chea-tham et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Computer Physics Communications, vol.91, issue.1, pp.1-41, 1995.

D. Pnina, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest et al., Structure and energetics of ligand binding to proteins : Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins : Structure, Function, and Bioinformatics, vol.4, pp.31-47, 1988.

S. Huai, S. J. Mumby, J. R. Maple, and T. Arnold, HAGLER : An ab Initio CFF93 All-Atom Force Field for Polycarbonates, Journal of the American Chemical Society, vol.116, issue.7, pp.2978-2987, 1994.

H. Sun, COMPASS : An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds, vol.102, pp.7338-7364, 1998.

S. Fateme, . Emami, P. Valeria, R. J. Berry, V. Vikas et al., Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size, vol.26, pp.5725-5734, 2014.

H. Hendrik, L. Tzu-jen, K. Ratan, S. Mishra-et-fateme, and . Emami, Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures : The INTERFACE Force Field. Langmuir, vol.29, pp.1754-1765, 2013.

W. G. Ralph and . Wyckoff-:-ix, Die Kristallstruktur von ?-Cristobalit SiO2 (bei hohen Temperaturen stabile Form), vol.62, pp.189-200, 1925.

S. Emre and . Tasci, How to prepare an input file for surface calculations. ResearchGate, septembre 2013

M. Koichi and I. Fujio, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, vol.44, issue.6, pp.1272-1276, 2011.

P. Eugene, Adsorption on Silica Surfaces, 2000.

T. W. Martin, S. Zygmunt, and . Derewenda, The name is bond -H bond, Nature Structural & Molecular Biology, vol.6, issue.5, pp.403-406, 1999.

J. B. Peri and A. L. Hensley, The surface structure of silica gel, The Journal of Physical Chemistry, vol.72, issue.8, pp.2926-2933, 1968.

C. G. Armistead, A. J. Tyler, F. H. Hambleton, S. A. Mitchell, and A. John, HOCKEY : Surface hydroxylation of silica, The Journal of Physical Chemistry, vol.73, issue.11, pp.3947-3953, 1969.

M. Folman and D. J. Yates, Expansion-contraction effects in rigid adsorbents at low coverages, Transactions of the Faraday Society, vol.54, issue.0, pp.429-440, 1958.

N. Suzuki, M. Ito, and F. Yatsuyanagi, Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems, Polymer, vol.46, issue.1, pp.193-201, 2005.

K. Sanat, . Kumar, J. Nicolas, B. Brian, and N. Tony, Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules, vol.46, issue.9, pp.3199-3214, 2013.

F. Daniel, D. L. Sunday, and . Green, Thermal and Rheological Behavior of Polymer Grafted Nanoparticles, Macromolecules, vol.48, issue.23, pp.8651-8659, 2015.

B. Adrien, P. Laurent, D. Christophe, G. Jeremie, K. Pawe? et al., Nanofiller Structure and Reinforcement in Model Silica/Rubber Composites : A Quantitative Correlation Driven by Interfacial Agents, vol.47, pp.5365-5378, 2014.

H. Luginsland and C. Röben, The Development of Sulphur-Functional Silanes as Coupling Agents in Silica-Reinforced Rubber Compounds. Their Historical Development over Several Decades, International Polymer Science and Technology, vol.43, issue.4, pp.1-6, 2016.

J. Ramier, L. Chazeau, C. Gauthier, L. Guy, and M. N. Bouchereau, Grafting of silica during the processing of silica-filled SBR : Comparison between length and content of the silane, Journal of Polymer Science Part B : Polymer Physics, vol.44, issue.1, pp.143-152, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00436147

S. Gauthier, J. P. Aimé, T. Bouhacina, and A. J. Attias, DESBAT : Study of Grafted Silane Molecules on Silica Surface with an Atomic Force Microscope, Langmuir, vol.12, issue.21, pp.5126-5137, 1996.

D. Vincent and C. Yves, Surface hydroxylation and silane grafting on fumed and thermal silica, Journal of Colloid and Interface Science, vol.264, issue.2, pp.552-558, 2003.

M. Salon, B. Pierre-alain, A. Makki, B. Sami, M. Naceur et al., Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.312, pp.83-91, 2008.

V. Franck, B. Ilaria, T. Arnaud, M. Nicolas, G. Fabien et al.,

. Tetrasulfide, TESPT) Silane Coupling Agent over Hydrated Silica : Operando IR Spectroscopy and Chemometrics Study. février, 2014.

U. Dinur and A. T. Hagler, New Approaches to Empirical Force Fields, Reviews in Computational Chemistry, pp.99-164, 2007.

R. Jean-paul, G. Ciccotti, J. C. Herman, and . Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints : molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, issue.3, pp.327-341, 1977.

M. Lingenheil, R. Denschlag, R. Reichold, and P. Tavan, The "Hot-Solvent/Cold-Solute, Problem Revisited. Journal of Chemical Theory and Computation, vol.4, issue.8, pp.1293-1306, 2008.

W. Hiroshi, Failure of Deterministic and Stochastic Thermostats to Control Temperature of Molecular Systems, Journal of the Physical Society of Japan, vol.86, issue.7, p.75004

N. Sh?ichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.52, issue.2, pp.255-268

W. G. Hoover, Canonical dynamics : Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.

S. Wataru, S. Motoyuki, and M. Masuhiro, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Physical Review B, vol.69, issue.13, p.134103, 2004.

F. Varnik, J. Baschnagel, and K. Binder, Molecular dynamics results on the pressure tensor of polymer films, The Journal of Chemical Physics, vol.113, issue.10, pp.4444-4453, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00019709

H. Hu, S. Granick, and K. S. Schweizer, Static and dynamical structure of confined polymer films, Journal of Non-Crystalline Solids, pp.721-728, 1994.

G. S. Grest, Grafted polymer brushes : a constant surface pressure molecular dynamics simulation, Macromolecules, vol.27, issue.2, pp.418-426, 1994.

G. Florent, P. Malfreyt, and D. J. Tildesley, Mesoscopic simulation of entanglements using dissipative particle dynamics : Application to polymer brushes, The Journal of Chemical Physics, vol.129, issue.3, p.34902, 2008.

K. Binder, Scaling concepts for polymer brushes and their test with computer simulation

P. G. Gennes, Conformations of Polymers Attached to an Interface, Macromolecules, vol.13, issue.5, pp.1069-1075, 1980.

M. Aubouy, G. H. Fredrickson, P. Pincus, and E. Raphaeel, End-Tethered Chains in Polymeric Matrixes, Macromolecules, vol.28, issue.8, pp.2979-2981, 1995.

C. Gay, Wetting of a Polymer Brush by a Chemically Identical Polymer Melt, Macromolecules, vol.30, issue.19, pp.5939-5943, 1997.

V. M. Tinashe, M. C. Ndoro, . Böhm, and M. Florian, Interface and Interphase Dynamics of Polystyrene Chains near Grafted and Ungrafted Silica Nanoparticles. Macromolecules, vol.45, pp.171-179, 2012.

L. I. Ying, K. Martin, and L. Wing-kam, Dynamics and Anisotropic Viscosity of Polyethylene Nanocomposites. Macromolecules, vol.45, issue.4, pp.2099-2112, 2012.

E. Hossein, R. Mohammad, and M. Florian, Molecular Dynamics Simulation of a Silica Nanoparticle in Oligomeric Poly(methyl methacrylate) : A Model System for Studying the Interphase Thickness in a Polymer-Nanocomposite via Different Properties, Macromolecules, vol.46, issue.21, pp.8680-8692, 2013.

L. Yanlong, Q. U. Liangliang, S. U. Huifang, W. Tung, . Chan et al., Effect of chemical structure of elastomer on filler dispersion and interactions in silica/solution-polymerized styrene butadiene rubber composites through molecular dynamics simulation, vol.6, pp.14643-14650, 2016.

I. G. Mathioudakis, G. G. Vogiatzis, C. Tzoumanekas, and D. N. Theodorou, Multiscale simulations of PS-SiO2 nanocomposites : from melt to glassy state, Soft Matter, vol.12, issue.36, pp.7585-7605, 2016.

M. Dong, K. Sanat, S. Kumar, G. S. Cheng, and . Grest, Simulating the miscibility of nanoparticles and polymer melts, Soft Matter, vol.9, issue.22, pp.5417-5427, 2013.

L. I. Ying, K. Martin, and L. Wing-kam, Nanoparticle Effect on the Dynamics of Polymer Chains and Their Entanglement Network, Physical Review Letters, vol.109, issue.11, p.118001

C. Yulong, L. I. Ziwei, W. Shipeng, Y. Qingyuan, Z. Liqun et al., Molecular simulation study of role of polymer-particle interactions in the strain-(10):104901, septembre 2014

S. Jianxiang, L. Jun, G. Yangyang, L. I. Xiaolin, and Z. Liqun, Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites : a detailed molecular dynamics simulation study, Soft Matter, vol.10, issue.28, pp.5099-5113, 2014.

H. Katsumi, M. Hiroshi, D. Masao, and T. Hiroshi, Coarse-Grained Molecular Dynamics Simulation of Filled Polymer Nanocomposites under Uniaxial Elongation. Macromolecules, vol.49, pp.1972-1983, 2016.

. Parul-katiyar, K. Jayant, and . Singh, A coarse-grain molecular dynamics study of oil-water interfaces in the presence of silica nanoparticles and nonionic surfactants, The Journal of Chemical Physics, vol.146, issue.20, p.204702, 2017.

Y. Narayan, P. , A. Brayton, C. Burkhart, G. J. Papakonstan-topoulos et al., Multiscale modeling of polyisoprene on graphite, The Journal of Chemical Physics, vol.140, issue.5, p.54908, 2014.

G. Azadeh, V. M. Tinashe, . Ndoro, L. Frédéric, R. Mohammad et al., Interphase Structure in Silica-Polystyrene Nanocomposites : A Coarse-Grained Molecular Dynamics Study. Macromolecules, vol.45, pp.572-584, 2012.

Z. Zhang and S. C. Glotzer, Self-Assembly of Patchy Particles, vol.4, pp.1407-1413, 2004.

T. Jagannathan, G. S. Kalathi, . Grest, K. Sanat, and . Kumar, Universal Viscosity Behavior of Polymer Nanocomposites, Physical Review Letters, vol.109, issue.19, p.198301