Skip to Main content Skip to Navigation

Interface os-implant titane et ingénierie tissulaire

Abstract : Introduction: Titanium, both used as a mean of fixing an implant to its biomechanical properties close to the bone and as a mean of osseointegration has taken a prominent place. The implant stability is essential for the durability of a titanium implant (TI); it depends on 2 phases: a primary phase, MECHANICAL, corresponding to the impaction or primary holding of the TI and a secondary phase, BIOLOGICAL, corresponding to the colonization of TI by bone tissue.The objective of this work was to evaluate and improve during these two phases the osseointegration of the titanium implant:(1) To evaluate the primary stability of uncemented titanium femoral stems by impact analysis corresponding to the measurement of impact over time.(2) To evaluate whether the amount of mesenchymal stromal cells (MSCs) contained in the iliac crest is correlated with the non-recovery survival of acetabular implants impacted in a context of aseptic osteonecrosis of the femoral head.(3) To improve the osseointegration of TI by cell therapy methods in vitro by studying the survival and division of human MSCs in contact with interbody lumbar cages coated with rough titanium alloy.Methods: The evaluation of the primary stability of cementless titanium femoral stems according to the impact analysis was carried out using a hammer equipped with a piezoelectric force sensor on 20 anatomical subjects, i.e. 40 hips. The number of hammer strokes was compared to obtain the ideal impaction of the prosthesis according to 3 different evaluation methods: number of impacts required by the surgeon (Nsurg), number of impacts required by the video analysis of the depression of the stem in the femur (Nvid), numbers of impacts needed by the impact analysis (Ni).To determine whether the amount of MSCs in the iliac crest could reflect the osseointegration of impacted acetabular implants and the risk of surgical revision. The rate of MSCs measured when performing a surgical cell therapy for aseptic osteonecrosis of the femoral head and the clinical and radiographic outcome of acetabular implants subsequently established for these same patients (n = 90), who had total hip arthroplasty in fine were compared. The mean follow-up was 15 years.The cell survival of bone marrow-derived MSCs was evaluated on lumbar interbody cages coated with titanium. Three groups (n = 5) were formed: a control group, a cage group with titanium surface, a cage group without titanium. On each implant, 1 microliter containing 106 human bone MSCs was cultured. The analysis of cell survival, cell proliferation and expression of osteoblastic genes were performed and compared.Results: Regarding the impact analysis of the cementless femoral stem impaction, the difference between NI, Nchir and Nvid was lower than 3 for more than 85% of the configurations performed.For the second study, a small number of MSCs in the iliac crest was a risk factor for surgical revision in patients treated with a cementless acetabular implant.The third study showed that MSCs could grow until 96 hours and could express osteoblastics genes 21 days after cell seed. No difference between PEEK cage and Titanium-coated PEEK has been found.Conclusion: The impact analysis provides objective data on the primary holding of the titanium impacted femoral stem. Titanium is also a favored biomaterial for the survival and proliferation of bone marrow-derived MSC predestined to become osteforming cells, especially since a small number of MSCs seems to be a risk of failure of osseointegration of cementless acetabular implants.
Document type :
Complete list of metadatas

Cited literature [241 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Tuesday, March 17, 2020 - 5:15:12 PM
Last modification on : Wednesday, March 18, 2020 - 11:57:33 AM
Long-term archiving on: : Thursday, June 18, 2020 - 3:00:48 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02510375, version 1



Arnaud Dubory. Interface os-implant titane et ingénierie tissulaire. Médecine humaine et pathologie. Université Paris-Est, 2018. Français. ⟨NNT : 2018PESC0067⟩. ⟨tel-02510375⟩



Record views


Files downloads