D. , Cet angle d'attaque est toutà fait dans le savoir-faire du laboratoire. Nous avons validé expérimentalement ou grâceà des références bibliographiques les différentesétapes de ce procédé de criblage de séquences de conditions de culture. Il ne reste plus qu'à assembler les différentesétapes pour obtenir un procédé puissant, qui a le potentiel d'apporter des avancées importantes dans l'élaboration de forçage physiologique, pouréviter une désorption trop importante des colloïdes, nous pourrions nous intéresser aux dépôts de films de polymères sur la structure capsule-colloïdes

, Il nous resteà aller au delà de la preuve de concept età l'appliquer pour une application industrielle ou académique. Nous pensons qu'il serait intéressant de le faire avec un industriel ayant un besoin particulier et un savoir-faire adéquat

, Ce milieu de culture est fourni par l'IBPC. Il s'agit d'un milieu riche, contenant une source de carbone qui permet une culture en hétérotrophie

, Préparation Plusieurs solutions mères sont préparées. Phosphate Buffer 2X : 14,34 g de K 2 HPO 4 , 7,26 g de KH 2 PO 4 , eau distillée QSP 1L Phosphate 1M pH 7 Buffer : 60 mL de K 2 HPO 4 1M + 40 mL de KH 2 PO 4 1M Beijerincks 2x : 8 g de NH 4 Cl, 1 g de CaCl, vol.2

, EDTA est dissout séparément dans 250 mL d'eau distillée, le ZnSO 4 dans 100 mL d'eau distillée, le H 3 BO 3 dans 200 mL d'eau distillée et les autreséléments dans 50 mL d'eau distillée. Ces solutions sont mélangées, l'EDTA en dernier. Le mélange est porté aébullition quelques minutes, le pH est ajustéà 6,5-6,8 avec une solution de KOHà 20% .Le volume du mélange est ensuite ajustéà 1 L en ajoutant de l'eau distillée

T. Le, 50 mL de Beijerincks (2x), 1 mL de Phosphate 1M pH7

, Buffer, 1 mL de Hutner's trace elements, 1 mL d'acide acétique et 2,42 g de TRIS sont mélangés, et le volume est ajustéà 1 L avec de l'eau distillé. Le pH est ajustéà 7,1-7,4 avec de la soude

, Ce milieu de culture est fourni par l'IBPC. Il s'agit d'un TAP sans azote, qui permet d'induire la production de lipides chez Chlamydomonas reinhardtii

, Préparation Une solution de Beijerincks N0 (2x) est préparée ainsi : 1 g de CaCl 2 , 2 g de MgSO 4 , eau distillée QSP 1L. Le NO peut ensuiteêtre préparé. 50 mL de Beijerincks NO (2x), 1 mL de Phosphate 1M

, Buffer, 1 mL de Hutner's trace elements, 1 mL d'acide acétique et 2,42 g de TRIS sont mélangés, et le volume est ajustéà 1 L avec de l'eau distillé. Le pH est ajustéà 7,1-7,4 avec de la soude

, Composition Composé Concentration (mol/L) HEPES 25

, Ce milieu de culture (Rich Capsule Compatible Medium) est fabriqué au laboratoire. Comme son nom l'indique, il est compatible avec notre technologie d'encapsulation. Il ne contient pas d'azote, qui permet d'induire la production de lipides chez Chlamydomonas reinhardtii

, 1 mL de Phosphate 1M pH7 Buffer, 1 mL de Hutner's trace elements, 1 mL d'acide acétique, 10 mL de la solution de CaCl 2 et 5,96 g d'HEPES sont mélangés, Préparation Les solutions mères listées ci dessus sont utilisées. 50 mL de Beijerincks N0 (2x)

J. Boudrant, J. Guezennec, and P. Monsan, Techniques de l'ingénieur, 2007.

L. Bouby, P. Boissinot, and P. Marinval, Never Mind the Bottle. Archaeobotanical Evidence of Beer-brewing in Mediterranean France and the Consumption of Alcoholic Beverages During the 5th Century BC, Human Ecology, vol.39, issue.3, pp.351-360, 2011.

L. Losee, T. Ling, A. J. Schneider, A. L. Peoples, I. Spoering et al., A new antibiotic kills pathogens without detectable resistance, Nature, vol.517, issue.7535, pp.455-459, 2015.

A. Notter, Difficultés d ' industrialisation de la pénicilline, Histoire, pp.31-38, 1928.

R. Radman, T. Saez, C. Bucke, and T. Keshavarz, Elicitation of plants and microbial cell systems, Biotechnol. Appl. Biochem, vol.37, pp.91-102, 2003.

K. Skjånes, C. Rebours, and P. Lindblad, Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process, Critical Reviews in Biotechnology, vol.33, pp.1-44, 2012.

L. Rolland, Physico-chemical features of hydrogel capsules having a liquid core Propriétés physico-chimiques de capsules d ' hydrogelà coeur liquide, 2013.

L. Rolland, E. Santanach-carreras, T. Delmas, J. Bibette, and N. Bremond, Physicochemical properties of aqueous core hydrogel capsules, Soft matter, vol.10, issue.48, pp.9668-74, 2014.

N. C. Hunt and L. M. Grover, Cell encapsulation using biopolymer gels for regenerative medicine, Biotechnology Letters, vol.32, issue.6, pp.733-742, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00565436

S. Hertzberg and . Jensen, Studies of alginate-immobilized marine microalgae, Botanica Marina, vol.32, issue.4, pp.267-274, 1989.

M. Hameed, Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal, African Journal of Biotechnology, vol.6, pp.1185-1191, 2007.

J. Kaparapu, Micro algal Immobilization Techniques. Micro algal Immobilization Techniques, vol.8, pp.64-70, 2017.

Y. Ferro, M. Perullini, M. Jobbagy, S. A. Bilmes, and C. Durrieu, Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels, Sensors (Switzerland), vol.12, issue.12, pp.16879-16891, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763719

H. Doméjean, Formation of hydrogel aqueous-core capsules via the fragmentation of a compound complex fluid jet, 2014.

. Alvin-a-carlos, K. Brett, M. Baillie, T. Kawachi, and . Maruyama, Cardiids (Bivalvia), a sponge (Porifera), a soft Coral (Anthozoa), and a free-living strain, Phylogenetic position of Symbiodinium (Dinophyceae) from Tridacnids (Bivalvia), vol.35, pp.1054-1062, 1999.

V. M. Weis, W. S. Reynolds, M. D. Deboer, and D. A. Krupp, Hostsymbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria, Coral Reefs, vol.20, issue.3, pp.301-308, 2001.

D. Astorga, J. Ruiz, and L. Prieto, Ecological aspects of early life stages of Cotylorhiza tuberculata (Scyphozoa : Rhizostomae) affecting its pelagic population success, Hydrobiologia, vol.690, issue.1, pp.141-155, 2012.

J. Decelle, R. Siano, I. Probert, C. Poirier, and F. Not, Multiple microalgal partners in symbiosis with the acantharian Acanthochiasma sp
URL : https://hal.archives-ouvertes.fr/hal-01258243

, Symbiosis, vol.58, issue.1-3, pp.233-244, 2012.

M. Suutari, M. Majaneva, P. David, B. Fewer, A. Voirin et al., Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae), BMC evolutionary biology, vol.10, p.86, 2010.

C. A. Santos and A. Reis, Microalgal symbiosis in biotechnology, Applied Microbiology and Biotechnology, vol.98, issue.13, pp.5839-5846, 2014.

P. Spolaore, C. Joannis-cassan, E. Duran, and A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, vol.101, issue.2, pp.87-96, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133263

J. N. Rosenberg, G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh, A green light for engineered algae : redirecting metabolism to fuel a biotechnology revolution, Current Opinion in Biotechnology, vol.19, issue.5, pp.430-436, 2008.

A. Hallmann and . Hallman, Algal transgenics and biotechnology, Transgenic Plant J, vol.1, issue.1, pp.81-98, 2007.

J. Person, Livre Turquoise -Algues, Filière du Future. Actes du Colloque Adebiotech, 2010.

F. Thevenieau and J. Nicaud, Microorganisms as sources of oils, Ocl, vol.20, issue.6, p.603, 2013.

R. Zih, Y. K. Huang, J. Y. Lin, and . Fang, Biological and pharmacological activities of squalene and related compounds : Potential uses in cosmetic dermatology, Molecules, vol.14, issue.1, pp.540-554, 2009.

K. Samarakoon and . You-jin-jeon, Bio-functionalities of proteins derived from marine algae -A review, Food Research International, vol.48, issue.2, pp.948-960, 2012.

B. Duval, K. Shetty, and W. H. Thomas, Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light, Journal of Applied Phycology, vol.11, issue.6, pp.559-566, 1999.

H. Wang, C. C. Chen, P. Huynh, and J. S. Chang, Exploring the potential of using algae in cosmetics, Bioresource Technology, vol.184, pp.355-362, 2015.

P. Shima, S. E. Damodaran, L. Boitard, J. Garnica-rodriguez, Y. Wang et al., Jérôme Bibette, and Francis André Wollman. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii, PLoS ONE, vol.10, issue.3, p.118987, 2015.

E. H. Harris, The Chlamydomonas Sourcebook, 1989.

S. Sabeeha, S. E. Merchant, O. Prochnik, . Vallon, H. Elizabeth et al., The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, vol.318, issue.5848, pp.245-250, 2010.

J. Young, J. Locke, . Altinok, T. Rosenfeld, P. Bacarian et al., Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy, Nature protocols, vol.7, issue.1, pp.80-88, 2012.

S. C. , Factors controlling induction of reproduction in algae-review : The text, Folia Microbiologica, vol.57, issue.5, pp.387-407, 2012.

J. A. Gregory, F. Li, L. M. Tomosada, C. J. Cox, A. B. Topol et al., Algae-produced pfs25 elicits antibodies that inhibit malaria transmission, PLoS ONE, vol.7, issue.5, pp.1-10, 2012.

I. Dreesen, G. Hamri, and M. Fussenegger, Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection, Journal of Biotechnology, vol.145, issue.3, pp.273-280, 2010.

O. C. Demurtas, S. Massa, P. Ferrante, A. Venuti, R. Franconi et al., A Chlamydomonas-Derived Human Papillomavirus 16 E7 Vaccine Induces Specific Tumor Protection, PLoS ONE, vol.8, issue.4, pp.1-9, 2013.

P. Stephen, S. E. Mayfield, R. Franklin, and . Lerner, Expression and assembly of a fully active antibody in algae, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.438-480, 2003.

B. Miller-tran, P. L. Zhou, M. J. Pettersson, S. P. Gonzalez, and . Mayfield, Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts, Biotechnology and Bioengineering, vol.104, issue.4, pp.663-673, 2009.

. Bechth-a-rasala, P. Stephen, and . Mayfield, The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics (chholoplast), Bioengineered bugs, vol.2, issue.1, pp.50-54, 2010.

J. Voigt and P. Münzner, The Chlamydomonas cell cycle is regulated by a light/dark-responsive cell-cycle switch, Planta, vol.172, issue.4, pp.463-472, 1987.

L. Barsanti and P. Gualtieri, Algae : Anatomy, Biochemistry, and Biotechnology, 2014.

H. Takache, J. Pruvost, and H. Marec, Investigation of light/dark cycles effects on the photosynthetic growth of chlamydomonas reinhardtii in conditions representative of photobioreactor cultivation, Algal Research, vol.8, pp.192-204, 2015.

R. D-s-gorman and . Levine, Cytochrome f and plastocyanin : their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi, Proceedings of the National Academy of Sciences of the United States of America, vol.54, pp.1665-1669, 1965.

D. Giuliana, A. Ippolito, D. Sardo, F. M. Paris, M. G. Vella et al., Potential of lipid metabolism in marine diatoms for biofuel production, Biotechnology for biofuels, vol.8, issue.1, p.28, 2015.

B. Beat, M. Fischer, R. Wiesendanger, and . Eggen, Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions, Plant and Cell Physiology, vol.47, issue.8, pp.1135-1145, 2006.

O. A. Jesse-b-therien, . Zadvornyy, C. Matthew, D. A. Posewitz, J. W. Bryant et al., Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002, Biotechnology for biofuels, vol.7, issue.1, p.154, 2014.

L. Mottet, Conducting composite hydrogel for the encapsulation of electroactive bacteria, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01419818

K. Alessandri, V. Bibhu-ranjan-sarangi, B. Valérïévitch-gurchenkov, T. R. Sinha, L. Kießling et al., Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.14843-14851, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01356886

C. F. Bohren, D. R. Huffman, and B. ,

F. Craig, R. Donald, and . Huffman, Absorption and Scattering of Light by Small Particles, 1983.

G. Anne, . Glaesener, S. Sabeeha, C. E. Merchant, and . Blaby-haas, Iron economy in Chlamydomonas reinhardtii, Frontiers in plant science, vol.4, p.337, 2013.

Y. Do, O. Lee, and . Fiehn, High quality metabolomic data for Chlamydomonas reinhardtii, Plant methods, vol.4, issue.7, 2008.

C. Song, P. Wang, and H. A. Makse, A phase diagram for jammed matter, Nature, vol.453, issue.7195, pp.629-632, 2008.

C. Roberto, N. M. Gallo-villanueva, J. I. Jesús-pérez, A. Martínez-lópez, B. H. Pacheco et al., Assessment of microalgae viability employing insulator-based dielectrophoresis, Microfluidics and Nanofluidics, vol.10, issue.6, pp.1305-1315, 2011.

Q. Béchet, I. Feurgard, F. Benoit-guieysse, and . Lopes, The colorimetric assay of viability for algae (CAVA) : a fast and accurate technique, Journal of Applied Phycology, vol.27, issue.6, pp.2289-2297, 2015.

M. K. Steinberg, E. J. Lemieux, and L. A. Drake, Determining the viability of marine protists using a combination of vital, fluorescent stains, Marine Biology, vol.158, issue.6, pp.1431-1437, 2011.

M. Sato, M. Murata, H. Mizusawa, S. Iwahashi, and . Oka, A simple and rapid dualfluorescence viability assay for microalgae, vol.20, pp.53-59, 2004.

M. Zong, Q. B. Xiu, H. L. Zhang, V. L. Puppala, P. Colvin et al., Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Letters, vol.12, issue.8, pp.4271-4275, 2012.

M. Onofrei, J. Hunt, J. Siemienczuk, D. R. Touchette, and B. Middleton, A first step towards translating evidence into practice : Heart failure in a community practice-based research network, Informatics in Primary Care, vol.12, issue.3, pp.139-145, 2004.

C. Ventola, The antibiotic resistance crisis : part 2 : management strategies and new agents. P & T : a peer-reviewed journal for formulary management, vol.40, pp.344-52, 2015.

S. Shima, . Matsuoka, H. Iwamoto, and . Sakai, Antimicrobial Action of E-Poly-L Lysine, J. Antibiot. (Tokyo), vol.37, issue.11, p.1449, 1984.

L. Zhang, R. Li, F. Dong, A. Tian, Z. Li et al., Physical, mechanical and antimicrobial properties of starch films incorporated with -poly-l-lysine, Food Chemistry, vol.166, pp.107-114, 2015.

A. Chheda and M. R. Vernekar, A natural preservative -poly-L-lysine : fermentative production and applications in food industry, International Food Research Journal, vol.22, issue.1, pp.23-30, 2015.

F. Paul, J. Luckham, and . Klein, Forces between mica surfaces bearing adsorbed polyelectrolyte, poly-L-lysine, in aqueous media, Journal of the Chemical Society, Faraday Transactions, vol.1, issue.4, p.865, 1984.

J. S. Jellinek, Formulation and Function of Cosmetics, 1970.

S. E. Ruffell, L. M. Carreiro, and K. M. Müller, Choosing the Right Microalgae for the Job. Cosmetics and toiletries, 2016.

P. Calleja and M. Leterrier, Souche d'algues modifiée et procédé d'accumulation de triglycérides au moyen de ladite souche, 2016.

Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends in Biotechnology, vol.26, issue.3, pp.126-131, 2008.

B. Moutel, O. Gonçalves, F. L. Grand, M. Long, P. Soudant et al., Development of a screening procedure for the characterization of Botryococcus braunii strains for biofuel application, Process Biochemistry, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02336414

B. Perrier, C. Crampon, O. Guézet, C. Simon, F. Maire et al., Production of a methyl ester from the microalgae Nannochloropsis grown in raceways on the French west coast, Fuel, vol.153, pp.640-649, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247077

J. Y. Lee and C. Yoo, Chi Yong Ahn, and Hee Mock Oh. Comparison of several methods for effective lipid extraction from microalgae, Bioresource Technology, issue.1, pp.75-82, 2010.

J. T. Cirulis, B. C. Strasser, J. A. Scott, and G. M. Ross, Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability, Cytometry Part A, 81 A, issue.7, pp.618-626, 2012.

L. Brennan, A. Blanco-fernández, A. S. Mostaert, and P. Owende, Enhancement of BODIPY 505/515 lipid fluorescence method for applications in biofuel-directed microalgae production, Journal of Microbiological Methods, vol.90, issue.2, pp.137-143, 2012.

Y. Han, Q. Wen, Z. Chen, and P. Li, Review of methods used for microalgal lipid-content analysis, Energy Procedia, vol.12, pp.944-950, 2011.

K. Hosoda, S. Suzuki, Y. Yamauchi, Y. Shiroguchi, A. Kashiwagi et al., Cooperative adaptation to establishment of a synthetic bacterial mutualism, PLoS ONE, vol.6, issue.2, 2011.

A. Lubiniecki, Large-Scale Mammalian Cell Culture Technology, 1990.

H. Hauser and R. Wagner, Mammalian cell biotechnology in protein production, 1997.

. S-s-ozturk, Engineering challenges in high density cell culture systems, Cytotechnology, vol.22, issue.1-3, pp.3-16, 1996.

Y. Chisti, Animal-cell damage in sparged bioreactors, Trends in Biotechnology, vol.18, issue.10, pp.420-432, 2000.

M. Jordan, H. Eppenberger, H. Sucker, A. Widmer, and . Einsele, Interactions between animal cells and gas bubbles : The influence of serum and pluronic F68 on the physical properties of the bubble surface, Biotechnology and Bioengineering, vol.43, issue.6, pp.446-454, 1994.

J. Wu and M. Goosen, Bubbles in Sparged Animal Cell Culture Bioreactors, vol.0229, issue.94, 1995.

P. Le-clech, V. Chen, and T. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of Membrane Science, vol.284, issue.1-2, pp.17-53, 2006.

E. Duliege, T. Delmas, S. Bardon, J. Bibette, N. Bremond et al., Gel capsule comprising a plant cell, 2016.

. Van-thang, Y. Duong, E. Li, P. M. Nowak, and . Schenk, Microalgae isolation and selection for prospective biodiesel production, Energies, vol.5, issue.6, pp.1835-1849, 2012.

J. S. Yu-luen-deng, Y. Chang, and . Juang, Separation of microalgae with different lipid contents by dielectrophoresis, Bioresource Technology, vol.135, pp.137-141, 2013.

J. Young-hwan, H. Kim, Y. J. Seok-kwak, H. I. Sung, M. E. Choi et al., Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis, Sang Yup Lee, and Sang Jun Sim, p.21155, 2015.

A. Han, H. Hou, L. Li, H. S. Kim, and P. De-figueiredo, Microfabricated devices in microbial bioenergy sciences, Trends in Biotechnology, vol.31, issue.4, pp.225-232, 2013.

Y. and J. S. Chang, Applications of microfluidics in microalgae biotechnology : A review, Biotechnology Journal, vol.11, issue.3, pp.327-335, 2016.

H. S. Kim, L. Taylor, . Weiss, R. Hem, T. P. Thapa et al., A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production, Lab on a chip, vol.14, issue.8, pp.1415-1440, 2014.

, Snow Algae Powder -The Mystery of Red Snow

R. B. Merrifield, Solid Phase Peptide Synthesis. I. The Synthesis of, Journal of the American Chemical Society, vol.85, issue.14, p.2149, 1963.

, Paul Edwards. Combinatorial chemistry. Drug Discovery Today, vol.5, issue.12, pp.572-573, 2000.

A. Rasheed, . Rumana, and . Farhat, Combinatorial chemistry : a review, International Journal of Pharmaceutical Sciences and Research, vol.4, issue.7, pp.2502-2516, 2013.

R. H-m-geysen, S. H-meloen, and . Barteling, Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid, Proceedings of the National Academy of Sciences of the United States of America, vol.81, pp.3998-4002, 1984.

J. Edmund, S. Moran, . Sarshar, F. John, . Cargill et al., Radio Frequency Tag Encoded Combinatorial Library Method for the Discovery of Tripeptide-Substituted Cinnamic Acid Inhibitors of the Protein Tyrosine Phosphatase PTP1B, Journal of the American Chemical Society, vol.117, issue.43, pp.10787-10788, 1995.

K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor et al., Raman spectroscopy of lipids : A review, Journal of Raman Spectroscopy, vol.46, issue.1, pp.4-20, 2015.

M. Tarunina, D. Hernandez, C. J. Johnson, S. Rybtsov, V. Ramathas et al., Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method, PLoS ONE, vol.9, issue.9, p.104301, 2014.

Y. Choo, F. Hornby, and J. Girdleston, Method for Determining the Cell Culture History of a Cell Unit, 2009.

R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, Threedimensional cell culture systems and their applications in drug discovery and cell-based biosensors, Assay and drug development technologies, vol.12, issue.4, pp.207-225, 2014.

Y. Choo, Use of Combinatorial Screening to Discover Protocols That Effectively Direct the Differentiation of Stem Cells, Stem Cell Research and Therapeutics, pp.227-250, 2008.

S. Freiberg and X. X. Zhu, Polymer microspheres for controlled drug release, International Journal of Pharmaceutics, vol.282, issue.1-2, pp.1-18, 2004.

A. Giglio, S. Battistella, F. F. Talarico, T. Zetto-brandmayr, and P. Giulianini, Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae) : Cell types and their role in phagocytosis after in vivo artificial non-self-challenge, Micron, vol.39, issue.5, pp.552-558, 2008.

M. Margarida and . Barroso, Quantum dots in cell biology, The Journal of Histochemistry and Cytochemistry, vol.59, issue.3, pp.237-251, 2011.

S. Otto and . Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging, Chem. Soc. Rev. Chem. Soc. Rev, vol.44, issue.44, pp.4743-4768, 2015.

A. Doerr, Multiplexing to the max, Nature Methods, vol.4, issue.5, pp.381-381, 2007.

N. Weibel, Marqueurs Luminescentsà Base d ' Ions Lanthanides : Synthèse , Propriétés et Marquage de Protéines, 2005.

A. Karen, J. Sap, and . Demmers, Labeling Methods in Mass Spectrometry Based Quantitative Proteomics. Integrative Proteomics, pp.111-132, 2012.

A. Thompson, J. Schäfer, K. Kuhn, S. Kienle, J. Schwarz et al., Tandem mass tags : A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS, Analytical Chemistry, vol.75, issue.8, pp.1895-1904, 2003.

D. J. Schlingman, A. H. Hack, G. J. Simon, L. Mochrie, and . Regan, A new method for covalent attachment of DNA to a surface for single molecule studies, Colloids and Surfaces B : Biointerfaces, vol.83, issue.1, pp.91-95, 2011.

M. Allon, L. Klein, I. Mazutis, N. Akartuna, A. Tallapragada et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, vol.161, issue.5, pp.1187-1201, 2015.

F. Lan, J. R. Haliburton, A. Yuan, and A. R. Abate, Droplet barcoding for massively parallel single-molecule deep sequencing, Nature Communications, vol.7, pp.1-10, 2016.

L. Wang, K. Zhang, C. Y. Xiong, and Z. Ge, Cytotoxicity of core-shell polystyrene magnetic beads and related mechanisms, Molecular and Cellular Toxicology, vol.8, issue.3, pp.217-227, 2012.

M. Ivo?afa?ík, Use of magnetic techniques for the isolation of cells, Journal of Chromatography B : Biomedical Sciences and Applications, vol.722, issue.1-2, pp.33-53, 1999.

D. L. Elbert, C. B. Herbert, and J. A. Hubbell, Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces, Langmuir, vol.15, issue.16, pp.5355-5362, 1999.

O. Norah, A. Farrell, B. R. Houlton, and . Horrocks, Silicon nanoparticles : Applications in cell biology and medicine, International Journal of Nanomedicine, vol.1, issue.4, pp.451-472, 2006.

Y. Chen and Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Analytical Chemistry, vol.74, issue.19, pp.5132-5138, 2002.

E. Zillner, S. Fengler, P. Niyamakom, F. Rauscher, K. Köhler et al., Role of ligand exchange at CdSe quantum dot layers for charge separation, Journal of Physical Chemistry C, vol.116, issue.31, pp.16747-16754, 2012.

J. D. Teller, C. D. Gruttner, S. D. Rudershausen, and F. D. Westphal, Process for the preparation of coloured and fluorescent polysilicic acid particles

D. Hernandez and L. Hook, Stem cell differentiation : How to find a path through the labyrinth, Chimica Oggi/Chemistry Today, vol.30, issue.5, pp.81-84, 2012.