A. Sjostedt, Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations, Ann. N. Y. Acad. Sci, vol.1105, pp.1-29, 2007.

M. Santic, M. Molmeret, K. E. Klose, and Y. Abu-kwaik, Francisella tularensis travels a novel, twisted road within macrophages, Trends Microbiol, vol.14, pp.37-44, 2006.

M. K. Mclendon, M. A. Apicella, and L. A. Allen, Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare, Annu. Rev. Microbiol, vol.60, pp.167-185, 2006.

L. C. Kingry and J. M. Petersen, Comparative review of Francisella tularensis and Francisella novicida, Front. Cell. Infect. Microbiol, vol.4, p.35, 2014.

A. Eshraghi, Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth, Cell Host Microbe, vol.20, pp.573-583, 2016.

W. Eisenreich and K. Heuner, The life stage-specific pathometabolism of Legionella pneumophila, FEBS Lett, vol.590, pp.3868-3886, 2016.

A. Qin, Components of the type six secretion system are substrates of Francisella tularensis Schu S4 DsbA-like FipB protein, Virulence, vol.7, pp.882-894, 2016.

J. C. Charity, Polymerase-associated proteins control virulence gene expression in Francisella tularensis, PLoS Pathog, vol.3, p.84, 2007.

K. M. Ramsey, Ubiquitous promoter-localization of essential virulence regulators in Francisella tularensis, PLoS Pathog, vol.11, p.1004793, 2015.

J. C. Charity, L. T. Blalock, M. M. Costante-hamm, D. L. Kasper, and S. L. Dove, Small molecule control of virulence gene expression in Francisella tularensis, PLoS Pathog, vol.5, p.1000641, 2009.

J. Pizarro-cerda, A. Charbit, J. Enninga, F. Lafont, and P. Cossart, Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia, Semin. Cell Dev. Biol, vol.60, pp.155-167, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01574039

W. Eisenreich, T. Dandekar, J. Heesemann, and W. Goebel, Carbon metabolism of intracellular bacterial pathogens and possible links to virulence, Nat. Rev. Microbiol, vol.8, pp.401-412, 2010.

W. Eisenreich, J. Heesemann, T. Rudel, and W. Goebel, Metabolic host responses to infection by intracellular bacterial pathogens, Front. Cell. Infect. Microbiol, vol.3, p.24, 2013.

W. Eisenreich, J. Heesemann, T. Rudel, and W. Goebel, Metabolic adaptations of intracellullar bacterial pathogens and their Mammalian host cells during infection, pathometabolism"). Microbiol. Spectr, vol.3, 2015.

T. M. Fuchs, W. Eisenreich, J. Heesemann, and W. Goebel, Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra-and intracellular habitats, FEMS Microbiol. Rev, vol.36, pp.435-462, 2012.

S. Puckett, Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis, PLoS Pathog, vol.10, p.1004144, 2014.

M. Blume, A toxoplasma gondii gluconeogenic enzyme contributes to Robust central carbon metabolism and is essential for replication and virulence, Cell Host Microbe, vol.18, pp.210-220, 2015.

J. J. Marsh and H. G. Lebherz, Fructose-bisphosphate aldolases: an evolutionary history, Trends Biochem. Sci, vol.17, pp.110-113, 1992.

N. Nagano, C. A. Orengo, and J. M. Thornton, One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions, J. Mol. Biol, vol.321, pp.741-765, 2002.

A. R. Katebi and R. L. Jernigan, Aldolases utilize different oligomeric states to preserve their functional dynamics, Biochemistry, vol.54, pp.3543-3554, 2015.

F. Shams, N. J. Oldfield, K. G. Wooldridge, and D. P. Turner, Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: 'ill met by moonlight, Biochem. Soc. Trans, vol.42, pp.1792-1795, 2014.

R. Lew, C. Tolan, and D. R. , Aldolase sequesters WASP and affects WASP/ Arp2/3-stimulated actin dynamics, J. Cell. Biochem, vol.114, pp.1928-1939, 2013.

P. R. Alefounder and R. N. Perham, Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli, Mol. Microbiol, vol.3, pp.723-732, 1989.

G. J. Thomson, G. J. Howlett, A. E. Ashcroft, and A. Berry, The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase, Biochem. J, vol.331, issue.2, pp.437-445, 1998.

M. Plaumann, B. Pelzer-reith, W. F. Martin, and C. Schnarrenberger, Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis, Curr. Genet, vol.31, pp.430-438, 1997.

P. De-la and M. Santangelo, Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli, J. Biol. Chem, vol.286, pp.40219-40231, 2011.

D. S. Weiss, In vivo negative selection screen identifies genes required for Francisella virulence, Proc. Natl Acad. Sci. USA, vol.104, pp.6037-6042, 2007.

H. G. Gika, G. A. Theodoridis, R. S. Plumb, and I. D. Wilson, Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics, J. Pharm. Biomed. Anal, vol.87, pp.12-25, 2014.

F. Krombach, Cell size of alveolar macrophages: an interspecies comparison, Environ. Health Perspect, vol.105, issue.5, pp.1261-1263, 1997.

R. E. Chamberlain, Evaluation of live tularemia vaccine prepared in a chemically defined medium, Appl. Microbiol, vol.13, pp.232-235, 1965.

T. Brissac, Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella, Mol. Microbiol, vol.98, pp.518-534, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269425

N. A. Eisele, Salmonella require the fatty acid regulator PPARdelta for the establishment of a metabolic environment essential for long-term persistence, Cell Host Microbe, vol.14, pp.171-182, 2013.

F. Mcnab, K. Mayer-barber, A. Sher, A. Wack, and A. O'garra, Type I interferons in infectious disease, Nat. Rev. Immunol, vol.15, pp.87-103, 2015.

Z. Ma, Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain, Mol. Microbiol, vol.101, pp.856-878, 2016.

A. M. Franchini, D. Hunt, J. A. Melendez, and J. R. Drake, FcgammaR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species, J. Biol. Chem, vol.288, pp.25098-25108, 2013.

N. L. Shakerley, A. Chandrasekaran, M. Trebak, B. A. Miller, and J. A. Melendez, Francisella tularensis catalase restricts immune function by impairing TRPM2 channel activity, J. Biol. Chem, vol.291, pp.3871-3881, 2016.

T. A. Barr, B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells, J. Exp. Med, vol.209, pp.1001-1010, 2012.

J. Dieppedale, Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis, Mol. Cell. Proteomics, vol.12, pp.2278-2292, 2013.

G. Gesbert, Importance of branched-chain amino acid utilization in Francisella intracellular adaptation, Infect. Immun, vol.83, pp.173-183, 2015.

E. Ramond, Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape, PLoS Pathog, vol.10, p.1003893, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972072

G. Gesbert, Asparagine assimilation is critical for intracellular replication and dissemination of Francisella, Cell. Microbiol, vol.16, pp.434-449, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972076

T. D. Wehrly, Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages, Cell. Microbiol, vol.11, pp.1128-1150, 2009.

A. Raghunathan, S. Shin, and S. Daefler, Systems approach to investigating hostpathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis, BMC Syst. Biol, vol.4, p.118, 2010.

S. Steele, Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth, PLoS Pathog, vol.9, p.1003562, 2013.

I. Chico-calero, Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria, Proc. Natl Acad. Sci. USA, vol.99, pp.431-436, 2002.

R. H. Wright, ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling, Science, vol.352, pp.1221-1225, 2016.

N. Gillmaier, A. Gotz, A. Schulz, W. Eisenreich, and W. Goebel, Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes, PLoS ONE, vol.7, p.52378, 2012.

S. Grubmuller, K. Schauer, W. Goebel, T. M. Fuchs, and W. Eisenreich, Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism, Front. Cell. Infect. Microbiol, vol.4, p.156, 2014.

A. Meireles-dde, T. G. Alegria, S. V. Alves, C. R. Arantes, and L. E. Netto, A 14.7 kDa protein from Francisella tularensis subsp. novicida (named FTN_1133), involved in the response to oxidative stress induced by organic peroxides, is not endowed with thiol-dependent peroxidase activity, PLoS ONE, vol.9, p.99492, 2014.

J. Dieppedale, Identification of a putative chaperone involved in stress resistance and virulence in Francisella tularensis, Infect. Immun, vol.79, pp.1428-1439, 2011.

J. A. Imlay, Transcription factors that defend bacteria against reactive oxygen Species, Annu. Rev. Microbiol, vol.69, pp.93-108, 2015.

J. Binesse, H. Lindgren, L. Lindgren, W. Conlan, and A. Sjostedt, Roles of reactive oxygen species-degrading enzymes of Francisella tularensis SCHU S4, Infect. Immun, vol.83, pp.2255-2263, 2015.

J. H. Barker, J. W. Kaufman, M. A. Apicella, and J. P. Weiss, Evidence suggesting that Francisella tularensis O-antigen capsule contains a lipid A-like molecule that is structurally distinct from the more abundant free lipid A, PLoS ONE, vol.11, p.157842, 2016.

C. Akimana and Y. A. Kwaik, Francisella-arthropod vector interaction and its role in patho-adaptation to infect mammals, Front. Microbiol, vol.2, p.34, 2011.

A. ;. Sjostedt and D. Bumann, Tularemia: history, epidemiology, pathogen physiology, and clinical References Abu Kwaik, Cell Microbiol, vol.15, pp.882-890, 2013.

A. Kwaik, Y. Bumann, and D. , Host delivery of favorite meals for intracellular pathogens, PLoS Pathog, vol.11, p.1004866, 2015.

C. J. Alteri, S. N. Smith, and H. L. Mobley, Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle, PLoS Pathog, vol.5, p.1000448, 2009.

C. J. Alteri, S. D. Himpsl, and H. L. Mobley, Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection, PLoS Pathog, vol.11, p.1004601, 2015.

L. S. Anthony, M. Z. Gu, S. C. Cowley, and W. W. Leung,

, Molecular Microbiology, vol.98, pp.518-534, 2015.

F. E. Nano, Transformation and allelic replacement in Francisella spp, J Gen Microbiol, vol.137, pp.2697-2703, 1991.

T. Barbier, C. Nicolas, and J. J. Letesson, Brucella adaptation and survival at the crossroad of metabolism and virulence, FEBS Lett, vol.585, pp.2929-2934, 2011.

M. Barel, K. Meibom, I. Dubail, J. Botella, and A. Charbit, Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes, Cell Microbiol, vol.14, pp.1769-1783, 2012.

K. Von-bargen, J. P. Gorvel, and S. P. Salcedo, Internal affairs: investigating the Brucella intracellular lifestyle, FEMS Microbiol Rev, vol.36, pp.533-562, 2012.

S. D. Bowden, G. Rowley, J. C. Hinton, and A. Thompson, Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium, Infect Immun, vol.77, pp.3117-3126, 2009.

G. Brown, A. Singer, V. V. Lunin, M. Proudfoot, T. Skarina et al., Structural and biochemical characterization of the type II fructose-1,6-bisphosphatase GlpX from Escherichia coli, J Biol Chem, vol.284, pp.3784-3792, 2009.

A. B. Canelas, A. Ten-pierick, C. Ras, R. M. Seifar, J. C. Van-dam et al., Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics, Anal Chem, vol.81, pp.7379-7389, 2009.

R. E. Chamberlain, Evaluation of live tularemia vaccine prepared in a chemically defined medium, Appl Microbiol, vol.13, pp.232-235, 1965.

I. Chico-calero, M. Suarez, B. Gonzalez-zorn, M. Scortti, J. Slaghuis et al., , 2002.

, Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria, Proc Natl Acad Sci, vol.99, pp.431-436

T. Dandekar and W. Eisenreich, Host-adapted metabolism and its regulation in bacterial pathogens, Front Cell Infect Microbiol, vol.5, p.28, 2015.

J. L. Donahue, J. L. Bownas, W. G. Niehaus, and T. J. Larson, Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli, J Bacteriol, vol.182, pp.5624-5627, 2000.

W. Eisenreich, T. Dandekar, J. Heesemann, and W. Goebel, Carbon metabolism of intracellular bacterial pathogens and possible links to virulence, Nat Rev Microbiol, vol.8, pp.401-412, 2010.

M. Enstrom, K. Held, B. Ramage, M. Brittnacher, L. Gallagher et al., Genotype-phenotype associations in a nonmodel prokaryote, MBio, vol.3, pp.1-12, 2012.

G. Filomeni, D. De-zio, and F. Cecconi, Oxidative stress and autophagy: the clash between damage and metabolic needs, Cell Death Differ, vol.22, pp.377-388, 2015.

M. V. Fonseca and M. S. Swanson, Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila, Front Cell Infect Microbiol, vol.4, p.12, 2014.

G. Gesbert, E. Ramond, M. Rigard, E. Frapy, M. Dupuis et al., Asparagine assimilation is critical for intracellular replication and dissemination of Francisella, Cell Microbiol, vol.16, pp.434-449, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972076

G. Gesbert, E. Ramond, F. Tros, J. Dairou, E. Frapy et al., Importance of branchedchain amino Acid utilization in Francisella intracellular adaptation, Infect Immun, vol.83, pp.173-183, 2015.

I. Golovliov, A. Sjostedt, A. Mokrievich, and V. Pavlov, A method for allelic replacement in Francisella tularensis, FEMS Microbiol Lett, vol.222, pp.273-280, 2003.

A. Gouzy, Y. Poquet, and O. Neyrolles, Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence, Nat Rev Microbiol, vol.12, pp.729-737, 2014.

S. Grubmüller, K. Schauer, W. Goebel, T. M. Fuchs, and W. Eisenreich, Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism, Front Cell Infect Microbiol, vol.4, p.156, 2014.

A. Haschemi, P. Kosma, L. Gille, C. R. Evans, C. F. Burant et al., The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism, Cell Metab, vol.15, pp.813-826, 2012.

K. Jahreis, E. F. Pimentel-schmitt, R. Bruckner, and F. Titgemeyer, Ins and outs of glucose transport systems in eubacteria, FEMS Microbiol Rev, vol.32, pp.891-907, 2008.

K. Kadzhaev, C. Zingmark, I. Golovliov, M. Bolanowski, H. Shen et al., Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model, PLoS ONE, vol.4, p.5463, 2009.

L. C. Kingry and J. M. Petersen, Comparative review of Francisella tularensis and Francisella novicida, Front Cell Infect Microbiol, vol.4, p.35, 2014.

S. Lucchini, H. Liu, Q. Jin, J. C. Hinton, Y. et al., Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen, Infect Immun, vol.73, pp.88-102, 2005.

R. S. Mackie, E. S. Mckenney, and M. L. Van-hoek, Resistance of Francisella novicida to fosmidomycin associated with mutations in the glycerol-3-phosphate transporter, Front Microbiol, vol.3, p.226, 2012.

M. K. Mclendon, M. A. Apicella, A. , and L. A. , Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare, Annu Rev Microbiol, vol.60, pp.167-185, 2006.

T. M. Maier, A. Havig, M. Casey, F. E. Nano, D. W. Frank et al., Construction and characterization of a highly efficient Francisella shuttle plasmid, Appl Environ Microbiol, vol.70, pp.7511-7519, 2004.

T. M. Maier, R. Pechous, M. Casey, T. C. Zahrt, and D. W. Frank, In vivo Himar1-based transposon mutagenesis of Francisella tularensis, Appl Environ Microbiol, vol.72, pp.1878-1885, 2006.

J. Marrero, K. Y. Rhee, D. Schnappinger, K. Pethe, and S. Ehrt, Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection, Proc Natl Acad Sci, vol.107, pp.9819-9824, 2010.

M. Maurin, N. F. Mersali, and D. Raoult, Bactericidal activities of antibiotics against intracellular Francisella tularensis, Antimicrob Agents Chemother, vol.44, pp.3428-3431, 2000.

K. L. Meibom and A. Charbit, Francisella tularensis metabolism and its relation to virulence, Front Microbiol, vol.1, p.140, 2010.

R. Mercado-lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, A Salmonella enterica serovar Typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice, Infect Immun, vol.76, pp.1128-1134, 2008.

R. Mercado-lubo, M. P. Leatham, T. Conway, and P. S. Cohen, Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice, Infect Immun, vol.77, pp.1397-1405, 2009.

P. Millard, F. Letisse, S. Sokol, and J. C. Portais, IsoCor: correcting MS data in isotope labeling experiments, Bioinformatics, vol.28, pp.1294-1296, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268343

F. E. Nano and C. Schmerk, The Francisella pathogenicity island, Ann N Y Acad Sci, vol.1105, pp.122-137, 2007.

K. Peng and D. M. Monack, Indoleamine 2,3-dioxygenase 1 is a lung-specific innate immune defense mechanism that inhibits growth of Francisella tularensis tryptophan auxotrophs, Infect Immun, vol.78, pp.2723-2733, 2010.

C. T. Price, T. Al-quadan, M. Santic, I. Rosenshine, A. Kwaik et al., Host proteasomal degradation generates amino acids essential for intracellular bacterial growth, Science, vol.334, pp.1553-1557, 2011.

S. Puckett, C. Trujillo, H. Eoh, J. Marrero, J. Spencer et al., Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis, PLoS Pathog, vol.10, p.1004144, 2014.

A. Qin and B. J. Mann, Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2, BMC Microbiol, vol.6, p.69, 2006.

A. Qin, D. W. Scott, and B. J. Mann, Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence, Infect Immun, vol.76, pp.3086-3092, 2008.

A. Qin, D. W. Scott, J. A. Thompson, and B. J. Mann, Identification of an essential Francisella tularensis subsp. tularensis virulence factor, Infect Immun, vol.77, pp.152-161, 2009.

A. Raghunathan, S. Shin, and S. Daefler, Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraintsbased model of Francisella tularensis, BMC Syst Biol, vol.4, p.118, 2010.

E. Ramond, G. Gesbert, M. Rigard, J. Dairou, M. Dupuis et al., Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape, PLoS Pathog, vol.10, p.1003893, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972072

E. Ramond, G. Gesbert, I. C. Guerrera, C. Chhuon, M. Dupuis et al., Importance of host cell arginine uptake in Francisella phagosomal escape and ribosomal protein amounts, Mol Cell Proteomics, vol.4, pp.870-881, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01911436

M. H. Saier and . Jr, Families of transmembrane sugar transport proteins, Mol Microbiol, vol.35, pp.699-710, 2000.

M. Santic, M. Molmeret, K. E. Klose, S. Jones, and Y. A. Kwaik, The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm, Cell Microbiol, vol.7, pp.969-979, 2005.

M. Santic, M. Molmeret, K. E. Klose, A. Kwaik, and Y. , Francisella tularensis travels a novel, twisted road within macrophages, Trends Microbiol, vol.14, pp.37-44, 2006.

D. Schnappinger, S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan et al., Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment, J Exp Med, vol.198, pp.693-704, 2003.

G. S. Schulert, R. L. Mccaffrey, B. W. Buchan, S. R. Lindemann, C. Hollenback et al., Francisella tularensis genes required for inhibition of the neutrophil respiratory burst and intramacrophage growth identified by random transposon mutagenesis of strain LVS, Infect Immun, vol.77, pp.1324-1336, 2009.

A. Sjostedt, Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations, Ann N Y Acad Sci, vol.1105, pp.1-29, 2007.

A. Sjostedt, Francisella tularensis and tularemia, Front. Microbiol, 2011.

B. Steeb, B. Claudi, N. A. Burton, P. Tienz, A. Schmidt et al., Parallel exploitation of diverse host nutrients enhances Salmonella virulence, PLoS Pathog, vol.9, p.1003301, 2013.

S. Steele, J. Brunton, B. Ziehr, S. Taft-benz, N. Moorman et al., Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth, PLoS Pathog, vol.9, p.1003562, 2013.

J. Su, J. Yang, D. Zhao, T. H. Kawula, J. A. Banas et al., Genome-wide identification of Francisella tularensis virulence determinants, Infect Immun, vol.75, pp.3089-3101, 2007.

M. Tchawa-yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway et al., Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice, Infect Immun, vol.74, pp.1130-1140, 2006.

C. A. Thomas-charles, H. Zheng, L. E. Palmer, P. Mena, D. G. Thanassi et al., FeoB-mediated uptake of iron by Francisella tularensis, Infect Immun, vol.81, pp.2828-2837, 2013.

T. D. Wehrly, A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child et al., Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages, Cell Microbiol, vol.11, pp.1128-1150, 2009.

D. S. Weiss, A. Brotcke, T. Henry, J. J. Margolis, K. Chan et al., In vivo negative selection screen identifies genes required for Francisella virulence, Proc Natl Acad Sci, vol.104, pp.6037-6042, 2007.

M. N. Xavier, M. G. Winter, A. M. Spees, A. B. Den-hartigh, K. Nguyen et al., PPARgammamediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages, Cell Host Microbe, vol.14, pp.159-170, 2013.

Y. J. Zhang and E. J. Rubin, Feast or famine: the host-pathogen battle over amino acids, Cell Microbiol, vol.15, pp.1079-1087, 2013.

A. Zuniga-ripa, T. Barbier, and R. Conde-alvarez, Martinez-Gluconeogenesis in Francisella virulence 533

A. Kwaik, Y. Bumann, and D. , Microbial quest for food in vivo: 'Nutritional virulence' as an emerging paradigm, Cell. Microbiol, vol.15, pp.882-890, 2013.

A. Kwaik, Y. Bumann, and D. , Host delivery of favorite meals for intracellular pathogens, PLoS Pathog, vol.11, p.1004866, 2015.

K. Alkhuder, K. L. Meibom, I. Dubail, M. Dupuis, and A. Charbit, Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis, PLoS Pathog, vol.5, p.1000284, 2009.

T. Al-quadan, C. T. Price, A. Kwaik, and Y. , Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella, Trends Microbiol, vol.20, pp.299-306, 2012.

T. Brissac, J. Ziveri, E. Ramond, F. Tros, S. Kock et al., , 2015.

, Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella, Mol. Microbiol, vol.98, pp.518-534

M. J. Brown, B. C. Russo, D. M. O'dee, D. M. Schmitt, and G. J. Nau, The contribution of the glycine cleavage system to the pathogenesis of Francisella tularensis, Microbes Infect, vol.16, pp.300-309, 2014.

J. Celli and T. C. Zahrt, Mechanisms of Francisella tularensis intracellular pathogenesis, Cold Spring Harb. Perspect. Med, vol.3, p.10314, 2013.

D. E. Chen, S. Podell, J. D. Sauer, M. S. Swanson, and M. H. Saier, The phagosomal nutrient transporter (Pht) family, Microbiology, vol.154, pp.42-53, 2008.

I. Chico-calero, M. Suarez, B. Gonzalez-zorn, M. Scortti, J. Slaghuis et al., Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.431-436, 2002.

D. L. Clemens, P. Ge, B. Y. Lee, M. A. Horwitz, and Z. H. Zhou, Atomic structure of T6SS reveals interlaced array essential to function, Cell, vol.160, pp.940-951, 2015.

M. Conrad, J. Schothorst, H. N. Kankipati, G. Van-zeebroeck, M. Rubio-texeira et al., Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.38, pp.254-299, 2014.

E. A. Creasey and R. R. Isberg, Maintenance of vacuole integrity by bacterial pathogens, Curr. Opin. Microbiol, vol.17, pp.46-52, 2014.

J. Dieppedale, G. Gesbert, E. Ramond, C. Chhuon, I. Dubail et al., Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis, Mol. Cell. Proteomics, vol.12, pp.2278-2292, 2013.

W. Eisenreich, T. Dandekar, J. Heesemann, and W. Goebel, Carbon metabolism of intracellular bacterial pathogens and possible links to virulence, Nat. Rev. Microbiol, vol.8, pp.401-412, 2010.

W. Eisenreich and K. Heuner, The life stage-specific pathometabolism of Legionella pneumophila, FEBS Lett, vol.590, pp.3868-3886, 2016.

M. Enstrom, K. Held, B. Ramage, M. Brittnacher, L. Gallagher et al., Genotype-phenotype associations in a nonmodel prokaryote, mBio, vol.3, pp.1-12, 2012.

A. Eshraghi, J. Kim, A. C. Walls, H. E. Ledvina, C. N. Miller et al., Secreted effectors encoded within and outside of the Francisella Pathogenicity Island promote intramacrophage growth, Cell Host Microbe, vol.20, pp.573-583, 2016.

J. E. Foley and N. C. Nieto, Tularemia. Vet. Microbiol, vol.140, pp.332-338, 2010.

M. V. Fonseca, J. D. Sauer, S. Crepin, B. Byrne, and M. S. Swanson, The phtC-phtD locus equips Legionella pneumophila for thymidine salvage and replication in macrophages, Infect. Immun, vol.82, 2014.

M. V. Fonseca and M. S. Swanson, Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila, Front. Cell. Infect. Microbiol, vol.4, p.12, 2014.

G. Gesbert, E. Ramond, M. Rigard, E. Frapy, M. Dupuis et al., Asparagine assimilation is critical for intracellular replication and dissemination of Francisella, Cell. Microbiol, vol.16, pp.434-449, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972076

G. Gesbert, E. Ramond, F. Tros, J. Dairou, E. Frapy et al., Importance of branched-chain amino acid utilization in Francisella intracellular adaptation, Infect. Immun, vol.83, pp.173-183, 2015.

A. Gouzy, G. Larrouy-maumus, D. Bottai, F. Levillain, A. Dumas et al., Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection, PLoS Pathog, vol.10, p.1003928, 2014.

A. Gouzy, G. Larrouy-maumus, T. D. Wu, A. Peixoto, F. Levillain et al., Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate, Nat. Chem. Biol, vol.9, pp.674-676, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02348577

A. Gouzy, Y. Poquet, and O. Neyrolles, Amino acid capture and utilization within the Mycobacterium tuberculosis phagosome, Future Microbiol, vol.9, pp.631-637, 2014.

A. Gouzy, Y. Poquet, and O. Neyrolles, Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence, Nat. Rev. Microbiol, vol.12, pp.729-737, 2014.

S. Grubmuller, K. Schauer, W. Goebel, T. M. Fuchs, and W. Eisenreich, Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism, Front. Cell. Infect. Microbiol, vol.4, p.156, 2014.

P. C. Hong, R. M. Tsolis, and T. A. Ficht, Identification of genes required for chronic persistence of Brucella abortus in mice, Infect. Immun, vol.68, pp.4102-4107, 2000.

C. L. Jones, B. A. Napier, T. R. Sampson, A. C. Llewellyn, M. R. Schroeder et al., Subversion of host recognition and defense systems by Francisella spp. Microbiol, Mol. Biol. Rev, vol.76, pp.383-404, 2012.

L. C. Kingry and J. M. Petersen, Comparative review of Francisella tularensis and Francisella novicida, Front. Cell. Infect. Microbiol, vol.4, p.35, 2014.

L. C. Kinkead, A. , and L. A. , Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan, Immunol. Rev, vol.273, pp.266-281, 2016.

P. Larsson, P. C. Oyston, P. Chain, M. C. Chu, M. Duffield et al., The complete genome sequence of Francisella tularensis,thecausative agent of tularemia, Nat. Genet, vol.37, pp.153-159, 2005.

L. Lobel, N. Sigal, I. Borovok, B. R. Belitsky, A. L. Sonenshein et al., The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA, Mol. Microbiol, vol.95, pp.624-644, 2015.

L. Lobel, N. Sigal, I. Borovok, E. Ruppin, and A. A. Herskovits, Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence, PLoS Genet, vol.8, p.1002887, 2012.

R. J. Mailloux, R. Singh, G. Brewer, C. Auger, J. Lemire et al., ?-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant ?-ketoglutarate during oxidative stress in Pseudomonas fluorescens, J. Bacteriol, vol.191, pp.3804-3810, 2009.

C. Maksymiuk, A. Balakrishnan, R. Bryk, K. Y. Rhee, and C. F. Nathan, E1 of ?-ketoglutarate dehydrogenase defends Mycobacterium tuberculosis against glutamate anaplerosis and nitroxidative stress, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.5834-5843, 2015.

M. E. Marohn, A. E. Santiago, K. A. Shirey, M. Lipsky, S. N. Vogel et al., Members of the Francisella tularensis phagosomal transporter subfamily of major facilitator superfamily transporters are critical for pathogenesis, Infect. Immun, vol.80, pp.2390-2401, 2012.

J. Marrero, K. Y. Rhee, D. Schnappinger, K. Pethe, and S. Ehrt, Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.9819-9824, 2010.

M. K. Mclendon, M. A. Apicella, A. , and L. A. , Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare, Annu. Rev. Microbiol, vol.60, pp.167-185, 2006.

K. L. Meibom and A. Charbit, Francisella tularensis metabolism and its relation to virulence, Front. Microbiol, vol.1, p.140, 2010.

E. Meunier, P. Wallet, R. F. Dreier, S. Costanzo, L. Anton et al., , 2015.

, Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida, Nat. Immunol, vol.16, pp.476-484

C. Miller and J. Celli, Avoidance and subversion of eukaryotic homeostatic autophagy mechanisms by bacterial pathogens, J. Mol. Biol, vol.428, pp.3387-3398, 2016.

G. B. Moreau and B. J. Mann, Adherence and uptake of Francisella into host cells, Virulence, vol.4, pp.826-832, 2013.

R. D. Pechous, T. R. Mccarthy, and T. C. Zahrt, Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol, Mol. Biol. Rev, vol.73, pp.684-711, 2009.

C. T. Price, T. Al-quadan, M. Santic, I. Rosenshine, A. et al., Host proteasomal degradation generates amino acids essential for intracellular bacterial growth, Science, vol.334, pp.1553-1557, 2011.

S. Puckett, C. Trujillo, H. Eoh, J. Marrero, J. Spencer et al., Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis, PLoS Pathog, vol.10, p.1004144, 2014.

A. Qin and B. J. Mann, Identification of transposon insertion mutants of Francisella tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2, BMC Microbiol, vol.31, p.69, 2006.

A. Raghunathan, S. Shin, and S. Daefler, Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis, BMC Syst. Biol, vol.4, p.118, 2010.

E. Ramond, G. Gesbert, I. C. Guerrera, C. Chhuon, M. Dupuis et al., Importance of host cell arginine uptake in Francisella phagosomal escape and ribosomal protein amounts, Mol. Cell. Proteomics, vol.14, pp.870-881, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01911436

E. Ramond, G. Gesbert, M. Rigard, J. Dairou, M. Dupuis et al., Glutamate utilization couples oxidative stress defense and the tricarboxylic acid cycle in Francisella phagosomal escape, PLoS Pathog, vol.10, p.1003893, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972072

K. Ray, B. Marteyn, P. J. Sansonetti, and C. M. Tang, Lifeontheinside: the intracellular lifestyle of cytosolic bacteria, Nat. Rev. Microbiol, vol.7, pp.333-340, 2009.

M. Rigard, J. E. Broms, A. Mosnier, M. Hologne, A. Martin et al., Francisella tularensis IglG belongs to a novel family of PAAR-Like T6SS proteins and harbors a unique N-terminal extension required for virulence, PLoS Pathog, vol.12, p.1005821, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01546486

L. E. Sanman, Y. Qian, N. A. Eisele, T. M. Ng, W. A. Van-der-linden et al., Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death, Elife, vol.5, p.13663, 2016.

M. Santic, A. Kwaik, and Y. , Nutritional virulence of Francisella tularensis, Front. Cell. Infect. Microbiol, vol.3, p.112, 2013.

M. Santic, M. Molmeret, K. E. Klose, A. Kwaik, and Y. , Francisella tularensis travels a novel, twisted road within macrophages, Trends Microbiol, vol.14, pp.37-44, 2006.

J. D. Sauer, M. A. Bachman, and M. S. Swanson, The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.9924-9929, 2005.

A. Sjostedt, Special topic on Francisella tularensis and tularemia, Front. Microbio, vol.2, p.86, 2011.

S. Steele, L. Radlinski, S. Taft-benz, J. Brunton, and T. H. Kawula, , 2016.

, Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens, vol.5, p.10625

T. D. Wehrly, A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child et al., Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages, Cell. Microbiol, vol.11, pp.1128-1150, 2009.

Y. J. Zhang and E. J. Rubin, Feast or famine: the host-pathogen battle over amino acids, Cell. Microbiol, vol.15, pp.1079-1087, 2013.

A. Zuniga-ripa, T. Barbier, R. Conde-alvarez, E. Martinez-gomez, L. Palacios-chaves et al., Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on Fbp and GlpX fructose-1,6-bisphosphatases for full virulence in laboratory models, J. Bacteriol, vol.196, pp.3045-3057, 2014.

H. Abd, T. Johansson, I. Golovliov, G. Sandstrom, and M. Forsman, Survival and Growth of Francisella tularensis in Acanthamoeba castellanii, Appl. Environ. Microbiol, vol.69, pp.600-606, 2003.

A. Kwaik, Y. Bumann, and D. , Host Delivery of Favorite Meals for Intracellular Pathogens, PLOS Pathog, vol.11, 2015.

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen Recognition and Innate Immunity, Cell, vol.124, pp.783-801, 2006.

K. Alkhuder, K. L. Meibom, I. Dubail, M. Dupuis, and A. Charbit, Glutathione Provides a Source of Cysteine Essential for Intracellular Multiplication of Francisella tularensis, PLoS Pathog, vol.5, 2009.

T. Al-quadan, C. T. Price, and Y. A. Kwaik, Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella, Trends Microbiol, vol.20, pp.299-306, 2012.

P. Ancuta, T. Pedron, R. Girard, G. Sandström, and R. Chaby, Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins, Infect. Immun, vol.64, pp.2041-2046, 1996.

J. O. Andersson, A. , and S. G. , Insights into the evolutionary process of genome degradation, vol.8

L. D. Anthony, R. D. Burke, and F. E. Nano, Growth of Francisella spp. in rodent macrophages, Infect. Immun, vol.59, pp.3291-3296, 1991.

D. Arnoult, F. Soares, I. Tattoli, and S. E. Girardin, Mitochondria in innate immunity, EMBO Rep, vol.12, pp.901-910, 2011.

R. Asare and Y. A. Kwaik, Molecular Complexity Orchestrates Modulation of Phagosome Biogenesis and Escape to the Cytosol of macrophages by Francisella tularensis, Environ. Microbiol, vol.12, pp.2559-2586, 2010.

H. Ashida, H. Mimuro, M. Ogawa, T. Kobayashi, T. Sanada et al., Cell death and infection: A double-edged sword for host and pathogen survival, J. Cell Biol, vol.195, pp.931-942, 2011.

T. Assari, Chronic Granulomatous Disease; fundamental stages in our understanding of CGD, Med. Immunol, vol.5, 2006.

A. Balagopal, A. S. Macfarlane, N. Mohapatra, S. Soni, J. S. Gunn et al., Characterization of the Receptor-Ligand Pathways Important for Entry and Survival of Francisella tularensis in Human Macrophages, Infect. Immun, vol.74, pp.5114-5125, 2006.

S. Banga, P. Gao, X. Shen, V. Fiscus, W. Zong et al., Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.5121-5126, 2007.

M. Barel, A. G. Hovanessian, K. Meibom, J. Briand, M. Dupuis et al., A novel receptor -ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu, BMC Microbiol, vol.8, p.145, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324631

K. Bargen, J. Gorvel, and S. P. Salcedo, Internal affairs: investigating the Brucella intracellular lifestyle, FEMS Microbiol. Rev, vol.36, pp.533-562, 2011.

J. R. Barker and K. E. Klose, Molecular and Genetic Basis of Pathogenesis in Francisella Tularensis, Ann. N. Y. Acad. Sci, vol.1105, pp.138-159, 2007.

G. S. Baron and F. E. Nano, MglA and MglB are required for the intramacrophage growth of Francisella novicida, Mol. Microbiol, vol.29, pp.247-259, 1998.

M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, and J. J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.483, pp.182-186, 2012.

K. A. Bauckman, N. Owusu-boaitey, and I. U. Mysorekar, Selective Autophagy: Xenophagy. Methods, vol.75, pp.120-127, 2015.

S. M. Beckstrom-sternberg, R. K. Auerbach, S. Godbole, J. V. Pearson, J. S. Beckstrom-sternberg et al., Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis, PLoS ONE, vol.2, p.947, 2007.

B. L. Bell, N. P. Mohapatra, and J. S. Gunn, Regulation of Virulence Gene Transcripts by the Francisella novicida Orphan Response Regulator PmrA: Role of Phosphorylation and Evidence of MglA/SspA Interaction, Infect. Immun, vol.78, pp.2189-2198, 2010.

S. Bergstrom, K. Robbins, J. M. Koomey, and J. Swanson, Piliation control mechanisms in Neisseria gonorrhoeae, Proc. Natl. Acad. Sci, vol.83, pp.3890-3894, 1986.

I. Bethani, T. Lang, U. Geumann, J. J. Sieber, R. Jahn et al., The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation, EMBO J, vol.26, pp.3981-3992, 2007.

S. Borgeaud, L. C. Metzger, T. Scrignari, and M. Blokesch, The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer, Science, vol.347, pp.63-67, 2015.

C. M. Bosio, H. Bielefeldt-ohmann, and J. T. Belisle, Active Suppression of the Pulmonary Immune Response by Francisella tularensis Schu4, J. Immunol, vol.178, pp.4538-4547, 2007.

T. Brissac, J. Ziveri, E. Ramond, F. Tros, S. Kock et al., Gluconeogenesis, an essential metabolic pathway for pathogenic F rancisella: Gluconeogenesis in Francisella virulence, Mol. Microbiol, vol.98, pp.518-534, 2015.

T. Brissac, J. Ziveri, E. Ramond, F. Tros, S. Kock et al., Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella, Mol. Microbiol, vol.98, pp.518-534
URL : https://hal.archives-ouvertes.fr/hal-01269425

M. Brodmann, R. F. Dreier, P. Broz, and M. Basler, Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape, Nat. Commun, vol.8, 2017.

J. E. Bröms, A. Sjöstedt, and M. Lavander, The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling, Front. Microbiol, vol.1, 2010.

J. E. Bröms, A. Sjöstedt, and M. Lavander, The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling, Front. Microbiol, vol.1, 2010.

J. E. Bröms, L. Meyer, K. Sun, M. Lavander, and A. Sjöstedt, Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection, PLOS ONE, vol.7, p.50473, 2012.

A. Brotcke, D. S. Weiss, C. C. Kim, P. Chain, S. Malfatti et al., Identification of MglA-Regulated Genes Reveals Novel Virulence Factors in Francisella tularensis, Infect. Immun, vol.74, pp.6642-6655, 2006.

O. M. De-bruin, B. N. Duplantis, J. S. Ludu, R. F. Hare, E. B. Nix et al., The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion, Microbiology, vol.157, pp.3483-3491, 2011.

A. Brzostek, J. Pawelczyk, A. Rumijowska-galewicz, B. Dziadek, and J. Dziadek, , 2009.

, Mycobacterium tuberculosis Is Able To Accumulate and Utilize Cholesterol, J. Bacteriol, vol.191, pp.6584-6591

B. W. Buchan, R. L. Mccaffrey, S. R. Lindemann, L. H. Allen, and B. D. Jones, Identification of migR, a Regulatory Element of the Francisella tularensis Live Vaccine Strain iglABCD Virulence Operon Required for Normal Replication and Trafficking in Macrophages, Infect. Immun, vol.77, pp.2517-2529, 2009.

A. Casadevall, Evolution of intracellular pathogens, Annu. Rev. Microbiol, vol.62, pp.19-33, 2008.

A. Casadevall, Evolution of Intracellular Pathogens, Annu. Rev. Microbiol, vol.62, pp.19-33, 2008.

J. E. Cassat and E. P. Skaar, Iron in Infection and Immunity, Cell Host Microbe, vol.13, pp.509-519, 2013.

C. Cazalet, C. Rusniok, H. Brüggemann, N. Zidane, A. Magnier et al., Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity, The changing nature of the Brucella-Containing Vacuole, vol.36, pp.951-958, 2004.

J. Celli and T. C. Zahrt, Mechanisms of Francisella tularensis Intracellular Pathogenesis, Cold Spring Harb. Perspect. Med, vol.3, pp.10314-010314, 2013.

M. F. Cellier, P. Courville, C. , and C. , Nramp1 phagocyte intracellular metal withdrawal defense, Microbes Infect, vol.9, pp.1662-1670, 2007.

M. Chamaillard, M. Hashimoto, Y. Horie, J. Masumoto, S. Qiu et al., An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid, Nat. Immunol, vol.4, pp.702-707, 2003.

Y. Chang, L. A. Rettberg, D. R. Ortega, and G. J. Jensen, In vivo structures of an intact type VI secretion system revealed by electron cryotomography, EMBO Rep, vol.18, pp.1090-1099, 2017.

J. C. Charity, M. M. Costante-hamm, E. L. Balon, D. H. Boyd, E. J. Rubin et al., , 2007.

, Twin RNA Polymerase-Associated Proteins Control Virulence Gene Expression in Francisella tularensis, PLoS Pathog, vol.3

C. Checroun, T. D. Wehrly, E. R. Fischer, S. F. Hayes, and J. Celli, Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.14578-14583, 2006.

A. Chong, T. D. Wehrly, V. Nair, E. R. Fischer, J. R. Barker et al., The Early Phagosomal Stage of Francisella tularensis Determines Optimal Phagosomal Escape and Francisella Pathogenicity Island Protein Expression, Infect. Immun, vol.76, pp.5488-5499, 2008.

A. Choy, J. Dancourt, B. Mugo, T. J. O'connor, R. R. Isberg et al., , 2012.

, The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation, Science, vol.338, pp.1072-1076

S. Christoforidis, M. Miaczynska, K. Ashman, M. Wilm, L. Zhao et al., Phosphatidylinositol-3-OH kinases are Rab5 effectors, Nat. Cell Biol, vol.1, pp.249-252, 1999.

C. Christopher, P. , and E. , Ovid: Biological Warfare: A Historical Perspective, 1997.

D. L. Clemens and M. A. Horwitz, Uptake and Intracellular Fate of Francisella tularensis in Human Macrophages, Ann. N. Y. Acad. Sci, vol.1105, pp.160-186, 2007.

D. L. Clemens, B. Lee, and M. A. Horwitz, Virulent and Avirulent Strains of Francisella tularensis Prevent Acidification and Maturation of Their Phagosomes and Escape into the Cytoplasm in Human Macrophages, Infect. Immun, vol.72, pp.3204-3217, 2004.

D. L. Clemens, B. Lee, and M. A. Horwitz, Francisella tularensis Enters Macrophages via a Novel Process Involving Pseudopod Loops, Infect. Immun, vol.73, pp.5892-5902, 2005.

D. L. Clemens, P. Ge, B. Lee, M. A. Horwitz, and Z. H. Zhou, Atomic Structure of T6SS Reveals Interlaced Array Essential to Function, Cell, vol.160, pp.940-951, 2015.

D. L. Clemens, B. Lee, and M. A. Horwitz, The Francisella Type VI Secretion System, Front. Cell. Infect. Microbiol, vol.8, 2018.

D. J. Colquhoun and S. Duodu, Francisella infections in farmed and wild aquatic organisms, Vet. Res, vol.42, p.47, 2011.

J. P. Coolen, A. Sjödin, B. Maraha, G. F. Hajer, M. Forsman et al., Draft genome sequence of Francisella tularensis subsp. holarctica BD11-00177, Stand. Genomic Sci, vol.8, p.539, 2013.

P. Cossart and P. J. Sansonetti, Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens, Science, vol.304, pp.242-248, 2004.

P. Cossart, M. F. Vicente, J. Mengaud, F. Baquero, J. C. Perez-diaz et al., , 1989.

, Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation, Infect. Immun, vol.57, pp.3629-3636

T. J. Cremer, A. Amer, S. Tridandapani, and J. P. Butchar, Francisella tularensis regulates autophagy-related host cell signaling pathways, Autophagy, vol.5, pp.125-128, 2009.

B. J. Cuthbert, W. Ross, A. E. Rohlfing, S. L. Dove, R. L. Gourse et al., Dissection of the molecular circuitry controlling virulence in Francisella tularensis, Genes Dev, vol.31, pp.1549-1560, 2017.

D. T. Dennis, T. V. Inglesby, D. A. Henderson, J. G. Bartlett, M. S. Ascher et al., Tularemia as a Biological Weapon: Medical and Public Health Management, JAMA, vol.285, p.2763, 2001.

J. Deussing, W. Roth, P. Saftig, C. Peters, H. L. Ploegh et al., , 1998.

B. Cathepsins, A. M. Van-der-does, H. Beekhuizen, B. Ravensbergen, T. Vos et al., LL-37 Directs Macrophage Differentiation toward Macrophages with a Proinflammatory Signature, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.1442-1449, 2010.

W. A. Dunn, Studies on the mechanisms of autophagy: formation of the autophagic vacuole, J. Cell Biol, vol.110, pp.1923-1933, 1990.

E. Durand, V. S. Nguyen, A. Zoued, L. Logger, G. Péhau-arnaudet et al., Carbon metabolism of intracellular bacterial pathogens and possible links to virulence, Nat. Rev. Microbiol, vol.523, pp.401-412, 2010.

W. Eisenreich, T. Rudel, J. Heesemann, and W. Goebel, To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon, Infection. Front. Cell. Infect. Microbiol, vol.7, 2017.

J. Engel, E. , and Y. , Subversion of Mucosal Barrier Polarity by Pseudomonas Aeruginosa, Front. Microbiol, vol.2, 2011.

P. Escoll and C. Buchrieser, Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism, FEBS J, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02437195

A. Eshraghi, J. Kim, A. C. Walls, H. E. Ledvina, C. N. Miller et al., Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth, Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar. PLoS Pathog, vol.20, pp.573-583, 2011.

M. V. Fonseca and M. S. Swanson, Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila, Front. Cell. Infect. Microbiol, vol.4, 2014.

J. R. Forbes, Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane, Blood, vol.102, pp.1884-1892, 2003.

A. Forsberg and T. Guina, Type II secretion and type IV pili of Francisella, Ann. N. Y. Acad. Sci, vol.1105, pp.187-201, 2007.

M. Forsman, G. Sandström, A. Sjöstedt, H. Geier, and J. Celli, Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR, Int. J. Syst. Bacteriol, vol.44, pp.2204-2214, 1994.

G. Gesbert, E. Ramond, M. Rigard, E. Frapy, M. Dupuis et al., Asparagine assimilation is critical for intracellular replication and dissemination of Francisella, Cell. Microbiol, vol.16, pp.434-449, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972076

S. E. Girardin, I. G. Boneca, L. A. Carneiro, A. Antignac, M. Jéhanno et al., Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan, Science, vol.300, pp.1584-1587, 2003.

S. E. Girardin, I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne et al., Nod2 Is a General Sensor of Peptidoglycan through Muramyl Dipeptide (MDP) Detection, J. Biol. Chem, vol.278, pp.8869-8872, 2003.

A. Gouzy, G. Larrouy-maumus, T. Wu, A. Peixoto, F. Levillain et al., Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate, Nat. Chem. Biol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02348577

A. Gouzy, G. Larrouy-maumus, D. Bottai, F. Levillain, A. Dumas et al., Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection, PLoS Pathog, vol.10, 2014.

S. Grubmüller, K. Schauer, W. Goebel, T. M. Fuchs, and W. Eisenreich, Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism, Front. Cell. Infect, 2014.

E. Guaní-guerra, T. Santos-mendoza, S. O. Lugo-reyes, and L. M. Terán, Antimicrobial peptides: General overview and clinical implications in human health and disease, Clin. Immunol, vol.135, pp.1-11, 2010.

A. M. Hajjar, M. D. Harvey, S. A. Shaffer, D. R. Goodlett, A. Sjöstedt et al., Lack of In Vitro and In Vivo Recognition of Francisella tularensis Subspecies Lipopolysaccharide by Toll-Like Receptors, Infect. Immun, vol.74, pp.6730-6738, 2006.

M. A. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends Microbiol, vol.20, pp.360-368, 2012.

R. E. Hancock and G. Diamond, The role of cationic antimicrobial peptides in innate host defences, Trends Microbiol, vol.8, pp.402-410, 2000.

C. Hansson and T. Ingvarsson, Two cases of tularaemia after an orienteering contest on the non-endemic Island of Bornholm. Scand, J. Infect. Dis, vol.34, p.76, 2002.

C. He, C. R. Bartholomew, W. Zhou, and D. J. Klionsky, Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos, Autophagy, vol.5, pp.520-526, 2009.

B. Henderson, An overview of protein moonlighting in bacterial infection, Biochem. Soc. Trans, vol.42, pp.1720-1727, 2014.

T. Henry, A. Brotcke, D. S. Weiss, L. J. Thompson, and D. M. Monack, Type I interferon signaling is required for activation of the inflammasome during Francisella infection, J. Exp. Med, vol.204, pp.987-994, 2007.

D. Hersh, D. M. Monack, M. R. Smith, N. Ghori, S. Falkow et al., The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.2396-2401, 1999.

H. Hilbi, Modulation of phosphoinositide metabolism by pathogenic bacteria, Cell. Microbiol, vol.8, pp.1697-1706, 2006.

D. G. Hollis, R. E. Weaver, A. G. Steigerwalt, J. D. Wenger, C. W. Moss et al., , 1989.

, Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease, J. Clin. Microbiol, vol.27, pp.1601-1608

A. M. Hood, Virulence factors of Francisella tularensis, J. Hyg. (Lond.), vol.79, pp.47-60, 1977.

M. I. Hood and E. P. Skaar, Nutritional immunity: transition metals at the pathogenhost interface, Nat. Rev. Microbiol, vol.10, 2012.

G. Hovel-miner, S. P. Faucher, X. Charpentier, and H. A. Shuman, ArgR-Regulated Genes Are Derepressed in the Legionella-Containing Vacuole, J. Bacteriol, vol.192, pp.4504-4516, 2010.

N. Inohara, Y. Ogura, A. Fontalba, O. Gutierrez, F. Pons et al., Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2: IMPLICATIONS FOR CROHN?S DISEASE, J. Biol. Chem, vol.278, pp.5509-5512, 2003.

N. Jabado, A. Jankowski, S. Dougaparsad, V. Picard, S. Grinstein et al., Natural Resistance to Intracellular Infections, J. Exp. Med, vol.192, pp.1237-1248, 2000.

C. M. Jones and M. Niederweis, Mycobacterium tuberculosis Can Utilize Heme as an Iron Source, J. Bacteriol, vol.193, pp.1767-1770, 2011.

L. J. Juttukonda and E. P. Skaar, Manganese Homeostasis and Utilization in Pathogenic Bacteria, Mol. Microbiol, vol.97, pp.216-228, 2015.

L. C. Kingry and J. M. Petersen, Comparative review of Francisella tularensis and Francisella novicida, Front. Cell. Infect, 2014.

A. R. Kroken, C. K. Chen, D. J. Evans, T. L. Yahr, S. M. Fleiszig et al., The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression, Cell, vol.9, pp.952-962, 2015.

R. K. Laguna, E. A. Creasey, Z. Li, N. Valtz, and R. R. Isberg, A Legionella pneumophilatranslocated substrate that is required for growth within macrophages and protection from host cell death, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.18745-18750, 2006.

X. Lai and A. Sjöstedt, Delineation of the Molecular Mechanisms of Francisella tularensis-Induced Apoptosis in Murine Macrophages, Infect. Immun, vol.71, pp.4642-4646, 2003.

X. Lai, I. Golovliov, and A. Sjöstedt, Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis, Microb. Pathog, vol.37, pp.225-230, 2004.

R. L. Lamason and M. D. Welch, Actin-based motility and cell-to-cell spread of bacterial pathogens, Curr. Opin. Microbiol, vol.35, pp.48-57, 2017.

P. Larsson, P. C. Oyston, P. Chain, M. C. Chu, M. Duffield et al., The complete genome sequence of Francisella tularensis, the causative agent of tularemia, Nat. Genet, vol.37, pp.153-159, 2005.

P. Larsson, D. Elfsmark, K. Svensson, P. Wikström, M. Forsman et al., Molecular Evolutionary Consequences of Niche Restriction in Francisella tularensis, a Facultative Intracellular Pathogen, PLoS Pathog, vol.5, 2009.

C. M. Lauriano, J. R. Barker, S. Yoon, F. E. Nano, B. P. Arulanandam et al., MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.4246-4249, 2004.

H. T. Law, A. E. Lin, .. Kim, Y. Quach, B. Nano et al., Francisella tularensis Uses Cholesterol and Clathrin-Based Endocytic Mechanisms to Invade Hepatocytes, Sci. Rep, vol.1, 2011.

N. Leon-sicairos, R. Reyes-cortes, A. M. Guadrón-llanos, J. Madueña-molina, C. Leon-sicairos et al., Strategies of Intracellular Pathogens for Obtaining Iron from the Environment, BioMed Res. Int, vol.2015, pp.1-17, 2015.

S. R. Lindemann, K. Peng, M. E. Long, J. R. Hunt, M. A. Apicella et al., Francisella tularensis Schu S4 O-Antigen and Capsule Biosynthesis Gene Mutants Induce Early Cell Death in Human Macrophages, Infect. Immun, vol.79, pp.581-594, 2011.

H. Lindgren, H. Shen, C. Zingmark, I. Golovliov, W. Conlan et al., Resistance of Francisella tularensis Strains against Reactive Nitrogen and Oxygen Species with Special Reference to the Role of KatG, Infect. Immun, vol.75, pp.1303-1309, 2007.

M. Lindgren, J. E. Bröms, L. Meyer, I. Golovliov, and A. Sjöstedt, The Francisella tularensis LVS ?pdpCmutant exhibits a unique phenotype during intracellular infection, BMC Microbiol, vol.13, p.20, 2013.

K. Y. Lo, .. Chua, M. D. Abdulla, S. Law, H. T. Guttman et al., Examination of in vitro epithelial cell lines as models for Francisella tularensis non-phagocytic infections, J. Microbiol. Methods, vol.93, pp.153-160, 2013.

R. R. Lovewell, C. M. Sassetti, and B. C. Vanderven, Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection, Curr. Opin. Microbiol, vol.29, pp.30-36, 2016.

J. S. Ludu, E. B. Nix, B. N. Duplantis, O. M. Bruin, L. A. Gallagher et al., Genetic elements for selection, deletion mutagenesis and complementation in Francisella spp, FEMS Microbiol. Lett, vol.278, pp.86-93, 2007.

A. T. Ma, S. Mcauley, S. Pukatzki, and J. J. Mekalanos, Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells, Cell Host Microbe, vol.5, pp.234-243, 2009.

D. L. Macintyre, S. T. Miyata, M. Kitaoka, and S. Pukatzki, The Vibrio cholerae type VI secretion system displays antimicrobial properties, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.19520-19524, 2010.

R. J. Mailloux, R. Singh, G. Brewer, C. Auger, J. Lemire et al., ?-Ketoglutarate Dehydrogenase and Glutamate Dehydrogenase Work in Tandem To Modulate the Antioxidant ?-Ketoglutarate during Oxidative Stress in Pseudomonas fluorescens, J. Bacteriol, vol.191, pp.3804-3810, 2009.

A. Malik and T. Kanneganti, Inflammasome activation and assembly at a glance, J Cell Sci, vol.130, pp.3955-3963, 2017.

C. Manske, U. Schell, and H. Hilbi, Metabolism of myo-inositol by Legionella pneumophila promotes infection of amoeba and macrophages, Appl. Environ. Microbiol. AEM, pp.1018-1034, 2016.

S. Mariathasan, K. Newton, D. M. Monack, D. Vucic, D. M. French et al., Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf, Nature, vol.430, pp.213-218, 2004.

S. Mariathasan, D. S. Weiss, V. M. Dixit, and D. M. Monack, Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis, J. Exp. Med, vol.202, pp.1043-1049, 2005.

D. J. Martínez-cano, M. Reyes-prieto, E. Martínez-romero, L. P. Partida-martínez, A. Latorre et al., Evolution of small prokaryotic genomes, Front. Microbiol, vol.5, 2015.

F. R. Maxfield and D. J. Yamashiro, Endosome acidification and the pathways of receptor-mediated endocytosis, Adv. Exp. Med. Biol, vol.225, pp.189-198, 1987.

H. M. Mcbride, V. Rybin, C. Murphy, A. Giner, R. Teasdale et al., Oligomeric Complexes Link Rab5 Effectors with NSF and Drive Membrane Fusion via Interactions between EEA1 and Syntaxin 13, Cell, vol.98, pp.377-386, 1999.

J. D. Mckinney, E. J. Oz-elâõas, A. Miczak, B. Chen, W. Chan et al., Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, vol.406, p.4, 2000.

K. L. Meibom and A. Charbit, Francisella Tularensis Metabolism and its Relation to Virulence, Front. Microbiol, vol.1, 2010.

K. L. Meibom, A. Forslund, K. Kuoppa, K. Alkhuder, I. Dubail et al., Hfq, a Novel Pleiotropic Regulator of Virulence-Associated Genes in Francisella tularensis, Infect. Immun, vol.77, pp.1866-1880, 2009.

A. A. Melillo, C. S. Bakshi, and J. A. Melendez, Francisella tularensis Antioxidants Harness Reactive Oxygen Species to Restrict Macrophage Signaling and Cytokine Production, J. Biol. Chem, vol.285, pp.27553-27560, 2010.

N. Mellouk, A. Weiner, N. Aulner, C. Schmitt, M. Elbaum et al., Shigella Subverts the Host Recycling Compartment to Rupture Its Vacuole, Cell Host Microbe, vol.16, pp.517-530, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01113365

P. Méndez-samperio, Role of antimicrobial peptides in host defense against mycobacterial infections, Peptides, vol.29, pp.1836-1841, 2008.

V. Merhej, E. Angelakis, C. Socolovschi, and D. Raoult, Genotyping, evolution and epidemiological findings of Rickettsia species, Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis, vol.25, pp.122-137, 2014.

E. A. Miao, I. A. Leaf, P. M. Treuting, D. P. Mao, M. Dors et al., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nat. Immunol, vol.11, pp.1136-1142, 2010.

S. I. Miller, R. K. Ernst, and M. W. Bader, LPS, TLR4 and infectious disease diversity, Nat. Rev. Microbiol, vol.3, pp.36-46, 2005.

J. D. Mougous, C. A. Gifford, T. L. Ramsdell, and J. J. Mekalanos, Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa, Nat. Cell Biol, vol.9, pp.797-803, 2007.

F. E. Nano and C. Schmerk, The Francisella Pathogenicity Island, Ann. N. Y. Acad. Sci, vol.1105, pp.122-137, 2007.

F. E. Nano, N. Zhang, S. C. Cowley, K. E. Klose, K. K. Cheung et al., A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth, J. Bacteriol, vol.186, pp.6430-6436, 2004.

S. Nazarov, J. P. Schneider, M. Brackmann, K. N. Goldie, H. Stahlberg et al., , 2018.

H. Niu, Q. Xiong, A. Yamamoto, M. Hayashi-nishino, and Y. Rikihisa, Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end, EMBO J, vol.37, 2012.

, Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.20800-20807

P. Nunes, N. Demaurex, and M. C. Dinauer, Regulation of the NADPH Oxidase and Associated Ion Fluxes During Phagocytosis, Traffic, vol.14, pp.1118-1131

T. Ohya, M. Miaczynska, Ü. Coskun, B. Lommer, A. Runge et al., Reconstitution of Rab-and SNARE-dependent membrane fusion by synthetic endosomes, Nature, vol.459, pp.1091-1097, 2009.

N. A. Okan and D. L. Kasper, The atypical lipopolysaccharide of Francisella, Carbohydr. Res, vol.378, pp.79-83, 2013.

N. G. Olsufjev, Taxonomy and characteristic of the genus Francisella Dorofeev, J. Hyg. Epidemiol. Microbiol. Immunol, vol.14, pp.67-74, 1947.

S. E. Osborne, B. Sit, A. Shaker, E. Currie, J. M. Tan et al., Type I interferon promotes cell-to-cell spread of Listeria monocytogenes, Cell. Microbiol, vol.19, p.12660

K. F. Ottem, A. Nylund, E. Karlsbakk, A. Friis-møller, and T. Kamaishi, Elevation of Francisella philomiragia subsp. noatunensis Mikalsen et al. (2007) to Francisella noatunensis comb. nov. [syn. Francisella piscicida Ottem et al. (2008) syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov., two important fish pathogens, J. Appl. Microbiol, vol.106, pp.1231-1243, 2009.

C. P. Owens, N. Chim, and C. W. Goulding, Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target, Future Med. Chem, vol.5, 2013.

P. C. Oyston, A. Sjöstedt, and R. W. Titball, Tularaemia: bioterrorism defence renews interest in Francisella tularensis, Nat. Rev. Microbiol, vol.2, pp.967-978, 2004.

M. Ozanic, V. Marecic, Y. Abu-kwaik, and M. Santic, The Divergent Intracellular Lifestyle of Francisella tularensis in Evolutionarily Distinct Host Cells, PLOS Pathog, vol.11, 2015.

A. K. Pandey and C. M. Sassetti, Mycobacterial persistence requires the utilization of host cholesterol, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.4376-4380, 2008.

K. V. Parsa, L. P. Ganesan, M. V. Rajaram, M. A. Gavrilin, A. Balagopal et al., Macrophage Pro-Inflammatory Response to Francisella novicida Infection Is Regulated by SHIP, PLoS Pathog, 2006.

R. D. Pechous, T. R. Mccarthy, and T. C. Zahrt, Working toward the Future: Insights into Francisella tularensis Pathogenesis and Vaccine Development. Microbiol, Mol. Biol. Rev, vol.73, pp.684-711, 2009.

J. M. Petersen and M. E. Schriefer, Tularemia: emergence/re-emergence, Vet. Res, vol.36, pp.455-467, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00902975

J. F. Petrosino, Q. Xiang, S. E. Karpathy, H. Jiang, S. Yerrapragada et al., Chromosome Rearrangement and Diversification of Francisella tularensis Revealed by the Type B (OSU18) Genome Sequence, J. Bacteriol, vol.188, pp.6977-6985, 2006.

C. S. Pillay, E. Elliott, and C. Dennison, Endolysosomal proteolysis and its regulation, Biochem. J, vol.363, p.417, 2002.

A. Pitt, L. S. Mayorga, P. D. Stahl, and A. L. Schwartz, Alterations in the protein composition of maturing phagosomes, J. Clin. Invest, vol.90, pp.1978-1983, 1992.

J. Pizarro-cerdá, A. Charbit, J. Enninga, F. Lafont, and P. Cossart, Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia, Semin. Cell Dev. Biol, vol.60, pp.155-167, 2016.

S. G. Popov, R. Villasmil, J. Bernardi, E. Grene, J. Cardwell et al., Lethal toxin of Bacillus anthracis causes apoptosis of macrophages, Biochem. Biophys. Res. Commun, vol.293, pp.349-355, 2002.

J. A. Preston and D. H. Dockrell, Virulence factors in pneumococcal respiratory pathogenesis, Future Microbiol, vol.3, pp.205-221, 2008.

C. T. Price, T. Al-quadan, M. Santic, I. Rosenshine, A. Kwaik et al., Host proteasomal degradation generates amino acids essential for intracellular bacterial growth, Science, vol.334, pp.1553-1557, 2011.

S. Pukatzki, A. T. Ma, D. Sturtevant, B. Krastins, D. Sarracino et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.1528-1533, 2006.

S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.15508-15513, 2007.

C. R. Raetz, Z. Guan, B. O. Ingram, D. A. Six, F. Song et al., Discovery of new biosynthetic pathways: the lipid A story, J. Lipid Res, vol.50, pp.103-108, 2009.

M. V. Rajaram, J. P. Butchar, K. V. Parsa, T. J. Cremer, A. Amer et al., Akt and SHIP Modulate Francisella Escape from the Phagosome and Induction of the Fas-Mediated Death Pathway, PLOS ONE, vol.4, p.7919, 2009.

E. Ramond, G. Gesbert, M. Rigard, J. Dairou, M. Dupuis et al., Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape, Mol. Cell. Proteomics MCP, vol.10, pp.870-881, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00972072

F. Randow and C. Münz, Autophagy in the regulation of pathogen replication and adaptive immunity, Trends Immunol, vol.33, pp.475-487, 2012.

P. Renesto, H. Ogata, S. Audic, J. Claverie, and D. Raoult, Some lessons from Rickettsia genomics, FEMS Microbiol. Rev, vol.29, pp.99-117, 2005.

M. Rigard, J. E. Bröms, A. Mosnier, M. Hologne, A. Martin et al., Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence, PLOS Pathog, vol.12, pp.735-749, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01546486

C. G. Robinson and C. R. Roy, Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila, Cell. Microbiol, vol.8, pp.793-805

G. M. Rodriguez, Control of iron metabolism in Mycobacterium tuberculosis, Trends Microbiol, vol.14, pp.320-327, 2006.

L. Rohmer, C. Fong, S. Abmayr, M. Wasnick, T. Larson-freeman et al., Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains, Genome Biol, vol.8, p.102, 2007.

L. Rohmer, D. Hocquet, and S. I. Miller, Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis, Trends Microbiol, vol.19, pp.341-348, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00668374

G. Rollin, X. Tan, F. Tros, M. Dupuis, X. Nassif et al., , 2017.

, Intracellular Survival of Staphylococcus aureus in Endothelial Cells: A Matter of Growth or Persistence. Front. Microbiol, vol.8

H. M. Rowe and J. F. Huntley, From the Outside-In: The Francisella tularensis Envelope and Virulence. Front, Cell. Infect. Microbiol, vol.5, 2015.

D. C. Rubinsztein, P. Codogno, and B. Levine, Autophagy modulation as a potential therapeutic target for diverse diseases, Nat. Rev. Drug Discov, vol.11, 2012.

E. N. Salomonsson, A. Forslund, and Å. Forsberg, Type IV Pili in Francisella -A Virulence Trait in an Intracellular Pathogen, Front. Microbiol, vol.2, 2011.

V. Sampath, W. D. Mccaig, and D. G. Thanassi, Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella: Regulated production of membrane vesicles and tubes, Mol. Microbiol, vol.107, pp.523-541, 2018.

T. G. Sana, C. Baumann, A. Merdes, C. Soscia, T. Rattei et al., Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network, MBio, vol.6, pp.712-727, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01213281

P. J. Sansonetti, A. Phalipon, J. Arondel, K. Thirumalai, S. Banerjee et al., Caspase-1 Activation of IL-1? and IL-18 Are Essential for Shigella flexneri-Induced Inflammation, Immunity, vol.12, pp.581-590, 2000.

M. Santic, M. Molmeret, and Y. A. Kwaik, Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-?, Cell. Microbiol, vol.7, pp.957-967, 2005.

M. Santic, M. Molmeret, K. E. Klose, S. Jones, and Y. A. Kwaik, The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm, Cell. Microbiol, vol.7, pp.969-979, 2005.

M. Santic, R. Asare, I. Skrobonja, S. Jones, and Y. A. Kwaik, Acquisition of the Vacuolar ATPase Proton Pump and Phagosome Acidification Are Essential for Escape of Francisella tularensis into the Macrophage Cytosol, Infect. Immun, vol.76, pp.2671-2677, 2008.

H. Sato, K. Okinaga, and H. Saito, Role of Pili in the Pathogenesis of Pseudomonas aeruginosa Burn Infection, Microbiol. Immunol, vol.32, pp.131-139, 1988.

J. Sauer, J. G. Shannon, D. Howe, S. F. Hayes, M. S. Swanson et al., , 2005.

, Specificity of Legionella pneumophila and Coxiella burnetii Vacuoles and Versatility of Legionella pneumophila Revealed by Coinfection, Infect. Immun, vol.73, pp.4494-4504

K. Schroder and J. Tschopp, The Inflammasomes. Cell, vol.140, pp.821-832, 2010.

G. S. Schulert, A. , and L. H. , Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor, J. Leukoc. Biol, vol.80, pp.563-571, 2006.

E. Schunder, N. Gillmaier, E. Kutzner, V. Herrmann, M. Lautner et al., Amino Acid Uptake and Metabolism of Legionella pneumophila Hosted by Acanthamoeba castellanii, J. Biol. Chem, vol.289, pp.21040-21054, 2014.

S. Schwarz, T. E. West, F. Boyer, W. Chiang, M. A. Carl et al., Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions, PLOS Pathog, vol.6, 2010.

S. Schwarz, P. Singh, J. D. Robertson, M. Leroux, S. J. Skerrett et al., VgrG-5 Is a Burkholderia Type VI Secretion System-Exported Protein Required for Multinucleated Giant Cell Formation and Virulence, Infect. Immun, vol.82, pp.1445-1452, 2014.

S. Seveau, Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes, Subcell. Biochem, vol.80, pp.161-195, 2014.

H. Sies, Oxidative stress: from basic research to clinical application, Am. J. Med, vol.91, pp.31-38, 1991.

G. A. Smith, H. Marquis, S. Jones, N. C. Johnston, D. A. Portnoy et al., The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread, Infect. Immun, vol.63, pp.4231-4237, 1995.

E. C. So, C. Mattheis, E. W. Tate, G. Frankel, and G. N. Schroeder, Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors, Can. J. Microbiol, vol.61, pp.617-635, 2015.

B. Steeb, B. Claudi, N. A. Burton, P. Tienz, A. Schmidt et al.,

, Parallel Exploitation of Diverse Host Nutrients Enhances Salmonella Virulence, PLoS Pathog, vol.9, p.1003301

S. Steele, J. Brunton, B. Ziehr, S. Taft-benz, N. Moorman et al., Francisella tularensis Harvests Nutrients Derived via ATG5-Independent Autophagy to Support Intracellular Growth, PLOS Pathog, vol.9, p.1003562, 2013.

S. Steele, L. Radlinski, S. Taft-benz, J. Brunton, and T. H. Kawula, Trogocytosisassociated cell to cell spread of intracellular bacterial pathogens, 2016.

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nat. Rev. Mol. Cell Biol, vol.10, pp.513-525, 2009.

J. M. Stevens, E. E. Galyov, and M. P. Stevens, Actin-dependent movement of bacterial pathogens, Nat. Rev. Microbiol, vol.4, pp.91-101, 2006.

M. V. Stundick, M. T. Albrecht, C. R. Houchens, A. P. Smith, T. M. Dreier et al.,

, Animal Models for Francisella tularensis and Burkholderia Species: Scientific and Regulatory Gaps Toward Approval of Antibiotics Under the FDA Animal Rule, Vet. Pathol, vol.50, pp.877-892

B. G. Surewaard, J. F. Deniset, F. J. Zemp, M. Amrein, M. Otto et al., Identification and treatment of the Staphylococcus aureus reservoir in vivo, J. Exp. Med, vol.213, pp.1141-1151, 2016.

E. Suter, INTERACTION BETWEEN PHAGOCYTES AND PATHOGENIC MICROORGANISMS, vol.20, p.39, 1956.

K. Svensson, P. Larsson, D. Johansson, M. Byström, M. Forsman et al., Evolution of Subspecies of Francisella tularensis, J. Bacteriol, vol.187, pp.3903-3908, 2005.

B. Tamilselvam and S. Daefler, Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages, J. Immunol. Baltim. Md, vol.180, pp.8262-8271, 1950.

I. Tattoli, M. T. Sorbara, C. Yang, S. A. Tooze, D. J. Philpott et al., Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures: Listeria phospholipases subvert host autophagic defenses, EMBO J, vol.32, pp.3066-3078, 2013.

N. M. Taylor, N. S. Prokhorov, R. C. Guerrero-ferreira, M. M. Shneider, C. Browning et al., Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.533, pp.346-352, 2016.

R. K. Taylor, V. L. Miller, D. B. Furlong, and J. J. Mekalanos, Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.2833-2837, 1987.

R. W. Titball, A. Johansson, and M. Forsman, Will the enigma of Francisella tularensis virulence soon be solved?, Trends Microbiol, vol.11, pp.118-123, 2003.

L. H. Travassos, L. A. Carneiro, M. Ramjeet, S. Hussey, Y. Kim et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nat. Immunol, vol.11, pp.55-62, 2010.

T. Tseng, B. M. Tyler, and J. C. Setubal, Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology, BMC Microbiol, vol.9, p.2, 2009.

M. V. Tullius, C. A. Harmston, C. P. Owens, N. Chim, R. P. Morse et al., Discovery and characterization of a unique mycobacterial heme acquisition system, Proc. Natl. Acad. Sci, vol.108, pp.5051-5056, 2011.

S. A. Tunio, N. J. Oldfield, A. Berry, D. A. Ala'aldeen, K. G. Wooldridge et al., The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion, Mol. Microbiol, vol.76, pp.605-615, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552627

P. Valentin-hansen, M. Eriksen, C. Udesen, and . Microreview, The bacterial Sm-like protein Hfq: a key player in RNA transactions, Mol. Microbiol, vol.51, pp.1525-1533

A. Vettiger, J. Winter, L. Lin, and M. Basler, The type VI secretion system sheath assembles at the end distal from the membrane anchor, Nat. Commun, vol.8, 2017.

O. V. Vieira, C. Bucci, R. E. Harrison, W. S. Trimble, L. Lanzetti et al., Modulation of Rab5 and Rab7 Recruitment to Phagosomes by Phosphatidylinositol 3-Kinase, Mol. Cell. Biol, vol.23, pp.2501-2514, 2003.

A. Vonderheit and A. Helenius, Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes, PLoS Biol, vol.3, 2005.

J. Wang, M. Brackmann, D. Castaño-díez, M. Kudryashev, K. N. Goldie et al., Cryo-EM structure of the extended type VI secretion system sheath-tube complex, Nat. Microbiol, vol.2, pp.1507-1512, 2017.

B. Weber, M. Hasic, C. Chen, S. N. Wai, and D. L. Milton, Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum, Environ. Microbiol, vol.11, pp.3018-3028

T. D. Wehrly, A. Chong, K. Virtaneva, D. E. Sturdevant, R. Child et al., Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages, Cell. Microbiol, vol.11, pp.1128-1150, 2009.

L. A. Weinert and J. J. Welch, Why Might Bacterial Pathogens Have Small Genomes?, Trends Ecol. Evol, vol.32, pp.936-947, 2017.

G. Weiss and U. E. Schaible, Macrophage defense mechanisms against intracellular bacteria, Immunol. Rev, vol.264, pp.182-203, 2015.

M. D. Welch, W. , and M. , Arp2/3-mediated actin-based motility: a tail of pathogen abuse, Cell Host Microbe, vol.14, pp.242-255, 2013.

R. M. Wells, C. M. Jones, Z. Xi, A. Speer, O. Danilchanka et al., Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis, PLoS Pathog, vol.9, 2013.

L. M. Wenren, N. L. Sullivan, L. Cardarelli, A. N. Septer, and K. A. Gibbs, Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export, MBio, vol.4, pp.374-387, 2013.

J. J. Wernegreen, Endosymbiont evolution: Predictions from theory and surprises from genomes, Ann. N. Y. Acad. Sci, vol.1360, pp.16-35, 2015.

W. B. Wherry and B. H. Lamb, Infection of man with Bacterium tularense, J. Infect. Dis, vol.189, pp.1321-1329, 1914.

J. C. Whitney, C. M. Beck, Y. A. Goo, A. B. Russell, B. Harding et al., Genetically distinct pathways guide effector export through the type VI secretion system, Mol. Microbiol, vol.92, pp.529-542, 2014.

L. M. Willis and C. Whitfield, Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways, Carbohydr. Res, vol.378, pp.35-44, 2013.

Ö. Yilmaz, A. A. Sater, L. Yao, T. Koutouzis, M. Pettengill et al., ATPdependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis, Cell. Microbiol, vol.12, pp.188-198, 2010.

Y. Yoshikawa, M. Ogawa, T. Hain, M. Yoshida, M. Fukumatsu et al., Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nat. Cell Biol, vol.11, pp.1233-1240, 2009.

J. Zheng and K. Y. Leung, Dissection of a type VI secretion system in Edwardsiella tarda, Mol. Microbiol, vol.66, pp.1192-1206, 2007.

Y. T. Zheng, S. Shahnazari, A. Brech, T. Lamark, T. Johansen et al., The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway, J. Immunol, vol.183, pp.5909-5916, 2009.

J. Ziveri, M. Barel, and A. Charbit, Importance of Metabolic Adaptations in Francisella Pathogenesis, Front. Cell. Infect. Microbiol, vol.7, 2017.

X. Zogaj, S. Chakraborty, J. Liu, D. G. Thanassi, and K. E. Klose, Characterization of the Francisella tularensis subsp. novicida type IV pilus, Microbiology, vol.154, pp.2139-2150, 2008.

A. Zoued, E. Durand, Y. R. Brunet, S. Spinelli, B. Douzi et al., Priming and polymerization of a bacterial contractile, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01778575