C. Kan and S. Kimura, Psychoneuroimmunological Benefits of Cosmetics, J. Soc. Cosmet. Chem. Japan, vol.29, issue.3, pp.242-251, 1995.

X. Chen, F. Shao, C. Barnes, T. Childs, and B. Henson, Exploring relationships between touch perception and surface physical properties, Int. J. Des, vol.3, issue.2, pp.67-76, 2009.

R. B. Pereira, Sensory, rheological and microstructural characteristics of model emulsified dairy systems

T. F. Tadros, S. Léonard, C. Verboom, V. Wortel, M. Taelman et al., Correlation of 'Body Butter' Texture and Structure of Cosmetic Emulsions with Their Rheological Characteristics, Colloid Stability, pp.127-144, 2014.

L. Gilbert, Caractérisation physico-chimique et sensorielle d'ingrédients cosmétiques : une approche méthodologique, 2012.

S. Wang, M. S. Kislalioglu, and M. Breuer, The Effect of Rheological Properties of Experimental Moisturizing Creams/Lotions on Their Efficacy and Perceptual Attributes, Int. J. Cosmet. Sci, vol.21, issue.3, pp.167-188, 1999.

Y. Wang, Développement d'un capteur magnéto acoustique on-chip pour la caractérisation des matériaux complexes, 2014.

O. Bau, I. Poupyrev, A. Israr, and C. Harrison, TeslaTouch, Proceedings of the 23nd annual ACM symposium on User interface software and technology -UIST '10, p.283, 2010.

V. Makinen, P. Suvanto, and J. Linjima, Method and apparatus for sensory stimulation, 2011.

M. E. Altinsoy and S. Merchel, Electrotactile Feedback for Handheld Devices with Touch Screen and Simulation of Roughness, IEEE Trans. Haptics, vol.5, issue.1, pp.6-13, 2012.

I. D. Stephen, M. J. Smith, M. R. Stirrat, and D. I. Perrett, Facial Skin Coloration Affects Perceived Health of Human Faces, Int. J. Primatol, vol.30, issue.6, pp.845-857, 2009.

R. Korichi, D. Pelle-de-queral, G. Gazano, and A. Aubert, Why women use makeup: Implication of psychological traits in makeup functions, Int. J. Cosmet. Sci, vol.31, issue.2, pp.156-157, 2009.

S. A. Holme, P. E. Beattie, and C. J. Fleming, Cosmetic camouflage advice improves quality of life, Br. J. Dermatol, vol.147, issue.5, pp.946-949, 2002.

C. Kan and S. Kimura, Psychoneuroimmunological Benefits of Cosmetics, J. Soc. Cosmet. Chem. Japan, vol.29, issue.3, pp.242-251, 1995.

K. Beri, Skin microbiome & host immunity: applications in regenerative cosmetics &amp

, Futur. Sci. OA, vol.4, issue.6, p.302, 2018.

A. Giboreau, C. Garrel, and H. Nicod, Le profil sensoriel : un outil au service du Marketing, vol.196, pp.5-17, 2004.

B. Galdorfini, M. G. De-almeida, M. Antonio, and V. L. Borges-isaac, Latest Research into Quality Control, 2012.

A. Pense-lheritier, Évaluation sensorielle et produits cosmétiques, Tech. l'Ingénieur, vol.2244, pp.1-19, 2016.

. Afnor, NF EN ISO 5492 : Analyse sensorielle, Vocabulaire, 2009.

. Afnor, NF ISO 6658 -Analyse sensorielle, méthodologie, lignes directrices générales, 2017.

N. O. Schwartz, Adaptation of the sensory texture profile method to skin care products, J. Texture Stud, vol.6, issue.1, pp.33-42, 1975.

, Analyse sensorielle -Guide d'application des normes de l'analyse sensorielle aux produits cosmétiques, AFNOR, pp.9-027, 2012.

J. Murray, C. Delahunty, and I. Baxter, Descriptive sensory analysis: past, present and future, Food Res. Int, vol.34, issue.6, pp.461-471, 2001.

H. Stone, J. L. Sidel, and J. Bloomquist, Quantitative Descriptive Analysis, Descriptive Sensory Analysis in Practice, pp.53-69

G. V. Civille and C. A. Dus, Evaluating tactile properties of skincare products : a descriptive analysis technique, Cosmet. Toilet, vol.106, issue.5, pp.83-88, 1991.

. Astm-international, ASTM E1490 -11, Standard Guide for Two Sensory Descriptive Analysis Approaches for Skin Creams and Lotions, 2011.

. Afnor, NF EN ISO 8586 -Analyse sensorielle, Lignes directrices générales pour la sélection, l'entraînement et le contrôle des sujets qualifiés et sujets sensoriels experts, 2014.

A. M. Muñoz and G. V. Civille, Universal, product and attribute specific scaling and the development of common lexicons in descriptive analysis, J. Sens. Stud, vol.13, issue.1, pp.57-75, 1998.

B. Thuillier, D. Valentin, R. Marchal, and C. Dacremont, Pivot© profile: A new descriptive method based on free description, Food Quality and Preference, vol.42, pp.66-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218263

E. Merat, N. Chevrot, and C. Taillebois, The Holistic PIVOT© Profile: How Ingredients Influence Sensoriality, SOFWJournal, vol.142, pp.40-46, 2016.

A. S. Szczesniak, Correlating sensory with instrumental texture measurements: an overview of recent developments, J. Texture Stud, vol.18, issue.1, pp.1-15, 1987.

J. N. Sofos, Effects of Reduced Salt (NaCI) Levels on Sensory and Instrumental Evaluation of Frankfurters, J. Food Sci, vol.48, issue.6, pp.1692-1696, 1983.

P. L. Brady and M. E. Hunecke, Correlations of Sensory and Instrumental Evaluations of Roast Beef Texture, J. Food Sci, vol.50, issue.2, pp.300-303, 2006.

B. W. Barry and A. J. Grace, Sensory Testing of Spreadability: Investigation of Rheological Conditions Operative during Application of Topical Preparations, J. Pharm. Sci, vol.61, issue.3, pp.335-341, 1972.

R. Brummer and S. Godersky, Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.152, issue.1-2, pp.89-94, 1999.

M. R. Wegener, A psycho-rheological study of skin-feel, 1997.

A. Dimuzio, E. S. Abrutyn, and M. Y. Cantwell, Correlating Sensory Perception to the rheological parameters of emulsions: A predictive model for future product development?, J. Cosmet. Sci, 2005.

M. E. Parente, A. Gambaro, and G. Ares, Sensory characterization of emollients, J. Sens. Stud, vol.23, issue.2, pp.149-161, 2008.

R. E. Greenaway, Psychorheology of skin cream, 2010.

S. Nacht, J. Close, D. Yeung, and E. H. Gans, Skin friction coefficient: changes induced by skin hydration and emollient application and correlation with perceived skin feel, j. Soc. Cosmet. Chem, vol.32, pp.55-65, 1981.

M. Lodén, H. K. Olsson, L. Skare, T. Axéll, A. H. Ab et al., Instrumental and sensory evaluation of the frictional response of the skin following a single application of five moisturizing creams, J. Soc. Cosmet. Chem, vol.43, issue.1, pp.13-20, 1992.

M. Lukic, I. Jaksic, V. Krstonosic, N. Cekic, and S. Savic, A combined approach in characterization of an effective w/o hand cream: the influence of emollient on textural, sensorial and in vivo skin performance, Int. J. Cosmet. Sci, vol.34, issue.2, pp.140-149, 2012.

P. Dubuisson, C. Picard, M. Grisel, and G. Savary, How does composition influence the texture of cosmetic emulsions?, Colloids Surfaces A Physicochem. Eng. Asp, vol.536, pp.38-46, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02507794

H. Abdi and L. J. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01259094

T. F. Tadros, S. Léonard, C. Verboom, V. Wortel, M. Taelman et al., Correlation of 'Body Butter' Texture and Structure of Cosmetic Emulsions with Their Rheological Characteristics, Colloid Stability, pp.127-144, 2014.

J. Touryan and Y. Dan, Analysis of sensory coding with complex stimuli, Current Opinion in Neurobiology, 2001.

F. Mcglone and D. Reilly, The cutaneous sensory system, Neurosci. Biobehav. Rev, vol.34, issue.2, pp.148-159, 2010.

S. S. Stevens, On the psychophysical law, Psychol. Rev, vol.64, issue.3, pp.153-181, 1957.

C. Ould-ehssein, Système instrumental pour la rhéologie ultrasonore, 2006.

A. Arnaud, Piezoelectric Transducers and Applications, 2008.

E. Benes, M. Gröschl, W. Burger, and M. Schmid, Sensors based on piezoelectric resonators, Sensors and Actuators, A: Physical, 1995.

E. Benes, M. Gröschl, and F. Seifert, Comparison between B AW and SAW sensor principles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1998.

G. N. Ferreira, A. Da-silva, and B. Tomé, Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance, Trends Biotechnol, vol.27, issue.12, pp.689-97, 2009.

B. Drafts, Acoustic wave technology sensors, IEEE Trans. Microw. Theory Tech, vol.49, issue.4, pp.795-802, 2001.

M. J. Vellekoop, Acoustic wave sensors. Theory, design and physicochemical applications, Sensors Actuators A Phys, vol.63, issue.1, p.79, 1997.

R. Lucklum and P. Hauptmann, Quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification, Sensors Actuators, B Chem, 2000.

M. Cassiède, J. H. Paillol, J. Pauly, and J. Daridon, Electrical behaviour of AT-cut quartz crystal resonators as a function of overtone number, Sensors Actuators A Phys, vol.159, issue.2, pp.174-183, 2010.

D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research, 2015.

C. Behllng, R. Lucklum, and P. Hauptmann, The non-gravimetric quartz crystal resonator response and its application for determination of polymer shear modulus, Meas. Sci. Technol, 1998.

K. Kanazawa and N. J. Cho, Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics, Journal of Sensors, 2009.

E. J. Calvo, R. Etchenique, P. N. Bartlett, K. Singhal, and C. Santamaria, Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films, Faraday Discuss, 1997.

B. Jakoby, Miniaturized sensors for the viscosity and density of liquids -Performance and issues, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010.

F. Eggers and T. Funck, Method for measurement of shear-wave impedance in the MHz region for liquid samples of approximately 1 ml, J. Phys. E, 1987.

M. Yang, M. Thompson, and W. C. Duncan-hewitt, Interfacial Properties and the Response of the Thickness-Shear-Mode Acoustic Wave Sensor in Liquids, Langmuir, 1993.

F. Li, J. H. Wang, and Q. Wang, An acoustic wave biosensor for probing the viscoelastic properties of living cells -art. no. 62180N, Chemical and Biological Sensing VII, vol.6218, p.2180, 2006.

J. Wegener, J. Seebach, A. Janshoff, and H. J. Galla, Analysis of the composite response of shear wave resonators to the attachment of mammalian cells, Biophys. J, 2000.

P. Shah, R. Lec, and S. Kwoun, Modeling A Piezoelectric TSM Sensor to study Kinetics of Multi-layer Biosensing Structure, 2006.

W. P. Mason, Piezoelectricity, its history and applications, J. Acoust. Soc. Am, vol.70, issue.6, pp.1561-1566, 1981.

D. Royer and E. Dieulesaint-;-masson, Ondes élastiques dans les solides -Tome 2, 2000.

V. E. Granstaff and S. J. Martin, Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers, J. Appl. Phys, 1994.

L. A. Theisen, S. J. Martin, and A. R. Hillman, A Model for the Quartz Crystal Microbalance Frequency Response to Wetting Characteristics of Corrugated Surfaces, Anal. Chem, 2004.

M. V. Voinova, M. Jonson, and B. Kasemo, Missing mass' effect in biosensor's QCM applications, Biosens. Bioelectron, 2002.

N. J. Cho, J. N. D'amour, J. Stalgren, W. Knoll, K. Kanazawa et al., Quartz resonator signatures under Newtonian liquid loading for initial instrument check, J. Colloid Interface Sci, 2007.

R. Besse, J. Huerou, S. Serfaty, and E. Lati, TSM biosensor to ex-vivo characterize the viscoelastic properties of skin, 2016.

B. Jakoby, A. Ecker, and M. J. Vellekoop, Monitoring macro-and microemulsions using physical chemosensors, Sensors and Actuators, A: Physical, 2004.

B. Jakoby and N. Dorr, Monitoring phase transitions in microemulsions using impedance and viscosity sensors, 2006.

E. Kettler, Polymer-stabilized emulsions: Influence of emulsion components on rheological properties and droplet size, Progress in Colloid and Polymer Science, 2007.

F. Brochard-wyart, P. Nassoy, and P. Puech, Physique de la matière molle, Sciences S, 2018.

A. Pensé-lhéritier, Conception des produits cosmétiques : la formulation, pp.2-6, 2012.

P. Griesmar, Kinetic study of silicon alkoxides gelation by acoustic and rheology investigations, J. Non. Cryst. Solids, vol.319, issue.1-2, pp.57-64, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01708352

P. Oswald, Rhéophysique, ou comment coule la matière, 2005.

G. Couarazze, J. Grossiord, and N. Huang, Initiation à la rhéologie, 2014.

A. Krasnobrizha, Modélisation des mécanismes d'hystérésis des composites tissés à l'aide d'un modèle collaboratif élasto-plastique endommageable à dérivées fractionnaires, 2015.

L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci, 2003.

A. Liu, S. Ramaswamy, T. Mason, H. Gang, and D. Weitz, Anomalous Viscous Loss in Emulsions, Phys. Rev. Lett, vol.76, issue.16, pp.3017-3020, 1996.

N. Willenbacher and C. Oelschlaeger, Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry, Curr. Opin. Colloid Interface Sci, vol.12, issue.1, pp.43-49, 2007.

R. , Viscosity-Concentration Equation for Emulsions of Nearly Spherical Droplets, J. Colloid Interface Sci, vol.231, issue.1, pp.168-175, 2000.

V. Leroy, K. M. Pitura, M. G. Scanlon, and J. H. Page, The complex shear modulus of dough over a wide frequency range, J. Nonnewton. Fluid Mech, vol.165, issue.9, pp.475-478, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515473

R. , Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids, J. Colloid Interface Sci, vol.225, issue.2, pp.359-366, 2000.

S. Holm and R. Sinkus, A unifying fractional wave equation for compressional and shear waves, J. Acoust. Soc. Am, vol.127, issue.1, pp.542-548, 2010.

P. E. Rouse, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, J. Chem. Phys, vol.21, issue.7, pp.1272-1280, 1953.

S. R. Quake, The Zimm model applied to extended single polymers, J. Chem. Phys, vol.101, issue.5, pp.4307-4311, 1994.

B. H. Zimm, Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss, J. Chem. Phys, vol.24, issue.2, pp.269-278, 1956.

R. C. Koeller, Applications of Fractional Calculus to the Theory of Viscoelasticity, J. Appl. Mech, vol.51, issue.2, p.299, 1984.

R. L. Bagley and P. J. Torvik, On the Fractional Calculus Model of Viscoelastic Behavior, J. Rheol, vol.30, issue.1, pp.133-155, 1986.

W. Chen, S. Hu, and W. Cai, A causal fractional derivative model for acoustic wave propagation in lossy media, Arch. Appl. Mech, vol.86, issue.3, pp.529-539, 2016.

H. Schiessel, C. Friedrich, and A. Blumen, Applications to problems in polymer physics and rheology, Applications of Fractional Calculus in Physics, pp.331-376, 2000.

A. Jaishankar and G. H. Mckinley, Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.469, issue.2149, pp.20120284-20120284, 2012.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen et al., MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography, Magn. Reson. Med, vol.58, issue.6, pp.1135-1144, 2007.

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. with Appl, vol.59, issue.5, pp.1586-1593, 2010.

H. Markovitz, Boltzmann and the Beginnings of Linear Viscoelasticity, Trans. Soc. Rheol, vol.21, issue.3, pp.381-398, 1977.

A. Krasnobrizha, Modélisation des mécanismes d'hystérésis des composites tissés à l'aide d'un modèle collaboratif élasto-plastique endommageable à dérivées fractionnaires. Matériaux composites et construction, 2015.

M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys. PAGEOPH, 1971.

H. Schiessel and A. Blumen, Fractal aspects in polymer science, Fractals, vol.03, issue.03, pp.483-490, 1995.

G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Zeitschrift für Phys, vol.155, issue.2, pp.206-222, 1959.

N. G. Van-kampen and F. Lurçat, Causalité et relations de Kramers-Kronig, J. Phys. le Radium, vol.22, issue.3, pp.179-191, 1961.

J. B. Segur and H. E. Oberstar, Viscosity of Glycerol and Its Aqueous Solutions, Ind. Eng. Chem, vol.43, issue.9, pp.2117-2120, 1951.

K. Takamura, H. Fischer, and N. R. Morrow, Physical properties of aqueous glycerol solutions, J. Pet. Sci. Eng, pp.50-60, 2012.

C. Ould-ehssein, Système instrumental pour la rhéologie ultrasonore, 2006.

C. J. Brinker, Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, 1990.

C. Sanchez, State of the art developments in functional hybrid materials, J. Mater. Chem, vol.15, p.3557, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022631

C. Sanchez, Chimie douce': A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials, Comptes-rendus Chimie, vol.13, issue.1-2, pp.3-39, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02435816

D. F. Hodgson and E. J. Amis, Dynamic Viscoelastic Characterization of Sol-Gel Reactions, Macromolecules, 1990.

M. In and R. K. Prud'hornme, Fourier transform mechanical spectroscopy of the sol-gel transition in zirconium alkoxide ceramic gels, Rheol. Acta, 1993.

A. Ponton, S. Warlus, and P. Griesmar, Rheological study of the sol-gel transition in silica alkoxides, J. Colloid Interface Sci, 2002.

S. Warlus, A. Ponton, and A. Leslous, Dynamic viscoelastic properties of silica alkoxide during the sol-gel transition, Eur. Phys. J. E, 2003.

M. Takenaka, T. Kobayashi, T. Hashimoto, and M. Takahashi, Time evolution of dynamic shear moduli in a physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt: Critical exponent and gel strength, Physics, Plasmas, Fluids, Relat. Interdiscip. Top, 2002.

H. Schiessel and A. Blumen, Mesoscopic Pictures of the Sol-Gel Transition: Ladder Models and Fractal Networks, Macromolecules, vol.28, issue.11, pp.4013-4019, 1995.

C. Ould-ehssein, Kinetic study of silica gels by a new rheological ultrasonic investigation, Ultrasonics, vol.44, pp.881-885, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01708403

B. Senouci, S. Serfaty, P. Griesmar, and M. Gindre, Acoustic resonance in tetramethoxysilane matrices: A new tool to characterize the gel formation, Rev. Sci. Instrum, vol.72, issue.4, pp.2134-2138, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01708319

S. Goutelle, The Hill equation: A review of its capabilities in pharmacological modelling, Fundamental and Clinical Pharmacology, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428253

M. Doi and S. F. Edwards, The theory of polymer dynamics, 1988.

L. Gilbert, Caractérisation physico-chimique et sensorielle d'ingrédients cosmétiques : une approche méthodologique, 2012.

L. Gilbert, C. Picard, G. Savary, and M. Grisel, Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data, Colloids Surfaces A Physicochem. Eng. Asp, vol.421, pp.150-163, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02507767

L. Gilbert, C. Picard, G. Savary, and M. Grisel, Impact of Polymers on Texture Properties of Cosmetic Emulsions: A Methodological Approach, J. Sens. Stud, vol.27, issue.5, pp.392-402, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02507765

L. Gilbert, C. Picard, G. Savary, and M. Grisel, Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data, Colloids Surfaces A Physicochem. Eng. Asp, vol.421, pp.150-163, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02507767

L. Gilbert, V. Loisel, G. Savary, M. Grisel, and C. Picard, Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions, Carbohydr. Polym, vol.93, issue.2, pp.644-650, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02507774

L. Gilbert, C. Picard, G. Savary, and M. Grisel, Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data, Colloids Surfaces A Physicochem. Eng. Asp, vol.421, pp.150-163, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02507767

E. Merat, N. Chevrot, and C. Taillebois, The Holistic PIVOT© Profile: How Ingredients Influence Sensoriality, SOFWJournal, vol.142, pp.40-46, 2016.

F. Xu and T. Lu, Introduction of Skin Biothermomechanics, Introduction to Skin Biothermomechanics and Thermal Pain, pp.209-220, 2011.

F. Xu, T. J. Lu, and K. A. Seffen, Biothermomechanical behavior of skin tissue, Acta Mech. Sin. Xuebao, vol.24, issue.1, pp.1-23, 2008.

A. Mélissopoulos, C. Levacher, and L. Peau, Structure et physiologie

B. Dréno, Anatomie et physiologie de la peau et de ses annexes, Ann. Dermatol. Venereol, vol.136, pp.247-251, 2009.

R. F. Rushmer, K. J. Buettner, J. M. Short, and G. F. Odland, The Skin, vol.154, issue.3747, pp.343-348, 1966.

G. Odland, Structure of the skin, Biochemistry, and Molecular Biology of the Skin, pp.3-62, 1991.

C. W. Oomens, D. H. Van-campen, and H. J. Grootenboer, A mixture approach to the mechanics of skin, J. Biomech, vol.20, issue.9, pp.877-885, 1987.

G. Michel and G. Savary, Matières premières cosmétiques: ingrédients sensoriels, 2017.

F. Xu and T. J. Lu, Chapter 3 Skin Biothermomechanics: Modeling and Experimental Characterization, Advances in Applied Mechanics, vol.43, pp.147-248, 2009.

A. Delalleau, G. Josse, J. Lagarde, H. Zahouani, and J. Bergheau, Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test, J. Biomech, vol.39, issue.9, pp.1603-1610, 2006.

M. J. Koehler, T. Vogel, P. Elsner, K. König, R. Bückle et al., In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography, Ski. Res. Technol, vol.16, issue.3, pp.259-264, 2010.

C. Sanchez, Chimie douce': A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials, Comptes Rendus Chimie, vol.13, issue.1-2, pp.3-39, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02435816

S. Hsu, A. M. Jamieson, and J. Blackwell, Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system, Biorheology, vol.31, issue.1, pp.21-36

X. Liang and S. A. Boppart, Biomechanical properties of in vivo human skin from dynamic optical coherence elastography, IEEE Trans. Biomed. Eng, vol.57, issue.4, pp.953-959, 2010.

B. J. Bell, E. Nauman, and S. L. Voytik-harbin, Multiscale strain analysis of tissue equivalents using a custom-designed biaxial testing device, Biophys. J, vol.102, issue.6, pp.1303-1312, 2012.

R. B. Groves, S. A. Coulman, J. C. Birchall, and S. L. Evans, An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin, J. Mech. Behav. Biomed. Mater, vol.18, pp.167-180, 2013.

C. Edwards and R. Marks, Evaluation of biomechanical properties of human skin, Clin. Dermatol, vol.13, issue.4, pp.375-80

A. Vexler, I. Polyansky, and R. Gorodetsky, Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer, J. Invest. Dermatol, vol.113, issue.5, pp.732-739, 1999.

R. O. Potts, D. A. Chrisman, and E. M. Buras, The dynamic mechanical properties of human skin in vivo, J. Biomech, vol.16, issue.6, pp.365-372, 1983.

R. Vyumvuhore, Validation et implémentation des descripteurs de l'hydratation et des propriétés mécaniques du stratum corneum ex vivo et in vivo, 2013.

B. Holt, A. Tripathi, and J. Morgan, Viscoelastic response of human skin to low magnitude physiologically relevant shear, J. Biomech, vol.41, issue.12, pp.2689-2695, 2008.

L. Backhouse, M. Dias, J. P. Gorce, J. Hadgraft, P. J. Mcdonald et al., GARField magnetic resonance profiling of the ingress of model skin-care product ingredients into human skin in vitro, J. Pharm. Sci, vol.93, issue.9, pp.2274-2283, 2004.

L. O. Olsen, H. Takiwaki, and J. Serup, High-frequency ultrasound characterization of normal skin. Skin thickness and echographic density of 22 anatomical sites, Ski. Res. Technol, vol.1, issue.2, pp.74-80, 1995.

A. V. Rawlings, Ethnic skin types: Are there differences in skin structure and function?, Int. J. Cosmet. Sci, vol.28, issue.2, pp.79-93, 2006.

V. E. Granstaff and S. J. Martin, Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers, J. Appl. Phys, 1994.

, Règlement CE n°1223/2009 du parlement européen et du Conseil du 30 novembre 2009 relatif aux produits cosmétiques, p.6, 2013.

, Directive 2005/29/CE du Parlement européen et du Conseil du 11 mai 2005 relative aux pratiques commerciales déloyales des entreprises vis-à-vis des consommateurs dans le marché intérieur, p.6, 2005.

, Guide pratique des allégations environnementales à l'usage des professionnels et des consommateurs: durable, responsable, bio, naturel, écologique. Comment s'y retrouver ?, 2012.

, Règlement (UE) n ° 655/2013 de la Commission du 10 juillet 2013 établissant les critères communs auxquels les allégations relatives aux produits cosmétiques doivent répondre pour pouvoir être utilisées, p.6, 2013.

, Règlement (CE) n°1907/2006 du Parlement Européen et du Conseil du 18 décembre 2006 concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (REACH), 2006.

, Loi n°2004-806 du 9 août 2004 relative à la politique de santé publique, vol.29, 2004.

, Recommandations relatives aux recherches biomédicales portant sur des produits cosmétiques entrant dans le champ d'application de la loi relative à la politique de santé publique du 9 août, 2004.

A. M. Barbero and H. F. Frasch, Pig and guinea pig skin as surrogates for human in vitro penetration studies: A quantitative review, Toxicol. Vitr, vol.23, issue.1, pp.1-13, 2009.

R. P. Chilcott, Evaluation of a barrier cream against the chemical warfare agent VX using the domestic white pig, Basic Clin. Pharmacol. Toxicol, vol.97, issue.1, pp.35-43, 2005.

B. Godin and E. Touitou, Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models, Adv. Drug Deliv. Rev, vol.59, issue.11, pp.1152-1161, 2007.

, Communication from the commission to the european parliament and the council on the animal testing and marketing ban and on the state of play in relation to alternative methods in the field of cosmetics, 2013.

I. Fabre, Méthodes substitutives à l'expérimentation animale : aspects réglementaires, état de l'art et perspectives, Bull. Acad. Vet. Fr, issue.1, p.403, 2008.

K. A. Holbrook and H. Hennings, Phenotypic Expression of Epidermal Cells in Vitro: A Review, J. Invest. Dermatol, vol.81, issue.s1, pp.11-24, 1983.

Y. Tamada and Y. Ikada, Fibroblast growth on polymer surfaces and biosynthesis of collagen, J. Biomed. Mater. Res, vol.28, issue.7, pp.783-792, 1994.

E. Bell, B. Ivarsson, and C. Merrill, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. U. S. A, vol.76, issue.3, pp.1274-1282, 1979.

F. Berthod, L. Germain, H. Li, W. Xu, O. Damour et al., Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice, Matrix Biol, vol.20, issue.7, pp.463-73, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00313890

P. Tremblay, V. Hudon, F. Berthod, L. Germain, and F. A. Auger, Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice, Am. J. Transplant, vol.5, issue.5, pp.1002-1012, 2005.

N. Chen, Y. Hu, C. B. Lin, A. Pappas, and M. Seiberg, Human skin explant culture system and use therefor, 2011.

L. Steinstraesser, A human full-skin culture system for interventional studies, Eplasty, vol.9, p.5, 2009.

L. Peno-mazzarino, G. Percoco, S. Scalvino, P. Gasser, and E. Lati, Le modèle de peau ex vivo, Modèles pour l'évaluation des produits cosmétiques: de la molécule à l'humain, Cosmetic V, pp.159-185, 2018.

N. Lebonvallet, C. Jeanmaire, L. Danoux, P. Sibille, G. Pauly et al., The evolution and use of skin explants: Potential and limitations for dermatological research, European Journal of Dermatology, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00946758

P. Gasser, Glycation induction and antiglycation activity of skin care ingredients on living human skin explants, Int. J. Cosmet. Sci, vol.33, issue.4, pp.366-370, 2011.

P. Gasser and D. Bouzoud, La peau : support des cosmétiques mais aussi d'évaluation, L' Actual. Chim, pp.18-22, 2008.

P. Wang and Q. Liu, Cell-based biosensors : principles and applications, 2010.

T. Vo-dinh and B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics, Fresenius. J. Anal. Chem, vol.366, issue.6-7, pp.540-51, 2000.

P. Janknecht and L. F. Melo, Online Biofilm Monitoring, Rev. Environ. Sci. Bio/Technology, vol.2, issue.2-4, pp.269-283, 2003.

G. S. Wilson and R. Gifford, Biosensors for real-time in vivo measurements, Biosens. Bioelectron, vol.20, issue.12, pp.2388-403, 2005.

C. C. Cid, J. Riu, A. Maroto, and F. X. Rius, Biosensors based on carbon nanotube-network field-effect transistors, Methods Mol. Biol, vol.625, pp.213-238, 2010.

S. Zhang, N. Wang, Y. Niu, and C. Sun, Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor, Sensors Actuators B Chem, vol.109, issue.2, pp.367-374, 2005.

S. M. Borisov and O. S. Wolfbeis, Optical biosensors, Chem. Rev, vol.108, issue.2, pp.423-61, 2008.

M. M. Choi, Progress in Enzyme-Based Biosensors Using Optical Transducers, Microchim. Acta, vol.148, issue.3-4, pp.107-132, 2004.

G. N. Ferreira, A. Da-silva, and B. Tomé, Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance, Trends Biotechnol, vol.27, issue.12, pp.689-97, 2009.

A. Rawlings, Ethnic skin types: are there differences in skin structure and function?, Int. J. Cosmet. Sci, vol.28, issue.2, pp.79-93, 2006.

M. Davies and R. Marks, Studies on the effect of salicylic acid on normal skin, Br. J. Dermatol, vol.95, issue.2, pp.187-192, 1976.

C. H. Lee and H. I. Maibach, The sodium lauryl sulfate model: an overview, Contact Dermatitis, vol.33, issue.1, pp.1-7, 1995.

V. Charbonnier, B. M. Morrison, M. Paye, and H. I. Maibach, Subclinical, non-erythematous irritation with an open assay model (washing): sodium lauryl sulfate (SLS) versus sodium laureth sulfate (SLES), Food Chem. Toxicol, vol.39, issue.3, pp.279-286, 2001.

T. Welss, D. A. Basketter, and K. R. Schröder, In vitro skin irritation: facts and future. State of the art review of mechanisms and models, Toxicol. Vitr, vol.18, issue.3, pp.231-243, 2004.

T. Pavicic, Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment, J. Drugs Dermatol, vol.10, issue.9, pp.990-1000, 2011.

M. Essendoubi, C. Gobinet, R. Reynaud, J. F. Angiboust, M. Manfait et al., Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy, Ski. Res. Technol, vol.22, issue.1, pp.55-62, 2016.

L. Goberdhan, E. Makino, T. Fleck, and R. Mehta, Immediate and long-term effects of a topical serum with five forms of hyaluronic acid on facial wrinkles and intrinsic skin moisture content, J. Am. Acad. Dermatol, vol.74, issue.5, p.18, 2016.

M. O. Visscher, G. T. Tolia, R. R. Wickett, and S. B. Hoath, Effect of soaking and natural moisturizing factor on stratum corneum water-handling properties, 2003.

S. Mukherjee, A. Date, V. Patravale, H. C. Korting, A. Roeder et al., Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety, Clin. Interv. Aging, 2006.

B. Kim, Safety Evaluation and Anti-wrinkle Effects of Retinoids on Skin, Toxicol. Res, vol.26, issue.1, pp.61-66, 2010.

H. S. Yoon, Y. K. Kim, and J. H. Chung, High-concentration all-trans retinoic acid induces dermal inflammation and reduces the accumulation of type I procollagen in human skin in vivo, Br. J. Dermatol, vol.165, issue.3, pp.669-672, 2011.

, En outre, une base d'apprentissage permettant de balayer tout le spectre des notes possibles pour les descripteurs serait nécessaire. Elle permettrait d'ailleurs d'user d'outils statistiques avancés pour aider à identifier les signatures physiques. Il serait peut-être utile de s'inspirer des méthodes de plans d'expérience pour réussir à avoir une base contenant le nombre optimal de produits à caractériser afin d'assurer la validité des résultats et limiter l'investissement de l'étude. Par ailleurs, il est primordial de reprendre les mesures sur explants maintenus en survie, de façon bien plus méthodique, pour extraire des grandeurs significatives à partir des cinétiques d'évolution des courbes obtenues. D'un point de vue méthodologie, il serait pertinent de commencer par réaliser des études pour corréler les évolutions microrhéologiques avec les évolutions physiologiques observables par histologie, veut extraire les propriétés structurelles responsables de l'exacerbation d'une caractéristique sensorielle, alors il faut travailler avec une base de produits similaires, sinon les mesures instrumentales sont trop diversifiées pour identifier une quelconque démarcation significative

, En effet, sa capacité à suivre les propriétés viscoélastiques de la peau sur huit jours, propriétés qui sont affectées par l'état de survie de l'explant, doit permettre de travailler sur des problématiques clés du domaine telles que l'innocuité ou l'efficacité biochimique des produits : phénomènes d'inflammation, de desquamation excessive, pénétration des produits, transfert percutané d'actifs, etc. Ce transducteur adapté à l'étude des tissus biologiques pourrait donc être un moyen de mesure alternatif à la fois à l'animal et à l'in vivo. Plus largement encore, le secteur de la robotique voire de la biomécanique pourrait trouver un intérêt dans cette étude des interactions produits/peau. Entre autres, les développements concernant les peaux artificielles dotées d'une perception tactile sont certes capables de capter une pression 23, Si le biocapteur a été développé dans un but d'analyse sensorielle instrumentée, il pourrait très bien trouver son utilité dans d'autres applications et servir de véritable outil d'objectivation systématique pour la cosmétique, voire le biomédical

. Enfin, il convient de noter que la caractérisation proposée ne s'est focalisée que sur la viscoélasticité des produits et de la peau, alors que nous avons affirmé en introduction que la perception

L. P. Jentoft, Y. Tenzer, D. Vogt, J. Liu, R. J. Wood et al., Flexible, stretchable tactile arrays from MEMS barometers, 2013 16th International Conference on Advanced Robotics, 2013.

G. Pugach, Développement d'une peau artificielle pour l'apprentissage d'interactions physiques et sociales sur un robot humanoïde, 2017.

, Ce manuscrit expose l'adaptation d'un capteur ultrasonore à ondes de cisaillement (TSM), implantable sur des explants de peau humaine maintenus en survie, pour y parvenir. Outre l'extraction de grandeurs représentatives des interactions intrinsèques des produits à partir des propriétés microrhéologiques obtenues avec le TSM, le développement du biocapteur ex vivo a pour objectif l'étude des interactions produit/peau, sources des sensations perçues. Par l'étude de la viscoélasticité dans des conditions proches de la réalité, le couplage des mesures des deux capteurs vise une caractérisation organoleptique plus objective, c'est-à-dire limitant les biais classiques de l'analyse sensorielle instrumentée. Un nouveau modèle viscoélastique aux dérivées fractionnaires a été utilisé à cet effet. En plus de la pertinence de ce modèle pour caractériser des fluides complexes (non newtoniens), sa capacité à intégrer des grandeurs caractéristiques de l'échelle microscopique à l'échelle mésoscopique permet d'étudier une gamme de matériaux s'étendant des fluides parfaits aux gels particulièrement structurés ainsi qu'à des conformations comparables comme les différentes couches de la peau, Résumé Prévoir la sensation, dès leur conception, que procurent les produits multiphasiques tels que les crèmes, les gels ou les émulsions est un enjeu industriel vecteur d'innovation important

, Mots-clés Rhéologie ultrasonore, Analyse sensorielle, Matière molle, Instrumentation