A. Agmon and B. W. Connors, Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro, Neuroscience, vol.41, pp.365-379, 1991.

I. Arnoux and E. Audinat, Fractalkine Signaling and Microglia Functions in the Developing Brain, Neural Plasticity, vol.2015, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02336174

N. J. Bannister, Developmental Changes in AMPA and Kainate Receptor-Mediated Quantal Transmission at Thalamocortical Synapses in the Barrel Cortex, Journal of Neuroscience, vol.25, pp.5259-5271, 2005.

M. L. Bennett, F. C. Bennett, S. A. Liddelow, B. Ajami, J. L. Zamanian et al., New tools for studying microglia in the mouse and human CNS, Proceedings of the National Academy of Sciences, vol.113, pp.1738-1746, 2016.

P. Berghuis, M. B. Dobszay, K. M. Sousa, G. Schulte, P. P. Mager et al., Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons, European Journal of Neuroscience, vol.20, pp.1290-1306, 2004.

M. Brecht and B. Sakmann, Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex, The Journal of Physiology, vol.543, pp.49-70, 2002.

A. Buiting and N. V. Rooijen, Liposome Mediated Depletion of Macrophages: An Approach for Fundamental Studies, Journal of Drug Targeting, vol.2, pp.357-362, 1994.

O. Butovsky, M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J. Lanser et al., Identification of a Unique TGF-? Dependent Molecular and Functional Signature in Microglia, Nature neuroscience, vol.17, pp.131-143, 2014.

Y. Cantaut-belarif, M. Antri, R. Pizzarelli, S. Colasse, I. Vaccari et al., Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord, The Journal of Cell Biology, vol.216, pp.2979-2989, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680683

Z. Chen, W. Jalabi, W. Hu, H. Park, J. T. Gale et al., Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain, Nature Communications, vol.5, 2014.

R. Chittajallu and J. Isaac, Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci, Nature neuroscience, vol.13, pp.1240-1248, 2010.

S. Chung, J. Jeong, S. Ko, X. Yu, Y. Kim et al., Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs, Cell Reports, vol.19, pp.2707-2717, 2017.

J. Coull, S. Beggs, D. Boudreau, D. Boivin, M. Tsuda et al., BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain, Nature, vol.438, pp.1017-1021, 2005.

S. J. Cruikshank, T. J. Lewis, and B. W. Connors, Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex, Nature Neuroscience, vol.10, pp.462-468, 2007.

C. L. Cunningham, V. Martinez-cerdeno, and S. C. Noctor, Microglia Regulate the Number of Neural Precursor Cells in the Developing Cerebral Cortex, Journal of Neuroscience, vol.33, pp.4216-4233, 2013.

M. I. Daw, H. L. Scott, and J. Isaac, Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles, Molecular and cellular neurosciences, vol.34, pp.493-502, 2007.

E. Hirbec, H. Noristani, H. N. Perrin, and F. E. , Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Frontiers in Aging Neuroscience 9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01998678

E. Monica, R. P. , N. Allison, R. , K. Maya et al., Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain, Neuron, vol.82, pp.380-397, 2014.

L. Gabernet, S. P. Jadhav, D. E. Feldman, M. Carandini, and M. Scanziani, Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition, Neuron, vol.48, pp.315-327, 2005.

Z. Haimon, A. Volaski, J. Orthgiess, S. Boura-halfon, D. Varol et al., Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies, Nature Immunology, vol.19, pp.636-644, 2018.

E. G. Harlow, S. M. Till, T. A. Russell, L. S. Wijetunge, P. Kind et al., Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice, Neuron, vol.65, pp.385-398, 2010.

S. E. Hickman, N. D. Kingery, T. Ohsumi, M. Borowsky, L. Wang et al., The Microglial Sensome Revealed by Direct RNA Sequencing, Nature neuroscience, vol.16, pp.1896-1905, 2013.

M. E. Hildebrand, J. Xu, A. Dedek, Y. Li, A. S. Sengar et al., Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing, Cell Reports, vol.17, pp.2753-2765, 2016.

M. Hoshiko, I. Arnoux, E. Avignone, N. Yamamoto, and E. Audinat, Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.32, pp.15106-15111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02336280

Z. J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales et al., BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex, Cell, vol.98, pp.739-755, 1999.

M. Inan and M. C. Crair, Development of Cortical Maps: Perspectives From the Barrel Cortex, The Neuroscientist, vol.13, pp.49-61, 2007.

J. Isaac, M. C. Crair, R. A. Nicoll, and R. C. Malenka, Silent Synapses during Development of Thalamocortical Inputs, Neuron, vol.18, pp.269-280, 1997.

C. Itami, F. Kimura, T. Kohno, M. Matsuoka, M. Ichikawa et al., Brainderived neurotrophic factor-dependent unmasking of "silent" synapses in the developing mouse barrel cortex, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.13069-13074, 2003.

C. Koelbl, M. Helmstaedter, J. Lübke, and D. Feldmeyer, A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity, vol.25, pp.713-725, 2015.

K. J. Liang, J. E. Lee, Y. D. Wang, W. Ma, A. M. Fontainhas et al., Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling, Investigative Opthalmology & Visual Science, vol.50, p.4444, 2009.

H. Lu, E. Gonzalez, and M. C. Crair, Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition, Neuron, vol.32, pp.619-634, 2001.

J. L. Mar??-teva, I. Dusart, C. Colin, A. Gervais, N. Van-rooijen et al., Microglia Promote the Death of Developing Purkinje Cells, Neuron, vol.41, pp.535-547, 2004.

S. Marty, M. Da, and B. Berninger, Neurotrophins and activity-dependent plasticity of cortical interneurons, Trends in Neurosciences, vol.20, pp.198-202, 1997.

A. Miyamoto, H. Wake, A. W. Ishikawa, K. Eto, K. Shibata et al., Microglia contact induces synapse formation in developing somatosensory cortex, Nature Communications, vol.7, p.12540, 2016.

C. Mosser, S. Baptista, I. Arnoux, and E. Audinat, Microglia in CNS development: Shaping the brain for the future, Progress in Neurobiology, vol.149, pp.1-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336084

L. H. Nelson and K. M. Lenz, Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats, Behavioural Brain Research, vol.316, pp.279-293, 2017.

R. C. Paolicelli, G. Bolasco, F. Pagani, L. Maggi, M. Scianni et al., Synaptic pruning by microglia is necessary for normal brain development, Science, vol.333, pp.1456-1458, 2011.

P. Christopher, N. , Y. G. Ninan, I. , S. Jeffrey et al., Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor, Cell, vol.155, pp.1596-1609, 2013.

C. Petersen, The Functional Organization of the Barrel Cortex, Neuron, vol.56, pp.339-355, 2007.

L. Pont-lezica, W. Beumer, S. Colasse, H. Drexhage, M. Versnel et al., Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation, European Journal of Neuroscience, vol.39, pp.1551-1557, 2014.

M. Rios, G. Fan, C. Fekete, J. Kelly, B. Bates et al., Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity, Molecular Endocrinology, vol.15, pp.1748-1757, 2001.

J. T. Rogers, J. M. Morganti, A. D. Bachstetter, C. E. Hudson, M. M. Peters et al., CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.31, pp.16241-16250, 2011.

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three Groups of Interneurons Account for Nearly 100% of Neocortical GABAergic Neurons, Developmental neurobiology, vol.71, pp.45-61, 2011.

D. P. Schafer, E. K. Lehrman, A. G. Kautzman, R. Koyama, A. R. Mardinly et al., Microglia sculpt postnatal neural circuits in an activity and complementdependent manner, Neuron, vol.74, pp.691-705, 2012.

Y. Shigemoto-mogami, K. Hoshikawa, J. E. Goldman, Y. Sekino, and K. Sato, Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone, Journal of Neuroscience, vol.34, pp.2231-2243, 2014.

P. Squarzoni, G. Oller, G. Hoeffel, L. Pont-lezica, P. Rostaing et al., Microglia modulate wiring of the embryonic forebrain, Cell Reports, vol.8, pp.1271-1279, 2014.

J. F. Staiger, Functional Diversity of Layer IV Spiny Neurons in Rat Somatosensory Cortex: Quantitative Morphology of Electrophysiologically Characterized and Biocytin Labeled Cells, Cerebral Cortex, vol.14, pp.690-701, 2004.

Q. Sun, Z. Zhang, J. Sun, A. S. Nair, D. P. Petrus et al., Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex, Frontiers in Cellular Neuroscience, vol.8, 2014.

T. Trang, S. Beggs, X. Wan, and M. W. Salter, P2X4-Receptor-Mediated Synthesis and Release of Brain-Derived Neurotrophic Factor in Microglia Is Dependent on Calcium and p38-Mitogen-Activated Protein Kinase Activation, Journal of Neuroscience, vol.29, pp.3518-3528, 2009.

M. Ueno, Y. Fujita, T. Tanaka, Y. Nakamura, J. Kikuta et al., Layer V cortical neurons require microglial support for survival during postnatal development, Nature neuroscience, vol.16, pp.543-551, 2013.

L. Ulmann, J. P. Hatcher, J. P. Hughes, S. Chaumont, P. J. Green et al., Up-Regulation of P2X4 Receptors in Spinal Microglia after Peripheral Nerve Injury Mediates BDNF Release and Neuropathic Pain, Journal of Neuroscience, vol.28, pp.11263-11268, 2008.

J. W. Vanryzin, S. J. Yu, M. Perez-pouchoulen, and M. M. Mccarthy, Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats, 2016.

S. Wakselman, C. Bechade, A. Roumier, D. Bernard, A. Triller et al., Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor, Journal of Neuroscience, vol.28, pp.8138-8143, 2008.

D. Xenos, M. Kamceva, S. Tomasi, J. A. Cardin, M. L. Schwartz et al., Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior, Cerebral Cortex, pp.1-15, 2017.

N. Yamamoto and K. Hanamura, Formation of the Thalamocortical Projection Regulated Differentially by BDNF-and NT-3-Mediated Signaling, Reviews in the Neurosciences, vol.16, 2005.

W. Beumer, S. M. Gibney, R. C. Drexhage, L. Pont-lezica, J. Doorduin et al., The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes, J Leukoc Biol, vol.92, pp.959-975, 2012.

A. J. Borgdorff, J. F. Poulet, and C. C. Petersen, Facilitating sensory responses in developing mouse somatosensory barrel cortex, J Neurophysiol, vol.97, pp.2992-3003, 2007.

S. Butt, J. A. Stacey, Y. Teramoto, and C. Vagnoni, A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal cerebral cortex, Current Opinion in Neurobiology, vol.43, pp.149-155, 2017.

S. Canetta, S. Bolkan, N. Padilla-coreano, L. J. Song, R. Sahn et al., Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons, Molecular Psychiatry, vol.21, pp.956-968, 2016.

G. B. Choi, Y. S. Yim, H. Wong, S. Kim, H. Kim et al., The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring, Science, vol.351, pp.933-939, 2016.

C. L. Cunningham, V. Martinez-cerdeno, and S. C. Noctor, Microglia Regulate the Number of Neural Precursor Cells in the Developing Cerebral Cortex, Journal of Neuroscience, vol.33, pp.4216-4233, 2013.

A. A. Curley, D. Arion, D. W. Volk, J. K. Asafu-adjei, A. R. Sampson et al., Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell typespecific features, Am J Psychiatry, vol.168, pp.921-929, 2011.

R. Hanamsagar and S. D. Bilbo, Environment matters: microglia function and dysfunction in a changing world, Current Opinion in Neurobiology, vol.47, pp.146-155, 2017.

T. Hashimoto, D. W. Volk, S. M. Eggan, K. Mirnics, J. N. Pierri et al., Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia, J Neurosci, vol.23, pp.6315-6326, 2003.

T. K. Hensch, Critical period plasticity in local cortical circuits, Nat Rev Neurosci, vol.6, pp.877-888, 2005.

S. Hippenmeyer, E. Vrieseling, M. Sigrist, T. Portmann, C. Laengle et al., A developmental switch in the response of DRG neurons to ETS transcription factor signaling, PLoS Biol, vol.3, p.159, 2005.

V. Jacob, L. Estebanez, L. Cam, J. Tiercelin, J. Y. Parra et al., The Matrix: a new tool for probing the whisker-to-barrel system with natural stimuli, J Neurosci Methods, vol.189, pp.65-74, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502608

C. Koelbl, M. Helmstaedter, J. Lübke, and D. Feldmeyer, A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity, vol.25, pp.713-725, 2015.

P. Li and M. M. Huntsman, Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons, Neuroscience, vol.265, pp.60-71, 2014.

D. Mattei, A. Ivanov, C. Ferrai, P. Jordan, D. Guneykaya et al., Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment, Transl Psychiatry, vol.7, p.1120, 2017.

C. Mosser, S. Baptista, I. Arnoux, and E. Audinat, Microglia in CNS development: Shaping the brain for the future, Progress in Neurobiology, vol.149, pp.1-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336084

S. B. Nelson and V. Valakh, Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders, vol.87, pp.684-698, 2015.

P. H. Patterson, Maternal infection and immune involvement in autism, Trends Mol Med, vol.17, pp.389-394, 2011.

A. Roumier, O. Pascual, C. Béchade, S. Wakselman, J. Poncer et al., Prenatal Activation of Microglia Induces Delayed Impairment of Glutamatergic Synaptic Function, PLoS ONE, vol.3, p.2595, 2008.

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three Groups of Interneurons Account for Nearly 100% of Neocortical GABAergic Neurons, Developmental neurobiology, vol.71, pp.45-61, 2011.

N. Shigematsu, A. Nishi, and T. Fukuda, Gap Junctions Interconnect Different Subtypes of Parvalbumin-Positive Interneurons in Barrels and Septa with Connectivity Unique to Each Subtype, 2018.

S. Smolders, S. Kessels, S. Smolders, F. Poulhes, O. Zelphati et al., Magnetofection is superior to other chemical transfection methods in a microglial cell line, Journal of Neuroscience Methods, vol.293, pp.169-173, 2018.

P. Squarzoni, G. Oller, G. Hoeffel, L. Pont-lezica, P. Rostaing et al., Microglia modulate wiring of the embryonic forebrain, Cell Reports, vol.8, pp.1271-1279, 2014.

P. Squarzoni, G. Oller, G. Hoeffel, L. Pont-lezica, P. Rostaing et al., Microglia modulate wiring of the embryonic forebrain, Cell Rep, vol.8, pp.1271-1279, 2014.

M. S. Thion and S. Garel, On place and time: microglia in embryonic and perinatal brain development, Current Opinion in Neurobiology, vol.47, pp.121-130, 2017.

A. Waisman, F. Ginhoux, M. Greter, and J. Bruttger, Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems, Trends Immunol, vol.36, pp.625-636, 2015.

A. Agmon and B. W. Connors, Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro, Neuroscience, vol.41, pp.365-379, 1991.

K. L. Allendoerfer and C. J. Shatz, The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex, Annu Rev Neurosci, vol.17, pp.185-218, 1994.

C. Allène, A. Cattani, J. B. Ackman, P. Bonifazi, L. Aniksztejn et al., Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex, Journal of Neuroscience, vol.28, pp.12851-12863, 2008.

F. Alliot, E. Lecain, B. Grima, and B. Pessac, Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain, Proc Natl Acad Sci, vol.88, pp.1541-1545, 1991.

S. K. Amateau and M. M. Mccarthy, Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior, Nat Neurosci, vol.7, pp.643-650, 2004.

J. M. Antony, A. Paquin, S. L. Nutt, D. R. Kaplan, and F. D. Miller, Endogenous microglia regulate development of embryonic cortical precursor cells, J Neurosci Res, vol.89, pp.286-298, 2011.

A. Araque, G. Carmignoto, P. G. Haydon, S. Oliet, R. Robitaille et al., Gliotransmitters Travel in Time and Space, vol.81, pp.728-739, 2014.

B. Arnò, F. Grassivaro, C. Rossi, A. Bergamaschi, V. Castiglioni et al., Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex, Nature Communications, vol.5, 2014.

I. Arnoux and E. Audinat, Fractalkine Signaling and Microglia Functions in the Developing Brain, Neural Plasticity, vol.2015, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02336174

I. Arnoux, M. Hoshiko, L. Mandavy, E. Avignone, N. Yamamoto et al., Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory "Barrel" cortex: Microglia phenotype during the normal development of CNS, Glia, vol.61, pp.1582-1594, 2013.

I. Arnoux, M. Hoshiko, S. Diez, A. Audinat, and E. , Paradoxical effects of minocycline in the developing mouse somatosensory cortex, Glia, vol.62, pp.399-410, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02336232

R. Aronoff and C. C. Petersen, Layer, column and cell-type specific genetic manipulation in mouse barrel cortex, Front Neurosci, vol.2, pp.64-71, 2008.

M. C. Ashby and J. Isaac, Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines, Neuron, vol.70, pp.510-521, 2011.

K. Ashwell, Development of microglia in the albino rabbit retina, J Comp Neurol, vol.287, pp.286-301, 1989.

K. Ashwell, Microglia and cell death in the developing mouse cerebellum, Brain Res Dev Brain Res, vol.55, pp.219-230, 1990.

K. Askew, K. Li, A. Olmos-alonso, F. Garcia-moreno, Y. Liang et al., Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain, Cell Reports, vol.18, pp.391-405, 2017.

E. Avignone, L. Ulmann, F. Levavasseur, F. Rassendren, and E. Audinat, Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.28, pp.9133-9144, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02441375

R. Babij, D. Garcia, and N. , Neuronal activity controls the development of interneurons in the somatosensory cortex, Front Biol (Beijing), vol.11, pp.459-470, 2016.

A. Balkowiec and D. M. Katz, Activity-Dependent Release of Endogenous Brain-Derived Neurotrophic Factor from Primary Sensory Neurons Detected by ELISAIn Situ, Journal of Neuroscience, vol.20, pp.7417-7423, 2000.

N. J. Bannister, Developmental Changes in AMPA and Kainate Receptor-Mediated Quantal Transmission at Thalamocortical Synapses in the Barrel Cortex, Journal of Neuroscience, vol.25, pp.5259-5271, 2005.

E. C. Beattie, D. Stellwagen, W. Morishita, J. C. Bresnahan, B. K. Ha et al., Control of synaptic strength by glial TNFalpha, vol.295, pp.2282-2285, 2002.

C. Bechade, Y. Cantaut-belarif, and A. Bessis, Microglial control of neuronal activity, Front Cell Neurosci, vol.7, p.32, 2013.

B. Benedetti, V. Matyash, and H. Kettenmann, Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex: Astrocytes inhibit cortical neurons, The Journal of Physiology, vol.589, pp.1159-1172, 2011.

M. L. Bennett, F. C. Bennett, S. A. Liddelow, B. Ajami, J. L. Zamanian et al., New tools for studying microglia in the mouse and human CNS, Proceedings of the National Academy of Sciences, vol.113, pp.1738-1746, 2016.

G. Benshalom and E. L. White, Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex, The Journal of Comparative Neurology, vol.253, pp.303-314, 1986.

P. Berghuis, M. B. Dobszay, K. M. Sousa, G. Schulte, P. P. Mager et al., Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons, European Journal of Neuroscience, vol.20, pp.1290-1306, 2004.

A. Bergon, R. Belzeaux, M. Comte, F. Pelletier, M. Hervé et al., CX3CR1 is dysregulated in blood and brain from schizophrenia patients, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01575079

, Schizophr Res, vol.168, pp.434-443

K. L. Bernardo and T. A. Woolsey, Axonal trajectories between mouse somatosensory thalamus and cortex, J Comp Neurol, vol.258, pp.542-564, 1987.

J. Y. Bertrand, A. Jalil, M. Klaine, S. Jung, A. Cumano et al., Three pathways to mature macrophages in the early mouse yolk sac, Blood, vol.106, pp.3004-3011, 2005.

W. Beumer, S. M. Gibney, R. C. Drexhage, L. Pont-lezica, J. Doorduin et al., The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes, J Leukoc Biol, vol.92, pp.959-975, 2012.

P. Bezzi, M. Domercq, L. Brambilla, R. Galli, D. Schols et al., CXCR4-activated astrocyte glutamate release via TNF?: amplification by microglia triggers neurotoxicity, Nature Neuroscience, vol.4, pp.702-710, 2001.

A. R. Bialas and B. Stevens, TGF-? Signaling Regulates Neuronal C1q Expression and Developmental Synaptic Refinement, Nature neuroscience, vol.16, pp.1773-1782, 2013.

K. Biber, H. Neumann, K. Inoue, and H. Boddeke, Neuronal 'On' and 'Off' signals control microglia, Trends in Neurosciences, vol.30, pp.596-602, 2007.

K. Blinzinger and G. Kreutzberg, Displacement of synaptic terminals from regenerating motoneurons by microglial cells, Zeitschrift für Zellforschung und mikroskopische Anatomie, vol.85, pp.145-157, 1948.

D. Boche, V. H. Perry, and J. A. Nicoll, Review: activation patterns of microglia and their identification in the human brain, Neuropathol Appl Neurobiol, vol.39, pp.3-18, 2013.

P. Boksa, Effects of prenatal infection on brain development and behavior: a review of findings from animal models, Brain Behav Immun, 2010.

P. Bonifazi, M. Goldin, M. A. Picardo, I. Jorquera, A. Cattani et al., GABAergic hub neurons orchestrate synchrony in developing hippocampal networks, Science, vol.326, pp.1419-1424, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00483216

A. J. Borgdorff, J. F. Poulet, and C. C. Petersen, Facilitating sensory responses in developing mouse somatosensory barrel cortex, J Neurophysiol, vol.97, pp.2992-3003, 2007.

C. Boucsein, H. Kettenmann, and C. Nolte, Electrophysiological properties of microglial cells in normal and pathologic rat brain slices, Eur J Neurosci, vol.12, pp.2049-2058, 2000.

M. Brecht and B. Sakmann, Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex, The Journal of Physiology, vol.543, pp.49-70, 2002.

J. Brockhaus, S. Ilschner, R. B. Banati, and H. Kettenmann, Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice, 1993.

, J Neurosci, vol.13, pp.4412-4421

G. C. Brown and J. J. Neher, Microglial phagocytosis of live neurons, Nature Reviews Neuroscience, vol.15, pp.209-216, 2014.

A. Buiting and N. V. Rooijen, Liposome Mediated Depletion of Macrophages: An Approach for Fundamental Studies, Journal of Drug Targeting, vol.2, pp.357-362, 1994.

O. Butovsky, M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J. Lanser et al., Identification of a Unique TGF-? Dependent Molecular and Functional Signature in Microglia, Nature neuroscience, vol.17, pp.131-143, 2014.

S. Butt, J. A. Stacey, Y. Teramoto, and C. Vagnoni, A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal cerebral cortex, Current Opinion in Neurobiology, vol.43, pp.149-155, 2017.

Z. Cai, Z. L. Pan, Y. Pang, O. B. Evans, and P. G. Rhodes, Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration, Pediatr Res, vol.47, pp.64-72, 2000.

J. Caldero, N. Brunet, D. Ciutat, M. Hereu, and J. E. Esquerda, Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death, J Neurosci Res, vol.87, pp.2447-2466, 2009.

S. Canetta, S. Bolkan, N. Padilla-coreano, L. J. Song, R. Sahn et al., Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons, Molecular Psychiatry, vol.21, pp.956-968, 2016.

Y. Cantaut-belarif, M. Antri, R. Pizzarelli, S. Colasse, I. Vaccari et al., Microglia control the glycinergic but not the GABAergic synapses via prostaglandin E2 in the spinal cord, The Journal of Cell Biology, vol.216, pp.2979-2989, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680683

M. Cao, M. Cortes, C. S. Moore, S. Y. Leong, L. D. Durosier et al., Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation, 2015.

, Front Cell Neurosci, vol.9, p.294

A. E. Cardona, M. Li, L. Liu, C. Savarin, and R. M. Ransohoff, Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation, Journal of Leukocyte Biology, vol.84, pp.587-594, 2008.

A. E. Cardona, E. P. Pioro, M. E. Sasse, V. Kostenko, S. M. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nat Neurosci, vol.9, pp.917-924, 2006.

B. Chamak, A. Dobbertin, and M. Mallat, Immunohistochemical detection of thrombospondin in microglia in the developing rat brain, Neuroscience, vol.69, pp.177-187, 1995.

B. Chamak, V. Morandi, and M. Mallat, Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin, J Neurosci Res, vol.38, pp.221-233, 1994.

M. V. Chao, Neurotrophins and their receptors: a convergence point for many signalling pathways, Nat Rev Neurosci, vol.4, pp.299-309, 2003.

B. Chattopadhyaya and G. D. Cristo, GABAergic Circuit Dysfunctions in Neurodevelopmental Disorders, Frontiers in Psychiatry, vol.3, 2012.

S. Chen, E. A. Oyarzabal, and J. Hong, Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration, Curr Opin Pharmacol, vol.26, pp.54-60, 2016.

Z. Chen, W. Jalabi, W. Hu, H. Park, J. T. Gale et al., Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain, Nature Communications, vol.5, 2014.

E. Cherubini, J. L. Gaiarsa, and Y. Ben-ari, GABA: an excitatory transmitter in early postnatal life, Trends Neurosci, vol.14, pp.515-519, 1991.

R. Chittajallu and J. Isaac, Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci, Nature neuroscience, vol.13, pp.1240-1248, 2010.

S. Cho, B. Sun, Y. Zhou, T. M. Kauppinen, B. Halabisky et al., CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-independent Cognitive Deficits in a Mouse Model of Alzheimer Disease, Journal of Biological Chemistry, vol.286, pp.32713-32722, 2011.

G. B. Choi, Y. S. Yim, H. Wong, S. Kim, H. Kim et al., The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring, Science, vol.351, pp.933-939, 2016.

K. S. Christopherson, E. M. Ullian, C. Stokes, C. E. Mullowney, J. W. Hell et al., Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis, Cell, vol.120, pp.421-433, 2005.

S. Chung, J. Jeong, S. Ko, X. Yu, Y. Kim et al., Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs, Cell Reports, vol.19, pp.2707-2717, 2017.

W. Chung, C. A. Welsh, B. A. Barres, and B. Stevens, Do glia drive synaptic and cognitive impairment in disease?, Nature Neuroscience, vol.18, pp.1539-1545, 2015.

A. K. Clark, D. Gruber-schoffnegger, R. Drdla-schutting, K. J. Gerhold, M. Malcangio et al., Selective Activation of Microglia Facilitates Synaptic Strength, Journal of Neuroscience, vol.35, pp.4552-4570, 2015.

L. E. Clarke and B. A. Barres, Emerging roles of astrocytes in neural circuit development, Nat Rev Neurosci, vol.14, pp.311-321, 2013.

M. Colonna and O. Butovsky, Microglia Function in the Central Nervous System During Health and Neurodegeneration, Annu Rev Immunol, vol.35, pp.441-468, 2017.

J. Coull, S. Beggs, D. Boudreau, D. Boivin, M. Tsuda et al., BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain, Nature, vol.438, pp.1017-1021, 2005.

M. C. Crair and R. C. Malenka, A critical period for long-term potentiation at thalamocortical synapses, Nature, vol.375, pp.325-328, 1995.

J. C. Cronk, N. C. Derecki, E. Ji, Y. Xu, A. E. Lampano et al., Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli, Immunity, vol.42, pp.679-691, 2015.

S. J. Cruikshank, T. J. Lewis, and B. W. Connors, Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex, Nature Neuroscience, vol.10, pp.462-468, 2007.

M. A. Cuadros and J. Navascués, Early origin and colonization of the developing central nervous system by microglial precursors, Progress in Brain Research, vol.132, pp.51-59, 2001.

M. A. Cuadros, J. Rodriguez-ruiz, R. Calvente, A. Almendros, J. L. Marin-teva et al., Microglia development in the quail cerebellum, J Comp Neurol, vol.389, pp.390-401, 1997.

C. L. Cunningham, V. Martinez-cerdeno, and S. C. Noctor, Microglia Regulate the Number of Neural Precursor Cells in the Developing Cerebral Cortex, Journal of Neuroscience, vol.33, pp.4216-4233, 2013.

A. A. Curley, D. Arion, D. W. Volk, J. K. Asafu-adjei, A. R. Sampson et al., Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell typespecific features, Am J Psychiatry, vol.168, pp.921-929, 2011.

I. Dalmau, B. Finsen, J. Zimmer, B. Gonzalez, and B. Castellano, Development of microglia in the postnatal rat hippocampus, Hippocampus, vol.8, pp.458-474, 1998.

I. Dalmau, J. M. Vela, B. Gonzalez, B. Finsen, and B. Castellano, Dynamics of microglia in the developing rat brain, 2003.

, J Comp Neurol, vol.458, pp.144-157

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo et al., ATP mediates rapid microglial response to local brain injury in vivo, Nature neuroscience, vol.8, pp.752-758, 2005.

M. I. Daw, M. C. Ashby, and J. Isaac, Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex, Nature Neuroscience, vol.10, pp.453-461, 2007.

M. I. Daw, H. L. Scott, and J. Isaac, Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles, Molecular and cellular neurosciences, vol.34, pp.493-502, 2007.

J. De-felipe, P. Marco, A. Fairén, and E. G. Jones, Inhibitory synaptogenesis in mouse somatosensory cortex, Cerebral cortex, vol.7, pp.619-634, 1991.

C. De-groot, W. Huppes, T. Sminia, G. Kraal, and C. D. Dijkstra, Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using nonradioactive in situ hybridization and immunoperoxidase techniques, Glia, vol.6, pp.301-309, 1992.

J. Defelipe, P. L. López-cruz, R. Benavides-piccione, C. Bielza, P. Larrañaga et al., New insights into the classification and nomenclature of cortical GABAergic interneurons, Nature Reviews Neuroscience, vol.14, pp.202-216, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01541368

N. C. Derecki, J. C. Cronk, Z. Lu, E. Xu, S. B. Abbott et al., Wild-type microglia arrest pathology in a mouse model of Rett syndrome, Nature, vol.484, pp.105-109, 2012.

F. Donato, A. Chowdhury, M. Lahr, and P. Caroni, Early-and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning, Neuron, vol.85, pp.770-786, 2015.

A. Dufour, A. Rollenhagen, K. Sätzler, and J. Lübke, Development of Synaptic Boutons in Layer 4 of the Barrel Field of the Rat Somatosensory Cortex: A Quantitative Analysis, vol.26, pp.838-854, 2016.

D. D. Dunning, C. L. Hoover, I. Soltesz, M. A. Smith, O. Dowd et al., GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons, Journal of neurophysiology, vol.82, pp.3286-3297, 1999.

E. Hirbec, H. Noristani, H. N. Perrin, and F. E. , Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Frontiers in Aging Neuroscience 9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01998678

K. L. Earle and J. Mitrofanis, Development of glia and blood vessels in the internal capsule of rats, 1998.

, J Neurocytol, vol.27, pp.127-139

C. T. Ekdahl, Microglial activation -tuning and pruning adult neurogenesis, Front Pharmacol, vol.3, p.41, 2012.

M. R. Elliott, F. B. Chekeni, P. C. Trampont, E. R. Lazarowski, A. Kadl et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.461, pp.282-286, 2009.

L. M. Ellman, R. F. Deicken, S. Vinogradov, W. S. Kremen, J. H. Poole et al., Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8, Schizophr Res, vol.121, pp.46-54, 2010.

E. Monica, R. P. , N. Allison, R. , K. Maya et al., Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain, Neuron, vol.82, pp.380-397, 2014.

B. Erblich, L. Zhu, A. M. Etgen, K. Dobrenis, and J. W. Pollard, Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits, PLoS One, vol.6, p.26317, 2011.

R. S. Erzurumlu and P. Gaspar, Development and critical period plasticity of the barrel cortex, The European journal of neuroscience, vol.35, pp.1540-1553, 2012.

U. B. Eyo, S. A. Miner, J. A. Weiner, and M. E. Dailey, Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus, Brain Behav Immun, vol.55, pp.49-59, 2015.

U. B. Eyo and L. J. Wu, Bidirectional microglia-neuron communication in the healthy brain, Neural Plasticity, 2013.

M. Fagiolini and T. K. Hensch, Inhibitory threshold for critical-period activation in primary visual cortex, Nature, vol.404, pp.183-186, 2000.

S. H. Fatemi, A. R. Halt, J. M. Stary, R. Kanodia, S. C. Schulz et al., Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices, Biological Psychiatry, vol.52, pp.805-810, 2002.

S. Fedoroff, R. Zhai, and J. P. Novak, Microglia and astroglia have a common progenitor cell, J Neurosci, vol.50, pp.477-486, 1997.

D. E. Feldman, R. A. Nicoll, R. C. Malenka, and J. T. Isaac, Long-term depression at thalamocortical synapses in developing rat somatosensory cortex, Neuron, vol.21, pp.347-357, 1998.

D. Feldmeyer, Excitatory neuronal connectivity in the barrel cortex, Frontiers in Neuroanatomy, vol.6, p.24, 2012.

D. Feldmeyer, M. Brecht, F. Helmchen, C. Petersen, J. Poulet et al., Barrel cortex function, Progress in Neurobiology, vol.103, pp.3-27, 2013.

F. Filipello, R. Morini, I. Corradini, V. Zerbi, A. Canzi et al., The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity, Immunity, vol.48, pp.979-991, 2018.

G. Fishell and B. Rudy, Mechanisms of inhibition within the telencephalon: "where the wild things are, Annu Rev Neurosci, vol.34, pp.535-567

E. Foeller and D. E. Feldman, Synaptic basis for developmental plasticity in somatosensory cortex, Curr Opin Neurobiol, vol.14, pp.89-95, 2004.

L. Fourgeaud, P. G. Través, Y. Tufail, H. Leal-bailey, E. D. Lew et al., TAM receptors regulate multiple features of microglial physiology, Nature, vol.532, pp.240-244, 2016.

J. M. Frade and Y. A. Barde, Microglia-derived nerve growth factor causes cell death in the developing retina, Neuron, vol.20, pp.35-41, 1998.

L. R. Frick, K. Williams, and C. Pittenger, Microglial dysregulation in psychiatric disease, Clin Dev Immunol, 2013.

J. M. Fritschy and H. Mohler, GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits, J Comp Neurol, vol.359, pp.154-194, 1995.

L. Gabernet, S. P. Jadhav, D. E. Feldman, M. Carandini, and M. Scanziani, Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition, Neuron, vol.48, pp.315-327, 2005.

G. A. Garden, Epigenetics and the modulation of neuroinflammation, Neurotherapeutics, vol.10, pp.782-788, 2013.

F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, pp.841-845, 2010.

F. Ginhoux, S. Lim, G. Hoeffel, D. Low, and T. Huber, Origin and differentiation of microglia, Frontiers in cellular neuroscience, vol.7, p.45, 2013.

F. Ginhoux, J. L. Schultze, P. J. Murray, J. Ochando, and S. K. Biswas, New insights into the multidimensional concept of macrophage ontogeny, activation and function, Nat Immunol, vol.17, pp.34-40, 2016.

S. Giovanoli, H. Engler, A. Engler, J. Richetto, M. Voget et al., Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice, Science, vol.339, pp.1095-1099, 2013.

S. Giovanoli, U. Weber-stadlbauer, M. Schedlowski, U. Meyer, and H. Engler, Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies, Brain Behav Immun, vol.55, pp.25-38, 2016.

N. Gogolla, J. J. Leblanc, K. B. Quast, T. C. Südhof, M. Fagiolini et al., Common circuit defect of excitatory-inhibitory balance in mouse models of autism, Journal of Neurodevelopmental Disorders, vol.1, pp.172-181, 2009.

T. Goldmann, P. Wieghofer, M. J. Jordao, F. Prutek, N. Hagemeyer et al., Origin, fate and dynamics of macrophages at central nervous system interfaces, Nat Immunol, vol.17, pp.797-805, 2016.

K. Grabert, T. Michoel, M. H. Karavolos, S. Clohisey, J. K. Baillie et al., Microglial brain region-dependent diversity and selective regional sensitivities to aging, 2016.

, Nat Neurosci, vol.19, pp.504-516

M. Greter, I. Lelios, P. Pelczar, G. Hoeffel, J. Price et al., Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia, Immunity, vol.37, pp.1050-1060, 2012.

D. R. Gude, S. E. Alvarez, S. W. Paugh, P. Mitra, J. Yu et al., Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a comeand-get-me signal, FASEB J, vol.22, pp.2629-2638, 2008.

R. Guerreiro, A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva et al., TREM2 variants in Alzheimer's disease, vol.368, pp.117-127, 2013.

Z. Haimon, A. Volaski, J. Orthgiess, S. Boura-halfon, D. Varol et al., Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies, Nature Immunology, vol.19, pp.636-644, 2018.

R. Hanamsagar and S. D. Bilbo, Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development, J Steroid Biochem Mol Biol Hanamsagar R, vol.47, pp.146-155, 2016.

U. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nature neuroscience, vol.10, pp.1387-1394, 2007.

E. G. Harlow, S. M. Till, T. A. Russell, L. S. Wijetunge, P. Kind et al., Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice, Neuron, vol.65, pp.385-398, 2010.

K. D. Harris and G. Shepherd, The neocortical circuit: themes and variations, Nature neuroscience, vol.18, pp.170-181, 2015.

A. D. Hart, A. Wyttenbach, H. Perry, V. Teeling, and J. L. , Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences, Brain Behav Immun, vol.26, pp.754-765, 2012.

T. Hashimoto, D. W. Volk, S. M. Eggan, K. Mirnics, J. N. Pierri et al., Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia, J Neurosci, vol.23, pp.6315-6326, 2003.

S. E. Haynes, G. Hollopeter, G. Yang, D. Kurpius, M. E. Dailey et al., The P2Y12 receptor regulates microglial activation by extracellular nucleotides, Nat Neurosci, vol.9, pp.1512-1519, 2006.

T. K. Hensch, Critical period plasticity in local cortical circuits, Nat Rev Neurosci, vol.6, pp.877-888, 2005.

F. L. Heppner, R. M. Ransohoff, and B. Becher, Immune attack: the role of inflammation in Alzheimer disease, Nat Rev Neurosci, vol.16, pp.358-372, 2015.

P. Herbomel, B. Thisse, and C. Thisse, Zebrafish early macrophages colonize cephalic mesenchyme and developing brain retina, and epidermis through a M-CSF receptor-dependent invasive process, 2001.

, Dev Biol, vol.238, pp.274-288

S. E. Hickman, N. D. Kingery, T. Ohsumi, M. Borowsky, L. Wang et al., The Microglial Sensome Revealed by Direct RNA Sequencing, Nature neuroscience, vol.16, pp.1896-1905, 2013.

M. E. Hildebrand, J. Xu, A. Dedek, Y. Li, A. S. Sengar et al., Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing, Cell Reports, vol.17, pp.2753-2765, 2016.

S. Hippenmeyer, E. Vrieseling, M. Sigrist, T. Portmann, C. Laengle et al., A developmental switch in the response of DRG neurons to ETS transcription factor signaling, PLoS Biol, vol.3, p.159, 2005.

E. Hirsch, V. M. Irikura, S. M. Paul, and D. Hirsh, Functions of interleukin 1 receptor antagonist in gene knockout and overproducing mice, 1996.

, Proc Natl Acad Sci, vol.93, pp.11008-11013

G. Hoeffel and F. Ginhoux, Ontogeny of tissue-resident macrophages, Front Immunol, vol.6, p.486, 2015.

D. J. Hoeppner, M. O. Hengartner, and R. Schnabel, Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans, Nature, vol.412, pp.202-206, 2001.

M. Horiuchi, L. Smith, I. Maezawa, and L. Jin, CX3CR1 ablation ameliorates motor and respiratory dysfunctions and improves survival of a Rett syndrome mouse model, Brain Behav Immun, vol.60, pp.106-116, 2016.

M. Hoshiko, I. Arnoux, E. Avignone, N. Yamamoto, and E. Audinat, Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.32, pp.15106-15111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02336280

V. Houades, A. Koulakoff, P. Ezan, I. Seif, and C. Giaume, Gap Junction-Mediated Astrocytic Networks in the Mouse Barrel Cortex, Journal of Neuroscience, vol.28, pp.5207-5217, 2008.

P. T. Hsueh, H. H. Lin, H. H. Wang, C. L. Liu, W. F. Ni et al., Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation, Genes Brain Behav, 2018.

J. Y. Hua and S. J. Smith, Neural activity and the dynamics of central nervous system development, 2004.

, Nat Neurosci, vol.7, pp.327-332

Y. Huang, Z. Xu, S. Xiong, F. Sun, G. Qin et al., Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion, Nature Neuroscience, vol.21, pp.530-540, 2018.

Z. J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales et al., BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex, Cell, vol.98, pp.739-755, 1999.

D. H. Hubel and T. N. Wiesel, Effects of monocular deprivation in kittens, Naunyn Schmiedebergs Arch Exp Pathol Pharmakol, vol.248, pp.492-497, 1964.

C. Hull, J. S. Isaacson, and M. Scanziani, Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.29, pp.9127-9136, 2009.

D. A. Hume, V. H. Perry, and S. Gordon, Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers, J Cell Biol, vol.97, pp.253-257, 1983.

K. Imamoto and C. P. Leblond, Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells, J Comp Neurol, vol.180, pp.139-163, 1978.

M. Inan and M. C. Crair, Development of Cortical Maps: Perspectives From the Barrel Cortex, The Neuroscientist, vol.13, pp.49-61, 2007.

M. Inan, H. C. Lu, M. J. Albright, W. C. She, and M. C. Crair, Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling, J Neurosci, vol.26, pp.4338-4349, 2006.

T. Inoue and K. Imoto, Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex, J Neurophysiol, vol.96, pp.1746-1754, 2006.

J. Isaac, M. C. Crair, R. A. Nicoll, and R. C. Malenka, Silent Synapses during Development of Thalamocortical Inputs, Neuron, vol.18, pp.269-280, 1997.

C. Itami, F. Kimura, T. Kohno, M. Matsuoka, M. Ichikawa et al., Brainderived neurotrophic factor-dependent unmasking of "silent" synapses in the developing mouse barrel cortex, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.13069-13074, 2003.

C. Itami, F. Kimura, and S. Nakamura, Brain-Derived Neurotrophic Factor Regulates the Maturation of Layer 4 Fast-Spiking Cells after the Second Postnatal Week in the Developing Barrel Cortex, Journal of Neuroscience, vol.27, pp.2241-2252, 2007.

V. Jacob, L. Estebanez, L. Cam, J. Tiercelin, J. Y. Parra et al., The Matrix: a new tool for probing the whisker-to-barrel system with natural stimuli, J Neurosci Methods, vol.189, pp.65-74, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502608

Y. Jiao, Z. Zhang, C. Zhang, X. Wang, K. Sakata et al., A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo, Proceedings of the National Academy of Sciences, vol.108, pp.12131-12136, 2011.

G. Juckel, M. P. Manitz, M. Bru?ne, A. Friebe, M. T. Heneka et al., Microglial activation in a neuroinflammational animal model of schizophrenia -a pilot study, Schizophr Res, vol.131, pp.96-100, 2011.

S. S. Kang, K. E. Baker, X. Wang, J. Kocher, and J. D. Fryer, Translational Profiling Of Microglia Reveals Artifacts Of Cell Sorting, 2017.

P. O. Kanold and H. J. Luhmann, The Subplate and Early Cortical Circuits, Annual Review of Neuroscience, vol.33, pp.23-48, 2010.

C. Kaur, E. Ling, and W. Wong, Origin and fate of neural macrophages in a stab wound of the brain of the young rat, J Anat, vol.154, pp.215-227, 1987.

Y. Kawasaki, L. Zhang, J. Cheng, and J. , Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord, 2008.

, J Neurosci, vol.28, pp.5189-5194

H. Kettenmann, U. K. Hanisch, M. Noda, and A. Verkhratsky, Physiology of microglia, Physiol Rev, vol.91, pp.461-553, 2011.

R. Khazipov and H. J. Luhmann, Early patterns of electrical activity in the developing cerebral cortex of humans and rodents, Trends Neurosci, vol.29, pp.414-418, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00483896

F. L. Kidd and J. Isaac, Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses, Nature, vol.400, pp.569-573, 1999.

K. Kierdorf, D. Erny, T. Goldmann, V. Sander, C. Schulz et al., Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways, Nat Neurosci, vol.16, pp.273-280, 2013.

K. Kierdorf and M. Prinz, Factors regulating microglia activation, Front Cell Neurosci, vol.7, p.44, 2013.

H. Kim, M. Cho, W. H. Shim, J. K. Kim, E. Jeon et al., Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects, Molecular Psychiatry, vol.22, pp.1576-1584, 2017.

S. Kim, H. Kim, Y. S. Yim, S. Ha, K. Atarashi et al., Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring, Nature, vol.549, pp.528-532, 2017.

M. Kitayama, M. Ueno, T. Itakura, and T. Yamashita, Activated Microglia Inhibit Axonal Growth through RGMa, PLoS ONE, vol.6, p.25234, 2011.

I. Knuesel, L. Chicha, M. Britschgi, S. A. Schobel, M. Bodmer et al., Maternal immune activation and abnormal brain development across CNS disorders, Nature Reviews Neurology, vol.10, pp.643-660, 2014.

C. Koelbl, M. Helmstaedter, J. Lübke, and D. Feldmeyer, A Barrel-Related Interneuron in Layer 4 of Rat Somatosensory Cortex with a High Intrabarrel Connectivity, vol.25, pp.713-725, 2015.

S. Koizumi, Y. Shigemoto-mogami, K. Nasu-tada, Y. Shinozaki, K. Ohsawa et al., UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis, Nature, vol.446, pp.1091-1095, 2007.

M. Kolodziejczak, C. Béchade, N. Gervasi, T. Irinopoulou, S. M. Banas et al., Serotonin Modulates Developmental Microglia via 5-HT 2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections, ACS Chemical Neuroscience, vol.6, pp.1219-1230, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01224546

T. Kroon, M. C. Sierksma, and R. M. Meredith, Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: a perspective, Frontiers in Systems Neuroscience, vol.7, 2013.

D. Krstic, A. Madhusudan, J. Doehner, P. Vogel, T. Notter et al., Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice, 2012.

, J Neuroinflamm, vol.9, p.151

A. Y. Lai and K. G. Todd, Microglia in cerebral ischemia: molecular actions and interactions, Can J Physiol Pharmacol, vol.84, pp.49-59, 2006.

K. Lauber, E. Bohn, S. M. Kröber, Y. J. Xiao, S. G. Blumenthal et al., Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal, Cell, vol.113, pp.717-730, 2003.

L. Magueresse, C. Monyer, and H. , GABAergic Interneurons Shape the Functional Maturation of the Cortex, Neuron, vol.77, pp.388-405, 2013.

H. Lee, B. K. Brott, L. A. Kirkby, J. D. Adelson, S. Cheng et al., Synapse elimination and learning rules co-regulated by MHC class I H2-Db, Nature, vol.509, pp.195-200, 2014.

S. Lee, J. Hjerling-leffler, E. Zagha, G. Fishell, and R. B. , The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors, J Neurosci, vol.30, pp.16796-16808, 2010.

S. Lefort, C. Tomm, F. Sarria, J. C. Petersen, and C. C. , The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex, Neuron, vol.61, pp.301-316, 2009.

A. Lelli, A. Gervais, C. Colin, C. Cheret, A. C. Ruiz-de et al., The NADPH oxidase Nox2 regulates VEGFR1/CSF-1R-mediated microglial chemotaxis and promotes early postnatal infiltration of phagocytes in the subventricular zone of the mouse cerebral cortex, Glia, vol.61, pp.1542-1555, 2013.

K. M. Lenz, B. M. Nugent, R. Haliyur, and M. M. Mccarthy, Microglia Are Essential to Masculinization of Brain and Behavior, Journal of Neuroscience, vol.33, pp.2761-2772, 2013.

K. M. Lenz, C. L. Wright, R. C. Martin, and M. M. Mccarthy, Prostaglandin E2 regulates AMPA receptor phosphorylation and promotes membrane insertion in preoptic area neurons and glia during sexual differentiation, PLoS One, vol.6, p.18500, 2011.

D. A. Lewis, T. Hashimoto, and D. W. Volk, Cortical inhibitory neurons and schizophrenia, Nature Reviews Neuroscience, vol.6, pp.312-324, 2005.

G. M. Lewitus, S. C. Konefal, A. D. Greenhalgh, H. Pribiag, K. Augereau et al., Microglial TNF-? Suppresses Cocaine-Induced Plasticity and Behavioral Sensitization, 2016.

H. Li and M. C. Crair, How do barrels form in somatosensory cortex?, Ann N Y Acad Sci, vol.1225, pp.119-129, 2011.

P. Li and M. M. Huntsman, Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons, Neuroscience, vol.265, pp.60-71, 2014.

Y. Li, X. Du, C. Liu, Z. Wen, and J. Du, Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo, Developmental cell, vol.23, pp.1189-1202, 2012.

K. J. Liang, J. E. Lee, Y. D. Wang, W. Ma, A. M. Fontainhas et al., Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling, Investigative Opthalmology & Visual Science, vol.50, p.4444, 2009.

S. A. Liddelow, K. A. Guttenplan, L. E. Clarke, F. C. Bennett, C. J. Bohlen et al., Neurotoxic reactive astrocytes are induced by activated microglia, Nature, vol.541, pp.481-487, 2017.

S. H. Lim, E. Park, B. You, Y. Jung, A. R. Park et al., Neuronal synapse formation induced by microglia and interleukin 10, PLoS One, vol.8, 2013.

E. Ling, Monocytic origin of ramified microglia in the corpus callosum in postnatal rat, Neuropathol Appl Neurobiol, vol.20, pp.182-183, 1994.

G. López-bendito, A. Cautinat, J. A. Sánchez, F. Bielle, N. Flames et al., Tangential Neuronal Migration Controls Axon Guidance: A Role for Neuregulin-1 in Thalamocortical Axon Navigation, Cell, vol.125, pp.127-142, 2006.

H. Lu, E. Gonzalez, and M. C. Crair, Barrel Cortex Critical Period Plasticity Is Independent of Changes in NMDA Receptor Subunit Composition, Neuron, vol.32, pp.619-634, 2001.

H. C. Lu, D. A. Butts, P. S. Kaeser, W. C. She, R. Janz et al., Role of efficient neurotransmitter release in barrel map development, J Neurosci, vol.26, pp.2692-2703, 2006.

W. Lu, J. A. Gray, A. J. Granger, M. J. During, and R. A. Nicoll, Potentiation of synaptic AMPA receptors induced by the deletion of NMDA receptors requires the GluA2 subunit, J Neurophysiol, vol.105, pp.923-928, 2011.

J. Lübke, V. Egger, B. Sakmann, and D. Feldmeyer, Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex, J Neurosci, vol.20, pp.5300-5311, 2000.

L. Maggi, M. Scianni, I. Branchi, D. 'andrea, I. Lauro et al., CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment, Frontiers in Cellular Neuroscience, vol.5, p.22, 2011.

O. Marín and J. L. Rubenstein, A long, remarkable journey: tangential migration in the telencephalon, Nature Reviews Neuroscience, vol.2, pp.780-790, 2001.

J. L. Marín-teva, A. Almendros, R. Calvente, M. A. Cuadros, and J. Navascues, Tangential migration of ameboid microglia in the developing quail retina: mechanism of migration and migratory behavior, Glia, vol.22, pp.31-52, 1998.

J. L. Marín-teva, A. Almendros, R. Calvente, M. A. Cuadros, and J. Navascues, Proliferation of actively migrating ameboid microglia in the developing quail retina, 1999.

, Anat Embryol, vol.200, pp.289-300

J. L. Marín-teva, M. A. Cuadros, R. Calvente, A. Almendros, and J. Navascues, Naturally occurring cell death and migration of microglial precursors in the quail retina during normal development, J Comp Neurol, vol.412, pp.255-275, 1999.

J. L. Mar??-teva, I. Dusart, C. Colin, A. Gervais, N. Van-rooijen et al., Microglia Promote the Death of Developing Purkinje Cells, Neuron, vol.41, pp.535-547, 2004.

H. Markram, M. Toledo-rodriguez, Y. Wang, A. Gupta, G. Silberberg et al., Interneurons of the neocortical inhibitory system, Nat Rev Neurosci, vol.5, pp.793-807, 2004.

A. Marques-smith, D. Lyngholm, A. Kaufmann, J. A. Stacey, A. Hoerder-suabedissen et al., A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex, Neuron, vol.89, pp.536-549, 2016.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, vol.6, p.13, 1000.

A. Marty and I. Llano, Excitatory effects of GABA in established brain networks, Trends in Neurosciences, vol.28, pp.284-289, 2005.

S. Marty, M. Da, and B. Berninger, Neurotrophins and activity-dependent plasticity of cortical interneurons, Trends in Neurosciences, vol.20, pp.198-202, 1997.

O. Matcovitch-natan, D. R. Winter, A. Giladi, S. V. Aguilar, A. Spinrad et al., Microglia development follows a stepwise program to regulate brain homeostasis, Science, vol.353, p.8670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438174

D. Mattei, A. Ivanov, C. Ferrai, P. Jordan, D. Guneykaya et al., Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment, Transl Psychiatry, vol.7, p.1120, 2017.

M. M. Mccarthy, L. A. Pickett, J. W. Vanryzin, and K. E. Kight, Surprising origins of sex differences in the brain, Hormones and Behavior, vol.76, pp.3-10, 2015.

A. Menteyne, F. Levavasseur, E. Audinat, and E. Avignone, Predominant functional expression of Kv1.3 by activated microglia of the hippocampus after Status epilepticus, PloS one, vol.4, p.6770, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02441408

H. S. Meyer, D. Schwarz, V. C. Wimmer, A. C. Schmitt, J. N. Kerr et al., Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A, Proc Natl Acad Sci, vol.108, pp.16807-16812, 2011.

U. Meyer, Prenatal Poly(I:C) exposure and other developmental immune activation models in rodent systems, Biol Psychiatry, 2014.

U. Meyer, J. Feldon, and S. H. Fatemi, In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders, A review of the fetal brain cytokine imbalance hypothesis of schizophrenia, 2009.

, Schizophr Bull

U. Meyer, P. J. Murray, A. Urwyler, B. K. Yee, M. Schedlowski et al., Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between proinflammatory and IL-10-mediated anti-inflammatory signaling, Mol Psychiatry, vol.13, pp.208-221, 2008.

C. Minten, R. Terry, C. Deffrasnes, N. King, and I. L. Campbell, IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS, PLoS One, vol.7, p.49851, 2012.

A. Miyamoto, H. Wake, A. W. Ishikawa, K. Eto, K. Shibata et al., Microglia contact induces synapse formation in developing somatosensory cortex, Nature Communications, vol.7, p.12540, 2016.

T. Möller, F. Bard, A. Bhattacharya, K. Biber, B. Campbell et al., Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor, Glia, vol.64, pp.1788-1794, 2016.

A. Monier, H. Dle-biassette, A. L. Delezoide, P. Evrard, P. Gressens et al., Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex, 2007.

, J Neuropathol Exp Neurol, vol.66, pp.372-382

A. Monier, P. Evrard, P. Gressens, and C. Verney, Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation, J Comp Neurol, vol.499, pp.565-582, 2006.

J. M. Montgomery, P. Pavlidis, and D. V. Madison, Pair Recordings Reveal All-Silent Synaptic Connections and the Postsynaptic Expression of Long-Term Potentiation, Neuron, vol.29, pp.691-701, 2001.

S. C. Morgan, D. L. Taylor, and J. M. Pocock, Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades, JNeurochem, vol.90, pp.89-101, 2004.

J. M. Morganti, K. R. Nash, B. A. Grimmig, S. Ranjit, B. Small et al., The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson's disease, J Neurosci, vol.32, pp.14592-14601, 2012.

C. Mosser, S. Baptista, I. Arnoux, and E. Audinat, Microglia in CNS development: Shaping the brain for the future, Progress in Neurobiology, vol.149, pp.1-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336084

A. Moujahid, J. Navascués, J. L. Mari?n-teva, and M. A. Cuadros, Macrophages during avian optic nerve development: relationship to cell death and differentiation into microglia, Anat Embryol, vol.193, pp.131-144, 1996.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, pp.14-20, 2014.

K. Nagata, K. Nakajima, and S. Kohsaka, Plasminogen promotes the development of rat mesencephalic dopaminergic neurons in vitro, 1993.

, Brain Res Dev Brain Res, vol.75, pp.31-37

J. Navascues, R. Calvente, J. L. Marin-teva, and M. A. Cuadros, Entry, dispersion and differentiation of microglia in the developing central nervous system, An Acad Bras Cienc, vol.72, pp.91-102, 2000.

L. H. Nelson and K. M. Lenz, Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats, Behavioural Brain Research, vol.316, pp.279-293, 2017.

S. B. Nelson and V. Valakh, Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders, vol.87, pp.684-698, 2015.

M. Nikodemova, R. S. Kimyon, I. De, A. L. Small, L. S. Collier et al., Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week, Journal of Neuroimmunology, vol.278, pp.280-288, 2015.

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, vol.308, pp.1314-1318, 2005.

E. O'loughlin, J. Pakan, D. Yilmazer-hanke, and K. W. Mcdermott, Acute in utero exposure to lipopolysaccharide induces inflammation in the pre-and postnatal brain and alters the glial cytoarchitecture in the developing amygdala, Journal of Neuroinflammation, vol.14, p.212, 2017.

K. Ohsawa, Y. Irino, Y. Nakamura, C. Akazawa, K. Inoue et al., Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis, Glia, vol.55, pp.604-616, 2007.

R. W. Olsen and W. Sieghart, GABA A receptors: subtypes provide diversity of function and pharmacology, Neuropharmacology, vol.56, pp.141-148, 2009.

R. W. Oppenheim, Cell death during development of the nervous system, Annu Rev Neurosci, vol.14, pp.453-501, 1991.

A. G. Orr, A. L. Orr, X. J. Li, R. E. Gross, and S. F. Traynelis, Adenosine A(2A) receptor mediates microglial process retraction, Nat Neurosci, vol.12, pp.872-878, 2009.

F. Pagani, R. C. Paolicelli, E. Murana, C. B. , D. Angelantonio et al., Defective microglial development in the hippocampus of Cx3cr1 deficient mice, Front Cell Neurosci, vol.9, p.111, 2015.

J. Palis, S. Robertson, M. Kennedy, C. Wall, and G. Keller, Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse, Development, vol.126, pp.5073-5084, 1999.

J. Paloneva, M. Kestila?, J. Wu, A. Salminen, T. Bo?hling et al., Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts, 2000.

, Nat Genet, vol.25, pp.357-361

R. C. Paolicelli, K. Bisht, and M. E. Tremblay, Fractalkine regulation of microglial physiology and consequences on the brain and behavior, Front Cell Neurosci, vol.8, p.129, 2014.

R. C. Paolicelli, G. Bolasco, F. Pagani, L. Maggi, M. Scianni et al., Synaptic pruning by microglia is necessary for normal brain development, Science, vol.333, pp.1456-1458, 2011.

P. Christopher, N. , Y. G. Ninan, I. , S. Jeffrey et al., Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor, Cell, vol.155, pp.1596-1609, 2013.

O. Pascual, S. B. Achour, P. Rostaing, A. Triller, and A. Bessis, Microglia activation triggers astrocytemediated modulation of excitatory neurotransmission, Proceedings of the National Academy of Sciences, vol.109, pp.197-205, 2012.

P. H. Patterson, Maternal infection and immune involvement in autism, Trends Mol Med, vol.17, pp.389-394, 2011.

V. H. Perry, D. A. Hume, and S. Gordon, Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain, Neuroscience, vol.15, pp.313-326, 1985.

C. Petersen, The Functional Organization of the Barrel Cortex, Neuron, vol.56, pp.339-355, 2007.

T. Pfeiffer, E. Avignone, and U. V. Nagerl, Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines, Sci Rep, vol.6, p.32422, 2016.

J. W. Pollard, Trophic macrophages in development and disease, Nat Rev Immunol, vol.9, pp.259-270, 2009.

L. Pont-lezica, C. Béchade, Y. Belarif-cantaut, O. Pascual, and A. Bessis, Physiological roles of microglia during development, Journal of Neurochemistry, vol.119, pp.901-908, 2011.

L. Pont-lezica, W. Beumer, S. Colasse, H. Drexhage, M. Versnel et al., Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation, European Journal of Neuroscience, vol.39, pp.1551-1557, 2014.

V. Y. Poon, S. Choi, and M. Park, Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex, Front Synaptic Neurosci Porter JT, vol.21, pp.2699-2710, 2001.

M. Prinz and J. Priller, Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease, Nat Rev Neurosci, vol.15, pp.300-312, 2014.

R. Pugh, C. Fleshner, M. Watkins, L. R. Maier, S. F. Rudy et al., The immune system and memory consolidation: a role for the cytokine IL-1beta, 2001.

, Neurosci Biobehav Rev, vol.25, pp.29-41

S. Rakic and N. Zecevic, Programmed cell death in the developing human telencephalon, Eur J Neurosci, vol.12, pp.2721-2734, 2000.

R. M. Ransohoff, A polarizing question: do M1 and M2 microglia exist?, Nat Neurosci, vol.19, pp.987-991, 2016.

R. M. Ransohoff and V. H. Perry, Microglial physiology: unique stimuli, specialized responses, Annual review of immunology, vol.27, pp.119-145, 2009.

S. Rauskolb, M. Zagrebelsky, A. Dreznjak, R. Deogracias, T. Matsumoto et al., Global deprivation of brain-derived neurotrophic factor in the CNS reveals an areaspecific requirement for dendritic growth, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.30, pp.1739-1749, 2010.

A. Rebsam, I. Seif, and P. Gaspar, Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice, J Neurosci, vol.22, pp.8541-8552, 2002.

P. W. Reddien, S. Cameron, and H. R. Horvitz, Phagocytosis promotes programmed cell death in C. elegans, Nature, vol.412, pp.198-202, 2001.

P. Rezaie, G. Trillo-pazos, J. Greenwood, I. P. Everall, and D. K. Male, Motility and ramification of human fetal microglia in culture: an investigation using time-lapse video microscopy and image analysis, 2002.

, Exp Cell Res, vol.274, pp.68-82

R. Xavier, A. L. Kress, B. T. Goldman, S. A. , L. De-menezes et al., A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone, Journal of Neuroscience, vol.35, pp.11848-11861, 2015.

C. Rigato, R. Buckinx, H. Le-corronc, J. M. Rigo, and P. Legendre, Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks, Glia, vol.59, pp.675-695, 2011.

C. Rigato, N. Swinnen, R. Buckinx, I. Couillin, J. M. Mangin et al., Microglia proliferation is controlled by P2X7 receptors in a pannexin-1-Independent manner during early embryonic spinal cord invasion, J Neurosci, vol.32, pp.11559-11573, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01542740

M. Rios, G. Fan, C. Fekete, J. Kelly, B. Bates et al., Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity, Molecular Endocrinology, vol.15, pp.1748-1757, 2001.

R. J. Rodrigues, A. R. Tome, and R. A. Cunha, ATP as a multi-target danger signal in the brain, Front Neurosci, vol.9, p.148, 2015.

J. T. Rogers, J. M. Morganti, A. D. Bachstetter, C. E. Hudson, M. M. Peters et al., CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.31, pp.16241-16250, 2011.

A. Roumier, C. Béchade, J. Poncer, K. Smalla, E. Tomasello et al., Impaired Synaptic Function in the Microglial KARAP/DAP12-Deficient Mouse, The Journal of Neuroscience, vol.24, pp.11421-11428, 2004.

A. Roumier, O. Pascual, C. Béchade, S. Wakselman, J. Poncer et al., Prenatal Activation of Microglia Induces Delayed Impairment of Glutamatergic Synaptic Function, PLoS ONE, vol.3, p.2595, 2008.

C. I. Rousset, S. Chalon, S. Cantagrel, S. Bodard, C. Andres et al., Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats, 2006.

, Pediatr Res, vol.59, pp.428-433

B. Rudy, G. Fishell, S. Lee, and J. Hjerling-leffler, Three Groups of Interneurons Account for Nearly 100% of Neocortical GABAergic Neurons, Developmental neurobiology, vol.71, pp.45-61, 2011.

S. F. Rymo, H. Gerhardt, S. F. Wolfhagen, R. Lang, A. Uv et al., A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures, PLoS One, vol.6, p.15846, 2011.

M. Salter and S. Beggs, Sublime microglia: expanding roles for the guardians of the CNS, Cell, vol.158, pp.15-24, 2014.

I. M. Samokhvalov, N. I. Samokhvalova, and S. Nishikawa, Cell tracing shows the contribution of the yolk sac to adult haematopoiesis, Nature, vol.446, pp.1056-1061, 2007.

M. Santello, P. Bezzi, and A. Volterra, TNF? controls glutamatergic gliotransmission in the hippocampal dentate gyrus, Neuron, vol.69, pp.988-1001, 2011.

D. P. Schafer, C. T. Heller, G. Gunner, M. Heller, C. Gordon et al., Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression, 2016.

D. P. Schafer, E. K. Lehrman, A. G. Kautzman, R. Koyama, A. R. Mardinly et al., Microglia sculpt postnatal neural circuits in an activity and complementdependent manner, Neuron, vol.74, pp.691-705, 2012.

D. P. Schafer, E. K. Lehrman, and B. Stevens, The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS, Glia, vol.61, pp.24-36, 2013.

T. Schilling, R. Nitsch, U. Heinemann, D. Haas, and C. Eder, Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways, 2001.

, Eur J Neurosci, vol.14, pp.463-473

T. Schlegelmilch, K. Henke, and P. F. , Microglia in the developing brain: from immunity to behaviour, vol.21, pp.5-10, 2011.

M. J. Schmidt and K. Mirnics, Neurodevelopment, GABA System Dysfunction, and Schizophrenia, vol.40, pp.190-206, 2015.

J. Schmidtmayer, C. Jacobsen, G. Miksch, and J. Sievers, Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents, Glia, vol.12, pp.259-267, 1994.

L. Schnell, S. Fearn, H. Klassen, M. E. Schwab, and V. H. Perry, Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord, 1999.

, Eur J Neurosci, vol.11, pp.3648-3658

C. Schulz, P. E. Gomez, L. Chorro, H. Szabo-rogers, N. Cagnard et al., A lineage of myeloid cells independent of Myb and hematopoietic stem cells, Science, vol.336, pp.86-90, 2012.

J. M. Schwarz and S. D. Bilbo, Sex, glia, and development: interactions in health and disease, Horm Behav, vol.62, pp.243-253, 2012.

M. Scianni, L. Antonilli, G. Chece, G. Cristalli, D. Castro et al., Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity, Journal of Neuroinflammation, vol.10, p.108, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01053841

F. Sedel, C. Bechade, S. Vyas, and A. Triller, Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death, J Neurosci, vol.24, pp.2236-2246, 2004.

C. J. Shatz, Competitive interactions between retinal ganglion cells during prenatal development, 1990.

, J Neurobiol, vol.21, pp.197-211

C. J. Shatz, MHC class I: an unexpected role in neuronal plasticity, Neuron, vol.64, pp.40-45, 2009.

A. Shemer, D. Erny, S. Jung, and M. Prinz, Microglia Plasticity During Health and Disease: An Immunological Perspective, Trends Immunol, vol.36, pp.614-624, 2015.

G. K. Sheridan and K. J. Murphy, Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage, Open Biol, vol.3, p.130181, 2013.

N. Shigematsu, A. Nishi, and T. Fukuda, Gap Junctions Interconnect Different Subtypes of Parvalbumin-Positive Interneurons in Barrels and Septa with Connectivity Unique to Each Subtype, 2018.

Y. Shigemoto-mogami, K. Hoshikawa, J. E. Goldman, Y. Sekino, and K. Sato, Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone, Journal of Neuroscience, vol.34, pp.2231-2243, 2014.

J. Shklover, F. Levy-adam, and E. Kurant, Apoptotic cell clearance in development, Current Topics in Developmental Biology, pp.297-334, 2015.

B. Shklyar, Y. Sellman, J. Shklover, K. Mishnaevski, F. Levy-adam et al., Developmental regulation of glial cell phagocytic function during Drosophila embryogenesis, 2014.

, Dev Biol, vol.393, pp.255-269

A. Sierra, O. Abiega, A. Shahraz, and H. Neumann, Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis, Frontiers in Cellular Neuroscience, vol.7, p.6, 2013.

A. Sierra, F. De-castro, J. Del-río-hortega, R. Iglesias-rozas, J. Garrosa et al., The "Big-Bang" for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia: 1919 Río-Hortega Papers on Microglia, Glia, vol.64, pp.1801-1840, 2016.

A. Sierra, J. M. Encinas, J. J. Deudero, J. H. Chancey, G. Enikolopov et al., Microglia shape adult hippocampal neurogenesis through apoptosiscoupled phagocytosis, Cell Stem Cell, vol.7, pp.483-495, 2010.

A. Sierra, M. Tremblay, and H. Wake, Never-resting microglia: physiological roles in the healthy brain and pathological implications, Frontiers in Cellular Neuroscience, vol.8, 2014.

J. Sievers, R. Parwaresch, and H. U. Wottge, Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology, Glia, vol.12, pp.245-258, 1994.

G. O. Sipe, R. L. Lowery, . Tremblay-m-È, E. A. Kelly, C. E. Lamantia et al., Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex, Nature Communications, vol.7, p.10905, 2016.

Z. ?is?kova? and M. Tremblay, Microglia and synapse: interactions in health and neurodegeneration, Neural Plast, 2013.

S. Smith, J. Li, K. Garbett, K. Mirnics, and P. H. Patterson, Maternal immune activation alters fetal brain development through interleukin-6, J Neurosci, vol.27, pp.10695-11702, 2007.

S. Smolders, S. Kessels, S. Smolders, F. Poulhes, O. Zelphati et al., Magnetofection is superior to other chemical transfection methods in a microglial cell line, Journal of Neuroscience Methods, vol.293, pp.169-173, 2018.

S. Smolders, T. Notter, S. Smolders, J. Rigo, and B. Brône, Controversies and prospects about microglia in maternal immune activation models for neurodevelopmental disorders, Brain, Behavior, and Immunity, 2018.

S. Smolders, S. M. Smolders, N. Swinnen, A. Ga?rtner, J. Rigo et al., Maternal immune activation evoked by polyinosinic: polycytidylic acid does not evoke microglial cell activation in the embryo, Front Cell Neurosci, vol.9, p.301, 2015.

S. Smolders, N. Swinnen, S. Kessels, K. Arnauts, S. Smolders et al., Age-specific function of ?5?1 integrin in microglial migration during early colonization of the developing mouse cortex, Glia, vol.65, pp.1072-1088, 2017.

N. J. Sofroniew and K. Svoboda, Whisking. Current Biology, vol.25, pp.137-140, 2015.

N. Spassky, C. F. De, B. B. Le, K. Heydon, F. Queraud-lesaux et al., Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1, J Neurosci, vol.22, pp.5992-6004, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01936468

P. Squarzoni, G. Oller, G. Hoeffel, L. Pont-lezica, P. Rostaing et al., Microglia modulate wiring of the embryonic forebrain, Cell Reports, vol.8, pp.1271-1279, 2014.

P. Squarzoni, G. Oller, G. Hoeffel, L. Pont-lezica, P. Rostaing et al., Microglia modulate wiring of the embryonic forebrain, Cell Rep, vol.8, pp.1271-1279, 2014.

J. F. Staiger, Functional Diversity of Layer IV Spiny Neurons in Rat Somatosensory Cortex: Quantitative Morphology of Electrophysiologically Characterized and Biocytin Labeled Cells, Cerebral Cortex, vol.14, pp.690-701, 2004.

J. F. Staiger, W. Zuschratter, H. J. Luhmann, and D. Schubert, Local circuits targeting parvalbumincontaining interneurons in layer IV of rat barrel cortex, Brain Struct Funct, vol.214, pp.1-13, 2009.

D. Stellwagen, E. C. Beattie, J. Y. Seo, and R. C. Malenka, Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.25, pp.3219-3228, 2005.

A. H. Stephan, B. A. Barres, and B. Stevens, The complement system: an unexpected role in synaptic pruning during development and disease, 2012.

, Annu Rev Neurosci, vol.35, pp.369-389

B. Stevens, N. J. Allen, L. E. Vazquez, G. R. Howell, K. S. Christopherson et al., The classical complement cascade mediates CNS synapse elimination, Cell, vol.131, pp.1164-1178, 2007.

J. J. Sun and H. J. Luhmann, Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex, Eur J Neurosci, vol.26, pp.1995-2004, 2007.

Q. Sun, J. R. Huguenard, and D. A. Prince, Barrel Cortex Microcircuits: Thalamocortical Feedforward Inhibition in Spiny Stellate Cells Is Mediated by a Small Number of Fast-Spiking Interneurons, The Journal of Neuroscience, vol.26, pp.1219-1230, 2006.

Q. Sun, Z. Zhang, J. Sun, A. S. Nair, D. P. Petrus et al., Functional and structural specific roles of activity-driven BDNF within circuits formed by single spiny stellate neurons of the barrel cortex, Frontiers in Cellular Neuroscience, vol.8, 2014.

N. Swinnen, S. Smolders, A. Avila, K. Notelaers, R. Paesen et al., Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo, Glia, vol.61, pp.150-163, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542734

K. Takahashi, M. Naito, and M. Takeya, Development and heterogeneity of macrophages and their related cells through their differentiation pathways, Pathol Int, vol.46, pp.473-485, 1996.

H. Tan, J. Cao, J. Zhang, and Z. Zuo, Critical role of inflammatory cytokines in impairing biochemical processes for learning and memory after surgery in rats, 2014.

, J Neuroinflamm, vol.11, p.93

M. S. Thion and S. Garel, On place and time: microglia in embryonic and perinatal brain development, Current Opinion in Neurobiology, vol.47, pp.121-130, 2017.

T. Trang, S. Beggs, X. Wan, and M. W. Salter, P2X4-Receptor-Mediated Synthesis and Release of Brain-Derived Neurotrophic Factor in Microglia Is Dependent on Calcium and p38-Mitogen-Activated Protein Kinase Activation, Journal of Neuroscience, vol.29, pp.3518-3528, 2009.

M. Tremblay, R. L. Lowery, and A. K. Majewska, Microglial Interactions with Synapses Are Modulated by Visual Experience, PLoS Biology, vol.8, 2010.

M. Tremblay, B. Stevens, A. Sierra, H. Wake, A. Bessis et al., The role of microglia in the healthy brain, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.31, pp.16064-16069, 2011.

F. F. Trigo, B. Bouhours, P. Rostaing, G. Papageorgiou, J. Corrie et al., Presynaptic miniature GABAergic currents in developing interneurons, Neuron, vol.66, pp.235-247, 2010.

L. A. Truman, C. A. Ford, M. Pasikowska, J. D. Pound, S. J. Wilkinson et al., CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis, Blood, vol.112, pp.5026-5036, 2008.

M. Ueno, Y. Fujita, T. Tanaka, Y. Nakamura, J. Kikuta et al., Layer V cortical neurons require microglial support for survival during postnatal development, Nature neuroscience, vol.16, pp.543-551, 2013.

L. Ulmann, J. P. Hatcher, J. P. Hughes, S. Chaumont, P. J. Green et al., Up-Regulation of P2X4 Receptors in Spinal Microglia after Peripheral Nerve Injury Mediates BDNF Release and Neuropathic Pain, Journal of Neuroscience, vol.28, pp.11263-11268, 2008.

M. B. Upender and J. R. Naegele, Activation of microglia during developmentally regulated cell death in the cerebral cortex, Dev Neurosci, vol.21, pp.491-505, 1999.

A. L. Upton, N. Salichon, C. Lebrand, A. Ravary, R. Blakely et al., Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development, J Neurosci, vol.19, pp.7007-7024, 1999.

I. D. Vainchtein, G. Chin, F. S. Cho, K. W. Kelley, J. G. Miller et al., Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development, Science, vol.359, pp.1269-1273, 2018.

F. Valiullina, D. Akhmetshina, A. Nasretdinov, M. Mukhtarov, G. Valeeva et al., Developmental Changes in Electrophysiological Properties and a Transition from Electrical to Chemical Coupling between Excitatory Layer 4 Neurons in the Rat Barrel Cortex, Front Neural Circuits, vol.10, p.1, 2016.

B. N. Van-berckel, M. G. Bossong, R. Boellaard, R. Kloet, A. Schuitemaker et al., Microglia activation in recent-Onset schizophrenia: a quantitative (R), 2008.

, PK11195 positron emission tomography study, Biol Psychiatry, vol.64, pp.820-822

E. S. Van-kleef, P. Gaspar, and A. Bonnin, Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development, 2012.

, Eur J Neurosci, vol.35, pp.1563-1572

J. W. Vanryzin, S. J. Yu, M. Perez-pouchoulen, and M. M. Mccarthy, Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats, 2016.

P. Veinante, M. F. Jacquin, and M. Deschênes, Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat, J Comp Neurol, vol.420, pp.233-243, 2000.

A. Verkhratsky and A. Butt, , 2007.

C. Verney, A. Monier, C. Fallet-bianco, and P. Gressens, Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants, J Anat, vol.217, pp.436-448, 2010.

F. Vilhardt, J. Haslund-vinding, V. Jaquet, G. Mcbean, I. Voineagu et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology, Br J Pharmacol, vol.474, pp.380-384, 2011.

C. S. Von-bartheld, J. Bahney, and S. Herculano-houzel, The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting, Journal of Comparative Neurology, vol.524, pp.3865-3895, 2016.

A. Waisman, F. Ginhoux, M. Greter, and J. Bruttger, Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems, Trends Immunol, vol.36, pp.625-636, 2015.

H. Wake, A. J. Moorhouse, S. Jinno, S. Kohsaka, and J. Nabekura, Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.29, pp.3974-3980, 2009.

S. Wakselman, C. Bechade, A. Roumier, D. Bernard, A. Triller et al., Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor, Journal of Neuroscience, vol.28, pp.8138-8143, 2008.

J. Wang, J. E. Wegener, T. Huang, S. Sripathy, H. De-jesus-cortex et al., Wild-type microglia do not reverse pathology in mouse models of Rett syndrome, Nature, vol.521, pp.1-4, 2015.

Y. Wang, K. J. Szretter, W. Vermi, S. Gilfillan, C. Rossini et al., IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia, Nat Immunol, vol.13, pp.753-760, 2012.

L. Weinhard, B. Gd, G. Bolasco, P. Machado, N. L. Schieber et al., Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction, Nature Communications, vol.9, p.1228, 2018.

E. Welker, H. Van-der-loos, M. A. Wollmer, L. R. Wilms, H. Held-feindt et al., Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae, J Neuroimmunol, vol.115, pp.19-27, 1986.

T. A. Woolsey and H. Van-der-loos, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units, Brain Res Dev Brain Res, vol.17, pp.205-242, 1970.

C. L. Wright, S. R. Burks, and M. M. Mccarthy, Identification of prostaglandin E2 receptors mediating perinatal masculinization of adult sex behavior and neuroanatomical correlates, Dev Neurobiol, vol.68, pp.1406-1419, 2008.

C. L. Wright and M. M. Mccarthy, Prostaglandin E2-induced masculinization of brain and behavior requires protein kinase A AMPA/kainate, and metabotropic glutamate receptor signaling, J Neurosci, vol.29, pp.13274-13282, 2009.

C. Wu and D. Sun, GABA receptors in brain development, function, and injury, Metabolic brain disease, vol.30, pp.367-379, 2015.

D. Xenos, M. Kamceva, S. Tomasi, J. A. Cardin, M. L. Schwartz et al., Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior, Cerebral Cortex, pp.1-15, 2017.

D. Xu, Y. Chen, H. Wang, L. Zhao, J. Wang et al., Tumor necrosis factor alpha partially contributes to lipopolysaccharide-induced intra-uterine fetal growth restriction and skeletal development retardation in mice, 2006.

, Toxicol Lett, vol.163, pp.20-29

J. Xu, T. Wang, Y. Wu, J. W. Wen, and Z. , Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine, Dev Cell, vol.38, pp.214-222, 2016.

J. Yamada, Y. Hayashi, S. Jinno, Z. Wu, K. Inoue et al., Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy, Glia, vol.56, pp.1448-1462, 2008.

N. Yamamoto and K. Hanamura, Formation of the Thalamocortical Projection Regulated Differentially by BDNF-and NT-3-Mediated Signaling, Reviews in the Neurosciences, vol.16, 2005.

T. Yanagisawa, T. Tsumoto, and F. Kimura, Transiently higher release probability during critical period at thalamocortical synapses in the mouse barrel cortex: relevance to differential short-term plasticity of AMPA and NMDA EPSCs and possible involvement of silent synapses, European Journal of Neuroscience, vol.20, pp.3006-3018, 2004.

W. Yeo and J. Gautier, Early neural cell death: dying to become neurons, Dev Biol, vol.274, pp.233-244, 2004.

C. Yu, D. Derdikman, S. Haidarliu, and E. Ahissar, Parallel thalamic pathways for whisking and touch signals in the rat, PLoS Biol, vol.4, p.124, 2006.

Y. Zhan, R. C. Paolicelli, F. Sforazzini, L. Weinhard, G. Bolasco et al., Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior, Nature neuroscience, vol.17, pp.400-406, 2014.

Z. Zhang, Y. Jiao, and Q. Sun, Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex, Neuroscience, vol.174, pp.10-25, 2011.