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Résumé étendu

Contexte

Le béton bitumineux (AC) a été largement utilisé sur les couches supérieures

des chaussées en raison de ses bonnes performances en termes de durabilité, de

confort et de facilité de maintenance. D’après les études précédentes, le béton

bitumineux est un matériau macroscopiquement isotrope et homogène, avec

beaucoup de micro-vides, de micro-fissures et d’autres défauts. Ces éléments

structurels sont soumis à la fatigue causée par des charges de trafic répétées,

des variations de température (journalières et saisonnières), des tassements

de fondation, etc., entrâınant de l’endommagement et de la fatigue, et ses

performances sont sérieusement affaiblies. L’augmentation du trafic associée aux

coûts et aux problèmes environnementaux accrôıt la demande pour des chaussées

à haute performance.

Les méthodes de renforcement ont été largement proposées par les chercheurs.

Au cours de la dernière décennie, le renforcement par des grilles en fibre de verre

a été appliqué pour améliorer la réponse mécanique des matériaux de structure

de chaussée, ce qui a montrée son efficacité à réduire la fissuration et à prolonger

la durée de vie des chaussée en béton bitumineux. Certaines propriétés de la fibre

de verre, telles que sa haute résistance, sa rigidité et son endurance, ainsi que sa

faible sensibilité à la température, en font une solution intéressante et rentable.

Les recherches in-situ et en laboratoire mettent en évidence certaines preuves

expérimentales qui nécessitent encore une compréhension plus approfondie avant

de déboucher sur des principes de conception. Une série de tests a été réalisée

pour révéler le mécanisme du renforcement de grille en fibre de verre. L’étude de

la performance du béton bitumineux ainsi que de l’effet du renforcement repose

sur deux aspects du comportement mécanique: l’endommagement sous charge

monotone et sous charge de fatigue cyclique, qui seront examinés respectivement

dans cette thèse.

Une analyse de la performance des grilles en fibre de verre sur la flexion des

poutres en béton bitumineux a été réalisée par Arsenie et. al, basé sur des

tests de flexion alternée à 4 points (4PB). Ses résultats ont ouvert la voie au

projet SolDuGri, financé par l’Agence nationale de la recherche (ANR), où des

tests à l’échelle réelle et de laboratoire ont été effectués. Parmi ces différentes
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expériences, une attention particulière est accordée aux tests de fractionnement

en coin d’échantillons de chaussée avec des interfaces contenant des grillees de

fibres de verre.

L’interprétation des résultats des tests 4PB était basée sur une approche de

mécanique des milieux continus: mécanique de l’endommagement, en fatigue.

Cela a montré la complexité d’associer un comportement local fiable à des

résultats d’échantillon en raison de la localisation de contrainte et de limite liés à

l’existence de grilles de fibres de verre intégrés dans le béton bitumineux. Les es-

sais de fendage par coin ont été analysés par la mécanique de la rupture, ce qui a

donné de bonnes tendances initiales concernant les propriétés des matériaux et les

résultats des tests. Le fait que le béton bitumineux soit composé d’agrégats liés

par une matrice bitumineuse induit une structure irrégulière pour le matériau

composite. Cette propriété peut avoir des conséquences sur le comportement

mécanique, en particulier la rupture. La modélisation par éléments discrets

(DEM) est un outil très utile pour étudier l’effet de ce désordre naturel et ses

conséquences sur la réponse mécanique du matériau.

Généralement, la théorie du comportement à la rupture d’un matériau consiste

en un critère de résistance à la rupture et la mécanique de la rupture élastique

linéaire (LEFM). La LEFM devrait toujours venir en premier, afin d’étudier la

mécanique des matériaux béton bitumineux en termes d’initiation et de propa-

gation de fissures. Il s’applique à la rupture des matériaux fragiles. Cependant,

pour d’autres matériaux, la description théorique devrait être déterminée sur la

base des résultats expérimentaux, et la zone de traitement des fissures (FPZ)

peut expliquer certains phénomènes qui ne sont pas résolus par la LEFM en ter-

mes de zone de micro-fissure et de vitesse de restitution d’énergie. La fatigue

des matériaux est un autre comportement mécanique. Dans cette thèse, la durée

de vie en fatigue est caractérisée par la dégradation de la rigidité, et la théorie

concernant l’endommagement par fatigue et la durée de vie en fatigue sera revue.

Les défauts du béton bitumineux peuvent affecter le comportement mécanique,

ainsi dans l’étude numérique, leur représentation devrait être bien prise en

compte. En attendant, les propriétés physiques macroscopiques doivent être

reproduites. De ce point de vue, la méthode des éléments discrets (DEM) est

une méthode numérique idéale sur laquelle l’accent sera mis lors de la révision de

la méthode numérique. Le modèle de zone cohésive (CZM) est examiné en parti-

culier pour l’incorporation à DEM, ce qui résout la propagation de fissure avec la

FPZ sous charge monotone. La simulation numérique de l’endommagement de
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fatigue nécessite également un modèle de fatigue, qui devrait bien reproduire la

durée de vie en fatigue et l’évolution de l’endommagement lors d’un chargement

de fatigue en DEM.

Plan de Mémoire

Objectif de la recherche

Le présent travail explorera les capacités d’un environnement DEM, notamment

une description plus fine du matériau concernant son hétérogénéité interne pour

simuler des échantillons de béton bitumineux et l’effet des grilles en fibres de verre

sur la réponse mécanique des structures. Afin de mieux comprendre les résultats

des tests de laboratoire (WST et 4PB), les objectifs principaux de cette thèse sont

décrits ci-dessous: 1) Simulation en DEM du comportement cohérent du béton

bitumineux en termes d’élasticité, de résistance et de ténacité. 2) Développement

d’un modèle d’éléments discrets qui reproduit le comportement à la rupture du

béton bitumineux sous charge monotone et l’extension à la description de la

rupture de l’interface entre les grilles en fibres de verre et le béton bitumineux en

mode ouverture.

Organisation de la thèse

La présente étude est composée des parties suivantes: Le premier chapitre con-

cerne l’introduction et le contexte de mon étude. Le deuxième chapitre présente

une revue de la littérature. Le comportement mécanique du béton bitumineux et

des grilles en fibre de verre est présenté. Les méthodes les plus utilisées pour la

modélisation théorique de la rupture sont introduites, notamment la mécanique

de la rupture linéaire élastique, les notions de la FPZ. Ainsi, les méthodes

numériques d’analyse de l’endommagement par fissuration et par fatigue sont

passées en revue, notamment l’application de la méthode des éléments discrets

(DEM). Le chapitre 3 aborde les conception de base de l’analyse par éléments

discrets: génération de matériau, étalonnage de paramètres et identification de

la ténacité à l’aide d’un contact linéaire collé.

Le chapitre 4 concerne la rupture monotone des matériaux en béton bitumineux

comprenant l’interface avec les grilles en fibre de verre. L’application d’un modèle

de contact cohésif adapté à ce type de matériau est présentée. L’essai de fendage

par coin (WST) avec l’interface sont décrits (configuration expérimentale et sim-

ulations). L’analyse des expériences de WST associée à une étude paramétrique
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du modèle à éléments discrets permet d’identifier le mécanisme de rupture, un

modèle simplifié pour l’interface est ensuite proposé.

Au chapitre 5, la rupture par un chargement de fatigue alternatif est discutée.

Une loi d’endommagement local est appliquée au niveau des contacts et adoptée

pour décrire le comportement en fatigue du béton bitumineux. Le test de flexion

à 4 points (4PB) adopté pour identifier l’effet des grilles de fibres de verre en

fatigue est présenté. La configuration de la simulation et la représentation 2D

des grilles sont détaillées. Une étude paramétrique du modèle d’éléments discrets

associée à la comparaison avec les résultats expérimentaux permet d’identifier

l’effet des grilles de fibres de verre sur la durée de vie en fatigue des échantillons.

Enfin, le chapitre 6 résume les résultats et conclusions de la présente étude, suivies

des perspectives pour les travaux futurs.

Le comportement d’élasticité et de rupture dans le DEM

Les matériaux sont modélisés par un ensemble de particules assemblées de manière

aléatoire. Une méthode une méthode dynamique de mettre à l’échelle le rayon des

particules pour libération de contraintes internes a été utilisée pour induire une

structure interne presque isotrope et homogène avec des vides internes réduits.

Une étude paramétrique permet de relier les paramètres de contact (module de

contact Ecmod et rapport de rigidité kratio = kn/ks) aux paramètres du matériau

(module de Young E et coefficient de Poisson ν en élasticité, exprimés comme

suit:

ν = 0.1645× ln
(
kn
ks

)
+ 0.0913, (1)

E =

(
−0.1793× ln

(
kn
ks

)
+ 0.8070

)
Ecmod, (2)

où 0.1 < ν < 0.34 et 0.5GPa < E < 65GPa contiennent la plage habituelle du

coefficient de Poisson et du module de Young du béton bitumineux.

Le comportement quasi-fragile est limité par deux mécanismes de rupture: l’un

lié au niveau de contrainte et l’autre au facteur d’intensité de contrainte. Ces

deux mécanismes sont généralement associés à deux propriétés du matériau, la

résistance à la traction et la ténacité, respectivement. Une procédure de cali-

bration basée sur l’analyse de la résistance nominale d’échantillons pré-fissurés a

permis d’identifier la relation entre ces paramètres de matériau et les paramètres



Résumé étendu vii

de contact: résistance normales et tangentielles (fn et fs) et le rayon moyen R̄ de

la particule.

Les relations normales dues à l’étalonnage sont exprimées comme suit,

Σt =
fmaxn

Rt
× α, (3)

KIC =
fmaxn

t
√
R
× β, (4)

où α et β sont deux variables sans dimension liées à la configuration de

l’assemblage des particules dans DEM.

L’identification de α et β pour les assemblages aléatoires est présentée à l’aide

d’une méthode énergétique à la figure 1, dans laquelle une transmission évidente

du critère de contrainte à la LEFM est observée pour les résultats de la simulation

DEM.

(a) (b)

résistance à la traction

prédit par la méthode ‘r’
deux critères d'échec

Figure 1: Résistance nominale Σmax en fonction de la taille initiale de la fissure

a. La ligne continue est la prédiction donnée par la formulation énergétique pour

la résistance à la traction Σt = 2.4MPa, la ténacité KIC = 0.4MPa×m0.5 et le

paramètre r = 2.5.

Le contrôle des paramètres de rupture (quasi-fragile) a été vérifié en comparant

les résultats de simulations de fractionnement en coin avec la prédiction de la

mécanique de la rupture élastique linéaire. Sur la figure 2, le bon accord entre la
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simulation et la prévision LEFM permet de vérifier la consistance des propriétés

de rupture de l’ssemblage aléatoire dans DEM.

(a) (b)

Prédiction théorique

Simulation de la WST

Figure 2: (a) Géométrie de la WST. (b) Le résultat de la simulation et

l’ajustement par LEFM

Comportement à la rupture du béton bitumineux avec (sans) ren-

forcement de la grille en fibre de verre sous charge monotone en mode

d’ouverture

Les limites d’une approche quasi fragile sur la description du béton bitu-

mineux sont discutées. Le taux de restitution d’énergie lors de la rupture

(monotone) d’échantillons de béton bitumineux (WST) est beaucoup plus élevée

que la prédiction de la mécanique de la rupture élastique linéaire, qui est basée

sur la valeur de la ténacité. Cette non-linéarité associée à la rupture peut être

expliquée par la notion de la zone de traitement des fissures (FPZ) présentée à la

figure 3a, où nombreuses micro-fissures existent à la pointe de la macro-fissure.

Le modèle de zone cohésive est généralement adopté pour étudier numériquement

la FPZ, comme le montre la Figure 3b.

En termes de modélisation par éléments discrets, une loi de contact cohésif

bilinéaire a été mise en œuvre, dans laquelle le contrôle de l’énergie de rupture

est clairement introduit en tant que paramètre. En conséquence, des résultats de

simulation réalistes du béton bitumineux sont obtenus à la figure 4.

L’analyse subséquente des essais de fractionnement en coin avec des interfaces

entre le béton bitumineux et les grilles de fibres de verre a montré que le processus
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(a) (b)

traction cohésive

fond de fissure physique

Figure 3: (a) FPZ à la macro fissure. (b) La zone de cohésion en avant du fond

de fissure.

(a) (b)

Expérience sans renforcement

Simulation avec CZM

plaque de chargement
fissure initiale

Figure 4: (a) Géométrie de la WST. (b) La comparaison entre le résultat

d’expérience et de simulation.

de rupture est dominé presque intégralement par les propriétés mécaniques des

interfaces. Le béton bitumineux se comportant comme un corps rigide a conduit

à une modélisation simplifiée du WST basée uniquement sur les trois paramètres:

rigidité, résistance et vitesse du taux de restitution d’énergie de l’interface. La

figure 5 a présente le modèle d’interface. Les interfaces liées sont divisées en petits

éléments et traitées comme des ressorts. La force f j de chaque ressort suit une loi

de séparation par traction bilinéaire contrôlée par la déformation du ressort. La

comparaison de ce modèle d’interface a montré un bon accord avec les résultats

expérimentaux. Ainsi, les propriétés de rupture (résistance à la traction Σt et

l’énergie du rupture GIC) peuvent être identifiées à l’aide du modèle d’interface

proposé, comme illustré à la Figure 5b.
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(a) (b)

Résultat moyen de P6
Ajustement P6 par IM
Résultat moyen de P7
Ajustement P7 par IM
Résultat moyen de P8
Ajustement P8 par IM

Figure 5: (a) Géométrie du modèle d’interface. (b) Comparaison des expériences

et ajustement du modèle d’interface.

Comportement à la fatigue du béton bitumineux (non) renforcé avec

essai de flexion en 4 points

Un modèle de fatigue alternée pour le béton bitumineux a été mis en œu-

vre dans la méthode des éléments discrets. Il est démontré qu’un modèle de

contact d’endommagement décrivant les phases I et II, associé au désordre

naturel de la structure interne du matériau dans le DEM, est capable de

décrire l’ensemble du comportement en fatigue (phases I, II et III ) à l’échelle

d’échantillons. Sur la figure 6, les essais de perte de rigidité réalisées par Arsenie

sont bien reproduites par le modèle de fatigue imposée dans les simulations DEM.

La phase III apparâıt comme un effet de structure se manifestant même dans

des conditions aux limites uniformes, caractérisée par une perte d’homogénéité

induite par la concentration de défauts et une localisation de la déformation,

comme illustré à la figure 7.

Des simulations d’essais de flexion en 4 points ont ensuite été effectuées pour

analyser l’influence des grilles en fibres de verre sur la réponse en fatigue de

poutres composites.

Les incréments d’endommagement par cycle ont été définis par l’amplitude de

déformation. Les cycles alternatifs ont été numériquement remplacés par une

flexion statique des échantillons, ce qui a accéléré le calcul et a permis d’étudier

le comportement en fatigue sous un nombre élevé et réaliste (105 à 106) de cycles.

Une étude paramétrique et l’étalonnage des 3 paramètres de fatigue du modèle

discret pour les essais 4PB ont montré les capacités du modèle à reproduire les
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Expérience

Expérience 150 μm/m

Simulation 150 μm/m

Expérience 135 μm/m

Simulation 135 μm/m

Figure 6: Comparaison d’expériences et de simulations sous différents niveaux de

contrainte.

endommages des
contacts

Figure 7: Cartographies des endommagements de 3 échantillons numériques à la

dégradation de la rigidité Fv/Fv0 = 0.4.

résultats expérimentaux d’échantillons de béton bitumineux. Ainsi, les effets des

réseaux de fibres ont été analysés sous deux angles: renforcement normal et inter-

face. Les renforcements normaux étaient représentés par des contacts élastiques

complémentaires au même emplacement des grilles de fibres et présentant la même

rigidité comme illustrée à la figure 8.

L’avantage de cette approche bidimensionnelle est de permettre une propaga-

tion libre de défauts à travers la grille de fibres de verre (comme cela se produit

en réalité). Les vérifications de la modélisation des fibres sont effectuées sous

charge monotone et charge cyclique avec des simulations 4PB, les résultats étant

présentés à la figure 9. Les résultats de la simulation indiquent que les ren-
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Grilles des fibres

Figure 8: (a) Coupe transversale des échantillons renforcés. Représentation des

barres de la grille de fibres en tant que (b) contacts élastiques supplémentaires et

(c) connexion de particules dans la même couche.

forts sont activés à proximité de points très endommagés, où la déformation est

localisée. La faible quantité de fibres n’est suffisante pas pour expliquer individu-

ellement l’amélioration de la durée de vie en fatigue observée dans les expériences.

(a) (b)

Simulation sans grilles
Expérience sans grilles
Simulation avec grilles
Expérience avec grilles

Figure 9: (a) Vérification de la modélisation de la fibre sous charge monotone

de 4PB. (b) Comparaison des simulations (non) renforcées et des expériences

d’Arsenie

Sur la figure 10, l’interface est caractérisée par une mince couche de particules

avec une rigidité élastique moindre pour induire un glissement relatif entre deux
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couches adjacentes. La contribution normale de cette couche est négligeable

compte tenu de la faible section transversale de la couche d’interface.

Contacts verres: interface    

Figure 10: Modélisation d’interface en simulation avec une couche de contacts en

verres.

Cependant, le glissement induit par l’interface peut entrâıner une redistribution

de la contrainte normale avec une réduction des valeurs maximales, ce qui allonge

la durée de vie en fatigue de l’ensemble de la poutre malgré sa rigidité initiale.

Compte tenu de l’effet couplé des renforts et de l’interface, la redistribution de la

contrainte a pour conséquence d’augmenter l’endommagement près de la position

des renforts, ce qui améliore l’efficacité des renforts. Enfin, la comparaison entre

simulations et expériences a montré la cohérence du modèle et les tendances

indiquées par les simulations comme présenté à la figure 11.

(a) (b)

Expérience minimum
Expérience maximum
Expérience moyen

Expérience minimum
Expérience maximum
Expérience moyen

Figure 11: Comparaison de expériences et simulations d’effet collectif de grille de

fibres et interface.

Conclusions et perspectives

Conclusions

Dans cette thèse, la réponse mécanique du béton bitumineux (AC) sous des

chargements monotones et en fatigue a été modélisée par la méthode des éléments

discrets. Sur la base de ce comportement des matériaux, l’effet des grilles en fi-

bres de verre associées au béton bitumineux est pris en compte et son apport

mécanique a été analysé.
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Premièrement, la modélisation en DEM a été étudiée de manière paramétrique.

La comportement des matériaux quasi-fragiles a été vérifiée par des essais de

traction et des essais de fractionnement. Ensuite, la simulation de WST a mis

en évidence l’effet décisif de l’interface qui a dominé la rupture des assemblages,

de sorte que le modèle d’interface a été simplifié et utilisé pour identifier les

propriétés de rupture du béton bitumineux renforcé par des grilles en fibres de

verre.

Les essais de fatigue 4PB ont été étudiés avec du béton bitumineux (non) ren-

forcé. Un modèle de fatigue identifiant les phases I et II a été adopté avec

DEM, lequel a présenté la phase III naturellement dans DEM. L’effet de la grille

est devenu distinct lorsque les fissures traversent la grille et les échantillons ren-

forcés présentent une durée de vie en fatigue insuffisante en comparaison avec les

expériences de AC renforcé. L’effet collectif de l’interface et de la grille présente

une bonne cohérence avec les expériences.

Perspectives

Les modèles numériques développés et discutés dans cette thèse ont indiqué cer-

taines tendances, clarifié certains résultats expérimentaux et suscité des questions.

Pour tous les calculs, la granularité des matériaux simulés est restée la même.

Au chapitre 3, l’effet de la taille moyenne des particules a été augmenté dans la

relation entre la résistance à la traction et la ténacité d’un matériau quasi-fragile.

Comme indiqué à l’annexe B, le comportement quasi-fragile peut également

dépendre de la transition entre les mécanismes de rupture fondés sur la résistance

et la ténacité, caractérisée par le paramètre r. Une analyse physique de l’effet

de la granularité sur la rupture des échantillons pré-fissurés peut donner une

explication physique aux effets de taille en cas de rupture quasi-fragile.

Les modèles d’endommagement ont été orientés de manière à simuler le com-

portement du béton bitumineux et ses interactions avec les grilles en fibres de

verre. Cependant, les approches en charges monotones et répétées peuvent être

étendues à d’autres (géo) matériaux et à d’autres (géo) grilles.

Certains effets importants liés au comportement mécanique du béton bitu-

mineux n’étaient pas explicitement isolés. Un aspect important à inclure dans

la modélisation est l’identification des contributions élastiques et visqueuses sur

la réponse du matériau. Les essais de fatigue sont généralement effectués à

des fréquences relativement élevées, ce qui affecte la réponse du matériau. La
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température est également un paramètre à prendre en compte à l’avenir, qui

affecte la viscosité de l’asphalte en laboratoire et dans les structures réelles.

Les essais de fatigue associés aux échantillons de béton bitumineux sont

généralement pilotés en déformation. Le comportement de renforcement de la

grille de fibres de verre semble être activé à des niveaux d’endommagement élevés

et, par conséquent, à de faibles niveaux de rigidité de l’échantillon. Les essais

controlé par le stress pourraient éventuellement permettre de mieux montrer la

contribution de la grille de fibres aux niveaux de rigidité résiduels.

Les propriétés des grilles en fibres de verre ont été considérées comme parfaite-

ment élastiques dans tous les calculs. La grille elle-même présente une rigidité

à peu près constante lors des essais de fatigue avec des niveaux de déformation

comparables à ceux de l’essai de flexion. Cependant, le comportement de la liai-

son entre la fibre de verre et le béton bitumineux n’est pas forcément indépendant

du nombre de cycles. Des tests d’arrachement répétés peuvent donner des infor-

mations importantes sur le comportement en fatigue de cette connexion. Le com-

portement normal et, en particulier, tangentiel du l’interface béton bitumineux

/ grilles soumis à la fatigue constitue également un apport important pour la

modélisation des poutres composites. Une interface qui présente une perte de

rigidité considérable lors des tests peut contribuer de manière très différente de

celle proposée par les résultats numériques de ce travail. Malgré toutes les incerti-

tudes actuelles quant à la caractérisation des interfaces, le contrôle des propriétés

de ces couches minces semble être un moyen de caractériser les performances en

fatigue des éléments structuraux dans le béton bitumineux.
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The work of this thesis was carried out at the National Institute of Applied Sci-

ences of Strasbourg (INSA de Strasbourg) and was funded by the China Schol-

arship Council (CSC). The study is related to the project SolDuGri, funded by

the French National Research Agency (ANR).

This introduction includes the general background, research objectives and the

outline of the thesis.

1.1 General background

Asphalt concrete is widely used on the upper layers of road pavements. These

structural elements are subjected to fatigue by repeated traffic loads, (daily and

seasonal) temperature variations, foundation settlement, etc. The increasing traf-

fic associated to costs and environmental issues raises the demand for high per-

formance pavements.

In the last decade, the reinforcement by fiber glass grids has been applied to im-

prove the mechanical response of pavement structure materials. Some properties

of the fiber glass like high strength, stiffness and endurance, and low sensitiv-

ity to temperature makes it an interesting and cost-effective solution. Field and

laboratory research points out some experimental evidences which still request a

deeper understanding before leading to design principles.

An analysis of the perfomance of fiber glass grids on the deflection of asphalt

1
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concrete beams was performed by Arsenie et. al [1], based on 4-point alternate

bending (4PB) tests. Her results opened the path for the project SolDuGri,

funded by the French National Research Agency (ANR), where tests in real and

laboratory scales have been performed. Among these different experiences, a

special attention is given to wedge-splitting tests (WST) of pavement samples

with interfaces containing fiber glass grids.

The interpretation of the results of 4PB tests was based on a continuum me-

chanics approach: damage mechanics, in fatigue. It has shown the complexity

on associating reliable local behaviour to sample results due to the localization

of strain and boundary effects related to the existence of fiber grids embedded in

the asphalt concrete. The WST was analysed through fracture mechanics, which

presented good initial trends relating material properties and test results.

The fact that asphalt concrete is composed by aggregates binded by a bituminous

matrix induces an irregular structure to the composite material. That property

may have consequences on the mechanical behaviour, specially the rupture. Dis-

crete element modelling (DEM) is a very useful tool to investigate the effect of this

natural disorder and its consequences on the mechanical response of the material.

1.2 Research objectives

The present work will explore the capabilities of a DEM environment, notably

a finer description of the material concerning its inner heterogeneity to simulate

asphalt concrete samples and the effect of the fiber glass grids on the mechanical

response of the systems. In order to build a better understanding on the results

of the laboratory tests (WST and 4PB), the main objectives of this thesis are

described below:

1) Simulation in DEM of physically consistent behaviour of the asphalt concrete

in terms of elasticity, strength and toughness.

2) Development of a discrete element model which reproduces the rupture be-

haviour of asphalt concrete under monotonic load and the extension to the de-

scription of the rupture of the interface between glass fiber grids and the asphalt

concrete in opening mode.

3) Development of an alternate fatigue model in a discrete element approach

adapted to asphalt concrete behaviour and numerically efficient to analyse the

material behaviour during a very large number (105 − 106) of loading cycles.
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4) Evaluate the contribution of the fiber glass grids under fatigue loading (4PB

geometry) and identify the mechanisms inducing the observed improvement on

the fatigue performance of the composite beams.

1.3 Organization of the thesis

The present study is composed by the following parts:

The first chapter presents a literature review. The mechanical behaviour of the

asphalt concrete and the fiber glass grids are presented. The most used meth-

ods for theoretical modelling of rupture are introduced, including linear elastic

fracture mechanics, notions of fracture process zone and fatigue. Thus, the nu-

merical methods for fracture and fatigue damage analysis are reviewed, where the

application of discrete element method is emphasized.

Chapter 3 discusses the basic elements of the discrete element analysis: material

generation, calibration of parameters, and identification of the fracture toughness

with a bonded linear contact.

Chapter 4 concerns the monotonic rupture of asphalt concrete materials, which

includes the interface with fiber glass grids. The application of a cohesive contact

model adapted to this type of material is presented. The wedge-splitting tests of

the interface are described (experimental and simulations setup). The analysis of

wedge-splitting experiences associated to a parametric study of the discrete ele-

ment model allows the identification of the mechanism of rupture and a simplified

model for the interface is then proposed.

In Chapter 5, the failure by alternate fatigue loading is discussed. A local damage

law is implemented at the contact level and adopted to describe the asphalt

concrete fatigue behaviour. The 4-point bending (4PB) test adopted to identify

the effect of the glass fiber grids in fatigue is presented. The simulation setup

and the 2D representation of the grids are detailed. A parametric study of the

discrete element model associated to the comparison with experimental results

allows the identification of the role of the fiber grids on the fatigue life of the

samples.

Finally, Chapter 6 summarizes the conclusions and findings of the present study,

which are followed by the perspectives for future work.
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2.1 Introduction

Asphalt concrete (AC) has been widely used in pavement due to its good perfor-

mance in terms of durability, comfort and an easy maintainability. From previous

studies, the asphalt concrete is macroscopically isotropic and homogeneous mate-

rial, with plenty of micro voids, micro cracks and other defects. However, different

types of load are applied to the pavement materials, resulting in the damage and

fatigue, and its performance is seriously weakened. The reinforcement methods

have been widely proposed by the researchers. Of these methods, the fiberglass

grid has been verified to be effective in reducing the fracture and prolonging the

service life of AC pavement. A series of tests have been done to reveal the mech-

anism of fiber glass grid reinforcement. The study of AC performance as well as

the effect of reinforcement lies on two aspects of the mechanical behaviour: the

damage under the monotonic load and cyclic fatigue load, which will be reviewed

respectively in this chapter. The wedge-splitting test and 4-point bending test

are emphasised since they are studied in the following chapters.

Generally, the theory of material fracture behaviour consists of a strength fail-

ure criterion and the linear elastic fracture mechanics (LEFM). LEFM should

still come firstly, in order to study the AC material mechanics in terms of the

crack initiation and propagation. It applies for the fracture of brittle materials.

However, for other materials, the theoretical description should be determined
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based on the experimental results, and the fracture process zone (FPZ) may ex-

plain some phenomena that can not be solved by LEFM in term of the micro

crack zone and energy release rate. The material fatigue is another mechanical

behaviour. In this chapter, the fatigue life is characterized by the stiffness degra-

dation, and the theory with respect to the fatigue damage and fatigue life will be

reviewed.

The defects in AC material may affect the mechanical behaviour, thus in the

numerical study, their representation should be well considered somehow. Mean-

while, the macroscopic physical properties should be reproduced. From this point

of view, the discrete element method (DEM) seems to be an ideal numerical

method which will be emphasised during the review of the numerical method.

The cohesive zone model (CZM) is reviewed especially for the incorporation with

DEM, which solved the fracture propagation with FPZ under monotonic load.

The numerical simulation in fatigue damage also requires the fatigue model, which

should well reproduce the fatigue life and the damage evolution during fatigue

load in DEM.

2.2 Asphaltic pavement materials

2.2.1 Asphalt concrete

The asphalt concrete (AC) is mainly a mixture of aggregates and bitumen as

binder. It is characterized by good toughness, good compression resistance, good

tension resistance and bad thermostability, and it is convenient for installation

and maintenance. The AC pavement also contributes to the comfortable and

quiet driving experience, thus widely adopted in the road pavement, especially

for the high-type pavement.

The performance of asphalt concrete is the collective effect of aggregate and bi-

tumen. The aggregate usually have high stiffness and strength and they interlock

each other by internal friction and locking force. The aggregates are the principal

load-supporting components of an AC pavement. Different types of aggregates

have been adopted such as sand, gravel, crushed stone or rock dust. The ag-

gregate size, grade, shape, toughness, soundness, surface cleanliness and surface

texture are important for the AC performance.

The overall asphalt binder includes bitumen (the petroleum-based asphalt, coal

tar, and natural tar) as well as any material (mineral powder, fiber glass) added
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to modify the original asphalt properties. It helps to provide good elasticity,

resilience, high plasticity under the temperature variation, which contributes to

comfort and safety of driving and durability of pavement.

There are two types of asphalt mixes: hot-mix and cold-mix. Hot-mix asphalt

(HMA) is more commonly used, while cold-mix asphalt (generally mixes made

with emulsified or cut-back asphalts) is usually used for light to medium traffic

secondary roads, or for remote locations or maintenance use. During fabrication

process, the void content and compaction level of asphalt concrete influences the

performance, based on the study by [2].

Although the AC pavement presents several advantages in the performance com-

paring to the cement concrete, it still needs some improvements due to particular

service conditions. There are several causes which lead to the pavement distress

and may produce movements at discontinuously and inhomogeneously. These

causes are: (a) low temperature contraction, (b) daily temperature cycles, (c)

traffic loads and (d) high temperature deformation, which results in cracking and

deformation.

Low temperature leads to the contraction in asphalt concrete. And it also results

in lower plasticity and increases the stiffness of asphalt concrete. Consequently,

the AC pavement layer is easier to crack. High temperature increases the flexibil-

ity of the asphalt concrete, thus leading to rutting problem in AC pavement layer.

The heavy and cyclic traffic loads and the temperature loads directly act on the

pavement, which leads to the deformation and damage of the AC pavement layer.

2.2.2 Reinforcement of asphalt concrete

AC pavement encounters a great danger of fatigue and crack propagation resulting

from the repeated traffic load and climatic factors as mentioned above. When

the service life is approached, the pavement suffers from an increasingly serious

damage and becomes unusable for service. Thus it is an important issue to study

the methodology to prolong the service life and load resistance performance of

asphalt concrete. The researches cover the following aspects:

1) the type, size and volumetric content of aggregate, the type of asphalt;

2) asphalt mixed with special materials, fiber glass [3], polyester fiber [4] for

example;

3) imposing grid layer for reinforcement between two AC layers.

For these points, the second and the third items can deal with the reinforcement.
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Wu [5] performed a series of laboratory tests on asphalt concrete with fiber glass,

the results suggested that fiber glass increased the bending failure strain but had

no effect on the bending failure strength. In Guo’s study [3], the fiber glass could

decrease the rutting of traffic load. And under indirect tensile fatigue tests, the

fatigue life had a clear improved, but less than 1.5 times. In Ge’s research [6],

different materials (i.e. modified asphalt, modified emulsified asphalt, fiber glass

reinforced modified emulsified asphalt and modified fiber glass reinforced asphalt)

were adopted for the interface between asphalt concrete and cement concrete. The

result showed that all the specimens with fiber glass reinforcement presented a

longer fatigue life. The problem is that it is difficult to compact even for short

fibers.

Fiber glass grid is an ideal material placed between 2 layers of asphalt concrete,

which has been used for decades of years, see Figure 2.1. From the literature, it

is indicated that fiber glass grid helps to distribute the stress and prevent crack

propagation from top to bottom and the opposite direction [7], to dissipate the

stress concentration due to the reflect crack and fatigue crack, and to function

as moisture barriers [8], which significantly reduces the damage and improves

the service life. However, up to now, the choice of the appropriate grid (mesh

size, tensile strength) and its optimal location in the pavement system are mainly

based on experience from lab experiments and in-situ observations [8].

fiber grid
Asphalt concrete  layer

Figure 2.1: Fiber glass reinforcement in asphalt concrete.

2.2.2.1 Fiber glass grid

The present fibers are of different types: fiber glass, boron fiber, carbon fiber,

organic fiber, oxidized fiber and silicon carbide fiber. The fiber glass is widely used

for reinforcement with the caoutchouc reinforcement. The industrial manufacture

of fiber glass began at 1930s [9] and the association of Owens Corning was built

in the same period. The fiber glass possesses a good strength due to the shape
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and it is of high productive efficiency.

The synthetic resin is employed as the matrix of the composite due to the advan-

tages and properties listed below: (a) the temperature of utilisation is lower than

that of metals, (b) good resistance in the corrosive media, (c) the low mechanical

modulus that facilitates the transfer of charge in the fibers. It is categorised by

thermoplastic and thermosetting resin, and the former one is mostly used in the

fiber glass.

The fiber glass grid is the material composed by the filament of fiber glass of

diameter from 10 ∼ 30mm, glued by a kind of synthetic resin. It has been used

as the reinforcement in the road engineering since 1960s, experiences an increasing

utilization in 1990s and nowadays it is used systematically and effectively [1]. Up

to now, there is not the optimised position for the application of fiber glass grid in

the pavement structure [8]. Since the fiber glass grid is used to stop the fracture

propagation, it should be placed at the depth where the pavement was affected

by the distresses seriously. However, some researchers stated that the crack may

initiate at either the bottom or the top of the pavement layer, and propagates

to the opposite. In practice, the fiber glass grid is usually placed in the bottom

of the AC layer, between the AC layers and base course pavement layers, with a

bitumen emulsion layed on the top of the base course layer. The interface plays

the significant effect on the expected performance, thus the fiber glass grid should

be well glued [1].

2.2.2.2 Reinforcement mechanism by fiber glass grid for asphalt con-

crete

Button and Lytton [10] summarized this reinforcement mechanism as follows:

1) The crack starts to propagate from its original position upward until it reaches

the reinforcement layer due to thermal and traffic loading or uneven soil move-

ments;

2) If the interlayer is stiff enough (stiffer than the surrounding materials), the

crack will turn laterally and move along the interface until its energy is exhausted.

3) Based on this mechanism, a reinforcement interlayer may contribute to the

structural resistance capacity of the pavement.

Evaluation of fatigue resistance is mostly based on bending tests on grid rein-

forced beams under cyclic loading. There are 2 aspects that influence the effect

of reinforcement: interaction between the reinforcing product and surrounding
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materials (e.g. bonding interface, interlocking with the aggregates), and proper-

ties of reinforcing material (e.g. tensile strength).

The fiber glass grid has regular apertures which allows the interlocking effect.

The interlocking phenomena restrains lateral movement of the aggregates, and

thus greatly decreases shear potential. If the aperture size is excessive large,

the stress dissipating capability is weakened, while a fine grid with quite small

apertures reduces the interlocking and also has bad reinforcement effect [11, 12].

When it comes to the test method, the adhesion test is normally conducted with

regard to the stiffness and strength issues, with monotonic load [13–15]. The

fatigue resistance test is used to investigate the damage process (crack initiation,

propagation) under repeated traffic loading and thermal load [16–18]. The three

point bending test by [19] proved that the application of the fiber glass grid

increased 45% of the bending strength.

In the early studies, researchers found the poor performance of grid resulting

from de-bonding (or de-lamination) for the glass fiber grid composite forming

interface between two AC layers [20, 21], although it can be improved by the

compaction from the traffic load during service [22]. To mitigate the debonding

for the interface, fiber glass grids are generally used with a tack coat, which can

improve the initial tensile performance [23, 24]. In the study of [24], adhesion

tests were performed with different types of tack coats, different fracture energies

were obtained correspondingly. To strengthen this improvement, a light polyester

nonwoven was applied working together with tack coat, meanwhile permitting the

aggregate pass thorough easily and thus ensuring interlocking. Recently, a new

material has been developed to replace the traditional tack film, which is partially

melted at the typical asphalt melting temperatures during the application, so that

it significantly simplifies the installation of grids [8]. Although some encouraging

results have been drawn, there are still some points to be noticed. Their main

disadvantages may be the bonding with the asphalt material and difficulties to

recycle the reinforced asphalt materials [8]. The cost of fiber glass should be

comparable with the regular maintenance cost without reinforcement, since cost-

performance should be carefully considered.

2.3 Material mechanical behaviour

Material mechanical properties consist of elasticity, plasticity, strength, tough-

ness, fracture toughness, fatigue damage. Generally, for different materials and
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different applications, one or multi properties need to be considered and stud-

ied. Some properties are sensitive to the load pattern and the temperature. For

example, the strength of the materials may depends on the loading rate. The

material plasticity and toughness are affected by the temperature.

The experimental study of the material mechanical behaviour is based on the

experiments, thus the test methods are reviewed briefly. According to the load-

ing direction, the tests are categorized as: tensile test (direct, indirect, confined,

unconfined), compression test (confined, unconfined), shear test, splitting test,

torsion test and bending test. According to the load period, the tests are cate-

gorized by monotonic test and cyclic (fatigue) test. Based on the loading rate,

the monotonic tests are categorized as static and dynamic tests. There are some

other test methods for special studies such as the impulse test, shock test, scratch

test, creep test and so on. During the test, some necessary conditions are taken

into account, such as the temperature, moisture, initial damage and crack.

In this thesis, the asphalt concrete mechanical properties such as the fracture and

the fatigue damage are the main research objectives. Thus they are introduced

as follows.

2.3.1 Fracture behaviour

The material failure occurs when the load is large enough so that the material

(nominal) strength is reached. The material fracture behaviour including the ini-

tiation and propagation has been studied widely by researchers. It has turned

out different materials (metal, engineering plastics, ceramic or ceramic compos-

ite, concrete and rock) present strongly different fracture behaviours. Normally,

the study of fracture behaviour on the (quasi-)brittle material assumes that an

artificial macro crack already exists in the material. For the brittle and quasi-

brittle materials, the stress concentrations exist at the crack tips and the critical

strengths (also called nominal strength) exist, above which the cracks begin to

propagate. It has been widely demonstrated that the determination of nominal

strength is highly dependent on the crack length, which will be reviewed in de-

tail in the Section 2.4. To study the fracture behaviour, the double cantilever

beam (DCB) specimen (see Figure 2.2) is suitable for both mode I and II, or the

mix-mode [25].

Though the DCB test is the most direct method to investigate the fracture prop-

erties, it still presents the difficulties in loading device in practice. The single-edge
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(a)

(b)

(c)

Figure 2.2: Mode I, Mode II and mix-mode loading of DCB specimens: (a) Mode

I (b) Mode II and (c) Mix-mode [25]
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bending test (see Figure 2.3 (a)) and the splitting test (see Figure 2.3 (b)), with

the pre-notched specimen [26–28] are preferred.

P
P P

(a) (b)

Figure 2.3: Geometry of (a) pre-notched bending test, (b) wedge-splitting test.

2.3.1.1 Wedge-splitting test of the interface between fiber glass grid

and asphalt concrete

The wedge-splitting test (WST) has been widely used for the determination of

fracture energy and fracture toughness on concrete-like materials, with the mea-

surement of load and displacement. The specimen for WST can either be a cube

or a cylinder [28]. WST is used especially for the study of crack of opening mode

along the interface.

Tschegg [29] performed the WST with cylinder samples. The fracture behaviour

of interface between asphalt overlay and interlayer with different geosynthetics

reinforcement was investigated. The study indicated that good bonding between

the interlayer and the asphalt layer is important for high resistance against the

reflective crack propagation.

A series of WSTs were conducted by Kim and Buttlar [30–33]. The effects of

specimen size, aggregate size (9.5mm and 19mm), aggregate type and environ-

ment temperature (−10 ◦C and 0 ◦C) on the resistance of crack propagation were

studied with cylinder samples. For his result, Kim argued that a larger specimen

has more significant viscoelastic behaviour. The larger aggregate size leaded to

slightly smaller peak load and more compliance for the softening curves. The

higher temperature leaded to larger fracture energy and smaller peak load.
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In order to study the crack propagation behaviour of asphalt concrete, the ex-

periments were performed on the (non-)reinforced AC specimens, in which the

interface existed between two AC layers for both reinforced and non-reinforced

AC [22,34]. For her results, the reinforced specimen, regardless of their fiber grid

type, leaded to about 30% reduction of the peak load. The fracture energy was

also reduced due to the application of the fiber grid.

2.3.2 Fatigue behaviour

Repeated load induces an apparent stiffness degradation of the material related

to complex physical phenomena such as self-heating, thixotropy (which are re-

versible) and damage (not reversible) [35,36]. Related to the latter phenomenon,

the propagation of defects may lead to the coalescence of cracks and the conse-

quent failure of the structure. In the present thesis, all this processes are simply

referred as fatigue damage due to the relative simplicity of its mathematical de-

scription. The fatigue failure criterion is different from the static and quasi-static

strength since:

1) Enough load cycles are required before fatigue crack initializes and during the

fatigue crack propagation.

2) The static strength is not reached during the repeated load.

Generally, the material fatigue is initialized because of the evolution of existing

micro cracks and the generation of new micro cracks. With cumulated effort of

the cyclic load, the cracks become larger and coalesce, and finally the material

breaks or fails. Fatigue life is of great importance for the structure design, which

can be defined as the number of load cycles before the fatigue failure. Based on

the traditional fatigue failure criterion, fatigue failure is defined as the point at

which the material modulus reduces to 50% of its initial value, since for most

materials, the rapid damage of materials begins at around this value and the

materials present bad performance of load resistance [37], while other researchers

argued that the phase angle should be chosen to determine the fatigue life in

fatigue test [38, 39]. The fatigue life was also characterised by the yield point at

Weibull plot [40].

2.3.2.1 Fatigue behaviour for asphalt concrete

Asphalt concrete is located on the first layer of the road, and suffers the distresses

such as the traffic loads and climatological events during its service life [41, 42].

The fatigue behaviour in asphalt concrete were widely studied in recent years.
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In Moreno-Navarro’s study [35], the global process involves three main phenom-

ena: 1)accumulation of permanent deformations; 2) reversible degradation and

initiation of irreversible damage (micro cracks); 3) crack propagation (the co-

alescence of micro cracks produces the localization and propagation of macro

cracks). The results obtained in a typical cyclic loading test can be divided into

three stages, as described in Figure 2.4 . Moreno-Navarro argued that the initial

sharp decrease is ascribed to the permanent deformation, and this permanent

deformation has an effect on the material viscoelastic properties (i.e. strain hard-

ening phenomenon, material becomes more rigid and elastic.), resulting in the

sharp decrease in fatigue process, which has also been verified by [43, 44]. Part

of the stiffness loss is revisable, considering the presence of a thixotropic process

in the asphalt co-existing during the damage process.

st
iff

ne
ss

Number of loading cycles 𝑁𝑁𝐶𝐶

ⅢⅠ Ⅱ

50% of the initial stiffness

initial stiffness

Figure 2.4: Typical evolution of stiffness during fatigue test.(Modified from [45])

2.3.2.2 Effect of the fiber glass grid in fatigue behaviour

The AC pavement is directly exposed to the traffic load, which is the typical cyclic

bending load. The bending test is very popular to study the fatigue especially

for the simplification of the cyclic traffic load.

Lee [19] performed the 3PB uni-directional fatigue tests shown in Figure 2.5a.

The flexural strain was measured, and results showed that about 5 ∼ 7 times

of fatigue life increment was obtained (See Figure 2.5 (b)). However, the stress

controlled load leads to uncontrolled dramatic crack propagation in the last phase

of the fatigue damage.

In Arsenie’s thesis [16], the strain-controlled 4PB fatigue tests were performed

(See Figure 2.6 (a)), and the bending force (Fv) is measured. The stiffness degra-
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(a) (b)

Figure 2.5: (a) Stress controlled 3-point bending cyclic test, (b) The fatigue life

increment from Lee [19].

dation is obtained by the replacement of F/Fv0 (See Figure 2.6 (b)). The study

also presented an increment of about 1.5 ∼ 1.8 times on the fatigue life.

(b)(a)

𝐹𝐹 𝑣𝑣
/𝐹𝐹

𝑣𝑣0

Reinforced, δv,max = 100 µ𝑚𝑚
Non-reinforced, δv,max = 100 µ𝑚𝑚
Reinforced, δv,max = 90 µ𝑚𝑚
Non-Reinforced, δv,max = 90 µ𝑚𝑚
Reinforced, δv,max = 76.7 µ𝑚𝑚
Non-Reinforced, δv,max = 76.7 µ𝑚𝑚

Figure 2.6: (a)Geometry of 4-point bending fatigue test, (b) the strain controlled

sinusoidal loading, (c) the stiffness and fatigue life by Arsenie [16].

2.4 Material theoretical modelling

2.4.1 Material stiffness and strength

In the following sections, the material stress and strain distribution will be dis-

cussed in 3 different cases as follows:

1)For the homogeneous (quasi-)brittle material under homogeneous monotonic

load, the stress is proportional to the deformation or strain, described by the

elastic modulus. In this case, The breakage occurs as soon as the material strength
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is reached. This material failure criteria is called strength criterion.

2)However, as the crack exists in the material, the material failure criteria trans-

fers from strength criteria to LEFM [45], due to the stress singularity at the crack

tip, in which case the stress and strain will be discussed in Section 2.4.2.

3)Another case is the material stress and strain under the fatigue model. The

local strain softening occurs under low and cyclic load, which will be discussed

in Section 2.7.

2.4.2 Linear elastic fracture mechanics (LEFM)

In 1920, Griffith [46] studied crack propagation problem from the point of view

of energy, and he explained that the crack propagation is attributed to the energy

that overcomes the material resistance. Griffith’s original concept of fracture was

based on the energy released during crack extension. This method was further

developed by Irwin [47]. For linear elastic materials, the energy and the stress

field approaches can be considered equivalent.

In energy balance criterion, the critical stress σc is given as follows:

σc =

√
2Eγ

πa
(2.1)

where E is elastic modulus, γ is the surface energy (energy per unit area), a is

half length of the crack. When the stress is larger than σc, the crack instability

propagation is assumed to occur.

In 1947, Irwin [47] proposed a stress intensity factor K to quantitatively describe

the crack tip stress field. He also found the relation between stress intensity

factor and energy balance criterion, which established the foundation of fracture

mechanics.

In the following part of this section, for better understanding, the near-tip crack

stress field is firstly introduced and then the energy release rate.

2.4.2.1 The crack mode and elastic stress field

Among various mathematical methods in plane elasticity, the Westergaard func-

tion method [48, 49] is more convenient than the other methods to describe the

basic crack problems, which is used to find the elasticity solutions for an infinite
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plane with a center crack under uniform tension (mode I), in-plane shear (mode

II), and anti-plane shear loading (mode III), respectively. The Westergaard so-

lutions are given below for each of the three modes in relation to the coordinate

system shown in Figure 2.7. The origins of the polar coordinate system (r, θ)

and rectangular coordinate system (X, Y ) are located at the crack tip, K terms

are the stress intensity factor for each mode, E is the Young’s modulus, ν is

Poisson ratio, shear modulus µ = E/[2(1 + ν)], κ = 3 − 4ν for plane strain and

κ = (3− ν)/(1 + ν) for plane stress.

xx

yy

xy

rr


r



r

X

Y

Upper surface

Lower surface

Figure 2.7: The rectangular and polar coordinate components of stress field

around the crack tip (Modified from [50]).

Opening Mode, I : The two crack surfaces are pulled apart in the Y direction,

that is, they move away symmetrically with respect to the undeformed crack

plane (xz-plane). For the pure Mode I, the stress far from the crack tip can

be described in polar coordinate in Figure 2.8.

The stress and displacement fields given by Westergaard Function Method in

polar coordinate system are given by:

σrr =
KI√
2πr

cos
θ

2

(
1 + sin2 θ

2

)
(2.2)
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2a

σ0

σ0



r

X

Y

Figure 2.8: A center cracked infinite plate subjected to mode I loading (uniform

tension). (Modified from [49])

σθθ =
KI√
2πr

cos
θ

2

(
1− sin2 θ

2

)
(2.3)

σrθ =
KI√
2πr

sin
θ

2
cos2

θ

2
(2.4)

ur =
KI

8µπ

√
2πr

[
(2κ− 1) cos

θ

2
− cos

3θ

2

]
(2.5)

uθ =
KI

8µπ

√
2πr

[
− (2κ+ 1) sin

θ

2
+ sin

3θ

2

]
(2.6)

Based on the Equation 2.2, the stress distribution at the crack tip is presented in

Figure 2.9. The stress will be infinite (stress singularity) when it approaches the

crack tip, which means that the strength criteria for the homogeneous material

doesn’t apply when crack exists. Thus the critical stress intensity (also called

fracture toughness) is proposed as the crack propagation and the material failure

criterion. Herein, the critical stress intensity factor under maximum stress with

crack length 2a is expressed by Equation 2.7.
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KIC = σmax
√
πa (2.7)

𝑥𝑥

𝜎𝜎𝑦𝑦𝑦𝑦

crack

Figure 2.9: The stress distribution at the crack tip.

Shearing Mode, II : The two crack surfaces slide over each other in the x-

direction, that is, they slide against each other along directions perpendic-

ular to the crack front but in the same undeformed plane. For the pure

Mode II, the stress near the crack tip can be described in polar coordinate

in Figure 2.10.

2a

τ0



r

X

Y

τ0

τ0τ0

Figure 2.10: A center cracked infinite plate subjected to mode II loading (in-plane

shear). (Modified from [49])
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The stress and displacement fields given by Westergaard Function Method in

polar coordinate system are given by:

σrr =
KII√
2πr

sin
θ

2

(
1− 3 sin2 θ

2

)
(2.8)

σθθ =
KII√
2πr

sin
θ

2

(
3 sin2 θ

2
− 1

)
(2.9)

σrθ =
KII√
2πr

cos
θ

2

(
1− 3 sin2 θ

2

)
(2.10)

ur =
KII

8µπ

√
2πr

[
− (2κ− 1) sin

θ

2
+ 3 sin

3θ

2

]
(2.11)

uθ =
KII

8µπ

√
2πr

[
− (2κ+ 1) cos

θ

2
+ 3 cos

3θ

2

]
(2.12)

Tearing Mode, III : The crack surfaces slide over each other in the z-direction,

that is, they tear over each other in the directions parallel to the crack front

but in the same undeformed plane. Mode III is a tearing mode (see Figure

2.11).

The stress and displacement fields given be Westergaard Function Method in

polar coordinate system are given by:

σrz =
KIII√

2πr
sin

θ

2
(2.13)

σθz =
KIII√

2πr
cos

θ

2
(2.14)

uz =
KII

µπ

√
2πr sin

θ

2
(2.15)

Equation 2.2 to 2.14 present the stress and displacement fields of the three basic

modes, solved by Westergaard Function Method. Any fracture mode in a cracked

body may be viewed as a superposition of these basic modes.
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X
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Figure 2.11: A center cracked infinite plate subjected to mode III loading (anti-

plane shear). (Modified from [49])

2.4.2.2 Energy release rate

Concept of energy release rate

The stress distribution at the near-tip stress field is described above in stress field

method. In the near-tip stress field method, crack growth is dominated by the

local stress field around the crack tip, which is characterized by the stress intensity

factor K. Fracture occurs when the stress intensity factor reaches its critical value

Kc (fracture toughness). Alternatively, energy method is also a basic method of

LEFM. In the energy method, the fracture behaviour of a material is characterized

by the energy release rate G, which is defined as the energy dissipated during

fracture per unit of newly created fracture surface area, as expressed by Equation

2.16,

G = −∂(U − V )

∂Q
, (2.16)

where U is the potential energy available for crack growth, V is the work asso-

ciated with any external forces acting, and Q is the extended crack area for 3D

problems and crack length for 2D problems.

According to Griffith’s original concept [46], the work done during a crack ex-
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tension must be equal to the surface energy stored in the newly created surfaces.

Fracture occurs when the energy release rate reaches its critical value Gc (fracture

energy, J/m2).

Loading path independence [49]

Based on the Griffith theory for fracture of perfectly brittle elastic solids, during

crack extension of da, the work done dWe by external forces the increment of

surface energy dWs, and the increment of elastic strain energy dU must satisfy

the following equation:

dWs + dU = dWe (2.17)

Figure 2.12: A single edge cracked specimen (Modified from [49]).

Consider a single-edge-cracked elastic specimen subjected to a tensile load P or

displacement δ as shown in Figure 2.12. The relationship between the applied

tensile force P and the elastic extension, or displacement, δ is

δ = SP, (2.18)

where S denotes the elastic compliance of the specimen containing the crack. The

strain energy stored in this specimen is
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U =

∫ δ=SP

δ=0

Pdδ =

∫ δ=SP

δ=0

δ

S
dδ =

1

2
SP 2. (2.19)

The compliance S is a function of the crack length. The incremental strain energy

under the condition of varying a and P is

dU =
1

2
P 2dS + SPdP. (2.20)

Then two cases during the crack are discussed, respectively the fixed displacement

(δ) case and fixed loading force (P ) case.

Case 1, the fixed displacement:

The fixed boundary during the extension of the crack lead to dδ = SdP+Pds = 0,

thus we have SdP = −PdS. Substitution of the preceding equation in 2.20 yields

dU |δ = −1

2
P 2dS. (2.21)

Furthermore, dWe = 0 in this case because dδ = 0 and, thus, the external load

does no work. Substituting Equation 2.21 and using dWe = 0, we have

dWS = −dU |δ =
1

2
P 2dS. (2.22)

Thus, a decrease in strain energy U is compensated by an increase of the same

amount in the surface energy. In other words, the energy consumed during crack

propagation is entirely supplied by the strain energy stored in the cracked body.

Case 2, the fixed loading force:

The constant applied force P during the crack propagation leads to dP = 0, thus

we have

dU |P =
1

2
P 2dS. (2.23)

There is a gain in strain energy during crack propagation in this case. Moreover,

we note that

dWe = Pdδ = P 2dS. (2.24)
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Substituting Equation 2.23 and 2.24, we again obtain

dWS = dU |δ =
1

2
P 2dS, (2.25)

which is half of the work done by the external force. It is interesting to note

that the work done by the external force is split equally into the surface energy

and an increase in strain energy. Taking case 1 and case 2 to compare, we have,

FOR both boundary conditions discussed before, the energy released during crack

propagation is

dW = dWe − dU =
1

2
P 2dS. (2.26)

The corresponding energy release rate G is

G =
dW

da
=

1

2
P 2dS

da
. (2.27)

Hence, the energy release rate is independent of the type of loading. And the

released energy due to crack propagation can always be obtained by the area in

Figure 2.13. Thus, the energy release rate can be calculated by

G = −dU
da

= −1

2

Piδj + Pjδi
da

. (2.28)

𝑃𝑃

𝛿𝛿

−𝑑𝑑𝑑𝑑

Corresponding crack length: 𝑎𝑎

Corresponding crack length: 𝑎𝑎 + 𝑑𝑑𝑎𝑎

𝛿𝛿𝑖𝑖 𝛿𝛿𝑗𝑗

𝑃𝑃𝑖𝑖
𝑃𝑃𝑗𝑗

Figure 2.13: The released energy calculation by the force displacement curve.
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The relation between G and K

For the linear elastic material, the energy method and the stress field method

can be considered equivalent. There exists a unique relation between the energy

release rate G and the stress intensity factor K. This relationship can be estab-

lished by the crack closure method (CCM). CCM takes two states (i.e. crack

before propagation and crack after propagation as shown in Figure 2.14) into

account.

Before extension: a
x

y

x’

y’

After extension: a+da

Figure 2.14: Stress distribution before extension and surface opening after exten-

sion. (Modified from [49])

The energy release rate and crack intensity factor are related by the same con-

sumed energy during the crack propagation. The normal stress σyy ahead of the

crack tip (θ = 0)/ (before propagation) is

σyy =
KI (a)√

2πx
, (2.29)
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where KI (a) is the stress intensity factor and the origin of the coordinate system

x-y is at the crack tip.

After the assumed crack extension of da, new crack surfaces are created in 0 5

x 5 da and the displacement of the upper face is given by [49], which can be

written in x’-y’ coordinates (with the origin at the grown crack tip) as

uy =
κ+ 1

4µπ
KI

√
2π(−x′) (2.30)

For plain strain, κ = 3 − 4ν, and for plain stress, κ = (3 − ν)/(1 + ν). Noting

that x′ = x− da, we rewrite this expression as

uy =
κ+ 1

4µπ
KI

√
2π(da− x), (2.31)

where KI = KI(a+ da). Because da is vanishingly small, KI in Eq. 2.31 can be

taken to be equal to KI(a).

The energy release rate can be calculated by the integration of stress and dis-

placement at the crack tip. That is, the released energy is equal to the work done

by σyy in equation 2.30 traversing uyy in equation 2.31. Thus we have

GIda = 2

∫ da

0

1

2
σyyuydx, (2.32)

where the factor 2 on the right side accounts for the two (upper and lower) crack

surfaces. Substitution of Eqs. 2.30 and 2.31 into the expression 2.32 yields

GI =
κ+ 1

8µ
K2
I . (2.33)

For plain strain, we have

GI =
1− ν

2µ
K2
I =

1− ν2

E
K2
I . (2.34)

For plain stress, we have

GI =
K2
I

2µ(1 + ν)
=
K2
I

E
. (2.35)

For Mode II and Mode III problems, if the crack is assumed to grow in its original

direction of the main crack, we can obtain similar relations between G and K as

follows:
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GII =
κ+ 1

8µ
K2
II , (2.36)

GIII =
1

2µ
K2
III . (2.37)

2.5 Fatigue crack growth - Paris’ law

Paris’s law relates the stress intensity factor to sub-critical crack growth under

a fatigue stress regime [51]. It is the most popular fatigue crack growth model

used in fracture mechanics. The basic formula reads in Equation 2.38,

da

dN
= C (∆K)m (2.38)

where a is half of the fatigue crack length; N is the number of load cycles. C

and m is a variable related to material fatigue behaviour, of which C is a scaler

of number of load cycles Nc and it is independent on crack length 2a and remote

stress σ; ∆K is the stress intensity factor variation in a load cycle, as shown

Equation 2.39.

∆K = Kmax −Kmin (2.39)

At a certain crack tip, ∆K is a function of increase of global tensile stress σ and

crack length a, expressed in Equation 2.40, and ∆σ is the range of cyclic stress

amplitude, Y is dimensionless variable related to specimen geometry [49] which

equals 1 for an infinite plane.

∆K = ∆σY
√
πa (2.40)

When we substitute 2.40 into Equation 2.38 and then integrate, the remaining

number of cycles Nr for the crack propagation from a0 to at is derived as Equation

2.41.

Nr =

∫ Nr

0

dN =

∫ at

a0

da

∆σY
√
π

=
2
(
a

2−m
2

t − a
2−m

2
0

)
(2−m)C (∆σY

√
π)

m (2.41)



30 Chapter 2. Literature review

Paris’ law can be used to quantify the residual life of a specimen with a given

crack size. However, the damage of asphalt concrete is generally initialized with

micro cracks, followed with coalescent macro cracks, thus demanding for a special

consideration when it is utilized as local fatigue model.

2.6 Fracture process zone (FPZ)

Glucklich [52] examined the fracture of concrete using fracture mechanics ap-

proach and revealed that the strain energy is converted mainly to surface energy

but the surface involved is much larger than the surface of the effective crack.

Later, it was found that during load, a large size of damage zone exists ahead

of the macro crack [53], which is later called fracture process zone (FPZ). The

FPZ has a capability to still transfer the closing stress across the micro crack

faces, which consumes energy during the crack propagation. The stress in FPZ

decreases with increasing deformation.

Many different techniques have been adopted to measure the shape and size of

the FPZ, including optical microscopy [54], scanning electron microscopy [55,56].

high-speed photography [57], laser speckle interferometry [58], compliance and

multicutting techniques [59], ultrasonic measurement [60], and acoustic emission

(AE) technique [61].

To study FPZ in concrete, splitting tests were conducted by Otsuka [62], and the

micro cracks were inspected by X-rays and three-dimensional Acoustic Emission

(AE) techniques. In his study, the micro crack zone is defined with 2 categories

namely fracture core zone (FCZ) and fracture process zone (FPZ), corresponding

to 70% and 95% of the total energy of all AE events as shown in schematic map

of Figure 2.15. In FCZ, more densely distributed AE events are observed, which

implies more micro cracks presence in this area.

For different materials, the size and shape of FPZ can be totally different. A

fine-grained silicon oxide ceramic has FPZ size of 0.1mm, while it is 3m for

concrete dam with extra large aggregate. The materials are categorized based on

the different FPZ properties (e.g. size and stress resistance). The difference in

regard of the traction separation law is shown in Figure 2.16. When FPZ is large

enough to significantly influence the fracture behaviour of material, LEFM fails

to describe crack growth due to the large amount of energy released in this zone.
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Figure 2.15: The shemetic map of FPZ by Otsuka (Modified from [62]).

𝜎𝜎
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Figure 2.16: The schematic map of FPZ by Otsuka (a) brittle material, (b) quasi-

brittle material, (c) ductile material (Modified from [62]).

2.7 Damage mechanics

2.7.1 Principles

Damage mechanics is concerned on the representation, or modelling, of material

damage, which is intended for engineering predictions about the initiation, propa-

gation of material fracture. The damage may be caused by any kind of load, such

as thermodynamic load, mechanical load and ageing. The damage mechanics
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should include both the damage initiation criterion and damage evolution model.

In damage mechanics, a state factor is adopted to describe the effect of damage

on the stiffness, strength or the remaining life of the material, and it possesses

the similar formula:

A = (1−D)× Ao (2.42)

where D is the damage factor, Ao is the initial stiffness or strength, A is the

remaining of the corresponding variables.

For example, the stiffness of the concrete with damage is usually described as

follows:

E = (1−D)× Eo (2.43)

where E and Eo are respectively the current and original modulus of concrete.

2.7.2 Fatigue damage

Considering the duration of fatigue life, the fatigue can also be categorized

into high-cycle fatigue (HCF) (also called stress fatigue) and low-cycle fatigue

(LCF)(also called strain fatigue). For HCF, the load is larger than yield stress,

so that the loading cycles are quite low (generally smaller than 104), while for

LCF, the load is low, so that the strain is a control parameter to determine the

fatigue level.

From the laboratory test on asphalt concrete specimen, a typical fatigue process

is normally divided into 3 phases, as shown in Figure 2.4. In phase I, the stiffness

undergoes a steep decline. The phase II exhibits a stable and slow decrease of the

global stiffness (due to the effect of the reversible phenomena and the initiation of

the fatigue damage in the form of micro cracks [35]), which takes up the longest

time of fatigue life. In the phase III, sharp decline of stiffness occurs because of

the damage accumulation and the propagation of the resultant macro cracks.

2.7.3 Asphalt concrete fatigue life

Fatigue in AC mixtures is defined as the phenomenon causing cracking (consist-

ing of a crack initiation and propagation) due to the tensile strains generated in
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pavements when subjected to load repetition, temperature variation, and inade-

quate construction practices collectively [63]. The fatigue models and fatigue life

prediction are usually obtained from experiments.

Gul [64] conducted the indirect tensile fatigue test with asphalt concrete. The

repeated load was applied with constant force amplitude. A non-linear model to

relate fatigue life to initial strain was concluded from a series of test of different

initial strain, taking into account the viscosity, the optimum bitumen content and

the resilient modulus, expressed in Equation 2.44.

Nf = 1.367× 10−8 × ε−2.556 × η9.154 × ν9.154B × E2.655 (2.44)

where Nf = is the number of cycles to the failure ; ε is initial strain; η is bitumen

viscosity; νB is optimum bitumen content, percentage; E (unit : MPa) is resilient

modulus.

Other researches also attempted to discover the functions to relate the fatigue

life to one or a set of parameters, which are presented in Table 2.1.

2.8 Numerical methods adapted to asphalt con-

crete modelling

2.8.1 Particularity of the asphalt concrete

Asphalt concrete is a multiphase granular material, which consists of aggregates

and the asphalt binder, with a lot of micro cracks or defects in it. The AC struc-

ture induces heterogeneous stress and strain distribution in micro view meanwhile

presents a globally isotropic elastic behaviour. The aggregates could interlock

each other, meanwhile the asphalt binder provides strong cohesion. The fail-

ure of the asphalt concrete, no matter under monotonic or cyclic fatigue load,

can always be initialized from the micro cracks and defects, followed with the

coalescence of the micro cracks and result in the total breaking.

DEM is suitable for the simulation of non-continuous phenomena like the crack

propagation, and the local strain softening, instead of continuum mechanics ap-

proach. It consists of particles, walls and contacts. The particle can be arranged

artificially, while contacts describe interaction between particles and could be

elastic or follow a defined constitutive model, and the contact can break locally

with different criterion. All these features naturally promise a suitable numerical
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Table 2.1: Evaluation of fatigue life in literature (Modified from [64].)

Research by Explanatory variables Model

function

Lytton et al. Bitumen content, stiffness, air voids,

aggregate type, gradation and

angularity

Linear

Harvey and Tsai Initial stiffness and mix volumetric

Intrinsically

linear

Kim et al. Stress level Power

Lee and Kim Pseudo stiffness Linear

Rodrigues Traffic speed and the shape of the

stress pulse

Quadratic

Hartman Type of compaction Linear

Kim et al. Strain rates and damage growth Linear

Kim et al. Initial pseudo-stiffness, damage

parameter fatigue failure, material

parameter

Exponential

Zhou et al. Initial stiffness Power

Yeo et al. Tensile strain Power

Xiao et al. Initial flexural strain, VFA, AV,initial

dissipated energy, initial mix stiffness

Artificial neural

network

Al-Rub et al. Fundamental material properties Finite element

model

Salama and

Chatti

Axle load and truck configuration Power

Al-Khateeb and

Ghuzlan

Temperature, stress, and loading

frequency

Exponential

Ali et al. Dynamic modulus and phase angle No model was

developed

Mannan et al. Strain Power

Underwood Strain amplitude Power

Luo and

Qian [39]

epoxy asphalt contcrete, moisture

condition

No model was

developed

method for the simulation of AC, especially when the material failure is imper-

ative. The DEM model allows up to look inside the material and understand
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the fundamental interaction with the insight view underlying the complex, macro

scale response, and develop a reliable, visual understanding of material behaviour

with the improvements in our ability to predict the response in the asphalt con-

crete.

2.8.2 Cohesive zone model (CZM)

A series of numerical model describing non-linear fracture mechanics are proposed

aiming at analysis of material fracture process, including the cohesive zone model

(CZM) [65,66] (also called fictitious crack model (FCM)), the crack band model

(CBM) [67], two-parameter fracture model (TPFM) [68, 69], size-effect model

(SEM) [70], effective crack model (ECM) [71], double-K fracture model (DKFM)

[72], and double-G fracture model (DGFM) [73]. Of these numerical models,

CZM, FCM and CBM have been applied for FEM, while the rest ones are modified

LEFM for mathematical analysis.

CZM has become a popular tool to model fracture in quasi-brittle and plastic

material. It is considered as a more realistic form of fracture mechanics to assume

that the stress distribution after the crack tip instead of singular stress which

results from LEFM. The cohesive zone is idealized as two cohesive surfaces after

the nominal crack tip, where there is cohesive traction to hold the two cohesive

surfaces together. The cohesive traction varies based on the distance between the

2 cohesive surfaces, which follows a cohesive law [62]. Hence, a physical crack

extension (i.e. no load bearing capacity) occurs when the separation displacement

at the tail of the cohesive zone (physical crack tip) reaches a critical value. CZM

can control the rupture energy artificially, thus allowing to model a large span of

materials.

2.8.2.1 Development of CZM

Cohesive zone model have been widely utilized to mitigate stress singularities in

linear elastic fracture mechanics and to approximate nonlinear material separa-

tion phenomena [25, 74–78]. Towards this end, Elliott [79] introduced an inter-

atomic attracting force per unit area to investigate fracture of a crystalline sub-

stance along a cleavage plane. Dugdale [66] and Barenblatt [65] firstly proposed

cohesive models to investigate ductile and brittle material fracture behaviour,

respectively.

In order to consider a relatively large nonlinear FPZ in quasi-brittle materials
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such as concrete, rocks and fiber-reinforced concrete, the cohesive zone model

has been employed [80–84]. The linear soften CZM was successfully extended by

Hillerborg et al. [80] to study non-linear fracture processes in Portland cement

concrete. Furthermore, cohesive zone models have recently been used to simulate

the fracture process in a number of material systems under a variety of loading

conditions.

2.8.2.2 Rupture energy control in CZM

There are many different types of cohesive laws due to different material or dif-

ferent research purposes. One of the key advantages offered by CZM is that it

has an intrinsic fracture energy dissipation mechanism in contrast to the classical

continuum based fracture mechanics for which such a mechanism is absent. Fig-

ure 2.17 depicts a cohesive zone ahead of a crack where σ is the cohesive traction

and δ is the separation displacement between two cohesive surfaces.

𝛿𝛿

Physical crack tip

Cohesive traction 𝜎𝜎

Figure 2.17: A cohesive zone ahead of crack tip (Modified from [49]).

Figure 2.18 shows a typical scheme of the bilinear cohesive law, which is charac-

terized by linear elastic harden curve and linear soften curve. In this figure, σc is

the peak cohesive traction, and δc is the characteristic displacement.

There are various traction separation laws carried out in previous researches,

representing different failure mechanism operative either at the microscopic or

macroscopic level, and they are used for different material mechanical behaviours

at the crack tip. Generally, they share the common form of expression as shown

in equation 2.45, in which σc is critical stress, δe is a characterization for the

transition of the stress, and δc is critical strain or displacement. In some potential-

based model [78], δe and δc are not given directly, and the traction is controlled

by the potential instead.
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a)

𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐𝜎𝜎𝑒𝑒

Figure 2.18: A general traction separation laws for CZM.

σ = σcf(δ, δe, δc) (2.45)

Generally, the effective displacement and traction easily define various cohesive re-

lations such as linear softening [85–87], bilinear softening [88,89], trapezoidal [90],

smoothed trapezoidal [91], cubic polynomial [92], and exponential [93] functions,

as shown in Figure 2.19.

2.8.2.3 CZM applied in DEM

To study the fracture behaviour of asphalt concrete, Kim and Buttlar [31–33,

94,95] have successfully implemented CZM into discrete element method (DEM)

framework. A bilinear CZM (i.e. linear elasticity, linear softening) was adopted.

The specimen size dependency of asphalt concrete was captured by the devel-

oped experimental fracture test and the multiphase DEM model with CZM was

able to accurately predict the size-dependent fracture behaviour when consider-

ing viscoelasticity and heterogeneity. The traction separation law is illustrated as

shown in Figure 2.20. The contact strength Fmax is calculated from two strength

components (normal force F n
C and shear force F s

C) as well as the contact angle α,

Fmax = (1− 2α

π
)× F n

C +
2α

π
× F s

C (2.46)

where α is the angle between the direction of the contact force and the line

segment connecting particle centre.

The contact force between two particles is calculated by Eq. 2.47.
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𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐

(a) linear softening

𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐

(b) bilinear softening

𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐

(c) trapezoidal

𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐

(d) smooth trapezoidal

𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐

(e) polynomial

𝜎𝜎

𝛿𝛿

𝜎𝜎𝑐𝑐

𝛿𝛿𝑐𝑐

(f) exponential

Figure 2.19: Various traction separation law. (Modified from [78])
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Figure 2.20: Bilinear traction separation law in DEM adopted by Kim [95].

F =
√

(F n)2 + (F s)2 (2.47)

When the contact force exceeds the contact strength, the contact will begin to

yield or soften as shown in Figure 2.20.

∆Uk = ∆Uk
e + ∆Uk

p (2.48)

The force increment ∆F k is a function of the increment of the elastic displacement

as follows:

∆F k = Kk∆U
k
e (2.49)

where

∆Uk
e = ∆Uk −∆Uk

p (2.50)

The elastic (or plastic) displacement can be determined using the consistency con-

dition (i.e.F − Fmax = 0). The contact strength is a function of the accumulated

plastic deformation, as described by

F k
C(UP/UPmax) = F k

C

(
1− UP

UPmax

)
, (2.51)

where UP = Σ(∆UP ).
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Figure 2.21: The multi-phase AC material and the constitutive models [32].

With the proposed CZM model, Kim built the multiphase DEM geometries to

simulate the AC material (See Figure 2.21). The aggregate, asphalt binder, in-

terface between aggregate and asphalt were represented differently, and a good

agreement was obtained in Figure 2.22 after the parameter calibration. The ex-

istence of micro cracks demonstrated that CZM in DEM can naturally develop

FPZ.

2.8.3 Fatigue damage modelling

In general, fatigue damage model is obtained using two approaches: the strain

(or stress)- based models [96], and the dissipated energy method which is defined

as a damage indicator of a material [64].

At the microstructural scale, fatigue damage in cemented materials is considered

as a progressive process of microstructural changes with increasing the number

of load cycles [42, 97, 98]. The fatigue damage model requires the appropriate

characterisations of different stages of crack growth (i.e. stable crack growth and

unstable crack growth) [99].
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Figure 2.22: The curve of force versus displacement and FPZ (Modified from [32]).

Bodin [100] proposed a fatigue damage model for asphalt concrete based on ex-

perimental evidences for strain controlled tests which is discussed in the next

sections.

2.8.3.1 Bodin’s model

The damage model proposed by Bodin, describes the stiffness decrease of the

material due to cyclic loading. The mathematical model utilized to describe the

mechanical damage is shown in Equation 2.52, in which G (ε,D) is a function of

positive strain level ε and number of loading cycles NC .

∆D = G (ε,D) ∆N (2.52)

In case of cyclic load, Equation 2.53 can well represent the rate of damage incre-

ment with the condition of the cumulation of damage evolution and the function

of positive strain,

Ḋ = f (D) εβ〈 ε̇〉 (2.53)

where f (D) is function of damage and the exponent β is a material parameter

related to the slope of S-N curve in the log-log diagram.
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Figure 2.23: Experiment result of cantilever fatigue test and (a) fit by ’L2R’, (b)

fit by ’L3R’ [100].

Law with 2 Regimes (L2R)

The function of damage f (D) given by Paas [101] can reproduce the first two

regimes in finite element method [102] shown in Figure 2.4. Bodin conducted

some simulations in FEM. In Figure 2.23 (a), the prediction of numerical result

didn’t cover the transition from phase II to phase III.

f (D) = CDα (2.54)

Law with 3 Regimes (L3R)

In homogeneous conditions, continuum mechanics in FEM cannot describe any

loss of homogeneity of the sample, even very close to rupture. In order to repro-

duce the damage evolution for all the three phases, the formulation in Equation

2.55 is proposed by Bodin,

f (D) =
α2

α1α3

{D
α2

}1−α3exp{D
α2

}α3 , (2.55)

with 2 additional parameters.

Figure 2.23 (b) presents the numerical prediction by ’L3R’, which verified the

availability in the representation of three phases of fatigue life.

Arsenie [16, 17] simulated 4PB fatigue tests of asphalt concrete beams with and

without fiber glass grid reinforcement. The finite element analysis was performed
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Figure 2.24: 4PB test results and fit by ’L3R’ in FEM [1].

with the software CAST3M for three different strain levels (defined at the bottom

and the top of the central section of the beam) ε = 115µm, 135µm and 150µm.

The stiffness degradation was well described by L3R model as shown in Figure

2.23b and 2.24, specially for the two higher values of ε.

A single set of parameters for the asphalt concrete, associated to elastic rein-

forcements was not directly able to fit experimental results. Then, a different

strategy was adopted and the beams were divided in 2 parts: the middle layer

is the composite of the AC and fiber glass grid inter-layers; the edge layers are

top and bottom AC layers. The parameters of each part were attributed differ-

ently. Finally, with proper calibrations, the experimental results could be well

described.

Originally based on continuum mechanics, the effect of concentration of strain and

stress inducing unrealistic cumulation of damage was reduced with the addition

of a non-local definition of strain. Hence a length scale was introduced, where

an average of strain was calculated eliminating mesh dependence. However, this

procedure made it very difficult for the realistic analysis of the effect of localized

imperfections or even a reinforcement, like shown in Figure 2.25 (b). In this

figure, a unrealistic discontinuity of the damage is produced by a non adapted

averaging calculation near the grid reinforcement. Furthermore, the extension of

the strongly damaged areas (red zones with D = 1) differs from the real rupture

patterns, where the macro cracks result from localized degradation.
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(a)

(b)

Figure 2.25: Modelling results of damage map at failure for (a) non-reinforced

and (b) reinforced speicimens [1, 16, 17].

2.8.3.2 Fatigue damage modelling in DEM

Gao [45] has adapted the damage model based on Bodin’s model in DEM for reg-

ular hexagonal particle structure (see Figure 2.26 (a)). The results are presented

in Figure 2.27. Initial results of an exclusively local analysis (contact level) of

4PB test simulations have shown a good description of the fatigue results but

were strongly affected by the sudden propagation of the crack (see Figure 2.26

and 2.27).

In order to correct the crack propagation (fatigue phase III), the damage model

was coupled to a fatigue crack growth model (based on Paris law, presented in

Section 2.5). The proposed solution was verified by tension/compression tests for

a plate with initial central pre-cracks (Figure 2.28 (a)) and was finally consistent

to theoretical solutions (Figure 2.28 (b)).

2.9 Summary of the chapter

In this literature review, the sections are organized from the material physical be-

haviour to the theoretical model, and finally the numerical method. The material

physical behaviour is about the AC material and the fiber glass grid as well as its

reinforcement effect, where the wedge-splitting test and the 4-point bending test

are highlighted since they are the main tests in this thesis. It is stated that the

interface between the fiber glass grid and the AC material is of great importance
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(a)

(b)

Figure 2.26: The setup of regular packing assembly in DEM and the damage

map. [45]

for the effect of reinforcement, which should be paid great attention to.

Concerning the fatigue modelling, Bodin’s model ’L2R’ was conceived to describe

only phases I and II, while ’L3R’ has been proposed to describe all three phases.

Instead of adopting the more complex model ‘L3R’, it will be demonstrated that

a combination of ‘L2R’ as a contact law in discrete element simulations is adapted

to capture the whole fatigue behaviour.

The review of the numerical method consists of the cohesive zone model, which

has turned out to reproduce FPZ. The Bodin’s model ’L2R’ failed to describe

the transition from the phase II to phase III, while the ’L3R’ has been demon-

strated to be available for the reproduction of three phases in material fatigue

life. The reproduction of the 3 phases of the fatigue life will be attempted by the

combination of ’L2R’ and DEM.

It should be noted the basic knowledge on DEM will be introduced in next chap-

ter, considering that it is intensively related to the study of the material behaviour

in DEM in Chapter 3.



46 Chapter 2. Literature review

Figure 2.27: Fatigue damage curve for simulation by Gao [45], experiments FEM

simulation by Arsenie [1, 16,17].

(a) (b)

Pre-cracked
Specimen

Figure 2.28: Fatigue damage curve for tensile simulation with coupled model by

Gao [45].
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3.1 Introduction

As discussed in Chapter 2, discrete element method (DEM) presents a more real-

istic physical description of rupture process. In this thesis, the method proposed

by Cundall [103] giving rise to the commercial software PFC (Particle Flow Code)

is adopted. The materials are composed by ensembles of cemented particles in-

teracting by direct contacts. More detailed introduction about the numerical

scheme is available in Appendix A.

A brief introduction on the force displacement law and contact failure criterion

in DEM is carried out in Section 3.2. The random packing assembly is utilized

to model the homogeneous material, since there are some drawbacks in terms

of isotropy for the regular packing model such as square and regular triangular

packing assembly. In FEM, the material mechanical properties such as Young’s

modulus E and Poisson’s ratio ν can be input directly as the properties of the

mesh. However, in DEM, the micro parameters such as contact stiffness and

contact strength are applied for all the contacts, so the calibration procedure is

necessary to obtain the relation between contact parameters and material me-

chanical properties before its further application in simulating realistic materials,

which is done in Section 3.4. The micro parameters of elasticity, including contact

stiffness (kn, ks) and contact stiffness ratio kratio (kratio = kn/ks), are related to

material macro mechanical properties including the Young’s modulus and Pois-

son’s ratio.

It has been revealed that the fracture toughness can be reproduced and it can be

influenced by the particle size and contact strength based on LEFM as presented

in Section 3.5.1. A further step is taken in this thesis by identifying the fracture

toughness with the random packing assembly and the bonded-particle model

(BPM), which is a built-in contact model in PFC and used for the modelling of

brittle and quasi-brittle materials.
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3.2 Force displacement law in DEM

In DEM, materials are regarded as assemblies of particles interacted by contacts,

as shown in Figure 3.1a. The basic contact law adopted in this work is presented

in Figure 3.1b. The relative motion between the particles induces the contact

displacement which may be decomposed in normal and tangential components,

respectively δn and δs in Figure 3.1c (with time derivatives δ̇n and δ̇s). Based on

the normal displacement δn, the normal component of the contact force is defined

at each time t as

~fn(t) = kn ~δn(t) + cn
~̇δn(t), (3.1)

where kn is the normal stiffness and cn is the normal viscous damping coefficient.

~x is the variable x in vector form.

Based on the tangential displacement δs, the tangential component of the contact

force is defined at each time t as:


~fs(t) = ~f es (t) + cs

~̇δs(t),
~fs
e
(t) = ~f es (t−∆t) + ~∆f es (t),

~∆f es (t) = ks∆~δs(t).

(3.2)

where ks is the tangential stiffness and cs is the tangential viscous damping co-

efficient. The critical damping ratio β (see Appendix A) adopted quite a small

value (0.3%) due to the quasi-brittle loading pattern in this thesis. The force on

each particle is the resultant force of all the contact of this particle and an extra

particle damping force (~fd) (see Appendix A), expressed as follows,

~fp =
n∑
1

~fn, i +
n∑
1

~fs, i + ~fd, (3.3)

where n is the number of active contacts around the particle and i is from 1 to n.

The particle motion is determined by ~fp as follows,

~̇δ(t) = ~̇δ(t−∆t) + ~̈δ∆t = ~̇δ(t−∆t) +
~fp
m

∆t, (3.4)
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where ∆t is the magnitude of timestep (see Appendix A), m is the mass of the

particle.

The global damping and viscous damping are determined from the loading con-

dition and material physical properties (see Appendix A).

In Equation 3.1, the normal force is computed in a cumulative pattern, while the

shear force is computed in an incremental pattern in Equation 3.2. In this first

phase of the study, the built-in bonded contact model (BPM) is adopted for the

calculations. A contact is physically represented as a bond associated to a bar

on the normal direction which connects the center of two particles i and j (see

Figure 3.1d). Its cross section is defined by the thickness of the system t and

the minimum value between the radius of two particles Ri and Rj. The length

lij = Ri + Rj corresponds to the initial distance between the centres of the two

particles i and j.
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Figure 3.1: (a) Material description in DEM, (b) the contact model, (c) particle

displacements, (d) its physical description and (e) corresponding forces.

The contact stiffnesses kn and ks are directly related to the contact elastic mod-

ulus Ecmod by the expressions associated to the behaviour of a bar:
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kn =

Ecmod × t× 2min(Ri, Rj)

lij
=
Ecmod × t× 2min(Ri, Rj)

(Ri +Rj)
,

ks = kn/kratio,

(3.5)

where kratio is the ratio between the normal and shear stiffness.

The rupture of a contact occurs when the normal or the shear force reaches

its limit in tension, respectively defined as fmaxn and fmaxs as shown in Fig-

ure 3.2. For the contact strengths with unit of stress they are expressed as

σn = fmaxn /(2min(Ri, Rj)) and σs = fmaxs /(2min(Ri, Rj)). After broken, the

contact forces are automatically set to zero, only the elasticity in compression re-

mains to work and the normal and shear stiffness are inherited from their values

before broken.

(a) (b)

𝛿𝛿𝑠𝑠

𝑘𝑘𝑠𝑠
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𝑓𝑓𝑠𝑠

1

𝑓𝑓𝑛𝑛
𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑛𝑛

𝛿𝛿𝑛𝑛

1

Figure 3.2: (a) Normal and (b) tangential contact forces. Definition of the tension

rupture of the contact.

Finally, the micro parameters are :

- particle distribution (granularity Ri and spatial arrangement),

- model thickness t (unit t = 1 m is taken in all examples)

- contact elasticity (Ecmod and kratio),

- contact strength (fmaxn and fmaxs ).

The definition of the particle distribution is presented in Section 3.3, the elastic

behaviour is discussed in Section 3.4 and the quasi-brittle rupture is analysed in

Section 3.5.
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3.3 Model generation

There are many methods to generate the random packing assembly in DEM,

which can be categorized into dynamic methods (e.g., boundary compaction

method, particle drop method, particle size scaling method) and constructive

method [104, 105]. In this chapter, the dynamic generation of model is based

on the procedure adopted by Potyondy [106], which is mainly the size scaling

method. The assembly is generated with three procedures, namely particle gen-

eration, internal stress control and floater elimination. During all the model

generation, the particles are frictionless (fs = 0, see Equation 3.2), which avoids

any internal shear contact force.

3.3.1 Particle generation and internal stress control

In the first phase, a highly compacted assembly is generated within the domain

of rectangular walls with relatively big overlaps between the particles [106]. Nor-

mally, when the contact model is applied, the tremendous lock-in force exists

among the assembly. Addressing to this issue, a stress control procedure is im-

posed to reduce the stress of the initial assembly by shrinking all the particle

sizes with the same factor step by step. In Potyondy’s study [106], a specified

isotropic stress is set as the target stress, whose value is 1% of the initial stress.

The target stress is naturally dependent on the initial particle distribution and

should be adapted to the contact stiffness. In order to avoid any misunderstand-

ing, the internal stress level is expressed by the overlap ratio hr relative to the

mean particle radius R,

hr =
δn

R
, (3.6)

where δn is the average overlap of all contacts of the assembly.

A scale factor for the particle shrinking XR is then defined based on the existing

overlap ratio hr and its target hTr ,

XR = η × (hTr − hr) + 1, (3.7)

where η is a hysteresis factor working on the numerical stability of the procedure.

Its value is set as η = 0.1 in this work, which promises the gradual decrease of
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the particle radius. If hr is bigger than its target value hTr all particles may be

decreased by the scale factor XR < 1, otherwise, their radius may increase. The

tolerance of the stress control procedure is defined as:

(hr − hTr )/hTr ) < 0.2. (3.8)

After the rescaling, the system is no longer in balance. A particle natural rear-

rangement occurs during a stabilization phase (described in Appendix A).

3.3.2 Floater elimination procedure

Floaters are defined as the particles with less than 3 contacts. These particles

are not in stable state because only normal forces exist for all contacts, and thus

forming unintended voids inside the material. To eliminate these potential voids,

the radius of all particles identified as floaters, are firstly enlarged until they are

in contact with more than 2 particles around. Then their radius are decreased

step by step until the average overlap of each floater reaches the average overlap

of the assembly. During this process, the rest of the particles do not move.

3.3.3 Interactive procedure and adopted parameters

In practice, after the generation of the particles, a loop containing the Equa-

tions 3.6 and 3.7, followed by the rescaling of radius by the XR factor is calcu-

lated until the relative error between the overlap and the target overlap becomes

smaller than 20% as expressed in Equation 3.8.

In the following, all numerical samples are generated with a uniform distribution

of radius between the minimum to maximum particle radius (respectively Rmin

and Rmax). If Rmax/Rmin is close to 1, the assembly will be seriously crystalline

arrangement [106], while if Rmax/Rmin is too big, the demanded number of par-

ticles forming the assembly is too large to have acceptable computational time.

The size ratio is set as Rmax/Rmin = 1.6, which is in the range of the size ratio

adopted by other researchers [104,106,107], and is available to produce isotropic

macro properties.

An example of generation of a square sample with dimension L = 40 mm is pre-

sented in Figure 3.3. The difference after model generation is presented in Figure

3.3b, where a significant reduction of the contact overlap ratio has been obtained,

and there is no floater in the assembly. The system presents 429 particles with
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an average radius R = 1mm and L = 40R. A target overlap ratio hTr = 10−9

is adopted. One may observe the relatively homogeneous overlap distribution at

the end of the process, associated to a neglectful internal stress state obtained

with the generation procedure.

(a) (b) 

contact overlap ratiocontact overlap ratio

Figure 3.3: Square sample generation. (a) Initial particle distribution, hr ≈
1.37× 10−2, and 2 floater particles are indicated in black. (b) At the end of the

generation process, hr ≈ 1.04× 10−9, and no floaters are observed.

3.4 Elastic behaviour

In DEM, the elastic properties of the material are directly related to the geomet-

rical properties of the particle assembly and physical properties.

As geometric properties: the particle distribution, average radius R, size ratio

Rmax/Rmin and the assembly resolution are considered here. The resolution is

quantified as the ratio of a characteristic length of the specimen L to average

particle diameter 2R namely ϕ = L/(2R) [105,108,109].

As shown by different authors [105–107, 109], the contact modulus Ecmod is di-

rectly related to the Young’s Modulus of the material E, whilst the ratio between

normal to tangential stiffness kratio = kn/ks is related to the Poisson’s ratio ν.

A consistent calibration is necessary for further simulations. The trends pre-

sented in the following sections are obtained by averaging 5 different samples

with identical properties and different generator random seeds (see Appendix A).
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3.4.1 Identification of material properties

On the following calibrations, the constrained tensile test (CTT) simulations are

performed, and the geometry is presented in Figure 3.4a. Neglecteful boundary

effects were observed by [105] for a resolution ϕ = L/(2R) > 80 on the same

conditions.

For a homogeneous and isotropic medium under uniform stress as presented in

Figure 3.4b, the strains εxx and εyy and stresses σxx and σyy are related by the

expressions:


εxx =

σxx
E∗
− σyyν

∗

E∗
,

εyy =
σyy
E∗
− σxxν

∗

E∗
,

(3.9)

where E∗ = E and ν∗ = ν in plane stress, or E∗ = E/(1−ν2) and ν∗ = ν/(1−ν2)
in plane strain.

The lateral boundary condition (see Figure 3.4a) imposes εxx = 0. Hence, from

Equation 3.9, the Young’s Modulus E and the Poisson’s ratio ν can be obtained:


ν∗ =

σxx
σyy

,

E∗ =
σyy
εyy

(1− ν∗2).
(3.10)

The value of E and ν can be easily identified from the simulation results. The

vertical stress σyy is imposed, while the horizontal stress σxx is obtained by the

summation of the horizontal forces at one of the lateral boundaries divided by the

length L. The vertical strain is calculated based on the elongation of the sample

εyy = ∆L/L.

3.4.2 Effect of normal stiffness

The normal stiffness of the contacts is driven by the contact modulus Ecmod. In

order to avoid boundary effects a resolution ϕ = L/(2R̄) = 80 is adopted. Five

square samples with a dimension L = 320 mm, 6964 particles by average and

presenting maximum and minimum radius, respectively, Rmax = 2.46 mm and

Rmin = 1.54 mm are tested.
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(a) (b)
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Figure 3.4: (a) Applied stress and displacement boundary conditions applied to

the numerical sample. (b) Stresses in a continuum medium.

Figure 3.5 presents a linear relation between the Young’s modulus of the material

E and the granular contact modulus Ecmod (for a given kn/ks = 1). A low

standard deviation of approximately 0.5% of the average results of E are observed.

Figure 3.5: Material Young’s modulus E versus contact modulus Ecmod for

kn/ks = 1.

No effect of the contact modulus Ecmod is observed on the Poisson’s ratio of the

material ν, which is consistent with the results of other authors [105,107].
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3.4.3 Effect of stiffness ratio (kratio)

The effects of kratio on the Young’s modulus E and Poisson’s ratio ν of the

material are studied by varying the value of kn/ks from 1.5 to 4.5. The average

of the results of the five samples are presented in Figure 3.6, where the relation

between the Young’s modulus E and the stiffness ratio (kn/ks) seems to take

a logarithmic shape as presented in Figure 3.6. A low standard deviation of

approximately 0.5% of the average results of E are observed.

Figure 3.6: Material Young’s modulus E versus contact stiffness ratio kn/ks for

Ecmod = 10 GPa.

In Figure 3.7, the relation between Poisson’s ratio ν and stiffness ratio (kn/ks)

can also be well fitted by the logarithm function. A low standard deviation of

approximately 1% of the average results of ν are observed.

3.4.4 Calibration of elastic parameters

For a given size distribution of particles, the effects of the particle size (scale

effect) are neglectable on the elastic parameters E and ν [105,107].

Considering the results of Figure 3.7, the Poisson’s ratio ν can be related to the

ratio of stiffness kratio = kn/ks by the empirical relation

ν = 0.1645× ln
(
kn
ks

)
+ 0.0913, (3.11)
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Figure 3.7: Material Poisson’s ratio ν versus contact stiffness ratio kn/ks for

Ecmod = 10 GPa.

containing the usual range of asphalt concrete (0.1 ≤ ν ≤ 0.34) [22].

The results of Figure 3.6 with respect to the effect of kratio on the Young’s mod-

ulus of the material E for the given contact modulus Ecmod = 10 GPa can be

generalized based on the linear dependence between E and Ecmod as shown in

Figure 3.5. For any value of Ecmod and kratio = kn/ks, one can have for the

Young’s modulus:

E =

(
−0.1793× ln

(
kn
ks

)
+ 0.807

)
Ecmod, (3.12)

containing the usual range of asphalt concrete (0.5 GPa ≤ E ≤ 65 GPa) [1].

3.5 Quasi-brittle rupture

In linear elastic fracture mechanics (LEFM), the rupture of the material is strictly

due to crack propagation. A structure without cracks may present an infinity

resistence. This inconsistency is one of the limits of this theoretical approach,

where the strength of the material is not taken into account. The limited strength

of a material can be interprated as the effect of micro defects (cracks, interfaces,

voids, etc.) under loading. A cracked structure composed by a real material may
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naturally present different scale lengths: one is the relative size of the crack with

respect to the structure dimension and, the other one, the relative size of the

crack with respect to the inner defects of the material. These different length

scales lead to well known scale effects in quasi-brittle rupture [110,111].

In the following sections, these scale effects are discussed from the point of view

of discrete element simulations. Some general relations are derived from the

theoretical analysis of a structured assembly of particle and their consequences

on the calibration of model parameters are presented.

3.5.1 Strength and toughness in structured granular pack-

ing

The rupture of a square packing in PFC was studied by [106]. A square packing

assembly of particles is partly presented in Figure 3.8, where the contacts, the

remote stress and the crack tip stress distribution of continuum mechanics are

schematically shown.

Let us suppose the effect of a far field vertical stress Σ over this assembly of

particles. In absence or distant enough of any crack, the distribution of the stress

is uniform, the maximum contact force are vertically oriented and may present a

value

f intactn = 2ΣRt, (3.13)

where R is the particle radius.

Let us suppose a very big plate with a crack (of length 2a) in the middle. Near

a crack tip the theoretical prediction of the vertical stress can be obtained from

Equation 2.3 with θ = 0 :

σyy(r) =
KI√
2πr

, (3.14)

where r is the distance from the crack tip and KI = Σ
√
πa is the stress intensity

for this geometry [49].

The maximum contact force, at the closest contact from the crack tip, can be

obtained by the integration of the stress field (Equation 3.14) over a distance of

particle diameter 2R (0 ≤ r ≤ 2R):
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f crackn = t

∫ 2R

0

KI√
2πr

dr = 2KIt

√
R

π
= 2Σt

√
aR, (3.15)

𝑟𝑟

𝜎𝜎𝑦𝑦𝑦𝑦

Σ

Σ

2R0
𝑎𝑎

Figure 3.8: The square packing particles and the stress distribution near a crack

based on continuum fracture mechanics.

where KI is the stress intensity factor, σn is tensile strength for the first contact

before the crack tip, and R is the particle radius. It is indicated that the fracture

toughness is dependent on the particle size, so that particle size should be carefully

determined in terms of the reproduction of fracture behaviour. The study also

stated that, as long as the first contact reaches its strength and thus breaks

immediately, the required remote stress for the next contact is smaller than that

for the previous broken contact, while the actual tensile force acting on the next

contact is larger based on Equation 3.15. Consequently, under the same remote

stress, crack will propagate unstably.

3.5.1.1 Tensile strength in a square packing

The relation between the tensile strength of the material Σt and the contact

strength fmaxn can be simply obtained from Equation 3.13. The contact force

f contactn for an assembly without cracks must be limited by fmaxn , while it auto-

matically limits the maximum far field stress Σ by Σt:

Σt =
fmaxn

2Rt
. (3.16)
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3.5.1.2 Fracture toughness in a square packing

The relation between the toughness of the material KIC and the contact strength

fmaxn can be obtained from Equation 3.15. The contact force f crackn for an assembly

with a crack must be limited by fmaxn , while it automatically limits the maximum

stress intensity factor KI by KIC :

KIC =
fmaxn

2t

√
π

R
. (3.17)

3.5.2 Strength and toughness in a random packing struc-

ture

In more complex particle structures, the relations between the material properties

(strength Σt and toughness KIC) and the contact properties (normal strength

fmaxn and tangential strength fmaxs ) are similar to the relations presented in the

previous section for a square structure [106].

For a given ratio between normal to tangential strength Sr = fmaxn /fmaxs , the

strength of the material can be expressed by

Σt =
fmaxn

Rt
× α, (3.18)

where α is a positive value which depends on the particle structure (i.e. α = 1/2

and the average radius R = R for a square structure, as shown in Equation 3.16).

The toughness can be assessed by

KIC =
fmaxn

t
√
R
× β, (3.19)

where β is a positive value which depend on the particle structure (i.e. β =
√
π/2

for a square structure, as shown in Equation 3.17) [106].

3.5.3 Calibration of the rupture parameters

The tensile strength Σt and the toughness KIC of the material are proportional

to the contact strength fmaxn (for a given Sr = fmaxn /fmaxs ), as shown by Equa-

tions 3.18 and 3.19. However, the particle dimension R affects strength Σt and

toughness KIC in a non proportional way (KIC/Σ
t ∝
√
R). It means that the
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calibration of the rupture parameters of the material depends not only on rupture

parameters of the contacts but also on particle average dimension.

Let us suppose the effect of a size scaling of a granular assembly (of a factor λ)

where the contact strength (fmaxn and fmaxs ) is kept constant (see Figure 3.9).

𝐿𝐿 × 𝜆𝜆

2𝑎𝑎 × 𝜆𝜆Scaled by 𝜆𝜆

𝐿𝐿

2𝑎𝑎

𝑎𝑎 𝑎𝑎 × 𝜆𝜆

(a)
𝑜𝑜 𝑜𝑜

(b)

Figure 3.9: Contact forces of (a) particle assembly and (b) the same assembly

scaled by a factor λ.

Taking into account the difference on the particle radius on the result of Equa-

tion 3.18, the ratio between the tensile strength of the initial assembly Σt
1 and

the scaled one Σt
2 is Σt

1/Σ
t
2 = λ. The same procedure applied to Equation 3.19

conducts to the ratio between the toughness of the initial assembly KIC, 1 and

the scaled one KIC, 2, KIC, 1/KIC, 2 =
√
λ.

Hence, technically, any different set of value of tensile strength Σt and toughness

KIC can be obtained (for a given particle distribution) with adapted values of

contact strength fmaxn (and fmaxs ) and particle mean radius R.

3.5.3.1 Simulation of the rupture of a cracked plate

The consistency of DEM on the characterization of the quasi-brittle rupture is

verified by the analysis of the behaviour of the cracked plates in tension. Tensile

tests leading to sample failure in open mode (mode I) allow the identification of

the parameters of the material (tensile strength Σt and toughness KIC) associated

to the contact parameters of the discrete model. A tension stress Σ is applied on

the plates of width 2b = 96 mm and height three times longer 3×2b = 288 mm (in
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order to avoid boundary effects [112,113]) with a central crack (see Figures B.1a

and B.1b.). Twelve different crack lengths 0 mm ≤ 2a ≤ 77 mm are adopted (in

detail, in Figure B.1c crack shape following the granular structure.) Five different

discrete samples are used to identify the mean trends with a total of 5× 12 = 60

simulations.

Bi-dimensional random packing assemblies of particles with average radius R =

0.6 mm, ratio of maximum to minimum diameter Rmax/Rmin = 1.6, which results

in samples with 20800 particles in average. As contact properties: modulus

Ecmod = 20 GPa, stiffness ratio kratio = 3.5, and contact strength fmaxn = fmaxs =

7.2× 103N are adopted.

Red line: crack contact
Blue line: material contact

𝜎𝜎𝑦𝑦𝑦𝑦

𝜎𝜎𝑦𝑦𝑦𝑦

3
×
2𝑏𝑏

2𝑏𝑏

2𝑎𝑎 2𝑎𝑎

(a) (c)(b)

Figure 3.10: (a) Geometry of the cracked plates,(b) DEM specimen and (c) zoom

on the crack tip.

The samples without cracks confirm the results of Equations 3.9, a Young’s Mod-

ulus E = 11.6 GPa and a Poisson’s ratio ν = 0.3. The maximum value of

the tensile stress Σ (before the rupture caused by the propagation of the cen-

tral crack) defines as the nominal strength of the plate Σmax for each simulation.

The obtained values of the maximum nominal stress Σmax as a function of the

crack length a are presented in Figure 3.11. The individual effects of Σt and

KIC (through the prediction of LEFM) are also indicated by dashed lines on

the figure. Thus, two clear mechanisms can be identified. For small cracks the

nominal strength depends only on the tensile strength, identified in Figure 3.11,

as Σt = 2.4 MPa. The second mechanism is predicted for long cracks by lin-
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ear elastic fracture mechanics (LEFM) by limiting the maximum stress intensity

(KI,max = Σmax

√
πaF (a/b)), with F(a/b) given by Tada [114]) by the toughness

value KIC . It implies that Σmax = KIC/ (
√
πaF (a/b)) and associating the results

of Figure 3.11 KIC is identified as equal to 0.4 MPa · m0.5. The intersection

of the two predictions (dashed lines in Figure 3.11) is defined as the transition

crack length [111] at =
K2
IC

(1.12× Σt)2π
= 7 mm. The transition between these

two mechanisms is shown to be well described by the energetic model proposed

in [45, 111] (rapidly presented in Appendix B). A good fit is obtained for the

mentioned values of Σt and KIC , and the dimensionless parameter r = 2.5,(see

Appendix B for more information about this parameter). The smooth transition

between the two rupture mechanisms following the energetic model predictions is

an indication of the consistency of the DEM approach for quasi-brittle materials.

Then the dimensionless parameters α = 0.20 and β = 1.36 are identified scal-

ing Equations 3.18 and 3.19 with Σt = 2.4 MPa and KIC = 0.4 MPa · m0.5

respectively. This same equations can now be employed to predict the effect of

the contact strength and particle radius R̄ over the strength and toughness of the

material for identical micro structure and properties like stiffness ratio kratio = 3.5

and strength ratio Sr = 1.

Figure 3.11: Nominal strength Σmax as a function of the initial crack size a.

The continuous line is the prediction given by the energetic formulation of [45]

for tensile strength Σt = 2.4 MPa, toughness KIC = 0.4 MPa · m−0.5 and the

parameter r = 2.5.
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3.6 Wedge-splitting test of the brittle material

In this section, the brittle analysis of wedge-splitting tests are presented, in order

to further verify the fracture toughness with the bonded-particle model (BPM)

in DEM. First, the geometry and the model calibration for the brittle material

are described. Finally, the results are compared to the prediction of linear elastic

fracture mechanics (LEFM).

3.6.1 Model preparation and material calibration

The DEM specimens are built according to the ASTM (American Society for

Testing Material) standard for wedge-splitting test (WST) (see Figure 3.12). The

loading is conducted by two circle walls. The loading rate vh = 1 × 10−4 m/s

promises a quasi-static system (see Appendix A). 5 samples are generated in

DEM with different generator random seeds (see Appendix A), and applied with

the same initial crack length a. The average radius of the particles R is 1.5mm,

with Rmax = 1.85 mm and Rmin = 1.15 mm. The average particle number is

6603, and the average contact number is 13025. The micro parameters for the

DEM specimens are Ecmod = 20 GPa, kratio = 3.5, fn,max = 6000 N and Sr = 1,

which produces the material Young’s modulus E = 11.6 GPa and Poisson’s

ratio ν = 0.3 due to the calibration in Section 3.4. The fracture toughness is

KIC = 2.0 MPa ·m−0.5 theoretically by Equation 3.19 with β = 1.29.

3.6.2 Simulation results and verification by LEFM

The average result of WST for 5 specimens is the response curve: horizontal

force as function of the opening displacements Fh× δh. As shown in Figure 3.13,

for increasing δh, one may observe an initial elastic increase of Fh followed by a

transition phase and a force decrease after a peak. The post-peak decrease may

be associated to the clear propagation of the initial pre-crack (mode I - opening).

A prediction from linear elastic fracture mechanics (LEFM) of this behaviour

can be obtained by relating the material stress intensity factor KI(a) and the

horizontal force Fh, theo as follows [115],
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Figure 3.12: (a) The geometry of ASTM standard WST, (b) DEM simulation of

WST in contact view.



KI =
Fh, theo
b

√
af(a/b),

f(a/b) =
2(2 + a/b)

(1− a/b)3/2
1√
a/b

(0.443 + 2.32(a/b)− 6.66(a/b)2 + 7.36(a/b)3−

2.8(a/b)4),
(3.20)

where f(a/b) is the geometry correction factor, which has 0.5% accuracy for

a/b > 0.2 [115].

The crack opening displacement δh along the load line is expressed as follows,



δh, theo =
Fh, theo
E ′

V (a/b),

V (a/b) = (
1 + a/b

1− a/b
)2(2.1630 + 12.129(a/b)− 20.065(a/b)2 − 0.9925(a/b)3+

20.609(a/b)4 − 9.9314(a/b)5),

(3.21)

which has 0.5% accuracy for 0.2 < a/b < 0.95 [115].



3.7. Summary of this chapter 67

With fracture toughness KIC = 2.1 MPa·m0.5 obtained by Equation 3.19 and the

crack length ratio a/b ranging from 0.3 to 0.8, the theoretical maximum horizontal

load Fh, theo and crack opening displacement δh, theo are computed by Equation

3.20 and 3.21. In Figure 3.13, the comparison between the simulations and the

prediction from LEFM with deviation of ±20% presents an acceptable agreement,

which indicates that the strength of the contacts are directly correlated to the

toughness of the material KIC which governs the peak value of the force Fmax
h and

the dissipated energy during the rupture process (area under the curve Fh(δh).

Prediction by equation 3.20 and 3.21, with
percentage error ±10%

Figure 3.13: The results of simulation and theoretical prediction of WST.

3.7 Summary of this chapter

In this chapter, the basic elements of the discrete element approach used in the

following chapters were presented. The sample generation allowing very low inner

stresses is an example. The connection between the material properties and the

model parameters was also discussed in elasticity and in rupture (for quasi-brittle

materials). The parameter calibration also gives better understanding on the

parameter determination for the following chapters.

Concerning the quasi-brittle rupture, the contact strength and the particle av-

erage radius (associated to the texture of the material) were directly related to

the strength and toughness of the assembly, following a realistic prediction of an

energetic model for size effects in cracked structures.
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modelling

In the last part, an application of the DEM approach for wedge-splitting tests

showed very consistent results according to linear elastic fracture mechanics

LEFM. The limitations of LEFM on asphalt concrete modelling will be discussed

in the next chapter.
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4.1 Introduction

The fiber glass grids are usually placed between two layers of asphalt concrete

(AC). The opening behaviour of this interface is studied by wedge-splitting tests

(WST) in SolDuGri project. The aim of this chapter is to analyse the interface

behaviour under monotonic transversal loading and propose a simple model which

identifies the main parameters involved in its rupture process.

The first element to be discussed is the limitation of brittle assumption to char-

acterize asphalt concrete like materials. Thus, a cohesive model implemented in

a discrete element environment is proposed to characterize more realistically the

sample materials. Based on physical evidences from experiments and simulations,

an interfacial mechanism is identified and adopted in a simplified model. Finally,

after the comparison of the different models, experimental results of WST [34]

are analysed and the consistency of the theoretical approaches is verified.
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4.2 Limitations of a brittle analysis of asphalt

concrete

As observed in Chapter 3, the material toughness defines the peak force and the

dissipated energy during WST with long initial crack. Discrete element simulation

of brittle material has shown a very good agreement with linear elastic fracture

mechanics (LEFM) [49]. A comparison between the prediction of LEFM and an

experiment with asphalt concrete may clarify some characteristics of this type of

materials.

The geometry of wedge-splitting specimens of Kim’s experiments [94] is presented

on Figure 4.1a. On Figure 4.1b, the opening force Fh as a function of the opening

displacement δh is shown. The value of toughness KIC = 0.82MPa ·m0.5 can be

identified from the peak force Fmax
h = 2.8 kN due to the Equation as follows,


KI =

Fh

t
√
b
f(a/b),

f(a/b) =
2 + a/b

(1− a/b)3/2
(0.76 + 4.8(a/b)− 11.58(a/b)2 + 11.43(a/b)3 − 4.08(a/b)4),

(4.1)

where b = 110mm and t (= 50mm) is the specimen thickness.

If this value of toughness is adopted to define the energy release rate GI = K2
I /E

(Equation 2.35) and to predict the diagram Fh × δh an unrealistic displacement

level is obtained, where δh is obtained from the energy method as expressed by

Equation 2.28.

If a higher value of energy release rate (instead of the usual relation from LEFM)

may be allowed for the same toughness KIC , a much better trend may be obtained

for

GI = Γ
K2
I

E
, (4.2)

where Γ is a scalar factor. On Figure 4.1b, Γ = 6 indicates a higher dissipation

of energy during the rupture than one may get from a brittle material. This may

offer a qualitative explain on the fracture behaviour of the asphalt concrete.
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Figure 4.1: (a) Dimension (unit: mm) of wedge-splitting geometry of the tests

performed by [95]. (b) Opening force Fh as a function of the displacement δh.

4.2.1 Energy dissipated by a fracture process zone (FPZ)

In LEFM, the crack tip is supposed perfectly defined in one single point. However,

for heterogeneous materials, the crack tip presents usually a multi-cracked zone.

This fracture process zone (FPZ) propagates with the crack tip (see Figure 2.15).

One may represent schematically the crack tip with a FPZ by a series of parallel

micro cracks of length l and width w (Figure 4.2a).

Considering the dimensions of Figure 4.2b, the stress intensity factor at each

(micro) tip is KIi = σ
√
h [114], which represents an energy release rate (in plane

stress)

GIi =
σ2h

E
. (4.3)

The average stress σ can be determined by an average of the expression given in

Equation 2.2 in mode I over the distance l:

σ =
1

l

∫ l

0

σ(r)dr =
1

l

∫ l

0

KI√
2πr

dr = KI

√
2

πl
. (4.4)

The total energy release GI , would be the summation of the contribution of

n = w/(2h) micro cracks by Equation:
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Figure 4.2: (a) Schematic view of a crack presenting a fracture process zone

(FPZ) and the approximative tensile stress field associated. (b) Zoom at the

crack tip [114].

GI = nGIi =
(w
πl

) K2
I

E
, (4.5)

where the definition of Γ = w/(πl) emerges to complete the proposition in Equa-

tion 4.2.

In terms of discrete element modelling, a value of Γ > 1 indicates that the rupture

process must be controlled beyond the contact strength, that is to say, to manage

directly the energy release of a contact.

4.3 Cohesive model in DEM

The simplest way of controlling strength and energy release of a contact is by a

cohesive contact model. The generally required characteristics for cohesive con-

stitutive relationships are summarized as follows [78]:

• The traction separation relationship is independent of any superposed rigid

body motion.

• The work to create a new surface is finite, and its value (i.e. area under a

traction separation curve) corresponds to the fracture energy.

• The mode I fracture energy is usually different from the mode II fracture energy.

• A finite characteristic length scale exists, which leads to a complete failure con-

dition, i. e. no load-bearing capacity.

• The cohesive traction across the fracture surface generally decreases to zero
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while the separation increases under the softening condition.

• A potential for the cohesive constitutive relationship may exist, and thus the

energy dissipation associated with unloading/ reloading is independent of a po-

tential.

4.3.1 Traction separation law

A bilinear (linear elasticity and linear softening) traction separation law is used

on the following to describe the fracture behaviour, which has been employed for

different materials [85–87].

4.3.1.1 Force and displacement

The relation between force and displacement takes the same shape of the contact

law presented in Chapter 3. Normal and tangential components of the forces

and displacements are defined in Figure 4.3. Thus, normal and tangential forces,

respectively, fn and fs are defined as


fn = kn(1−D)δn,

fs = ks(1−D)δs,

(4.6)

where kn and ks represent the normal and shear stiffness, δn and δs represent

normal and shear displacement. A damage state variable D is associated to

describe and to control the contact rupture behaviour. A contact completely

intact is denoted by D = 0, whilst a contact completely damaged is described by

D = 1 (otherwise 0 ≤ D ≤ 1).

The same damage quantity is associated to both components of the force, since

they represent a single resultant force

f =
√
f 2
n + f 2

s . (4.7)

The displacement associated to the direction of f is

δ = δnsinθ + δscosθ, (4.8)

where θ = arctan(fn/fs).
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Figure 4.3: Contact displacements and forces.

4.3.1.2 Effective stiffness and strength

The stiffness of the contact depends on the direction, if kn 6= ks. The effective

stiffness ke is defined to relate f and δ, that is to say, following the direction

described by the angle θ. The combination of Equations 4.7 and 4.8 leads to

ke = f/δ =

√
f 2
n + f 2

s

δnsinθ + δscosθ
=

knks
kncos2θ + kssin2θ

. (4.9)

In the same way, the strength of the contact may depend on the direction. Keep-

ing for simplicity a similar shape as Equation 4.9, the peak force fmax is defined

as

fmax =
fmaxn fmaxs

fmaxn cos2θ + fmaxs sin2θ
(4.10)

where fmaxn and fmaxs are respectively the normal and shear peak forces of the

contact.

The contact normal and tangential strengths can be simply defined as

σn =
fmaxn

2t×min(Ri, Rj)
,

σs =
fmaxs

2t×min(Ri, Rj)
,

(4.11)

respectively. Ri and Rj are the radius of the two particles in contact.
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4.3.1.3 Fracture energy and energy release rate

The energy released during the contact rupture, the fracture energy Uc, is the

area under the f × δ curve (see Figure 4.4)

Uc =
fmaxδmax

2
, (4.12)

where δmax is the maximum value of the displacement δ.

The energy release rate is the energy per unity of propagated area and can be

defined for a contact as

Gc =
Uc

t×min(Ri, Rj)
, (4.13)

where Ri and Rj are the radius of the two particles in contact.

4.3.1.4 Damage law

In Figure 4.4, the variable of damage D can be expressed through the displace-

ment δ as

D =
δmax

δ

δe − δ
δe − δmax

, (4.14)

where δe = fmax/ke is the elastic limit. The damage theory allows a very simple

description of unloading and reloading paths, imposing that damage value cannot

decrease. If the calculated value of D (through Equation 4.14) is eventually

lower than the present value of D, its value keeps unaltered. It means that

unloading/reloading paths follow a slope (1−D)ke until damage value increases

and softening behaviour is then observed again.

The total rupture of the contact is obtained for δ = δmax (which corresponds to

D = 1). At this point, the contact forces fn and fs are set to zero. Only the

elasticity in compression remains to work and the normal and shear stiffness are

inherited from kn and ks.
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Figure 4.4: Bilinear traction separation law for cohesive contact model.
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Figure 4.5: The geometry of numerical sample for initial verifications.

4.3.2 WST simulations with cohesive contact model - pre-

liminary tests

Initial verifications related to the model (particle size and loading rate effects)

are first discussed. The geometry of numerical sample is presented in Figure 4.5.

Each sample has the same shape and dimensions (200mm× 200mm). The trac-

tion separation law presented in the previous section 4.3.1 is adopted. The elastic-

ity parameters are Ecmod = 10GPa, kratio = 4.5 (see the definition in Section 3.2),

which correspond the material properties in [22]: Young’s modulus E = 5.4GPa

and Poisson’s ratio ν = 0.34. The strength of the contact σn = σs = 5× 104 Pa,
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Figure 4.6: Force Fh as function of the displacement δh for different loading rate

δ̇h in DEM simulations.

and the energy release rate of the contact is Gc = 0.3N/m.

4.3.2.1 Loading rate effect

Loading rate calibration is conducted to obtain quasi-static condition. The hori-

zontal rate of loading plates should be low enough to avoid dynamic effects, and

it should be high enough for an acceptable computational time.

In this chapter, specimens under different conditions are required, thus loading

rate calibrations are carried out a certain number of times. Herein, one set of

calibration is presented as an example.

WSTs of a specimen with average radius R = 1mm are repeated under different

loading rates δ̇h = 10 mm/s, 5 mm/s, 1 mm/s and 0.5 mm/s. The force response

Fh as a function of the imposed displacements δh are presented in Figure 4.6 for

each loading rate.

Only the post-peak behaviour is affected by the loading rate δ̇h. Before any

contact rupture, the relative velocities between particles in contact are very small

which may induce neglectful viscous forces. During rupture, the propagation of

the crack is associated to the displacement of the tip. It causes a growth of the

relative (opening) velocity between the particles near this point. An increase

on the loading rate δ̇h is naturally reflected over the the viscous contact forces
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Figure 4.7: Force Fh as function of the displacement δh for different particle

radius.

which may also increase. On the example which is analysed on Figure 4.6, for

δ̇h ≤ 0.5mm/s this effect becomes neglectful, with curves of an almost identical

shape.

4.3.2.2 Particle size effect

The effect of average particle size R in DEM on the material rupture has been

proved as KIC/Σ
t ∝
√
R in Chapter 3. In this chapter, the effect of particle size

on the material rupture is studied by WST with specimens of different R.

A total of 12 tests are considered: four different particle radius R = 1 mm,

2 mm, 3 mm and 4 mm (with 3 specimens per radius). Rupture results are

roughly related to elastic behaviour, strength and energy release. Discrete element

simulations of WST are performed to verify if any size effect related to the particle

radius R may be observed. The average force response Fh as a function of the

imposed displacements δh are presented on Figure 4.7 for each particle size.

The results are, as expected, independent on the particle size. The force Fh
increases following an elastic path, which is shown in Section 3.4.1 to be inde-

pendent on particle size. An identical energy release (surface under the curve

Fh×δh) indicates that the energy release rate of the contact Gc effectively defines

the energy release rate of the material GIC .
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Figure 4.8: (a) Pavement cross section. (b) Zoom in the top layer of pavement

and the grid between asphalt concrete (AC) layers.

4.4 Modelling wedge-splitting tests (WST) with

interface

In this section, the experimental behaviour is associated to simulations and, con-

sidering some physical evidences, a theoretical mechanism for the interface be-

haviour is proposed. A parametric study comparing the parameters defined by

the interface mechanism and DEM parameters is then conducted. The proposed

mechanism is then adopted on the analysis of WST performed by [34]. Finally,

some perspectives on the identification of interface parameters are addressed.

4.4.1 Context and description of the geometry

The fiber glass grids are usually placed between two asphalt concrete layers.

The grid contributes as a reinforcement in the direction inside the plane xy (see

Figure 4.8). However, in z direction, the grid and the resin used to stick it to the

asphalt layers, form an interface.

In SolDuGri project, the opening behaviour of the interface in monotonic load-

ing was performed by wedge-splitting tests (WST) during the thesis work of

Gharbi [22]. The different samples were obtained from a section of pavement

specially constructed for the project. The samples (Figure 4.9a) were sawed fol-

lowing the dimensions H × 200mm× 150mm indicated in Figure 4.9b.

Some samples present fiberglass grids inside the interfacial layer and other samples

have only emulsion. A semi-circular groove with a diameter of 56 mm (instead

of the usual rectangular one) is made by coring to simplify the preparation of the

sample. A pre-crack of 30 mm of length and 5 mm of width is created by sawing

the bottom of the semicircular groove.
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Figure 4.9: (a) Sample used in the WST and (b) detailed geometry of the tests

performed by [22] and (c) sample and the crack after test.

The vertical motion of the triangular wedge (with an angle of 14o) leads to the

resultant force acting on the AC samples which can be decomposed into hori-

zontal and vertical components (Fh and Fv), which induces a rupture by crack

propagation. A vertical support is placed at the bottom of the sample, in the

middle position to block the vertical motion. During loading, the vertical force

on the wedge 2Fv, the opening displacement in position A and the position of the

crack tip are measured.

4.4.2 Physical evidences of the interface rupture - exper-

imental and simulation results

4.4.2.1 Simulation setup

The interface is treated as a single material representing the homogenized be-

haviour of the multilayer composite composed by resin and fiber grid. Thus, the

model presents two different regions, with distinct mechanical properties: asphalt

concrete (AC) and interface as shown in Figure 4.10.

On the first simulation of a WST interface, the average radius of the particles

R = 1 mm is adopted, the interface presents a thickness of 4 mm (4 × R).

The traction separation law presented in Section 4.3.1 is adopted. The DEM

parameters of the asphalt concrete are: contact modulus Ecmod = 20GPa, stiff-

ness ratio kratio = kn/ks = 4.5, and contact strength σn = σs = 4 × 106 Pa,
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Figure 4.10: Characterization of the interface geometry on discrete element sim-

ulations.

Gc = 100N/m, corresponding to the following material properties: Young’s mod-

ulus E = 11GPa, Poisson’s ratio ν = 0.34, tensile strength Σt = 2× 106 Pa and

energy release rate GIC = 120N/m due to the calibration. Due to the cali-

bration based on the experimental results within a percentage error of ±15%,

for the interface, the contact parameters are: Ecmod = 5 × 106 Pa, kratio = 1,

σn = σs = 1.4× 104 Pa, Gc = 15N/m.

The parameters of AC correspond to the material of the samples in [34].

4.4.2.2 Boundary conditions

The loading is entirely controlled by imposed velocities in WST simulations. The

particles ranging in 8 mm in the bottom center of the sample are set only movable

horizontally acting as vertical support, blocking the vertical displacement (see

Figure 4.11). On the top, the opening motion of the two loading plates (horizontal

velocity vh = 1mm/s and vertical velocity vv) mimic the effect of the vertical

quasi-static displacement of a triangular wedge. The acting forces Fh and Fv are

measured on the plates. To get the same force ratio (Fv/Fh = tan(14◦/2)) as

experiments, the vertical velocity vv is imposed as follows,

vv(t) = η
Fv − Fh × tan

14◦

2
kn∆t

, (4.15)

where ∆t is the time step, kn is the stiffness between the loading plates and the

AC particles, η is a damping parameter used to control the acceleration of the

plate. A value of η = 0.5 has been used on the simulations.
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Figure 4.11: Wedge-splitting geometry and boundary conditions.

The effect of controlling Fh/Fv is presented in Figure 4.12. Fh/Fv has been

successfully restrained ranging from 0.11 to 0.13.

Figure 4.12: Characterization of the interface geometry on discrete element sim-

ulations.

4.4.2.3 Results analysis

The characterisation of the heterogeneous interface is more complex. The ho-

mogenized properties are obtained by approximation of the experimental curve

opening force Fh versus displacement δh (see Figure 4.13. The initial part of the

curve allows a precise identification of the average elastic properties. The post-
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peak behaviour enables the identification of strength and energy parameters.
𝑭𝑭 𝒉𝒉

(𝒌𝒌
𝒌𝒌

)

Figure 4.13: Force Fh as a function of the displacement δh. Comparison between

simulations and experiments [34].

The shape of the curve is globally well reproduced by DEM results. A single

experimental sample is compared to an average of 3 DEM simulations. The

results indicate a much smaller stiffness of the interface compared to the asphalt

concrete. Experimentally, one may observe that the rupture occurs always on

the interface. The induced crack never invades the asphalt concrete regions as

visible on the example on Figure 4.14a. Numerically, the same type of rupture is

reproduced (see Figure 4.14b) due to the difference between the strengths of the

asphalt concrete and the interface.

(a) (b)

Figure 4.14: (a) Experimental [34] and (b) numerical samples after WST.
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4.4.3 Interface model (IM)

Based on the physical elements presented in Section 4.4.2, a model which fo-

cuses on the interface response is presented. The small thickness of the interface,

associated to much stiffer asphalt concrete strongly suggests that this layer is

fundamentally subjected to tension stresses during WST.

Considering only half of the wedge-splitting sample Figure 4.15a, a scheme of

the interface layer with width 2×wi where i is the subscript for interface, length

equal to the sample height minus the initial crack length b = H−a, and thickness

identical to the sample thickness t, is shown on Figure 4.15b. One may suppose

the height of the interface divided into n equal parts. It allows to define a basic

unit j of interface with a width wi, length bi = (H − a)/n and thickness t, which

may behave in tension as a simple spring, as shown on Figure 4.15c. Then the

system of WST interface can be simplified to spring-rigid system as presented in

Figure 4.16.

(a)

Scheme of the 
interface

𝑏𝑏 𝑏𝑏𝑖𝑖 = 𝑏𝑏/𝑛𝑛
Number of 
elements

𝑤𝑤𝑖𝑖𝑡𝑡F tan 
7°

𝜎𝜎𝐸𝐸

𝑘𝑘

(b) (c)

𝐹𝐹ℎ 𝐹𝐹ℎ

𝛿𝛿𝑖𝑖
𝑗𝑗

𝑓𝑓𝑖𝑖
𝑗𝑗𝑓𝑓𝑖𝑖

𝑗𝑗

Figure 4.15: (a) Wedge-splitting sample, (b) interface dimensions, (c) interface

unit part and equivalent spring under tension.

4.4.3.1 Elastic behaviour of the interface

The stress σji and the strain εji acting on an interface unit j may be simply related

to the spring force f ji and elongation δji by the expressions:
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The equivalent load position

Figure 4.16: Elongation of the springs imposed by the rigid motion of the asphalt

concrete element. Resulting forces and application points.

σji =
f ji

bi × t
,

εji =
δji
wi
.

(4.16)

Isolating the force f ji from Equation 4.16, the elastic behaviour of the spring can

be expressed by


f ji = kiδ

j
i ,

ki =

(
Ei
wi

)
bit =

(
Ei
wi

)
(H − a)

n
t,

(4.17)

where Ei is the homogenized Young’s modulus of the interface.

4.4.3.2 Strength and energy release rate of the interface

Considering the good results of the discrete element model, the springs are sup-

posed to have the same bi-linear force-displacement law.
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Figure 4.17: Force-displacement behaviour of the equivalent springs.

The peak force fmax can be related to the strength of the homogenized material

of the interface Σt
i by the simple relation

fmax = Σt
i × (bi × t) = Σt

i

(H − a)t

n
. (4.18)

Similarly to the discrete element contact model (see Equations 4.12 and 4.13, the

energy release rate of the interface can be written as

Gi =
Ui

t× bi
=
fmaxδmaxn

2t(H − a)
, (4.19)

where Ui is the fracture energy of the interface unit j and δmax is the maximum

value of the elongation δj.

Figure 4.17 summarizes the force-displacement behaviour of the equivalent springs

characterizing the interface local response. If δj > δmax, the force fj is automat-

ically set to zero, which characterizes the rupture of the spring.

4.4.3.3 Force and moment balance

Since all the deformation is assumed to take place in the interface, the springs

are attached to a rigid body which represents the asphalt concrete layer. As
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shown in Figure 4.15, all elongations can be determined based on the imposed

displacement δh and the interface opening angle θ by the expression:

δj = δh − (H − yj) tan θ, (4.20)

where yj is the position of each spring j. The value of each force f j is determined

by the bi-linear diagram of force-displacement (see Figure 4.17) according to δj

value.

By a balance of horizontal forces, the total force Fh is determined by the sum-

mation of the forces of all springs:

Fh =
n∑
j=1

f j, (4.21)

where n is the number of springs. The vertical force is directly calculated by

Fv = Fh tan(7o).

By a moment balance, the total force Fh can also be determined as

Fh =
1

yf

(
n∑
j=1

f jyj − Fvxf

)
, (4.22)

where xf and yf are respectively the horizontal and vertical positions of the

measured forces Fh (and Fv), equivalent to the positions of experiments and

simulations.

The displacement increases monotonically and the corresponding Fh is calculated

based on the force and moment balance. The corresponding crack opening dis-

placement is obtained by the calculation of the similar triangles.

4.4.3.4 Model parameters

The interface is defined by its geometry, and material properties like elasticity,

strength, fracture energy and the resolution of the model.

Geometry: height H, width wi and initial crack size a.
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Stiffness: defined by the ratio between the Young’s modulus and the interface

thickness Ei/wi.

Strength: homogenized tensile strength of the interface Σt
i.

Energy: energy release rate of the interface Gi.

Resolution: number of springs n.

4.4.3.5 Solution of the system and convergence

The value of the opening angle θ evolves at each given δh. These values are non

linearly related due to the non-linearity induced by the force-displacement law

of the springs. In practice, the value of θ is obtained by minimization of the

difference between the results of Equations 4.21 and 4.22. The solution of the

interface model allows the identification of the force Fh for each given δh.

An adequate resolution level, depending on the number of springs n of the system,

is obtained for relatively low n as shown in Figure 4.18. The dimensions of

interface model are height H = 200mm, 2 × wi = 4mm, a = 56mm. The

mechanical parameters are Ei = 2× 106 Pa, Σt
i = 14000Pa, Gi = 15N/m. The

results are substantially the same for n equal to 10 to 25 springs. An convergent

result is obtained for more than 20 springs.

4.4.4 Parametric study - Discrete element and interface

model results

The two models adopted on the analysis of the interface wedge-splitting test

discussed in this chapter, discrete element and interface models present a compa-

rable set of parameters. A parallel parametric study is presented in this section

concerning the interface material properties (stiffness, strength and energy) and

the thickness of the interface.

Wedge-splitting tests with dimensions width W = 200mm, height H = 220mm,

thickness t = 1000mm and initial crack size a = 56mm and an approximative

interface thickness 2 × wi = 4mm are adopted in the following examples. In

discrete element model (DEM), the simulations are performed with an average

radius R = 1mm, size ratio Rmax/Rmin = 1.6. An average of 3 samples is pre-

sented. For the interface model (IM), a number of springs n = 72 is adopted.
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Figure 4.18: Force Fh as function of the displacement δh. Effect of the number

of springs n over the interface model results.

Concerning the material parameters, when it is not indicated, the following pa-

rameters are taken into account in DEM: for the asphalt concrete a Young’s mod-

ulus Eac = 11GPa, Poisson’s ratio νac = 0.34, tensile strength Σt
ac = 2× 106 Pa,

contact energy release rate GIC, ac = 120N/m; for the contact of interface Eint =

8× 105 Pa, Σint = 14000Pa and contact energy release rate Gint = 5.5N/m.

4.4.4.1 Stiffness

The effect of stiffness is obtained for different sets of Young’s modulus in DEM

8×105Pa ≤ Eint ≤ 8×107Pa. In Table 4.1, we present the the parameters of the

IM parameters fitting the curves force Fh versus displacements δh in Figure 4.19a.

In Figure 4.19b, one may observe the perfect linearity between DEM and IM

elastic parameters, respectively Eint and Ei. The main effect of the stiffness is

observed on the elastic increase of the force before the peak force. However, the

peak force is also affected by the elasticity, where higher stiffness tends to induce

higher peak forces Fh.

4.4.4.2 Strength

The effect of the strength is obtained for a different set of interface tensile strength

in DEM 0.6 × 104 Pa ≤ Σt
int ≤ 2.2 × 104 Pa. In Table 4.2, we present the pa-

rameters of the IM parameters fitting the curves force Fh versus displacements δh
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Figure 4.19: (a)Force Fh as a function of the displacement δh and (b) relation

between the elastic parameters Eint and Ei.

Table 4.1: Different modulus used in DEM simulations and the associated IM

parameters.

DEM IM

Eint (Pa) Σint((Pa)) Gint Ei (Pa) Σi(Pa) Gi(N/m)

a 8× 105 1.4× 104 5.5 8× 105 1.16× 104 6.6

b 8× 106 1.4× 104 5.5 8× 106 1.16× 104 6.6

c 8× 107 1.4× 104 5.5 8× 107 1.16× 104 6.6

on Figure 4.20a. On Figure 4.20b, one may observe the perfect linearity between

DEM and IM strength parameters, respectively Σt
int and Σt

i. The main effect of

the strength is observed on peak value of the force Fh, roughly proportionally.

Since the fracture energy is kept constant, the area under the curve Fh× δh tends

naturally to be always the same.

Table 4.2: Different strength used in DEM simulations and the associated IM

parameters.

DEM IM

Eint (Pa) Σint((Pa)) Gint Ei (Pa) Σi(Pa) Gi(N/m)

a 8× 105 0.6× 104 5.5 8× 105 0.70× 104 6.6

b 8× 105 1.0× 104 5.5 8× 105 1.16× 104 6.6

c 8× 105 1.4× 104 5.5 8× 105 1.62× 104 6.6

d 8× 105 1.8× 104 5.5 8× 105 2.10× 104 6.6

e 8× 105 2.2× 104 5.5 8× 105 2.56× 104 6.6
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Figure 4.20: (a) Force Fh as a function of the displacement δh for different in-

terface strength 0.6 × 104 Pa ≤ Σt
int ≤ 2.2 × 104 Pa. (b) Relation between the

strength parameters Σt
int and Σt

i.

4.4.4.3 Energy release rate

The effect of the energy release rate is obtained for a different sets of interface

parameters in DEM 1N/m ≤ Gint ≤ 20N/m. In Table 4.3 the parameters of the

IM parameters fitting the curves force Fh versus displacements δh in Figure 4.21a.

In Figure 4.21b, one may observe the perfect linearity between DEM and IM

energy parameters, respectively Gint and Gi. The main effect of the energy release

rate is observed on the area under the curve Fh × δh which grows proportionally

with GIC, int (the area is equal to GIC, int × (H − a)t). The shape or the whole

curve depends on this parameter since it also affects the peak value of Fh.

Table 4.3: Different energy release rate used in DEM simulations and the asso-

ciated IM parameters.

DEM IM

Eint (Pa) Σint((Pa)) Gint Ei (Pa) Σi(Pa) Gi(N/m)

a 8× 105 1.4× 104 1 8× 105 1.62× 104 1.5

b 8× 105 1.4× 104 5 8× 105 1.62× 104 6.0

c 8× 105 1.4× 104 10 8× 105 1.62× 104 11.8

d 8× 105 1.4× 104 15 8× 105 1.62× 104 17.5

e 8× 105 1.4× 104 20 8× 105 1.62× 104 23.0

4.4.4.4 Effect of the thickness of the interface

The exact definition of the thickness of the interface wi is, in practice, quite

complicated, considering the granular nature of the asphalt concrete. The frontier
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Figure 4.21: Force Fh as a function of the displacement δh for different energy

release rates of the interface 1N/m ≤ Gint ≤ 20N/m. (b) Relation between the

energy parameters Gint and Gic.
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Figure 4.22: Definition of interface thickness in discrete element modelling.

between each component of the interface is not well defined as shown in [22].

In DEM, this dificulty is also present as shown in Figure 4.22 for 4 different

approximative thicknesses wi: 4R, 8R, 12R and 16R. For an average particle

radius R = 1 mm, one may get 4 mm ≤ 2× wi ≤ 12 mm.

By combination of Table 4.4 and Figure 4.23 and considering the effect of elas-

ticity, one may observe that an increase on the thickness causes an inversely

proportional decrease on the stiffness of the interface (see Section 4.4.3.1). The

shape of the whole curve depends on this parameter since the energy release rate

is kept constant (visible through an approximately constant area under the curve

Fh × δh).

From Table 4.4, it can be seen that the energy release rate in IM decrease by

14% as the interface thickness increases from 2 layers to 8 layers, this also reflect
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Table 4.4: IM Parameters to fit WST in DEM for different thickness.

fitted items Eint (Pa) σint((Pa)) Gint Ei (Pa) Σi(Pa) Gi(N/m)

a 1× T 5.5 1.4× 104 1× 106 1× 106 6.5 1.62× 104

b 2× T 5.5 1.4× 104 1× 106 0.5× 106 6.5 1.55× 104

c 3× T 5.5 1.4× 104 1× 106 0.33× 106 6.5 1.47× 104

d 4× T 5.5 1.4× 104 1× 106 0.25× 106 6.5 1.42× 104

WST in DEM
Fitting by interface model𝑎𝑎

𝑏𝑏

𝑑𝑑

𝑐𝑐

Figure 4.23: Force Fh as a function of the displacement δh for different interface

thickness: a, 4R̄ = 4mm; b, 8R̄ = 8mm; a, 12R̄ = 12mm; a, 16R̄ = 16mm.

the limitation of IM to identify the mechanical properties due to the increase of

interface thickness.

4.5 Interface behaviour under homogeneous

conditions

The results of Section 4.4 suggest that the behaviour of relatively thin and flexible

interfaces are governed by only 3 parameters: stiffness Ei/wi, tensile strength Σt
i

and energy release rate Gi. These parameters allows an interpretation of the

interface at material scale, which may go beyond the wedge-splitting geometry.
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Figure 4.24: (a) Scheme of a direct interfacial tensile test. Kinematic of rupture

(b) without and (c) with an initial crack.

Theoretically, interface wedge-splitting tests (WST) may be related to more sim-

ple direct tension test (DTT). In DDT, the geometry may present a similar ge-

ometry, but the application of the displacement δh and force Fh is modified and

placed in the middle of the sample illustrated in Figure 4.24. Two possible kine-

matic for rupture are analysed: with and without an initial crack. Without a

crack, the whole interface is loaded uniformly, which may induce in terms of

modelling, the rupture of all springs in the same time. On the other hand, the

existence of an initial crack a may induce an asymmetry on the distribution of

efforts, which may be associated by the propagation of the crack during rupture.

DEM is able to reproduce a realistic kinematic of the rupture [97]. A test

with 3 samples presenting identical properties and dimensions of the samples

in Section 4.4.4 is adopted : H = 220mm, a = 0mm, 2 × wi = 4R = 4mm,

R = 1mm, Eac = 11GPa, Eint = 1× 106 Pa, Σt
ac = 2× 106 Pa, Σt

int = 14000Pa,

GIC, ac = 120N/m, Gint = 5N/m. The tensile stress Fh/H as a function of the

imposed displacement δh is presented on Figure 4.25.

Parallelly, the expected result for a perfectly homogeneous situation (no initial

crack), where all the interface behaves uniformly, follows exactly the triangular

shape of the spring force-displacement law as shown in Figure 4.25. One may

observe that such interpretation overestimates the tensile strength and induces

an unrealistic sharp rupture shape.

The material rupture under tension is usually triggered by the propagation of
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Figure 4.25: Tensile stress Fh/H as a funtion of the displacement δh. Effect of

the initial crack a.

cracks at the boundaries of the geometry. The DTT with an infinitely small

initial crack a→ 0 produces a more realistic rupture shape, less sharp, but keep

overestimating the tensile strength Σt. An ideal fit is observed with an initial

crack a = 14mm, which is about 7 times of the particle dimension 2×R = 2mm.

4.6 Application of the interface model on

wedge-splitting experiments

In Section 4.4, the interface model (IM) is shown to be able to capture the main

elements of the interfacial rupture behaviour identified from discrete element

simulations. The next step is to apply the formulation of IM and analyse the

experiments performed by M. Gharbi during her Ph.D. thesis [34].

4.6.1 Interface characteristics

The geometry of Gharbi’s experiments are presented in Section 4.4.1. In her

experiments, there are 3 sets of 6− 10 specimens: P6, P7, P8, corresponding to

3 different conditions. In all cases, the asphalt concrete and the fiber glass grids
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are glued with a type of classical, cationic rapid-setting bitumen emulsion. Two

types of fiber glass grids are used 100SB and R100, which are different in the

production method and coating resin. The average results were taken from [34].

Table 4.5 summarizes the characteristics of the analysed results: height H, width

W , initial crack size a, thickness t and grid type.

Table 4.5: Parameters of the wedge-splitting samples of Gharbi’s experiments.

Samples grid type H (mm) a (mm) W (mm) t (mm)

P6 100SB 242 54.6 198 151

P7 R100 233 54.6 186 151

P8 no grid 232 54.6 186 125

4.6.2 Analysis of the experiments

In Table 4.6, the parameters of the interface model (IM): stiffness Ei/wi, strength

Σt
i and Energy release rate Gi, identified from the fit of experiment curves of force

Fh as a function of the displacement δh shown in Figure 4.26. The grid used in

P7 is less stiff, has a lower strength with asphalt materials than P6. The grid of

P6 presents a larger strength and energy release rate, which provides a guide on

the construction with fiber grid. The fiber grid globally decreases the opening

model strength and energy release rate, thus the glue material and glue method

should be well considered in further application.

Table 4.6: Mechanical parameters of the interface model (IM) identified from

Gharbi’s experiments.

Ei/wi (Pa/m) Σt (Pa) Gi (N/m)

P6 0.75× 109 0.85× 105 155

P7 1.5× 109 0.70× 105 105

P8 0.75× 109 1.20× 105 220

4.7 Summary of the chapter

The mechanical properties of the interface between two asphalt concrete layers

is studied by wedge-splitting tests (WST), in order to characterize the interface

effect of the fiber glass and resin.
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Figure 4.26: results of Experiments [34] and IM fitting.

A cohesive discrete element model is proposed to simulate materials with high

energy release rate, like asphalt concrete, where monotonic rupture is associated

to relatively large displacements. The fiberglass grid and the resin are assumed

to act together mechanically which allowed interfacial WST to be simulated with

a bi-material model.

Considering the lower stiffness and strength of the interface, the strain and the

rupture appeared to be restricted to the interlayer interface as suggested by the

experimental results. These elements were integrated in a simplified model where

only 3 parameters of the interface were taken into account: stiffness, tensile

strength and energy release rate. The interface model has shown to be totally

compatible with the discrete element approach for ruptures caused by crack prop-

agation. A comparison in direct tensile test between discrete element simulations

and the interface model suggests that a length scale depending on the energy re-

lease rate, elasticity and strength must be considered to describe crack initiation.

A verification of the robustness of the interface model is presented in Appendix D

where experimental WST of samples without any interface are analysed. The

good agreement on the sample response and the corroboration of material pa-

rameters previously identified show the capacity of the approach on describing
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localized crack propagation.

The confrontation of the models to experimental WST results has shown a very

good agreement on the shape of the force response as function of imposed dis-

placements. It allows a very simple quantitative analysis of the interface response.

It has shown, for example, how much the strength and the fracture energy of the

interface are weakened by the fiber glass grid. These values may be related fur-

therly to a design procedure for this type of reinforcement.
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5.1 Introduction

Traffic induces fatigue sollicitation of the pavement structure. Accurate predic-

tion of the effect of a very large number of loading cycles (105 − 106) over the

components of the pavements is a major requirement for the optimization of

transport infrastructures. At laboratory scale, cyclic bending tests are intended

to quantify deflection effects.

The main focus of this chapter is the analysis of the 4-point bending 4PB exper-

iments performed by Arsenie during her PhD thesis [1], which are prequel of the

ANR project. She was interested in quantifying the contribution of fibre glass

grids to the fatigue life of asphalt concrete samples (described in Section 5.2).

A damage model based on the PhD work of Didier Bodin [100] is implemented

at the contact scale in a discrete element environment in Section 5.3.1. The

first discrete simulations concern tension-compression tests and identify impor-

tant features of the model (Section 5.4). In Section 5.5, the simulations of 4PB
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tests are entirely described (geometry, boundary conditions, material behaviour

and numerical strategy). A parametric study of the main elements of the nu-

merical model is presented in Section 5.6, which is the basis for the calibration

of the material parameters (Section 5.7). The effects of the glass fibre grids are

introduced in Section 5.8, where two fundamental mechanisms are discussed: as

reinforcements and as interfaces. After the investigation of the individual con-

tributions of each of these two aspects, the combination of them is explored to

analyze the experimental results. Finally, in Section 5.9, the conclusions of the

chapter are summarized.

5.2 Experimental setup

During her thesis, Arsenie [1] performed 4-point bending (4PB) fatigue tests

intending to quantify the contribution of the fiber glass grids on the fatigue life

of asphalt concrete samples. This study was a prequel of the ANR project.

The geometry of the specimen is presented in Figure 5.1. The standard beam

dimensions have been adapted in order to have three warp yarns in the width

of the beam. Therefore, the standard beam dimensions have been increased in

width, length and thickness. Each beam has a length L = 630mm, and a square

cross section with height h = 100 mm and width w = 100 mm. The beam

is composed of 3 different layers by construction. The heights of the bottom,

middle and upper layers are respectively h/4, h/2 and h/4. The layers are bonded

with a bitumen emulsion. The specimens of experiments are separated into two

categories: reinforced asphalt concrete and non-reinforced asphalt concrete. The

fiber grids lay between the AC layers in the reinforced beams.

ℎ
=

10
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𝑚𝑚
𝑚𝑚

𝐿𝐿 = 630 𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑓𝑓 𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑟𝑟 𝑔𝑔𝑓𝑓𝑝𝑝𝑔𝑔

ℎ/4
ℎ/4

𝑙𝑙 𝑙𝑙 = 200 𝑚𝑚𝑚𝑚 𝑙𝑙

𝛿𝛿𝑣𝑣 𝛿𝛿𝑣𝑣

𝛿𝛿𝑣𝑣 𝛿𝛿𝑣𝑣

Figure 5.1: Geometry of specimen for 4PB test performed by Arsenie.

During the test, the specimens (Figure 5.2a) are placed inside the bending test

machine shown in Figure 5.2b.
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(𝑎𝑎) (𝑏𝑏)

Figure 5.2: (a) 4-point bending (4PB) samples and (b) loading equipment [1].

A controlled strain condition is applied by the sinusoidal motion of the central

supports as described in Figure 5.3, which is the typical loading setup in fatigue

of asphalt concrete [116,117]. The reaction force on the supports Fv also presents

a sinusoidal response. The decrease of the amplitude of Fv as a function of the

number of cycles NC is the main information of a fatigue test.

(𝑎𝑎) (𝑏𝑏)

𝑡𝑡

1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝛿𝛿𝑣𝑣

𝛿𝛿𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐

ℎ

𝛿𝛿𝑣𝑣 𝛿𝛿𝑣𝑣

𝐹𝐹𝑣𝑣𝐹𝐹𝑣𝑣

Figure 5.3: Loading setup of the 4-point bending (4PB) tests performed by Ar-

senie [1].
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5.3 Fatigue model and discrete element imple-

mentation

As discussed in Section 2.7.2, the fatigue of asphalt concrete presents usually 3

phases. In the first cycles, a relatively fast and intense decrease on the macro-

scopic stiffness of the sample characterizes the phase I. A stable decrease is

associated to phase II. In the last phase, a loss of the homogeneity of the strain

in tension/compression fatigue test is observed in Bodin’s thesis [100] followed by

a very intense decrease of stiffness again.

In his thesis, Bodin [100, 118] proposed many damage laws, one of them is L3R

with 4 parameters capable of capturing the whole trend of the stiffness evolution.

Finite element damage calculations are usually sensitive to stress/strain concen-

tration and are mesh dependent [119]. Bodin implemented a non-local version

with finite element method to avoid these effects. Despite the satisfactory sample

response obtained by his formulation, at the local level, excessively wide damaged

regions are obtained.

In order to improve the local description of the damage phenomenon, and sim-

plify the number of free parameters of the model, a law describing only the first

two phases of the damage behaviour, called L2R [102, 118] (based on the Paas

law [101]) is then adapted to a discrete element environment. The physical ad-

vantages of this approach are further discussed.

5.3.1 Local fatigue model - L2R

As defined in Section 2.7 and applied in Section 4.3.1, the damage D is a state

variable which characterizes the material mechanical condition. Its value ranges

from 0 to 1 (D = 0 indicates an intact material, whilst D = 1 defines its complete

failure).

5.3.1.1 Equivalent strain ε̃

In fatigue, the evolution of damage is originally controlled by the strain state of

the material by a scalar equivalent strain ε̃

ε̃ =

√√√√ 3∑
i=1

(
〈σi〉+

(1−D)E

)2

, (5.1)
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where 〈σi〉+ is the positive principle stress, and E is the Young’s modulus of

the material. In Equation 5.1, only tensile stress is considered to damage the

material.

5.3.1.2 Rate of damage growth Ḋ

The rate of damage growth Ḋ is defined as

Ḋ = f(D)ε̃β〈 ˙̃ε〉+, (5.2)

where 〈 ˙̃ε〉+ is the positive value of the rate of increment of the local strain ε̃ and

β is a variable related to the fatigue slope (−1 − β) in log-log scale. f(D) is a

function of the damage factor, which was proposed by Paas [101] as

f(D) = CDα, (5.3)

where α is a scalar parameter. According to Equation 5.2, only a positive incre-

ment of strain may induce damage.

5.3.1.3 Increment of damage δD per cycle

According to Equations 5.1 and 5.2, the damage is considered to be incremented

only in tension and for positive strain rates. For a cyclic loading centred at zero,

it represents the segments in Figure 5.4 for NC × T ≤ t ≤ NC × T + T/4, where

NC is the number of cycles and T is the period of the loading cycles.

𝑡𝑡

𝜀𝜀

Strain distribution along the cross section 

𝜀𝜀𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡

Damage increment in positive strain

𝑡𝑡 + 𝑇𝑇/2

𝛿𝛿𝑣𝑣(𝑡𝑡) 𝛿𝛿𝑣𝑣(𝑡𝑡)

𝛿𝛿𝑣𝑣(𝑡𝑡 + 𝑇𝑇/2) 𝛿𝛿𝑣𝑣(𝑡𝑡 + 𝑇𝑇/2)

𝜀𝜀

−𝜀𝜀

−𝜀𝜀

𝜀𝜀

(a) (b)

Figure 5.4: Loading cycle contribution on damage increment.

Equation 5.2 associated to Equation 5.3 can be rewritten as
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Ḋ

Dα
= Cε̃β〈 ˙̃ε〉+. (5.4)

The evolution of the damage as a function of the number of cycles NC can be

obtained by integration of Equation 5.4 over the range of time 0 ≤ t ≤ NC × T .

The local strain ε̃ induces damage increment only on the first quarter of the cycle.

For constant strain cycles, the contribution of the strain integral is constant per

cycle which allows the following simplification:

∫ NC×T

0

Ḋ

Dα
dt =

∫ NC×T

0

Cε̃β〈 ˙̃ε〉+dt = NC

∫ T/4

0

Cε̃β ˙̃εdt, (5.5)

where 〈 ˙̃ε〉+ = ˙̃ε for 0 ≤ t ≤ T/4. The integration of Equation 5.5 leads to

D(NC)1−α

1− α
= NC

C

1 + β
ε̃(T/4)1+β = NC

C

1 + β
ε1+βa , (5.6)

where D(NC) is the damage at t = NC × T and ε̃(T/4) corresponds to the

amplitude εa of the local strain for a sinusoidal cycle.

For the particular case where the amplitude of the strain remains constant during

all the number of cycles NC , the damage value can be isolated from Equation 5.6

D(NC) =

(
C (1− α)

1 + β
ε1+βa NC

) 1

1− α
. (5.7)

A more general incremental calculation of the damage can be obtained by deriva-

tion of Equation 5.6 with respect to the number of cycles NC

δD

δNC

= Dα C

1 + β
ε1+βa (5.8)

The main advantage of Equation 5.8 is to take into account the evolution of the

amplitude εa during the fatigue test automatically. However, the value of damage

D must be initialized (D 6= 0). This initial value D(1) can be easily obtained

from Equation 5.7 for NC = 1 in the first cycle.

D(1) =

(
C (1− α)

1 + β
ε1+βa

) 1

1− α
. (5.9)
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5.3.2 DEM implementation of the fatigue model

5.3.2.1 Local equivalent strain

The behaviour for one contact can be reduced to a unidimensional problem. As

defined in Section 3.2, the displacements in the direction of the contact resultant

force δ (Equation 4.8) may give rise to the definition of the strain ε if associated

to the length separating two particles i and j in contact Ri +Rj:

ε̃ = ε =
δnsinθ + δscosθ

Ri +Rj

. (5.10)

where δn and δs are the normal and tangential relative displacements at the

contact, as previously defined. The angle θ indicates the direction of the contact

force with respect to the tangential direction. The strain defined for a contact in

Equation 5.10 represents the local equivalent strain defined in Equation 5.1 for a

continuum material.

The amplitude of the local strain is consequently the maximum value of the local

strain under cyclic loading εa = max(ε).

5.3.2.2 Damage and force calculation

In the first cycle, the damage factor D is initialized, being calculated for each

contact by Equation 5.9. At each new cycle, D is modified incrementaly, based

on a first order solution of Equation 5.8 as

D(Nc + ∆NC) = D(Nc) + ∆NC

(
Dα C

1 + β
ε1+βa

)
, (5.11)

where ∆NC is the cycle increment parameter. Any value of ∆NC > 1 allows a

gain of calculation time, but it must be carefully chosen not to induce cumulative

errors.

After the damage identification, the forces can be updated following the same

procedure of Chapter 4 (see Equation 4.6)

fn = kn (1−D) δn
fs = ks (1−D) δs,

(5.12)
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where kn and ks are the normal and tangential stiffness of the intact contacts,

respectively.

5.3.2.3 Structures under centred loading - static loading hypothesis

The laboratory fatigue tests [1] are usually driven by imposed displacements,

which helps to capture the last phase of fatigue when the sample stiffness tends

to be very low. The displacements are sinusoidal like, with controlled amplitude

and frequency. The samples are symmetric, which associated to the loading setup

guarantees that strains (and stresses) are also sinusoidal centred at zero, avoiding

creep contributions. In these conditions, positive and negative strain values with

the same intensity are separated in time of half period T (ε(t) = −ε(t+ T/2)) in

the whole samples, as shown in Figure 5.5.

The damage induced by fatigue is defined by the amplitude of the local strain εa
at each contact. Due to the symmetry of the loading it can be obtained equally

for one cycle as

εa = max(ε(t)) = −min(ε(t)). (5.13)

In the present formulation, the viscosity of the material is not being taken into

account, which means that stress and strain are in phase. In other words, the

extreme values of stress (or forces) coincide with extreme values of strain (or

displacements). On these conditions, all necessary elements to calculate the in-

crement of damage per cycle can be obtained with static boundary conditions,

representing the maximum amplitude of the cyclic load. The intensity of the mea-

sured forces represents naturally the amplitude of the cyclic forces which may be

obtained during cyclic global load.

Under static global loading, the amplitude of the local strain εa for each contact

is calculated by the absolute value of the local strain ε

εa = |ε|. (5.14)

In this way, even the contacts under compression, in case of bending tests, inform

the value of εa which may damage the material under tension. The static loading

hypothesis allows a considerable gain in time calculation without any loss of

generality.
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Strain distribution along the cross section 
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Figure 5.5: (a) Cycles of strain in tension/compression and bending tests, and

(b) corresponding strain distribution.

5.3.2.4 Numerical scheme

The scheme of the contact law algorithm adopted in DEM simulations for each

timestep is presented in Figure 5.6. The damage factor D is initially set as zero

for all the contacts, which represents the intact state of the material. In the first

cycle (NC = 1), after the calculation of the local strain ε (Equation 5.10) for each

contact, the value of D is initialized, being calculated by Equation 5.9. For all

other cycles (NC > 1), the damage is calculated by Equation 5.11.

An extra variable is added to each contact to switch (on or off) the damage

calculation. If by any reason, the damage calculation should be deactivated,

then switch = 1 and D remains unchanged. That is the case when the damage

reaches its maximum value D = 1, for example. While switch = 0, the damage

is incremented following the described procedure.

After the determination of D, the contact forces are simply calculated by Equa-

tion 5.12.

The fatigue model, as part of the contact constitutive model, is written and com-

piled in C++ language using ‘visual studio 2010’. For more detailed description

on the software refer to [120]. The generated file is then called by PFC as the

contact law at each timestep during simulations.

5.4 Cyclic tension-compression simulations

The response of fatigue law L2R implemented as a contact law in discrete element

simulations is verified under homogeneous boundary condition.
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Obtain basic parameters of one contact:
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by Equation 5.10

Figure 5.6: Algorithm for damage calculation in DEM.

Three rectangular samples are generated as shown in Figure 5.7a. The discrete

element parameters for the 3 assembles are: average particle radius R = 2mm,

particle size ratio Rmax/Rmin = 1.6, contact modulus Ecmod = 2.0× 1010 Pa and

stiffness ratio kratio = 4.5. These choices correspond to the following material

properties: Young’s modulus E = 11GPa and Poisson’s ratio ν = 0.34.

A uniform relative displacement δh, max = 0.048 mm is applied at the bound-

aries in order to reproduce the effect of the cyclic loading δh(t) presented in

Figure 5.7b. The imposed displacements induce a macroscopic strain with am-

plitude δh max/L = 150µm/m, which corresponds to the maximum strain level

in standards. The imposed displacements induce a total force Fh, max which is

measured at each new cycle.

The contact parameters adopted in the simulations are α = −2.0, β = 3.0 and

C = 1 × 109. In Figure 5.8a, one may observe the stiffness factor of a contact

submitted to a strain εa = 150µm/m, F/F0 = 1 − D associated to the contact

law L2R (Equation 5.7). In parallel, the response Fh/Fh0 of the 3 samples as

functions of the number of cycles NC is shown in Figure 5.8b. One may observe

that L2R is individually adapted to describe only 2 regimes (phases I and II

from fatigue regime, see Section 2.8.3.1). However, the sample response, which

depends on the contribution of multiple contacts, describe clearly the 3 phases.
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Figure 5.7: (a) Sample dimensions and imposed displacements. (b) Analysed

cyclic loading.
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Figure 5.8: (a) Stiffness factor (1−D) associated to contact law L2R. (b) Stiffness

factor Fh/Fh0 of the 3 samples in tension/compression.

The damage maps of sample 1 in multiples stages (Figure 5.9) give a better

understanding of the rupture process in fatigue. The comparison of the intact

initial stage (Figure 5.9a) and the approximated end of phase II at NC = 4.16×
104 (Figure 5.9b) shows that a diffused damage dominates the loss of stiffness

of the sample. The progression of localized damage zones seems to dominate

phase III as shown in Figure 5.9c for NC = 4.90 × 104, which conducts to a

loss of homogeneity of the stress and strain distribution inside the material and

a localization of high level damage at the right of the sample. The simulation

results suggest that phase III is the consequence of a structural effect beyond a

material behaviour.
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(b)

(c)

(a)

contact damage

contact damage

contact damage

Figure 5.9: (a) Damage map of sample 1 before the test, (b) at cycle NC =

4.16× 104 and (c) at the end of the fatigue test (NC = 4.90× 104).

5.5 Cyclic 4-point bending (4PB) tests

5.5.1 Geometry and boundary conditions

4-point bending (4PB) tests are simulated by discrete element method (DEM).

The geometry follows the dimensions of the experiments perfomed by [1] (see

Section 5.2) as indicated in Figure 5.10a with length L = 630 mm, height h =

100 mm and an equal spacing between supports l = 200 mm.

The real supports of the beam work only in compression, which means that

different positions of the beam are solicited depending on the signal of the imposed
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displacements. To avoid this asymmetry of the load, the supports are modelled by

a vertical range of particles with length 10mm in the horizontal axis of the beam.

The range of particles is long enough to distribute the effort and short enough to

avoid bending moment over the supports. The reduced dimension of the supports

induces a concentration of efforts which may lead to an accelerated damage of

the structure. This inappropriate behaviour is avoided by the deactivation of

the damage calculation inside a rectangular zone (10mm × 15mm) around the

supports and symmetric around the neutral axis, which is large enough to prevent

the damage around the supports and small enough to have no influence on the

damage evolution of other parts of the sample. This unrealistic (but theoretically

ideal) choice has the advantage of keeping the symmetry of the structure during

cyclic loading. Furthermore, concerning the material behaviour, L2R is a fatigue

law adapted to centred tension/compression. Only compressive loading may be

outside the bounds of the theoretical approach. The deactivation of the damage

in the center of the beam does not lead to discontinuities of the damage field

since this region is weakly solicited and naturally presents a very low damage.

Experimentally, supports 1 and 2 do not move, whilst supports 3 and 4 are driven

by a cyclic centred displacement with a given amplitude δv, max. As discussed

in Section 5.3.2.3, these loading conditions are modelled by a static imposed

displacement δv, max of the central supports. The maximum normal strain level

εmax is observed in the middle section of the beam in upper and bottom positions

and can be calculated by the expression [1]

δv,max =
5

3

A2

h
εmax, (5.15)

where A = 200mm is the distance between two adjacent supports.

A vertical force Fv is measured as support reaction and evolves during the fatigue

tests.

5.5.2 Verification of damage process under symmetric

loading

In Section 5.3.2.3, the damage process of structures under centred loading can

be simulated by static loading, with the assumption that contacts no matter in

compression or tension reach the amplitude at the same time as the global cyclic

load. Thus in this section, the damage process under static load is verified by
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Figure 5.10: Geometry of the 4-point bending (4PB) samples in DEM. (a) Indi-

cation of the dimensions over the particle packing and (b) contact properties by

zones.

4PB fatigue simulations with positive and negative displacements, respectively

+δv, max and −δv, max.

The sample presents 8282 particles with average radius R = 2.9mm and particle

size ratio Rmax/Rmin = 1.6. The parameters of fatigue model are C = 109,

α = −2.0 and β = 3.0.

The applied displacements (δv, max = ±0.1mm) correspond to the strain level

εmax = 150µm/m (Equation 5.15) in Arsenie’s experiments.

The responses of the sample in terms of stiffness factor Fv/Fv0 as function of the

number of cycles NC for each loading case are presented in Figure 5.11. Precisely

the same curves are obtained even for very high level of damage.

The same local effective strain ε (Equation 5.10), shown in Figure 5.12, is observed

in absolute value ignoring the signal of δv, max. This result is expected due to

the identical behaviour of the contacts in tension and compression, even after the

total damage of the contacts. The localized damage zones behave as cracks which

cannot be closed and present a compressive response.
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Figure 5.11: Stiffness factor Fv/Fv0 as a function of the number of cycles NC for

δv, max = 0.1 mm and δv, max = −0.1 mm.
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Contact 𝜀𝜀
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Figure 5.12: The effective strain distribution for δv, max = 0.1 mm and δv, max =

−0.1 mm for a number of cycles (a) Fv/Fv0 = 1.0 and (b) Fv/Fv0 = 0.4.
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5.6 Parametric study of the fatigue model

A complete understanding of the effect of each parameter of the fatigue law

(C, α, β and the cycle increment ∆NC) is fundamental to further analyse the

experimental results. The study focuses on the stiffness factor Fv/Fv0 during the

fatigue test.

In the discrete element model, the following parameters are adopted: an average

radius R = 2.9 mm, size ratio Rmax/Rmin = 1.6, contact modulus Ecmod =

2.0 × 1010 Pa, stiffness ratio kr = 4.5. They correspond to a Young’s modulus

E = 11GPa and Poisson’s ratio ν = 0.34.

When not indicated differently, the following parameters are taken for the fatigue

contact law: C = 1 × 109, α = −2 and β = 3.0; a vertical displacement δv =

100µm, which is associated to a maximum normal strain εmax = 150µm/m, and

a cycle increment ∆NC = 100 is adopted.

5.6.1 Effect of ∆NC and C

5.6.1.1 Effect of ∆NC

The damage D is calculated incrementally with a cycle increment ∆NC . The

evolution of D with the number of cycles NC is generally very slow, which opens

the possibility of numerically ‘jump’ cycles (instead of performing one by one).

The stiffness factor Fv/Fv0 as a function of the number of cycles NC for different

increments of cycles ∆NC = 100, 1000, 2000, 4000 is presented in Figure 5.13a.

Higher values of ∆NC increases the propagation of errors during calculations of

D, which explain the deviation of the results. A stable result is however observed

for ∆NC < 1000.

5.6.1.2 Effect of parameter C

As it can be seen in Equation 5.7, under constant strain, the parameter C has

an effect of multiplying the number of cycles NC . In Figure 5.13b, the results of

simulations with different C are presented (C1 = 1 × 109, C2 = 1 × 1010, C3 =

2× 1010 and C4 = 4× 1010).

5.6.1.3 Relation between the parameters ∆NC and C

According to Equation 5.11, the parameter C has a linear scaling effect on the

increase of the damage. It can be observed by the collapse of the stiffness factor
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Figure 5.13: Stiffness factor Fv/Fv0 as a function of the number of cycles NC for

(a) different increment of cycles ∆NC and (b) different value of parameter C.

Fv/Fv0 as a function of the product between the number of cycles and parameter

C (NC × C) in Figure 5.14a. This collapse is not absolute, because of the accu-

mulation of truncation errors which is intrinsic to the step by step integration of

the damage variable in Equation 5.11. A biggest deviation can be observed at

the end of the fatigue life, where locally the damage variable presents its highest

evolution and consequently more integration errors.

The propagation of errors depends on the value C which scales the damage incre-

ment and also the cycle increment ∆NC . As it can be seen in Figure 5.14b, the

scaled fatigue curves (Fv/Fv0 versus NC ×C) are identical for equal values of the

factor NC ×C. It means globally that a faster damage evolution (associated, for

example, to a higher value of C) demands a smaller value of ∆NC for an equal

level of precision. On the other hand, a structure composed by a material which

presents a slow damage increase per cycle could be calculated with higher values

of ∆NC , which may represent a computational gain of time.

5.6.2 Effect of the parameter α

As shown by Bodin [100], under constant strain, α has a stronger effect in the

beginning of the damage process, as shown in Figure 5.15a for different values of

α = −1.0,−1.5,−2.0 and−2.5. An indicative frontier between phase I and II can

be represented, where the effect of α is concentrated in phase I. An approximative

proportionality between the curves can be visualized with a normalization of the

number of cycles by the corresponding value for a given value of 1 − D. For
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Figure 5.14: Stiffness factor Fv/Fv0 as a function of the C ×NC for (a) different

values of C, ∆NC = 100 and (b) different values of C ×∆NC .

example, the normalized number of cycles can be defined as

Nc,norm =
Nc

Nc, 0.4

, (5.16)

whereNc, 0.4 is the number of cycles associated to a stiffness fraction of 1−D = 0.4.

In DEM, the heterogeneous strain conditions affects the damage evolution, which

consequently is reflected on the stiffness fraction evolution, as shown in Fig-

ure 5.16a for 4PB simulations. The same results as a function of the number

of cycles Nc,norm normalized by Equation 5.16 show the absence of proportion-

ality, revealing a global effect of α during the whole damage process, but more

concentrated in the first phase.

5.6.3 Effect of the parameter β

Under constant strain εa, the parameter β is linked to the slope (equals to −1−β)

of the S-N curve in log-log diagram, and it is directly deduced from the experi-

mental tests of fatigue. Therefore, it has a strong effect on the stiffness fraction

1 − D as function of the number of cycles NC as shown in Figure 5.17a for
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Figure 5.15: Stiffness factor 1−D for constant strain εa = 1× 10−4 and different

values of α (a) as a function of the number of cycles NC and (b) as a function of

the normalized number of cycles NC,norm.
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Figure 5.16: Stiffness fraction Fv/Fv0 (a) as function of the number of cycles NC

and (b) as a function of the normalized number of cycles Nc,norm for different

values of α.

β = 2.8, 3.0, 3.2 and 3.4. The values of 1 − D can be related to Nc,norm as a

single curve, as described in Figure 5.17b.

For the same values of the parameter β, the results of the stiffness fraction Fv/Fv0
as function of the number of cycles NC for 4PB tests (see Figure 5.18) show a

similar trend as previously observed concerning the effect of β under constant

strain εa: higher values of β induce a bigger fatigue life. The non proportionality

between the curves of Fv/Fv0 versus Nc,norm reveals the complex effect of the

parameter β, which compared to the effect of α, affects more the phase II of the

fatigue behaviour.
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Figure 5.17: Stiffness factor 1−D for constant strain εa = 1× 10−4 and different

values of β (a) as a function of the number of cycles NC and (b) as a function of

the Nc,norm.
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Figure 5.18: Stiffness factor Fv/Fv0 (a) as a function of the number of cycles NC

and (b) as a function of the Nc,norm for different values of β.

5.6.4 Effect of the strain scale εmax

The effect of the strain level on the stiffness fraction (1−D) under constant strain

is shown in Figure 5.19a for different strain values εa = 110µm/m, 130µm/m

and 150µm/m. As indicated in Equation 5.7, the strain scales the effect of the

number of cycles like the parameter C by the factor ε1+βa . A single curve is

then obtained for the evolution of 1 − D as a function of ε1+βa NC as shown in

Figure 5.19b.

A similar effect of the strain level is observed for 4PB tests in Figure 5.20a. Dif-

ferent values of the maximum strain εmax are adopted: εmax = 150µm/m, which

correspond to the following amplitudes of the support displacements δv = 100µm.

Despite the heterogeneity of the stress/strain fields, the normalization of the num-
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Figure 5.19: Stiffness factor 1−D for constant strain amplitude εa. The different

curves indicate different values of εa = 110µm/m, 130µm/m, 150µm/m. (a)

as a function of the number of cycles NC and (b) as a function of the ε1+βa NC .

ber of cycles by the factor ε1+βa is shown to be consistent (see Figure 5.20b). This

information is very important concerning the identification of the parameter β

which physically relates the effect of the strain in different tests.

(a) (b)
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽+1 × 𝑁𝑁𝑁𝑁

Figure 5.20: Stiffness fraction Fv/Fv0 (a) as a function of the number of cycles

NC and (b) as a function of the ε1+βmaxNC for different values of εmax.

This scale effect associated to the strain level εmax and β indicates that damage

distribution itself is independent on the strain scale. It may affect only the number

of cycles associated to its evolution. In Figure 5.21 this effect can be visualized

for two identical damage maps obtained in two different 4PB simulations with

different values of strain amplitude: εmax 1 = 115 µm/m and εmax 2 = 150 µm/m.

The maps are registered for the same stiffness fraction Fv/Fv0 = 0.4 but different

number of cycles NC 1 = 739703 and NC 2 = 256523, respectively associated

to εmax 1 and εmax 2. The strain and the number of cycles satisfy the relation:

ε1+βmax 1NC 1 = ε1+βmax 2NC 2.
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Figure 5.21: Damage maps obtained for a damage fraction Fv/Fv0 = 0.4 with

different strain levels (a)εmax = 115 µm/m at NC = 739703 and (b) εmax =

150 µm/m at NC = 256523.

5.6.5 Summary of parametric study

The parameter study is conducted in terms of the parameters of Bodin’s damage

model in Equation 5.7 and 5.8. Parameter C acts as a scaler of the whole

fatigue curve Fv/Fv0 versus NC . Parameters α and β affects the shape of the

fatigue curve. The parameter α has a stronger influence on the first phase of the

fatigue curve. The accumulation of errors on the damage calculation depends

on the evolution of the damage variable during the time integration. A faster

evolution of the system should be associated to smaller values of the cycle jumping

parameter ∆NC to avoid larger numerical errors.

5.7 Calibration of the material parameters and

comparison with 4PB experiments

In the 4PB tests of Arsenie [1], the strain level is driven by the value of maximum

amplitude of the normal strain εmax (obtained on the top and the bottom of the

middle section). The values adopted in her experimental study were εmax =

115µm/m, 135µm/m, 150µm/m. εmax is theoretically related to the vertical
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displacement of the central supports δv by Equation 5.15. Respectively, on the

simulations the values δv = 76.7µm, 90µm, 100µm are adopted. For the discrete

element material description, as in previous simulations, the radius of particles

follows a uniform distribution. The average value is R = 2.9mm and the size

ratio is Rmax/Rmin = 1.6. The contact stiffness is kn = 2.0× 1010N/m, kr = 4.5,

corresponding to a Young’s modulus E = 11GPa and a Poisson’s ratio ν = 0.34.

The experimental results are based on the analysis of 3 samples per strain am-

plitude εmax. For the simulations, three different ensembles are generated with

a similar internal structure and slightly different number of particles (8288, 8282

and 8317).

The value of the number of cycles NC is averaged for equal levels of stiffness

fraction Fv/Fv0. The fatigue life is defined as the necessary number of cycles NC

to reach a stiffness fraction Fv/Fv0 = 0.4 in order to analyse the same ranges of

values than Arsenie.

In Figure 5.22, the experimental results of the stiffness fraction Fv/Fv0 as a func-

tion of the number of cycles NC for εmax = 135µm/m and 150µm/m are pre-

sented. The envelope curves with minimum and maximum values show the rela-

tively large variation of the results. The average curves are the reference for the

calibration of the parameters of the fatigue model C = 8.7× 108, α = −2.0 and

β = 3.0.

(b)

𝐹𝐹 𝑣𝑣
/𝐹𝐹
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Figure 5.22: Stiffness fraction Fv/Fv0 as a function of the number of cycles NC

for (a) εmax = 135 µm/m and (b) εmax = 150 µm/m. Comparison between DEM

simulations of 4PB tests and experiments of Arsenie [1].

The average results of the simulations are in very good agreement with the ex-

perimental results, which points out the capabilities of the DEM model. The
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envelopes of results of the DEM simulations depends on the micro structure of

the ensembles (granulometry, void ratio, etc.), which is an important feature of

discrete approaches, even if not quantitatively correlated to experimental observa-

tions in all cases. Three numerical samples presents different damage evolutions

and strain localizations due to different micro structures of each sample. The

damage maps of each analysed sample (Figure 5.23) bring up some physical ele-

ments related to the variation of results. After a roughly homogeneous damage,

mostly localized at the central span, the irregularity of the inner structure of the

material induces different weak points. These points give rise to concentrated

damage zones, physically associated to cracks. The propagation of this cracks

affects the sample response which explain most of the visible differences between

the curves Fv/Fv0 ×NC .

Contact damage

Figure 5.23: Damage map for all the three samples for a stiffness fraction

Fv/Fv0 = 0.4.

The Figure 5.24a synthesizes the calibration of the DEM fatigue model. The

average curves of stiffness fraction Fv/Fv0 evolution for all different strain levels

studied experimentally and numerically are placed together. One may observe

that calibrations take into account only experimental data for εmax = 135 µm/m

and εmax = 150 µm/m. This choice, which does not affects the generality of

the further results, is based on some unusual aspects of the results for εmax =

115 µm/m. The most important is the absence of β relating all range of εmax
as indicated in Figure 5.24b, which is unusual considering that β is a typical

pavement design parameter. Secondly, the shape of the fatigue curve for εmax =

115 µm/m does not present a clear phase I, which suggests another atypical

behaviour that is not captured by DEM simulations. Thus the following study
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concerns on the strain level 150 µm/m and 135 µm/m.

(a)

(b)

Figure 5.24: Stiffness fraction Fv/Fv0 as a (a) function of the number of cycles

NC and as a (b) function of ε1+βmax × NC for different εmax. Comparison between

DEM simulations of 4PB tests and experiments of Arsenie [1].

5.8 Effect of the glass fiber grids in 4PB tests

The fiber grids present different mechanical effects in 4PB tests. Two main roles of

the fibers are treated in this section: as reinforcements and as interfaces. Firstly,

the simulation of the reinforcements and their individual effects in monotonic and

cyclic loading are discussed. Then, the effect of interfaces is analyzed separately

on fatigue process. After the integration of the both mechanical behaviours, a

comparison with experimental results of Arsenie [1] is presented.
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5.8.1 Simulation of the reinforcements

The cross section of the bending samples is presented in Figure 5.25a. Fatigue

tests of the yarns indicate a neglectful modulus factor in the strain amplitude

associated to the 4PB test performed usually in pavement design [121]. Consid-

ering the lack of precise information about the fatigue behaviour of the contact

between asphalt concrete and fiber glass, a perfect adhesion hypothesis is adopted.

Consequently, the contribution of the yarns in 2D is taken as elastic axial rein-

forcements working under tension and compression (bars). The elastic stiffness

kf of one segment i of a fiber glass reinforcement is determined by the expression:

kfi =
EfAf
li

, (5.17)

where Ef is the elastic modulus of the fiber grid and Af is the total cross section

of fiber grid per layer and li is the length of the segment. The effect of the bars

are then taken into account on the discrete element model as additional contacts

(Figure 5.25b) connecting particles located at the vertical position of each layer,

as shown in Figure 5.25c. The contact properties are simply Ef and Af , whilst the

length li are automatically calculated based on the distance between the conected

particles.

An advantage of the 2D approach presented here is that cracks and any defects

may cross the fiber grid as in real experiments.

5.8.1.1 4PB monotonic test

A simple monotonic bending test is performed here to verify the fiber grid con-

tribution. Considering a perfect adhesion between the reinforcements and the

asphalt concrete matrix, and the small amplitude of the strain, the expected

behaviour may be similar to the predictions of beam theory.

The addition of the fiber reinforcement has an effect on the flexural stiffness EI

of the composite beam which writes

EI = EI + EfIf , (5.18)

where EI = E × wh3/12 is the flexural stiffness of the asphalt concrete section

(without the reinforcements), Ef and If are, respectively, the Young’s modulus

of the fibers and the moment of inertia of the fibers with respect to the center of
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Figure 5.25: (a) Cross section of the 4PB samples. Representation of the rein-

forcement bars (b) as additional contacts (c) connecting particles in the same

layer.

gravity (which coincides with the flexural center) of the section. The moment of

inertia of the 2 layers of reinforcements can be calculated by the Huygens-Steiner

theorem of parallel axis as

If = 2× Af (df/2)2, (5.19)

where df/2 is the distance between the center of gravity of the beam and the

position of the reinforcements.

The reaction force Fv can be related to a central support displacement δv (4PB

configuration) by the expression [122]:

Fv =
384EIδv,mid

6.81L3
, (5.20)

where L is the length of the beam, δv,mid is the displacement in the middle of the

beam.

For the 4PB beam, δv,mid = 1.15δv, where δv is displacement at two load
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supports. Simulations with 3 different imposed displacements are considered

δv = 76.7 µm, 90 µm, 100 µm. In order to precisely quantify the contribution

of the fiber grid reinforcement, the first step is the identification of the flexural

stiffness EI of the asphalt concrete beam. Based on the same elastic properties

of Section 5.7 and no reinforcement (Af = 0), one obtain EI from measured Fv
and Equation 5.20 for EI = EI.

In 2D simulations, the beam has a unit width b = 1 m. The total quantity of

fiber per meter in one layer of reinforcement Af = 30×4×10−6m2. The Young’s

modulus of AC takes the value of 11GPa, which is measured experimentally for

a strain lever εmax = 40µm/m, frequency 10Hz and temperature 10◦C [1]. In

Figure 5.26a, the reaction Fv is related to the different values of δv for the beam

with and without reinforcements. The results with fibers follow the predictions

of Equation 5.20 as can be seen in more detail in Figure 5.26 with less than 0.5%

of relative error.

Figure 5.26: (a) Reaction force Fv as a function of the displacement of the central

support δv. R: with reinforcement, NR: without reinforcement.

5.8.1.2 Effect of the fiber reinforcements on the fatigue behaviour of

4PB tests

In Section 5.8.1.1, a usual quantity of fiber reinforcements are adopted on the

monotonic verification of the model. One may easily observe (in Figure 5.26)

the relatively small increment on the stiffness of the composite beam due to the

fibers. This results are not specially surprising, since this type of reinforcements

is developed to improve the fatigue life of asphalt concrete components. The ac-

ceptable errors of simulations are from 10% to 12%, comparing to the theoretical
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predictions by Equation 5.20.

The contribution of the reinforcements are then analyzed in fatigue with the

same three DEM specimens used for 4PB simulation in Section 5.7. The average

evolution of the stiffness factor Fv/Fv0 as a function of the number of cycles

NC is shown in Figure 5.27 for a strain amplitude of εmax = 150 µm/m. The

comparison between experiments [1] and simulations indicates an improvement

of the fatigue life induced by the reinforcements, however the total effect of the

grids seems underestimated by the simulations.

Figure 5.27: Stiffness fraction Fv/Fv0 as a function of the number of cycle NC in

4PB tests (εmax = 150 µm/m). Comparison between DEM simulations and the

experiements of [1].

The mechanism of reinforcement reproduced by the simulations can be visualized

in Figure 5.28 for one of the samples. The effect of the fiber is very reduced on

the initial phase of the fatigue test (Figure 5.28a). It seems associated mostly

to the elastic contribution observed in Figure 5.26, since the fibers are located in

zones with reduced damage (Figure 5.28b). After approximately Fv/Fv0 = 0.7,

the fiber contribution increases considerably. This seems specially associated to

the concentrated damage crossing the fiber position (Figure 5.28c). The strain

at the fiber positions are locally increased which activates the mechanism of

reinforcement.

The contribution of the reinforcements seems to be more effective when the fibers

are located in a damaged zone. The experimental results indicate that fibers may
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(a)

b

Contact damage

Contact damage

𝑐𝑐

Figure 5.28: (a) Stiffness fraction Fv/Fv0 as a function of the number of cycle NC

in 4PB simulations for one sample (particle number: 8282). Damage map with

reinforcement for (b) Fv/Fv0 = 0.7 and (c) Fv/Fv0 = 0.4.

contribute since the beginning of the fatigue test and not only after a certain

number of cycles (Figure 5.27a). More elements must be considered on the model

to capture the complete mechanism of reinforcement.

5.8.2 Simulation of interfaces

As shown in Chapter 4, the fiber grid associates an interface between the asphalt

layers with a lower normal stiffness. The tangential behaviour of this interface

was not experimentally characterized in SolduGri project, however, a parametric

study may show the effect of this mechanism in 4PB tests.

The interfacial behaviour is modelled by the introduction of different elastic prop-
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erties in a thin layer of particles. The interface is represented by the contacts

which cross the fictitious straight lines where the fiber glass grids may be located

(see Figure 5.29a). When submitted to relative tangential displacements δs the

interfaces may present a tangential stress response τ = Fs/(2L × t), where L is

the length of the beam and t its width. The setup in Figure 5.29b is adopted to

identify the interface tangential stiffness

Kt =
τ

δs
=

Fs
2L× tδs

. (5.21)

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠: 𝑖𝑖𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑖𝑖𝑐𝑐𝑐𝑐𝑔𝑔

(a)

𝐿𝐿

𝐹𝐹𝑠𝑠∆d𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖

𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏 𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖
𝑏𝑏𝑖𝑖𝑚𝑚𝑚𝑚𝑙𝑙𝑖𝑖 𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖

(b)

Figure 5.29: (a) Interface representation in DEM 4PB simulations. (b) Geometry

of the shear test adopted in the characterisation of the interface.

Three samples (identical to 4PB ones) are used on the simulations of the shear

test. A shear displacement δs = 0.4mm is imposed. Different contact stiffness

2.0 × 106N/m ≤ kn ≤ 2.0 × 109N/m (for a stiffness ratio kratio = kn/ks = 4.5)

are associated to the particles composing the interfaces. The relation between kn
and the interface shear stiffness Kt is shown in Figure 5.30. The identified trend

is approximately reproduced by the expression

Kt = f(kn) = 2×107×(log10kn)3−5×108×(log10kn)2+5×109×log10kn−2×1010

(5.22)
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Figure 5.30: Relation between interface shear stiffness Kt and interface contact

stiffness kn in logarithm for the shear test presented in Figure 5.29

5.8.2.1 Effect of the interface on the fatigue behaviour of 4PB simu-

lations

The three 4PB samples present a contact modulus Ecmod = 2.0 × 1010 Pa and a

stiffness ratio kr = 4.5, which corresponds to the material properties: Young’s

modulus E = 11GPa and Poisson’s ratio ν = 0.34. The parameter of the damage

model α = −2.0, β = 3.0 and C = 8.7 × 108 are the same of the simulations of

Section 5.7. The interface is supposed to present an elastic behaviour (no damage

is associated during the fatigue tests). A strain amplitude εmax = 150µm/m

is applied in the following simulations. The effect of the shear stiffness of the

interface Kt is presented in Figure 5.31 for 0.47GPa ≤ Kt ≤ 1.63GPa. As it can

be seen in Figure 5.31a, the decrease of Kt induces an increase of the fatigue life.

Parallelly, a general decrease on the stiffness of the beams is associated to the

decrease of Kt, visible by the reduction of the reaction force Fv in Figure 5.31b.

The reduction of stiffness for intact beams (D = 0) visible on the beginning of

the fatigue test is simply associated to the reduction of the moment of inertia

of the beams when Kt is reduced. For Kt → Kt max, the moment of inertia of

the beams is Imax = bh3/12. For Kt → 0, the three layers works separately

in bending, which conducts to a moment of inertia Imin = 2 × b(h/4)3/12 +

b(h/2)3/12 = (5/32)bh3/12. The ratio Imin/Imax = 5/32 ≈ 0.156 corresponds

to the maximum reduction of nearly 84% on initial force Fv, while the observed
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reduction at Kt = 0.47GPa/m is approximately 0.3.

(a) (b)

Figure 5.31: Results of 4PB fatigue tests: (a)Force ratio Fv/Fv0 and (b) force Fv
as a function of the number of cycles NC for different interface shear stiffness Kt.

The shear stiffness Kt has a considerable effect on the distribution of damage

inside a beam under 4PB test. In Figure 5.32, a comparison between 3 different

values of Kt = 1.63GPa/m, 1.14GPa/m, 0.47GPa/m, respectively, stiff, in-

termediary and smooth interfaces is made. Different values of the shear stiffness

induces consequently different distribution of the normal stress and strain for an

intact structure before the fatigue loading (see the details in Figures 5.32a and

5.32c. For stiffer interfaces, the continuity of the strain distribution between each

layer leads to higher values of strain on the top and the bottom of the beam,

which causes faster damage evolution at this points, specially in middle section.

On the other hand, for very smooth interfaces, each beam presents a roughly in-

dependent strain distribution, associated only to the imposed displacements and

moment of inertia. It gives rise to faster damage evolution on the top and bottom

of each layer, with higher values of damage in the middle layer compared to the

other layers, due to its higher height and bending stiffness. The intermediary in-

terface in Figure 5.32b shows the continuous transition between the two extreme

conditions with distributed damage over the middle span of the beam.

5.8.3 Coupled effect of reinforcements and interface on

4PB fatigue simulations

The glass fiber grids play a dual role in 4PB tests: as normal reinforcements

and as tangential interfaces. Each of these aspects are analysed independently

in Sections 5.8.1 and 5.8.2. In this section the interaction between these two

mechanical contributions are analysed by DEM simulations. The reinforcements
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(a)

(b)

(c)

middle layer

Figure 5.32: Map of contact damage D for a stiffness fraction Fv/Fv0 = 0.4 after

4PB fatigue tests for (a) a stiff interface Kt = 1.63GPa/m, (b) an intermediary

interface Kt = 1.14GPa/m and (c) a smooth interface Kt = 0.47GPa/m. In

detail, the scheme of the distribution of normal stress (and strain) for stiff and

smooth interfaces with static load before damage.

are placed inside the middle layer close to the interfaces, as shown in Figure 5.33.

The same samples and the same material properties (asphalt concrete, interface

and reinforcement) from previous sections are adopted.

green contacts: interface
𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓 𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟

Figure 5.33: Interface and the position of the reinforcements in DEM 4PB simu-

lations.
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A comparison between the effect of the reinforcements for a stiff interface

(Kt = 1.63GPa/m) and a smooth interfaces (Kt = 0.47GPa/m) is presented in

Figure 5.34 for an amplitude of εmax = 150µm/m. The stiffness of the interface

effectively dominates the effect over the bending stiffness of the beams, as visible

in Figure 5.28a. The quantity of reinforcements is relatively small to affect the

elastic behaviour of the samples, however, it can affect considerably the fatigue

response under certain conditions. As shown in Figure 5.28, the damage takes

a certain number of cycles NC to reach the reinforcements and activate their

(relatively small) contribution, as presented again in Figure 5.33. For smooth

interfaces, as shown in Figure 5.32c, the damage is concentrated close to the po-

sition of the reinforcements, which explains the activation of the contribution of

the reinforcements practically since the beginning of the fatigue test. A much

stronger effect of the reinforcements is observed, with a fatigue life increased by

almost twice in comparison to the results without them.

(a) (b)

Figure 5.34: Reinforcement effect with stiff and smooth interfaces on the stiffness

factor Fv/Fv0 as a function of NC : (a) 0 ≤ NC ≤ 3×105 and (b) 0 ≤ NC ≤ 2×107

for εmax = 150 µm/m.

5.8.4 Model for the contribution of fiber grids on the fa-

tigue behaviour of 4PB tests

The contribution of each mechanism (reinforcement/interface) is inferred based

on the comparison with experimental results [1]. The precise information about

the cross section of the fiberflass grids simplifies the quantification of their rein-

forcement behaviour. As in Section 5.8.1, a cross section of fiberglass per meter

and per layer Af = 30×4×10−6m2 is adopted on the following simulations. The

interface effect is more uncertain; for this reason 2 different values of interface
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stiffness are analysed on the simulations Kt = 1.48GPa/m, and 1.38GPa/m,

which induces respectively an initial loss of stiffness with respect of the results

without fiberglass grids of 9% and 17% as shown in Table 5.1, which is in the

range of about 10% identified by Arsenie [1].

Table 5.1: Fv0 comparison of (non-)reinforced numerical samples with different

interface Kt. NR: without reinforcement, R: with Reinforcement and interface.

strain level (µm/m) 150 135

Fv0 NR (N) 13658 11985

Kt (GPa/m) 1.48 1.38 1.48 1.38

Fv0 R (N) 12241 11228 10945 10106

Reduction (%) 10 17 9 16

The comparison of the simulation results and experiments is presented for two

different strain levels εmax = 135 µm/m (Figure 5.35a) and εmax = 150 µm/m

(Figure 5.35b). The simulations results represent the average behaviour of 3

samples, whilst experiments average, maximum and minimum envelopes are the

results of the analysis of 6 samples.

(a) (b)

Figure 5.35: Stiffness factor Fv/Fv0 as a function of the number of cycles NC

for 2 different strain levels (a) εmax = 150 µm/m and (b) εmax = 135 µm/m.

Comparison between simulations for different Kt = 1.48GPa and 1.38GPa and

experimental results [1].

Despite the absence of more precise information about the values of interface

stiffness Kt the simulations capture the main trends of the experimental re-

sults. One may observe that experimental average behaviour remains roughly

close to the simulation results with the proposed values of interface stiffness
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1.48GPa < Kt < 1.38GPa. Considering the variation of the experimental re-

sults, the simulations remain globally inside the maximum to minimum envelopes.

The deviation from the experimental results may result from the limitations of

2D structure of the simulations, the position of the interface (assume to be be-

side the fiber grid) and the undamageable nature of the interface in simulations.

The combination of the fiber grid and the resultant interface between them can

roughly reproduce the experimental results, which inspires to the further study

of the interface behaviour.

5.9 Summary of the chapter

A fatigue damage model for asphalt concrete is adapted and implemented in a

discrete element environment. A simple model describing material bulk fatigue

behaviour (phases I and II) associated to the natural disordered micro structure

of the discrete model is shown to be able to describe the entire fatigue behaviour

(phases I, II and III) in a sample scale. Phase III appears as a structure effect

manifested even under uniform boundary conditions, which is characterized by a

loss of homogeneity induced by the concentration of defects and a localization of

the strain.

After a parametric study and the calibration of the discrete model for 4PB tests,

the effect of glass fiber grids is analysed. Two main contributions are evoked

for the effect of fiber grids: as normal reinforcements and as tangential interface.

The results indicate that reinforcements are activated near very damaged points.

The low quantity of fiber is not apparently enough to explain individually the

improvement of the fatigue life observed on the experiments [1]. However, the

fatigue life can be highly extended in spite of the initial stiffness of the sample.

The damage distribution seems to be considerably affected by the interface mech-

anism. It seems to be related to its effects on the distribution of the strain, which

allows a better mobilisation of the middle asphalt layer and consequently improves

the reinforcement behaviour.

Finally, a comparison between simulations and experiments [1] shows the quan-

titative consistency of the model on describing the main trends and the corre-

sponding mechanisms affecting 4PB fatigue tests of asphalt concrete with fiber

glass grids.
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6.1 Conclusions

In this thesis, the mechanical response of the asphalt concrete (AC) under mono-

tonic and fatigue loadings was modelled by discrete element method. Based on

this material behaviour, the effect of fiber glass grids associated to asphalt con-

crete was taken into account and its mechanical contribution was analysed.

As discussed in Chapter 3, the materials were modelled by random packed en-

semble of particles. An inner stress release method was used to induce a nearly

isotropic and homogeneous internal structure with reduced inner voids. A para-

metric study allowed to relate the contact parameters (contact modulus Ecmod
and stiffness ratio kratio) to the material parameters (Young’s modulus E and

Poisson’s ratio ν) in elasticity.

Quasi-brittle behaviour is limited by two rupture mechanisms: one related to the

stress level and the other by the stress intensity factor. These two mechanisms

are usually associated to two material properties, respectively, tensile strength

and toughness. A calibration procedure based on the analysis of the nominal

strength of pre-cracked samples allowed the identification of relation between

these material parameters and the contact parameters: normal and tangential

strengths, and the particle average radius. The control of the parameters of

(quasi-brittle) rupture was verified by the comparison of the results of wedge-

splitting simulations with the prediction of linear elastic fracture mechanics.

In Chapter 4, the limits of a quasi-brittle approach on the description of asphalt

139
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concrete are discussed. The energy released during the (monotonic) rupture of

asphalt concrete (wedge-splitting) samples is much higher than the prediction of

linear elastic fracture mechanics, which is based on the value of the toughness.

This non-linearity associated to the rupture can be explained by the notion of

fracture process zone. In terms of discrete element modelling, a bilinear cohe-

sive contact law was implemented, where the control of the rupture energy was

clearly introduced as a parameter. As a consequence, realistic simulation results

of asphalt concrete were obtained. The subsequent analysis of wedge-splitting

tests with interfaces between asphalt concrete and fiber glass grids has shown

that rupture process is almost integrally dominated by the interface mechanical

properties. The asphalt concrete behaving as a rigid body leads to a simplified

modelling of WST based only on the three parameters: stiffness, strength and

energy release rate of the interface. The comparison of this interface model has

shown good agreement with experimental results.

In Chapter 5, an alternate fatigue model for asphalt concrete was implemented

in discrete element method. A damage contact model describing phases I and

II, associated with the natural disorder of the inner structure of the material in

DEM is shown to be able to describe the whole fatigue behaviour (phases I, II

and III) in a sample scale. Phase III appears as a structure effect manifested

even under uniform boundary conditions, which is characterized by a loss of

homogeneity induced by the concentration of defects and a localization of the

strain. Simulations of 4 point bending tests were then performed to analyse the

influence of the fiber glass grids on the fatigue response of the composite beams.

The damage increments per cycle were defined by the strain amplitude. Alternate

cycles were numerically replaced by a static imposed deflection of the samples,

which accelerated the calculation and allowed the study of the fatigue behaviour

under a realistic high number (105 − 106) of cycles.

A parametric study and the calibration of the 3 fatigue parameters of the discrete

model for 4PB tests has shown the capabilities of the model on reproducing

experimental results of asphalt concrete samples. Thus the effects of the fiber

grids were analysed from two points of views: as normal reinforcements and as

interfaces. The normal reinforcements were represented by complementary elastic

contacts at the same position of the fiber grids and presenting the same stiffness.

The advantage of this bidimensional approach is to allow a free propagation

of defects through the fiber grid (as it happens in reality). The interface was

characterized by a thin layer of particles with lower elastic stiffness to induce
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relative sliding between two adjacent layers. The normal contribution of this layer

was neglectful considering the low cross section of the interface layer. The effect

of each of the mechanisms was first separately quantified. The simulation results

indicate that reinforcements are activated near very damaged points, where the

strain is localized. The low quantity of fiber is not apparently enough to explain

individually the improvement of the fatigue life observed in the experiments [1].

However, the sliding induced by the interface may cause a redistribution of the

normal strain with a reduction of maximum values, which extends the fatigue life

of the whole beam in spite of its initial stiffness. Considering the coupled effect

of the reinforcements and the interface, the redistribution of the strain has the

consequence of increasing the damage near the position of the reinforcements,

which improves the efficiency of the effect of the reinforcements. Finally, the

comparison between simulations and experiments has shown the consistency of

the model and the trends indicated by the simulations.

6.2 Perspectives

The numerical models developed and discussed in this thesis have indicated some

trends, clarified some experimental results and instigate some questions.

For all calculations, the granularity of the simulated materials was kept the same.

In Chapter 3, the effect of the average particle size was raised in the relation be-

tween the tensile strength and the toughness of a quasi-brittle material. As shown

in Appendix B the quasi-brittle behaviour may also depend on the transition be-

tween the rupture mechanisms based on strength and toughness, characterized by

the parameter r. A physical explanation for the size effects in quasi-brittle rup-

ture may emerge from the analysis of the effect of the granularity on the rupture

of pre-cracked samples.

The damage models were oriented to simulate asphalt concrete behaviour and its

interactions with glass fiber grids. However, the approaches in monotonic and

repeated loads can be extended to other (geo)materials and other (geo)grids.

Some important effects related to the mechanical behaviour of asphalt concrete

were not explicitly isolated. An important aspect to be included on the modeliza-

tion is the identification of the elastic and viscous contributions on the material

response. The fatigue tests are usually conducted at relatively high frequencies

which affects the material response. The temperature is also a parameter to be
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considered in future, which affects the viscosity of the asphalt in laboratory and

in real structures.

The fatigue tests associated to asphalt concrete samples are usually strain con-

trolled. The reinforcement behaviour of the fiber grid seems to be activated at

elevated levels of damage and consequently low levels of sample stiffness. Stress

controlled tests may eventually be able to show more clearly the contribution of

the fiber grid at residual levels of stiffness.

The fiber grid properties were considered to be perfectly elastic in all calcula-

tions. The grid itself presents a roughly constant stiffness in fatigue tests with

strain levels comparable to the ones of the bending test that were presented [121].

However, the behaviour of the connection between the fiber glass and the asphalt

concrete is not forcedly independent on the number of cycles. Repeated cycles

pull out tests may give important information about the fatigue behaviour of this

connection. The normal and, specially, the tangential behaviour of the interface

asphalt concrete/grids under fatigue is also an important future input for the

modelizations of composite beams. An interface which presents a considerable

loss of stiffness during the tests may contribute very differently than proposed

by the numerical results of this work. Despite all the present uncertainty with

respect to the characterization of the interfaces, the control of the properties of

these thin layers seems to be a possible path for the optimization of the fatigue

performance of structural elements in asphalt concrete.



Appendix A

Discrete element method

DEM was originally developed to model granular systems [123–125]. Afterwards,

it is used to study the fracture of quasi-brittle materials such as concrete and rocks

[113, 126, 127]. Materials are regarded as assemblies of particles and contacts, as

shown in Figure 3.1 (a) for a two-dimension assembly. Particles are interacted

by contact forces and their motion follow Newton’s laws. Particle motion and

contact force update in each time-step, which makes the numerical calculation.

A.1 Contact detection and activation

The contacts are detected automatically in each time-step. PFC imposes a kine-

matic constraint on the time-step in order to guarantee that contacts are created

between particles (or walls) prior to the cycle that forces develop [120]. The

contact activation is operated in two steps. Firstly, the particle proximity (the

geometry distance) is detected and compared with the reference critical proximity

δrp, beyond which value the generation of contact is impossible, i.e. the contact

is potential to be created within this particle distance of critical proximity δrp.

Secondly, the contact activation is done within the defined contact gap agap. For

the linear contact without bond, the agap value equals to the reference gap, for

the bonded contact, the agap value can be defined, which is larger than reference

gap (rgap) and smaller than the critical proximity δrp.

A.2 Energy dissipation and Damping

Energy dissipation may occur due to three different mechanisms: friction at con-

tacts, dissipation at contacts (e.g., viscous damping, inelastic contact laws, etc.)

or dissipation introduced in the equations of motion of balls and/or clumps. The

latter item is called local damping. Local damping acts on each ball, while viscous

damping acts at each contact.
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A.2.0.1 Global damping

Global damping applies a damping force, with magnitude proportional to unbal-

anced force, to each ball, as expressed in Equation A.1.

~fd = −α | ~fi | sign(vi), (A.1)

sign(y) =


1 (if y > 0)

−1 (if y < 0)

0 (if y = 0)

(A.2)

where α is the local damping factor, | ~fi | is the norm of the vector, and ~fi =
~fn,i + ~fs,i.

Global damping is usually set to a large value (0.7 as indicated and used in

[97,106]) to accelerate convergence toward a stable configuration for quasi-static

simulations. This value should be tuned down for dynamic analyses, or even set

to zero. Refer to the manual [120] for more information.

A.2.0.2 Viscous damping

Viscous damping adds normal and shear dashpots at each contact, which is given

by the following equation:

Di = ci | vi |, (A.3)

where ci is the critical damping constant, which is given by:

ci = βci,crit = 2β
√
mki, (A.4)

where β is the critical damping ratio and it can be directly set in PFC by user,

and ci,crit is the critical damping constant.

A.2.0.3 Usage

For compact assemblies, global damping, using the default parameter setting, is

the most appropriate form to establish equilibrium and to conduct quasi-static

deformation simulations. When a dynamic simulation of compact assemblies is
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required, the local damping coefficient should be set to a low value appropriate

to energy dissipation of dynamic waves. Alternatively, viscous damping should

be used. For problems involving free flight of particles and/or impacts between

particles, global damping is inappropriate, and viscous contact damping should

be used.

It should be noticeable that, due to the quasi-static process in this thesis, all the

simulations performed in this thesis adopted the global damping (α = 0.7) as

presented by [120], so that the particles’ acceleration is heavily damped.

A.3 Time-step determination

The DEM solution requires a valid, finite time-step, which should be small enough

to keep stability of the model, and large enough for the acceptable computing

time. For one contact, the critical time-step is calculated by tcrit =
√

m
ktrans

or

tcrit =
√

I
krot

, where m is the mass, I is the inertia of the particle, ktrans and

krot are respectively the translational and rotational stiffness. The critical time-

step for the whole DEM assembly is determined to by the smallest tcrit of all the

contacts.

A.4 Stabilisation

For a simulation under (quasi-)static condition, the model requires the stable

state of force distribution or particle equilibrium, which means that enough time

or time-steps are required in order to reach such a balance state or equilibrium.

For a quasi-static load, the method of stabilisation is low loading rate or small

time-step. It should be noted the critical time-step is in fact the maximum time-

step to keep a stable state of model, but may not small enough for the quasi-static

load.

In the simulation with requirement of extreme equilibrium, the stabilisation

within a certain tolerance should be worked out with all boundary condition fixed

unmovable, taking the stress control in model generation (See Section 3.3.1) as

an example.
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A.5 Generator random seed

In the randomly generated model, the graded particles are randomly created

within the assigned domain. Therefore, their locations and sizes are affected by

the state of the random-number generator. The random-number generator itself

is affected by the random seeds. The previous literatures [120] used a default

random seed of 10,000 and the value specified should be of the same magnitude

as the default value.



Appendix B

Energetic model of size effects in

quasi-brittle rupture

For an intact structure, the criterion of material strength can indicate the crack

propagation. On the other hand, the fracture toughness criterion can work on

the prediction of large crack propagation. When the crack size is between these

two situations, the prediction of rupture behaviour is an important research issue.

Figure B.1 presents a plate with crack length a and finite width w, which suffered

a remote uniform stress σ.

w

Figure B.1: Plate subjected to uniform tensile strength σ (Modified from [45]).

In Gao’s study, the size effect [70,110] and boundary effect [128–130], were com-

bined and a general formula to predict the crack propagation for different crack

sizes was presented as follows,

[
HασN
1.12ft

]2r
+

(
G

Gc

)r
= 1, (B.1)
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where Hα is material geometry factor, σN is the nominal failure stress, ft is the

tensile strength of material, G is the energy release rate, Gc is the critical energy

release rate. After the reasonable derivation, Equation B.1 can be expressed as

follows,

[
dG/da

max dG/da

]2r
+

(
G

Gc

)r
= 1. (B.2)

Figure B.2 presents the results of the energetic method in successfully description

of the transition from the material strength to the LEFM criterion as crack length

increases.

Figure B.2: Nominal strength σN as a function of crack length a for different r

(Modified from [45]).
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Implementation of the cohesive

model in PFC

The proposed cohesive traction separation law (Section 4.3) is implemented in

PFC 5.0 as a user-defined subroutine [120]. It is modified from an intrinsic

contact linearcbond model in PFC. The source code of the force displacement

law has been modified with C + + and then compiled as Dynamic Link Library

(DLL) file so that PFC 5.0 can invoke it.

The logic flow for the calculation of damage and force is described in Figure C.1

for each contact at each time step: - The value of θ is obtained from the present

force components by θ = arctan(fn/fs) and;

- K is obtained by Equation 4.9.

- The value of δ, δe and δmax are taken into account on the calculation of the

damage factor D (Equation 4.14) until the complete failure of contact (D = 1).
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Obtain basic parameters of each contact:
𝑓𝑓𝑟𝑟 𝑟𝑟 = 𝑛𝑛, 𝑠𝑠 → 𝜃𝜃

K, σ0

Calculate displacement items:
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿𝑒𝑒 and 𝛿𝛿

Calculate contact force:
𝑓𝑓𝑟𝑟 𝑟𝑟 = 𝑛𝑛, 𝑠𝑠

Contact breaks

Next 
time-step

𝐷𝐷 = 0

𝛿𝛿 < 𝛿𝛿𝑒𝑒 𝛿𝛿𝑒𝑒 < 𝛿𝛿 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷

𝛿𝛿 > 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

Figure C.1: Scheme of the algorithm for cohesive contact model implemented in

PFC 5.0



Appendix D

Interface model applied in a

wedge-splitting test without

interface

The capacity of the interface model to capture the rupture mechanism in wedge-

splitting geometry might go beyond the initial assumptions.

As an exemple, the WST results of [94] presented in Section 4.2.1 are analyzed

by means of the interface model (IM), despite the fact the samples do not present

any interface. In Figure D.1 the experimental results are compared to IM and to

a complex bi-phasic DEM (MDEM) proposed by [94].

The IM geometry has been adjusted in terms of the height H = 110mm, width

wi = 4mm, thickness t = 50mm and initial crack a = 27.5mm to approximate

the experiment’s geometry shown in Figure 4.1a. The IM parameters: stiffness

Ei/wi = 3.4× 1011Pa/m, tensile strength Σt
i = 2.48MPa and energy release rate

Gi = 238N/m are adopted on the approximations. These values are very close to

the parameters identified by the authors (Σt = 2.81MPa and GIC = 272N/m).

Despite the simplicity of the assumptions of IM, the shape of the curve Fh ×
δh follows apparently better the experimental results than the complex MDEM

proposed by the authors [94].
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Appendix D. Interface model applied in a wedge-splitting test without

interface

Figure D.1: Opening force Fh as a funtion of the displacement δh of WST

from [94]. Experiments are compared to discrete element simulations from the

authors (MDEM) and to IM.
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Résumé 
L’effet du renforcement de la grille en fibre de verre sur le béton bitumineux est étudié 
numériquement par la méthode des éléments discrets. En ce qui concerne les matériaux quasi-
fragiles, l’élasticité de la modélisation est calibrée et le comportement à la rupture est vérifié par une 
mécanique de la rupture élastique Le comportement et la défaillance de l’interface prédominent 
dans la fracture des échantillons, ce qui donne lieu à un modèle d’interface simplifié. L’étalonnage 
des paramètres sur le module de Young et le coefficient de Poisson est effectué entre le modèle 
d’interface et la méthode des éléments discrets. Grâce à l'ajustement avec les résultats 
expérimentaux, la résistance de l'interface et le taux de libération d'énergie sont également identifiés 
par la méthode des éléments discrets et un modèle d'interface simplifié. En comparaison avec la 
mécanique de la rupture élastique linéaire, la rupture de l'interface présente une plus grande 
quantité du taux de libération d'énergie. La force et le taux de libération d'énergie sont réduits en 
raison de l'application de la grille en fibre de verre. Le comportement en fatigue est étudié à l’aide 
de simulations d’essais de fatigue en flexion en 4 points. Le modèle de fatigue de Bodin 'L2R' est 
adapté à la méthode des éléments discrets. L'effet de chaque paramètre sur l'évolution des 
dommages est étudié séparément. L’effet d’interface est observé lors de la prolongation de la 
résistance à la fatigue de toutes les phases. Les essais monotoniques et les essais de fatigue 
indiquent qu’une bonne liaison entre deux couches de béton bitumineux est importante pour la 
résistance de rupture. 

Mots-clés: béton bitumineux; renforcement par des grille en fibre de verre; rupture; la vie de 
fatigue; modélisation d'éléments discrets 

 

Abstract 
The effect of fiberglass grid reinforcement in asphalt concrete is studied numerically by discrete 
element method in this work. Firstly, concerning on the quasi-brittle material, the elasticity of 
modelling are calibrated, and the rupture behaviour is verified with linear elastic fracture mechanics. 
Then the simulations of wedge splitting tests are performed under monotonic load. The interface 
elasticity and failure dominate in the fracture propagation of samples, which gives rise to a simplified 
interface model. The parameter calibration on Young’s modulus and Poisson’s ratio is conducted 
between interface model and discrete element method. Through the fitting with experimental results, 
the interface strength and energy release rate are also identified by discrete element method and 
simplified interface model. Comparing with linear elastic fracture mechanics, the interface rupture 
presents more released energy. The strength and energy release rate are reduced because of the 
application of the fiber glass grid. The fatigue behaviour is studied by simulations of 4-point bending 
fatigue tests. Bodin’s fatigue model 'L2R' is adapted with discrete element method. The effect of 
each parameter on the damage evolution is studied respectively. The fiber glass grid helps to extent 
the fatigue life mainly after the fatigue cracks cross the grid. The interface effect is observed on 
prolonging the fatigue life of all the phases. From both monotonic and fatigue tests, it indicates that 
good bonding between two asphalt concrete layers is important to the resistance of rupture.  

Keywords: asphalt concrete; fiber glass grid reinforcement; rupture; fatigue life; discrete 
element modelling 
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