, les gaps directs du modèle TB sont plus petits -avec l'écart entre deux modèles qui devient plus important vers les grandes déformations -similaire à ce qui est observé sur Ge. Le modèle TB donne un seuil de déformation supérieur pour passer au gap direct, mais cela peut être expliqué par l

. Figure-iv, 6 -La variation de gap, des niveaux de conduction, de valence et de taux d'occupation des orbitales calculés avec le modèle TB sous une déformation biaxiale

. Figure-iv, 7 -La variation du gap, des niveaux de conduction, de valence et le taux d'occupation des orbitales calculés avec le modèle TB sous une déformation uniaxiale, vol.100

, De plus, le GeSn présente aussi des potentiels pour les transistors à haute mobilité, grâce à une faible masse effective de la vallée ?

. Figure-b, 1 : Comparaison des structures de bande de Ge0.5Sn0.5 en liaison forte (rouge) et ab

. Figure-b, 2 : Comparaison des structures de bande de Sn en liaison forte (rouge) et ab-initio + GW0 (bleu) Bibliographie

J. Bardeen and W. Brattain, Three-Electrode Circuit Element Utilizing Semiconductive Materials, Patent US2524034A, 1950.

J. Bardeen and W. Brattain, The Transistor, A Semi-Conductor Triode, Phys. Rev, vol.74, p.230, 1948.

G. E. Moore, Cramming more components onto integrated circuits, Electronics, vol.38, 1965.

. Phys and . Org,

G. Chandra, P. Kapur, and K. C. Saraswat, Scaling trends for the on chip power dissipation, Proc. IEEE, p.170, 2002.

K. C. Saraswat and F. Mohammadi, Effect of Scaling of Interconnections on the Time Delay of VLSI Circuits, IEEE J. Solid-State Circuits, p.275, 1982.

G. Roelkens, J. Van-campenhout, J. Brouckaert, D. Van-thourhout, R. Baets et al., III-V/Si photonics by die-to-wafer bonding, materialstoday, vol.10, p.36, 2007.

K. Tanabe, K. Watanabe, and Y. Arakawa, III-V/Si hybrid photonic devices by direct fusion bonding, Sci. Rep, vol.2, 2012.

K. Morizane, Antiphase domain structures in GaP and GaAs epitaxial layers grown on Si and Ge, J. Cryst. Growth, vol.38, issue.2, p.249, 1977.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David et al., Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility, APL Mater, vol.4, p.46101, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02053234

M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, 1988.

J. Liu, X. Sun, R. Camacho-aguilera, L. C. Kimmerling, and J. Michel, Ge-on-Si laser operating at room temperature, Opt. Lett, vol.35, issue.5, p.679, 2010.

R. Camacho-aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli et al., An electrically pumped germanium laser, Opt. Express, vol.20, issue.10, p.11316, 2012.

R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki et al., Electrically pumped lasing from Ge Fabry-Perot resonators on Si, Opt. Express, vol.23, issue.11, p.14815, 2015.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio et al., Analysis of enhanced light emission from highly strained germanium microbridges, Nat. Photonics, vol.7, p.466, 2013.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi et al., Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain, Phys. Rev. Lett, vol.109, p.57402, 2012.

D. Nam, D. S. Sukhdeo, J. Kang, J. Petykiewicz, J. H. Lee et al.,

K. C. Brongersma and . Saraswat, Strain-Induced Pseudoheterostructure Nanowires Confining Carriers at Room Temperature with Nanoscale-Tunable Band Profiles, NanoLetters, vol.13, p.3118, 2013.

K. Guilloy, N. Pauc, A. Gassenq, Y. Niquet, J. Escalante et al., Germanium under High Tensile Stress: Nonlinear Dependence of Direct Band Gap vs Strain, vol.3, p.1907, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01849851

A. Gassenq, K. Guilloy, G. O. Dias, N. Pauc, D. Rouchon et al., 1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications, Appl. Phys. Lett, vol.107, p.191904, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01831106

A. Ghrib, M. El-kurdi, M. De-kersauson, M. Prost, S. Sauvage et al., Tensile-strained germanium microdisks, Appl. Phys. Lett, vol.102, p.221112, 2013.

D. Nam, D. S. Sukhdeo, S. Cheng, A. Roy, K. C. Huang et al., Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser, Appl. Phys. Lett, vol.100, p.131112, 2012.

J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma et al., A micromachining-based technology for enhancing germanium light emission via tensile strain, Nat. Photonics, vol.6, p.398, 2012.

K. Guilloy, Thèse: Germanium déformé pour l'émission de lumière, 2016.

R. Geiger, Thesis: Direct Band Gap Germanium for Si-compatible Lasing, 2016.

S. Wirths, R. Geiger, N. Von-den-driesch, G. Mussler, T. Stoica et al., Lasing in direct-bandgap GeSn alloy grown on Si, vol.9, p.88, 2015.

D. Stange, S. Wirths, R. Geiger, C. Schulte-braucks, B. Marzban et al., Optically Pumped GeSn Microdisk Lasers on Si, vol.3, p.1279, 2016.

S. Al-kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou et al., An optically pumped 2.5 ?m GeSn laser on Si operating at 110 K, Appl. Phys. Lett, vol.109, p.171105, 2016.

S. Gupta, Thesis: Germanium-Tin (GeSn) technology, 2013.

M. P. Polak, P. Scharoch, and R. Kudriawiec, The electronic band structure of Ge1?x Sn x in the full composition range: indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-Moss effect, J. Phys. D. Appl. Phys, vol.50, p.195103, 2017.

D. W. Jenkins and J. D. Dow, Electronic properties of metastable GexSn1?x alloys, Phys. Rev. B, vol.36, p.7994, 1987.

Y. Chibane and M. Ferhat, Electronic structure of SnxGe1?x alloys for small Sn compositions: Unusual structural and electronic properties, J. Appl. Phys, vol.107, p.53512, 2010.

S. Gupta, B. Magyari-kope, Y. Nishi, and K. C. Saraswat, Achieving direct band gap in germanium through integration of Sn alloying and external strain, J. Appl. Phys, vol.113, p.73707, 2013.

S. Sant and A. Schenk, Pseudopotential calculations of strained-GeSn/SiGeSn heterostructures, Appl. Phys. Lett, vol.105, p.162101, 2014.

M. Bertrand, Q. M. Thai, J. Chrétien, N. Pauc, J. Aubin et al., Experimental Calibration of Sn-Related Varshni Parameters for High Sn Content GeSn Layers, Ann. Phys, vol.531, p.1800396, 2019.

D. Rainko, Z. Ikonic, A. Elbaz, N. Von-den-driesch, D. Stange et al., Impact of tensile strain on low Sn content GeSn lasing, Sci. Rep, vol.9, p.259, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02165210

C. Van-de-walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B, vol.39, issue.3, p.1871, 1989.

R. W. Olesinski and G. J. Abbaschian, The Ge-Sn (Germanium-Tin) System, Bull. Alloy Phase Diagrams, vol.5, issue.3, p.265, 1984.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant et al., Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth, Sci. Rep, vol.8, issue.1, p.5640, 2018.

Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, D. Monroe, F. A. Thiel et al., Extremely high electron mobility in Si/GexSi1-x structures grown by molecular beam epitaxy, Appl. Phys. Lett, vol.59, p.1611, 1991.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing, Appl. Phys. Lett, vol.72, issue.14, p.1718, 1998.

Y. Bogumilowicz, Thèse: Epitaxie et gravure d'hétérostructures Si/Si1-xGex pour applications dans les technologies MOS, 2005.

F. Gencarelli, B. Vincent, J. Demeulemeester, A. Vantomme, A. Moussa et al., Crystalline Properties and Strain Relaxation Mechanism of CVD Grown GeSn, ECS J. Solid State Sci. Technol, vol.2, p.134, 2013.

P. B. Fellgett, On the ultimate sensitivity and practical performance of radiation detectors, J. Opt. Soc. Am, vol.39, issue.11, p.970, 1949.

D. Stange, Thesis: Group IV (Si)GeSn Light Emission and Lasing Studies, 2019.

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, p.149, 1967.

Y. Fang, L. Wang, Q. Sun, T. Lu, Z. Deng et al., Investigation of temperature-dependent photoluminescence in multi-quantum wells, Sci. Rep, vol.5, 2015.

A. Gassenq, Thèse: Nouvelles sources lasers à super réseau InAs/GaSb/InSb pour l'émission moyen infrarouge, 2010.

. Horiba, Strain measurements of a Si cap layer deposited on a SiGe substrate determination of Ge content

B. Cluzel, Thèse: Réalisation et imagerie par sonde locale de cristaux photoniques en Silicium sur Isolant, 2005.

M. Zelsmann, Thèse: Cristaux photoniques en silicium sur isolant pour le guidage, le filtrage, l'émission et l'extraction de lumière, 2003.

J. Mouette, C. Seassal, X. Letartre, P. Romeo, J. L. Leclereq et al., Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon, Electron. Lett, vol.39, issue.6, p.526, 2003.

L. J. Martinez, B. Alen, I. Prieto, J. F. Galisteo-lopez, M. Galli et al., Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure, Opt. Express, vol.17, issue.17, p.15043, 2009.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Romeo et al., InP-based twodimensional photonic crystal on silicon: In-plane Bloch mode laser, Appl. Phys. Lett, vol.81, issue.27, p.5102, 2002.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord et al., Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 ?m up to 180 K, Appl. Phys. Lett, vol.111, p.92101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02060100

L. C. Andreani and D. Gerace, Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method, Phys. Rev. B, vol.73, p.235114, 2006.

J. Chrétien, N. Pauc, F. T. Pilon, M. Bertrand, Q. M. Thai et al.,

V. Hartmann and . Calvo, GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain, ACS Photonics, vol.6, issue.10, p.2462, 2019.

Q. M. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien et al.,

V. Hartmann, V. Reboud, and . Calvo, GeSn heterostructure micro-disk laser operating at 230 K, Opt. Express, vol.26, issue.25, p.32500, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02060078

A. Elbaz, K. Pantzas, N. Von-den-driesch, G. Patriarche, N. Zerounian et al., Low threshold and CW optically pumped laser emission in tensile strained GeSn microdisks, EMRS Spring Meet, 2019.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran et al., Optically Pumped GeSn Lasers Operating at 270 K with Broad Waveguide Structures on Si, ACS Photonics, vol.6, issue.6, p.1434, 2019.

J. Margetis, Y. Zhou, W. Dou, P. Grant, B. Alharthi et al., All group-IV SiGeSn/GeSn/SiGeSn QW laser on Si operating up to 90 K, Appl. Phys. Lett, vol.113, issue.22, p.221104, 2018.

Q. M. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien et al., 2D hexagonal photonic crystal GeSn laser with 16% Sn content, Appl. Phys. Lett, vol.113, p.51104, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02060090

A. Elbaz, Thèse: Sources laser compatibles silicium à base de Ge et GeSn à bande interdite directe, 2019.

D. Stange, N. Von-den-driesch, T. Zabel, F. T. Pilon, D. Rainko et al., GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers, vol.5, p.4628, 2018.

J. Margetis, S. Al-kabi, W. Du, W. Dou, Y. Zhou et al., Si-based GeSn lasers with wavelength coverage of 2-3 ?m and operating temperatures up to 180 K, ACS Photonics, vol.5, issue.3, p.827, 2017.

S. Gupta, D. Nam, J. Vuckovic, and K. C. Saraswat, Room temperature lasing unraveled by a strong resonance between gain and parasitic absorption in uniaxially strained germanium, Phys. Rev. B, vol.97, p.155127, 2018.

J. R. Chelikowsky and M. L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B, vol.14, issue.2, p.556, 1976.

M. M. Rieger and P. Vogl, Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates, Phys. Rev. B, vol.48, p.14276, 1993.

S. L. Chuang, Physics of Optoelectronic Devices, 1995.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, p.5188, 1976.

M. Yamada, Theory of Semiconductor Lasers: From Basis of Quantum Electronics to Analyses of the Mode Competition Phenomena and Noise

C. Zhu, R. Byrd, J. Nocedal, and L. , Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization, vol.23, p.550, 1997.

C. Zhu, R. Byrd, J. Nocedal, and J. L. Morales, Code source BFGS

P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 2005.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y. Yeo, Electronic band structure and effective mass parameters of Ge1-xSnx alloys, J. Appl. Phys, vol.112, p.103715, 2012.

J. Kim and M. V. Fischetti, Electronic band structure calculations for biaxially strained Si, Ge, and III-V semiconductors, J. Appl. Phys, vol.108, p.13710, 2010.

. Ioffe, Band structure and carrier concentration of Germanium

S. M. Sze and K. N. Kwok, Physics of semiconductor devices, 2006.

M. Cardona, P. Mcelroy, F. H. Pollak, and K. L. Shaklee, Electroreflectance and Band Structure of Gray Tin, Solid State Commun, vol.4, p.319, 1966.

F. H. Pollak, M. Cardona, C. W. Higginbotham, F. Herman, and J. P. Van-dyke, Energy-Band Structure and Optical Spectrum of Grey-Tin, Phys. Rev. B, vol.2, issue.2, p.352, 1970.

R. A. Smith, Semiconductors, 1961.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. C. Saraswat et al., Low-threshold optically pumped lasing in highly strained germanium nanowires, vol.8, 2017.

F. T. Pilon, A. Lyasota, Y. Niquet, V. Reboud, V. Calvo et al., Lasing in strained germanium microbridges, vol.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02164026

A. Elbaz, M. El-kurdi, A. Aassime, S. Sauvage, X. Checoury et al., Germanium microlasers on metallic pedestals, APL Photonics, vol.3, p.106102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02155862

Y. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase, Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys, Phys. Rev. B, vol.79, p.245201, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00992736

Y. P. Varshni, Band-to-Band Radiative Recombination in Groups IV, VI, and III-V Semiconductors (I), Phys. Status Solidi b, vol.19, p.459, 1967.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner et al., Vacancy complexes in nonequilibrium germanium-tin semiconductors, Appl. Phys. Lett, vol.114, p.251907, 2019.

S. De-cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli et al., Spin-coherent dynamics and carrier lifetime in strained Ge1?xSnx semiconductors on silicon, Phys. Rev. B, vol.99, p.35202, 2019.

J. C. Slater and G. F. Koster, Simplified LCAO Method for the Periodic Potential Problem, Phys. Rev, vol.94, issue.6, p.1498, 1955.

Y. Niquet, Introduction to the tight-binding description of semiconductor nanostructures, 4th Sch, Work. Simul. Model. Phys. -VAST, 2005.

P. N. Keating, Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure, Phys. Rev, vol.145, p.637, 1966.

L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Phys. Rev, vol.139, p.796, 1965.

, TB_Sim software

G. E. Chang, S. W. Chang, and S. L. Chuang, Strain-Balanced GezSn1-z -SixGeySn1-x-y multiple-quantum-well lasers, IEEE J. Quantum Electron, vol.46, issue.12, p.1813, 2010.

C. Xu, P. M. Wallace, D. A. Ringwala, S. L. Chang, C. D. Poweleit et al., Mid-infrared (3-8 ?m) Ge1?ySny alloys (0.15 < y < 0.30): Synthesis, structural, and optical properties, Appl. Phys. Lett, vol.114, p.212104, 2019.

G. L. Sleijpen, H. A. Van-der-vorst, and . Jacobi, Davidson Iteration Method for Linear Eigenvalue Problems, SIAM Rev, vol.42, issue.2, p.267, 2006.

M. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien et al., GeSn heterostructure micro-disk laser operating at 230 K, Opt. Express, vol.26, issue.25, p.32500, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02060078

M. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien et al., 2D hexagonal photonic crystal GeSn laser with 16% Sn content, GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain, vol.113, p.2462, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02060090

M. Bertrand, Q. M. Thai, J. Chrétien, N. Pauc, J. Aubin et al., Experimental Calibration of Sn-Related Varshni Parameters for High Sn Content GeSn Layers, Ann. Phys, vol.531, p.1800396, 2019.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord et al., Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 ?m up to 180 K, SPIE Photonics Europe, vol.111, p.92101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02060100

M. Thai, M. Bertrand, N. Pauc, R. Khazaka, J. Aubin et al., Laser effect in GeSn hexagonal photonic crystal with 16% Sn, E-MRS Spring Meeting, 2018.

M. Thai, M. Bertrand, N. Pauc, J. Chrétien, J. Aubin et al., Lasing in GeSn alloy at high concentration of Sn, ICPS, 2018.

M. Thai, N. Pauc, J. Chrétien, M. Bertrand, J. Aubin et al., GeSn photonic crystal laser, E-MRS Spring Meeting, 2019.

. Résumé,

, Le même dispositif est ensuite utilisé pour caractériser l'effet laser dans plusieurs types de micro-cavités GeSn, révélant une dépendance de la température maximale et du seuil laser respectivement à la concentration de Sn et à la qualité cristalline du matériau. Ces deux hypothèses sont ensuite confirmées avec les modélisations du gain optique et des équations laser. Les résultats de simulation suggèrent que limiter l'effet de l'absorption intervalence et augmenter le temps de vie non-radiatif sont des pistes les plus efficaces pour améliorer les performances du laser GeSn. Ces remarques dirigent l'attention vers les couches GeSn déformées en uniaxe [100] et en biaxe (100), Ce travail de thèse est dédié à l'étude de l'effet laser dans les couches GeSn entre 13% et 16% de Sn

, Mots clés : GeSn, Laser, FTIR, Méthode de pseudopotentiel empirique, Absorption intervalence, Gain optique, Recombinaison non-radiatives