G. Iri--marjanovic, Recent advances in polyaniline composites with metals, metalloids and nonmetals, vol.170, pp.31-56, 2013.

B. Sohn, B. Seo, and S. Yoo, Changes of the lamellar period by nanoparticles in the nanoreactor scheme of thin films of symmetric diblock copolymers, J. Mater. Chem, vol.12, pp.1730-1734, 2002.

T. Hasell, L. Lagonigro, A. C. Peacock, S. Yoda, P. D. Brown et al.,

M. Howdle, Silver Nanoparticle Impregnated Polycarbonate Substrates for Surface Enhanced Raman Spectroscopy, Adv. Funct. Mater, vol.18, pp.1265-1271, 2008.

M. Sakamoto, T. Tachikawa, M. Fujitsuka, and T. Majima, Photochemical Formation of Au/Cu Bimetallic Nanoparticles with Different Shapes and Sizes in a Poly(vinyl alcohol) Film, Adv. Funct. Mater, vol.17, pp.857-862, 2007.

J. Zhang, Y. Gao, R. A. Alvarez-puebla, J. M. Buriak, and H. Fenniri, Synthesis and SERS Properties of Nanocrystalline Gold Octahedra Generated from Thermal Decomposition of HAuCl4 in Block Copolymers, Adv. Mater, vol.18, pp.3233-3237, 2006.

S. Porel, S. Singh, and S. S. Harsha, Nanoparticle-Embedded Polymer In Situ Synthesis Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting, pp.9-12, 2005.

S. Porel, S. Singh, and T. P. Radhakrishnan, Polygonal gold nanoplates in a polymer matrix, Chem. Commun, pp.2387-2389, 2005.

S. Porel, N. Hebalkar, B. Sreedhar, and T. P. Radhakrishnan, Palladium nanowire from precursor nanowire: Crystal-to-crystal transformation via in situ reduction by polymer matrix, Adv. Funct. Mater, vol.17, pp.535-541, 2007.

J. R. Hall, C. A. Westerdahl, A. T. Devine, and M. J. Bodnar, Activated gas plasma surface treatment of polymers for adhesive bonding, J. Appl. Polym. Sci, vol.13, pp.2085-2096, 1969.

D. Hegemann, H. Brunner, and C. Oehr, Plasma treatment of polymers for surface and adhesion improvement, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol.208, pp.281-286, 2003.

L. M. Han, K. Rajeshwar, and R. B. Timmons, Film Chemistry Control and Electrochemical Properties of Pulsed Plasma Polymerized Ferrocene and Vinylferrocene, vol.13, pp.5941-5950, 1997.

B. David, N. Pizúrová, O. Schneeweiss, T. Hoder, V. Kudrle et al., Iron-Based Nanocomposite Synthesised by Microwave Plasma Decomposition of Iron Pentacarbonyl, Defect Diffus. Forum, vol.263, pp.147-152, 2007.

B. Zhang, Q. Wang, G. Zhang, S. Liao, Z. Wang et al., Preparation of Iron Nanoparticles from Iron Pentacarbonyl Using an Atmospheric Microwave Plasma, vol.17, pp.876-880, 2015.

R. K. Sadhir, H. E. Saunders, and W. A. Byers, Plasma Polymerized Tetramethyl Germanium Films Deposited at Elevated Substrate Temperatures, pp.645-650

R. K. Sadhir, Deposition of conducting thin films of organometallic monomers by plasma polymerization, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.3, p.2093, 1985.

X. Chen, K. Rajeshwar, R. B. Timmons, J. Chen, and O. M. Chyan,

V. Singh, V. Palshin, R. C. Tittsworth, and E. I. Meletis, Local structure of composite Cr-containing diamond-like carbon thin films, Carbon N. Y, vol.44, pp.1280-1286, 2006.

B. Despax and J. L. Flouttard, Synthesis of goldcarbon composites by simultaneous sputtering and plasma polymerization of propane in r.f. capacitively coupled diode system (13.56 MHz), Thin Solid Films, vol.168, pp.81-88, 1989.

V. Anita, T. Butsuda, N. Saito, and O. Takai, Synthesis of DLC films by PECVD combined with hollow cathode sputtering, Vacuum, pp.736-739, 2006.

K. Vasilev, V. Sah, K. Anselme, C. Ndi, M. Mateescu et al., Tunable antibacterial coatings that support mammalian cell growth, Nano Lett, vol.10, pp.202-207, 2010.

V. Kumar, C. Jolivalt, J. Pulpytel, R. Jafari, and F. Arefi-khonsari, Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process, J. Biomed. Mater. Res. -Part A, issue.101 A, pp.1121-1132, 2013.

A. Airoudj, L. Ploux, and V. Roucoules, Effect of plasma duty cycle on silver nanoparticles loading of cotton fabrics for durable antibacterial properties, J. Appl. Polym. Sci, vol.132, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02384159

J. Turkevich, J. Stevenson, and P. C. , Hillier, a Study of the Nucleation and Growth Processes I N the Synthesis of Colloidal Gold, p.55, 1951.

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nat. Phys. Sci, pp.20-22, 1973.

Z. Khan, S. A. Al-thabaiti, E. H. El-mossalamy, and A. Y. Obaid, Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions, Colloids M. Mercier-Bonin, Plasma-Mediated Nanosilver-Organosilicon Composite Films Deposited on Stainless Steel: Synthesis, Surface Characterization, and Evaluation of Anti-Adhesive and Anti-Microbial Properties on the Model Yeast Saccharomyces cerevisiae, vol.9, pp.324-338, 2012.

M. Asandulesa, I. Topala, V. Pohoata, and N. Dumitrascu, Influence of operational parameters on plasma polymerization process at atmospheric pressure, J. Appl. Phys, vol.108, 2010.

. Fridman, Plasma Polymerization of Some Organic Compounds and Properties of the Polymers, J. Polym. Sci, vol.14, pp.195-224, 1976.

E. Körner, M. H. Aguirre, G. Fortunato, A. Ritter, J. Rühe et al., Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties, Plasma Process. Polym, vol.7, pp.619-625, 2010.

K. L. Kolipaka, V. Brueser, R. Schlueter, A. Quade, J. Schaefer et al., Simple method of hybrid PVD/PECVD to prepare welldispersed cobalt-plasma polymerized hexamethyldisilazane nanocomposites, Surf. Coatings Technol, vol.207, pp.565-570, 2012.

A. Ameen, R. Short, and R. Ward, The formation of high surface concentrations of hydroxyl groups in the plasma polymerization of allyl alcohol, Polymer (Guildf), vol.35, pp.4382-4391, 1994.

H. Yasuda and T. Hsu, Some aspects of plasma polymerization investigation by pulsed R.F. discharge, J. Polym. Sci. Polym. Chem. Ed, vol.15, pp.81-97, 1977.

I. Retzko, J. F. Friedrich, A. Lippitz, and W. E. Unger, Chemical analysis of plasmapolymerized films: The application of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (NEXAFS) and fourier transform infrared spectroscopy (FTIR), J. Electron Spectros. Relat. Phenomena, vol.121, pp.111-129, 2001.

N. M. Mackie, D. G. Castner, and E. R. Fisher, Characterization of Pulsed-Plasma-Polymerized Aromatic Films, Langmuir, vol.14, pp.1227-1235, 1998.

D. Debarnot, T. Mérian, and F. Poncin-epaillard, Film Chemistry Control and Growth Kinetics of Pulsed Plasma-Polymerized Aniline, vol.31, pp.217-231, 2011.

S. A. Voronin, M. Zelzer, C. Fotea, M. R. Alexander, and J. W. Bradley, Pulsed and Continuous Wave Acrylic Acid Radio Frequency Plasma Deposits: Plasma and Surface Chemistry, J. Phys. Chem. B, pp.3419-3429, 2007.

. Fridman, Distribution of polymer deposition in plasma polymerization. II. Effect of reactor design, J. Polym. Sci. Polym. Chem. Ed, vol.16, pp.313-326, 1978.

J. Ohkubo and N. Inagaki, Influences of the substrate temperature on the films plasmapolymerized at the low system pressure, Polym. Bull, vol.23, pp.199-204, 1990.

K. G. Donohoe and T. Wydeven, Plasma polymerization of ethylene in an atmospheric pressure pulsed discharge, J. Appl. Polym. Sci, vol.23, pp.2591-2601, 1979.

C. Saulou, B. Despax, P. Raynaud, S. Zanna, P. Marcus et al., Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion, Appl. Surf. Sci, vol.256, pp.35-39, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01563939

B. Despax and P. Raynaud, Deposition of 'Polysiloxane' Thin Films Containing Silver Particles by an RF Asymmetrical Discharge, Plasma Process. Polym, vol.4, pp.127-134, 2007.

A. Khan, M. H. Shah, M. Nauman, I. Hakim, G. Shahid et al., Clinical manifestations of patients with Systemic Lupus Erythematosus (SLE) in Khyber Pakhtunkhwa, J. Pak. Med. Assoc, vol.67, pp.1180-1185, 2017.

J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri et al., The bactericidal effect of silver nanoparticles, Nanotechnology, vol.16, pp.2346-2353, 2005.

C. Damm, H. Münstedt, and A. Rösch, Long-term antimicrobial polyamide 6/silvernanocomposites, J. Mater. Sci, vol.42, pp.6067-6073, 2007.

F. Zeng, C. Hou, S. Wu, X. Liu, Z. Tong et al., Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology, p.18, 2007.

C. Walter, V. Brã¼ser, A. Quade, and K. Weltmann, Structural Investigations of Composites Produced from Copper and Polypyrrole with a Dual PVD/PE-CVD Process, vol.6, 2009.

J. Huang, Syntheses and applications of conducting polymer polyaniline nanofibers, Pure Appl. Chem, vol.78, pp.15-27, 2006.

S. Sharma, C. Nirkhe, S. Pethkar, and A. A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite, Sensors Actuators B Chem, vol.85, pp.131-136, 2002.

U. V. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. K. Debnath et al.,

K. Gupta and D. C. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films, Appl. Surf. Sci, vol.339, pp.69-74, 2015.

, Etude bibliographique

A. Choudhury, Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity, Sensors Actuators B Chem, vol.138, pp.318-325, 2009.

Z. Li, F. D. Blum, M. F. Bertino, and C. Kim, Amplified response and enhanced selectivity of metal-PANI fiber composite based vapor sensors, Sensors Actuators B Chem, vol.161, pp.390-395, 2012.

T. Mérian, D. Debarnot, V. Rouessac, and F. Poncin-epaillard, Ammonia absorption study of pulsed-plasma polyaniline by quartz crystal microgravimetry and UV/vis spectrometry, Talanta, vol.81, pp.602-608, 2010.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-epaillard, Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite, Talanta, vol.77, pp.1590-1596, 2009.

R. K. Sadhir, Deposition of conducting thin films of organometallic monomers by plasma polymerization, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.3, p.2093, 1985.

E. Körner, M. H. Aguirre, G. Fortunato, A. Ritter, J. Rühe et al., Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties, Plasma Process. Polym, vol.7, pp.619-625, 2010.

C. Saulou, B. Despax, P. Raynaud, S. Zanna, A. Seyeux et al., Plasma-Mediated Nanosilver-Organosilicon Composite Films Deposited on Stainless Steel: Synthesis, Surface Characterization, and Evaluation of Anti-Adhesive and Anti-Microbial Properties on the Model Yeast Saccharomyces cerevisiae, vol.9, pp.324-338, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268402

A. Heilmann and J. Werner, In situ observation of microstructural changes of embedded silver particles, Thin Solid Films, vol.317, pp.21-26, 1998.

A. J. Wagner, G. M. Wolfe, and D. H. Fairbrother, Reactivity of vapor-deposited metal atoms with nitrogen-containing polymers and organic surfaces studied by in situ XPS, Appl. Surf. Sci, vol.219, pp.317-328, 2003.

G. Ramesh, S. Porel, and T. P. Radhakrishnan, Polymer thin films embedded with in situ grown metal nanoparticles, Chem. Soc. Rev, vol.38, p.2646, 2009.

S. Rifai, C. A. Breen, D. J. Solis, and T. M. Swager, Facile in situ silver nanoparticle formation in insulating porous polymer matrices, Chem. Mater, vol.18, pp.21-25, 2006.

A. M. Silva, C. B. De-araújo, S. Santos-silva, and A. Galembeck, Silver nanoparticle in situ growth within crosslinked poly(ester-co-styrene) induced by UV irradiation: aggregation control with exposure time, J. Phys. Chem. Solids, vol.68, 2007.

J. Li, K. Kamata, S. Watanabe, and T. Iyoda, Template-And vacuum-ultravioletassisted fabrication of a Ag-nanoparticle array on flexible and rigid substrates, Adv. Mater, vol.19, pp.1267-1271, 2007.

J. Zhang, Y. Gao, R. A. Alvarez-puebla, J. M. Buriak, and H. Fenniri, Synthesis and SERS Properties of Nanocrystalline Gold Octahedra Generated from Thermal Decomposition of HAuCl4 in Block Copolymers, Adv. Mater, vol.18, pp.3233-3237, 2006.

S. Horiuchi and Y. Nakao, Polymer/metal nanocomposites: Assembly of metal nanoparticles in polymer films and their applications, Curr. Nanosci, vol.3, pp.206-214, 2007.

K. Vasilev, V. Sah, K. Anselme, C. Ndi, M. Mateescu et al., Tunable antibacterial coatings that support mammalian cell growth, Nano Lett, vol.10, pp.202-207, 2010.

V. Kumar, C. Jolivalt, J. Pulpytel, R. Jafari, and F. Arefi-khonsari, Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process, J Biomed Mater Res, vol.101, pp.1121-1132, 2013.

A. Airoudj, L. Ploux, and V. Roucoules, Effect of plasma duty cycle on silver nanoparticles loading of cotton fabrics for durable antibacterial properties, J. Appl. Polym. Sci, vol.132, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02384159

V. Krishnamurthy and I. L. Kamel, Argon plasma treatment of glass surfaces, J. Mater. Sci, vol.24, pp.3345-3352, 1989.

K. Terpilowski and D. Rymuszka, Surface properties of glass plates activated by air, oxygen, nitrogen and argon plasma, Glas. Phys. Chem, vol.42, pp.535-541, 2016.

K. Shameli, M. Ahmad, S. D. Jazayeri, P. Shabanzadeh, and P. Sangpour, Investigation of antibacterial properties silver nanoparticles prepared via green method, pp.1-10, 2012.

, Cu, and Sn NPs hybrid nanocomposites

A. L. Potapov, O. A. Daineko, N. A. Ivanova, and V. ,

M. Agabekov and . Bin-hussain, Formation and properties of films based on polyvinyl alcohol and doped with silver nanoparticles, Appl. Surf. Sci, vol.350, pp.121-128, 2015.

A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar et al., The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study, 2015.

A. ?ileikait, I. Prosy-evas, J. Pui?o, A. Juraitis, and A. Guobien, Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution, Mater. Sci, vol.12, pp.1392-1320, 2006.

A. Henglein, Microelectrode" reactions, chemisorption, composite metal particles, and the atom-tometal transition, J. Phys. Chem, vol.97, pp.5457-5471, 1993.

C. Dong, H. Cai, X. Zhang, and C. Cao, Synthesis and characterization of monodisperse copper nanoparticles using gum acacia, Phys. E Low-Dimensional Syst. Nanostructures, vol.57, pp.12-20, 2014.

D. Yu, Formation of colloidal silver nanoparticles stabilized by Na+-poly( -glutamic acid)-silver nitrate complex via chemical reduction process, Colloids Surfaces B Biointerfaces, vol.59, pp.171-178, 2007.

A. Fahmy, J. Friedrich, F. Poncin-epaillard, and D. Debarnot, Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles, Thin Solid Films, vol.616, pp.339-347, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01908239

J. He, I. Ichinose, T. Kunitake, and A. Nakao, In Situ Synthesis of Noble Metal Nanoparticles in Ultrathin TiO 2 ?Gel Films by a Combination of Ion-Exchange and Reduction Processes, Langmuir, vol.18, pp.10005-10010, 2002.

, Cu, and Sn NPs hybrid nanocomposites

B. Ajitha, Y. Ashok-kumar-reddy, and P. Reddy, Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract, Mater. Sci. Eng. C, vol.49, pp.373-381, 2015.

N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli et al., Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, vol.17, pp.5255-5262, 2005.

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson et al.,

C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci, vol.257, pp.2717-2730, 2011.

J. Kredl, J. F. Kolb, U. Schnabel, M. Polak, K. D. Weltmann et al., Deposition of antimicrobial copper-rich coatings on polymers by atmospheric pressure jet plasmas, Materials (Basel), vol.9, 2016.

A. Ahmed, C. M. Robertson, and A. Steiner, Cu(I)Cu(II)BTC, a microporous mixedvalence MOF via reduction of HKUST-1, RSC Adv, vol.6, pp.8902-8905, 2016.

V. K. Kaushik, TOPICS IN SURFACE AND DEPTH PROFILE ANALYSIS Identification of oxidation states of copper in mixed oxides and chlorides using ESCA, 1988.

J. F. Moulder, W. F. Stickle, P. E. Sobot, and K. D. Bomben, Handbook of Xray Photoelectron Spectroscopy, Physical Electronics Inc, 1995.

X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo et al., The corrosion of tin under thin electrolyte layers containing chloride, Corros. Sci, vol.66, pp.14-25, 2013.

S. A. Zavyalov, A. N. Pivkina, and J. Schoonman, Formation and characterization of metal-polymer nanostructured composites, Solid State Ionics, vol.147, pp.415-419, 2002.

A. L. Stepanov, S. N. Abdullin, Y. V. Petukhov, Y. N. Osin, R. I. Khaibullin et al.,

. Khaibullin, Formation of metal-polymer composites by ion implantation, Philos. Mag

, B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop, vol.80, pp.23-28, 2000.

G. V. Ramesh, S. Porel, and T. P. Radhakrishnan, Polymer thin films embedded with in situ grown metal nanoparticles, Chem. Soc. Rev, vol.38, p.2646, 2009.

Q. Chen, M. Zhou, Y. Fu, J. Weng, Y. Zhang et al., Magnetron sputtering synthesis silver and organic PEO nanocomposite, Surf. Coatings Technol, vol.202, pp.5576-5578, 2008.

K. Gupta, P. C. Jana, and A. K. Meikap, Optical and electrical transport properties of polyaniline-silver nanocomposite, Synth. Met, vol.160, pp.1566-1573, 2010.

J. Shan and Z. Ma, A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials, Microchim. Acta, vol.184, pp.969-979, 2017.

S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi, Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications, Biosens. Bioelectron, vol.41, pp.43-53, 2013.

G. Ramesh, S. Porel, and T. P. Radhakrishnan, Polymer thin films embedded with in situ grown metal nanoparticles, Chem. Soc. Rev, vol.38, p.2646, 2009.

M. Trchová and J. Stejskal, The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres, Synth. Met, vol.160, pp.1479-1486, 2010.

P. Xu, X. Han, B. Zhang, N. H. Mack, S. H. Jeon et al., Synthesis and characterization of nanostructured polypyrroles: Morphology-dependent pp-AAl, pp-ANI, and pp-HDFD/Ag NPs hybrid nanocomposites electrochemical responses and chemical deposition of Au nanoparticles, vol.50, pp.2624-2629, 2009.

N. Cioffi, L. Torsi, I. Losito, L. Sabbatini, P. Zambonin et al., Nanostructured palladium-polypyrrole composites electrosynthesised from organic solvents, Electrochim. Acta, vol.46, pp.4205-4211, 2001.

P. Pascariu, A. Airinei, M. Grigoras, L. Vacareanu, and F. Iacomi, Metal-polymer nanocomposites based on Ni nanoparticles and polythiophene obtained by electrochemical method, Appl. Surf. Sci, vol.352, pp.95-102, 2015.

K. Vasilev, V. Sah, K. Anselme, C. Ndi, M. Mateescu et al., Tunable antibacterial coatings that support mammalian cell growth, Nano Lett, vol.10, pp.202-207, 2010.

V. Kumar, C. Jolivalt, J. Pulpytel, R. Jafari, and F. Arefi-khonsari, Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process, J. Biomed. Mater. Res. -Part A, issue.101 A, pp.1121-1132, 2013.

A. Fahmy, J. Friedrich, F. Poncin-epaillard, and D. Debarnot, Plasma polymerized allyl alcohol/O2 thin films embedded with silver nanoparticles, Thin Solid Films, vol.616, pp.339-347, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01908239

A. Airoudj, L. Ploux, and V. Roucoules, Effect of plasma duty cycle on silver nanoparticles loading of cotton fabrics for durable antibacterial properties, J. Appl. Polym. Sci, vol.132, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02384159

E. Kosenko, Y. Kaminsky, E. Grau, M. D. Miñana, S. Grisolía et al., Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism, Neurochem. Res, vol.20, p.456, 1995.

G. Devi, V. Subrahmanyam, S. C. Gadkari, and S. K. Gupta, NH3 gas sensing properties of nanocrystalline ZnO based thick films, Anal. Chim. Acta, vol.568, pp.41-46, 2006.

Q. Chang, K. Zhao, X. Chen, M. Li, and J. Liu, Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection, J. Mater. Sci, vol.43, pp.5861-5866, 2008.

A. Joshi, S. A. Gangal, and S. K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature, Sensors Actuators, B Chem, vol.156, pp.938-942, 2011.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-epaillard, Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite, Talanta, vol.77, pp.1590-1596, 2009.

T. Mérian, D. Debarnot, V. Rouessac, and F. Poncin-epaillard, Ammonia absorption study of pulsed-plasma polyaniline by quartz crystal microgravimetry and UV/vis spectrometry, Talanta, vol.81, pp.602-608, 2010.

X. Ma, G. Li, H. Xu, M. Wang, and H. Chen, Preparation of polythiophene composite film by in situ polymerization at room temperature and its gas response studies, Thin Solid Films, issue.515, pp.2700-2704, 2006.

S. Cui, H. Pu, G. Lu, Z. Wen, E. C. Mattson et al., Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes, ACS Appl. Mater. Interfaces, issue.4, pp.4898-4904, 2012.

X. Yang, L. Li, and F. Yan, Polypyrrole/silver composite nanotubes for gas sensors, Sensors Actuators, B Chem, vol.145, pp.495-500, 2010.

U. V. Patil, N. S. Ramgir, N. Karmakar, A. Bhogale, A. K. Debnath et al.,

K. Gupta and D. C. Kothari, Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films, Appl. Surf. Sci, vol.339, pp.69-74, 2015.

T. Sen, N. G. Shimpi, S. Mishra, and R. Sharma, Polyaniline/ -Fe2O3nanocomposite for room temperature LPG sensing, Sensors Actuators, B Chem, vol.190, pp.120-126, 2014.

T. R. Gengenbach, Z. R. Vasic, S. Li, R. C. Chatelier, and H. J. Griesser, Contributions of restructuring and oxidation to the aging of the surface of plasma polymers containing heteroatoms, Plasmas Polym, vol.2, pp.91-114, 1997.

X. Gong, L. Dai, A. W. Mau, and H. J. Griesser, Plasma polymerized polyaniline films: Synthesis and characterization, J. Polym. Sci. Part A Polym. Chem, vol.36, pp.633-643, 1998.

R. Hernandez, A. F. Diaz, R. Waltman, and J. Bargon, Surface characteristics of thin films prepared by plasma and electrochemical polymerizations, J. Phys. Chem, vol.88, pp.3333-3337, 1984.

P. A. Herbert, L. O'neill, and J. Jaroszýnska-wolínska, Soft Plasma polymerization of gas state precursors from an atmospheric pressure corona plasma discharge, Chem. Mater, vol.21, pp.4401-4407, 2009.

P. A. Herbert, L. O'neill, J. Jaroszy-ska-woli-ska, C. P. Stallard, A. Ramamoorthy et al., A comparison between gas and atomized liquid precursor states in the deposition of functional coatings by pin corona plasma, Plasma Process. Polym, vol.8, pp.230-238, 2011.

D. Debarnot, T. Mérian, and F. Poncin-epaillard, Film Chemistry Control and Growth Kinetics of Pulsed Plasma-Polymerized Aniline, vol.31, pp.217-231, 2011.

A. Fahmy, R. Mix, A. Schönhals, and J. F. Friedrich, Structure-Property Relationship of Thin Plasma Deposited Poly(allyl alcohol) Films, Plasma Chem. Plasma Process, vol.31, pp.477-498, 2011.

H. Yasuda, M. O. Bumgarner, and J. J. Hillman, Polymerization of organic compounds in an electrodeless glow discharge. V. Amines and nitriles, J. Appl. Polym. Sci, vol.19, pp.1403-1408, 1975.

I. Medina-ramirez, S. Bashir, Z. Luo, and J. L. Liu, Green synthesis and characterization of polymer-stabilized silver nanoparticles, Colloids Surfaces B Biointerfaces, vol.73, pp.185-191, 2009.

X. Li, A. Rafie, Y. Y. Smolin, S. Simotwo, V. Kalra et al., Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors, Chem. Eng. Sci, 2018.

M. M. Mahat, D. Mawad, G. W. Nelson, S. Fearn, R. G. Palgrave et al.,

M. Stevens, Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy, J. Mater. Chem. C, vol.3, pp.7180-7186, 2015.

Z. F. Li, E. T. Kang, K. G. Neoh, and K. L. Tan, Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films, vol.87, pp.45-52, 1997.

S. Kumar, F. Gaillard, G. Bouyssoux, and A. Sartre, High-resolution XPS studies of electrochemically synthesized conducting polyaniline films, Synth. Met, vol.36, pp.111-127, 1990.

P. Xu, X. Han, B. Zhang, Y. Du, and H. Wang, Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers, Chem. Soc. Rev, vol.43, pp.1349-1360, 2014.

T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou et al., Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloids Surfaces A Physicochem. Eng. Asp, vol.366, pp.197-202, 2010.

N. V. Blinova, J. Stejskal, M. Trchová, I. Sapurina, and G. Iri--marjanovi, The oxidation of aniline with silver nitrate to polyaniline-silver composites, Polymer (Guildf), vol.50, pp.50-56, 2009.

R. Zeng, M. Z. Rong, M. Q. Zhang, H. C. Liang, and H. M. Zeng, Interfacial interaction in Ag/polymer nanocomposite films, J. Mater. Sci. Lett, vol.20, pp.1473-1476, 2001.

T. Yonezawa and N. Toshima, Mechanistic consideration of formation of polymerprotected nanoscopic bimetallic clusters, J. Chem. Soc. Faraday Trans, vol.91, p.4111, 1995.

G. Nesher, G. Marom, and D. Avnir, Metal-polymer composites: Synthesis and characterization of polyaniline and other polymer Silver compositions, Chem. Mater, vol.20, pp.4425-4432, 2008.

X. G. Li, M. R. Huang, and S. X. Li, Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization, Acta Mater, vol.52, pp.5363-5374, 2004.

Y. Wang, Q. Yang, G. Shan, C. Wang, J. Du et al.,

. Wei, Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning, Mater. Lett, vol.59, pp.3046-3049, 2005.

Y. Sun and Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater, vol.14, pp.833-837, 2002.

J. Ahrland, N. R. Chatt, and . Davies, The relative affinities of ligand atoms for acceptors, Quart. Rev. Chem. Soc, vol.12, p.265, 1958.

H. Wang, X. Qiao, J. Chen, X. Wang, and S. Ding, Mechanisms of PVP in the preparation of silver nanoparticles, Mater. Chem. Phys, vol.94, pp.449-453, 2005.

F. J. Liu, L. M. Huang, T. C. Wen, A. Gopalan, and J. S. Hung, Interfacial synthesis of platinum loaded polyaniline nanowires in poly(styrene sulfonic acid), Mater. Lett, vol.61, pp.4400-4405, 2007.

C. Chahine, Copolymérisation plasma : étude des mécanismes de croissance et de la structuration des couches minces copolymères, pp.1-218, 2013.

X. Wang, J. Zuo, P. Keil, and G. Grundmeier, Comparing the growth of PVD silver nanoparticles on ultra thin fluorocarbon plasma polymer films and self-assembled fluoroalkyl silane monolayers, Nanotechnology, vol.18, pp.265-303, 2007.

V. Mankad, R. K. Kumar, and P. K. Jha, Investigation of blue-shifted plasmon resonance: An optical properties study of silver nanoparticles, Nanosci. Nanotechnol. Lett, vol.5, pp.889-894, 2013.

N. T. Nguyen and J. H. Liu, A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles, Ag NPs hybrid nanocomposites Inst. Chem. Eng, vol.45, pp.2827-2833, 2014.

S. Ashraf, A. Z. Abbasi, C. Pfeiffer, S. Z. Hussain, Z. M. Khalid et al., Protein-mediated synthesis, pH-induced reversible agglomeration, toxicity and cellular interaction of silver nanoparticles, Colloids Surfaces B Biointerfaces, vol.102, pp.511-518, 2013.

Q. Huang, G. Chen, and J. Liu, One-pot synthesis of polyaniline doped with transition metal ions using H2O2 as oxidant, Polym. Adv. Technol, 2014.

F. Fanelli, Optical emission spectroscopy of argon-fluorocarbon-oxygen fed atmospheric pressure dielectric barrier discharges, Plasma Process. Polym, vol.6, pp.547-554, 2009.

I. Vinogradov and A. Lunk, Spectroscopic diagnostics of DBD in Ar/fluorocarbon mixtures -Correlation between plasma parameters and properties of deposited polymer films, Plasma Process. Polym, vol.2, pp.201-208, 2005.

K. Shameli, M. Ahmad, S. D. Jazayeri, S. Sedaghat, P. Shabanzadeh et al., Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method, Int. J. Mol. Sci, vol.13, pp.6639-6650, 2012.

Y. Sun and Y. Xia, Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm, Analyst, vol.128, p.686, 2003.

K. Stamplecoskie and J. Scaiano, Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles -Supporting Info, J. Am. Chem. Soc, p.8, 2010.

L. Balan, R. Schneider, and D. J. Lougnot, A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization, Prog. Org. Coatings, vol.62, pp.351-357, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00313111

G. A. Martinez-castanon, N. Niño-martínez, F. Martínez-gutierrez, J. R. Martínez-mendoza, and F. Ruiz, Synthesis and antibacterial activity of silver nanoparticles with different sizes, J. Nanoparticle Res, vol.10, pp.1343-1348, 2008.

H. T. Hien, H. T. Giang, N. Van-hieu, T. Trung, and C. Van-tuan, Elaboration of Pdnanoparticle decorated polyaniline films for room temperature NH3gas sensors, Sensors Actuators, B Chem, pp.348-356, 2017.

S. Mikhaylov, N. Ogurtsov, Y. Noskov, N. Redon, P. Coddeville et al., Ammonia/amine electronic gas sensors based on hybrid polyaniline-TiO2nanocomposites. the effects of titania and the surface active doping acid, RSC Adv, vol.5, pp.20218-20226, 2015.

S. Virji, J. Huang, R. B. Kaner, and B. H. Weiler, Polyaniline Nanofiber Gas Sensor: Examination of Reponse Mechanisms, Nano Lett, vol.4, pp.491-496, 2004.

D. Hegemann, E. Körner, and S. Guimond, Plasma polymerization of acrylic acid revisited, Plasma Process. Polym, vol.6, pp.246-254, 2009.

V. Sciarratta, U. Vohrer, D. Hegmann, M. Muller, and C. Oeher, Plasma functionalization of polypropylene with acrylic acid, Surf. Coatings Technol, pp.805-810, 2003.

J. A. Pople and M. Gordon, Molecular orbital theory of the electronic structure of organic compounds. I. substituent effects and dipole moments, J. Am. Chem. Soc, vol.89, pp.4253-4261, 1967.

R. C. Aggarwal and P. P. Singh, Molecular addition compounds of tin(IV) chloride. I. Preparation and infrared spectra of the complexes of stannic chloride with certain amides, ZAAC J. Inorg. Gen. Chem, vol.332, pp.103-112, 1964.

C. Chahine, Copolymérisation plasma : étude des mécanismes de croissance et de la structuration des couches minces copolymères, pp.1-218, 2013.

Z. F. Li, E. T. Kang, K. G. Neoh, and K. L. Tan, Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films, vol.87, pp.45-52, 1997.

S. Kumar, F. Gaillard, G. Bouyssoux, and A. Sartre, High-resolution XPS studies of electrochemically synthesized conducting polyaniline films, Synth. Met, vol.36, pp.111-127, 1990.

T. Yonezawa and N. Toshima, Mechanistic consideration of formation of polymerprotected nanoscopic bimetallic clusters, J. Chem. Soc. Faraday Trans, vol.91, p.4111, 1995.

P. Xu, X. Han, B. Zhang, Y. Du, and H. Wang, Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers, Chem. Soc. Rev, vol.43, pp.1349-1360, 2014.

V. Kumar, C. Jolivalt, J. Pulpytel, R. Jafari, and F. Arefi-khonsari, Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process, J. Biomed. Mater. Res. -Part A, issue.101 A, pp.1121-1132, 2013.

J. He, T. Kunitake, and A. Nakao, Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers, pp.4401-4406, 2003.

P. Narayana-reddy, A. Sreedhar, M. Hari-prasad-reddy, S. Uthanna, and J. F. Pierson, The effect of oxygen partial pressure on physical properties of nano-crystalline silver oxide thin films deposited by RF magnetron sputtering, Cryst. Res. Technol, vol.46, pp.961-966, 2011.

T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou et al., Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloids Surfaces A Physicochem. Eng. Asp, vol.366, pp.197-202, 2010.

N. V. Blinova, J. Stejskal, M. Trchová, I. Sapurina, and G. Iri--marjanovi, The oxidation of aniline with silver nitrate to polyaniline-silver composites, Polymer (Guildf), vol.50, pp.50-56, 2009.

C. Chahine, F. Poncin-epaillard, and D. Debarnot, Plasma copolymerization of fluorinated and acrylate monomers: Kinetics and chemical structure study, Plasma Process. Polym, vol.12, pp.493-501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01908247

, Ce travail de thèse a porté sur l'élaboration et la caractérisation des matériaux composites hybrides de type (co)polymère plasma/métal pour lesquels peu d'études ont été réalisées sur leur structure chimique et morphologique. Notre objectif a donc été d'étudier la dépendance des propriétés chimiques et morphologiques de tels matériaux composites vis-à-vis de la structure chimique du (co)polymère plasma et de la nature des nanoparticules métalliques. La matrice est aussi bien un polymère

, L'objectif a alors été de mieux comprendre la formation de ces nanocomposites et de montrer leur intérêt dans différentes applications et notamment dans la détection d'ammoniac

. Dans-un-premier-temps, AAl) sont choisis pour l'optimisation des différents paramètres chimiques et plasma due à la forte résonance plasmonique de surface des nanoparticules d'argent, facilitant ainsi leur caractérisation par spectrométrie UV-Vis. Les paramètres chimiques optimisés sont la technique de préparation des matériaux composites (en une ou deux étapes), le temps d'imprégnation ainsi que celui de réduction. Il a été montré qu'en mélangeant la solution métallique et d'agent réducteur en présence du polymère (en une étape), les nanoparticules d'argent ont tendance à se former dans la solution plutôt que dans le polymère où elles forment des agrégats métalliques. Un lavage entre l'étape d'imprégnation et de réduction est donc nécessaire en adoptant un temps d'imprégnation optimal de trois heures et de réduction d'une heure

, Lorsque la surface de la matrice polymère est rugueuse (temps de polymérisation élevé) ou que la structure du monomère initial est préservée (faible puissance et temps de décharge), une quantité plus importante de métal est insérée dans le polymère. La nature du métal a également une forte influence sur sa quantité incorporée et sa distribution dans la matrice