C. Hao, J. Tian, H. Liu, F. Li, H. Niu et al., Efficacy and safety of anti-PD-1 and anti-PD-1 combined with anti-CTLA-4 immunotherapy to advanced melanoma: A systematic review and meta-analysis of randomized controlled trials, Medicine (Baltimore), vol.96, issue.26, pp.29-39, 2017.

J. A. Seidel, A. Otsuka, and K. Kabashima, Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations, Front. Oncol, vol.8, 2018.

W. You, M. Liu, J. Miao, Y. Liao, Y. Song et al.,

, Network Meta-analysis Comparing the Efficacy and Safety of Anti-PD-1 with Anti-PD-L1 in Non-small Cell Lung Cancer, J Cancer, vol.9, issue.7, pp.1200-1206, 2018.

Q. Li, G. Feuer, X. Ouyang, and A. X. , Experimental animal modeling for immunooncology, 6. Mestas J, Hughes CCW. Of Mice and Not Men: Differences between Mouse and Human Immunology, vol.173, pp.2731-2738, 2004.

P. De-la-rochère, S. Guil-luna, D. Decaudin, G. Azar, S. Sukhvinder et al.,

, Humanized mice for the study of Immuno-Oncology, Trends in Immunology, 2018.

L. D. Shultz, T. Pearson, M. King, L. Giassi, L. Carney et al.,

D. L. Greiner, Humanized NOD/LtSz-scid IL2 receptor common gamma chain knockout mice in diabetes research, Ann. N. Y. Acad. Sci, vol.1103, pp.77-89, 2007.

E. Billerbeck, W. T. Barry, K. Mu, M. Dorner, C. M. Rice et al., Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocytemacrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2R?(null) humanized mice, Blood, vol.117, issue.11, pp.3076-3086, 2011.

L. D. Shultz, F. Ishikawa, and D. L. Greiner, Humanized mice in translational biomedical research, Nat. Rev. Immunol, vol.7, issue.2, pp.118-130, 2007.

R. Ito, T. Takahashi, I. Katano, K. Kawai, T. Kamisako et al., Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice, J. Immunol, vol.191, issue.6, pp.2890-2899, 2013.

L. Pérol, G. H. Martin, S. Maury, J. L. Cohen, E. Piaggio et al., Potential limitations of IL-2 administration for the treatment of experimental acute graft-versus-host disease, Immunol. Lett, vol.162, pp.173-184, 2014.

F. Charlotte and J. L. Cohen, Simple, Reproducible, and Efficient Clinical Grading System for
URL : https://hal.archives-ouvertes.fr/hal-01700946

, Murine Models of Acute Graft-versus-Host Disease, Front Immunol, vol.9, p.10, 2018.

K. R. Cooke, L. Kobzik, T. R. Martin, J. Brewer, J. Delmonte et al., An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin, Blood, vol.88, issue.8, pp.3230-3239, 1996.

E. Marangoni, A. Vincent-salomon, N. Auger, and A. Degeorges,

P. Cremoux, L. De-plater, C. Guyader, D. Pinieux, G. Judde et al., A new model of patient tumor-derived breast cancer xenografts for preclinical assays, Clin. Cancer Res, vol.13, issue.13, pp.3989-3998, 2007.

L. Deplater, L. Ouafi, O. Cremoux-p-de,-chouchane-mlik, C. Daniel, and Z. ,

L. , N. A. Richardson, M. Couturier, J. Dahmani, and A. , Abstract A15: Establishment and characterization of a new patient-derived non-small cell lung cancer xenograft panel for pharmacological assessment, Mol Cancer Ther, vol.10, issue.11, 2011.

, , pp.15-15

H. Wakelee, K. Kelly, and M. J. Edelman, 50 Years of progress in the systemic therapy of non-small cell lung cancer, Am Soc Clin Oncol Educ Book, pp.177-189, 2014.

E. Feld and L. Horn, Emerging role of nivolumab in the management of patients with non-small-cell lung cancer: current data and future perspectives, Onco Targets Ther, vol.10, pp.3697-3708, 2017.

M. B. Atkins, M. T. Lotze, J. P. Dutcher, R. I. Fisher, G. Weiss et al.,

M. Sznol, D. Parkinson, and M. Hawkins, High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993, J. Clin. Oncol, vol.17, issue.7, pp.2105-2116, 1999.

S. Létourneau, E. Van-leeuwen, C. Krieg, C. Martin, G. Pantaleo et al.,

C. D. Surh and O. Boyman, IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25, Proc. Natl. Acad. Sci

U. S. , , vol.107, pp.2171-2176, 2010.

C. Krieg, S. Létourneau, G. Pantaleo, and O. Boyman,

, immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells, Proc. Natl. Acad. Sci. U.S.A, vol.107, issue.26, pp.11906-11911, 2010.

K. Han, K. W. Kim, J. Yan, J. Lee, E. M. Lee et al.,

T. Y. Koo, Effects of stimulating interleukin -2/anti-interleukin -2 antibody complexes on renal cell carcinoma, BMC Urol, vol.16, issue.2, 2016.

T. Kovarik, J. Sommer, L. Zenke, and G. , Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2, Sci Transl Med

M. F. Sanmamed, I. Rodriguez, K. A. Schalper, C. Oñate, and A. Azpilikueta, , vol.8, pp.367-166

M. E. Rodriguez-ruiz, A. Morales-kastresana, S. Labiano, J. L. Pérez-gracia, and S. Martín-algarra,

, Lymphocytes Engrafted in Rag2-/-IL2R?null Immunodeficient Mice, Cancer Res, vol.75, issue.17, pp.3466-3478, 2015.

J. Couzin-frankel, Breakthrough of the year 2013, Cancer immunotherapy

, Science, vol.342, issue.6165, pp.1432-1433, 2013.

G. Zhou, Y. Xiong, S. Chen, F. Xia, Q. Li et al., Anti-PD-1/PD-L1 antibody therapy for pretreated advanced nonsmall-cell lung cancer: A meta-analysis of randomized clinical trials, Medicine (Baltimore), vol.95, issue.35, p.4611, 2016.

J. E. Talmadge, R. K. Singh, I. J. Fidler, A. Raz, M. Jong et al., Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice, J. Clin. Invest, vol.170, issue.3, pp.1390-1397, 2007.

, Proteomic identification of the wt-p53-regulated tumor cell secretome, Oncogene, vol.25, issue.58, pp.7650-7661, 2006.

H. Jespersen, M. F. Lindberg, M. Donia, E. Söderberg, R. Andersen et al.,

L. Ny, I. M. Svane, L. M. Nilsson, J. A. Nilsson, E. Calvo et al., Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model, Nat Commun, vol.8, issue.1, p.707, 2017.

J. O'connell, R. Millham, and N. Giri, A Phase I Clinical Trial and Independent Patient-Derived Xenograft Study of Combined Targeted Treatment with Dacomitinib and Figitumumab in Advanced Solid Tumors, Clin. Cancer Res, vol.23, issue.5, pp.1177-1185, 2017.

P. Sharma and J. P. Allison, The future of immune checkpoint therapy, Science, vol.348, issue.6230, pp.56-61, 2015.

M. Teng, S. F. Ngiow, A. Ribas, and M. J. Smyth, Classifying Cancers Based on Tcell Infiltration and PD-L1, Cancer Res, vol.75, issue.11, pp.2139-2145, 2015.

F. Pagès, B. Mlecnik, F. Marliot, G. Bindea, F. Ou et al.,

T. T. Rau and M. D. Berger, International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study, Lancet, issue.18, p.30789, 2018.

H. Gao, J. M. Korn, S. Ferretti, J. E. Monahan, Y. Wang et al.,

C. , Y. G. Zhang, and Y. , High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response, Nat. Med, vol.21, issue.11, pp.1318-1325, 2015.

B. Ming, P. Yue-jiang, W. Ran, L. Sheng-long, L. Jie et al., The efficacy of nivolumab for the treatment of advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials, Int J Clin Exp Med, vol.10, pp.153-161, 2017.

O. Boyman, M. Kovar, M. P. Rubinstein, C. D. Surh, and J. Sprent, Selective stimulation of T cell subsets with antibody-cytokine immune complexes, Science, vol.311, issue.5769, pp.1924-1927, 2006.

M. A. King, L. Covassin, M. A. Brehm, W. Racki, T. Pearson et al.,

W. Foreman, O. Burzenski, and L. , Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host References

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, CA Cancer J Clin, vol.65, issue.2, pp.87-108, 2012.

H. Von-der-maase, S. W. Hansen, J. T. Roberts, L. Dogliotti, T. Oliver et al., Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study, J. Clin. Oncol, vol.18, issue.17, pp.3068-3077, 2000.

J. Bellmunt, R. Fougeray, J. E. Rosenberg, V. Der-maase, H. Schutz et al.,

S. and C. Tk, Long-term survival results of a randomized phase III trial of vinflunine plus best supportive care versus best supportive care alone in advanced urothelial carcinoma patients after failure of platinum-based chemotherapy, Ann. Oncol, vol.24, issue.6, pp.1466-1472, 2013.

J. E. Rosenberg, J. Hoffman-censits, T. Powles, M. S. Van-der-heijden, A. V. Balar et al., Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet, vol.387, pp.1909-1920, 2016.

J. Bellmunt, R. De-wit, D. J. Vaughn, Y. Fradet, J. Lee et al., Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma, N. Engl. J. Med, vol.376, issue.11, pp.1015-1026, 2017.

S. L. Topalian, F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith et al., Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med, vol.366, issue.26, pp.2443-2454, 2012.

H. Harlin, Y. Meng, A. C. Peterson, Y. Zha, M. Tretiakova et al., Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment, Cancer Res, vol.69, issue.7, pp.3077-3085, 2009.

J. Chasalow, S. D. Wang, L. Hamid, O. Schmidt, H. Cogswell et al., An immune-active tumor microenvironment favors clinical response to ipilimumab, Cancer Immunol. Immunother, vol.61, issue.7, pp.1019-1031, 2012.

A. Kirilovsky, F. Marliot, E. Sissy, C. Haicheur, N. Galon et al., Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients, Int. Immunol, vol.28, issue.8, pp.373-382, 2016.

F. Pagès, A. Berger, M. Camus, F. Sanchez-cabo, A. Costes et al., Effector memory T cells, early metastasis, and survival in colorectal cancer, N. Engl. J. Med, vol.353, issue.25, pp.2654-2666, 2005.

R. N. Ramos, E. Piaggio, and E. Romano, Mechanisms of Resistance to Immune Checkpoint Antibodies, Handb Exp Pharmacol, 2017.

T. L. Yuan and L. C. Cantley,

, Oncogene, vol.27, issue.41, pp.5497-5510, 2008.

A. T. Parsa, J. S. Waldron, A. Panner, C. A. Crane, I. F. Parney et al.,

J. C. , T. T. Jensen, and M. C. , Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma, Nat. Med, vol.13, issue.1, pp.84-88, 2007.

W. Peng, J. Q. Chen, C. Liu, S. Malu, C. Creasy et al.,

X. Liang, Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy, Cancer Discov, vol.6, issue.2, pp.202-216, 2016.

R. F. Sweis, S. Spranger, R. Bao, G. P. Paner, W. M. Stadler et al.,

, Molecular Drivers of the Non-T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer, Cancer Immunol Res, vol.4, issue.7, pp.563-568, 2016.

L. D. Shultz, F. Ishikawa, and D. L. Greiner, Humanized mice in translational biomedical research, Nat. Rev. Immunol, vol.7, issue.2, pp.118-130, 2007.

L. Pérol, G. H. Martin, S. Maury, J. L. Cohen, and E. Piaggio, Potential limitations of IL-2 administration for the treatment of experimental acute graft-versus-host disease

, Immunol. Lett, vol.162, issue.2, pp.173-184, 2014.

S. Naserian, M. Leclerc, A. Thiolat, C. Pilon, L. Bret et al.,

F. Charlotte and J. L. Cohen, Simple, Reproducible, and Efficient Clinical Grading System for
URL : https://hal.archives-ouvertes.fr/hal-01700946

, Murine Models of Acute Graft-versus-Host Disease, Front Immunol, vol.9, p.10, 2018.

M. Ito, H. Hiramatsu, K. Kobayashi, K. Suzue, M. Kawahata et al.,

Y. Koyanagi, K. Sugamura, and K. Tsuji, NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells, Blood, vol.100, issue.9, pp.3175-3182, 2002.

M. A. King, L. Covassin, M. A. Brehm, W. Racki, T. Pearson et al., Human peripheral blood leucocyte non-obese diabeticsevere combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex, Clin. Exp. Immunol, vol.157, issue.1, pp.104-118, 2009.

S. Du-four, S. K. Maenhout, S. P. Niclou, K. Thielemans, B. Neyns et al., Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs, Am J Cancer Res, vol.6, issue.11, pp.2514-2531, 2016.

R. J. Davis, E. C. Moore, P. E. Clavijo, J. Friedman, H. Cash et al., Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3K?/?, Cancer Res, vol.77, issue.10, pp.2607-2619, 2017.

I. Bièche, P. Onody, S. Tozlu, K. Driouch, M. Vidaud et al., Prognostic value of ERBB family mRNA expression in breast carcinomas, Int. J. Cancer, vol.106, issue.5, pp.758-765, 2003.

. Bibliographie,

J. Ferlay, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, vol.136, pp.359-386, 2015.

D. Stehelin, Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses, J. Mol. Biol, vol.101, pp.349-365, 1976.

D. Stehelin, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA, Nature, vol.260, pp.170-173, 1976.

B. Vogelstein and K. W. Kinzler, Cancer genes and the pathways they control, Nat. Med, vol.10, pp.789-799, 2004.

J. M. Nigro, Mutations in the p53 gene occur in diverse human tumour types, Nature, vol.342, pp.705-708, 1989.

M. Baretti and D. T. Le, DNA mismatch repair in cancer, Pharmacol. Ther, 2018.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

K. K. Sanford, The growth in vitro of single isolated tissue cells, J. Natl. Cancer Inst, vol.9, pp.229-246, 1948.

W. F. Scherer, Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix, J. Exp. Med, vol.97, pp.695-710, 1953.

L. Hayflick, THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS, Exp. Cell Res, vol.37, pp.614-636, 1965.

M. A. Blasco, Telomeres and human disease: ageing, cancer and beyond, Nat. Rev. Genet, vol.6, pp.611-622, 2005.

N. W. Kim, Specific association of human telomerase activity with immortal cells and cancer, Science, vol.266, pp.2011-2015, 1994.

J. Coppé, The senescence-associated secretory phenotype: the dark side of tumor suppression, Annu. Rev. Pathol, vol.5, pp.99-118, 2010.

J. Coppé, Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol, vol.6, pp.2853-2868, 2008.

P. Sun, PRAK is essential for ras-induced senescence and tumor suppression, Cell, vol.128, pp.295-308, 2007.

K. Ohuchida, Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions, Cancer Res, vol.64, pp.3215-3222, 2004.

J. Coppe, A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion, Mol. Cancer Res. MCR, vol.6, pp.1085-1098, 2008.

J. Folkman, Tumor angiogenesis: therapeutic implications, N. Engl. J, 1971.

. Med, , vol.285, pp.1182-1186

J. Folkman, Induction of angiogenesis during the transition from hyperplasia to neoplasia, Nature, vol.339, pp.58-61, 1989.

J. Folkman and D. Hanahan, Switch to the angiogenic phenotype during tumorigenesis, Princess Takamatsu Symp, vol.22, pp.339-347, 1991.

G. L. Wang and G. L. Semenza, General involvement of hypoxiainducible factor 1 in transcriptional response to hypoxia, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.4304-4308, 1993.

H. Zhong, Overexpression of Hypoxia-inducible Factor 1? in Common Human Cancers and Their Metastases, Cancer Res, vol.59, pp.5830-5835, 1999.

K. L. Talks, The Expression and Distribution of the Hypoxia-Inducible Factors HIF-1? and HIF-2? in Normal Human Tissues, Cancers, and Tumor-Associated Macrophages, Am. J. Pathol, vol.157, pp.411-421, 2000.

E. Ikeda, Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells, J. Biol. Chem, vol.270, pp.19761-19766, 1995.

W. G. Kaelin, The Von Hippel-Lindau Tumor Suppressor Gene and Kidney Cancer, Clin. Cancer Res, vol.10, pp.6290-6295, 2004.

M. S. Pepper, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem. Biophys. Res. Commun, vol.189, pp.824-831, 1992.

D. P. Berger, Vascular endothelial growth factor (VEGF) mRNA expression in human tumor models of different histologies, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol, vol.6, pp.817-825, 1995.

T. Donnem, Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment, Cancer Med, vol.2, pp.427-436, 2013.

W. P. Leenders, Antiangiogenic Therapy of Cerebral Melanoma Metastases Results in Sustained Tumor Progression via Vessel Co-Option, Clin. Cancer Res, vol.10, pp.6222-6230, 2004.

S. Patan, Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis, Microvasc. Res, vol.51, pp.260-272, 1996.

P. H. Burri and V. Djonov, Intussusceptive angiogenesis--the alternative to capillary sprouting, Mol. Aspects Med, vol.23, pp.1-27, 2002.

A. J. Maniotis, Vascular Channel Formation by Human Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry, Am. J. Pathol, vol.155, pp.739-752, 1999.

J. P. Yang, Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis, Angiogenesis, vol.19, pp.191-200, 2016.

S. Valastyan and R. A. Weinberg, Tumor Metastasis: Molecular Insights and Evolving Paradigms, Cell, vol.147, pp.275-292, 2011.

W. Guo, Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State, Cell, vol.148, pp.1015-1028, 2012.

K. Zhang, The Collagen Receptor Discoidin Domain Receptor 2, 2013.

, Stabilizes Snail1 Protein to Facilitate Breast Cancer Metastasis, Nat. Cell Biol, vol.15, pp.677-687

H. D. Tran, Transient SNAIL1 Expression is Necessary for, 2014.

, Metastatic Competence in Breast Cancer, Cancer Res, vol.74, pp.6330-6340

A. Cano, The transcription factor snail controls epithelialmesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol, vol.2, pp.278-284, 2000.

M. T. Nieman, N-Cadherin Promotes Motility in Human Breast Cancer Cells Regardless of Their E-Cadherin Expression, J. Cell Biol, vol.147, p.42, 1999.

X. Qian, N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties, Oncogene, vol.33, pp.3411-3421, 2014.

A. E. Karnoub, Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.449, pp.557-563, 2007.

K. Kessenbrock, Matrix metalloproteinases: regulators of the tumor microenvironment, Cell, vol.141, pp.52-67, 2010.

L. A. Shuman-moss, Matrix metalloproteinases: changing roles in tumor progression and metastasis, Am. J. Pathol, vol.181, pp.1895-1899, 2012.

V. Gocheva, IL-4 induces cathepsin protease activity in tumorassociated macrophages to promote cancer growth and invasion, Genes Dev, vol.24, pp.241-255, 2010.

J. B. Wyckoff, Direct Visualization of Macrophage-Assisted Tumor Cell Intravasation in Mammary Tumors, Cancer Res, vol.67, pp.2649-2656, 2007.

A. I. Ségaliny, Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment, Int. J. Cancer, vol.137, pp.73-85, 2015.

M. Guba, A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis, Cancer Res, vol.61, pp.5575-5579, 2001.

O. V. Volpert, A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.6343-6348, 1998.

G. N. Naumov, Tumor dormancy due to failure of angiogenesis: role of the microenvironment, Clin. Exp. Metastasis, vol.26, pp.51-60, 2009.

Z. Lu, The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells, J. Clin. Invest, vol.118, pp.3917-3929, 2008.

M. W. Teng, Immune-mediated dormancy: an equilibrium with cancer, J. Leukoc. Biol, vol.84, pp.988-993, 2008.

Y. Katsuno, TGF-? signaling and epithelial-mesenchymal transition in cancer progression, Curr. Opin. Oncol, vol.25, pp.76-84, 2013.

M. Pickup, The roles of TGF? in the tumour microenvironment, Nat. Rev. Cancer, vol.13, pp.788-799, 2013.

B. Jiang and L. Liu, PI3K/PTEN signaling in angiogenesis and tumorigenesis, Adv. Cancer Res, vol.102, pp.19-65, 2009.

K. E. O'reilly, ) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt, Cancer Res, vol.66, pp.1500-1508, 2006.

B. E. Engel, THE RETINOBLASTOMA PROTEIN: A MASTER TUMOR SUPPRESSOR ACTS AS A LINK BETWEEN CELL CYCLE AND CELL ADHESION, Cell Health Cytoskelet, vol.7, pp.1-10, 2015.

G. Stracquadanio, The importance of p53 pathway genetics in inherited and somatic cancer genomes, Nat. Rev. Cancer, vol.16, pp.251-265, 2016.

M. Abercrombie, Contact inhibition and malignancy, Nature, vol.281, pp.259-262, 1979.

J. M. Adams and S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy, Oncogene, vol.26, pp.1324-1337, 2007.

V. P. Brahmkhatri, Insulin-Like Growth Factor System in Cancer: Novel Targeted Therapies, BioMed Res. Int, p.63, 2015.

K. Degenhardt, BAX and BAK mediate p53-independent suppression of tumorigenesis, Cancer Cell, vol.2, pp.193-203, 2002.

R. D. Schreiber, Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion, Science, vol.331, pp.1565-1570, 2011.

T. Blankenstein, The determinants of tumour immunogenicity, Nat. Rev. Cancer, vol.12, pp.307-313, 2012.

A. F. Ochsenbein, Immune surveillance against a solid tumor fails because of immunological ignorance, Proc. Natl. Acad. Sci. U. S. A, vol.96, p.67, 1999.

G. Willimsky, Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness, J. Exp. Med, vol.205, pp.1687-1700, 2008.

K. Aoto, Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma, Oncol. Rep, vol.39, pp.151-159, 2018.

D. L. Lamm, A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guérin for transitional-cell carcinoma of the bladder, N. Engl. J. Med, vol.325, pp.1205-1209, 1991.

V. Shankaran, IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity, J. Exp. Med, vol.410, pp.1781-1790, 1996.

D. H. Kaplan, Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.7556-7561, 1998.

A. E. Grulich, Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis, Lancet Lond. Engl, vol.370, pp.59-67, 2007.

S. Gasser, The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor, Nature, vol.436, pp.1186-1190, 2005.

S. Ladoire, Cell-death-associated molecular patterns as determinants of cancer immunogenicity, Antioxid. Redox Signal, vol.20, pp.1098-1116, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02047417

L. L. Lanier, NKG2D Receptor and Its Ligands in Host Defense, Cancer Immunol. Res, vol.3, pp.575-582, 2015.

R. M. Mackie, Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery, N. Engl. J. Med, vol.348, pp.567-568, 2003.

C. M. Koebel, Adaptive immunity maintains occult cancer in an equilibrium state, Nature, vol.450, pp.903-907, 2007.

D. S. Chen and I. Mellman, Oncology meets immunology: the cancerimmunity cycle, Immunity, vol.39, pp.1-10, 2013.

T. N. Schumacher and R. D. Schreiber, Neoantigens in cancer immunotherapy, Science, vol.348, pp.69-74, 2015.

M. S. Lawrence, Mutational heterogeneity in cancer and the search for new cancer-associated genes, Nature, vol.499, pp.214-218, 2013.

S. H. Burg and . Van-der, Vaccines for established cancer: overcoming the challenges posed by immune evasion, Nat. Rev. Cancer, vol.16, pp.219-233, 2016.

U. Sahin, Personalized RNA mutanome vaccines mobilize polyspecific therapeutic immunity against cancer, Nature, vol.547, pp.222-226, 2017.

T. Li and Z. J. Chen, The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer, J. Exp. Med, vol.215, p.85, 2018.

N. Casares, Caspase-dependent immunogenicity of doxorubicininduced tumor cell death, J. Exp. Med, vol.202, pp.1691-1701, 2005.

A. M. Dudek, Inducers of immunogenic cancer cell death, Cytokine Growth Factor Rev, vol.24, pp.319-333, 2013.

J. Fucikova, Human Tumor Cells Killed by Anthracyclines Induce a Tumor-Specific Immune Response, Cancer Res, vol.71, pp.4821-4833, 2011.

L. Galluzzi, Immunogenic cell death in cancer and infectious disease, Nat. Rev. Immunol, vol.17, pp.97-111, 2017.

E. B. Golden and L. Apetoh, Radiotherapy and immunogenic cell death, Semin. Radiat. Oncol, vol.25, pp.11-17, 2015.

I. Adkins, High hydrostatic pressure in cancer immunotherapy and biomedicine, Biotechnol. Adv, vol.36, pp.577-582, 2018.

D. E. Dolmans, Photodynamic therapy for cancer, Nat. Rev. Cancer, vol.3, pp.380-387, 2003.

S. A. Rosenberg, Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2, JAMA, vol.271, pp.907-913, 1994.

G. Fyfe, Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.13, pp.688-696, 1995.

T. R. Malek, The biology of interleukin-2, Annu. Rev. Immunol, vol.26, pp.453-479, 2008.

E. Assier, NK Cells and Polymorphonuclear Neutrophils Are Both Critical for IL-2-Induced Pulmonary Vascular Leak Syndrome, J. Immunol, vol.172, pp.7661-7668, 2004.

D. A. Vignali, How regulatory T cells work, Nat. Rev. Immunol, vol.8, pp.523-532, 2008.

B. Shang, Prognostic value of tumor-infiltrating FoxP3 + regulatory T cells in cancers: a systematic review and meta-analysis, Sci. Rep, vol.5, p.98, 2015.

T. J. Curiel, Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat. Med, vol.10, pp.942-949, 2004.

F. Ghiringhelli, CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner, J. Exp. Med, vol.202, pp.1075-1085, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00020140

F. Ghiringhelli, Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation, J. Exp. Med, vol.202, pp.919-929, 2005.

B. Valzasina, Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25-lymphocytes is thymus and proliferation independent, Cancer Res, vol.66, pp.4488-4495, 2006.

V. C. Liu, Tumor evasion of the immune system by converting CD4+CD25-T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGFbeta, J. Immunol. Baltim. Md, vol.178, pp.2883-2892, 1950.

K. Wing, CTLA-4 Control over Foxp3+ Regulatory T Cell Function, Science, vol.322, pp.271-275, 2008.

T. L. Walunas, CTLA-4 can function as a negative regulator of T cell activation, Immunity, vol.1, pp.405-413, 1994.

D. R. Leach, Enhancement of antitumor immunity by CTLA-4 blockade, Science, vol.271, pp.1734-1736, 1996.

K. Saoulli, CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand, J. Exp. Med, vol.187, pp.1849-1862, 1998.

B. Valzasina, Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR, Blood, vol.105, pp.2845-2851, 2005.

I. Melero, Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors, Nat. Med, vol.3, pp.682-685, 1997.

A. D. Weinberg, Engagement of the OX-40 receptor in vivo enhances antitumor immunity, J. Immunol. Baltim. Md, vol.164, pp.2160-2169, 1950.

S. P. Schoenberger, T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions, Nature, vol.393, pp.480-483, 1998.

R. R. French, CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help, Nat. Med, vol.5, pp.548-553, 1999.

I. Melero, Immunostimulatory monoclonal antibodies for cancer therapy, Nat. Rev. Cancer, vol.7, pp.95-106, 2007.

W. H. Fridman, The immune contexture in human tumours: impact on clinical outcome, Nat. Rev. Cancer, vol.12, pp.298-306, 2012.

T. Igarashi, Effect of tumor-infiltrating lymphocyte subsets on prognosis and susceptibility to interferon therapy in patients with renal cell carcinoma, Urol. Int, vol.69, pp.51-56, 2002.

P. Sharma and J. P. Allison, The future of immune checkpoint therapy, Science, vol.348, pp.56-61, 2015.

M. W. Teng, Classifying Cancers Based on T-cell Infiltration and PD-L1, Cancer Res, vol.75, pp.2139-2145, 2015.

J. Galon, Towards the introduction of the "Immunoscore" in the classification of malignant tumours, J. Pathol, vol.232, pp.199-209, 2014.

I. D. Nagtegaal, Has the new TNM classification for colorectal cancer improved care?, Nat. Rev. Clin. Oncol, vol.9, pp.119-123, 2011.

F. Pagès, International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study, Lancet Lond. Engl, issue.18, p.30789, 2018.

J. Galon, Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge, J. Transl. Med, vol.14, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01388016

M. H. Kershaw, Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum, Gene Ther, vol.13, pp.1971-1980, 2002.

D. Stasi and A. , T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model, Blood, vol.113, pp.6392-6402, 2009.

M. Bellone and A. Calcinotto, Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes, Front. Oncol, vol.3, p.124, 2013.

R. K. Shrimali, Antiangiogenic Agents Can Increase Lymphocyte Infiltration into Tumor and Enhance the Effectiveness of Adoptive Immunotherapy of Cancer, Cancer Res, vol.70, pp.6171-6180, 2010.

G. J. Freeman, Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med, vol.192, pp.1027-1034, 2000.

L. M. Francisco, PD-L1 regulates the development, maintenance, and function of induced regulatory T cells, J. Exp. Med, vol.206, pp.3015-3029, 2009.

S. R. Gordon, PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity, Nature, vol.545, pp.495-499, 2017.

T. Zhao, Prognostic value of PD-L1 expression in tumor infiltrating immune cells in cancers: A meta-analysis, PLoS ONE, vol.12, 2017.

F. Hirano, Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity, Cancer Res, vol.65, pp.1089-1096, 2005.

S. I. Mosely, Rational Selection of Syngeneic Preclinical Tumor Models for Immunotherapeutic Drug Discovery, Cancer Immunol. Res, vol.5, pp.29-41, 2017.

S. Woo, Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape, Cancer Res, vol.72, pp.917-927, 2012.

S. F. Ngiow, Anti-TIM3 antibody promotes T cell IFN-?-mediated antitumor immunity and suppresses established tumors, Cancer Res, vol.71, pp.3540-3551, 2011.

R. J. Johnston, The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function, Cancer Cell, vol.26, pp.923-937, 2014.

D. L. Barber, Restoring function in exhausted CD8 T cells during chronic viral infection, Nature, vol.439, pp.682-687, 2006.

E. J. Wherry, Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment, J. Virol, vol.77, pp.4911-4927, 2003.

S. A. Redpath, ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection, Eur. J. Immunol, vol.43, pp.705-715, 2013.

T. Fu, The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy, Cancer Res, vol.71, pp.5445-5454, 2011.

D. A. Knee, Rationale for anti-GITR cancer immunotherapy, Eur. J. Cancer Oxf. Engl, vol.67, pp.1-10, 1990.

M. Vareki and S. , IDO Downregulation Induces Sensitivity to Pemetrexed, Gemcitabine, FK866, and Methoxyamine in Human Cancer Cells, PloS One, vol.10, p.143435, 2015.

D. H. Munn and A. L. Mellor, Indoleamine 2,3-dioxygenase and tumorinduced tolerance, J. Clin. Invest, vol.117, pp.1147-1154, 2007.

S. Spranger, Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment, J. Immunother. Cancer, vol.2, p.3, 2014.

Z. Berrong, Antigen-Specific Antitumor Responses Induced by OX40 Agonist Are Enhanced by the IDO Inhibitor Indoximod, Cancer Immunol. Res, vol.6, pp.201-208, 2018.

J. U. Gutterman, Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma, Ann. Intern. Med, vol.93, pp.399-406, 1980.

H. C. Lane, Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists' Collaborative Group, J. Natl. Cancer Inst, vol.2, pp.1616-1620, 1988.

M. Ferrantini, Interferon-? and cancer: Mechanisms of action and new perspectives of clinical use, Biochimie, vol.89, pp.884-893, 2007.

J. R. Quesada, Clinical toxicity of interferons in cancer patients: a review, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.4, pp.234-243, 1986.

S. A. Rosenberg, Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report, N. Engl. J. Med, vol.319, pp.1676-1680, 1988.

M. B. Atkins, High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.17, pp.2105-2116, 1999.

C. Ma and A. W. Armstrong, Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilimumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2, J. Dermatol. Treat, vol.25, pp.401-408, 2014.

O. Boyman, Selective stimulation of T cell subsets with antibodycytokine immune complexes, Science, vol.311, pp.1924-1927, 2006.

D. Kamimura, IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb, J. Immunol. Baltim. Md, vol.177, pp.306-314, 1950.

S. Létourneau, IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.2171-2176, 2010.

C. Krieg, Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.11906-11911, 2010.

N. Arenas-ramirez, Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2, Sci. Transl. Med, vol.8, pp.367-166, 2016.

W. Lasek, Interleukin 12: still a promising candidate for tumor immunotherapy?, Cancer Immunol. Immunother. CII, vol.63, pp.419-435, 2014.

D. R. Lowy and J. T. Schiller, Prophylactic human papillomavirus vaccines, J. Clin. Invest, vol.116, pp.1167-1173, 2006.

R. A. Rosalia, Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation, Eur. J. Immunol, vol.43, pp.2554-2565, 2013.

R. Soiffer, Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.13141-13146, 1998.

C. Sedlik, Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicleassociated forms, J. Extracell. Vesicles, vol.3, 2014.

L. H. Butterfield, Cancer vaccines, The BMJ, vol.350, 2015.

J. A. Garcia, Sipuleucel-T in patients with metastatic castration-resistant prostate cancer: an insight for oncologists, Ther. Adv. Med. Oncol, vol.3, pp.101-108, 2011.

J. Wahler and N. Suh, Targeting HER2 Positive Breast Cancer with Chemopreventive Agents, Curr. Pharmacol. Rep, vol.1, pp.324-335, 2015.

P. R. Pohlmann, Resistance to Trastuzumab in Breast Cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.15, pp.7479-7491, 2009.

N. Harbeck, HER2 Dimerization Inhibitor Pertuzumab -Mode of Action and Clinical Data in Breast Cancer, Breast Care Basel Switz, vol.8, pp.49-55, 2013.

M. Welslau, Patient-reported outcomes from EMILIA, a randomized phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer, Cancer, vol.120, pp.642-651

R. Rosell, Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-smallcell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial, Lancet Oncol, vol.13, pp.239-246, 2012.

S. Dhillon, Gefitinib: a review of its use in adults with advanced nonsmall cell lung cancer, Target. Oncol, vol.10, pp.153-170, 2015.

R. N. Ramos, Mechanisms of Resistance to Immune Checkpoint Antibodies, Handb. Exp. Pharmacol, 2017.

Y. Samuels, High frequency of mutations of the PIK3CA gene in human cancers, Science, vol.304, p.554, 2004.

L. M. Muul, Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma, J. Immunol. Baltim. Md, vol.138, pp.989-995, 1950.

M. E. Dudley, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, vol.298, pp.850-854, 2002.

R. A. Morgan, Cancer regression in patients after transfer of genetically engineered lymphocytes, Science, vol.314, pp.126-129, 2006.

L. A. Johnson, Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen, Blood, vol.114, pp.535-546, 2009.

B. J. Cameron, Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells, Sci. Transl. Med, vol.5, 2013.

A. P. Rapoport, NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma, Nat. Med, vol.21, pp.914-921, 2015.

E. Tran, Cancer immunotherapy based on mutation-specific CD4+, 2014.

F. Garrido, The urgent need to recover MHC class I in cancers for effective immunotherapy, Curr. Opin. Immunol, vol.39, pp.44-51, 2016.

Y. Kuwana, Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions, Biochem. Biophys. Res. Commun, vol.149, pp.960-968, 1987.

G. Gross, Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity, Proc. Natl. Acad. Sci. U. S. A, vol.86, pp.10024-10028, 1989.

M. Sadelain, The basic principles of chimeric antigen receptor design, Cancer Discov, vol.3, pp.388-398, 2013.

R. Elahi, Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells, Front. Immunol, vol.9, p.1717, 2018.

C. H. June, CAR T cell immunotherapy for human cancer, Science, vol.359, pp.1361-1365, 2018.

E. Kelly and S. J. Russell, History of oncolytic viruses: genesis to genetic engineering, Mol. Ther. J. Am. Soc. Gene Ther, vol.15, pp.651-659, 2007.

H. L. Kaufman, Oncolytic viruses: a new class of immunotherapy drugs, Nat. Rev. Drug Discov, vol.14, pp.642-662, 2015.

S. J. Im, Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy, Nature, vol.537, pp.417-421, 2016.

A. O. Kamphorst, Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent, Science, vol.355, pp.1423-1427, 2017.

S. Koyama, Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints, Nat. Commun, vol.7, p.10501, 2016.

G. Shayan, Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer, Oncoimmunology, vol.6, p.1261779, 2017.

C. Chang, Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression, Cell, vol.162, pp.1229-1241, 2015.

W. C. Dempke, Second-and third-generation drugs for immuno-oncology treatment-The more the better?, Eur. J. Cancer Oxf. Engl, vol.74, pp.55-72, 1990.

J. M. Michot, Immune-related adverse events with immune checkpoint blockade: a comprehensive review, Eur. J. Cancer Oxf. Engl, vol.54, pp.139-148, 1990.

S. Stucci, Immune-related adverse events during anticancer immunotherapy: Pathogenesis and management, Oncol. Lett, vol.14, pp.5671-5680, 2017.

C. Hao, Efficacy and safety of anti-PD-1 and anti-PD-1 combined with anti-CTLA-4 immunotherapy to advanced melanoma: A systematic review and meta-analysis of randomized controlled trials, Medicine, vol.96, p.7325, 2017.

C. Jin, The efficacy and safety of nivolumab in the treatment of advanced melanoma: a meta-analysis of clinical trials, OncoTargets Ther, vol.9, pp.1571-1578, 2016.

G. Zhou, Anti-PD-1/PD-L1 antibody therapy for pretreated advanced nonsmall-cell lung cancer: A meta-analysis of randomized clinical trials, Medicine, vol.95, p.4611, 2016.

M. H. Kershaw, Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment, Oncoimmunology, vol.2, 2013.

K. M. Koller, Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone, Cancer Biol. Ther, vol.18, pp.36-42, 2017.

J. E. Talmadge, Murine models to evaluate novel and conventional therapeutic strategies for cancer, Am. J. Pathol, vol.170, pp.793-804, 2007.

Q. Li, Experimental animal modeling for immuno-oncology, Pharmacol. Ther, vol.173, pp.34-46, 2017.

G. Livshits and S. W. Lowe, Accelerating cancer modeling with RNAi and nongermline genetically engineered mouse models, Cold Spring Harb. Protoc, p.202, 2013.

M. Dupage, Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase, Nat. Protoc, vol.4, pp.1064-1072, 2009.

R. Alonso, Induction of anergic or regulatory tumor-specific CD4+ T cells in the tumor-draining lymph node, Nat. Commun, vol.9, p.2113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976612

H. Flament, Modeling the Specific CD4+ T Cell Response against a Tumor Neoantigen, J. Immunol, vol.194, pp.3501-3512, 2015.

G. C. Bosma, A severe combined immunodeficiency mutation in the mouse, Nature, vol.301, pp.527-530, 1983.

D. E. Mosier, Transfer of a functional human immune system to mice with severe combined immunodeficiency, Nature, vol.335, pp.256-259, 1988.

J. M. Mccune, The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function, Science, vol.241, pp.1632-1639, 1988.

T. Lapidot, Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice, Science, vol.255, pp.1137-1141, 1992.

R. Namikawa, Infection of the SCID-hu mouse by HIV-1, Science, vol.242, pp.1684-1686, 1988.

M. L. Washburn, A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease, Gastroenterology, vol.140, pp.1334-1344, 2011.

C. Gurer, Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses, Blood, vol.112, pp.1231-1239, 2008.

S. J. Libby, Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15589-15594, 2010.

S. Ellmerich, High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model, J. Immunol. Baltim. Md, vol.174, pp.1938-1946, 1950.

M. A. Brehm, Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice, Diabetes, vol.59, pp.2265-2270, 2010.

L. Pérol, Potential limitations of IL-2 administration for the treatment of experimental acute graft-versus-host disease, Immunol. Lett, vol.162, pp.173-184, 2014.

J. Fogh, One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice, J. Natl. Cancer Inst, vol.59, pp.221-226, 1977.

W. A. Hudson, Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects, Leukemia, vol.12, pp.2029-2033, 1998.

M. A. Oettinger, RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination, Science, vol.248, pp.1517-1523, 1990.

P. Mombaerts, RAG-1-deficient mice have no mature B and T lymphocytes, Cell, vol.68, pp.869-877, 1992.

Y. Shinkai, RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement, Cell, vol.68, pp.855-867, 1992.

T. Strowig, Transgenic expression of human signal regulatory protein alpha in Rag2-/-gamma(c)-/-mice improves engraftment of human hematopoietic cells in humanized mice, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.13218-13223, 2011.

L. D. Shultz, Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice, J. Immunol. Baltim. Md, vol.154, pp.180-191, 1950.

L. D. Shultz, NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells, J. Immunol. Baltim. Md, vol.164, pp.2496-2507, 1950.

L. D. Shultz, Humanized mice in translational biomedical research, Nat. Rev. Immunol, vol.7, pp.118-130, 2007.

F. Ishikawa, Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice, Blood, vol.106, pp.1565-1573, 2005.

M. Ito, NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells, Blood, vol.100, pp.3175-3182, 2002.

E. Traggiai, Development of a human adaptive immune system in cord blood cell-transplanted mice, Science, vol.304, pp.104-107, 2004.

Y. Rochman, New insights into the regulation of T cells by gamma(c) family cytokines, Nat. Rev. Immunol, vol.9, pp.480-490, 2009.

R. Gimeno, Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/-gammac-/-mice: functional inactivation of p53 in developing T cells, Blood, vol.104, pp.3886-3893, 2004.

K. Takenaka, Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells, Nat. Immunol, vol.8, pp.1313-1323, 2007.

H. Takizawa and M. G. Manz, Innate immune "self" recognition: a role for CD47-SIRPalpha interactions in hematopoietic stem cell transplantation, Trends Immunol, vol.8, pp.203-206, 2007.

N. Legrand, Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T-and natural killer-(NK) cell homeostasis in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.13224-13229, 2011.

L. S. Kwong, Signal-regulatory protein ? from the NOD mouse binds human CD47 with an exceptionally high affinity--implications for engraftment of human cells, Immunology, vol.143, pp.61-67, 2014.

A. Veillette, High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages, J. Biol. Chem, vol.273, pp.22719-22728, 1998.

T. Pearson, Humanized SCID mouse models for biomedical research, Curr. Top. Microbiol. Immunol, vol.324, pp.25-51, 2008.

M. A. Brehm, Overcoming current limitations in humanized mouse research, J. Infect. Dis, vol.208, issue.2, pp.125-130, 2013.

M. King, A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene, Clin. Immunol. Orlando Fla, vol.126, pp.303-314, 2008.

K. C. Kim, Simple Mouse Model for the Study of Human Immunodeficiency Virus, AIDS Res. Hum. Retroviruses, vol.32, pp.194-202, 2016.

N. Ali, Xenogeneic graft-versus-host-disease in NOD-scid IL-2R?null mice display a T-effector memory phenotype, PloS One, vol.7, p.44219, 2012.

L. D. Shultz, Humanized NOD/LtSz-scid IL2 receptor common gamma chain knockout mice in diabetes research, Ann. N. Y. Acad. Sci, vol.1103, pp.77-89, 2007.

M. A. King, Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex, Clin. Exp. Immunol, vol.157, pp.104-118, 2009.

J. Moser, Distinct Differences on Neointima Formation in Immunodeficient and Humanized Mice after Carotid or, Femoral Arterial Injury. Sci. Rep, vol.6, p.35387, 2016.

K. R. Cooke, An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin, Blood, vol.88, pp.3230-3239, 1996.

M. F. Sanmamed, Nivolumab and Urelumab Enhance Antitumor Activity of Human T Lymphocytes Engrafted in Rag2-/-IL2R?null Immunodeficient Mice, Cancer Res, vol.75, pp.3466-3478, 2015.

J. Hayakawa, Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice, Stem Cells Dayt. Ohio, vol.27, pp.175-182, 2009.

Y. K. Kang, Humanizing NOD/SCID/IL-2R?null (NSG) mice using busulfan and retro-orbital injection of umbilical cord blood-derived CD34+ cells, Blood Res, vol.51, pp.31-36, 2016.

A. Czechowicz, Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches, Science, vol.318, pp.1296-1299, 2007.

T. L. Holyoake, Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow, Exp. Hematol, vol.27, pp.1418-1427, 1999.

L. D. Shultz, Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells, J. Immunol. Baltim. Md, vol.174, pp.6477-6489, 1950.

C. M. Lepus, Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice, Hum. Immunol, vol.70, pp.790-802, 2009.

T. Matsumura, Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells, Exp. Hematol, vol.31, pp.789-797, 2003.

P. Lan, Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation, Blood, vol.108, pp.487-492, 2006.

M. Werner-klein, Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients, PloS One, vol.9, p.97860, 2014.

S. P. Mcdermott, Comparison of human cord blood engraftment between immunocompromised mouse strains, Blood, vol.116, pp.193-200, 2010.

F. Notta, Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients, Blood, vol.115, pp.3704-3707, 2010.

V. Volk, The gender gap: discrepant human T-cell reconstitution after cord blood stem cell transplantation in humanized female and male mice, Bone Marrow Transplant, vol.51, pp.596-597, 2016.

M. C. André, Long-term human CD34+ stem cell-engrafted nonobese diabetic/SCID/IL-2R gamma(null) mice show impaired CD8+ T cell maintenance and a functional arrest of immature NK cells, J. Immunol. Baltim. Md, vol.185, pp.2710-2720, 1950.

Y. Watanabe, The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice), Int. Immunol, vol.21, pp.843-858, 2009.

M. Yajima, T cell-mediated control of Epstein-Barr virus infection in humanized mice, J. Infect. Dis, vol.200, pp.1611-1615, 2009.

C. Gille, Monocytes derived from humanized neonatal NOD/SCID/IL2R?(null) mice are phenotypically immature and exhibit functional impairments, Hum. Immunol, vol.73, pp.346-354, 2012.

J. Lang, Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation, J. Immunol. Baltim. Md, pp.2090-2101, 2013.

J. Halkias, Conserved and divergent aspects of human T-cell development and migration in humanized mice, Immunol. Cell Biol, vol.93, pp.716-726, 2015.

P. W. Denton, Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice, PloS One, vol.5, p.8829, 2010.

V. C. Daniel, A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro, Cancer Res, vol.69, pp.3364-3373, 2009.

V. Patricia, Les tumeurs dérivées de patients : un ancien concept redevenu populaire dans la recherche translationnelle en oncologie, Innov. Thérapeutiques En Oncol, vol.2, 2016.

F. Némati, Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.16, pp.2352-2362, 2010.

D. Surdez and E. Daudigeos-dubus, PDX ou xénogreffe dérivée de la tumeur du patient, la renaissance d'un modèle oublié : son implication dans la recherche et la clinique de demain, Rev. Oncol. Hématologie Pédiatrique, vol.4, pp.237-245, 2016.

R. Beroukhim, The landscape of somatic copy-number alteration across human cancers, Nature, vol.463, pp.899-905, 2010.

A. T. Byrne, Interrogating open issues in cancer precision medicine with patient-derived xenografts, Nat. Rev. Cancer, vol.17, pp.254-268, 2017.

F. Reyal, Molecular profiling of patient-derived breast cancer xenografts, Breast Cancer Res. BCR, vol.14, p.11, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00675301

U. Ben-david, Patient-derived xenografts undergo mouse-specific tumor evolution, Nat. Genet, vol.49, pp.1567-1575, 2017.

H. Gao, High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response, Nat. Med, vol.21, pp.1318-1325, 2015.

E. Izumchenko, Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol, vol.28, pp.2595-2605, 2017.

E. Calvo, A Phase I Clinical Trial and Independent Patient-Derived Xenograft Study of Combined Targeted Treatment with Dacomitinib and Figitumumab in Advanced Solid Tumors, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.23, pp.1177-1185, 2017.

A. A. Zayed, Molecular and clinical implementations of ovarian cancer mouse avatar models, Chin. Clin. Oncol, vol.4, p.30, 2015.

T. Pearson, Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment, Clin. Exp. Immunol, vol.154, pp.270-284, 2008.

K. N. Cosgun, Kit regulates HSC engraftment across the humanmouse species barrier, Cell Stem Cell, vol.15, pp.227-238, 2014.

S. Rahmig, Improved Human Erythropoiesis and Platelet Formation in Humanized NSGW41 Mice, Stem Cell Rep, vol.7, pp.591-601, 2016.

B. E. Mcintosh, Nonirradiated NOD,B6.SCID Il2r?-/-Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells, Stem Cell Rep, vol.4, pp.171-180, 2015.

G. J. Gasic, Antimetastatic effects associated with platelet reduction, Proc. Natl. Acad. Sci. U. S. A, vol.61, pp.46-52, 1968.

M. Mahalingam, Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcoma cell variants, Cancer Res, vol.48, pp.1460-1464, 1988.

Y. Li, A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development, Eur. J. Immunol, vol.46, pp.1291-1299, 2016.

S. Lopez-lastra, A functional DC cross talk promotes human ILC homeostasis in humanized mice, Blood Adv, vol.1, pp.601-614, 2017.

D. I. Gabrilovich, Myeloid-Derived Suppressor Cells, Cancer Immunol. Res, vol.5, pp.3-8, 2017.

L. A. Elliott, Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity. Front. Immunol, vol.8, p.86, 2017.

S. Tanaka, Development of mature and functional human myeloid subsets in hematopoietic stem cell-engrafted NOD/SCID/IL2r?KO mice, J. Immunol. Baltim. Md, vol.188, pp.6145-6155, 1950.

Q. Chen, Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.21783-21788, 2009.

M. Wunderlich, AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3, Leukemia, vol.24, pp.1785-1788, 2010.

E. Billerbeck, Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2R?(null) humanized mice, Blood, vol.117, pp.3076-3086, 2011.

R. Ito, Establishment of a human allergy model using human IL, 2013.

/. Gm-csf-transgenic-nog-mice, J. Immunol. Baltim. Md, pp.2890-2899, 1950191.

T. Willinger, Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.2390-2395, 2011.

A. Rongvaux, Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.2378-2383, 2011.

A. Rongvaux, Development and function of human innate immune cells in a humanized mouse model, Nat. Biotechnol, vol.32, pp.364-372, 2014.

E. Vivier, Targeting natural killer cells and natural killer T cells in cancer, Nat. Rev. Immunol, vol.12, pp.239-252, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685473

K. Pilipow, IL15 and T-cell Stemness in T-cell-Based Cancer Immunotherapy, Cancer Res, vol.75, pp.5187-5193, 2015.

I. Katano, Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse, J. Immunol. Baltim. Md, pp.3513-3525, 2015.

M. Guimond, In vivo role of Flt3 ligand and dendritic cells in NK cell homeostasis, J. Immunol. Baltim. Md, vol.184, pp.2769-2775, 1950.

D. Herndler-brandstetter, Humanized mouse model supports development, function, and tissue residency of human natural killer cells, Proc. Natl. Acad. Sci, 2017.

I. Katano, Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15-transgenic NOG mouse, Sci. Rep, vol.7, p.17230, 2017.

M. Shiokawa, In vivo assay of human NK-dependent ADCC using NOD/SCID/gammac(null) (NOG) mice, Biochem. Biophys. Res. Commun, vol.399, pp.733-737, 2010.

F. Vahedi, Ex Vivo Expanded Human NK Cells Survive and Proliferate in Humanized Mice with, Autologous Human Immune Cells. Sci. Rep, vol.7, p.12083, 2017.

K. Sonntag, Chronic graft-versus-host-disease in CD34(+)-humanized NSG mice is associated with human susceptibility HLA haplotypes for autoimmune disease, J. Autoimmun, vol.62, pp.55-66, 2015.

T. Yaguchi, Human PBMC-transferred murine MHC class I/IIdeficient NOG mice enable long-term evaluation of human immune responses, Cell. Mol. Immunol, 2017.

L. D. Shultz, Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r, 2010.

, gamma(null) humanized mice, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.13022-13027

R. Danner, Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells, PloS One, vol.6, p.19826, 2011.

M. Suzuki, Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/?cnull mouse, Int. Immunol, vol.24, pp.243-252, 2012.

Y. Zeng, Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human immunity after transfer of HLAmatched human cells, PloS One, vol.12, p.173754, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527175

K. D. Lute, Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies, Blood, vol.106, pp.3127-3133, 2005.

E. Burova, Characterization of the Anti-PD-1 Antibody REGN2810 and Its Antitumor Activity in Human PD-1 Knock-In Mice, Mol. Cancer Ther, vol.16, pp.861-870, 2017.

X. Wen, Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.2963-2968, 2013.

R. Van-duyne, The utilization of humanized mouse models for the study of human retroviral infections, Retrovirology, vol.6, p.76, 2009.

L. Zhang, Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis, Sci. China Life Sci, vol.53, pp.195-203, 2010.

D. E. Mosier, Human immunodeficiency virus infection of human-PBL-SCID mice, Science, vol.251, pp.791-794, 1991.

B. E. Torbett, hu-PBL-SCID mice: a model for human immune function, AIDS, and lymphomagenesis, Immunol. Rev, vol.124, pp.139-164, 1991.

K. Ruxrungtham, Potent activity of 2'-beta-fluoro-2',3'-dideoxyadenosine against human immunodeficiency virus type 1 infection in hu-PBL-SCID mice, Antimicrob. Agents Chemother, vol.40, pp.2369-2374, 1996.

L. D. Shultz, Humanized mice for immune system investigation: progress, promise and challenges, Nat. Rev. Immunol, vol.12, pp.786-798, 2012.

N. C. Walsh, Humanized Mouse Models of Clinical Disease, Annu. Rev. Pathol, vol.12, pp.187-215, 2017.

L. L. Kenney, Humanized Mouse Models for Transplant Immunology, Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg, vol.16, pp.389-397, 2016.

J. Zheng, Human CD8+ regulatory T cells inhibit GVHD and preserve general immunity in humanized mice, Sci. Transl. Med, vol.5, pp.168-177, 2013.

K. F. May, Anti-human CTLA-4 monoclonal antibody promotes Tcell expansion and immunity in a hu-PBL-SCID model: a new method for preclinical screening of costimulatory monoclonal antibodies, Blood, vol.105, pp.1114-1120, 2005.

S. Jangalwe, Improved B cell development in humanized NODscid IL2R?(null) mice transgenically expressing human stem cell factor, granulocytemacrophage colony-stimulating factor and interleukin-3, Immun. Inflamm. Dis, vol.4, pp.427-440, 2016.

Y. Zhao, Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor, Cancer Res, vol.70, pp.9053-9061, 2010.

D. Abate-daga, A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer, Hum. Gene Ther, vol.25, pp.1003-1012, 2014.

S. Guedan, ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells, Blood, vol.124, pp.1070-1080, 2014.

M. Hudecek, Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.19, pp.3153-3164, 2013.

S. Gill, Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells, Blood, vol.123, pp.2343-2354, 2014.

I. Pizzitola, Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo, Leukemia, vol.28, pp.1596-1605, 2014.

M. Casucci, CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma, Blood, vol.122, pp.3461-3472, 2013.

D. Song, CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo, Blood, vol.119, pp.696-706, 2012.

I. Diaconu, Inducible Caspase-9 Selectively Modulates the Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells, Mol. Ther. J. Am. Soc. Gene Ther, vol.25, pp.580-592, 2017.

A. A. Hombach, Superior Therapeutic Index in Lymphoma Therapy: CD30(+) CD34(+) Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack, Mol. Ther. J. Am. Soc. Gene Ther, vol.24, pp.1423-1434, 2016.

C. E. Brown, Stem-like tumor-initiating cells isolated from IL13R?2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.18, pp.2199-2209, 2012.

S. Lopez-lastra, D. Santo, and J. P. , Modeling Natural Killer Cell Targeted Immunotherapies. Front. Immunol, vol.8, p.370, 2017.

S. J. Lee, Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain, BMC Cancer, vol.15, p.1011, 2015.

J. S. Hoogstad-van-evert, Umbilical cord blood CD34+ progenitorderived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rgnull mice, vol.6, p.1320630, 2017.

J. P. Veluchamy, In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer, Front. Immunol, vol.8, p.87, 2017.

M. A. Geller, Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model, Cytotherapy, vol.15, pp.1297-1306, 2013.

E. Ames, NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype, J. Immunol. Baltim. Md, pp.4010-4019, 2015.

S. Laffont, X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-? production of plasmacytoid dendritic cells from women, J. Immunol. Baltim. Md, pp.5444-5452, 2014.

T. S. Fisher, Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity, Cancer Immunol. Immunother. CII, vol.61, pp.1721-1733, 2012.

T. Ashizawa, Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.23, pp.149-158, 2017.

S. Ma, PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model, PLoS Pathog, vol.12, p.1005642, 2016.

L. Cherkassky, Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition, J. Clin. Invest, vol.126, pp.3130-3144, 2016.

A. Ito, Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model, Cancer Immunol. Immunother. CII, vol.58, pp.1195-1206, 2009.

D. Chang, Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo, Mol. Cancer, vol.14, p.119, 2015.

A. K. Wege, IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM), Oncotarget, vol.8, pp.2731-2744, 2017.

I. Leskov, Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies, Oncogene, vol.32, pp.1066-1072, 2013.

C. P. Pallasch, Sensitizing protective tumor microenvironments to antibody-mediated therapy, Cell, vol.156, pp.590-602, 2014.

A. E. Mahne, Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy, Cancer Res, vol.77, pp.1108-1118, 2017.

A. Wulf-goldenberg, Intrahepatically transplanted human cord blood cells reduce SW480 tumor growth in the presence of bispecific EpCAM/CD3 antibody, Cytotherapy, vol.13, pp.108-113, 2011.

E. J. Smith, A novel, native-format bispecific antibody triggering Tcell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys, Sci. Rep, vol.5, p.17943, 2015.

C. R. Stadler, Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6, Oncoimmunology, vol.5, p.1091555, 2016.

M. Bacac, CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors, Oncoimmunology, vol.5, p.6246, 2015.

J. Cany, Natural killer cells generated from cord blood hematopoietic progenitor cells efficiently target bone marrow-residing human leukemia cells in NOD/SCID/IL2Rg(null) mice, PloS One, vol.8, p.64384, 2013.

D. A. Vallera, IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.22, pp.3440-3450, 2016.

Y. Li, Regulatory T cells control toxicity in a humanized model of IL-2 therapy, Nat. Commun, vol.8, p.1762, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01663992

K. Schilbach, Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation, Oncoimmunology, vol.4, p.1014760, 2015.

O. Ueda, Novel genetically-humanized mouse model established to evaluate efficacy of therapeutic agents to human interleukin-6 receptor, Sci. Rep, vol.3, p.1196, 2013.

E. M. Alcantar-orozco, Potential Limitations of the NSG Humanized Mouse as a Model System to Optimize Engineered Human T cell Therapy for Cancer, Hum. Gene Ther. Methods, vol.24, pp.310-320, 2013.

P. A. Durost, Gene Therapy with an Adeno-Associated Viral Vector Expressing Human Interleukin-2 Alters Immune System Homeostasis in Humanized Mice, Hum. Gene Ther, vol.29, pp.352-365, 2018.

M. De-jong and T. Maina, Of mice and humans: are they the same?--Implications in cancer translational research, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.51, pp.501-504, 2010.

J. Mestas and C. C. Hughes, Of Mice and Not Men: Differences between Mouse and Human Immunology, J. Immunol, vol.172, pp.2731-2738, 2004.

D. H. Fowler, Shared biology of GVHD and GVT effects: potential methods of separation, Crit. Rev. Oncol. Hematol, vol.57, pp.225-244, 2006.

F. W. Khwaja, Proteomic identification of the wt-p53-regulated tumor cell secretome, Oncogene, vol.25, pp.7650-7661, 2006.

B. Ming, The efficacy of nivolumab for the treatment of advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials, Int J Clin Exp Med, vol.10, pp.153-161, 2017.

C. Wang, In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates, Cancer Immunol. Res, vol.2, pp.846-856, 2014.

R. Ji, An immune-active tumor microenvironment favors clinical response to ipilimumab, Cancer Immunol. Immunother. CII, vol.61, pp.1019-1031, 2012.

A. Kirilovsky, Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients, Int. Immunol, vol.28, pp.373-382, 2016.

M. Frydrychowicz, The Dual Role of Treg in Cancer, Scand. J. Immunol, vol.86, pp.436-443

L. O. Pedersen, The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m, Eur. J. Immunol, vol.25, pp.1609-1616, 1995.

A. Dzutsev, Microbes and Cancer, Annu. Rev. Immunol, vol.35, pp.199-228, 2017.

M. Vétizou, Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota, Science, vol.350, pp.1079-1084, 2015.

B. Routy, Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors, Science, vol.359, pp.91-97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02126484

C. M. Paulos, Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling, J. Clin. Invest, vol.117, pp.2197-2204, 2007.

S. P. Rosshart, Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance, Cell, vol.171, pp.1015-1028, 2017.

, Annexes Je joins à mon travail de thèse les publications auxquelles j'ai participé au cours de mon travail d'ingénieur d'étude au sein de l'U932, avant de débuter mon doctorat

, Ces travaux permettent d'illustrer mon parcours scientifique, au cours de ces 10 dernières années, qui, n'étant pas dans la norme estudiantine, suit tout de même une constance

, Je joins, par ailleurs, mon Curriculum vitae, afin de rendre visible mon parcours scientifique particulier, vol.220, p.221