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INTRODUCTION

Qui aurait crit qu'un jour, j’écrirais, dans un contexte sérieux, quelque chose
comme «shifting the time/memory tradeoff » ou «the computation of their normal
form is a simple post-process» 7 11 y a des moments dans cette theése ou j’ai I'im-
pression d’étre dans un film. Mais en fait, non, je suis sur un ordinateur & écrire du
latex. Quoiqu’il en soit, 'occasion est trop belle pour ne pas s’épancher dans ces
remerciements, que je suis str vous trouverez importants. D’abord parce que ce
sont les seules pages de cette these dans lesquelles on peut trouver les mots «tinta-
marre» et «bigarrées», mais aussi parce que ma these et moi n’aurions jamais été
possibles, ou aurions été tres différents, sans la participation de trés nombreuses
personnes que je m’emplois, avec tout le sérieux qui me caractérise et pour le mal-
heur du cinquieme d’arbre qui servira a I'impression des 8 exemplaires finaux, a
lister ici. Mais, évidemment, inéluctablement, dans la folie des derniers instants,
j’ai immanquablement oublié des gens. Ils peuvent m’en vouloir, ou alors je leur

paye un restau. A eux de voir, je suis dispo.

COMMENT LIRE CES REMERCIEMENTS

Le mot «merci», pour en éviter I'usure et rappeler que je déteste voyager, est
traduit dans de nombreuses langues que je ne parle pas, et associé aléatoirement
aux personnes; a l’exception de quelques cas impossible a détecter, a moins que
ces personnes, physiques, morale ou décédée selon les cas, ne s’organisent pour dé-
couvrir ces liens abscon, évidents ou capillotracté, selon les cas également. Lorsque
nécessaire, les premieres lettres des noms de famille sont inclus afin d’éviter les
collisions malheureuses; et cela est nécessaire car malgré mon insigne désintérét
pour les cérémonies religieuses, je remercie ici un nombre tout a fait ébaubissant
de Baptiste et de Baptiste B.

Enfin, bien que les noms, lorsque listés, le sont dans 'ordre alphabétique, jai

conservé pour les paragraphes — releguant a l'usage minimal 'ordre implicite

temps passé avec
distance psychologique

ganisation par groupes thématiques en quatre points dont les limites sybillines,

standard probablement approximable par le rapport — une or-

déja floues, sont inexorablement brouillées par I'inextricable superposition spatio-

temporelle des cercles sociaux. Oui, c’est le bordel.
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AND NOW, FOR SOMETHING TOTALLY DIFFERENT

L’anglais de lucas est imbitable? L’exposé est terriblement long? Vous avez
déja lu toutes les citations en début de chapitre ? Impossible de dormir sans qu'un

membre du jury ne se retourne en frongant les sourcils ?
J’ai la solution & vos problemes!

pip install biseau-gui, ou allez sur le bug tracker de Biseau : il y a une tonne
de boulot & faire, sur le core! comme sur la GUI2. Pour une introduction au
logiciel, allez voir le chapitre 5, ou chargez le script d’exemple dans la GUI.

Ou, si la théorie des graphes et le développement logiciel vous excitent plutdt

moyen-bof-paté, je vous propose un sudoku, ainsi que son encoding en ASP :

s(1,1,2). s(1,2,1).
1 716

s(1,8,7). s(1,9,6).

24 s(2,1,9). s(2,6,2). s(2,7,4).
7 s(3,1,4). s(3,6,7).

1 3 1 s(4,3,4). s(4,5,3). s(4,8,1).
3 9 s(5,4,8). s(5,6,9).

. 1 . s(6,2,8). s(6,5,4). s(6,7,6).
s(7,4,5). s(7,9.,8).

s(8,3,5). s(8,4,9). s(8,9,4).
5 s(9,1,1). s(9,2,6).
116 9 s(9,8,9). s(9,9,2).

Travail a faire : trouver la solution au sudoku. Implémenter le code ASP qui trouve
la solution. Du joueur, du programmeur, ou du solveur, qui est allé le plus vite ?

Le sudoku lui-méme est censé étre complexe a résoudre pour un humain (Merci
a Maél, Grégoire et Jacques pour 'avoir testé). Dans 1’encoding ASP, s(X,Y, V)
indique que la case au coordonnées (X,Y) se trouve la valeur V. Il est tout a fait
possible de produire un programme qui, a partir de ces atomes, produit ceux qui

manquent.

1. https://gitlab.inria.fr/lbourneu/biseau/issues/
2. https://gitlab.inria.fr/lbourneu/biseau-gui/issues/
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Résumé de la these

L’homme de science le sait bien, lui, que seule la science a
pu, au fil des siecles, lui apporter I’horloge pointeuse et le
parcmetre automatique sans lesquels il n’est pas de bonheur

terrestre possible.

PIERRE DESPROGES

Vivons heureux en attendant la mort
1983

0.1 Introduction

Les graphes sont une des structures mathématiques les plus utilisées pour la
représentation de problemes théoriques, la représentation de connaissances, I’ana-
lyse de réseaux, la théorie des jeux ou la recherche opérationnelle. Ils sont aussi
utilisés pour représenter des données, par exemple les interactions de composés
chimiques, les partitions spatiales ou les diagrammes de Feynman. Si les graphes
ont 'avantage de pouvoir étre représentés graphiquement, déterminer une repré-
sentation lisible est néanmoins une tache complexe des lors que le graphe comporte
plus d’une dizaine de nceuds. Les graphes en bioinformatique en comportent gé-
néralement plusieurs milliers, parfois plusieurs millions. L’effet «boule de poil,
ou un graphe est si grand que sa représentation graphique est une tache noire
informe sur I’écran, peut étre évité par plusieurs méthodes, incluant I’agencement
intelligent des noeuds et des arcs, ou le résumé automatique. Une autre approche
a ce probleme de lisibilité est la compression de graphe, consistant en la réduction
d’un graphe en des agglomérats de nceuds et d’arcs, afin de diminuer le nombre
d’éléments dans la représentation graphique, et donc augmenter sa lisibilité. Dans
le cadre de cette these, nous nous intéressons a une méthode de compression de
graphe sans perte (le graphe compressé permet de retrouver le graphe d’entrée),

hiérarchique (les agglomérats, ou clusters, sont imbriqués), et créant des clusters
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FIGURE 1 — Deux exemples de graphes, qui sont également des motifs généraux.
Gauche : Une clique de 6 nceuds, couvrant 15 arcs. Droite : Une biclique de 3 x
3 neeuds, couvrant 9 arcs.

représentant uniquement des motifs génériques (les cliques et les bicliques, cf Fi-

gure 1).

Cette méthode, I’Analyse PowerGraph, nous la formaliserons en utilisant I’Ana-
lyse de Concepts Formels (ACF), un champs des mathématiques que nous présen-
terons rapidement en section 0.1.2. Nous implémenterons notre approche avec la
Programmation par Ensembles Réponses (ASP), une forme de programmation
purement déclarative congue pour la résolution de problémes combinatoires, et

présenté en section 0.1.3.

0.1.1 Analyse PowerGraph

D’abord développée dans le domaine de la bioinformatique par Royer et al.,
pour une application sur divers graphes d’interaction de molécules biologiques [94],
I’ Analyse PowerGraph est une méthode de clustering et de visualisation qui consiste

en la détermination d’un powergraphe a partir d'un graphe d’entrée.

Un powergraphe est un graphe dont les nceuds (powernceuds) sont des agrégats
de noeuds, reliés entre eux des arcs (powerarcs), eux-méme des agrégats d’arcs. Ce
type de graphe a été spécifiquement congu pour représenter des cliques et des

bicliques dans le graphe. Un exemple de powergraphe est donné en Figure 2.
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Powergraphes

Soit G = (V, E) un graphe. Un powergraphe est défini comme un graphe PG =
(PN, PE) ou les noeuds PN sont des sous-ensembles de V' et les arcs PE sont
des sous-ensembles de E. De plus, un powergraphe doit respecter les conditions

suivantes :

condition de sous-graphe Toute paire de powernceuds connectés par un powe-
rarc représente une biclique dans . Cas particulier : une clique de G est

représentée par un powernceud avec un powerarc bouclant sur lui-méme.

condition de hiérarchie des powernceuds Deux powernoeuds sont soit disjoints,

soit inclus 'un dans I'autre. Autrement dit, ils forment une hiérarchie.

condition de décomposition des powerarcs les powerarcs forment une parti-

tion de ’ensemble d’arcs E.

Le probléeme théorique est de trouver un powergraph avec un minimum de
powerarcs. La solution optimale n’est pas nécessairement unique, et le probléme a
été démontré comme appartenant a la classe de complexité NP-complet [37]. Entre
autres résultats, nous montrerons que la taille de 1’espace de recherche grandit
factoriellement avec la taille du graphe d’entrée, et que les solutions optimales ne

sont pas toujours atteignables avec les heuristiques de compression existantes.

0.1.2 Analyse de Concepts Formels

L’Analyse de Concepts Formels (ACF) est un cadre d’analyse de données dé-
veloppé par R. Wille et B. Ganter dans les années 70. Il s’agit aujourdhui d'un
domaine aux fondements solides [45], dont les principaux objets sont les contextes
formels (relation binaire entre deux ensembles d’éléments), les concepts formels
(décrivant des relations maximales entre deux sous-ensembles d’un contexte for-
mel) et le treillis de concept (graphe ou les concepts formels sont organisés selon
un ordre partiel et des connections de Galois).

I’ACF a été utilisée pour la formalisation d’un large panel de domaines, notam-
ment la découverte de connaissances, la classification, et la théorie des graphes [101,
25]. La dualité graphe/contexte formel a été explorée dans de nombreux travaux.

Concernant les motifs de graphes, on trouve par exemple une correspondance un-
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FIGURE 2 — En haut, un graphe de 15 nocuds étiquetés de a a o, et de 35 arcs. Un
placement adapté des nceuds permet de comprendre la structure du graphe, ce qui
serait plus difficile pour de plus gros graphes.

En bas, on trouve sa version compressée, le powergraphe, telle que produit par
I’Analyse PowerGraph. Les powerarcs sont montrés comme des lignes noires et
épaisses qui relient des powernceuds, les cercles noirs et épais. Les powernceuds
dessinés en vert représente des cliques. Certains arcs, (h,i) par exemple, n’ont
pas pu étre compressés. Le concept ({h,i},{f,g,7,k}), bien qu’il soit une biclique
maximale, ne peut pas étre associé a un powerarc particulier sans casser la condi-
tion de hiérarchie des powernceuds. A la place, deux powerarcs sont générés, cor-
respondant aux bicliques ({h,i},{f,g}) et ({h,i},{J,k}). De la méme maniere,
le sous-graphe des noeuds {d, e, f, g, h, i, j, k} ne peut pas étre couvert par les po-
werarcs, ({f,g},{d,e, h,i}) et ({h,i},{f, 9,7, k}) car cela briserait la condition de
décomposition des powerarcs.
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a-un entre les concepts formels dérivés du contexte formel décrivant un graphe et

des bicliques maximales qui le composent [73, 53].

Cette these se propose d’exploiter le lien entre théorie des graphes et I’ACF

pour la formalisation d’un probleme de théorie des graphes et de classification.

0.1.3 Programmation par Ensembles Réponses

La Programmation par Ensembles Réponses, ou Answer Set Programming (ASP),
est une forme de programmation purement déclarative et logique congue pour la
résolution de problémes combinatoires [76]. Il est utilisé en représentation des
connaissances, résolution de problémes, raisonnement automatique ou encore en

recherche opérationnelle et en optimisation.

Le processus de calcul d’ASP implique 2 étapes, le grounding et le solving. A
partir d’'un ensemble de reégles écrites en ASP, le grounder génére un programme
propositionnel. Le solveur produit, a partir de ces propositions, des modeles mi-
nimaux stables (ensembles-réponses). Evidemment, pour un probléme spécifique,
un programme dédié sera généralement plus efficace que son équivalent, plus com-
pact, en ASP. Cependant, ASP est utile pour la conception de prototypes : c’est
une alternative aux langages procéduraux standard qui permet de produire rapi-
dement des implémentations raisonnablement efficaces de résolution de problemes

complexes.

ASP a été utilisé en ACF pour implémenter des langage de requéte expressifs
sur des contextes formels [58, 95]. Il a aussi été utilisé pour la génération procé-
durale [97, 103], et dans plusieurs taches en intelligence artificielle, notamment la

robotique et la planification [40].

Notre introduction & ASP (section 1.4 dans la theése) propose quant a elle une
explication du langage ainsi qu'une implémentation en ASP de plusieurs tache
typiques de 'ACF, notamment ’énumération des concepts formels via la repro-

duction d’un algorithme de référence et son encodage par recherche de point fixe.

7
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0.1.4 Contributions de cette theése

Tout d’abord, nous formulons et étudions 1’Analyse PowerGraph a la lumiere
de 'ACF. Ceci nous permet d’en proposer une généralisation a ’aide d’un unique
motif plus général qui regroupe en un seul espace de recherche les cliques et les
bicliques. Cette extension des concepts formels, nommée concepts triplets, est dé-
taillée sur de nombreux aspects, y compris leur relation aux concepts formels et
leur énumération. En troisiéeme point, nous formulons le probleme de modélisation
en ACF dans un contexte logique, ’ASP. Dans notre cas, le travail de compres-
sion de graphe nécessite des calculs lourds et du code spécifique, puisque c’est
tout 'espace des concepts qui doit étre exploré. En quatrieme point, nous avons
testé notre code sur des réseaux biologiques réels, et explorés les données pour y
trouver les concepts triplets que nous avons définis. Finalement, nous présentons
Biseau, un environnement ASP a usage général pour la théorie des graphes, que

nous appliquons a ’ACF dans le but d’en illustrer les capacités.

0.2 Compression de powergraphe avec ’ACF

Tout d’abord, nous formulons et étudions la compression powergraphe dans le
cadre de 'ACF. Notre objectif est de mieux comprendre ’espace de recherche
que doivent explorer les programmes qui implémentent cette compression. Nous
partion de la notion de contexte de graphe, un type spécial de contexte formel
représentant des graphes simples non orientés, et qui nous servent de base pour
encoder la recherche de motif dans les graphes et la compression de ces motifs en
groupes de noeuds et d’arcs. Cette approche nous permet de proposer une formali-
sation générale de la compression de graphe, soulignant les principales sources de
difficultés du probleme. Nous décrivons le probleme de la compression comme un
probleme d’optimisation, ou les solutions optimales sont les séquences de motifs
a compresser qui minimisent le nombre d’arcs nécessaires pour décrire le graphe.
L’espace de recherche est, dans sa forme la plus simple, ’ensemble des combinaisons
possibles des concepts formels dérivés du graphe. La taille de cet ensemble forcant
a n’en explorer qu’'une partie, nous formalisons également 1’heuristique gloutonne

proposée par Royer et al. consistant a ordonner les concepts par leur couverture

8
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en arcs : il s’agit de compresser en priorité les motifs les plus grands. Cette réduc-
tion significative de ’espace de recherche, si elle ne garantit pas 'optimalité de la
solution, rend le probleme approximable pour des graphes réalistes.

Cette vue générale du probleme initial nous donne la capacité de formuler des
variantes ainsi que des approches pour sa résolution, et nous permet de découvrir
des limites a ’approche gloutonne de I’Analyse PowerGraph : nous détaillons no-
tamment un motif de graphe particulier, le cycle de concepts, qui prévient toute
heuristique gloutonne — cherchant uniquement des motifs maximaux ou basée sur
les concepts formels — d’atteindre une compression optimale, ¢’est-a-dire minimi-
sant le nombre d’arcs.

Nous proposons également des optimisations par réduction du treillis de concept,
ou de l'espace de recherche que nous avons implémenté dans un outil, Power-
GrASP, Nous terminons par une proposition théorique amorcant la conception
d’une stratégie diviser pour régner pour résoudre le probléeme de recherche de mo-
tif.

Parmi les pistes identifiées pour la réduction de I’espace de recherche, nous nous
sommes particulierement intéressés aux limites induites par 1'usage des concepts
formels et de leur treillis, pour la représentation de ’espace de recherche. L’une
d’entre elle est la séparation des cliques et des bicliques, cherchées et traitées pa-
rallelement dans deux espaces différents, nécessitant donc la création et la mainte-
nance de deux ensembles de concepts formels pour réaliser la compression. Notre
réponse a ce probleme est la notion de concept triplet, un nouvel objet mathé-
matique définissant un espace de recherche intégrant a la fois les cliques et les

bicliques.

0.3 Les concepts triplet : une extension de I’ ACF

pour la recherche de biclique chevauchantes

Nous proposons dans cette section une extension des concepts formels, les
concepts triplets, congu spécifiquement pour les contextes de graphes. Les concepts

triplets représentent un motif de graphe plus général que les cliques et les bicliques,
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FIGURE 3 — Gauche : Représentation a arc unique d'un concept triplet (A, B, C)
comme deux ensembles de noeuds chevauchants liés 'un a l'autre, A, et B.. A =
AN\B. et B= B\A.. C = A.N B, est 'ensemble de nceuds liés a touts les autres
neeuds du motif, aussi appelés nceuds ubiquitaires. A, B et C' sont des ensembles
disjoints.

Droite : Une compression powergraphe du concept triplet (A, B, C), ou C' est une
clique (d’ou le powerarc réflexif) et (A, B) une biclique.

qui en sont des cas particuliers : les bicliques chevauchantes.

Nous introduisons d’abord le terme de triplet pour référencer un type de concept
formel dérivé d’un contexte de graphe réflexif. Du point de vue des graphes, un tri-
plet est une biclique chevauchante, c¢’est-a-dire une biclique ou les deux ensembles
de nceuds peuvent étre en intersections non vide. Les triplets sont écrits en utilisant
la notation (A, B, C).

Lorsqu’aucun autre triplet ne couvre strictement plus d’arcs qu’un triplet T,
on dit que 1" est arc-maximal, ou tout simplement maximal. Les triplets maximaux
sont donc un sous-ensemble des triplets, et décrivent des bicliques chevauchantes
maximales dans le graphe. Les triplets peuvent également étre écrits dans une
forme canonique, afin d’assurer I'unicité de notation d’un triplet donné. La notation
d’un triplet est canonique lorsqu’elle obéit a deux conditions : il n’y a aucun nceud
ubiquitaire dans A ou B, et min(A) = min(AU B).

Les concepts triplets sont simplement les triplets qui sont a la fois maximaux et
écrits de maniere canonique. Les concepts triplets peuvent étre utilisés pour décrire
une variation de I’Analyse PowerGraph, ou plutét que considérer les cliques et les
bicliques, le processus de compression cherche et traite les bicliques chevauchantes.
Nous étudions le rendu graphique du cas général et des cas spéciaux (notamment
les bicliques, cliques, et stars), montrant ainsi que les triplets peuvent facilement

étre incorporés dans I’Analyse PowerGraph sans changements fondamentaux dans
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sa définition, c’est-a-dire sans briser les trois conditions détaillées dans la sec-
tion 0.2.

Nous définissons les triplets admissibles comme un sous-ensemble des triplets
qui respectent un certains nombre de conditions globales. Ainsi, avec quelques
tests, il est possible de filtrer les triplets qui ne peuvent, de par leur non maximalité,
étre des concepts triplets. De fait, il limite le nombre de triplets a comparer deux a
deux pour déterminer quels sont les triplet maximaux, et donc diminue grandement
le temps nécessaire a calculer les concepts triplets. Les conditions globales reposent
sur l'observation qu’un nceud extérieur au triplet, mais qui est connecté a touts les
neeuds de A et C', pourrait étre ajouté a B, ainsi qu’un nceud dans A ou B ne peut
pas étre lié a touts les autres noeuds. Sinon il serait ubiquitaire, et donc devrait
appartenir a C'. Il est intéressant de noter que nous n’avons pas pu démontrer que
les triplets admissibles sont maximaux, bien que dans toutes nos recherches, nous

n’avons jamais trouvé un triplet admissible qui ne soit pas maximal.

Nous avons montré également que les concepts triplets sont, a l'instar des
concepts formels, partiellement ordonnés, mais qu’avec la définition actuelle de la
forme canonique, ils ne forment pas un treillis. Obtenir une définition améliorée
de la forme canonique, débouchant sur la constitution d’un treillis des concepts

triplets, est un probleme ouvert.

Comme nous présentons la modélisation du probleme du point de vue logique,
nous abordons I'implémentation en ASP de la recherche des concepts triplets. Nous
détaillons et comparons 'efficacité de trois méthodes différentes pour la génération
de concepts triplets avec leurs encodages respectifs en ASP. Chaque méthode se
base sur une représentation différente du graphe d’entrée : I’ensemble des relations
dans le contexte du graphe, I’ensemble des concepts formels qui en sont dérivés,
ou I'ensemble de concepts formels dérivés du contexte réflexif du graphe. Nous
avons comparé ces méthodes sur des jeux de données aléatoires, montrant que si
la recherche de concepts triplets a une complexité exponentielle dans tous les cas,

les premieres méthodes restent nettement plus efficaces.

Enfin, nous avons exploré le lien entre concepts triplets et énumération des
cliques maximales, et montré que les concepts triplets forment une représentation

compressée des cliques du graphe.

11
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Notre proposition de représentation explicite des bicliques chevauchantes par le
biais des concepts triplets semble étre une puissante généralisation du processus de
compression. Avec les concepts triplets, les deux motifs de I’Analyse PowerGraph
(biclique et clique) sont unifiés en un seul. Un programme de compression reposant
sur les concepts triplets pourrait encoder I’ensemble de ’espace de recherche avec

ce seul motif.

Perspectives

Nous proposons de nombreuses pistes pour le développement des concepts tri-
plets et leur intégration comme une extension de I’Analyse PowerGraph. Par
exemple, la représentation des efficace bicliques chevauchantes suppose de changer
la définition d’un powergraph. Notamment, la condition sur la hiérarchie des po-
wernceuds doit étre étendue pour permettre l'usage de la représentation réduisant
un triplet a un seul powerarc.

Nous terminons ici en listant quelques problémes ouverts que notre approche

a soulevés.
Comment trouver les concepts triplets nécessaires, c¢’est-a-dire ceux dont toute
compression optimale requiert la compression ? Peut-on prédire le score d'une com-
pression qui résulterait d’une liste de concepts (triplets ou formels), sans réaliser la
compression ? Peut-on trouver une structure en treillis pour organiser les concepts
triplets 7 Un triplet admissible est-il nécessairement maximal ? Autrement dit, la

maximalité est-elle équivalente a I’admissibilité ?

0.4 Applications de I’Analyse PowerGraph

Les données

Nous avons travaillé sur deux jeux de données biologiques. Le premier, rna,
vient d'une étude en transcriptomique sur le puceron du pois, A. pisum, en col-
laboration avec Denis Tagu (INRA Le Rheu) [109]. Il s’agit d'un réseau bipartite
d’interaction de 15 mi-ARN avec 1810 ARN messagers. Le second réseau, mdb, est
étudié dans le cadre d'une collaboration avec Nathalie Théret (Inserm Rennes), et
est extrait de la base de donnée MatrixDB décrivant les interactions de protéines

extra-cellulaires [69]. Nous avons obtenus différents résultats sur ces réseaux, en
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devant parfois nous limiter a leurs versions réduites. En effet, ces réseaux étant de
grande taille, notamment mdb, certaines opérations n’ont pu étre réalisées en un

temps raisonnable sur les réseaux complets.

Ce que I’on cherche dans les données
D’abord, nous compressons les graphes, et comparons les deux implémentations
de I’Analyse PowerGraph que nous connaissons : celle de Royer et al., Qog, et
la notre, PowerGrASP. Nous montrons ainsi que les deux implémentations pro-
duisent des résultats équivalents, validant notre approche de la formalisation.
Nous cherchons également dans les réseaux a y déterminer la place et les par-
ticularités des concepts triplets/bicliques chevauchantes. Comme décrit dans la
section précédente, ce motif de graphe permet d’unifier les cliques et les bicliques.
La question est donc de savoir si 'utilisation de ce motif change fondamentalement
le processus de compression, ou si au contraire cette généralisation est transparente

du point de vue de la compression finale.

Ce que l'on trouve dans les données

La premiere observation est qu’il n’y a pas de dégradation de la compression
powergraphe, lorsque 1’on compare notre implémentation PowerGrASP, reposant
sur notre formalisation du probléme et la recherche de concepts formels, et Qog,
I'implémentation de référence de Royer et al.. Cela valide notre approche de la
formalisation, bien que notre implémentation ne soit pas aussi efficace sur des
graphes de grande taille.

En fait, les deux implémentations utilisant la méme stratégie, la réduction en
arcs ne differe que par de petites variations inhérente au processus non déterministe
qu’est le choix des motifs a compresser. Qog utilisant un algorithme dédié, il est
aussi plus efficace.

Concernant les concepts triplets, un résultat important, quoiqu’attendu, est
qu’une implémentation de Analyse PowerGraph reposant sur les concepts triplets
plutot que les cliques et les bicliques atteindrait les méme résultats, a moins que
des bicliques chevauchantes ne se soient présentes dans les données. En effet, une
biclique chevauchante peut grouper ensemble des composés qui ne I'étaient pour-

tant pas dans les compression powergraphe classique.
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F1GURE 4 — Le plus grand concept triplet dans la version réduite du réseau mdb,
avec 3 éléments dans ’ensemble C' (en vert). En rouge, on trouve deux arcs internes
dans le cluster de ’héparine qui ne sont pas couverts par le motif lui-méme. Les
arcs liants les nceuds du triplet aux noeuds a 'extérieur du triplet sont montrés en
gris clair, soulignant ’enchevétrement de ce motif dans le reste du réseau.

Le plus grand concept triplet, dans le réseau mdb réduit, ayant au moins 3
éléments dans l’ensemble C' est montré en Figure 4. Le groupement réalisé semble
rassembler des composés ayant un role dans ’angiogénese, processus biologique

ayant trait a la création de vaisseaux sanguins.

Optimisations

Nous avons également effectué une comparaison des performances de Power-
GrASP, selon I'usage des optimisations présentées dans le chapitre sur la formali-
sation de I’Analyse PowerGraph (cf section 0.2). Il apparait que dans leur ensemble
ces optimisations diminuent sensiblement le temps de compression, suggérant une

réduction significative de ’espace de recherche.
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0.5 Biseau : un environnement ASP pour la vi-
sualisation et la spécification de haut-niveau

en théorie des graphes

Cette these est intimement liée a la notion de programmation logique, présente
tout au long de la recherche. Cette approche nous a permis de développer des
concepts complexes de maniere trés compacte. Un des programmes majeurs déve-
loppé dans le cadre de cette these, est I'environnement de développement Biseau.
Partant de l'idée de créer un lien entre Programmation par Ensembles Réponses
et Analyse de Concepts Formels, nous sommes arrivés a la définition d’un envi-
ronnement dédié a 'analyse de graphes en ASP, dont 'ACF a été la premiere
application.

Biseau est un compilateur prenant en entrée un encodage ASP décrivant un
graphe, et produisant une représentation graphique dudit graphe. Pour cela, Biseau
utilise le langage de description DOT permettant une description déclarative de
graphes de tout types. En pratique, Biseau implémente un compilateur ASP-vers-
DOT, et utilise le programme graphviz pour le rendu graphique, par exemple, en
ACF, pour afficher le treillis des concepts. L'usage d’ASP pour générer du DOT
permet de décrire un graphe en intension.

Contrairement a d’autres outils comme LatViz et FCAbundles, Biseau ne cherche
pas a étre efficace sur une tache précise : il cherche au contraire a étre le plus souple
possible, afin de permettre a 'utilisateur de créer ou d’adapter facilement une ap-
proche, spécifique a son probléeme ou ses données. La ou, par exemple, LatViz
permet d’explorer efficacement des treillis complexes et de grande taille, Biseau
permet de définir le treillis lui-méme et la maniere de D’afficher.

Nous avons montré quelques possibilités offertes par Biseau pour le prototypage
et I’exploration de relations mathématiques. Nous reproduisons ainsi les principaux
résultats de I’Analyse de Concepts Formels (treillis, AOC poset), ainsi que quelques
extensions, notamment les treillis iceberg, 'ACF a 3 dimensions et les pattern
structures appliquées au nombres entiers.

Avec cette présentation du logiciel, nous espérons proposer a la communauté

ACF un guide pour I'usage d’ASP, et encourager I'usage de Biseau ou plus généra-
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lement du prototypage via des langage déclaratifs pour I'exploration et la définition
de relations mathématiques.

Biseau est actuellement développé avec deux objectifs majeurs : permettre aux
utilisateurs de partager simplement les unités minimales de code qu’ils produisent,
implémentant potentiellement des idées nouvelles en cours de formalisation, et
apporter une interface pratique et puissante pour la composition de code ASP
permettant de facilement implémenter une premiere version d’un logiciel implé-

mentant un nouvel objet mathématique.

0.6 Conclusion

Cette these propose un cadre de travail, des résultats théoriques et des implé-
mentations pour une compression de graphe sans perte et concervant de bonnes
propriétés de visualisations. Elle développe une méthode particuliere, I’Analyse Po-
werGraph, qui a déja fait ses preuves dans de nombreuses applications, notamment

en bioinformatique. Nous listons ici nos principales contributions.

Analyse PowerGraph et Analyse de Concepts Formels

Nous avons présenté une formalisation de I'espace de recherche de I’Analyse
PowerGraph, en tant que probleme d’optimisation, par le biais de I’Analyse de
Concepts Formels. Nous avons décrit deux versions de cet espace, dont la taille
exponentielle au regard de la taille du graphe considéré mene a au caractere NP-
complet de la recherche. Nous avons ensuite formalisé I'heuristique de recherche
proposée par Royer et al., et proposé notre propre implémentation, PowerGrASP,
ainsi que des optimisations qui sont applicables dans toute implémentation de la
compression powergraphe. Nous avons également montré les limites de 'approche
gloutonne, en démontrant qu’elle n’était pas nécessairement capable de trouver
une solution optimale. Par cette étude, nous avons montré de nombreuses pistes

pour la conception d’extensions de la compression powergraphe.

Triplet Concepts
Une contribution majeure de cette these est I'unification des deux motifs de

graphes utilisés par I’Analyse PowerGraph : les cliques et les bicliques. Les concepts
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triplets sont la formalisation du point de vue de ’ACF du motif de biclique chevau-
chante, ou deux ensembles de noeuds formant une biclique sont en chevauchement.
Puisque les cliques et bicliques sont des cas particuliers de la biclique chevauchante,
cette contribution théorique unifie les recherches de ces motifs normalement opé-
rées séparément en Analyse PowerGraph. En ACF, les concepts triplets sont un
sous-ensemble des concepts formels dérivés du contexte formel décrivant le graphe
a compresser. Nous avons également détaillé et comparé différentes méthodes pour
générer ces concepts triplets, a partir de plusieurs représentations des données d’en-
trée, et montré que les concepts triplets représentaient les cliques (maximales) du

graphe de maniere compacte.

Applications

Nous validons notre approche reposant sur les concepts formels, implémentée le
logiciel PowerGrASP, en reproduisant les résultats de I’Analyse PowerGraph. Nous
montrons également le gain de performances des différentes réductions de 1'espace
de recherche que nous avons proposées. Finalement, nous avons étudié la présence
de concepts triplets dans les données, montrant que le motif était utilisable dans
le cadre de la compression powergraphe, reproduisant les méme résultats, tant
que des bicliques chevauchantes sont absentes dans les données. La recherche de
concepts triplets stricts permet aussi de découvrir des structures différentes de

celles trouvées par I'approche bicliques+cliques.

Contribution logicielle

Outre PowerGrASP, discuté tout au long de la présentation de notre formalisa-
tion, nous avons proposé Biseau, un environnement a usage général pour la théorie
des graphes que nous avons utilisé pour la reproduction des principaux objets ma-
thématiques de ’'ACF, notamment le treillis de concept et ses structures dérivées.
Avec cet exemple particulier, nous espérons avoir montré que Biseau est adapté a
un large champs d’applications comme outil d’exploration pour les travaux repo-

sant sur la théorie des graphes.
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CHAPTER 1

Graph compression for
visualization and Answer Set

Programming

The whole idea of what happens when you read a book, I
find absolutely stunning. Here’s some product of a tree, little
black squiggles on it, you open it up, and inside your head is
the voice of someone speaking, who may have been dead
3000 years, and there he is talking directly to you, what a
magical thing that is.

CARL SAGAN
May 20th, 1977

1.1 Introduction

A graph is both a simple representation of relations between elements and a com-
plex mathematical object. Graphs come in a wide variety of uses and forms. Typical
use is the encoding of theoretical problems, such as knowledge base representation,
language modelling, network analysis, flux analysis, cartography, community detec-
tion, game theory, path finding, planning and more generally operations research.
A graph can also represent data: in biology for instance, produced data are of-
ten represented in form of networks whether they are real interaction networks of
living organisms, such as metabolic, regulation, connection or signaling networks,
as well as abstract networks of related data such as genome assembly networks.

In other fields, one can cite distributed computing, space partitioning (triangu-
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lation, k-d tree), Web graph, the Resource Description Framework (RDF), social
networks, meshes (geography, geology, simulation), Feynman diagrams (particle
physics), molecule graphs (chemistry), circuit design and electrical network anal-
ysis (electrical engineering), traffic network (urban planning), and more generally
network sciences.

Beyond being an abstract data type, a graph has the strong advantage of
having a graphical representation. But this representation does not scale well.
While a graph is only a collection of vertices with links between them, as soon
as it contains more than a dozen objects it becomes uninterpretable without a
well-designed layout of nodes and the highlight of subsequent structures. Real-
data graphs come in very different size: they easily exceed thousands or millions
of elements. Examples include, in increasing order of size: interaction network of
specific molecules in specific tissues, co-authorship networks in academic literature,
the Wikipedia edition dataset, or a whole human genome assembly. The larger the
graph, the more robust the visualization technique must be to keep the overall
structure of the graph readable. But at some point, even the best layout techniques
do not prevent the fur-ball effect, where ultimately the graph is just graphically
rendered as a big black smudge. To overcome this effect, imposed by computational,
screen or human limits, to apprehend millions of objects at a quick glance, many
layout, summarization, and compression approaches have been studied.

The computation of a layout for the visual rendering of a graph consists into
finding positions of nodes and edges on the plane or a 3D space, in order to achieve a
pleasant, readable and easy to interpret representation of the underlying data [54].
Most layout systems are force-directed, where the graph is assimilated to a physical
system where nodes and edges are attracted and repelled by different forces. The
task is then modeled as an energy minimization problem, thus relies mainly on
the optimization of various metrics, such as the minimization of edge crossings,
the distance between neighbors, or edge length variation. Such an approach is
however insufficient for large graphs, where the density of underlying structures
prevents any layout to achieve a readable rendering of the graph. It is necessary
to preprocess the graph in such cases in order to summarize its content.

The automatic summarization research field consists into the extraction of

meaningful information from various types of data. Often applied to text and
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Figure 1.1 — Two examples of graphs, that happen to be perfectly formed motifs.
Left: A clique of 6 nodes, covering 15 edges. Right: A biclique of 3 x 3 nodes,
covering 9 edges. A star is a biclique of 1 X n nodes.

videos, it is also applied on graphs. In [66] for instance, typical graphs motifs such
as cliques, bicliques (cf Figure 1.1), stars and chains are detected in the graph, and
a minimal amount of them is selected to account for the whole graph structure, and
is presented in a final summary made of a graphical representation highlighting
the retained motifs. And since the graph motifs have a meaning in the underlying
data, the final report is interpretable by humans. Such a representation of the
graph may also achieve a lossless compression of the graph by describing it only in
terms of structures of elements, effectively performing a compression of the data
needed to store the graph.

Graph compression is the central subject of this thesis and we will particularly

work on the clique and biclique motifs.

1.1.1 Graph compression

Graph compression is a broad term describing a wide array of techniques and in
a large set of research domains, including biology, linguistics, knowledge represen-
tation, graph databases, graph layout, graph summarization or decomposition [14].
One of the objectives of graph compression is to represent the graph in a
compact way, in order to speed up costly treatments such as Maximal Clique
Enumeration (MCE) [60]. Graph compression also encompasses the storing and

request of dynamic graphs more efficiently, for instance by encoding the graph
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as bitmaps compressed with standard methods but still practical for querying.
Another way to achieve compact representations of graphs in memory is to reduce
the amount of elements needed to describe the graph, by using typical graphs
motifs just as in the graph summarization protocol described previously, or by
detecting repeated patterns that are specific to the input graph. For instance,
authors in [100] build a Vertex Replacement Grammar, whose rules describe motifs
found by hierarchical clustering in the graph. Its expansion results in the generation
of graphs sharing common properties with the input graph. In that latter case, the
goal of compression is the extraction of the main features of the graph for a general

study of its structure.

Lossless graph compression and hierarchical clustering

Another application of graph compression is readability, where the compression
process looks for possible node or edge aggregations, i.e. connections between clus-
ters of nodes instead of connections between individual nodes. The clusters may
be determined by various hierarchical clustering methods based for instance on the
nodes’ annotations or their place in the network. The resulting clusters are used
to generate a simplified rendering of the input graph, where clusters are rendered
as special objects in the graph representation, in order to minimize the number of
edges needed to described the whole graph. Not surprisingly, it has been shown
that graph readability increases with edge reduction [36]. When the compressed
graph is exactly equivalent to the input graph, the compression is said lossless. A
hierarchical organization of nodes and edges, combined with a lossless clustering
enables a vast range of justified and abstractions of input graph with multiple ap-
plications ranging from graphical rendering to functional analysis and algorithmic
aspect of graphs. Among early works in this direction, Agarwal et al. [2] have
shown that visibility graphs, a type of graph commonly used in computational
geometry, can be represented compactly as a union of cliques and bicliques. The
decomposition (partition of the edges) or the covering (multiple use of edges) of
graphs into subgraphs belonging to a particular family have been the subject of
many studies. Bounds on the size complexity of such coverings have been early
established for the important particular case of complete bipartite subgraphs [29]

but many interesting open combinatorial problems remain in this area [61]. From
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an algorithmic perspective, the generation of all maximal bicliques of a graph is
related to and may be considered as an important subtask of the covering problem.
Apart from algorithms developed in Formal Concept Analysis, applied mathemat-
ics have also worked on classes of graphs for which it is possible to find the set
of all maximal bicliques in time polynomial in the size of the graph. For instance,
it is possible to find linear time algorithms for the case of graphs of bounded ar-
boricity [39] or for domino-free graphs [6]. For general graphs, the best one can
hope is to get total polynomial algorithms, i.e., polynomial with respect to the
size of the union (input + output). This has been proposed in [5], with an al-
gorithm derived from the consensus method. The compression of graphs through
a hierarchical clustering of nodes is a widely explored field, with many methods
for the determination of clusters. For example, authors in [59] propose a genetic
algorithm where each individual encodes a succession of node merges into clusters.
The fitness function minimizes, knowing a graph and a target compression ratio,
the number of edges falsely lost or added by the merges.

In this thesis we were specifically interested in hierarchical methods based on
clique and biclique analysis in graphs. In this domain, two methods that achieve
a lossless compression have been designed with different goals quickly introduce

here, namely Modular Decomposition and Power Graph Analysis.

Modular Decomposition

Modular Decomposition is an efficient deterministic approach for graph com-
pression. It has been used for instance to compute graphical representations [87],
enumerate the maximal cliques [12], or find functional modules in protein-protein
interaction networks [42]. It has been thoroughly studied in term of search space
and algorithmics [57]. The modular decomposition of a graph is computed by merg-
ing nodes forming a strong module in the graph, i.e. a group of nodes having the
exact same neighbors outside of the module, and if the module is either a subset,
a superset, or disjoint to other modules. The process is repeated, since formed
modules may in turn share the same neighborhood with another node or module,
iteratively building a hierarchy of modules, typically represented by a tree of mod-
ules. For instance, each set of a biclique (A, B) would first be grouped as such, since

all nodes in it share the same external neighbors (i.e. the nodes of the other set).
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The two resulting modules having the same external neighbors (that is none), they
are merged, constituting the final module of the graph. In case of a clique, only one
module is created, annotated to recall that the nodes in it are all linked together.
Since there is only one set of strong modules for a graph, and because modules are
either adjacent (all nodes of a module are linked to all nodes of another) or non-
adjacent (no edge between the nodes of the modules), the process is deterministic.
It thus has the great advantage of yielding, in quasi-linear time, a unique decom-
position for a given graph. However, that deterministic behavior comes at a cost,
that of not being expressive enough to achieve high compression rate: when two
motifs (bicliques for instance) overlap, many unrelated strong modules are formed,
and grouped together by modular decomposition, compressing poorly both motifs.
Because of the requirement on exact neighborhood, modular decomposition cannot
render well a motif and poorly another. It has to decompose fully both of them. In
order to obtain a clearer view of at least a part of the motifs, one has to introduce
the notion of choice, to favor motifs instead of others. This is the approach of the

next compression method.

Power Graph Analysis

Our own work started from Power Graph Analysis, another method of graph de-
composition into hierarchical modules motivated by common neighborhood [90].
In some specific cases, for instance biological networks, data show a preponder-
ance of particular formal structures such as cliques and bicliques, that can for in-
stance represent respectively protein complexes and domain-induced interactions
in protein-protein interaction networks [23], or transcription-factor — micro RNA
functional modules in regulatory networks [86]. Studying a compression process
based on these specific motifs is critical in this case.

Power Graph Analysis was first applied in bioinformatics [94], later refined
in [93, 90] and applied to other domains. As it is one of the main subject of that
thesis, it is presented extensively in its own section 1.2.

Power Graph Analysis shares some similarities with Modular Decomposition,
but differs in an important manner: nodes are grouped together when sharing
similar neighborhood, a relaxation of constraint compared to Modular Decompo-

sition. The powergraph of a graph — the compressed version of the graph — is no
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longer necessarily unique. For instance, in the case of two overlapping motifs, one
may first compress (possibly fully) one of them, the other, or the intersection of the
two, then to compress the remaining edges, which also may need some choices. The
introduction of these choices makes Power Graph Analysis a significantly harder
problem: the determination of an optimal powergraph — presenting the minimal
number of edges to describe the graph — is an NP-complete problem [37]. The ap-
proach show great results in biology, successfully associating motifs with functional
modules in various types of networks [94, 93, 32, 109]. Power Graph Analysis has
also been explored with variations, for instance applied on directed graphs [37], or
with some relaxation of constraints on the cluster hierarchy [106] or on the edge

compression [37]. In this thesis, we are interested by undirected simple graphs.

1.1.2 Finding cliques and bicliques in graphs

In graph summarization and compression, two concurrent approaches are studied
regarding the nature of graph motifs. In one case, they are specific to the graph,
first researched and then used, for instance for memory compact representation
or efficient querying. In the other case, the considered graph motifs are general
objects, such as clique and biclique motifs, which by their sole structure unravel
interpretable structures in the data. In Power Graph Analysis and in this thesis,
we consider the second case, and the cliques and bicliques as discussed in the

following.

A clique is a set of nodes that are all connected to each other. In a simple
graph, a clique constitutes the most dense subgraph, as shown on the left side
of Figure 1.1. As such, cliques reveal important structures in the data, for instance
protein complexes in interaction networks, or communities in social networks [94,
112, 78]. When a clique cannot be extended with another node, the clique is said
mazimal. The Maximal Clique Enumeration (MCE) in a graph is one of the Karp’s
21 NP-complete problems. It however does not preclude their study, as an efficient
algorithm for MCE was designed and iteratively refined to handle increasingly
larger graphs [22], and recently a distributed implementation was devised in order

to solve the MCE for graphs so large that a sequential approach is unpractical [21].
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The other typical graph motif is biclique, composed of two disjoint sets of in-
teracting nodes as shown on the right side of Figure 1.1. As for cliques, the enu-
meration of bicliques in a graph is an NP-complete problem [88]. However, many
families of graphs, such as domino-free graphs, enables the enumeration of max-
imal bicliques in polynomial times [85], although many optimizations enable to
obtain a lower bound, taking advantage of graph properties. Biclique is a graph
motif unraveled by modular decomposition [42], and typically searched in bipartite
graphs such as drug-disease or transcriptional networks [32, 86]. The star motif
is a special case of biclique, where one node, the hub, is linked to a set of other
nodes. It is often found in social networks where group leaders and influencers are
hub nodes [3]. In some applications, such as Modular Decomposition, the two sets
of a biclique are required to be independent. It means that the induced subgraph
needs to be bipartite, and that a dense graph cannot generally be decomposed in
bicliques. In contrast, we will consider as in Power Graph Analysis a more flexible

definition allowing nodes in each set of a biclique to share some connections.

1.1.3 The thesis proposal

The aim of this thesis is to propose a formalization of the Power Graph Analysis
search space as a graph compression process looking for motifs with readability
constraints.

Our approach is two-fold. First, the theoretical aspect of the problem is ad-
dressed in the light of Formal Concept Analysis (FCA) [45], a well-defined math-
ematical framework presented in section 1.3, from which major results in classifi-
cation and graph theory are issued, including the search for graph motifs. Second,
the practical implementation of our results are performed with Answer Set Pro-
gramming (ASP), a form of purely declarative programming oriented towards the
resolution of combinatorial problems, enabling a high-level specification of math-

ematical properties [76]. ASP is introduced in section 1.4.

The purpose of this thesis is illustrated in Figure 1.2, where three equivalent
representation of a graph are presented: the input graph, its compressed versions,

and its concept lattice. This thesis aims at studying the relations between these
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representations, and shows they are all equivalent. By definition, the compressed
graph is exactly equivalent to the uncompressed graph, and we formalize the com-
pression as an optimization problem. The concept lattice is another representation
of the uncompressed graph, and we show its role to encode the compression search

space.

() (<)
4

Figure 1.2 — Three representation of the same graph. Left: the graph itself. Center:
its powergraph. Right: its concept lattice representation.

Part of the material for this thesis was published in earlier articles [20, 19, 17].
We present in this document a fully revised version of them, including corrections,
clarifications and additional content, together with a new FCA contribution on

triplet, which is the subject of chapter 3.

1.2 Power Graph Analysis

This introduction is adapted from our paper on the formalization of Power Graph
Analysis in FCA presented at ICFCA 2017 [20].

A nice visualization of compressed graphs introduces additional constraints on

the choice of subgraphs interesting for compression, which add a complexity level
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in the covering or decomposition problem. We have already mentioned that it is
useful to allow both cliques and bicliques for more compact representations.

Introduced by Royer et al., Power Graph Analysis is a clustering and visual-
ization method [94] that starts from this requirement and has been specifically
designed to show these subgraphs typically arising in bioinformatics. Indeed, they
have been associated to important structures in biological networks, particularly
for protein interactions [3, 78, 42]. Bicliques also show interactions induced by
specific protein domains in case of protein-protein interactions, or for multi-target
drugs in case of drug/target/disease networks [32]. Furthermore, this approach
has been used as an alternative approach to compare two biological networks by
measuring the compression ratio of the compressed union of the graphs [82]. Due
to the genericity of the subgraph motifs, Power Graph Analysis has been used
for applications in other research fields like reliable community detection in social
networks [106].

1.2.1 Power Graphs

Given a graph G = (V, E), a powergraph is defined as a special graph PG =
(PV, PE) where the nodes PV are subsets of V' and the edges PE are subsets of

E. Furthermore, a powergraph must fulfill the three following conditions:

subgraph condition Any pair of powernodes connected by a poweredge repre-
sents a biclique in graph GG. As a special case, with a slight abuse of notation,
a clique in G is represented by a single powernode and a poweredge looping

on this node.

powernode hierarchy condition Any two powernodes are either disjoint, or
one is included in the other. From the classification point of view, the sets

of vertices clustered in powernodes form a hierarchy.

poweredge decomposition condition Poweredges form a partition of the set

of edges.

An example of graph compression is shown in Figure 1.3.
The issue is to exhibit a powergraph with a minimal number of poweredges.

The solution is not necessarily unique. It has been shown to be a NP-complete
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Figure 1.3 — A graph with 15 nodes labelled from a to o and 35 edges. A smart
layout of this graph allows one to understand its underlying structure, some-
thing that becomes hard with a growing number of edges. The bottom com-
pressed version of this graph has been produced by Power Graph Analysis and
rendered with Cytoscape [99], through a plug-in developed by Royer et al. Pow-
eredges are shown as thick and black lines linking powernodes (thick circles,
black for bicliques and green/grey for cliques). Some edges like (h,i) remain un-
compressed. Concept ({h,i},{f,g,7,k}), despite being a maximal biclique, can’t
be associated to a single poweredge without breaking the powernode hierar-
chy condition. Instead, two poweredges are generated, corresponding to bicliques
({h,i},{f,g}) and ({h,i},{j, k}). The same way, the subgraph on the subset of
vertices {d, e, f, g, h,i, 7, k} can’t be covered by poweredges ({f, g}, {d, e, h,i}) and
({h,i},{f,g,7,k}) since it would break the poweredge decomposition condition.
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problem [37]. An algorithm and a software are described in [94]. It implements
a two-phase approach, first processing the possible powernodes by a hierarchical
clustering of the nodes using the Jaccard index on the sets of neighbors, and then
building the poweredges than can be drawn between any pair of powernodes fol-
lowing a greedy incremental approach, choosing at each step a maximal subgraph
in the number of covered edges. The algorithm is very fast but remains heuristic
and only computes an approximation of the minimal powergraphs. It also has been
implemented with slight variations, for instance to work on directed graphs, or to
enable overlapping powernodes for visualization of relations between non-disjoints
sets [3], or to enable an edge to be used multiple times for a faster search for

near-to-optimal compression [37].

1.3 Formal Concept Analysis (FCA)

This thesis addresses a formalization of Power Graph Analysis with Formal
Concept Analysis, a mathematical framework based on lattice theory, first defined
and developed by R. Wille and B. Ganter in the early 80s. FCA benefits from
solid foundations [45], and of many extensions such as n-ary concept analysis for
multidimensional datasets [72], fuzzy concepts and concepts in possibility theory
to handle vague and uncertain data [46, 35], use of pattern structures to handle
intervals, orders or graphs as attribute value [44], or relations between concepts
issued from other contexts with Relational Concept Analysis (RCA) [92].

It has been used for the formalization of a wide array of domains, such as
knowledge discovery, classification, and graph theory [101, 25], leading to numer-
ous applications in numerous fields such as software engineering [67], ontology
design [30], knowledge processing [89], or network analysis. This last domain is
of particular interest to us: for instance in bioinformatics, where FCA’s ternary
concepts were used to mine patterns in gene expression [63], and in social net-

works, where metrics to monitor communities and viral content are expressed in
the framework of FCA [11].

FCA and graph theory

The duality graph/formal context was explored in many works. For instance,
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to represent formal contexts by a graph where nodes correspond to the formal
concepts [65].

Regarding graph motifs, there is a one-to-one mapping between the formal
concepts issued from the formal context representation of a graph and its maximal
bicliques, as described in [73], motivating the design of algorithms based on the
concept lattice for the enumeration of these motifs [53, 1]. Fuzzy contexts are
contexts yielding formal concepts despite missing relations, an approach shown to
be similar to the search of quasi-bicliques [46], enabling for instance a more robust

detection of communities in noisy data.

1.3.1 An introduction to FCA most fundamental concepts

Formal Concept Analysis revolves around the notion of formal concept, a max-
imal set of objects and attributes so that objects all have the attributes, and all
attributes are held by the objects. Those formal concepts are issued from a formal
context, typically a binary table such as Table 1.1, where each row is an object,
and each column an attribute.

The formal context (O, A, R) describes a binary relation R C O x A over a set
of objects O and a set of attributes A. The derivation operator associates a set of

objects (resp. attributes) to a set of attributes (resp. objects), such that:

Definition 1.1. Derivation operator on R
Given a set of objects X (resp. attributes V), the set X’ (resp. Y”) is made of all
attributes (resp. objects) related to objects in X (resp. attributes in Y'):

X'={yeY|ve € X, r(x,y)} Y ={reX|Wy eV rxy} (11
As for derivation, the derivation operator can be combined multiple times:
X'={zeX |VyeX, rixz,y)} Y'={yeY NzeV’ r(z,y)} (1.2

For instance, in Table 1.1, we have {bat}' = { fly, skeleton,wings, viviparous}

and { fly, skeleton, viviparous}' = {wings}.

Formal concepts as fixed point pairs of subsets over O x A:
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breathes in | fly | beak | hands | skeleton | wings | lives in | viviparous | produces
water (a) |(b)| (¢) | (d) (e) (f) |water (g) (h) light (i)
bat (1) X X X X
eagle (2) X | % X X
monkey (3) X X X
parrot fish (4) X X X X
penguin (5) X X X X
shark (6) X X X
lantern fish (7) X X X X

Table 1.1 — Formal context Vertebrate, reproduced from [25].

Definition 1.2. Formal Concept In a formal context (O, A, R), a formal concept

is a pair (X,Y), such as:

X={ze€O|(x,y) eR VyeY} (1.3)
Y={yecAllx,y) € R Vx € X} (1.4)

Where X C O is the extent of the formal concept, and Y C A is its intent.

Formal concepts can also be defined using the derivation operator:

Definition 1.3. Formal Concept (with the derivation operator) In a formal
context (O, A, R), a formal concept is a pair (X,Y), X C O, Y C A, such that
X' =Y and Y’ = X.

Intuitively, a formal concept is a maximal association of objects and attributes,
for instance {1,2} x {b,e, f} in Table 1.1. The number of formal concepts in a
formal context can be exponential with respect to context size. Note that, in the
absence of an object holding all attributes or an attributes held by all objects,
both (all objects, D) and (0, all attributes) are valid concepts. Many extensions of
FCA extends the formal concept definition, in order to handle integers, intervals,
probability, graphs,... instead of a binary value in the formal context. This thesis

only relies on binary attributes.
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hbcdfeaig

Figure 1.4 — Visualization of the con- Figure 1.5 — Visualization of the con-
cept lattice of context in Table 1.1 cept lattice of context in Table 1.1
with extent and intent shown for each with reduced labelling.

concept.

Concept lattice

The set of formal concepts obtained from a formal context is partially orderable,

following this inclusion relation:

Definition 1.4. Order on Formal Concepts Let C7 = (O1, A1) and Cy = (Oq, A3)
be formal concepts. C; < Cy < O; C Oy and A; D A,

As any partially orderable collection, a line diagram can be drawn to visualize the
order, as in Figure 1.4, where each node is a formal concept issued from Table 1.1,
and two nodes/concepts are linked if directly next to each other in the order.
Since the derivation operators defines a Galois connection between the sets of
objects and attributes, and because each pair of formal concepts have a greatest
common subconcept (meet) and a least common subconcept (join), the resulting
line diagram is a Galois lattice. Because it is constituted of formal concepts, we

also call it the concept lattice.
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Object and attribute concepts

Object concepts and attribute concepts are two subsets of the formal concepts.
The object (resp. attribute) concept of an object o (resp. attribute a) is the con-
cept ({o}’,{0}) (resp. ({a}’,{a}")). This concept is unique for each object (resp.
attribute), and is the smallest (resp. largest) concept with o in its extent (resp. a
in its intent).

The most straightforward application of object and attribute concepts are the
reduced labelling of concept lattice, as shown in Figure 1.5, where only the object
concepts and attribute concepts are labelled with the objects and attributes asso-
ciated with them. Other applications are typically found in classification, where
the concept lattice is reduced to the object and attribute concepts, filtering out the
formal concepts that are not object or attribute concepts. This structure, called
AOC-poset, retains important structure in the data while being bounded in size by
O(|O] + |A]), because in the worst case each object and each attribute, as in Fig-
ure 1.5, possesses its own object or attribute formal concept. The AOC-poset was
used for software engineering [55] and data classification by [84]. It was used in
Relational Concept Analysis to avoid combinatorial explosion of the output [33].

There exists many efficient algorithms to compute the AOC-poset [13].

The last section of this chapter addresses an important specificity of our work,

the setting in which we have implemented and tested our approach.

1.4 Answer Set Programming

1.4.1 Principles

The following presentation of ASP is adapted from [20]. For a language ref-
erence or an in-depth dive into the language, the reader is redirected to [47] and
[76].

ASP is a form of purely declarative programming oriented towards the resolu-
tion of combinatorial problems [76]. It has been successfully used for knowledge
representation, problem solving, automated reasoning, and search and optimiza-

tion. Unlike Prolog, ASP handles cross-references of rules, enabling the writing of
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code much closer to the specification.

An ASP program consists of Prolog-like rules h :- by, ..., by, not b1, ...,
not b, where each b; and h are literals and not stands for default negation. Mainly,
each literal is a predicate whose arguments can be constant atoms or variables
over a finite domain. Constants start with a lowercase letter, variables start with
an uppercase letter or an underscore (don’t care variables). The rule states that
the head h is proved to be true (h is in an answer set) if the body of the rule is
satisfied, i.e. by, ..., b, are true and one cannot prove that b,,,1,...,0b, are true.
Note that the result is independent of the ordering of rules or of the ordering of
literals in their body, in contrast with Prolog. An ASP solver can compute one,
several, or all the answer sets (stable models) that are solutions of the encoded
problem. If the body is empty, h is a fact while an empty head specifies an integrity
constraint. Together with model minimality, interpreting the program rules this
way provides the stable model semantics (see [52] for details). In the head part, A
choice rule of the form {p(X) : ¢(X)} will generate p(X) as the powerset of ¢(X)
for all values of X. In the body part, {p(_)} will count the number of atom p with
one parameter, and N = {h} evaluates N to the cardinal of the set of h. In the
body part, p(X) : ¢(X) holds if for all X, if ¢(X) holds, then p(X) holds. Finally,
lines starting by % are comments. In practice, several syntactical extensions to the
language that are not interesting for this paper are available. In the rest of the
chapter, multiple examples of ASP will be presented, which will allow the reader
to familiarize himself with these few syntax elements.

For all ASP-related work, we used the Potassco system (Potsdam Answer Set
Solving Collection), developed in Potsdam University [48], that proposes an effi-
cient implementation of ASP. ASP processing implies two steps, grounding and
solving. From a set of ASP rules, the grounder generates a propositional program,
replacing variables by their possible values. The solver is in charge of producing
the minimum stable models (answer sets) of the propositional program. Of course,
a dedicated algorithm for a specific problem will be generally more efficient than
its equivalent compact ASP encoding. However, ASP is useful for the design of
prototypes. It is an attractive alternative to standard imperative languages that
enables to produce quickly safe and reasonably efficient developments.

An overview of ASP applications is presented in section 1.4.2, The main lan-
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guage features are then introduced from the FCA point of view in section 1.5.

1.4.2 Applications of ASP

ASP has already been applied to FCA to accomplish expressive query languages
for formal contexts [58], later extended to n-adic FCA and improved with addi-
tional membership constraints, in order to handle large context exploration [95].
The perspectives of [95] included some design proposal about a graphical user
interface allowing user to constrain the search for concepts and obtaining the fi-
nal selected concept. We implemented such a program!, with the ASP backend
proposed by [95].

ASP has also been used for procedural content generation, i.e. the generation
of large instances from comparatively small numbers of examples and constraints,
for instance maze generation [79], or map generation for real-time strategy game
were resources and player bases has to be placed fairly, while taking accounts
of terrain features such as cliffs and roads[102]. ASP is also the representation
and reasoning language of an automatic composition system, Anton, extracting
melody and harmony from input music, and generating new composition from
the derived set of rules [15]. Wave-Collapse Function (WCF) is a quantum theory
derived algorithm taking as input a pattern, and reproducing it on larger scales
with variations, only ensuring local similarity between input and output. It has
many applications, including level generation for games, creation of 3D worlds,
and text generation. WCF has been implemented using ASP, redefining WFC as
a constraint-solving problem [62]. It was later improved by the incorporation of
non-local constraints, such as dependencies or distances, in order to achieve more

complete procedural content generation [97, 103].

ASP has been naturally applied to various artificial intelligence tasks, notably
in robotics and planning [40]. For instance, ASP was used to implement a strat-
egy for solving the game Angry Birds [24] using the DLVHEX system [38], to

encode realistic instances of multi-agent path-finding, typically automated ware-

1. Available at https://github.com/Aluriak/navicept
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house management, where a fleet of robots with distinct targets must maneuver

in a known layout of hallway [81] and order-picking system [98, 50].

1.5 An introduction to ASP for people working
with FCA

This section presents examples of ASP encodings related to various Formal
Concept Analysis algorithms. It acts both as an ASP introduction, and as a primer
for chapter 5, in which an environment is proposed for a more complete exploration

of FCA structures (iceberg lattices, for instance).

ASP Syntax Point. An ASP encoding is made of rules ended by a dot. The
simplest being the declaration of truth value of an atom, such as rel(1,a). A set
of terms arguments of a functional symbol like rel implicitly defines a domain
of values for it. Atoms can be true under conditions, e.g. a :- b indicating that
atom a is true if b is true. For instance, the encoding b. a :- b. has one solution
with two true atoms a and b. Mathematical variables are identifiers whose first
letter is upper case. Each variable must have a domain and using a variable in an
expression is a shortcut for a set of expressions where each variable is replaced by
all possible values in its domain. Hence, each variable is universally quantified on
a finite domain. For instance, a(X) :- b(X) implies that a(X) holds for all X that
are arguments of b atoms. Conjunctions are written with a semicolon, such as a (X)
:= b(X) ; X<12, that restrict X to be an argument of b/1 and less than 12. Note
that some built-in operators can act on domains, such as #max, which return the
maximum value of a domain. Example: a(X) :- b(X) ; X<#max{V:val(V)}. The
combinations of rules and atoms constitute an ASP encoding that, once compiled
in propositional formulas by a grounder, may be solved by a dedicated prover that
provides one or all logical models of the set of formulas. Each model is therefore a

set of atoms describing a fixed point of the encoding.
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a|/blc|dle|f|g|h]i 1irel(1,b). rel(l,e). rel(1,f). rel(1,h).
1 X X | X X 2lrel(2,b). rel(2,c). rel(2,e). rel(2,f).
2 x| % x| % slrel(3,d). rel(3,e). rel(3,h).
3 < | < < alrel(4,a). rel(4d,c). rel(4d,e). rel(4,g).

sirel(5,c). rel(5,e). rel(5,f rel(5,g).

41 X X X 6 re1267a§. relEG,eg. relEG,gg ( :
5 X XXX 7irel(7,a). rel(7,e). rel(7,g). rel(7,i).
6] % X X
T x x x (b) ASP encoding of the formal context, using
(a) Formal context Vertebrate, rel/2 atoms indicating when an object is in re-
reproduced from {25] lation with an attribute.

Figure 1.6 — Running example for the ASP introduction.

1.5.1 Running example data

Figure 1.6 provides the formal context used in this section as a running exam-
ple, along its ASP representation to be used with the encodings of this section,
(subfigure 1.6b). For reference, that formal context is taken from [25], Table 1.1,
Vertebrate context. Sixteen formal concepts, including supremum and infimum, are
issued from it.

In the ASP representation, predicate rel/2 (of name rel and arity 2) encodes
related elements in the formal context. For instance, atom rel(1,a) implies that
object 1 holds attribute a. Together with ASP encodings seen later, this constitutes

a testable working example.

1.5.2 Formal concept mining: Next Closure algorithm

There are many algorithms for mining formal concepts from a formal context,
one of them being Next Closure, first detailed in [45] and efficiently revisited in [16].
We chose that algorithm both for its historical importance and its simplicity.

An implementation of Next Closure in ASP is proposed in Code 1.1, and com-
mented right away. Note that ASP being a purely declarative language, the order
in which rules are written/fed to the solver does not have any impact on the out-
put. In this respect it differs substantially from the algorithm or from other logic
programming approaches like Prolog that use a procedural solving approach based

on a search tree. ASP uses instead a heavily customizable but non-predictible
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heuristic system, that enables in that regard much more powerful expression of
mathematical relations, and as a main feature cannot be stuck in infinite recur-
sions.

For reference and help to the reader to understand the ASP encoding, algo-

rithm 1 shows the Next Closure algorithm, reproduced from [25].

Algorithm 1 The Next Closure algorithm for computing the set of concepts from
a formal context, reproduced from Figure 2.3 of [25].
Require: Context (G, M, I)
Ensure: Computation of formal concepts
1. C+ {(M M)}
currSubset <— {max{g € G}}
nextObj < max{g € G}
while currSubset # G do
if there is no g € currSubset” \ currSubset such that g < nextObj
then
C < C U {currSubset”, currSubset'}
nextObj <— max{g € G\ currSubset"}
currSubset < currSubset”
else
nextObj <— max{g € G \ currSubset such that g < max(currSubset)}
currSubset < currSubset U {nextObj}
13:  currSubset < {g € currSubset such that nextObj > g}
14: end while

— = =
Mo

Comments in ASP are marked with %, as shown in lines 1-5. Line 8 is a solver
(clingo) internal feature, enabling us to work in an incremental mode. In this
mode, the program is made of three parts: the initial part, the guess part (lines
20-40), and the check part (lines 43 and 44). The guess and check parts depend of
a constant k£ starting at 1 and incremented by 1 each time the check part fails. As
it is not the subject of this introduction to ASP, it is intentionally glanced over.
See [49] for a more in-depth tutorial of the incremental capabilities of the clingo

solver.

The initialization step of the algorithm. Line 8 is a rule extracting from
the input rel/2 atoms the objects. The rule object(G) :- rel(G,_) reads atom

object(G) is true if G is the first element of a relation atom. Two types of variables
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% Implementation of Next Closure algorithm ,

% wusing the incremental mode of the clingo solver.

% INPUT: rel(X,Y): object X is in relation with attribute Y.
% OUTPUT: ext(N,X), int(N,Y): concept N has X in its extent
% and Y in its intent.

#include <incmode>.

object (G) :— rel(G,_).
attribute™) :— rel(_M).

© 0 9 s W N

— e
=]

% Initially , produce the concept whose intent is the whole set of attributes.
int (0 M) :— attributeM).
3lext (0,G) :— object(G) ; rel(GM): int (0 M).

= =R
=W N

% Initialize the first and next step.
current (0 ,Max) :— Max = #max{O: object (O) }.
next (0 ,Max) :— Max = #max{O: object (O) }.

o e e
© ® N O W«

#program step (k).

% Produce the extent base.

current (k,X) :— not empty(k—1) ; derive2(k—1X) ; next(k,T) ; T>=X.
current (k,X) :— empty (k—1) ; current(k—1X) ; next(k,T) ; T>=X.
current (k,X) :— next(k,X). % add the next object

NONNNN
= W N = O

25
26| % Change of state.
271 next (k,T) :— not empty(k—1) ; T=#max{O:object(O), not derive2(k—-1,0)}.

2s| next (k,T) :— empty (k—1) ; MaxCurrent = #max{P: current (k—1,P)} ;
29 T = #max{0: object (O), not current(k—1,0), O<MaxCurrent }.
30

31/% Derivation operator.

s2| derived (k,Y) :— attribute(Y) ; rel(X)Y): current(k,X).

33| derive2 (k,X) :— object(X) ; rel(X,)Y): derived (k,Y).

34
35| % Newly derived objects must be greater than the next object.
ss|empty (k) :— next(k,T) ; derive2(k,X) ; not current(k,X) ; X<T.
37
38| % Yield the concept at step k.

39| ext (k,0) :— not empty(k) ; derive2(k,
w|int (k,A) :— not empty(k) ; derived(k
41
42| #program check (k).

43| :— query(k), not ext(k,0) ; object(O).
44
15| % Outputs.

16| #show ext /2. #show int /2.

0).
A).

)

Encoding 1.1 — ASP implementation of Next Closure Algorithm
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are used here: GG is a variable in the mathematical sense, denoting here the first
argument of the relation, and the argument of object. The underscore is a don’t
care variable denoting the second argument of rel/2. Each occurrence of G must
have the same value but each occurrence of the don’t care variable may have any
value. Line 9 does the same for attributes. Note that these lines are only here
for readability: next rules will make use of it, but there is no difference in using
rel(G,_) instead of object(G).

Line 12 defines the intent of the O-th concept as the set of all attributes. This
is a direct application of the very first line in Algorithm 1. The next line takes care
of the extent of the concept. ext(0,G) :- object(G) ; rel(G,M): int(0,M) is
a rule with a universal quantification reading G belong to the extent of the 0-th
concept if G is an object, and G is in relation with M for all M in the intent of the
first concept. Note the use of : (colon) to indicate the for all quantifier, whereas
; (semicolon) stands for the and operator.

Together with the first concept, the initial values of the current subset and
the next object to consider have to be computed (lines 2 and 3 of Algorithm 1,
and lines 16 and 17 in the program). currSubset is a set of values, used as a
primer to generate the intent, and in turn the extent and the concept ; whereas
nextOby is a single object, used to populate currSubset at each step. Both will
be modified during the algorithm execution. In ASP, no such things as collections
exists, only atoms: at a given step k, there will be one and only one next/2 atom
(corresponding to the nextObj value), whereas current/2 atoms may be many,
one for each object present in the currSubset collection.

The function #max is acting on a set, forming a so-called aggregated value that
can be compared to other values. Here, the function retains the maximal element
of the set of objects O argument of object/1. It has to be equal to variable Max.
Therefore, in line 16, rule current (0,Max) :- Max = #max{0:object(0)} reads
as Max is in the current set at step 0 if it equals the maximal element O found
among the set of object(O) atoms.

Variable nextObj is called next in the ASP encoding for brievity.

About Programs. Line 20, #program step(k). indicates that the following
lines, up until the next program line (line 43), belong to the step(k) program.
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This program, in the incremental setup, contains the new atoms specific to the
k-th step. In that case, k is a parameter starting at 1, and going to whatever is the
last step, as decided by the check (k) program we will explain later. In the absence
of program indication, all atoms belong to program base. Both the initialization
program (lines 8-17) and the input rel/2 atoms belong to base, and are grounded
at start, only one time. It can be understood as the step 0.

The position where a #program metaprogramming directive is written is im-
portant, since it acts on the following lines, up until the next program directive.

The division of encoding in programs enables the solver to ground and solve
atoms of a specific program, one step at a time and with a specific value for
each argument, instead of all of them in one go. The incremental setup is making
advantage of this feature to divide the program into initialization, iteration, and

stop condition.

The evolution of currSubset. Lines 22-24 are updating the value of current
based on the previous iteration. A rule such as

"current (k,X) :- not empty(k-1); derive2(k-1,X); next(k,T); T>=X"

reads X belongs to current at step k if (1) previous step wasn’t "empty’, (2) X
belongs to the extent of previous concept, (3) T is the next object, and (4) T is
greater or equal to X . The definition of empty/1, next/2 and derive2 will be given
later. All these conditions are the translation of lines 9 and 13 of Algorithm 1, i.e.
the transformation of currSubset when a concept has been yielded. Together with
line 24, it implements the sequence of lines 9, 12 and 13 of Algorithm 1 defining
currSubset at the next step.

Line 23 implements the exact same treatment, but when no concept has been
yielded, i.e. line 13 of Algorithm 1. The difference lies in the use of current/2
instead of derive2, because when no concept has been yielded, currSubset is not
replaced by any concept extent, as per line 9 of Algorithm 1 ; the else clause (line
10) does not modifie the currSubset collection. Line 24 is the equivalent of line 12

in Algorithm 1: adding the next object to the current pool.

The evolution of nextObj. Just as currSubset, nextObj is modified at each

step. Lines 27-29 of the ASP encoding are therefore taking care of lines 8 and 11
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of Algorithm 1.
'next (k,T) :- not empty(k-1); T=#max{0:object(0), not derive2(k-1,0)}" reads
the nextOby T at step k, if no concept has been yielded at previous step, equals
to the mazimal object O that does not belong to the extent of the yielded concept.
As in line 22, the extent of previously yielded concept is given by derive2. This
line implements the line 8 of Algorithm 1. Note the use of the , (comma) as an
and operator of higher priority than the for all quantifier. In this case, the two
conditions apply to the same value O. The use of a semicolon would have applied
#max on two sets of objects.

Lines 28 and 29 is the translation of the 11-th line of Algorithm 1. It reads "the
nextOby T at step k, if no concept has been yielded at previous step, equals the
mazximal object O that does not belong to previous step’s currSubset, nor is smaller

than MaxCurrent, the maximal element of the previous step’s currSubset".

Derivation operator. At some point, currSubset’ and currSubset” have to be
computed. This is the role of lines 32-33. Line 32, derived(k,Y) :- attribute(Y);
rel(X,Y): current(k,X), reads Y is result of the derivation at step k if (1) it
is an attribute, (2) it is in relation with object X, for any X in currSubset. Line
33, derive2(k,X) :- object(X) ; rel(X,Y): derived(k,Y), reads X is dou-
bly derived at step k if (1) it is an object, (2) it is connected to all attributes Y

derived from currSubset.

Deciding if a formal concept is to be yield. Line 36, empty(k) :- next(k,T);
derive2(k,X) ; not current(k,X) ; X<T, reads step k does not correspond to
a formal concept if, T' being the nextOby, an object X found in the extent but not
in currSubset is smaller than T. This is the negation of the condition in line 5 of
Algorithm 1. The presence of empty/1 atom is the main indication for the next

step to decide the value of currSubset and nextObj.

Yielding the formal concept. Lines 39 and 40 are defining respectively the
extent and the intent of the yielded concept. The two rules are quite simple: they
only yield ext/2 and int/2 atoms if empty/1 is absent, based on the derivation
defined in lines 32-33.
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Stopping the iterative process and showing the results. Line 43, similarly
to line 20, declares that following rules belong to program check(k), k being the
step number. While the step (k) program role was to define the rules applied at
each step to compute the formal concepts, this program’s role is basically to stop
the process when needed. In our case, Algorithm 1 has a very precise exit condition
in line 4: currSubset contains all the objects, meaning that the infimum has been
yielded during the previous loop.

This condition is implemented in line 44, as an integrity constraint, i.e. a rule
that invalidates the model whenever it holds. More precisely, :- query(k); not
ext(k,0); object(0) reads the model is invalid if, at step k, an object O does
not belong to the extent of the current concept. The condition query (k) is used
to ensure that the condition is only tested at step k query(k), by convention of
clingo’s incremental mode, only holds at the current step. In default incremental
mode as used here, clingo will ground and solve each step, and stop as soon as a
valid model is found. With this constraint, all models found during the concept
search are invalidated, up until the last. At this point, the solver stops the process,
and outputs all the atoms found as true during the search for the satisfiable model.

In our case, those atoms include, among others, ext/2 and int/2 defined in
lines 39 and 40. In order to keep the output simple, we specify to the solver to
only provide us with these atoms, with the metaprogramming directive #show, as

used in lines 48.

Results obtained with data in Figure 1.6. Together with the rel/2 atoms,
this encoding will yield the ext/2 and int/2 atoms describing the formal con-
cepts, including for instance the 20-th step production ext(20,5) ext(20,2)
int(20,c) int(20,f) int(20,e), which can be written for humans as {2,5} x
{c,e, f}. The complete output of the program is:

int(0,b) int(0,e) int(0,f) int(0,h) int(0,c) int(0,d) int(0,a) int(0,g) int(0,i)
ext(1,7) int(1,i) int(1l,g) int(1l,a) int(1l,e) ext(3,5) int(3,g) int(3,c) int(3,f)
int(3,e) ext(6,4) int(6,g) int(6,a) int(6,c) int(6,e) ext(9,5) ext(9,4) int(9,g)
int(9,c) int(9,e) ext(12,3) int(12,d) int(12,h) int(12,e) ext(17,2) int(17,c)
int(17,£f) int(17,e) int(17,b) ext(20,5) ext(20,2) int(20,c) int(20,f) int(20,e)
ext (23,5) ext(23,4) ext(23,2) int(23,c) int(23,e) ext(27,1) int(27,h) int(27,f)
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int(27,e) int(27,b) ext(32,3) ext(32,1) int(32,h) int(32,e) ext(37,2) ext(37,1)
int(37,f) int(37,e) int(37,b) ext(40,5) ext(40,2) ext(40,1) int(40,f) int(40,e)
ext(44,7) ext(44,6) ext(44,5) ext(44,4) ext(44,3) ext(44,2) ext(44,1) int(44,e)
ext(8,7) ext(8,6) ext(8,4) int(8,g) int(8,a) int(8,e) ext(11,7) ext(11,6)
ext(11,5) ext(11,4) int(11l,g) int(1l,e).

Its standard representation is:
0 x {a,b,c,d,e, f,g,h,i}, {7} x {a,e,g,i}, {6} x {c,e, f,q}, {4} x {a,c,e, g},
{4,6,7} x {a,e, g}, {4,5} x {c,e,g}, {4,5,6,7} x {e, g}, {3} x {d,e, h},
{2} x{b,c,e, [}, {2,5} x{c,e, f}, {2,4,5} x {c,e}, {1} x {b,e, f,h},
{1,3} x {e,h}, {1,2} x {b,e, f}, {1,2,5} x {e, f}, {1,2,3,4,5,6,7} x {e}.

Note the exact reproduction of Next Closure behavior, notably the order of

generation mirroring the lexicographical order used by Next Closure.

Conclusion over the ASP code study. At this stage, the reader has been
(1) learning the most important features of ASP thanks to a small ASP encoding,
and (2) likely convinced that ASP is not better suited to implement algorithms,
than imperative languages. This question is addressed in the next section, where
the declarative power of ASP is used to specify the concept mining task, instead

of trying to mimic an exact algorithm behavior.

1.5.3 Formal concept mining: declarative algorithm

The previous section described the ASP implementation of formal concept min-
ing, in the specific case of Next Closure algorithm. However, the expressivity of
ASP enables us to write the formal concept mining in a simpler declarative manner.

In the reproduced Next-Closure approach, the complexity came from mimicking
the procedural approach, for which ASP is not suited for. Whereas, in declarative
programming, one should instead describe the specification of the problem and its
solutions (what instead of how to compute). This is exactly what is done in the

following code, which is a direct translation of the equations of definition 1.2:

1lext(0) :— rel(O,_) ; rel(O,A): int(A).
2lint (A) :— rel(_,A) ; rel(OA): ext(O).
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First line stands for O belong to the extent if O is an object, and O is in relation
with attribute A for all A in the intent. The second line provides the symmetric
treatment for the intent: A belong to the intent if A is an attribute, and A is in
relation with object O for all O in the extent.

These two lines are enough for the solver to find all the formal concepts, since
a fixed point of this program is a maximal set of objects and a maximal set of
attributes in relation, i.e. a formal concept. Each fixed point is a solution model
found by the solver. For instance, this program together with ASP encoding of
Figure 1.6 leads to 16 models, each containing atoms describing a formal concept.
Because of the non-predictability of the system exact behavior, one shouldn’t ex-
pect the solver to yield formal concepts in the same order as in the Next Closure
algorithm, nor in any particular order.

Note that ASP allows to stay very close to the original specification: in other
logic programming approaches such as Prolog, this writing is not possible. A Pro-
log program would end up in an infinite loop, and one should devise a practical

algorithm involving recursion and cuts to obtain the same results as ASP.

1.5.4 Comparing the implementations

Although it is possible to write a very compact code in ASP, one may wonder if
it remains computationally tractable. We have compared the two ASP implemen-
tations of formal concept search through their running time, according to context
size and density. The results are shown in figures 1.7, 1.8, 1.9 and 1.10.

The implementations are referred to as Next Closure, the ASP implementation
explained in section 1.5.2, and Two-Liner, explained in section 1.5.3.

Figure 1.7 provides the time needed by each method to complete the full formal
concept search, as a function of the context size. The number of concepts in the
context is given for reference. Two different context densities are tested: 10% and
40%. Two-Liner clearly scales better than Next Closure: for given context sizes (8
to 21 objects), time grows exponentially for the latter, while it seems to remain
constant for Two-Liner. Next Closure running time appears to be very dependent
of the amount of concepts.

A closer look at Two-Liner behaviour shows that the same dependency on the
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number of concepts exists, although at a much lower level (shown in Figure 1.8)

Another way to look at these data is to compute the average number of concepts
found per second. The results as a function of context size are shown in Figure 1.9.
As expected, Two-Liner outputs concepts quicker than Next Closure. However,
as shown in Figure 1.10, when a context of density 0.4 reaches a size of 30, the
performance of Two-Liner degrades. Peak performance appears later and smoother
for lower density.

Compared to state of the art algorithms yielding millions of concept per second
on vast contexts, the ASP approach is costly. For a real comparison, consider
the benchmark proposed in Table 3 of [7], where the internet ads dataset (3279
objects and 1565 attributes) [34] is treated in less than a second by all different
implementations of the Close-By-One algorithm. By running the fourth version of
In-Close on our dataset, we got the full concept set in 0.1s. Our implementation of
Next Closure in Python took 1 hour to yield around 25% of the concepts, and our
implementation of Next Closure in ASP appears at least 700 times slower. However,
using Two-Liner, it took about 73 seconds to get the full concept set. This indicates
that a straightforward ASP encoding, while less efficient than carefully designed
programs, remains competitive compared to early approaches in FCA.

Note that the enumeration of models needs two steps: the expansion of the
encoding to a set of formulas (grounding), and the search for fixed points (solving).
For the internet ads dataset, the grounding of Two-Liner takes more than 75% of
the total time and 160 Mo of formulas. The remaining 20 seconds are used by the
solver to enumerate the formal concepts from the formulas. This indicates that,
even with parallelization of the solving part, Two-Liner does not scale, since it is
first limited by the exponentially growing amount of data. For the Next Closure
implementation in ASP, the incremental mode requires each step to be grounded
then solved individually, and the management costs of this mode largely exceeds
the gain of quicker grounding steps.

The real interest of ASP is in a research context to easily design and tests new
ideas in FCA. In other words, ASP is well-suited to encode directly mathematical
relations, and takes into account known properties on this formal setting.

From one side, this allows to check it on non trivial examples. On the other

side, the associated algorithmic complexity may be difficult to estimate since it
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{ ext(O): rel(O,_) }.
int(A) :— rel(_,A) ;
#show int /1.

rel(O,A): ext(0O).

Encoding 1.2 — Mining intents with ASP

depends on two complex programs, the grounder and the solver.

1.5.5 Optimizations of encodings

It is also possible to experiment optimizations to handle larger data. In the
case of Two-Liner, the grounding is the costliest step. For instance, let us define
the ASP encoding 1.2 that enumerates the intents.

The first line is enumerating all subsets of the set of objects using a cardinality
expression. The second line is computing the intent associated with the set of
chosen objects. This enumeration of intents is however not unique, since subsets of
objects are not necessarily maximal extent. It is however possible to hint the solver
that only distinct solutions must be returned. Using the command-line option
-project=show, the clingo solver collapses together all models showing the same
atoms, as defined in int/1 atoms in the third line.

Solving that program with the internet ads dataset takes 48 seconds, while the
grounding only takes around 24 seconds and yield 82 Mo of formulas. Although
it only computes the intent sets, it is easy to ground the int/1 with the extent
generation (first of the Two-Liner) to get the full concepts, or use a dedicated
program. In the end, the concepts are obtained using less memory, shifting the

time/memory tradeoff compared to the Two-Liner implementation.

1.5.6 A second example: a first approach to Relational
Concept Analysis

Relational Concept Analysis is an extension of Formal Concept Analysis which

treats multi-relational datasets, i.e. with different contexts and relations between

the objects of these contexts [92].
The input is a Relational Context Family (K, R), where K is a set of formal
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Figure 1.7 — Comparison of the ASP Next Closure and Two-Liner implementations
for the concept search. Measure is overall time needed by the solver to enumerate
all concepts from random formal contexts of different size. The black lines show
the number of formal concept in the contexts. Left: the context has a density of
0.1. Right: the context has a density of 0.4.
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Figure 1.8 — Efficiency of the ASP Two-Liner implementation for the concept
search, depending on context size and density. Measure is overall time needed by
the solver to enumerate all concepts.
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Figure 1.9 — Comparison of the rate of concepts per second, measured for the
two ASP implementations of concept search accross different context sizes with a
density of 0.4. Next Closure appears to get a very low output compared to Two-
Liner. The efficiency of Two-Liner improving with context size is an artifact due
to small context sizes, as shown in Figure 1.10.
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% Define constants min and max used in lasts operators.

#const min=3.

#const max=42.

% Universal scaling:

rso (X,C):— object (X); concept(C); ext(C,V):rel(X,V).

% Strict Universal scaling:

rso (X,C):— object(X); concept(C); ext(C,V):rel(X,V) ; rel(X, ).

% Ezistential scaling:

rso (X,C):— object (X); concept(C); rel(X,V) ; ext(C,V).

% Cardinality restriction (min) scaling:

rso (X,C):— object(X); concept(C); min{rel (X,_)}.

% Cardinality restriction (maz) scaling:

rso (X,C):— object(X); concept(C); {rel(X,_)}max.

% Cardinality restriction (min & maz) scaling:

rso (X,C):— object(X); concept(C); min{rel (X,_)}max.

% Qualified Cardinality restriction (min) scaling:

rso (X,C):— object(X); concept(C); ext(C,V):rel(X,V); min{rel(X,_)}.
% Qualified Cardinality restriction (maz) scaling:

rso (X,C):— object(X); concept(C); ext(C,V):rel(X,V); {rel(X,_)}max.
% Qualified Cardinality restriction (min & maz) scaling

rso (X,C):— object(X); concept(C); ext(C,V):rel(X,V); min{rel (X, )}max.

Encoding 1.3 — ASP encoding of various Scaling Operators in the context of RCA

contexts, each one describing a binary relation between a set of objects and a set of
attributes, and R is a set of relations, i.e. a binary relation between the objects of
a context K; and the objects of a context K. The relational concepts are defined
and processed iteratively. Formal contexts are pair-wise distinct regarding their
objects, i.e. to a set of objects corresponds one and only one context at each step
of the process.

At each step of the process, each formal context K; € K is scaled, i.e. is
augmented with additional attributes indicating relations of various kinds with
other formal contexts. The kind of relations depends of the scaling operator used.

The final output is, for each formal context K; € K, a relational concept lattice
L; composed of the initial concept lattice, expanded with additional concepts and

attributes. It preserves the initial lattice as a sub-order [92].

Scaling operators. For this introduction, we will present in encoding 1.3 the
ASP implementation of the most common scaling operators, presented in Table 7

of [92] along their equivalent constraint on the incidence matrix of the relational
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extension context I*. Each of them, and combinations thereof, are reproduced on
odd lines, except lines 1-3 that introduces min and max as constants in the ASP
program, with their default values. Some operators relying on cardinality will make
use of them.

Predicate rso/2 is used to encode the Result of the Scaling Operator, applied
on a context K = (G, M, I) and a relation rel/2, where G is the domain of r, G,
the range of r, and K, = (G, M,., I,.) is another context from which the concepts
C, are derived. Thus, predicate object/1 encodes the set of objects G on which
relations are added. Predicate concept/1 encodes the identifiers of concepts C,., i.e.
the new attributes in the relational scaling of K. The remaining conditions in each
rule implement the scaling operator constraints on I*. For instance the universal
scaling operator, where the object image (X ) must be completely included in
the extent of C' in order for X to get the relational attribute V r : C. This is
implemented with the condition ext(C,V): rel(X,V) reading "V must belong
to the extent of C' for all V' in relation with X". Note that the condition holds
even if r(X) is empty, hence linking X to C despite the absence of any common
object. To avoid that behavior, the universal strict operator was introduced in [92],
requiring that r(X) # (). In ASP, it is implemented by ensuring the existence of
an atom rel(X, ), encoding a relation between X and anything. The complete
implementation of the universal strict operator is found in line 7.

The remaining operators (lines 11-21) are introducing conditions on the cardi-
nality of 7(X). In ASP, this is implemented by using a cardinality expression N {
A } M, which ensures that the number of atoms matched by A is bounded by N and
M (included). If omitted, the default lower and upper bounds are 0 and infinity.
Hence, n { rel(X,_ ) } reads "X is linked to at least n attributes", thus imple-
menting the cardinality restriction (min) scaling. The other operators are setting
an upper bound, and in case of the qualified cardinality restriction (min & max)
scaling, ensuring both that r(X) C Fzt(C) and n < |r(X)| < m.

Fixed-point and incremental algorithms. As shown in the previous sec-
tions where Next Closure algorithm and definition-derived implementations were
proposed and compared, ASP is more suited to fixed point formulations rather

than explicit descriptions of an enumeration method. To our knowledge, the com-
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plete relational extension of a RCF has only been defined in an iterative way. No
elegant encoding like the Two-Liner implementation can be devised. Moreover, the
incremental mode of the clingo solver is not powerful enough for the computation
of the complete relational extension of an RCF: the concept search is a task to be
solved for each range of a relation, at each step, and this would require an external

call to a program to handle it properly.

1.5.7 Continuing the implementations for FCA

This section addressed the ASP encoding of formal and relational concept
enumeration. Those two examples show the strengths and limits of ASP for this
task.

Many other objects of the Formal Concept Analysis framework can be encoded
in Answer Set Programming, and this will be further discussed in chapter 5, which
makes use of FCA to introduce an ASP-based drawing engine that incidentally

happens to be a tour of some of FCA most popular objects.

1.6 Thesis contributions and plan

Contributions

First, we formulate and study Power Graph Analysis in the framework of Formal
Concept Analysis. The goal is to be able to benefit from the advances in this domain
to get a better view of the structure of the search space, suggesting variants and
solving approaches, and conversely, to offer a playground for new studies in FCA.

Second, we propose an FCA-based generalisation of Power Graph Analysis
relying on a single, more general graph motif. This extension to formal concepts,
called triplet concepts, allows to manage together cliques and bicliques.

Third, we state the Formal Concept Analysis modeling problem in a logical
setting, Answer Set Programming (ASP). The first proposition of ASP program
for FCA seems due to CV Damadsio and published only in [58], where the focus is on
developing expressive query languages for formal contexts. A more recent study
extends the search for n-adic FCA [95] and is focused on the issue of filtering

large concept spaces by checking additional membership queries. In our case, the
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particular task of graph compression needs heavier calculations and a specific code
since the whole concept space needs to be explored.

Fourth, we have tested our code on several real biological networks, and ex-
plored the datasets in the light of the triplet concepts.

Finally, we present Biseau, a general-purpose ASP environment for graph the-

ory, that we apply on FCA in order to illustrate the capabilities of the software.

Plan

Chapter 2 introduces the link between Power Graph Analysis and Formal Con-
cept Analysis, and formulates the limits of this approach, one of them being the
concurrent treatments of cliques and bicliques. Chapter 3 exposes a new theoreti-
cal concept enabling to handle the two motifs as a special case of a more general
motif, namely the overlapping biclique. Chapter 4 is a tour of biological data
applications specifically realized in that thesis. Chapter 5 presents various ASP
encodings of FCA objects and extensions as an excuse to demonstrate the capabil-
ities of Biseau, an ASP framework targeting the specification of graphs structures.

Finally, chapter 6 concludes, and offers some perspectives to conclude this work.
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CHAPTER 2

Power(Graph compression with

formal concepts

Mathematics, in an earlier view, is the science of space and
quantity; in a later view, it is the science of pattern and

deductive structure.

PuaiLip J. DAvis, REUBEN HERSH

The mathematical experience (1981)

The previous chapter presented Formal Concept Analysis and Power Graph
Analysis. This chapter aims at formalizing the search space of Power Graph Anal-

ysis using Formal Concept Analysis.

Royer et al. introduced in 2008 Power Graph Analysis [94], an efficient software
using classes of nodes with similar properties and classes of edges linking node
classes to achieve a lossless graph compression. The contributions of this chapter
are twofold. First, we formulate and study this issue in the framework of Formal
Concept Analysis. Our aim is to better understand the search space explored by
this program. This leads to a generalized view of the initial problem offering new
variants and solving approaches. Second, we state the FCA modeling problem in
a logical setting, Answer Set programming, which allows highly modular develop-
ments and provides a great flexibility for explaining various specification of concept

search spaces.

This chapter is organized as follows. First the graph contexts objects are defined

in section 2.1, and section 2.2 uses them to encode Power Graph motif search in
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the graph. FCA-based Power Graph Analysis is then presented in section 2.3, and
a representation of its search space and associated heuristics in section 2.4. Two
examples of powergraph compression and search space exploration are detailed
in section 2.5. Then, using concept lattices, section 2.6 shows how to simplify the
search space.

Section 2.7 details some optimizations of our Power Graph Analysis imple-
mentation regarding the compression of specific motifs and overall memory and
time management. Then, section 2.8 addresses the limits of greedy approaches
for compression, showing that some kind of complex motifs cannot be efficiently
compressed as a Power Graph using only maximal motifs.

The chapter finishes in section 2.9 with the introduction of the need for unifi-
cation of Power Graph motifs in the context of graph context-based compression,

thus motivating the work on triplet concepts presented in chapter 3.

2.1 Graph contexts to encode undirected graphs

A graph context is a formal context (X,Y,I) where the set of objects X and
attributes Y are subsets of vertices in an undirected graph G = (V, E) and the
binary relation I C X x Y represents its edges E. Usually, formal contexts are
defined on disjointed sets X and Y. In graph contexts objects and attributes
represent the same kind of elements and can intersect. For an undirected graph,
the graph context is symmetric.

G. Chiaselotti and T. Gentile [27] have proposed to take X =Y =V for a
graph context. This corresponds to a standard representation of a graph by its
(symmetrical) adjacency matrix. Note however that for a same graph, there may
exist several interesting smaller representations trying to minimize the intersection
of X and Y. For instance, a bipartite graph can be defined by a bipartition of
disjointed sets X and Y. This can be important from a practical perspective since
a number of treatments depend on the size of the matrix.

The authors have shown that for simple undirected graphs (no loop, no multiple
edges), the standard application of FCA leads to a coincident derivation operator
for object and attributes: the derivative of a subset of vertices X in terms of graph

is the neighborhood intersection of all its elements. It is equivalently the set of
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112|134 11234
1 X | X 1| x| X |Xx|X
2| x X | X 2| X | X|X|Xx
3| X | X 3| X | X| X
4| x| x 4| x| x X

Figure 2.1 — Left: A small graph context on the set S = {a,b,c,d}. Right: its
reflexive version.

vertices whose neighborhood includes X. Since graphs are simple, the derivative
of a subset of vertices X has no intersection with X. Thus concepts are pairs of
disjointed sets. The concept lattice is by construction self-dual. See example 2.1

for an illustration on Figure 2.1.

Example 2.1. We consider the small graph context in Figure 2.1. With the
classical definition proposed by Chiaselotti et al. and apart from the top and
bottom concepts, concepts are C; = {1} x{2,3,4}, Cy = {2} x {1, 3,4}, and
C3 = {1,2} x {3, 4}, duplicated with their dual concepts C| = {2, 3,4} x {1},
C) ={1,3,4} x {2}, and Cf = {3,4} x {1,2}. C; and C, are linked to Cj
in the lattice an dually C4 to C] and CY.

For graphs with loops or even for simple graphs, if we not do not worry about
fictitious reflexive edges, it is interesting to accept concepts that consider pairs
of possibly intersecting sets. We study in this thesis the case of simple graphs.
Therefore, the reflexive edges, represented by the diagonal in the graph context,

do not carry any information on the input graph.

Let us define the reflezive graph context, a special kind of graph context, where
the diagonal is filled, as illustrated in Figure 2.1 (right). This object, as shown in
example 2.2, does not yield the same formal concepts as its non-reflexive counter-

part.
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Example 2.2. Let us again consider the small graph context in Figure 2.1,
already presented in example 2.1, this time in its reflexive version, where the
diagonal is set to 1. Applying standard FCA results, symmetry aside, in the
following concepts: Cy = {1,2,3} x {1,2,3}, C5 = {1,2,4} x {1,2,4} and
Cs = {1,2} x {1,2,3,4}. It appears that Cy and C5 are not maximal and
Cs is the sole maximal concept.

As a foretaste of developments that will appear in the next chapter, one
can note that since reflexive links are fictitious, equivalent concepts could
be represented by the following equations that avoid duplicated edges: Cy =
{1,2} x {2,3}, C5 = {1,2} x {2,4} and Cs = {1,2} x {2,3,4}.

In this chapter, both non-reflexive and reflexive graph contexts will be used in
section 2.2 to encode motif search in the graph. This will ultimately lead to an
encoding of Power Graph Analysis as a set of concepts, as shown in section 2.3

and following sections of this chapter.

2.2 Graph motifs as formal concepts

In Power Graph Analysis, the two main motifs used for graph compression are
cliques and bicliques. This section shows how these motifs relate to graph contexts,
and more generally FCA. Next sections elaborate on these notions to perform the

powergraph compression.

2.2.1 Bicliques as formal concepts

In a non-reflexive graph context, there is a one-to-one mapping between maxi-
mal bicliques and formal concepts. On the other hand, in a reflexive graph context,
the number of concepts describing a biclique (A, B) increases linearly with its size:
due to the diagonal, an object-concept {a} x {a'} exists for each element z in
AU B. Counting the biclique (A, B) itself and the fact that each concept (X,Y)
has a symmetric (Y, X), the number N of formal concepts for the biclique context
is therefore N =2 x (|A| + |B| + 1).
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2.2. Graph motifs as formal concepts

alblc|d alblc|d alblc|d
a X | X alx X | a X | X | %
b X | % b X | X | X b|x X | %
c|x|x clx|x|x c|x|x X
d| x| x d|x|x X d| x| x|x

Figure 2.2 — Left: A small graph context on the set S = {a,b,c,d} describing a
biclique {a, b} x {¢c, d}. Middle: its reflexive variation, which cannot be compressed
efficiently in Power Graph. Right: a clique in a non-reflexive graph context, issuing
16 formal concepts.

Example 2.3. The context on the left of Figure 2.2 describes a single bi-
clique and consequently contains only one formal concept, ({a, b}, {c,d}). If
the relation becomes reflexive (middle of Figure 2.2), it issues 4 more formal
concepts: ({a}, {a,c,d}), ({b},4{b,¢c,d}), ({c},{a,b,c}), ({d},{a,b,d}) and
({b,d},{b,d}). Note that, symmetry put aside, there is exactly one new for-
mal concept per node, since each of them can be considered as the hub of a

star.

2.2.2 Cliques as formal concepts

Cliques can only be generated from concepts in the reflexive graph context, since
a clique requires overlapping extent and intent. For any formal concept (X,Y),
X NY describes a clique or the empty set. In principle it could be possible to
reconstruct a clique from the formal concepts they yield in the non-reflexive graph
context, but no concept includes the whole clique and a clique can be composed of
an exponential number of concepts. Indeed, the maximal number of concepts of a
context is achieved by a fully filled context, except one element per line (all differ-
ent). In such a case, all subsets of elements can appear in the object or attribute
part of a concept and the number of concepts is 2". This corresponds to the clique
case, which is a complete context. In a reflexive graph context however, all these
formal concepts will collapse. For reference, another worst-case is presented on the
center context of Figure 2.2: each object is unique, but this time a clique cannot

express the whole dataset.
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From this analysis, it follows that using a reflexive or non-reflexive graph context
impacts heavily the search for bicliques and cliques. Bicliques are easily searched in
a non-reflexive graph context, but produce additional formal concepts in a reflexive
graph context. Cliques, on the other hand, generate an exponential number of
concepts in the non-reflexive graph context, but are represented compactly in the
reflexive version of the same context.

One way to avoid an explosion of concepts when looking for both bicliques
and cliques is to consider both the reflexive and non-reflexive graph context, and
the formal concepts issued from them. The formal concepts found in the reflexive
graph context are of interest when extent and intent overlaps, i.e. describe a clique.
Then, the search in the non-reflexive graph context may ignore any formal concept
covered by previously found cliques: this suggests that bipartite graphs, and more

generally triangle-free graphs, do not need reflexive structures.

2.2.3 Other graph motifs
Stars

A star is a special case of biclique, where one set is a singleton. It is a common
motif in graphs, typically associating a particular node with a large quantity of
other elements. In protein-protein interaction networks for instance, a so-called
hub protein interacts with many others and would create a large star motif. This
effect will appear clearly in applications described in chapter 4. In social networks,

group leaders are often found as hub node in stars [3].

From a concept point of view, a maximal star motif centered on node s is
expressed by the object concept {s,ay, as, ..., a,} X {b1,bs, ..., b,} (see section 1.3.1
for a definition), with b; being the nodes in relation with s and a; being nodes
having the exact same neighbors as s. If the context is not clarified, a; nodes may
exists and there is another maximal star for each of them. In such a case, the
biclique described by the concept covers more edges than the distinct stars. The
object and attribute concepts therefore indicate the existence of maximal stars,

although some of them may be grouped together in a more general biclique motif.
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Quasi-motifs

Quasi-cliques and quasi-bicliques are both defined in literature as cliques and
bicliques that are not complete but remain dense. The rationale behind these
structures is that maximal motifs are sensible to missing data and noise, motivating
the need for a repair process to detect falsely missing or supplementary edges [110],
or to a relaxed search of quasi-motifs, where some edges are missing. The exact
definition of these quasi-motifs is however complex, because one wants to avoid
an almost empty quasi-motif. For quasi-bicliques, [74] shows the interest of simple
constraints to define balanced quasi-bicliques, i.e. bicliques with missing edges but
without poorly connected nodes. Authors introduce p-tolerance maximal quasi-
bicliques, using parameter p as a threshold defining both the minimum number of
edges present and the maximum number of edges absent between the sets of the
biclique. One of the main property of u-tolerance maximal quasi-bicliques is that
they generally allow to collapse many maximal bicliques together.

From a concept point of view, the exploration of quasi-bicliques has already
been formalized using fuzzy contexts [46].

This thesis does not address the use of quasi-motifs in Power Graph Analy-
sis. It would however be an interesting extension to replace searched motifs by
quasi-motifs counterpart, and to highlight missing edges in order to keep a lossless

compression, while obtaining an higher edge compression.

2.3 Compression with formal concepts

This section introduces definitions needed for the characterization of the Power Graph
Analysis search space. We recall that its input data structure is an undirected graph
where self-loops are ignored. In this method each compression step will consist into
(1) the discovery of a graph motif (biclique or clique), and (2) the corresponding

refinement of the powergraph. We address here the second item.

Powernodes are the result of a hierarchical aggregation of nodes and other pow-
ernodes. Poweredges aggregate the edges of a biclique between the nodes of two

powernodes. When a poweredge links a powernode to itself, it describes a clique.
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We will use the word motif to describe concepts, i.e. cliques or bicliques, and
the infix parenthesized notation for trees (e.g. T'= (a(b(c, d), e)) for a tree of root

a having children b and e, and internal node b having children ¢ and d).

2.3.1 Powergraph

A powergraph is a compressed graph that can be represented as two graphs: the
poweredges, the hierarchy of powernodes, and fulfill three conditions with respect

to the initial graph it represents.

Definition 2.1. Powergraph A powergraph G = (PN, PE, H) is a pair of graphs
on a set of nodes PN. (PN, PE) is the poweredge graph and (PN, H) is a tree
called hierarchy graph. Elements of PN are called powernodes, and elements of

PE are called poweredges. G is a powergraph of a graph G = (V, E) if and only if:

1. powernode hierarchy condition: there is a one-to-one mapping between ter-
minal nodes of H and nodes in V', and PN is a hierarchy of subsets of V/
that is described by H. If p is an element of PN, the subset of V' is denoted
nodes(p)

2. poweredge decomposition condition:PFE is a partition of E. For any e in PFE,

edges(E) denotes the corresponding subset of

3. subgraph condition: a poweredge between a powernode P; and a powernode

P, exists whenever all elements of PP, are connected to all elements of P.

Any graph G = (V| E) can be represented as a powergraph P = (V,E, H)
by considering a trivial flat hierarchy H, made of the set of singletons for each
element of V. In Power Graph Analysis, a singleton powernode and the node itself
will be generally confused. Powergraph compression is a process starting from a
graph and producing a powergraph with special properties. The whole problem of
Power Graph Analysis is, for a graph G, to decide a powernode hierarchy and a
set of poweredges that fulfill the constraints defined in definition 2.1 (subgraph,
powernode hierarchy, and poweredge decomposition conditions) while minimizing
the size of PE.
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2.8. Compression with formal concepts

2.3.2 Powernode hierarchy

Let us now define some operators on the powernode hierarchy, in order to sim-

plify future definitions.

Definition 2.2. Powergraph hierarchy operators Let P = (PN,PE,H) be a
powergraph of a graph G = (V, E). H being a tree, one can define:

— 1 n is the parent powernode of n in H.
— N(n) is the neighborhood of powernode n in poweredge graph (PN, PE).

— nodes(p) is the mapping of p to the subset of V' it represents, or conversely
given a subset S of V', PN (S) is the powernode representing S or () if it does

not exist.

Definition 2.3. Mergeable powernodes Let P = (PN, PE, H) be a powergraph
and p,q € PN, p # q. p and ¢ are mergeable if T p =1 ¢ and if N'(p) NN (q) # 0.

Definition 2.4. Mazimal powernode Let P = (PN, PE, H) be a powergraph and

and p € PN. p is maximal if it cannot be merged with another powernode.

The existence of mergeable powernodes in a powergraph indicates that the com-
pression ratio can be improved: it is possible to place two powernodes p and ¢ in a
new parent powernode if they have the same parent. The process is only possible if
this new parent powernode can be the endpoint of a poweredge that would replace

one or more poweredges linking p and q.

2.3.3 Compression of a powergraph

As described in section 1.2, the construction of a fully compressed powergraph
is iterative. At each step is performed a motif compression: a biclique (or clique)
is chosen, and its associated edges are replaced by poweredges and associated
nodes grouped under (possibly existing) powernodes. The hierarchy of the graph
is also updated to reflect the apparition of the new powernodes. In order to have
a safe compression, the modifications of powernodes, poweredges and powernode
hierarchy must fulfill the Power Graph conditions as per definition 2.1.

The process finishes whenever no remaining compressible motifs are found. The

compressed graph resulting from a motif compression is defined in definition 2.6.

63



Chapter 2 — PowerGraph compression with formal concepts

Definition 2.5. Compressible Motif Let P = (PN, PE, H) be a powergraph,
M = (A, B) a biclique, and P’ = (PN', PE’, H') the powergraph resulting from
the compression of M in P, such that A x B C PE. If PE # PE’, then M
is compressible in P. M is perfectly compressible if PE’ has exactly one more
poweredge than PE (|PE'| = |PE| +1).

Note that a compressible motif may leave the hierarchy unchanged because
its sole effect is to add poweredges between existing powernodes. The previous
definition only retain motifs that are useful in the sense that they allow the number

of poweredges to decrease.

Definition 2.6. Motif compression Let P = (PN, PE, H) be a powergraph and
M = (A, B) a compressible motif in P. P’ = (PN’, PE', H') is the result of the
compression of M in P, if: PN’ — PN is the set of new powernodes grouping the
nodes AU B, PE" — PFE is the set of new poweredges covering A x B, and H' is
the new powernode hierarchy that includes new powernodes PN'\ PN as roots or

intermediate nodes.

An implementation of Power Graph Analysis has to ensure that, knowing a motif

to compress and a powergraph, a valid powergraph is produced.

Description of Motif Compression (Algorithm 2)

The goal of this algorithm is to determine the new powernodes and poweredges
that are produced by the compression of a motif in a graph. Functions in upper
case are quickly described here.

Function siblings _partition() produces a partition of the set of nodes, grouping
siblings in the hierarchy H. Function simplified() takes as input a partition, and
replaces each part by its powernode if it exists. This function is called repeatedly
along with siblings _partition, so that the powernodes newly added by simplified()
are grouped with their siblings, thus handling the recursive structure of the pow-
ernode hierarchy. Function simplifiable() fails when no siblings can be replaced by
a powernode.

The overall output of the algorithm, PN, is made of sets of powernodes to

group in new powernodes, and PE™ the set of new poweredges described as pair
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of powernodes. The modification of the powernode hierarchy H consists in the

introduction of new powernodes as new roots or intermediate nodes in the trees.

Algorithm 2 Motif Compression: determination of the powernodes and pow-
eredges introduced by the compression of a motif M on a graph P.
Require: Powergraph P = (PN, PE, H), motif M = (A, B)
Ensure: Compute the new powernodes PN™ and poweredges PE™ to add to P
PN} « siblings_partition(A)
PN} < siblings partition(B)
while simplifiable(PN}) do
PN} < siblings partition(U simplified(PN}))
end while
while simplifiable(PN}) do
PN} < siblings partition(U simplified(PNZ))
end while
PN* « PNT UPN}
PE* « PNT x PN},

,_.
e

Next section will address the choice part of Power Graph Analysis, since current
definitions only provides vocabulary and constraints on a powergraph, but little
insight on which motif should be compressed in order to obtain a readable graph

compression of the input graph.

2.4 Search spaces of Power Graph Analysis

Previous section defined how a powergraph is (iteratively) compressed using
motifs such as cliques and bicliques, until achieving a fully compressed powergraph.
This section covers the combinatorial aspect of this task, recalls the most important

optimization metric, and proposes two possible search spaces.

2.4.1 Edge reduction optimization

In its initial design, Power Graph Analysis was introduced with two metrics

representing the overall quality of compression.
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The first is edge reduction, that measures the compression ratio with respect to
edge number. The second measure is conversion rate, measuring the mean reduc-
tion of edges per powernode introduced. The higher the conversion rate, the larger
the motifs covered by poweredges are. Conversion rate is therefore dependent of
edge reduction, average motifs size, and of the presence of stars and cliques (that

can be compressed with only one powernode and one poweredge).

Definition 2.7. Quality metrics in Power Graph Analysis Let P = (PN, PE, H)
be the powergraph of a graph G = (V| E).

- |E| — |PE]

edge reduction = ————
|E|

conversion rate = w

PN\ V|

Power Graph Analysis is an optimization program using edge reduction as its

objective function.

Example 2.4. Considering a graph of four elements V' = {a, b, ¢, d} reduced
to a biclique B = ({a, b}, {c,d}). The initial graph has 4 edges and 4 nodes.
The powergraph with the biclique compression has 4 nodes, 2 powernodes

and 1 poweredge. The compression thus achieve a 75% edge reduction and a

conversion rate of 1.5.

Let us now define the concept-based search space for this task. A first approach
to the problem is to first select concepts, then perform their compression. This
approach is presented in section 2.4.2. The second one is to select poweredges from

concepts, then do the compression. This approach is described in section 2.4.3.

The determination of the optimal powergraph, i.e. the powergraph with max-
imal edge reduction, is recognized as an NP-complete problem [37], and as such

requires heuristics to explore the search space. This is the subject of section 2.6.1.
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2.4.2 Selection-transformation method search space

This method consists into the compression of the concepts in a chosen order, so
that all necessary powernodes and poweredges are added to the graph, as described

in section 2.3.3.

Let P = (PN, PE, H) be a powergraph, and C = {¢y, ..., ¢} be the available
concepts to compress. Each permutation p of |C| > k > 0 concepts of C describes
a compression of P and an edge reduction score. The search space of this method
is therefore the permutation space over subsets of concepts covering the input
graph. Note that appending a concept ¢ to a permutation p will increase the edge

reduction only if ¢ is compressible in P after the compression of p.

Because the search space is the permutation space of formal concepts, an optimal
compression cannot be searched in practice. It is therefore necessary to devise an
approximation enabling to find a good level of edge compression without exploring

the complete set of permutations. This is presented in section 2.6.1.

2.4.3 Iterative concept determination method search space

As described in section 2.3.3, compressing one concept after another may need
the creation of more than one poweredge, since the second concept is no longer
compressible as-is. Each of these poweredges form the decomposition of the concept.
This approach considers that each poweredge of this decomposition is a separate
concept. In other words, the set of concepts selected for compression is changing at
each compression step. The overall compression method is shown in Algorithm 3,
where most implementation details are abstracted to highlight the most important

algorithmic aspects.

Definition 2.8. Independent Concept Let G = (PN, PE, H) be a powergraph,
C ={c1, ..., c;} be the available concepts to compress, and ¢; the next concept to

compress. The set Z of concepts independent from ¢; in G is defined as:

I(c1,C,G) & H{ceC |N(C)NN(¢)=10}
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Algorithm 3 Step-by-step Power Graph Compression: the compression
algorithm implemented by Power Graph Analysis and PowerGrASP. Implementa-
tions of best concept() is typically selecting the largest concept. compress() takes
care of output data. independent__concepts() returns the set of concepts that share
no node with the compressed concept. decomposed__concepts() ensures that con-
cepts that are overlapping with ¢ are divided into smaller concepts in order to
respect the hierarchy condition of powernodes as described in section 1.2.1.
Require: Graph G = (V| E), concepts C, = {cy, o, ..., Cn }
Ensure: Computation of a Power Graph compression

1: 10

2: while A ¢ N do

3: ¢ < best_concept(C;_1)
E <+ FE\ edges_of(c)
COMPRESS(c)
I + independent__concepts(C;_1, ¢)
B < decomposed__concepts(C;_; \ I, ¢)
C;+1UB

9: i<+ i+1
10: end while

Definition 2.9. Concept Decomposition Let G = (V, E, PN, PE, H) be a com-
pressible graph, C' = {¢y, ..., ¢t } be the available concepts to compress, and ¢; the
next motif to compress. The decomposition of ¢; is the set of pairs of nodes de-

scribing the poweredges and powernodes constituting a valid compression of ¢; in

g.

A graph compression can be achieved by picking one concept and compressing
its edges in poweredges incrementally.

In the following sections we study how to reduce the possible permutations of
concepts considered during this iteration, in order to obtain a good approximation
of the optimal compression. we study three features of the search space as defined
in this section. As in Power Graph Analysis, the ordering of concepts may be based
on their edge cover. This is presented in section 2.6.1.

Second, the treatment of concept lattice symmetry and other properties may
reduce the number of useful concepts. It is detailed in section 2.6.

Finally, we show that there is no guarantee that an optimal compression can
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always be represented by an ordering of concepts. Section 2.8 gives an example of
such a case, and discusses how it may be handled.
Before introducing more features of the compression search space, we propose

an illustration of the complete compression process on simple graphs.

2.5 Examples of powergraph compression

The powergraph compression is illustrated in two examples, Two-bicliques and

Zorro.

2.5.1 Two-bicliques example

Let us consider the graph defined by the formal context in Figure 2.4. It can
be compressed by choosing first concept number 11 {d,,j,k} x {e, f,g,h} in
the concept lattice, then concept number 5 {d,e} x {a,b,c, g} (see Figure 2.3).
This compression order is noted (11,5). Since these concepts overlap (they share
nodes g, e and d, and edge d X g), meeting the decomposition and hierarchy
conditions require to split the second concept. It will be split in this case into
three poweredges: {a, b, c} x {d}, {a,b,c} x {e} and {g} x {e}.

While choosing this concept order leads us to an optimal compression of the
graph, other concept orders may lead to different compressions with different num-
ber of poweredges: for instance, order (1,2,3,7) will give a 5 poweredges compres-
sion, with the first created powernode being {a,b,c,d,1,j,k}, as shown in Fig-

ure 2.6.

The chosen concepts and their ordering (i.e. the order in which they are com-
pressed) determine the final compressed graph. In this example, the second concept
to be compressed was compressed in three steps: {a, b, ¢, g} x{d, e} was compressed
as {d} x{a,b,c}, {e} x{a,b,c} and {e} x {g}. The standard heuristic is to always
compress first the concept, or in case of overlap the poweredge, covering the highest

number of edges. This will however not necessarily yield the best compression.
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Figure 2.3 — The graph associated to the formal context in Figure 2.4 (left).

a|lblcldle|flg|h|i|j|k
a X | x

b X | X

¢ X | x

d|x|x|x X | X | X | X

e| x| X |x|x X X | X | X
f X X | X | X
g X | % X | X | X
h X X | X | X
i X[ X | X|X

] X | X | X | X

k X | X | X | x

Figure 2.4 — Formal context describing the graph shown in Figure 2.3 and its
associated concept lattice.
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2.5. Examples of powergraph compression

Figure 2.5 — From top to bottom: demonstration of a two-step powergraph com-
pression on the graph shown in Figure 2.3, defined by the formal context in Fig-
ure 2.4 (left).

Left: the Power Graph compression, where the concept/biclique {d,i,j, k} X
{e, f,g,h} (number 3 or 11 in Figure 2.4) was compressed first (top), followed
by concept/biclique {a, b, c,g} x {d, e} (number 5 or 9 in Figure 2.4), that is split
in 3 poweredges (bottom). Right: the representation of the powernode hierarchy
at each step of the computation, with nodes as circles, powernodes as rectangles,
poweredges as dashed edges and hierarchy relation in plain edges.
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Figure 2.6 — A non-optimal compression of the graph shown in Figure 2.3, defined
by the formal context on the left of Figure 2.4. Left: the Power Graph compression,
where the concept/star {e} x {a,b,c,d, g,i,j, k} (number 1 or 8 in Figure 2.4) was
compressed first, followed by concept/star {g} x {d,e,, 7, k} (number 2 or 10 in
Figure 2.4), followed by concept/biclique {d,i,7,k} x {e, f,g,h} (number 3 or
11), and finally concept/star {d} x {a,b,c,e, f,g,h} (number 4 or 7). Right: the
representation of the powernode hierarchy in the powergraph, with nodes as circles,
powernodes as rectangles, poweredges as dashed edges and hierarchy relation in
plain edges.

2.5.2 Zorro Example

This example aims at showing that even a simple graph may have multiple

optimal compressions, ut the reaching of it may require subtle heuristic choices.

The graph is called Zorro, and shown in Figure 2.7 along with one of its pow-
ergraph compression. The graph is constituted of three bicliques By, By and Bs
covering respectively 24, 20 and 16 edges. By overlaps with the two others, so that
the compression of that graph is not trivial. The iterative concept determination
method, taking the biclique size ordering, B; is compressed first, then Bj, since
By is split in two bicliques covering 8 and 12 edges after the compression of Bj.
The final powergraph, shown on the right of Figure 2.7, uses 6 poweredges.

With the selection-transformation method, taking the concept size ordering,
we obtain the order (B, By, Bs). The obtained compression is optimal, and shown
on the left of Figure 2.8.

Finally, a method relying on motif overlaps to decide the concept order could

have observed that B, would have been cut in four if the others were compressed
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Figure 2.7 — The Zorro graph example. Left: the graph, constituted of 3 maximal
bicliques of edge cover 24, 20 and 16. Right: a suboptimal Power Graph Analysis
of the graph.

first, so By cannot be last. This suggest to try Bs first, resulting in a second optimal
solution shown on the right Figure 2.8.

With Royer et al. implementation of Power Graph Analysis, we can obtain the
two optimal compressions shown in Figure 2.8 by tweaking the input parameters.
As we will show in the next section, our implementation PowerGrASP, because of
the direct implementation of iterative concept determination method, only outputs
the suboptimal powergraph shown on the right of Figure 2.7. This point to the
interest of introducing some capacities of backtracking in PowerGrASP in the

future.

2.6 Power Graph Analysis and PowerGrASP heuris-

tics

2.6.1 Power Graph Analysis and PowerGrASP heuristics

The search spaces presented in section 2.4 are not practical for graphs with more

than a few nodes. As a consequence, an approximation method exploring only a
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Figure 2.8 — Two optimal compressions of the Zorro graph example. Left: Ob-
tained by compressing the middle biclique of score 20 first. Right: Obtained by
compressing the upper biclique of score 24, then the middle biclique of score 20.

fraction of the search space has to be devised. Note that the determination of
which concept is to be compressed next is independent of the compression method

(iterative concept determination or selection-transformation method).

Oog: Power Graph Analysis by Royer et al.

The heuristic proposed by Royer et al., fully described in [90], is based on as-
cending hierarchical classification. It consists in taking greedily the largest motif
to compress (maximizing the number of covered edges). Then each node is placed
in its own cluster, and a neighborhood similarity score is computed for each pair
of nodes. Iteratively, the pair of clusters having the maximal score is grouped in a
new cluster, until no pair of cluster reaches a minimal neighborhood similarity. A
list of poweredges is then derived from the existing clusters. Then, in decreasing
edge-cover size, motifs are compressed, and if necessary decomposed into multiple
poweredges that are added to the list. It accepts as input parameter a minimum
similarity threshold for cluster merge, and use the weights on edges to adjust the
similarity scores.

From the FCA point of view, the Power Graph Analysis heuristic is imple-
menting the compression with (1) a motif discovery based on similarity scores
and bottom-up hierarchical clustering, and (2) the iterative concept determina-

tion method for the choice of motifs to compress.
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PowerGrASP

We implemented PowerGrASP, an ASP-based implementation of powergraph
compression, that differs from Royer et al. implementation in the first part of the
program: instead of a motif search relying on a heuristic, PowerGrASP performs
a full enumeration of concepts corresponding to maximal cliques and bicliques in
the graph. In the second part (creating poweredges based on detected concepts),
PowerGrASP is a direct implementation of the iterative concept determination
method. Its performance, as it will be shown in later chapter, is insufficient for
large graphs, but medium sized graphs remain compressible in acceptable time,

achieving the same results as Royer et al. implementation.

We propose in this section two reductions of the search space based on the
concept lattice representation or the AOC-poset.
As we will see in next sections, the main interest of PowerGrASP lies in its
ASP implementation, that has been used to test some optimizations for time and
memory. The stars and quasi-bicliques motifs, presented in section 2.2.3, were

implemented without having to modify the core algorithm nor the core encodings.

2.6.2 Reducing the concept lattice symmetry

The formal context is symmetric by construction : all nodes are present both in
objects and in attributes. This property is visible in the concept lattice, where a
concept (A, B) has a symmetric (B, A) covering the same edges. A naive solution
to handle this redundancy would be to fix an arbitrary ordering > on the objec-
t/attribute sets and remove duplicates (A, B) if A > B. This is correct but many
inclusion links between concepts may be lost in the remaining structure since the

choice are independent from the lattice structure.

We propose a structure-preserving procedure, described in algorithm 4. It uses
an arbitrary fixed total ordering on concepts (numbering) to choose a direct child

of the supremum to keep, and consequently a direct parent of the infimum to
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discard. Each direct child of the supremum is called a root. Their symmetrical are
the direct parents of the infimum. By marking a root as kept (i.e. deciding to keep
it in the reduced lattice), we also set its symmetrical to be discarded (absent in
the reduced lattice). All childs of the root are also kept, and therefore all parents
of the root symmetrical (which includes at least one root) are discarded. This is
repeated until no more root is marked either as kept or discarded.

Because a node cannot be linked to itself in the formal context, it is not possible
to have a concept marked both as kept and discarded. The resulting structure is
not itself a concept lattice, it is just used to choose the list of candidate concepts
for the compression. Depending of the root order, there are multiple reductions
possible, but all are equivalent in term of edge cover.

The concept lattice of the example graph in Figure 2.3 cleared of redundant

concepts is shown in Figure 2.9.

Concept lattice reduction 4 Top-down reduction of a given symmetric lattice
by deciding nodes/concepts to keep.
Require: Symmetric Concept Lattice L, symmetries between concepts
Ensure: Compute the set of concepts to keep as taken
. taken < ()
. discarded <+ ()
roots < direct__childs(supremum(L))
: for all root € roots do
if root ¢ taken U discarded then
taken < taken U subconcepts(root)
discarded < discarded U supconcepts(symmetric(root))
end if
end for

R LA oo S A oo

2.6.3 Reducing the number of concept permutations with
the AOC-poset

Necessary Concepts (Kernel)
A concept that is compressed in all the optimal compressions (regardless of
symmetry) is necessary. An obvious optimization would be to discard any solution

that does not contains all the necessary concepts. Determining the complete set of
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Root of the search

Infimum

Figure 2.9 — A reduced concept lattice representation of the lattice in Figure 2.4.
Concept 7 is the only root since it is the only child of the lattice supremum.

necessary concepts is an open problem, but the following definition 2.10 provides
a property of a subset of them. the idea is to identify edges that are covered by
only one formal concept. If those edges are to be compressed, it must be through

the compression of that concept.

Definition 2.10. Necessary Concept

Let C' = (A, B) be both an object-concept and an attribute-concept of specific
objects X C A and specific attributes Y C B. C' is the only concept (with its
symmetric, removed by reduction) to cover edges (z,y) Va € X,y € Y. Therefore
the only way to compress them is to use C. If X and Y are singletons, a single
edge is concerned, thus there are no compressible edges specific to that concept. If
(X,Y) covers 2 or more edges, there are at least two edges to compress that can

only be compressed with C'. C' is therefore a necessary concept.

Example 2.5. In the graph example of Figure 2.4, concept 11 and its sym-
metric 3 are the only ones to cover edges { f, h} x{i, j, k}. They are necessary

and need to be compressed at some point.
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2.7 Optimizations using graph and motifs prop-

erties

PowerGrASP implementation of powergraph compression enabled us to test
numerous optimizations aiming at reducing the time needed to perform the overall
compression. This section detail the optimizations that are not specific to our
implementation, and may be back-ported to other implementations, not necessarily

using ASP nor specifically looking for a powergraph.

We end with a proposition for a divide-and-conquer strategy to mine specifically

the largest formal concept in a formal context.

Note on bounds

PowerGrASP, in order to limit the search space of concept search, computes
a lower and upper bound on the edge cover of the motif to compress for the
ASP solver. The bounds are computed in a simple manner ; PowerGrASP could

certainly benefit from recent research in branch-and-bound algorithms.

2.7.1 Star search

This optimization consists into the consideration of a third graph motif: stars.

The star is a special case of biclique, and as such doesn’t need to be searched.
However, bounds for a star search are easier to compute than bounds for bicliques:
the maximal and minimal bound for the maximal stars search in a graph are equal

to the greatest node degree. Stars are also preponderance in many datasets.

By delegating the star search to a specific process, the biclique search space is

reduced, since both sets of the biclique must contain at least 2 nodes.

From a concept point of view, stars can be enumerated from the AOC poset, as
described in section 2.2.3, and the constraint on the biclique search space is simply

to only enumerate concepts with at least 2 objects and 2 attributes.
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2.7.2 Graph filtering

Some edges of the input graph cannot be part of the largest concept, and can be
pruned before looking motifs. For this optimization to provide an interesting edge
loss, a good lowerbound on the motif edge cover has to be defined. The higher the
lowerbound, the higher number of edges may be filtered out. From a concept point
of view, this is equivalent to removing relations from the graph context that are

not involved in a specific type of motif.

Proposition 2.1. FEdge filtering for largest star, biclique and clique
Let G = (V, E) be a graph, and [ the lowerbound for the edge cover of a motif. An
edge (z,y), such that:

— degree(z) < | and degree(y) < [, cannot belong to a star with an edge cover

of I or more

— degree(z) x degree(y) < I, cannot belong to a biclique with an edge cover of

[ or more

— clustering__coef ficient(x) == 0, does not belong to a clique.

Proof. Either x or y must be the hub of the star and have a degree at least [. This
is the same logic for bicliques. A node with a clustering coefficient of 0 cannot

belong to a clique, and so are its adjacent edges. O

This optimization is implemented in PowerGrASP as follow: each motif to be
searched is associated to a copy of the initial graph, and edges are pruned from
this graph, definitively when covered by a motif previously compressed, or for the
current step with graph filtering, as described in proposition 2.1. For instance, the
graph on which stars are searched is pruned of all edges that cannot belong to a
star. When the star search (cf section 2.7.1) is used, there are three motifs: star,
non-star biclique, and clique. Each may use its associated graph filtering method.
Each motif search is therefore working on its own graph.

This memory/time tradeoff can be shifted by using only one graph for all motifs,

and removing an edge only if it matches the three conditions of proposition 2.1.
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Removing edges from a graph may have important implications on connectivity.
An obvious effect of graph filtering is to split connected components into smaller
connected components. In the context of graph compression, this is a great way
to decrease importantly the size of the search space: because of the exponential
growth of the complexity, two connected components of n edges are easier to
compress than a single one with 2n edges. This particular connected component

detection is not implemented in PowerGrASP.

2.7.3 Stable search in graph context to reduce the search

space

If the number of nodes of a graph is reduced by a factor k, its graph context
is reduced by a factor k% and the search space of concepts is reduced by a factor
2K This emphasizes the well known importance of reduction strategies as a
preprocessing step of a concept search. Simple techniques include the application
of standard clarification and reduction procedures and the decomposition of the
graph into connected components. Concerning the FCA reduction procedures and
since we are interested in largest concepts, the computation of the edge cover size
requires all reduced nodes to have an associated weight counting the number of
nodes they represent. Concerning the decomposition of the graph, we propose a
generalization of the connected component property, the bipartite property, aiming
at further splitting the graph context. It be applied recursively, in order to work

on increasingly smaller contexts.

We first introduce the dot operator on sets of objects or attributes, which is a re-
laxed variant of the derivation operator of FCA where the universal quantification

is replaced by an existential one:

Definition 2.11. Dot operator
Given a set of objects X (resp. attributes V), the set X (resp. Y) is made of all
attributes (resp. objects) related to at least one attribute in X (resp. Y):

X={yeY |3z € X, r(z,y)} Y={zcX |3y €V, riz,y)} (2.1)

80



2.7. Optimizations using graph and motifs properties

As for derivation, the dot operator can be combined multiple times:

X={zecX|FeX, r(z,y)} Y={yeY |3zeY, r(z,y)} (2.2)

Search for a divide-and-conquer-like strategy

A stable in a graph is a set of unconnected nodes, i.e. a clique in the comple-
mentary graph. In a graph context, it translates as an empty rectangle, and can
be used to reduce the sets of nodes to consider as candidates for the composition
of the largest concept. Proposition 2.2 expresses the relation between a stable and

the search space for the largest concept in the FCA framework.

Proposition 2.2. Given a set of objects O and a set of attributes A, let
P = {01,05} be a partition of O and QQ = {Ay, Ay} be a partition of A. Let
LC(O, A) denotes a largest concept of the formal context C(O, A), i.e. a concept

corresponding to a submatriz of largest size. Then, the following property holds:
LC(0, A) = max (LC (01, Ay), LC(Ay U Oy, 0, U Ay)) (2.3)
Moreover, this equation may be refined if no relation holds over O X A;:
LC(O, A) = max (LC(Ajy, Ay), LC(O4,05)) (2.4)

Proof. Let P = {O1,05} be a partition of a set of objects O and @ = {4, Ay}
be a partition of a set of attributes A. If the largest concept LC(O, A) is in the
context C(Oq, Ay), then by definition, it will take the right value LC'(O4, A;). Else,
there exists an element of the largest concept either in Oy or in A,. If the element
is in Oy, then the attributes of LC(O, A) have to be included in Os. The same way,
the objects of LC(O, A) have to be included in the objects sharing at least one
relation with attributes of O,, that is, O,. With a symmetric argument, if there is
an element of Ay in the largest concept, then attributes of LC(O, A) have to be
included in A, and objects in Ay. Altogether LC(O, A) must be a concept of the
context C(A2 U Oy, Oy U Ay).

If no relation holds over Oy x Aj, then every concept has either all its elements

in Oy or all its elements in A,. In the first case they are in the formal context

81



Chapter 2 — PowerGraph compression with formal concepts

Al AQ
HII|J]JK|L|M|N
a X | x
Olb
c X | x| x| x
d X X | X | X
Oy el x| [x|x
flx| [x]x X | %
g x | x X | %

Table 2.1 — A partitioned context with no relation over C(Oq, A;). The five pos-
sible positions of the largest concept £ are shown. £ could be in C(Os, A;) (e.g.

({e, /1, {H})), C(Oq, A2) (e-g. ({f,9},{M,N})), C(O1, A3) (e.g. ({a},{L, M})),
C(Oy, AJUA;) (with an element in A; and an element in Ay, e.g. ({e, f,g},{J, K}))
or C(O1 UOy, Ay) (e.g. ({c,d},{L, M,N})).

C(O3,0,), and in the second case they are in the formal context C(Ajy, Ay). The
largest concept is the largest of the largest concepts of the two contexts. Table 2.1

gives details on the way the search can be split in this case. O]

From the point of view of graph modeling, the fact that no relation holds over
O x A; means that it is stable set of the graph (note however that O; and A
may overlap). If moreover no relation holds over Oy x A,, it corresponds to the
existence of at least two connected components in the graph. From a graph per-
spective, if O; = A;, O; is a stable set, if O; N A; = (), Oy is a bistable (two
sets of unrelated nodes), but the more general motif represented by (0;, A;) is the
overlapping bistable, i.e. a biclique in the complementary graph whose sets over-
lap. Moreover, we get Oy = A,, so LO(AQ,AQ) = LC(OQ,OQ) and it is sufficient
to consider the graph context C(O, Oy). Since the aim is to speedup the search
for largest concepts, the most straightforward implementation of an optimization
based on proposition 2.2 is a search in bounded time of a stable (not necessarily

maximal).

Implementation of Proposition 2.2 remains to be seen. Later chapter 4 will (1)

show that notable stables are common in the datasets, suggesting that this kind
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of optimization may have interesting applications.

2.7.4 Parallel compression of independent concepts

When its first concept is compressed, a powergraph ceases to present a simple
structure, precluding the application of previously described optimizations such as
graph filtering, that would need to be developed specifically to be applicable to
a powergraph. Another limit of the base PowerGrASP implementation is that at
each step, the largest concept to compress is searched.

In order to avoid such costly approach, one may enumerate all maximal con-
cepts M, and compress them all, thus compressing multiple concepts with only one
search. The problem here is that if some maximal concepts are overlapping, one
has to choose the concepts to compress. In PowerGrASP, this is implemented with
a greedy approach. First, the solver enumerates the optimal solutions. Second, one
concept chosen randomly is compressed, and the remaining ones are compressed
one after the other if they do not overlap with a previously compressed concept.

A better approach would be to find the maximal subset S C M of maximal

concepts so that no concepts of S is overlapping with another concept of S.

From a concept point of view, this is equivalent to the search for a set of edge-

maximal concepts which meet and join are the supremum and infimum.

2.8 Limits of greedy approaches: the cycle motif

One specific class of concepts layout is resisting to the previously defined con-
cept approach. We call them cycles of concepts, an example being displayed in
Figure 2.10 for a 4-cycle. A cycle of concepts is a series of concepts that form a
circular chain by inclusion of the intent of one concept in the extent of the next
one. Any cycle from 3 to any number of concepts will in fact never be optimally
compressed by the procedure we have used so far iterating on the choice of con-
cepts.

The previous section has shown the interest of clique motifs in addition to

bicliques to compress graphs and we highlight here a new cycle pattern that un-
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derlines the richness of this pattern recognition approach.

As already sketched, the peculiar status of this cycling motif is due to a special
organization of concepts, that the concept lattice helps to unravel. In a concept
cycle motif, all involved formal concepts of the form {(A, By), ..., (A, B,)} are
ordered so that Ay C Byy1Vk € 1.n — 1 and A,, C By. In fact, the basic building
block for a cycle is a pair of overlapping concepts A; x (A2UB7) and Ay x (A1 UBy),
where all sets are disjoint. The two concepts could be represented by a quadru-
plet (B, Ay, As, Bs), where all contiguous elements form a biclique. The biclique
(A1, As), also not maximal, is a consequence of the fact that a set may appear
either as an extent or an intent.

It appears that cycle contexts often lead to a concept lattice that is made, apart
from the top and bottom concept, of a graph cycle (see Figure 2.11, left) or two
symmetric graph cycles (see Figure 2.11, right). However, the 4-cycle (Figure 2.10)

has a special shape where the cycle has been interrupted by intermediary concepts.

It is thus possible to find globally optimal bicliques organizations that are not
based solely on the use of maximal bicliques but also use bicliques associated with
overlapping concepts. An enumeration of the corresponding concepts can lead to a
systematic detection of the cyclic pattern, and the incorporation of more general
versions of motif-concepts.

Further work on the search space might also point to other specific motifs

helping to better compress the graph through meaningful recurrent patterns.

2.9 Conclusion

2.9.1 Contributions

A formalization of Power Graph Analysis and its search space
A general graph compression search space formalization in the framework of
FCA was formulated, highlighting the main sources of difficulty of the problem.
Once the concepts covering the graph have been generated, the compression
process can be expressed as the choice of an ordering of a subset of all concepts.

We have shown that object and attribute-concepts are useful to focus on partic-
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Figure 2.10 — A cycle of 4 concepts, non-compressed (left), compressed by a greedy
method (middle), and optimally compressed (right). The greedy approach com-
presses first the largest concept (here {a,b,e, f} x {c,d, g,h}), then 4 small bi-
cliques, ending with 5 poweredges. The optimal compression is reached by us-
ing and splitting the four concepts {a,b} x {c,d,e, f, 5}, {c,d} x {a,b,e, f, k},
{e, f} x{e,d,g,h,l}, {g,h} x{a,b,e, f,i}, leading to only 4 poweredges.

ular subsets and the selection of subsets remain an interesting track for further

researches.

The standard heuristic for the generation of graph compression is fast but
only computes an approximation of the minimal Power Graph [20, 94]. Once the
(triplet) concepts have been generated, the results of the Power Graph Analysis
can be reproduced by ordering the concepts by decreasing surface. This heuristic
avoids to explore the space of all permutations, explaining its efficiency, despite
that the approach based on a permutation over the concepts is not feasible for

graphs having more than a dozen concepts.

Other approaches to graph compression ought to improve the speed or the
optimality by allowing to reuse edges among multiple poweredges [37], or the
overlapping of powernodes to handle simply non-disjoint sets [3]. Such approaches
correspond to a relaxation of some of the constraints on Power Graphs. This can
be encoded in the concept lattice formalization as a relaxation of the compression
of concepts operating on the same nodes or edges. The search space for that matter

is not different, despite the constraint relaxations.
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Figure 2.11 — The lattices of the 3-cycle (left), 4-cycle (middle) and 6-cycle (right)
motifs. The latter presents two symmetric cycles, which is the consequence of a
bipartite graph (an odd cycle). On the other hand, the 3-cycle is not bipartite, so
the lattice symmetry is not perfectly separated.

Optimizations

Three types of optimization were proposed. First, the optimizations related to
the search space, directly understandable as reduction of the concept lattice or the
AOC poset. However, those optimizations does not mitigates the factorial complex-
ity of the search space. Second, the optimizations allowing our implementation of
Power Graph Analysis, PowerGrASP, to reduce its search space, such as the graph
filtering that discard relations of the formal context that does not belong to the
largest formal concept. And third, a proposition to a divide-and-conquer strategy
to discard parts of the graph context that cannot contain the largest concept, thus

limiting the search space of an implementation of Power Graph Analysis.

Limits of the Concept-Only Methods

We unraveled a particular graph motif that prevents heuristics of Power Graph
Analysis to achieve optimal compression when this motif is present in the graph.
We therefore shown that a compression method seeking only for concept-based
compression in the graph context cannot reach the optimal compression, because
of at least one graph motif: concept-cycles. To handle this motif, which uses non
maximal bicliques, some specific pattern detection on the lattice has to be designed.

For a more global point of view, applying this approach of pattern recognition in
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the concept lattice could also be the basis for any motif that would convey a

specific meaning in the data.

2.9.2 Towards an unification of cliques and bicliques

First, cliques and bicliques require respectively reflexive and non-reflexive graph
contexts to be encoded as a single concept. Else, they are represented as an inter-
twining of bicliques/concepts, instead of a single coherent representation that is
used by Power Graph Analysis: a single powernode with a reflexive poweredge.

The concept lattice-based model of the search space has some limits. First, the
bicliques and cliques are handled as different objects. Because the latter needs the
reflexive edges, two independent motif searches must be performed, on two different
concept lattices. Moreover, formal concepts such that X # Y and X NY # ()
convey information, but are not identified as compressible motifs. An extension of
the formal concepts is needed to overcome these two limits: the triplet concepts,

subject of chapter 3.

See chapter 6 for perspectives on this work.
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CHAPTER 3

Triplet concepts: an extension of
FCA looking for overlapping

bicliques

There are only two hard things in Computer Science: cache

invalidation, naming things, and off-by-one error.

PHIL KARLTON

The previous chapter showed the limits of handling separately the clique and
biclique motifs in the context of graph compression. Each motif needs its own
graph context and thus two concept lattices are built during compression, as two
independent tasks. However, the interaction between the choices of both motifs
seems crucial for a good compression level. A new formal framework is necessary
for defining an efficient integrated search space.

For this purpose, this chapter proposes an extension of formal concepts, triplet
concepts, which is tailored for symmetric formal contexts that are internal binary
relations on any given set. Triplet concepts represent a more general graph motif,
overlapping bicliques, from which cliques and bicliques are special cases.

Section 3.1 will first provide an intuition on the notion of triplet, and section 3.2
will place it in the context of graph theory. As for formal concepts maximality is
a desirable property of triplets that needs to be properly specified in this context.
This is covered by section 3.3. This property is not sufficient however since many
maximal triplets can be equivalent and one has to design a unique, standard rep-
resentation including all the special and degenerated cases. This is the subject of
section 3.4, and the last piece needed to formally define triplet concepts, as shown
in 3.5.
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Later sections will introduce additional properties for practical triplet gener-
ation, such as an admissibility criterion for triplet maximality — detailed in sec-
tion 3.6 — which will greatly simplify triplet concept mining, the triplet concept
ordering addressed in section 3.7, and, in section 3.8, the close link between formal
concepts and triplets, showing how concepts can be used to enumerate triplets.

Section 3.9 addresses algorithmic issues for triplet concepts enumeration and
shows different approaches for this task. Finally, section 3.10 will explain the re-

lation between triplet concepts enumeration and Maximal Clique Enumeration.

3.1 Intuition and examples

3.1.1 The graph context

The graph context object, and its reflexive counterpart, have been introduced
in section 2.1 in order to encode graph motifs. This section redefines them for
completeness, and exposes a new property enabling to deal with problems raised
by the previous chapter. The definition of formal contexts, concepts and concept

lattice in FCA, have already been provided in section 1.3.

Let us now consider a formal context where objects and attributes are a same
set S, and the context is a binary symmetrical relation rel on S.

That kind of formal context is named graph context, because it is similar to
an adjacency matrix: it can be used to describe a simple undirected graph, where
objects and attributes are nodes of the graph, and rel(x,y) holds iff node x is
linked to node y.

A graph context is reflexive if the relation is reflexive, i.e. every item is in rela-
tion with itself. From now on, we will always consider the graph context together
with its reflexive version as two representations of the same graph. This is not a
real restriction, since it is always possible to mark nodes that are really with a
reflexive link, and since the reflexivity assumption is only used to simplify the def-
initions and treatments. This assumption originates from Power Graph Analysis,
where self-loops are considered non functional and added as don’t care edges.

Consequently, the considered graphs are simple graphs, and the use of self-loops
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is only a matter of technical data manipulation enabling one to easily describe
natural kinds of motif, such as cliques. As a consequence, in this chapter, a graph
context and its reflexive version are describing the same graph, but because of

their differences will be used in different ways.

3.1.2 Formal concepts of the graph context

In the case of reflexive graph context, the extent X and the intent Y of a for-
mal concept (X,Y) derived from a graph context may overlap. This is illustrated
in example 3.1: some formal concepts issued from the reflexive graph context in Fig-
ure 3.1 have overlapping sets.

The existence of this overlap changes the interpretation of the formal concepts
regarding graph structure, since it can describe not only a relation between 2 sets
of nodes (as in a non-reflexive graph context), but also the internal connections
between the elements in each set. In order to explicit the existence of the exten-
t/intent overlap, we introduce the notion of triplet in definition 3.1. This is a first
necessary definition that will gradually be refined in later sections in order to define
triplet concepts.

As an example, triplets found in the reflexive graph context of Figure 3.1 are

shown in Table 3.1 (right column), and discussed in example 3.3.

Example 3.1. Considering the graph context in Figure 3.1, and the associ-
ated formal concepts and concept lattice. With a non-reflexive relation (left
in the figure), the corresponding concept lattice contains 16 formal concepts,
listed in the first column of Table 3.1. All are made of two non-intersecting
sets. For instance, three of them are {a,b,c,d,e, f} x 0, {a,b} x {c,d,e, f}
and {c,d,e} x {a,b, f}.

By making the relation reflexive (right in the figure), some of the formal
concepts are made of a pair of overlapping sets, for instance {a, b, ¢, d, e, f} X
{e, f}, {a,b,e, f} x {c,d,e, f} and {c,d,e, f} x {a,b, e, f}, overlapping on
nodes e and f. See the second column of Table 3.1 for a complete list.

The number of concepts remains the same in this example, but as shown

in example 3.2 this is not the general case.

91



Chapter 3 — Triplet concepts: an extension of FCA looking for overlapping bicliques

alblc|d|e]|f alblc|d|e]|f
a X | X | X | X alx X | X | X | X
b X | X | X | X b X | X | X|X]|X
c|x|x X | % clX|x|x X | %
d| x| x x| X d|x|x X | x| %
e[ X |x|x|x X el X |X|X|xX|[x]|x
flx X | X | X fIxX|x|x|x|x]|x
e

Figure 3.1 — Left: A small graph context on the set S = {a,b,c,d, e, f}. Right: its
reflexive variation (where Vo € S, rel(x, z) holds), and their corresponding concept
lattices.

alblc

a X

C X

Figure 3.2 — A small graph context on the set S = {a,b,c}.
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concepts reflexive concepts triplet representation

1 {a’ b? c’ d’ e, -f} X 0 {a7 b’ c’ d’ e’ f} X {e, f} ({a" b7 C7 d}’ @, {e’ f})
2| {a,b,c,d, f} x {e} {a,b,d,e, f} x {d,e, f} ({a,b},0,{d,e, f})
3 {09 d, e} X {CL, b, f} {Ca d,e, f} X {a” b, e, f} ({07 d}v {av b}7 {67 f})
4| {c,d} x{a,b,e, f} || {a,de, f} x{a,d e, [} (0,0,{a.d,e, f})
5| {a,b,e} x {c,d, [} {b,c,d,e, f} x {b,e, [} ({c,d},0,{b,e, })
6| {e}x{a,b,c.d,f} {a,c,d,e, f} x {a,e, f} ({c,d},0,{a,e, f})
7 {aa b} X {C, d, ea.f} {a7 b, e, f} X {Ca d,e,f} ({a,b},{c, d}7{e7 f})
81 0 x{a,b,cde, [} {d,e, f} x {a,b,d,e, f} (0,{a,b},{d,e, f})
9| {e, f} x{a,b,c,d} {a,b,c,e, f} x {c,e, f} ({a,b},0,{c,e, f})
10| {a,b, f} x {c,d,e} {b,d,e, f} x {b,d,e, f} (0,0,{b,d,e, f})
11| {e,d,e, f} x {a,b} {b,c,e, f} x {b,c,e, f} (0,0,{b,c,e, f})
12 {av be, f} X {Cv d} {b7 6, f} X {b> ¢,d,e, f} ((D’ {Cv d}7 {ba €, f})
13| {c.d, f} x{a,b,e} || {a,ce [} x{a,ce f} 0,0,{a,c,e, f})

14| {f} x{a,b,c,d,e} {c,e, f} x {a,b,c,e, f} (0,{a,b},{c,e, f})
15| {a,b,c,d,e} x {f} {a,e, f} x {a,c,d,e, f} (0,{c,d},{a,e, [})
16| {a,b,c,d} x {e, f} {e, f} x{a,b,e,d,e, f} | (0,{a,b,c,d},{e, f})

Table 3.1 — The 16 concepts derived from context of Figure 3.1, along with the
corresponding 16 concepts derived from the reflexive graph context of Figure 3.1,
and their triplet representation.

Example 3.2. The context of Figure 3.2 contains only two formal concepts,
{b} x {a,c} and {a,c} x {b}. When considering the reflexive relation, there
are four formal concepts {b} x {a,b,c}, {a,b,c} x {b}, {a,b} x {a,b} and
{b,c} x {b,c}.

If we consider only the subcontext {a,b} x {a,b}, there are two concepts
({0} x {a} and {a} x {b}) but only one ({a,b} x {a,b}) with a reflexive
relation.

Together with example 3.1, this shows that adding reflexive relations in a

formal context may increase or decrease the number of formal concepts.

Regarding the number of formal concepts: in a non-reflexive graph context,
the number of formal concepts is always even, because a concept (X,Y) is equiv-
alently represented by the concept (Y, X). However, when reflexive relations hold,
a concept (X, X) may exist. This is illustrated in example 3.2, where the graph

context in Figure 3.2 has different amounts of formal concepts in its reflexive and

93



Chapter 3 — Triplet concepts: an extension of FCA looking for overlapping bicliques

non-reflexive versions.

Let us now define formally triplets:

Definition 3.1. Triplet  Let us consider a concept (X,Y'), formed by possibly
overlapping extent and intent. This concept can be written as pairs (AUC, BUC),
where A, B and C are disjoint and C'is the set of vertices common to the extent and

the intent of the concept. We can write this formal concept as a triplet (A, B,C),

such as:
A=X\Y
B=Y\X (3.1)
C=XnY

As a practical notation we will often designate the first, second and third
element of a triplet as the A, B and C' set. By definition, reflexivity only occurs
in the C' set. In a non-reflexive graph context, the intersection of the extent and
the intent of a concept must be empty, hence C is empty. Conversely, if C' is not
empty, the question arises as to whether C' provides additional power of expression
in terms of graph structures apart from reflexive loops on nodes, since self-loops

are considered as virtual structures.

The answer is positive. In fact, a triplet represents the union of three cross-
products: A x B, (AU B) x C and C x C'. For instance, even a simple triplet like
({a}, {b},{c}) describes a reflexive link on ¢, but also depicts a triangle structure

(abc). Using only bicliques, two are needed to describe a triangle.

However, the reflexive closure of a relation complicates the representation of
simple bicliques by drowning them in many concepts, as shown in example 3.4,
bringing little to no information about the graph structure. Since we work on
simple graphs, the reflexive relations are not part of the data. It follows that
treating reflexivity is of little interest for the graph description, unless it simplifies

the conceptual representation as in the (abc) triangle example.
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Qoo
X
X

Figure 3.3 — A small graph context on the set S = {a, b, ¢, d} describing a biclique

{a,b} x {c,d}.

Example 3.3. Considering again the reflexive graph context in Figure 3.1
(right), formal concepts can be listed as triplets, thus obtaining for instance
({a,b,c,d}, {0}, {e, f}) as triplet representation of {a,b,c,d, e, f} x {e, [},
and ({a, b}, {c,d}, {e, f}) for {c,d,e, f} x{a,b,e, f}. The triplet representa-
tion of all concepts of this example are listed in the third column of Table 3.1.
We will see later that not all triplet representations are useful ; in that spe-
cific example, only one of them, ({a, b}, {c, d},{e, f}), will be necessary to
describe the graph using triplets.

Example 3.4. The context of Figure 3.3 describes a single biclique and
consequently contains only one formal concept, {a, b} X {c, d}. If the relation

becomes reflexive, there are 13 more formal concepts, including for instance

{a} x {a,c,d}, {b} x {b,c,d}, {d} x {a,b,d} and {b,d} x {b,d}.

With this goal in mind, later sections will refine notable classes of triplets,
based on properties such as maximality. This will ultimately lead to the definition
of triplet concepts. Because we will apply triplets to graphs, next section details

the link between triplets and graph theory.

3.2 Triplet concepts from a graph perspective

A graph context is the adjacency matrix of an undirected graph, where relations
between objects encode edges between nodes.
If the graph is not reflexive, formal concepts derived from the graph context

represent maximal bicliques in the graph. Because of the symmetry, each maximal
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biclique (A, B) is represented by two formal concepts (A, B) and (B, A).

g 2

Example 3.5. The graph context in Figure 3.3 has exactly two formal

concepts, both corresponding to the maximal biclique {a, b} x {c, d}.

In Figure 3.2, we find also two formal concepts corresponding to the maximal
star {b} x {a,c}.

In Figure 3.1, the non-reflexive graph context (left) describes many maximal

bicliques, e.g. {¢,d} x {a,b,e, f}, {e, f} x{a,b,c,d} and {a,b} x {c,d, e, f}.

\. J

This section details the relation between triplets and graph motifs (subsec-

tion 3.2.1), from the general case to specific ones (subsections 3.2.2 and 3.2.3).

3.2.1 The overlapping biclique motif

The formal concepts derived from a reflexive graph context can describe a more

general motif than bicliques, which we have named overlapping biclique.

e N

Example 3.6. As shown in example 3.4, the reflexive graph context

in Figure 3.3 has many formal concepts, one being the maximal biclique
{a,b} x {c,d}, while the others describe overlapping bicliques such as
{b} x {b,c,d}, {c} x{a,b,c}.

In Figure 3.2, discussed in example 3.2,the two formal concepts are extended
so that the hub is now present in both sets, i.e. {a, ¢} x{b} becomes {a, b, ¢} x
{b}.

In Figure 3.1, and as shown in Table 3.1, the reflexive graph context (right)
describes only overlapping bicliques, notably because e and f are ubiquitous
(i.e. they are linked to all other nodes), therefore all concepts contain them
in both sets.

. J

In the triplet representation (A, B,C) of the concept (X,Y’), A is the set of
nodes specific to the first set X, B the set of nodes belonging exclusively to the
second set Y, and C the set of shared nodes. This is shown in Figure 3.4. Note
that from a graph compression perspective, we use a single edge to represent the
whole graph as for bicliques in Power Graph.

From a pure Power Graph perspective, C' is a clique and (A, B) is a biclique.
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A ¢ B c

W

Figure 3.4 — Single-edge representation of a triplet concept (A, B, C') as two over-
lapping sets A. and B, of nodes linked to one another. A = A\ B. and B = B\ A..
C' = A.N DB, is the set of all nodes linked to all other nodes of the motif (ubiquitous
nodes). A, B and C' are disjoint sets.

Figure 3.5 — Powergraph representation of a triplet concept (A, B, C'), where C' is
a clique (hence the reflexive power edge) and (A, B) a biclique.

A triplet concept is thus a biclique between a clique and a biclique, as shown

in Figure 3.5.

3.2.2 Special cases of overlapping bicliques

The overlapping biclique motif has three notable special cases, as shown in Fig-

ure 3.6, derived from the general case in Figure 3.6a.

First, the biclique, shown in Figure 3.6b, corresponds to a formal concept with-
out overlap, i.e. where X N'Y = ), hence C' = (.

Second, as shown in Figure 3.6¢c, when X C Y, hence A = () or B = (), the

motif becomes a nested biclique.

Finally, as shown in Figure 3.6d, when all nodes are linked to all others, i.e.

X =Y, hence A= B = (), the motif is a simple clique.
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W

(a) The general representation of a (b) A standard biclique, where C' = 0.
triplet, where C' is the set of ubiquitous
nodes of the motif.

9

(c) A nested biclique where one set is (d) A clique, where all nodes are ubiqg-
included in the other. If |C| = 1, the uitous in the motif, and therefore where
triplet encodes a star. Reflexive links A=B=0.

are necessary to this compact represen-

tation, but the underlying structure is

to be understood as a simple graph.

Figure 3.6 — Single-edge representations of overlapping biclique motif/triplet
(A, B, (), along with its three special cases.

Example 3.7. As shown in example 3.6, the reflexive graph context in Fig-
ure 3.3 has one biclique {a,b} x {c,d}.

In Table 3.1, listing concepts of Figure 3.1, we can find the two other
special cases. The clique {b,d,e, f} x {b,d,e, f} containing four nodes
(|C] = 4) and represented as the triplet (0,0, {b,d,e, f}). The nested bi-
clique {b,c,d,e, f} x {b,e, f}, represented as the triplet ({c,d},0,{b, e, f}).
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co—(a) (B)—c

(a) The star motif, linking the nodes of The star motif, linking the nodes
A to an ubiquitous node in the C' sin- of B to an ubiquitous node in the C
gleton. singleton.

Ao—oB ,

(c) The representation of a single edge, (d) The clique representation of a sin-

where A and B are singletons. gle edge, where |C| = 2. Reflexive links

are necessary to this compact represen-
tation, but the underlying structure is
to be understood as a simple graph.

Figure 3.7 — Single-edge representation of degenerated cases of the overlapping
biclique motif/triplet (A, B, C).

3.2.3 Degenerated cases of the overlapping biclique

The overlapping biclique motif has two notable degenerated cases, as shown

in Figure 3.7.

The star motif is a degenerated biclique where one set is a singleton (the hub
node). It can be encoded using the classical biclique A X B x (), or almost any
combination of two of the three sets. The only restriction is that C' cannot represent

a non-singleton set.

The edge motif is a degenerated star motif where both sets are singletons. As
a consequence, C' can be used by both sets, and, as shown in Figure 3.7d, for both

sets.

This introduction on triplets has provided the necessary background for a com-
plete study of triplet concepts, a sets of triplets than can be considered as an

extension of formal concepts.
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3.3 Triplet maximality

In Formal Concept Analysis, a formal concept (X,Y) is defined as a maximal
all-ones submatrix in the incidence matrix of the relation, in the strong sense that
every element that is not in one set is not connected to at least one element in the
other set. Formal concepts are thus node-maximal with respect to inclusion. This
property is necessary but not sufficient to build triplet concepts.

Examples 3.8 and 3.9 provide an illustration of the limits of node-maximality

in the context of graphs.

Example 3.8. Taking the graph context in Figure 3.1 and the triplet
concepts derived from it, listed in Table 3.1, we can note that the
canonical triplet 77 = ({a,b},{c,d}{e, f}) (line 7) or the triplet T3 =
({c,d},{a,b},{e, f}) (line 3) stricly contain the edges covered by each of
the other triplets, including ({a, b, ¢, d}, 0, {e, f}) (line 1), ({a,b},0,{d, e, f})
(line 2) and ({c,d},0,{a, e, f}) (line 6). T3 and 77 are thus maximal with
respect to covered edges.

From a graph perspective, T1 = ({a,b,c,d}, 0, {e, f}) describes the biclique
{a,b,c,d} x {e, f} and clique {e, f}, while T; = ({a,b},{c,d},{e, f}) de-
scribes bicliques {a,b} x {e, f} and {c¢,d} x {e, f}, and the clique {e, f},
thus covering edges of T;, but also the biclique {a, b} x {¢, d}, making T7 a

larger motif than 77.

Example 3.9. Considering Figure 3.8, the following triplets are node-
mazimal: (0,0,{e, k,1}), (0,0,{f, k,1}) and ({c, h,i,7,1},0,{f, k}). Indeed
in each case, no other node can be added to one of the sets A, B or C,
unless reducing one of the other set.

However, these triplets are not edge-maximal with respect to inclusion: they
are all covered by the triplet ({c, h,1, j, 1}, {d, e, f}, {k}), which is both node-

and edge-maximal.

A correct notion of maximality must therefore refer only to maximality with
respect to inclusions of the set of edges represented by concepts. This is the purpose
of definition 3.2.
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Definition 3.2. FEdge-maximal triplet A triplet T} covering edges FE; is edge-
maximal iff there is no triplet T covering edges Fs so that E; C Fs over the same

graph context.

We will often use the term maximal triplet to refer to edge-maximal triplets
in the rest of this document. Note that the two maximal triplets of examples 3.8
and 3.9 cover exactly the same edges, and are both maximal. It follows that a
triplet can be maximal, yet can be written in multiple ways. This is why we
will introduce the notion of canonical writing of triplets in section 3.4. Together
with edge-maximality, this will lead to the formal definition of triplet concepts in
section 3.5.

Due to this equivalence between several representations, determining if a given
triplet is edge-maximal is not a trivial task. A later section (3.6) introduces a
first restriction on triplets, admissibility, which is a necessary condition for edge-
maximal triplets. This will ease the derivation of triplet concepts from standard

formal concepts detailed in section 3.8.

al/blcldle|flg|h|i]|]j|k]|]
a X | X X | X | x

b X | X X | X | %

C XX | X[ X|[X|X]|x]|x
d|x|x|x X | X | X|X]|X]|X
e| X |x|x X | X[ X[ X|X]|X
f X X | X | x| x|x
gl X[ X[ X|x]|x X | X

hix|x|x|x]|x]|x]|x X | X | %
1 [X|X[X|X]|X|X]|X]|X X | X
j X | X | XX X | X X
k X | X | X|Xx X | X | X X
1 X | X | X X

Figure 3.8 — Formal context of a dense graph, yielding a total of 93 formal concepts.
Two of the maximal graph cliques are intersecting : {d, g, h,i} and {c, h, i, j, k}.

3.4 Triplet canonical form

Previous sections defined triplets and edge-maximal triplets. However, many

maximal triplets are edge-equivalent: they cover the exact same motif. This sec-
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tion defines a normal form of triplets, per definition 3.3. Proposition 3.1 proves it
canonical, ensuring the unique representation of any triplet concept. The compu-
tation of the normal form of a given triplet is shown in Algorithm 5.

As shown in previous sections, for instance in example 3.8, an edge-maximal
triplet can be written in different forms. For instance, ({a}, {0},0), ({0}, {a},0)
and (0,0, {a, b}) all describe triplet concepts of same cover. So are ({a, b}, 0, {c, d}),
(0,{a,b},{c,d}) and ({a,b},{c},{d}). More generally, A and B can be safely in-
verted in any triplet, and one node of C' can be moved in A (or B) if A = ()
(B =10).

The normal form definition is therefore motivated by the following observations.
First, if the A set or the B set is a singleton, then the corresponding node is linked
to all other nodes of the triplet, therefore is ubiquitous. Because all ubiquitous
nodes can belong to €', the normal form is enforcing it. It prevents them to have
multiple acceptable places when A or B are empty. Second, to break symmetry
over A and B, the minimal element must always be in A or C'. One of the direct
consequence is that A can be empty only if B is empty (A =0 — B = 0).

Let us now define the normal form of a triplet:

Definition 3.3. Normal form of a triplet A triplet T' = (A, B, C') is written in

normal form if and only if:
1. |A| #1and |B| #1
2. min(AU B) = min(A)
For min(X) being the minimal element of X in lexicographical order.
Proposition 3.1 states that, by the sole use of these two properties, the normal
form identifies each triplet concept in a unique, collision-safe way. As a conse-

quence, Algorithm 5 describes the computation of the canonical representation of

a triplet.

Proposition 3.1. The normal form defined in 3.3 is canonical: two triplets cov-
ering the same edges have the same normal form. Conversely, if two triplets do

not cover the same edges, they have a different normal form.

Proof. Let Ty and T, be two triplets of respective canonical form (A, B,C) and
(D, E, F), both covering the same edges. Since both nodes and edges are the same,
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so are ubiquitous nodes, hence C' = F'. It follows that AU B = D U F, hence by
the canonical form, min(A) = min(D). All edges of T linking min(A) to b € B
must also be covered by T, therefore B = E, which implies that A = D. O

r

Example 3.10. Let us consider the list of triplets in Table 3.1 (right
column). Some of them are already in normal form, including 7} =
({a,b,c,d},0,{e, f}), Ty = (0,0,{a,d,e, f}) and T7 = ({a,b},{c,d},{e, [}).
On the other hand, Tig = (0,{a,b,c,d},{e, f}), Tz = (0,{a,b},{d, e, f})
and T3 = ({c¢,d},{a,b}, {e, f}) are not in normal form. Using Algorithm 5,
it is easy to derive it, thus obtaining, respectively, T, T5 and T%.

In this table, all triplet representation where already ensuring that ubiqg-
uitous nodes were in the C' set, hence the writing of ({a,b,c,d}, 0, {e, f})
instead of for instance ({a, b, c,d},{e},{f}), already fulfilling the condition
of non-singletons A and B.

Finally, note that one triplet, 7%, is both edge-maximal and in normal form.

\

Algorithm 5 An algorithm to get the canonical normal form of a given triplet.
Require: Triplet (A, B,C)
Ensure: (A, B,(C) is in normal form
if |A| =1 then
C+—CUA
A+
end if
if |B] =1 then
C+~CuB
B+
end if
if (AU B) # 0 and min(AU B) = min(B) then
A B+ B,A
: end if

— =
= O

3.4.1 Canonical form of special and degenerated cases

As shown in sections 3.2.2 and 3.2.3, there are multiple special and degenerated

cases of triplet concept/overlapping biclique. Let us review the canonical form of
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these cases.

Triplet special cases

Obviously, a biclique is represented as (A, B, () and its symmetry is broken by
having the minimal element in A. A clique is represented the single obvious way:
(0,0,C). A nested biclique (Figure 3.6c¢) is represented by (4,0, C).

Triplet degenerated cases

A star, of central node ¢, as shown in figure 3.7a, is represented as (A, (), {c}),
because ¢ being ubiquitous in the motif, and because A cannot be empty while B
is not. In the particular case where there are only two nodes (that is, an edge as
per Figure 3.7¢), both are relocated to C, since both nodes are ubiquitous: a single
edge (a,b) is therefore represented as (0,0, {a,b}), i.e. a clique of two elements, as

per Figure 3.7d.

The canonical form enables a unique representation of triplets. As shown in

the next section, it is necessary for a precise definition of triplet concepts.

3.4.2 Canonical form and triplet equivalences

A triplet can be written in many ways. The exact number of existing equivalent
triplets depends of the number of node in each set. In most cases, the symmetry
between A and B yields two different equivalent writings. Also, when A and B
are empty sets (or singletons), the number of equivalent triplets is quadratic with
respect to the size of the C set: it equals the number of ways to distribute nodes of
C in A and B. For instance, the total number of equivalent writings for a triplet
(0,0,C)is 14 |C| x (|C|+1). When exactly one of the sets A, B is not a singleton,
the number of equivalent writings for a triplet is 2 + 2 x |C/|. Also, the symmetry
between A and B produces a new writing, hence there is always at least 2 possible
ways to write a triplet if A # B: (A, B,C) and (B, A, C).
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Example 3.11. The triplet (0,0, {a,b}) (|C| = 2) is equivalent to 6 oth-
ers: ({a},0,{b}), (0,{a},{0}), ({b},0.{a}), (,{b}.{a}), ({a},{b},0) and
({0}, {a},0).

The triplet (0, {a,b},{c,d}) (|B| = 2, |C| = 2) is equivalent to 5 others:
({a, b}, {c}{d}), ({a,b},{d},{c}), ({c}.{a b}, {d}), ({d},{a,b},{c}) and
({a,0},0,{c,d}).

3.5 Triplet concept definition

This section integrates the notion on triplet seen so far to introduce triplet
concepts. We provide first a definition, then examples of triplet concepts for each

of the three exposed graph contexts in examples 3.12, 3.13 and 3.14.

Definition 3.4. Triplet concept

A triplet concept is an edge-maximal triplet in normal form.

Example 3.12. Let us consider the list of triplets issued from Figure 3.1
in Table 3.1 (right column). The only triplet that is both edge-maximal and
in normal form is 7. It is therefore a triplet concept. Note that 7% covers
the full graph context. Therefore, no other triplet concept exists, since such

a triplet concept cannot cover more edges than 7%.

Example 3.13. Only one triplet covers the graph context of Figure 3.2,

namely 77 =({a, c},0,{b}). It is therefore edge-maximal. T is also written

in normal form, therefore it is a triplet concept.
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Example 3.14. The graph context in Figure 3.8 issues 8 triplets concepts:
({a,b,c,d,e, f,q,7,k},0,{h,i})
({d.e, f,9,5,k},0,{c, h,i})
({a,b,¢,9,5,k},{d, e}, {h,i})
({9, 4, k},{d, e}, {c, h,i})

({d.e, f},0,{c, h,i, 4, k})

({e, by, 4,1}, {d, e, f},{k})
({a,b,c},{d, e}, {g, h,i})
({a,b,c,g,h,i,5,k, 1}, {d, e}, 0)

92 of the 93 formal concepts are covered by the 7 first triplet concepts.
The remaining formal concept {a,b,c, g, h,1,j, k,1} x {d, e} is also a triplet
concept with the clique part empty.

Next sections will detail the theoretical study of triplet concepts. The remaining
sections will address more practical aspects of triplet concepts, such as mining

methods and ordering.

3.6 Triplet admissibility

Section 3.3 defined the edge-mazimality of triplets. For a given graph context,
it is possible to determine its derived edge-maximal triplets, but a naive imple-
mentation of the verification of this property could have a significant cost. This
section provides four simple propositions, globally discriminating triplets that are
not edge-maximal without relying on a complete comparison of all triplets. These

four properties will be used for later triplet concept search implementations.

Let us start with an example (3.15) showing how some triplets may be pruned

from the search space of maximal triplets.
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3.6. Triplet admissibility

Example 3.15. We consider the graph context in Figure 3.1 and the triplet
Ty =({a,b,c,d}, 0, {e, f}) derived from it (line 1 in Table 3.1). Since node a
and b are both linked to ¢ and d, {a,b} x {c,d} is a biclique (cf Figure 3.1),
and B is empty in 7. It means that the biclique can be added to T}, by
transferring {c,d} from A to B. Once again T,,,, is covering strictly more
edges than T7. Hence, T} is not maximal.

Let us now consider the triplet 7o = (4,B,C) = ({a,b},0,{d,e, f})
(line 2). This triplet can be written in different forms, such as 75 =
({a,b}, {d},{e, f}). T is not edge-maximal, since it is fully covered by triplet
Tnaz = ({a,b}, {c,d},{e, f}) (line 10). More precisely, T3 (and therefore T5)
is not edge-maximal because ¢ could have been added to B (it is connected
to all elements of AU C).

More generally, the edge-maximability of a given triplet may be refuted using
nodes external to the subgraph context associated to the triplet. Because adding
a new element to a triplet implies that new edges are covered, it follows that if
a node can be added to a triplet, the triplet cannot be edge-maximal. The most
basic case, handled by proposition 3.2, is an outsider node e connected to all nodes
of the triplet, in which case the triplet is by definition non-edge-maximal, since e
could be added to C. Similarly, if e were connected to all nodes of AU C', it could
be added to B. Similarly, one can observe that a node in the A set of a triplet
concept cannot be linked to all other nodes. As per definition 3.3, such a node has

to belong to C' in the canonical form of the triplet.

Proposition 3.2. Let T = (A, B, C) be a triplet of the graph (V, E). If there exists
an element of V' \ BUC' in relation with all elements of AU C, or if there exists
an element of V. \ AU C in relation with all elements of B U C, then T is not

edge-mazimal.

Proof. Let T'= (A, B,C) be a triplet, N = AUBUC, and e ¢ N an element
in relation with all elements of AU C. Then Theer = (A, BU {e},C) is a triplet
covering strictly more edges than 7'. Same reasoning applies for e in relation with
all elements of BUC. If e is in relation with all elements of N, then ({A},{B},{CU

{e}}) is a triplet covering strictly more edges than 7T'. If A is a clique and not a
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singleton, then Tyeyer = (0, B,C U A) covers strictly more edges than T'. If A is
a singleton, T.gu:m = (0, B,C' U A) is equivalent to T' (but in normal form). Same

reasoning applies for B. O

Proposition 3.3 enables to discriminate some triplets following the same exclu-
sion logic, but whose representation precludes the use of proposition 3.2. In exam-
ple 3.15 for instance, T, was not fulfilling the conditions of proposition 3.2, but the
equivalent triplet 73 was, because it was easy to add a node in B. Proposition 3.3

allows to match triplets such as T5.

Proposition 3.3. Let T = (A, B,C) be a triplet of the graph (V,E), and N =
AU BUC, such that the size of A or B is less than 2. If there exists an element
e € E\ N, which is in relation with all elements of N except one element of C,

then T is not a mazximal triplet.

Proof. Let T = (A, B,C) be a triplet, and N = AU B U C, such that A = (),
f € C,and e ¢ N an element in relation with all elements of N \ {f}. Then
Toerter = ({e, [}, B,C\ {f}) is a triplet covering strictly more edges than T". If A
is a singleton, the node n € A can be moved to C' (it is by definition linked to
all other nodes of N), and since A becomes empty, proposition 3.2 applies. Same

reasoning applies with B instead of A. n

Proposition 3.4 handles the T7 case described in example 3.15, where the A set
is a biclique whose two node sets can be placed in A and B in order to achieve a

greater cover of the graph context.

Proposition 3.4. Let T = (A, B,C) be a triplet of the graph (V, E), such that
B =0 (or A=0). If a partition P = {Py, P,} of A (or B) exists, such that all

elements of Py are in relation with all elements of Ps, then T is not edge-maximal.

Proof. Let T = (A, B,C) be a triplet, such that B = (). A is partitioned by
P ={P, P}, and for x € P, y € P, we have rel(z,y). Trepter = (P1, P2, C) is a
triplet covering strictly more edges than T'. Same reasoning applies by exchanging
A and B. ]

From these propositions, we define the admissible triplets.
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Definition 3.5. Admissible triplet Any triplet that does not match proposi-

tions 3.2, 3.3 or 3.4 is an admissible triplet, i.e. admissible for edge-maximality.

We have defined triplet concepts as a particular representation of edge-maximal
triplets, which represent maximal overlapping bicliques in the underlying graph.
The set of edge-maximal triplets has yet to be enumerated. A first approach is
to try to relate their enumeration to the enumeration of formal concepts in the
(reflexive) context graph. It results in a first algorithm, presented in the next

section.

3.7 Triplet concept ordering

The triplets concepts, as shown in previous sections, are themselves a particular
representation of a subset of the formal concepts issued from the reflexive graph
context. This section aims to show that the set of triplet concepts are partially
ordered, likewise to formal concepts, but cannot simply be represented as a (semi)
lattice.

Definition 3.6 proposes to use a natural inclusion relation between triplet con-
cepts based on the inclusion of the sets, which is proved to be a (partial) order.
We give then a formulation of the meet and the join operators derived from their
calculation on formal concepts. Example 3.16 provides an example of a triplet set
whose structure, shown in Figure 3.9, is not a lattice with respect to the definitions

of meet and join.

Definition 3.6. Let 77 = (A1, B;,Cy) and Ty = (As, By, C5) be two triplet
concepts. We say that T3 is lower than or equal to T3, denoted (A, By,C) <
(AQ,BQ, 02), if and only if Al g AQ, Bl 2 BQ and Cl 2 02.

Proposition 3.5. Let T be the set of triplet concepts derived from a graph context.

The binary relation < over triplets is a partial order on (T).

Proof. ¥or any T,,T7,,T, € T, T, = (A;, By, Cy), T, = (4,,B,,C,) and T, =
(A,, B.,C.), we have:

— (As, B, Cy) < (Ag, By, Cy) since A, C Az, B, O B,,C, DO C, (reflexivity)
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— A, € Ay and A, O A, is only possible if A, = A,. Same reasoning for B
and C' sets (antisymmetry)
— T, <T,and T, <T, imply that A, C A, C A,, therefore A, C A,. Same
reasoning applies for B and C' set, thus T, < T, (transitivity).
]

Now, let T} = (A4, By,C4) and Ty = (As, By, C3) be two triplet concepts. They
can be written as formal concepts on the reflexive context graph: we get F} =
(A;UCy, B UCY) and Fy = (A2 U Cy, By U (s).

The meet of the two formal concepts F; and Fy is therefore A(Fy, Fy) = ((A U
C1)N(AUCy), ((B1UCT)U(ByUC,))"). By construction, ((ByUCT)U(ByUCy))")
is equivalent to ((A; U Cy) N (Ay U Cy))', thus, for = (A; UC)) N (A U Cy), we
get A(F1, Fz) = (B\GB,0 \ B,6N ). In a similar way, we get as their join
V(Th,Ty) = (a\d, ' \a,and) fora = (A4, UC)) N (A2 UCy).

The largest triplet concept per these definitions is a triplet concept (A, (), U)
containing all nodes of the graph in its A set, except the globally ubiquitous nodes
U.If U = (), this maximal triplet is a dummy triplet covering no edges. Conversely,
the smallest triplet concept is a dummy triplet (0, V; V). However, those definitions
of meet and join do not suffice to constitute a triplet concept lattice: as shown in

example 3.16, the join and meet are not necessarily triplet concepts.

a 3

Example 3.16. Let us consider the set of 8 triplet concepts de-

rived from the graph context in Figure 3.8, containing among oth-
ers T1 =({a,b,c},{d,e},{g,h,i}), To =({a,b,c,qg,j k}, {d e}, {h,i}),
Ts =({c, h,i,7,l},{d, e, f},{k}) and Ty =({d, e, f},0,{c, h,i,j,k}). Accord-
ing to definition 3.6, Ty < T3, because {a,b,c} < {a,b,c,¢9,7,k}, {d,e} =
{d,e} and {g, h,i} > {h,i}. T3 is not comparable to T; and T5. The graph of
triplet concepts where larger triplet concept are above is given in Figure 3.9.
However, it is not a lattice. According to Figure 3.9, the join of T, and T3
it is the supremum, ({a,b,c,d,e, f, g, h,i,j,k,1},0,0). On the other hand,
according to the formulation of the join, it is the non edge-maximal triplet
({c,d,e, f,h,i,5,1},0,{k}). Indeed, this last triplet is covered by T5.
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Triplet Lattice
It follows that the triplet concepts do not form a lattice. It seems that the
condition used to break the symmetry of triplet concepts precludes the lattice

structure.

As shown in example 3.17, by using the symmetric (B, A, C) instead of the
triplet concept (A, B,C), one can obtain a better characterization for the meet

and the join.

Example 3.17. Starting again from example 3.16, but replacing
({def},0,{chijk}) by its non-canonical representation (0, {def},{chijk})
in the set of triplet concepts, the two definitions correctly
yield ({chijl},{def},{k}) as the join of ({def},0,{chijk}) and
({chijl},{def},{k}). Note that it also correctly identifies a triplet
concept as the join of all pairs of triplets in the graph of inclusion. In
other words, the overall graph structure in Figure 3.9 is a semi-lattice of
supremum ({abcde fghijkl}, ), ) when using the symmetric of a triplet
instead of the triplet itself.

Adding symmetries

The graph of inclusion can be completed with symmetries by adding 7, the set
of symmetric triplets (B, A, (), and reversing the direction of inclusions for the
cliques of T: (A1, By, C1) < (Ay, By, Cs) if Ay C Ay, By O By and C; C Cy (note
that only the clique relation changes). The resulting graph of inclusion of 7 U T
is given in Figure 3.10. For edges linking an element in 7 and an element in 7T
(bold edges in the figure), the relation of inclusion between cliques can appear in
both directions. This representation can explain the observation in example 3.17,

as shown in example 3.18.

111



Chapter 3 — Triplet concepts: an extension of FCA looking for overlapping bicliques

abcdef
ghijkl

Figure 3.9 — Graph of inclusion of triplet concepts issued from the graph context
in Figure 3.8. A is shown as the upper label of each node, B as the lower label,
and C' as the center label. The supremum is the dummy triplet covering no edge.
The infimum is not a valid triplet, but is included for clarity.

Example 3.18. Let us now consider the graph of inclusion with symme-
tries in Figure 3.10. It appears that the join of triplets (0, {def}, {chijk})
and ({chijl},{def},{k}) is in this representation ({chijl},{def},{k}).
This is consistent with the observation of example 3.17, where the use of
(0,{def},{chijk}) (rightmost dashed node on the seventh line) in place of
({def},0,{chijk}) (leftmost node on the fifth line) enables to find a join
that is also a triplet concept: ({chijl},{def},{k}).

This suggests that the canonical writing of triplets may need to be relaxed or

redefined in order to get a lattice structure. This is left as an open problem.
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Following sections will explore the triplet concept enumeration problem and its
relation to MCE.

3.8 Triplets as a combination of formal concepts

We start with a proposition allowing, together with the admissibility constraints,
the definition of admissible triplets as a combination of formal concepts issued from
the non-reflexive graph context. We then propose an enumeration (Algorithm 6)
derived from this proposition. An ASP implementation of the proposition, used
with admissibility constraints, is detailed in section 3.9.4.

The intuition behind proposition 3.6 and subsequent algorithm 6 is that a
triplet concept (A, B, (') is composed of three formal concepts derived from the
non-reflexive formal context: (4, BUC), (B, AUC) and (C, AUB). The proposition

details the exact properties these formal concepts must fulfill.

Proposition 3.6. Let A, B, C be three disjoint sets of vertices from a non reflexive
graph context G. Using the standard derivation operation of FCA on this context
graph, the following property holds:

The triplet of disjointed non empty sets T = (A, B,C) is a triplet if and only
if C is a clique in the induced subgraph G(AU B U C), and there exist three sets
D, E and F disjoint of sets A, B and C' and three concepts (A", A"), (B", B'), and
(C",C") such that:

A" = BUCUD (3.2)
B = AUCUE (3.3)
C' = AUBUF (3.4)
DNF = ENF=10 (3.5)
A" = A (3.6)
B" = B (3.7)
c" 2> C (3.8)

Proof. Assume T is an edge-maximal triplet. First, we need to prove that A” = A
and B"” = B. Let vertex s € A” ¢ A. Because s € A”, s is linked to all vertices
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of A= BUC U D. Therefore, (AU {s}, B,C) is a triplet, thus 7" is not maximal
(Proposition 3.2). As a special case, if s is also linked to all elements of A, then

(A, B,C U {s}) is also an edge-maximal triplet. Same reasoning applies if vertex

se€ B" ¢ B.

For any triplet (A, B,C), Ax(BUC), Bx (AUC), and C' x (AUB) are bicliques
of the graph. This implies that BUC C A", AUC C B, and AUB C (' and
the first three equations 3.2 to 3.4 are valid. Assume that there exists an element
x € DNF. Insuch acase z € A" and x € C’. This implies that (AuCU{z}, BUC)
is a valid biclique. Since the biclique (A U C, B U C) is maximal,  should belong

to A or C', a contradiction.

For the reciprocal, assume concepts (A, A"), (B, B’), and (C,C") exist with the
properties in equations. Then (AUC, BUC) is a biclique of the graph. One has to
check that this biclique is maximal. If (AUC Uz, BUC) is a biclique, x ¢ AUC,
then = € FE from the definition of B" in concept (B, B’). Now if x € B, then z
appears on both sides of (AU C U {z},BUC) and C is not a maximal clique
on G(AUBUC). Thus x ¢ B. One can deduce x € F' from the definition of C’
in concept (C,C"). The conclusion is that x € E N F, a contradiction. The same

reasoning applies if one adds an element to the right of the biclique. n

One should note that the three concepts chosen for sets A, B and C' are not
necessarily all different. There is in fact a specific case to study. When there is
no ubiquitous node in the graph, the supremum formal concept is of the form
(V,0) (V being the nodes of the graph), and the infimum formal concept is of the
form (,V). In that case, if the infimum is used to determine B and C, then A
will be associated to the supremum (others concepts will not populate A with all
nodes, and therefore will not be admissible). In such a case, we obtain the triplet
(V,0,0), which is not an edge-maximal triplet, since it covers no edge. However,
that triplet is, as it was described in section 3.7, the supremum of the triplet semi-
lattice. From proposition 3.6 can be devised a brute-force algorithm to compute
the triplet concepts, and an ASP encoding exploring the concept combinations
and yielding one model for each triplet. Algorithm 6 presents the former, and
section 3.9 the latter.
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Algorithm 6 A brute-force algorithm to compute triplets from formal concepts,
relying on proposition 3.6. Obtaining the normal form of yielded triplets (thus
the triplet concepts) is a simple post-process. An ASP implementation of the
proposition is presented in section 3.9.
Require: Nodes N, formal concepts C
Ensure: Computation of edge-maximal triplets

1: for all A Cc N do

2. forall BCN|ACDB do

3: for all C C N | AUB C C" and clique(C) do
4: D <+ A\ (BUC)

5: E«+ B \ (A U C)

6: F+ C'\(AUB)

7: if DNE=ENF=0and BUC C A and AUC C B’ then
8: for all maximal clique D of C' do

9: if (A, B, D) is admissible then

10: yield (A, B, D)

11: end if

12: end for

13: end if

14: end for

15: end for

16: end for

3.9 Triplet concept enumeration

The enumeration of triplet concepts problem is defined as follows: given a graph
context, yield all triplet concepts in that context. More generally, the enumeration
of edge-maximal triplets is the most complex task, since the determination of their
normal form (i.e. getting canonical form of triplets) can be managed (as shown in
section 3.4, with Algorithm 5), as a simple post-process.

This section will explore approaches to the resolution of that problem. First,
section 3.9.1 addresses the encoding of the admissibility conditions detailed in
section 3.6.

The input graph context can be represented in multiple ways: the set of rela-
tions in the graph context, the set of formal concepts issued from it, and the set of
formal concepts issued from the reflexive graph context are three equivalent rep-

resentations of the same dataset. Note that the theoretical ground for generation
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of triplets from the formal concepts issued from the non-reflexive graph context is
given in section 3.8. This section will encode the search for admissible triplets for
each of these representations. Sections 3.9.2 and 3.9.3 detail two different ways to
enumerate the triplets, starting respectively from the reflexive graph context, and
from the reflexive formal concept set. Section 3.9.4 proposes an implementation
relying on the combination of formal concepts to get triplets concepts, as detailed
in section 3.8. Final section 3.9.5 compares the different implementations.

The three described methods, aim to produce in a fairly straightforward way
a sufficient set of triplets (in the worst case, all items of the right column of Ta-
ble 3.1). When solved together with the encoding of admissibility conditions pre-
sented in section 3.9.1, it happens that most if not all solution triplets are edge-
maximal. Admissibility is thus a property strongly related to edge-maximality,
although we have not been able so far to prove an equivalence between both prop-
erties. For completeness, a filtering of non edge-maximal triplets is theoretically
necessary to discard all admissible triplets that are not edge-maximal. This re-
duction from admissible triplets to triplet concepts requires a costly comparison
of triplets’ edge covers. It is straightforward, thus not detailed here. However, we
should note that we never encountered a test case where this costly post-process
was needed: the admissible triplets were, once written in canonical form, also the

triplet concepts.

3.9.1 Encoding the admissibility conditions

As presented in section 3.6, it is possible to discard non-maximal triplets by
testing some of their properties and relations with outsider elements.

Encoding 3.1 implements these conditions, invalidating the current model if
the described triplet is not admissible. It is to be grounded with a/1, b/1 and
c/1 atoms encoding the triplet (A, B, C'), and with rel/2 encoding the symmetric

relation between elements.

Prior definitions
Lines 2 to 10 are defining helpers for later constraints. outside/1 (line 2) is

defining the elements inside and outside the triplet. Lines 3 to 5 are reducing the
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% Prior definitions.

outside(X) :— rel(X,_) ; not a(X) ; not b(X) ; not c(X)
outside_to_a(X) :— outside(X) ; rel(X)Y): a(Y).
outside_to_b(X) :— outside(X) ; rel(X,)Y): b(Y).
outside_ to_ c(X) :— outside(X) ; rel(X)Y): c(Y).
outside__to_c_but_1(X) :— outside(X) ; 1{ not rel(X,C): c¢(C) }1
a_or_b_empty_ set :— not a(_).

a_or_b_empty_ set :— not b(_)

a_or__b_ singleton — 1 {a() } 1.

a_or__b_singleton — 1 {b() } 1

% If an outsider element is linked to all but the elements of A or B,
% the concept is mot admissible.

:— outside_to_a(X) ; outside_to_ c(X).

:— outside__to_b(X) ; outside_to_ c(X).

% A node of A (B) cannot be linked to all other nodes of A (B).

— a(X) ; rel(X)Y): a(Y), XI=Y.

— b(X) ; rel(X,Y): b(Y), XI=Y.

% If A or B is emptyset or singleton, and an outsider element
% linked to A UB U C but one of C, the concept is not admissible.
:— a_or_b_empty_set ; outside_to_c_but_1(X)
; outside__to__a(X) ; outside_to_b(X).
:— a__or__b_singleton ; outside__to_c_ but_1(X)
; outside_ to_a(X) ; outside_to_b(X).

% When B is empty, the complementary graph of A
% shouldn 't have 2 or more connected components.
same__cc(M) :— M=#min{X:a(X) }.

same_cc(X) :— a(X) ; not rel(X)Y) ; same_cc(Y).
:— a(X) ; not same_cc(X) ; not b(_).

Encoding 3.1 — Implementation of the admissibility conditions for triplet edge-
maximality.
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set of outsiders to those linked to all elements of sets A, B or C. Line 6 computes
the outsiders connected to all but one element of (', in order to implement propo-
sition 3.3. Lines 7 to 10 are detecting specific cases regarding the cardinality of A

and B.

Implementations of the propositions
Proposition 3.2 is implemented by lines 14-18, ensuring that no outsider (lines
14-15) nor a node in A or B (lines 17-18) is linked to all elements of AU C' (line
14) or BU C (line 15). Proposition 3.3 is implemented by lines 22-25. The first
constraints reads "discard model if a or b is an empty set, and if X is an outsider
linked to all elements of A, of B, and to all elements of C' except one". The second
constraint acts likewise when A or B is a singleton. Proposition 3.4 is implemented
by lines 29-31, grouping with same__cc/2 the minimal element of A (line 30) and
all that are not linked to an element of the group. The group therefore corresponds
to a connected component in the complementary graph of A. If any node of A does
not belong to the connected component, then A is covered by a biclique. Therefore,
line 31 discards any model with an empty B and an element of A that does not
belong to the connected component. Note that the same constraint for B is not
implemented ; because the normal form precludes the symmetry between A and B
(see second condition of definition 3.3). Therefore, it is enforced in later encodings
that if A is empty, then B is empty.
Later ASP encodings will propose methods to yield the triplets. Solved together
with the admissibility conditions constraints, it will reduce the output models to
admissible triplets, thus diminishing greatly the amount of triplets to filter to

obtain maximal triplets.

3.9.2 Triplets with a brute-force enumeration
It is possible to encode the definition of triplets in ASP quite directly (See en-

coding 3.2), using only the link information (rel/2 atoms).

Input data and triplet composition Line 2 ensures the symmetry of the

input relation, needed to enumerate all possible triplets. Lines 5, 6 and 7 are build-
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3.9. Triplet concept enumeration

% Ensure symmetry of the input relation.
rel(X)Y) :— rel(Y,X).

% Choose the composition of triplet concepts.
{ a(0): rel(O,_) }.
{ b(A): rel(A,_) }.
{ c(C): rel(C,_) }.

% Ensure that sets are disjoint.

:— a(0) ; b(0O).

:— ¢(0) ; b(0O).

:— a(0) ; c(0).

% Ensure existence of required rels between sets.
:— not rel(O,A) ; a(O) ; b(A).

:— not rel(O,C) ; a(O) ; c(C).

:— not rel(A,C) ; b(A) ; c(C).

:— not rel(D,C) ; ¢c(D) ; c(C) ; C=

% break symmetry

:— b(A) ; AO: a(0O).

% Discard supremum when empty.
:— not b(_) ; not c(_).

Encoding 3.2 — Generation of triplets using a full enumeration of possible sets.
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ing the sets A, B and C' of the triplet concept with a choice rules. The absence of
cardinality constraint enables each set to contain any number of elements, includ-
ing zero. Each set is built upon elements found in rel/2, with external constraints
in lines 10-12 (e.g. := a(0) ; b(0)) to preclude the three sets to overlap. Con-
straints in the choice rules (e.g. {a(0): rel(0,_), not b(0)} for A) could also
have been used for that purpose. Note that the constraint on the B set ensures

that the chosen elements are in relation with at least one element of A.

Triplet consistency  Lines 15 to 18 ensure that relations are holding between
members of different sets, and within C. Line 21 breaks the A — B symmetry,
discarding (B, A, C'), doublon of (A, B, (), by cancelling models where an element
of B is smaller than one in A. Line 24 discards the supremum (A, @, () obtained
from the supremum formal concept, if it covers no edges. See section 3.7 for more

about the supremum in the triplet concept ordering.

This encoding is very much like the Two-Liner implementation of the formal
concept search in section 1.5.3: it encodes the full search space, with no considera-
tions for efficiency. Together with encoding 3.1, it restricts the models to admissible

triplets.

3.9.3 Triplets from the formal concepts

This approach exploits the reflexive version of the graph context, by deriving
a triplet from each formal concept found in the graph context with all reflexive

edges. The implementation is detailed in encoding 3.3.

Input data and triplet composition This encoding first ensures that the
rel/2 atoms are symmetric (line 2) and reflexive (line 3). Then, it describes the
enumeration of formal concepts using the Two-Liner idiom (lines 6 and 7). It then
computes the associated triplets using definition 3.1, obtaining the sets A , B and
C' encoded respectively by atoms a/1, b/1 and c/1).

The rule in line 15 discards (B, A, C), doublon of (A, B, C). Line 18 discards

the supremum triplet, exactly as in encoding 3.2.
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% Ensure symmetry and reflexivity of the input relation.
rel(X)Y) :— rel(Y,X).
rel(X,X) :— rel(X,_).

% Mine formal concepts.
obj(0) :— rel(O,_) ; rel(O,A): att(A).
att (A) :— rel(A,_) ; rel(O,A): obj(O).

% Convert formal concept as triplet.
a(0) :— obj(O) ; not att(O).

b(A) :— att(A) ; not obj(A).

c(C) :— obj(C) ; att(C).

% Break symmetry on extent and intent.

:— b(A) ; AO: a(0O).

% Discard supremum when empty.
:— not b(_) ; not c(_).

Encoding 3.3 — Generation of triplets as concepts in the reflexive graph context.

Note that, unlike the two other methods, this generation does not need the
constraints implementing proposition 3.2. This is because it computes triplets di-
rectly from individual concepts, that are already maximal objects, and therefore

cannot have an outsider node linked to all elements.

3.9.4 Concept combination approach

As detailed in section 3.8, triplet concepts may be derived from combinations of
formal concepts. Encoding 3.4 ought to be the direct translation of proposition 3.6,
implemented with Algorithm 6 that describes the search for combinations of con-
cepts forming a triplet concept, using previously mined formal concepts. As a last
step, formal concepts that are not covered by triplet concepts are added to the set
of triplet concepts with C' as an empty set. The program is taking as input not
only the relations rel/2, but also the formal concept encoded as ext(N,0) and

int (N, A), standing for the extent and intent of the N-th formal concept.

Input data and triplet composition Lines 2 and 3 compute the input

relations from the input formal concepts. Relations will be needed later for clique
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% Get the symmetric context from the concepts.
rel(O,A) :— ext(C,0) ; int(C,A) ; O'=A.
rel(AO) :— rel(0O,A).

% Choose three concepts.

1 {one(C): concept(C) } 1.
1 {two(C): concept(C) } 1.
1 {tee(C): concept(C) } 1.

% Eztents of the three concepts.
a(X) :— one(C) ; ext(C,X).

b(X) :— two(C) ; ext(C,X).
cbase(X) :— tee(C) ; ext(C,)X).

% There is one triplet for each mazimal clique in C.
1 { cX): cbase(X) } :— cbase(_).

— ¢c(X) 5 c(Y) ; XY ; not rel(X)Y).

:— cbase(X) ; not c(X) ; rel(X)Y): c(Y).

%AUB, AUC and BUC

aub(X) :— a(X). aub(X) :— b(X).
auc(X) :— a(X). auc(X) :— cbase(X).
buc(X) :— b(X). buc(X) :— cbase(X).

% First concept must be (A, BU C U X) ; same for the two others.
:— one(C) ; not int(C,A) ; buc(A).

:— two(C) ; not int(C,A) ; auc(A).

:— tee(C) ; not int(C,A) ; aub(A).

% Break symmetry.

:— b(A) ; AO: a(0O).

% Discard supremum when empty.
:— not b(_) ; not c(_).

Encoding 3.4 — ASP encoding of triplet search using proposition 3.6.
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ensuring. Three formal concepts are chosen in lines 6-8.

Triplet consistency  Lines 11-13 extract the content of chosen formal concepts
to populate sets A, B and Cjuse. In the proposition, C' is only the extent of a
formal concept, not necessarily a clique itself. Lines 16-18 enumerate all maximal
cliques in Cyyse, giving one model for each valid clique C'. Lines 21-23 define the
union of the sets, used in lines 26-28 to ensure that conditions 3.2, 3.3 and 3.4
of proposition 3.6 hold. The remaining rules, lines 31 and 33, discards (B, A, C),
doublon of (A, B, (), and the supremum triplet, exactly as in the two previous

encodings 3.2 and 3.3.

Grounded with the admissibility constraints, this generation method achieves

the same results as previous encodings.

3.9.5 Comparing the three triplet concept search imple-

mentations

The three previously presented implementations are compared using a small
randomly generated dataset. Results are shown in Table 3.2. The two datasets
differ in size, i.e. number of objects. Both have been randomly generated using a
naive uniform generation: each relation has a chance to appear equal to the density

(40% in our case).

The first implementation, described in section 3.9.2; relies on the full enumer-
ation of all possible triplets, and their filtering with many constraints. The second
implementation, described in section 3.9.3, computes the triplets as formal con-
cepts on a reflexive context, with additional constraints. Both of these methods
achieve a result in an acceptable amount of space and time. On the other hand,
the third method, relying on the combinations of concepts, does not seem to be
usable in practice. The grounding is both 1000 times slower and 1000 times heavier

than the two previous encodings.
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Size 80 (|O] = |A] = 80) Size 40 (|O] = |A] = 80)
grounding solving total grounding solving total
size time (s) | time (s) | time (s) size time (s) | time (s) | time (s)
3.9.2 | 1.1 Mo 0.1 44.0 44.1 356 Ko 0.04 0.3 0.36
3.9.3 | 825 Ko 0.1 28.9 29.0 312 Ko 0.06 0.25 0.3
394 | 1.2 Go 98.7 >2h >2h 15 Mo 2 36 38.0

Table 3.2 — Comparison of the three triplet generation methods (full enumeration,
derivation from concepts, and concepts combination), on two randomly generated
datasets of density 0.4, with 80 and 40 nodes. First dataset has a graph context size
of 80, issuing 176 496 formal concepts and 112 051 triplet concepts (all admissible
triplets where triplet concepts). The second has a size of 40, issuing 6026 formal
concepts and 3603 triplet concepts (all admissible triplets where triplet concepts).

3.10 Maximal Clique Enumeration with triplet

concepts

Because triplet concepts are basically enumerating cliques and their biclique
neighborhood, it is possible to enumerate (maximal) cliques of a graph given the
triplet concepts as described by proposition 3.7, and illustrated in examples.

Let us first introduce lemma 3.1 that proposes the derivation of (not necessarily
maximal) cliques from triplet concepts, and the subsequent definition 3.7 providing

the clique operator on triplet and on the set of triplet concepts.

Lemma 3.1. Cliques of a triplet
Let T =(A, B,C) be a triplet concept. C' is a clique by construction. For any
element a in A, and b in B, D = C' U{a,b} is also a clique.

Proof. T is a triplet concept, therefore all elements of A and B are in relation with
all elements of C. C'U{a} is therefore a clique. All elements of A are connected to
all elements of B. Hence D = C'U{a, b} is a clique. O

Definition 3.7. Clique operator
Let 7 be the set of triplet concepts derived from a graph context, and T =
(A,B,C)eT.
CI(T) is the set of all cliques C' U {a, b} such that a is an element of A and b
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is an element of B. CI(T) describes the set of all cliques derived from 7

CUT) = {CU{a,b} |ac Abe B} (3.9)
CUT) = U cun (3.10)
T=(A,B,C)eT

Note that the number of nodes in the cliques of C(C') depends on the number
of nodes in the triplet. If A = B = (), then |C] > 2 and C is a clique of at least
2 elements. If exactly one of the two sets is empty, then |C| > 1 and there are
at least 2 nodes in yielded cliques. If C' = (), one can consider A x B as a list of

cliques with 2 nodes.

The cliques obtained from the set of triplet concepts are issued from maximal
objects: proposition 3.7 shows that a consequence of this property is that all max-
imal cliques of the graph are covered by a triplet concept, making possible their
enumeration directly from the triplet concepts. However, not all cliques generated
this way are maximal. The amount of cliques produced by a triplet concept is also

computable, as per proposition 3.8.

Proposition 3.7. MCFE from Triplet Concepts
Let T be the set of triplet concepts derived from a graph context G. CI(T) contains

all maximal cliques of G.

Proof. Let @ be the nodes of a maximal clique of G not covered by any triplet
of T. Triplet R =(0,0,Q) ¢ T is an edge-maximal triplet, that therefore should
belong to T. O

From proposition 3.7, it follows that triplet concepts are a compressed repre-
sentation of (maximal) cliques. This link between triplet concepts and maximal
cliques suggests that the number of triplet concepts remains exponential, although
it is smaller than the number of cliques it describes. If enumerating the triplets is
an efficient way to enumerate all maximal cliques remains an open question. Next
proposition 3.8 gives an upper bound to the number of maximal cliques represented
by a triplet concept. One should note that enumerating the cliques from all the

triplet concepts leads to an important amount of doublons, since an edge covered
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by n triplet concepts will appear in at least n cliques. Proposition 3.9 proposes a

way to reduce the amount of non-maximal cliques generated from triplet concepts.

Proposition 3.8. Number of locally maximal cliques
Let T =(A, B,C) be a triplet concept issued from graph G. The locally maximal
cliques Clipemaz(T) of T are the mazimal cliques in the subgraph of T in G. The

number of locally mazimal cliques is given by:
|Clisemaz(T')| = max (1, |A]) x maz(1,|B])

Proof. Let T =(A, B,C) be a triplet concept. If |[A] > 1 and |B| > 1, then only
cliques of the form C' U {a,b}, a € A,b € B are yield by Clipemaz(T), since C' and
CUx, x € AU B are covering strictly less edges. Therefore, |Clipemar(T)] = |A| X
|B|. If B is empty, Clipemas(T") only yields cliques composed of nodes CUzx, z € A,
thus [Cligemaz(T)| = |A|. If both A and B are empty, Clipemaz(T) returns the
single clique C, thus |Clipemaz(T)| = 1. H

Proposition 3.9. Non-maximality of cliques

Let T =(A, B,C) be a triplet concept issued from graph G. Let C be a clique
described by T'. C' is not mazximal if, for any other triplet concept U =(Uy, Uy, Us)
of G, one of the following holds:

— C CUUUj, \Ug| >0 for any permutation (i, j, k) of (1,2,3)
i C:Ug (IndU1UU27é@
— C C Us

Proof. Let T =(Uy,Us,, Us) be a triplet concept, and C' the nodes of a clique. If
Cl C Uy UU, and |Us| > 0, then a node ¢ € Us can be added to C, constituting
C'" = C' Uc, a clique covering more edges than C[. Same reasoning applies for any
combination of two sets of T'. If C' C Us, then only one node in U; U U, is enough
to obtain a clique covering more edges than C. If C' C Us, then Us is a clique

covering more edges than C. O]
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Example 3.19. Considering the graph described in Figure 3.1 and using
for instance the Bron—Kerbosch algorithm, we can enumerate the maximal
cliques of the graph: {a,d,e, f}, {b,d,e, f}, {b,c,e, f}, {a,c,e, f}.

First, it appears that these maximal cliques are found as triplets in Table 3.1,
at lines 4, 10, 11 and 13.

Second, the only triplet concept of that example, ({a, b}, {c,d}, {e, f}), de-
scribes all these maximal cliques.

Because there is no set of elements linked to all elements of one of these
cliques, the maximal cliques are also maximal motifs in this example (line
4,10, 11 and 13). Following lemma 3.1, the maximal cliques may be recon-
structed from some of the other triplets. For instance, clique {a,d, e, f} is
also described by triplets ({a,b},0,{d,e, f}) (line 2), (0,0, {a,d, e, f}) (line
4) and ({c,d},0,{a,e, f}) (line 6).

But some triplets do not generate any maximal -clique: triplet
({a,b,c,d},0,{e, f}) (line 1) describes the four cliques {a, e, f}, {b,e, f},
{c,e, f} and {d, e, f}.

Example 3.20. In the graph context of Figure 3.8, non-maximal cliques
{d,i,q}, {c,7,k} and {d, h,i,j,k} cannot be derived from the 8 triplet
concepts listed in example 3.14. To obtain these non-maximal cliques,
the powerset of other cliques must be explored. For instance, {c,j, k}
and {d,h,i,j,k} are subsets of the clique {¢,d,h,i,j,k} derived from
({d. e, f},0,{c, h,i,j, k}).

3.10.1 ASP implementation

The enumeration of (possibly non-maximal) cliques from triplet concepts can
be encoded in ASP. Encoding 3.5 proposes an implementation. Input atoms are
a/2, b/2 c/2 are encoding the content of sets A, B and C for each input triplet.
The encoding yields one model for each clique, encoded with clique/1 atoms.
Optionally, it is possible to provides edge/2 atoms, indicating links between nodes,

so that only the maximal cliques are provided as a result of the program.
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% INPUTS::

% a(N,X): X belong to A of triplet N

% b(N,X): X belong to B of triplet N

% c¢(N,X): X belong to C of triplet N

% edge(X,Y): X is linked to Y.

% (optional: provides only mazimal cliques)
% OUTPUT: one clique per model

%  clique(X): X belong to the clique

© 0 N 3 s W N =

=
o

% Choose the triplet.
triplet (N) :— a(N,_).
12| triplet(N) :— b(N,_).

1l triplet(N) :— c¢(N,_).

14| 1{current (N): triplet (N)}1.
15
16| % Choose a in A and b in B.

17| 1{clique (X): a(N,X)}1 :— a(N,_) ; current(N).
18] 1{clique (X): b(N,X)}1 :— b(N,_) ; current(N).
19| clique (X) :— ¢(IN,X) ; current(N).

20
21|% Only mazimal cliques .

2| edge(X)Y) :— edge(Y,X). % symmetry

23| outsider (X) :— edge(X,_) ; not clique(X).
24| :— outsider (X) ; edge(X,C): clique(C).

25

26| #show clique /1.

-
-

Encoding 3.5 — Generation of (maximal) cliques from the triplet concepts.
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3.10. Mazimal Clique Enumeration with triplet concepts

Description of encoding 3.5

First lines describe the input and output atoms. Lines 11-14 are choosing one
of the input triplet as current, i.e as the triplet under consideration. Each triplet
will be chosen once. Lines 17-18 choose one element of A and one element of B
if these sets exists: if A is empty set, no element has to be chosen from it. Note
that without the condition part (after :-) of line 17, it would be impossible to
choose exactly one item of A if A = (), hence the model would be invalidated and
all triplets with A = () would be ignored. Same goes for B and line 18. Line 19
indicates that all nodes of C' belong to the outputed clique. Lines 22-24 are (1)
ensuring symmetry of edges, (2) defining the outsider nodes, i.e. nodes that do
not belong to the outputed clique, and (3) discarding any model consisting in a
non-maximal clique. These rules assume edge/2 atoms are provided in addition.
In that regard, edge/2 atoms are optional: if not provided, the full CI(T) set will
be computed, whereas their presence restricts to maximal cliques only. Finally the
#show line restricts the output to the clique elements. As shown in example 3.19,
the same clique can be found using different triplets. As a consequence, to ensure
the unique listing of cliques, one has to project results on the clique/1 atoms,
exactly as in chapter 1, section 1.5.5, where the models of encoding 1.2 yields

doublons.

Efficiency of MCE from triplet concepts

Enumeration of maximal cliques from triplet concepts, using solely ASP encod-
ing, is not efficient compared to dedicated algorithms. On the context of size 40
used to compare triplet concept search implementation in Table 3.2, the reference
implementation of Bron & Kerbosch algorithm as adapted by [105] took 2.1073
seconds to find the 272 maximal cliques, where encoding 3.5 needed 20 seconds
(search for triplet concepts excluded) for the exact same result. Note that, without
projection to ensure the unicity of yielded cliques, encoding 3.5 would yield 1265
solutions (each clique yielded 4.6 times on average), and that without restrict-
ing the output to maximal cliques (i.e. without providing the rel/2 atoms), 967

cliques are yielded in 8 seconds (32350 cliques without the projection).

129



Chapter 3 — Triplet concepts: an extension of FCA looking for overlapping bicliques

This section ends this chapter by demonstrating the link between formal con-
cepts and cliques, proving that the triplet concepts, built from a graph motif
involving a clique component, are a descriptions of maximal cliques in the graph.

More questions will be addressed in perspectives, chapter 6.

3.11 Conclusion on triplet concepts

Summary

We introduced the term Triplet to reference a kind of formal concepts derived
from a reflexive graph context. From a graph perspective, triplets are equivalent to
overlapping bicliques, a biclique where the two sets of nodes may overlap. Triplet
concepts are represented using their triplet representation (A, B, C).

The edge-maximal triplets are a subset of triplets describing a maximal over-
lapping biclique in the underlying graph. Triplets can also be written in a canonical
way, ensuring unicity of representation of a given overlapping biclique motif. The
canonical writing of a triplet relies on two simple conditions (no ubiquitous node
in A or B, and min(A) = min(AU B)).

The triplet concepts are simply the triplets that are both edge-maximal and
written in the canonical way. The triplet concepts may be used to describe a vari-
ation of Power Graph Analysis, where instead of considering cliques and bicliques,
the compression process looks for and compress overlapping bicliques. We also
shown that the triplets concepts are partially ordered, but, with the current def-
initions of the meet/join operators and of the canonical form, they do not form
a lattice. We detailed three methods to generate the triplet concepts along their
ASP encoding, and finally explored the link between maximal clique enumeration

and triplet concept enumeration.

Compression search space with triplet concept

In section 2.4 was proposed a definition of the compression search space, where
two sets of formal concepts, issued from the non-reflexive and reflexive graph con-
texts, were used simultaneously to describe the compression search space. With
triplet concept however, both motifs are unified and the triplet concept semi-lattice

can now encode the whole compression search space alone. The motifs used to ex-
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3.11. Conclusion on triplet concepts

plore the search space are a subset of the triplet concepts, hence they can be used

alone to constitute the search space of graph compression.

See chapter 4 for an application of triplet concepts on real data, and chapter 6

for a more in-depth perspectives of this chapter.
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Figure 3.10 — Graph of inclusion of triplets of the graph context in Figure 3.8,
including the symmetric triplets (B, A,C) as dashed node. A is shown as the
upper label of each node, B as the lower label, and C as the center label. The
inclusion edges between symmetrics and triplet concepts are shown in bold, to
mark the reversion of inclusion order for the C set.



CHAPTER 4
Applications of Power Graph
Analysis

His Holiness the Flying Spaghetti Monster is Eternal,
without beginning and without end,

and with a whole tangled mess in the middle

The Loose Canon,
Second Announcement Regarding Canonical Belief, 1

Evangelical Pastafarian church, 2010

Chapter 2 detailed a rational reconstruction of Power Graph Analysis relying on
logic programming and formal concept analysis. This chapter presents applications
of this approach.

It starts with two biological networks, presented in section 4.1, and compressed
in sections 4.2 and 4.3. Those first sections are reproduced from [20].

Then, using the same datasets, triplet concepts are searched, mimicking the pre-
liminary results of [109] with Power Graph Analysis. Finally, section 4.4 presents
a benchmark of optimizations presented in section 2.7 and implemented in Pow-

erGrASP.

4.1 Introduction to the data

The network named aphid RNA comes from a transcriptome study, in collab-
oration with Denis Tagu (INRA Le Rheu), on the pea aphid (A. pisum) [109]. It
is a bipartite interaction graph linking two disjoint populations of RNA molecules
(15 x 1810). The second study is a collaboration with N. Théret (Inserm). We
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Chapter 4 — Applications of Power Graph Analysis

rna mdb
reduced | complete core
time (s)
PowerGrASP 10.2 55.9 14.6
time (s)
Oog >1 5 2

edge reduction | 93.05% | 95.64% | 64.08%
conversion rate 25.26 43.04 48.86

#powernode 35 50 84
#poweredge 35 50 89
#remaining 31 133 147

Table 4.1 — Network compression results with PowerGrASP. Implementation of
Royer et al., Oog, achieve the same results except for compression time. Com-
pression time: time needed to fully compress the graph (iterative search of all
concepts); edge reduction: given by #""i“a;ﬁ?&fd_ﬁf;;f’fmdges; #powernode: number
of non-singleton powernodes in the compressed graph; #poweredge: number of non-
singleton poweredges; #remaining: number of uncompressed edges (or singleton

poweredges) remaining.

Time (s) Edge reduction
Royer et al. | PowerGrASP || Royer et al. | PowerGrASP
aphid RNA 5 43.04 95.64% 95.64%
reduced RNA >1 10 93.05% 93.05%
core MatrizDB 2 80 64.08% 64.08%

Table 4.2 — Comparison of PowerGrASP and Royer et al. implementation. They
are equivalent in results, PowerGrASP is slower.

worked on a network called extended MatrizDB, extracted from the database Ma-
trixDB [69], describing interactions between extracellular proteins. It is described
in section 4.3. These two graphs are described in sections 4.3 and 4.2, and the
compression results in Table 4.1. A graphical representation of the aphid RNA
and core MatrizDB networks are shown in figures 4.1 and 4.3. All compressions
have been run on one core of an Intel i7-6600U (2.60GHz).
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4.1. Introduction to the data

4.1.1 What do we seek in the data ?

Power Graph Analysis in ASP

The powergraph compression code is benchmarked here using three networks com-
ing from biological data. Although it is just a useful framework to quickly design
search spaces, we show that our ASP code, gathered in the package PowerGrASP,
is already useful in managing real graphs. As shown in Table 4.2, PowerGrASP
reaches a score equivalent to Qog, the Java implementation of Royer et al.. In
fact, since both implement the same strategy, edge reduction is very similar up to
slight variations due to non-determinism of motif choices with equal scores. Oog
uses a dedicated algorithm, making it much more scalable. On the other hand,
PowerGrASP presents flexibility in the definition of motifs and the overall search
space exploration. As a demonstration of that flexibility, stars and triplet concepts

were added to the set of compressible motifs.

Bipartite stable search

As shown in section 2.7.3, the stable is the object needed by proposition 2.2 in
order to restrict the largest concept search space. It is computed in presented data
with a time limit of 5 seconds ; its optimality is thus not guaranteed, but not
required either for the application of an optimization. Results show that stables
of consequent size are found (see tables 4.3 and 4.4). In case of the aphid RNA
network, 9 out of 15 nodes of the first set and one third of the second are involved
in the stable. This result suggests that an optimization based on proposition 2.2

could be beneficial for large graphs.

Triplet concept search
As described in chapter 3, a triplet concept describes an overlapping biclique in
the graph. In this chapter, we present a preliminary search in order to identify the
main triplet concepts in the datasets. However, the whole networks (aphid RNA
and extended MatrizDB) are too large to be treated by current implementations
of triplet search. We have thus designed experiments on reduced versions of the
networks (reduced RNA and core MatrizDB).

A Power Graph style compression of the largest triplets is shown in figures 4.10
and 4.7.
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Chapter 4 — Applications of Power Graph Analysis

The search for triplet concept motifs has been implemented on PowerGrASP. It
can therefore be searched as any other motif (biclique, star, clique, quasi-biclique).
The obtained powergraphs are mostly identical to the powergraph obtained with a
biclique and clique search, validating triplets as a way to encode the compression

search space.

4.2 Application to a transcriptomic study of the
pea aphid, Acyrthosiphon pisum

Aphids are crop pests using two different reproduction modes to ensure their
quick proliferation during spring and summer, and the production of cold-resistant
eggs before winter. Aphid females produce either sexual or asexual embryos, de-
pending of the external conditions, especially night length. With long nights the
embryos produced by the viviparous females are sexual, so next generation will
use oviparous sexual reproduction to produce cold-resistant eggs needed to sur-
vive winter. With short nights however comes the parthenogenesis reproduction,
where viviparous females reproduce efficiently, until autumn where longer nights
trigger the reproductive mode shift.

Determination of the biochemical pathways involved in the detection of seasonal
state, and the transmission to the embryos to define their (a)sexual state, is an
important step toward the management of those crop pests.

The pea aphid is a model in aphid genomics, and therefore the subject of a wide
range of genomic analysis, including genome sequencing and gene annotations [31,
75]. Another field of research is the post-transcriptional regulation of messenger
RNAs (mRNA) by small non coding RNAs called micro RNA (miRNA). They were
sequenced and shown to play an important role in reproductive polyphenism [71],
thus the embryos determination of the pea aphid. In addition to sequencing data,
the transcriptome can be strengthened by in silico predictions of interactions be-
tween mRNAs and miRNAs. By comparing the differences between transcriptomes
of non-differenciated embryos and sexual and asexual embryos, it is possible to iso-
late the RN As with differential expression levels in the two alternative reproduction
modes [70].
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4.2. Application to a transcriptomic study of the pea aphid, Acyrthosiphon pisum

Dataset

The dataset considered in that chapter, and referred as aphid RNA, is constituted
of micro RNA and messenger RNA (mRNA) showing differential expressions be-
tween the asexual and sexual embryos development paths. Interaction predictions
between those two sets produces a bipartite network. A first study with a partial

Power Graph Analysis was available at the start of this thesis [109].

Reduced version

A preliminary look at the graph reveals that one miRNA, 3019-5p, is almost ubig-
uitous in the network. It is linked to many nodes, most of them specific, totalizing
alone one third of the network. In order to allow the study of the graph without
focusing on this specific feature, which can be assimilated to noise, we have pro-
duced a reduced version of the network, reduced rna by removing 3019-5p along
with its specific interactants.

Both aphid RNA and reduced RNA are presented in Table 4.3.

#node | #edge density #cc | bipartite | stable
reduced RNA | 848 950 [2.6x1073| 1 14 x 834 | 834
aphid RNA 1825 | 2250 [1.3x1072| 1 |15 x1810| 765

Table 4.3 — Statistics on aphid RNA and reduced RNA. #node: number of nodes
in the graph; #edge: number of edges; density: global density of the graph; #cc:
number of connected components in the graph; stable: size of the maximal stable
found in the largest connected component in less than 5 minutes.

4.2.1 Triplet concepts in reduced RNA network

The reduced RNA network presents only 67 triplet concepts for 1246 formal
concepts, none of them with 3 or more elements in A and B. As already observed,
this network is composed only of stars and small bicliques. As a consequence,
most triplets are constituted of a large A and a single element in C. Note that
the powergraph obtained with PowerGrASP by compressing only triplet concepts
leads to a similar powernode hierarchy and edge reduction (as shown in Figure 4.2):

using the triplet motif does not change the final compression.
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Figures 4.8 and 4.9 show the distribution of triplet concepts as a function of
their cover in the overall network.

The largest triplet concepts can be represented in the network using the Power Graph
representation, as shown in Figure 3.5 (section 3.2.1). The result is shown in fig-
ure 4.10.

4.3 Application to human extra-cellular matrix

MatrixDB is an interaction database of extracellular matrix components. This
network, reduced to human-only interactions, constitutes the core MatrizDB dataset.
In addition to this network, we added other human interactions from other databases.
The obtained network is labelled extended MatrizDB. For a more in-depth presen-
tation of these dataset, see Table 4.4. We also worked on subsets of this net-
work [80], in collaboration with Nathalie Theret (Univ Rennes, Inserm, EHESP,
Irset).

4.3.1 Data origin and construction

The following presentation of the data is reproduced from [80]. A Power Graph

Analysis of core MatrizDB network is shown in Figure 4.3.

The data originate from MatrixDB [96, 26], which is a freely available inter-
action database on components of the extracellular matrix. It contains molecular
interactions between proteins, proteoglycans and polysaccharides. In addition to
MatrixDB data, we also used data from the IntAct database [83]. IntAct provides
an open source database for molecular interaction data. All interactions are derived
from literature curation or direct user submissions.

We used two data sets provided by S. Ricard-Blum (University of Lyon). The
first one lists the interactions found in MatrixDB, we called it core MatrizDB. The
second one is an extension of core MatrizDB as it also contains interaction data
from IntAct. We decided to work only on human molecular interaction data and
called this data set extended MatrizDB.
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4.8. Application to human extra-cellular matrix

Table 4.4 gives some elementary statistics on the two data sets. Note that the
extended graph is much more complex than the core one and very challenging with

respect to the compression task.

#node | #edge density #cc | bipartite stable
core MatriztDB 286 657 | 1.6x1072| 5 no 213
extended MatrizDB | 8940 30427 | 7.6 x 10~% | 43 no no result

Table 4.4 — Statistics on extended MatrixtDB and core MatrizDB. #node: number
of nodes in the graph; #edge: number of edges; density: global density of the graph;
#cc: number of connected components in the graph; stable: size of the maximal
stable found in the largest connected component in less than 5 minutes.

4.3.2 Triplet concepts in core MatrizDB network

The core MatrizDB network issues 1792 formal concepts and 435 triplet con-
cepts, found in 12 seconds using the enumeration from reflexive formal concepts
(see section 3.9.3). Among triplet concepts, 23 of them have at least 4 elements
in A and B sets. There is 33 triplet concepts with at least 3 elements in the C
set, 124 with at least 2 elements in the C' set, and 126 with at least one element
in each set (hence, at least 2 in A and B sets). Figures 4.5 and 4.6 show the dis-
tribution of triplet concepts as a function of their cover in the overall network.
As expected, the triplet concepts allow an improvement of compression by both
decreasing significantly the number of poweredges, and making them larger.

The largest triplet concept can be represented in the network using the Power Graph
representation, as shown in Figure 3.5 (section 3.2.1). The result is shown in fig-
ure 4.7.

Interpretation of the largest triplet concept

The largest triplet found in the core MatrixDB network is shown in Figure 4.4. It
covers 48 edges, thus is less important in size than the main stars, but it represents
a more complex structure. Thanks to N. Theret, we were able to interpret this
structure. It is worth to note that in the two non-clique clusters, there are very

few internal edges.
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Py : clique made of Endostatin, PCOLCE and Thbs1

Thbsl and Endostatin are known antiangiogenic factors [56], and their link with
PCOLCE is not established. However, Salza et al. shown that PCOLCE is involved
in new functions [96], that could therefore be shared to Thbsl and Endostatin.

Ps: powernode made of Collagen-VI, Beta-amyloid peptide 1-42 and Collagen-1
The link between P, and the others may be explained by the role of angiogenesis

in the construction and deconstruction of the central nervous system [107].

Ps3: powernode made of Heparan Sulfate, TGM 2, BGN, Heparin, Dermatan Sul-
fate and Chondroitin Sulfate A

This group is mainly constituted of glycosaminoglycans, or GAGs, which are
major actors in the regulation of angiogenic processes [28], and as such are ex-
pected to be in relation with antiangiogenic factors, found in P;. This constitutes
a strong angiogenesis-related clustering. The exceptions are (1) the proteoglycan
BGN, which is a formation of peptides and Dermatan Sulfate, hence the internal
link with it, and (2) the transglutaminase 2, which interaction with heparin is well

documented [41] and found inside the group between TGM 2 and Heparin nodes.

This triplet groups together important elements in the regulation of ambiogen-
esis. In the regular powergraph, shown in Figure 4.3, the elements are scattered in
different powernodes hierarchies. This clustering is therefore not similar to existing

ones.

4.4 Benchmarks of the PowerGrASP optimiza-

tions

This section aims to show the efficiency gain obtained by PowerGrASP when
using the three implemented optimizations described in section 2.7. The bench-
marks are realized on core MatrizDB, and the results are grouped in Table 4.5,
showing that optimizations allowed a better performance. The edge reduction and

conversion rate are otherwise identical, whatever the optimization used. Vanilla
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refers to PowerGrASP without any of the three compared optimizations activated.
To obtain the results of Table 4.4, we used also other implementation-specific op-

timizations not presented in this thesis.

Except for the star search, all the optimizations where useful, leading to a faster
compression. A more curious behavior (not presented in the table) is that both
graph filtering and parallel motifs become slower when used together with star
motif. However, the all case, where all three optimizations are activated, is the
most efficient implementation.

One may wonder why the star motif slows the search except when coupled
with the two others optimizations. We hypothesis that introducing the star motif
is an important slowdown. On the other hand, the star motif bounds are extremely
efficient (max node degree), so finding and enumerating the optimums, as proposed
by the parallel motif optimization, may be quite efficient. Coupled with graph
filtering that removes a lot of suboptimal stars, we obtain enough room for the
star motif to counterbalance its cost. The same behavior is found in other networks,

such as aphid RNA despite the fact that stars are preponderant in that dataset.

Implementation limits The implementation of graph filtering in PowerGrASP
could be improved: removing edges in the graph may divide it into smaller con-
nected components, and as such would allow to handle each new component as an
independent graph, thus reducing the total search space. This is not handled by

PowerGrASP, and could be especially interesting on sparse graphs.

4.5 Conclusion on the applications

Triplet concepts

When triplet concepts are used in place of the standard bicliques and cliques
on a graph where no triplet structure exists, we obtain the same results on the
tested graph. There is no degradation compared to Power Graph Analysis, as
implemented by QOog, or by the formal concept approach we implemented with

PowerGrASP. On the other hand, non-degenerated triplet concepts are present in
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core MatrixDB Runtime compared to vanilla
compression time (s) in percent
vanilla 51.62 100%
graph filtering (section 2.7.2) 35.38 68.54%
star search (section 2.7.1) 65.67 127.21%
parallel (section 2.7.4) 19.81 38.37%
all but star search 16.65 32.25%
all 14.56 28.2%

Table 4.5 — Runtime for PowerGrASP when using some optimizations, compared
to the vanilla implementation, on the core MatrizDB network.

core MatrizDB, and associated to a particular structure of chemicals that is not

present in the standard powergraph.

Overlaps with triplet concept

Triplet concepts are by construction introducing the notion of overlap in the
motifs. Overlaps in the output representation were avoided in Power Graph Anal-
ysis, but in some subsequent works such as [3] this constraint was relaxed for a
more generalized approach. The single-edge representation of triplets (as shown
in Figure 3.4, chapter 3) introduces an overlap, but less edges than the standard
Power Graph representation (as shown in Figure 3.5, chapter 3). The introduction
of overlaps does not arm the visualization as long as they are not entangled in
other relations with other motifs of the graph. In other words, single-edge repre-
sentation of triplets may be acceptable as long as (1) the overlap part does not
interact with any other part of the graph, or (2) if the overlap part interacts with
other parts of the graph, it is as a whole (i.e. all interactions concern all nodes in
the C' set of the triplet). With such a restriction, the overlap part would never be
split nor involved in other overlaps, hence limiting its visual complexity.

The preliminary results of this chapter seems to indicate that an implementa-
tion of Power Graph Analysis using triplet concepts instead of cliques and bicliques
achieves the same compression result, unless triplets with nodes in the three set
are searched. In such a case, one would obtain different compression results, un-

ravelling new structures in the data.
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4.5. Conclusion on the applications

Figure 4.1 — Cytoscape view of aphid RNA, compressed with PowerGrASP where
two types of molecules interact. The 15 nodes organized around the central pow-
ernode belong to the so-called micro RNA type and appear around the central
power node that contains most of the molecules of the mRNA type. The messen-
ger RNA specific to a micro RNA are in the external powernodes. The big central
powernode is composed of all interactants of 3019-5p, occupying a large portion
of the network.
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Figure 4.2 — Cytoscape view of reduced RNA, compressed with PowerGrASP where
two types of molecules interact. The 14 micro RNA are stars in the graph.
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8e

Figure 4.3 — Cytoscape view of core MatrizDB network. The Heparin node is linked
to the big central powernode.
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Figure 4.4 — The largest triplet in core MatrixrDB with 3 elements in the C' set
(in green), discussed in section 4.3.2. There are two internal edges in the Heparin
cluster involved in this motif, highlighted in red. The edges to nodes outside the
triplet are shown in light grey, clearly showing the difficulty of perceiving the triplet
motif in the dense entanglement of the edges.
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Number of Triplet Concept in matrixdb CORE27 example
(no constraints)
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Figure 4.5 — Distribution of triplet concepts in the core MatrizDB network accord-
ing to their cover in edges.
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Number of Triplet Concept and Formal Concept in matrixdb CORE27 example
(no constraints)
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Figure 4.6 — Distribution of triplet concepts and formal concepts in the core Ma-
trixrDB network according to their cover in edges.
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Figure 4.7 — Top-level compression of the largest triplet concepts found in core
MatrizDB network.
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Number of Triplet Concept in reduced RNA
(no constraints)
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Figure 4.8 — Distribution of triplet concepts in the reduced RNA network according
to their cover in edges.
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Figure 4.9 — Distribution of triplet concepts and formal concepts in the reduced
RNA network according to their cover in edges.
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Figure 4.10 — Top-level compression of the largest triplet concepts found in reduced
RNA network.
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CHAPTER 5

Biseau: an ASP environment for
high-level specification and

visualization in graph theory

We are stuck with technology when all we really want is just
stuff that works. How do you recognize something that is

still technology? A good clue is if it comes with a manual.

Douglas Adams

This chapter is a reproduction of [17] with addenda. It introduces Biseau®,

a programming environment dedicated to the exploration of relations through a
graphical display. The use of Answer Set Programming enables the production
of small code modules which are easy to maintain and debug since they are very
close to the specifications. It shows how a mathematical framework such as Formal
Concept Analysis can be efficiently described at the level of its properties, without
needing a costly development process.

Biseau can be considered as a by-product of this thesis but we have tried to
make this general enough so that it can allow others to adapt a given code to the
peculiarities of a data set, thereby speeding up the development of prototypes.
Besides, it will also help the integration of the ideas of the FCA community in a
readable and shareable format. We have to keep this chapter self contained so that
it can be used independently of the rest of the thesis.

From a practical point of view, Biseau provides an Answer Set Programming to

(graphviz) dot compiler, and uses the graphviz software [43] to render in real-time

1. Manual at https://gitlab.inria.fr/lbourneu/biseau !
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Chapter 5 — Biseau: an ASP environment for high-level specification and visualization
in graph theory

the calculated graphs to user, for instance to produce concept lattices or AOC
posets visualizations. Its relation with existing tools like LatViz and FCAbundles

is also discussed.

The structure of this chapter is as follows. First, section 5.1 overviews our soft-
ware contribution and the origin of Biseau, that section 5.2 introduces. Section 5.3
quickly presents the dot language and explains how Biseau takes advantage of dot
and ASP to allow the user to build models. Section 5.4 proposes as a case study
the reconstruction of the concept lattice from a formal context, already introduced
in section 1.5. Section 5.5 shows how Biseau can easily handle some of the FCA
extensions typically used in FCA applications such as knowledge processing [89].
Finally we conclude by some insights about Biseau interest when used in FCA and

more generally, in graph theory.

5.1 Software contribution

Multiple programs? have been written during the thesis, mostly using Python
and ASP, and when possible packaged, enabling their installation from the Python
Package Index. Some of them are quickly presented here.

PowerGrASP, already presented in chapter 2, is a Python/ASP implementa-
tion of powergraph and derivatives, notably triplet concepts and quasi-bicliques.
This program needed other developments, including clyngor, a Python package
to enable the embedding of ASP into Python.

Many explorations of ASP usage in various contexts where developped, one of
them being a collection of ASP codes to implement FCA-related tasks, like concept
mining, lattice construction or AOC poset enumeration. Some examples of these
encodings were already presented in section 1.4, but the increasing size of the
collection, and the perspective of a library of ASP encodings for FCA, motivates
us to work on a kind of ASP-for-FCA system.

The project was quickly reframed: if ASP could be used to describe a concept

lattice, it would be simpler to enable the description of any graph, then if necessary

2. Listed at https://lucas.bourneuf.net/programs
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to restrict it to concept lattices. The Biseau project is born from the observation
that, if we can use ASP to describe a graph, it is possible to obtain a graphical
representation of a graph from an ASP encoding. While there is no specific limi-
tation to FCA, it is our first application for what became a general purpose tool

in graph theory.

5.2 Biseau, a flexible environment for quick pro-

totyping of concept structure search

Large scale data production requires availability of high-level visualizations for
their exploration. This is usually performed by building generic visualization mod-
els, that users may later use to explore their data. Thus, software environments
oriented towards data mining use efficient implementations of data structures and
their visualizations. For instance, in Formal Concept Analysis, LatViz is a lat-
tice visualization software, allowing end-user to explore the lattice structure ef-
ficiently [4]. Lattice Miner builds and visualize Galois lattices and provides data
mining tools to explore data [68]. FCA Tools Bundle consists in a web interface
exposing multiple FCA-related tools for contexts and (ternary) concept lattices
exploration [64]. In-Close algorithm reference implementation provides a concept
trees visualization of contexts encoded in standard formats [9]. All these tools work
with a formal model that provides an abstract view and a fixed search space on
the data. Users cannot work on the model itself, they are expected to use the im-
plemented methods, not to design new ones. In contrast, this chapter introduces
Biseau, a software focused on designing and exploring elements of the data struc-
ture, rather than the data itself. In this approach, data are only a support to the
model validity, and the user’s aim is the proper design of a general model. Biseau
is a general purpose model builder that relies on graphs and logic languages.

Graphs are rendered in multiple ways, using field-specialized softwares like Cy-
toscape [99] in biology, graph-specific softwares (like LatViz for lattices), or more
generalist like Tulip [10]. Another generic approach is dot, a graph description lan-
guage specified by the graphviz software, which provides a gallery of visualization

engines [43]. Dot is the internal graphical language used by Biseau.
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Together with a graph data structure, Biseau offers through the use of Answer
Set Programming (presented in section 1.4) a logical view of the associated explo-
ration methods. It allows users to transcript the formal properties they are looking

for in a straightforward way. In our approach, ASP is also used for visualization.

Biseau is supplied with a graphical user interface and a command line interface
to write an ASP encoding. Biseau uses this encoding as a script to generate the
dot files and the resulting visualizations. The main interest of Biseau is therefore
to build graph visualizations directly from formal relations. Biseau is not only ded-
icated to lattices and their (efficient or scalable) exploration, it provides a general
purpose programming environment to visualize any ordered structure. Biseau is
therefore suited for rapid design and easy testing of works or extensions in the
framework of FCA. Tt is freely available under the GNU/GPL license®, and instal-
lable as any Python package with the command pip install biseau-gui. An

annotated screenshot of the GUI is shown in Figure 5.1.

3. https://gitlab.inria.fr/lbourneu/biseau
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% Mining AOC poset

ext_outsider(X):- ext{X) : rel(¥.Z] : X'=Z ; not Int(Z).
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Lattice drawing

% Shortcut to infimsm, supresus and concepts identifiers.
ch):- extiN, ).
c{H):- int(M, ).

% Ordering of two concepts: the first has all objects of the second.
contains(C1,C2):- c(€l) ; {€2) ; C1lal2 ; ext{C1.X): ext{C2,X).

% Concepts linked to another in the Galois Lattice.
1ink(C1,C3):- contains({C1,C2} ; not 1ink{C1,(2): contains(C2,C3}.

igyegate
Blask
wditor | eptions

% Reduced Llabelling.
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Agsregate

Figure 5.1 — An annotated screenshot of the graphical interface of Biseau. Four
programs are shown. The first one is describing the Vertebrate formal context.
The second one is searching for the concepts and the AOC poset. The third one is
building the concept lattice, and the last one annotate the nodes of the resulting
graph with the AOC poset. Each of these steps is described in section 5.4.

The running example of this chapter is presented in Table 5.1, along with its
ASP encoding in Figure 5.2.

157



10

11

12

14

15

16

17

Chapter 5 — Biseau: an ASP environment for high-level specification and visualization

in graph theory

adult | child | female | male | boy | woman | man
alice X
bob X X X
eve X X X
john X X X

Table 5.1 — Formal context of human relations.

% Facts.

age(john,7). age(eve,71). age(alice,15).
male (john ). male(bob). female(alice).
mother (eve ,bob).

% Rules.

rel (H, child):— age(H,A) ; A<12.

rel (H,adult):— age(H,A) ; A>=18.

rel (H,male): — male(H).

rel (H, female): — female (H).

rel(Hman) :— rel(H,male) ; rel(H,adult).
rel(H,boy) :— rel(H,male) ; rel(H, child).
rel (Hywoman): — rel (H,female) ; rel(H,adult).
rel(H, girl) :— rel(H,female) ; rel(H, child).
rel (H,adult):— rel(H,male) ; not rel(H, boy).
rel (H, female): — mother(H, ).

% Build the wvisualization in Figures 5.2 and 5.3.
link (O,A):— rel(O,A).

Figure 5.2 — ASP program encoding the context in Table 5.1, in the form of rel/2
relations between objects and attributes. The last line yield links/2 atoms that are
compiled by Biseau as edges in the output dot file.

5.3 Graph drawing With Biseau

Dot is a graph description language, allowing one to generate a graph visualiza-
tion from the definition of its content [43]. Dot enables the control of precise visual
properties, such as node and edge labelling, position, shape, or color. For instance,

the dot line woman [color="blue"] will color in blue the node labelled woman.
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Digraph biseau_ graph {
node [penwidth="0.4" width="0.1"];
edge [penwidth="0.4" arrowhead="none"];
john—>boy; john—>male; john—>child;
eve—>female; eve—>woman; eve—>adult;
bob—>man; bob—adult; bob—>male;
alice —>female;

}

Figure 5.3 — Dot encoding of the graph in Figure 5.4.

Figure 5.4 — Visualization of the relations described by context in Table 5.1.

The full language is defined by the graphviz graph visualization software, which
provides multiple engines to interpret and compile dot encoded files to other for-
mats, including images. Figure 5.3 shows an example of a working dot description,
which given to a graphviz engine yields the visualization in Figure 5.4.

Biseau allows the user to interactively write some ASP encodings and display
the corresponding graph visualization. To achieve this, it implements an ASP to
dot compiler and a Graphical User Interface that helps writing the ASP encoding
and that performs automatically all necessary compilations.

As explained in section 1.4, a given ASP encoding yields stable models consist-
ing of true facts, which can be represented by atoms like 1ink (woman ,human). For
each stable model found from the ASP user encoding, Biseau will convert atoms
into dot lines. For instance, the ASP atom link(woman,human) will translate to
woman -> human in the dot output. This controlled vocabulary will be only par-
tially explored in section 5.4, but note that it maps the full dot language, including
colors, shapes, and general graph options. A complete documentation is available
online 4.

The use of ASP allows the graph to be defined in intension: the ASP solver

4. https://gitlab.inria.fr/lbourneu/biseau/blob/master/doc/user-doc.mkd
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infers all necessary relations for displaying the instantiated graph. More generally,
Biseau internal process can be seen as a compilation from ASP models to dot, then
from dot to image (the latter being delegated to graphviz software).

As a matter of example, the ASP encoding in Figure 5.2 will be compiled to
the dot description in Figure 5.3, itself compiled to the image in Figure 5.4. If the
ASP expression color(A,blue) :- rel(_,A). was added to the ASP encoding in
Figure 5.2, the final figure would show in blue all attributes nodes. The reader
familiar with software engineering may recognize the use of ASP as a metamodel,
and dot as the model.

Biseau can be extended with scripts, units of ASP (or Python) code to add
to (or run on) the user encoding. They may expose some options to tune their
behavior. Moreover, user can implement and add its own scripts to Biseau, al-
lowing him to encapsulate ASP or Python programs that behave accordingly to
his preferences. Biseau is shipped with scripts related to FCA, for data extraction
from standard format like SLF or CXT, concept mining or lattice visualization (as

shown in section 5.4).

5.4 Build and Visualize Concept Lattices With

Biseau

This section shows how to build FCA basic mathematical relations in order to
get a visualization of the Galois lattice in Biseau. The context in Table 5.1 will be
used as case study, encoded in ASP using rel/2 atoms as shown in the first five

lines of Figure 5.2.

5.4.1 Mining Formal Concepts

In a formal context defined by objects O, attributes A, and the binary relation
R C O x A, a formal concept is a pair (X,Y), such as X = {0 € O |(0,y) €
R VyeY}landY ={a€ Al(x,a) € R Vr € X}, where X C O and Y C A. The

search for formal concepts can be expressed in ASP like in the above definition:

1ext(X):— rel(X,_) ; rel(X,)Y): int(Y).
2lint (Y):— rel(_)Y) ; rel(X)Y): ext(X).
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rel (X, ) fixes variable X as the first term of a relation, i.e. an object. Notation
rel(X,Y): int(Y) ensures that there is a relation between X and all attributes of
the intent. As a consequence, ext (X), the extent, holds for all objects in relation
with all attributes of the intent. ASP search comes with the guarantee that all
minimal fixed points will be enumerated. Therefore, each answer set is a different
concept, or the supremum or infimum (where extent or intent are empty sets).

These models/concepts can be aggregated in order to produce an encoding
containing ext/2 (and int/2) atoms, where ext (N,A) (int (N,A)) gives an element
of N-th concept’s extent (intent). This numbering is arbitrary and serves no other

purpose than identifying the different concepts.

5.4.2 Concept Lattice

A concept lattice is defined by the partial inclusion order on the concept extents
and intents, i.e. a graph with concepts as nodes, and an edge between a concept

and its successors in the ordering.

% Shortcut to infimum, supremum and concepts identifiers.

c(N):— ext(N,_).

c(N):— int (N,_).

% Ordering of two concepts: the first has all objects of the second.
contains (C1,C2):— c¢(Cl) ; c¢(C2) ; C1!=C2 ; ext(C1,X): ext(C2X).

% Concepts linked to another in the Galois Lattice.

link (C1,C3):— contains(C1,C3) ; not link(C1,C2): contains(C2,C3).

% Annotate nodes with exztent and intent.

annot (upper ,X,A): — ext(X,A).

annot (lower ,X,B): — int (X,B).

These lines yield the visualization shown in Figure 5.5. Line 2 and 3 are here
to enable the access to the infinum, supremum and concepts with one atom. Line
5 yields pairs of concepts that are included, based on their extent. Line 7 ensures
that a link exists in the lattice between a concept C'1 containing another concept
C3 if there no link between C'1 and a concept C2 smaller than C'3. Finally, the

annot/3 atoms are a Biseau convention (just as 1ink/2 that define an edge in the
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dot output), allowing us to print the extent and intent of each concept, respectively

above and below the node.

5.4.3 Reduced Labelling

The reduced labelling of a lattice is computed as the set of specific objects and
attributes for each concept. This is easily defined as specext/1 and specint/1
atoms in ASP, using the following lines along the search for formal concepts in

section 5.4.1:

% An outsider is any object or attribute linked to

% an attribute or object mot in the concept.

3| ext__outsider (X): — ext(X) ; rel(X,Z) ; X!=Z ; not int(Z).
int__outsider (Y):— int(Y) ; rel(Z)Y) ; Z!=Y ; not ext(Z).
% The specific part of each concept contains no outsider.
specext (X): — ext(X) ; not ext__outsider(X).

specint (Y):— int(Y) ; not int__outsider(Y).

With these lines and the collapsing into one model described in section 5.4.1,
we obtain specext/2 and specint/2 atoms, describing the AOC poset elements,
attached to each concept. We can then compute the reduced labelling of the lattice
with the following lines, replacing the previously defined annot/3 definitions in

section 5.4.2:

% Minimalist annotation of nodes with their extent/intent:
annot (upper ,X,A): — specext (X,A).
annot (lower ,X B): — specint (X,B).

Using these definitions, Biseau produces the visualization shown in Figure 5.6.

Enumeration of the AOC poset

The following integrity constraint, added to the concept generation with AOC
poset seen in section 5.4.3, will prevent concepts that do not belong to the AOC

poset to be generated.

:— not specext(_) ; not specint(_).

This is achieved simply by invalidating the model if there is no atom indicating

an object-concept or an attribute-concept.
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John john

Figure 5.5 — Visualization of the con- Figure 5.6 — Visualization of the con-
cept Lattice of context in Table 5.1 cept Lattice of context in Table 5.1
using Biseau, with extent and intent using Biseau, with reduced labelling.

shown for each node/concept.

5.5 Pulling Constraints On The Model

This section exposes the implementation in ASP and Biseau of some FCA

variants and extensions often used in knowledge processing [89).

5.5.1 Object and Property Oriented Concept Lattices

Object and property oriented concept lattices are special kind of lattices in-
spired from rough set theory. They have been shown isomorphic, and holding
complementary information about the formal context they are issued from [108].

Following definitions from [111], it is also possible to encode the mining of
object oriented concepts (X,Y) defined by X = Y% and Y = X", such as:

V®=|J Ry X" ={yc ARy C X}

yey

With Ry = {z € O|(z,y) € R}.

11% Any object linked to an attribute in the intent is in the extent.
2lext (X):— rel(X)Y) ; int(Y).

3|% Objects in the complementary set of the extent.

4lnot__ext(Nx): — rel(Nx, ) ; not ext(Nx).
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5| % Attributes solely linked to objects of the extent are in the intent.
6/int (Y):— rel(_)Y) ; not rel(Nx,Y): not_ext(Nx).

The code for property-oriented concepts is similar, and both replace the en-

coding in section 5.4.1.

5.5.2 Iceberg Lattices

Introduced in [104], they are a representation of lattices such as only the most
structuring concepts are shown. The iceberg lattice is defined as the Galois lattice
stripped of all concepts with a too small support (i.e. number of objects in their
extents). It can be built by discarding any model containing too few objects in its

extent.

For instance, Figure 3 of [104], reproduced in this paper in Figure 5.7, shows
the iceberg lattice of the running example MUSHROOMS database of nbobj
objects with a minimal support of minsupp%. It can be reproduced by discarding

models using an integrity constraint:

1|#const minsupp=85. % minimal number of objects

2| % Total number of objects in the context.

3nb_obj(N): — N=#fcount{X:rel (X,_)}.

4| % Number of objects in the extent must not fall behind a minimum.
5/:— {ext(_)} < Nxminsupp/100 ; nb_obj(N).

6|% Use the specext/1 atom to indicate the percent of objects,

71% to reproduce the labelling of the iceberg lattice.

s| specext (P) :— N={ext(_)} ; P=Ns«xminsupp/100.

The first line introduces a parameter providing the minimal support for a con-
cept. As ASP does not handle floats, it must be provided as an integer. Line 3
computes the number of objects in the formal context. Line 5 is the constraint
preventing any formal concept with too few concepts to be yielded. The last line
is a slight hack of specext/1 to, instead of showing the full extent of the object-
concept, to display the percent of objects belonging to the concept.
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veil Iype partial

OU Yo 1|| attachment: free

\.re|l color: white
? 43 %

ring number: one

Figure 5.7 — Iceberg lattice with a minimal support of 85% of the MUSHROOMS
database. Figure extracted from [104].

5.5.3 n-adic FCA

N-adic FCA is an extension of FCA increasing the number of dimensions con-
sidered [72]. Instead of 2-dimensional formal contexts, n-adic FCA now uses n
dimensions, and therefore formal contexts are maximal relations of n subsets.

We show here that it can be encoded the same way as regular FCA, by ex-
tending the number of parameters for rel atoms. For instance, in triadic FCA,
conditions are given as the third argument of rel/3 atoms, such as rel(0,A,C)
is true when the relation between object O, attribute A and condition C holds.
Triadic concepts (not to be confused with triplet concepts introduced in chapter 3)

can thus be generated using the following encoding:

ext(X):— rel(X,_, ) ; rel(X;A,C): int(A), cnd(C).
int(X):— rel(_,X,_) ; rel(0,X,C): ext(O), cnd(C).
cnd(X):— rel(_,_,X) ; rel(0,AX): ext(O), int(A).

5.5.4 Pattern Structures

As introduced in [44], a pattern structure is a generalization of FCA applied
on attributes structured in semi-lattices. Pattern concepts are pairs of objects
and semilattices, producing the expected pattern lattice. It has been applied in
particular to gene expression data with integer interval patterns [63]. Here, we

reproduce the pattern lattice construction for an example of non-binary data from
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the same publication:

(1,1,5) (1,2,7) (1,3,6). % 5 objects

(2,1,6) (2,2,8) (2,3,4). % 3 situations
rel(3,1,4). rel(3,2,8). rel(3,3,5). % one value from 4 to 9

(4,1,4) (4,2,9) (4,3,8)

(5,1,5) (5,2,8) (5,3,5)

Note that data are encoded in rel/3 atoms over 5 objects, 3 conditions, and
expression values in the interval [4; 9] associated with a given gene and condition,
such as rel(0,S,V) holds when object O in situation S has an expression value of

V. Similarly to section 5.4.1, we can enumerate the pattern concepts:

% Choose a subset of objects as the extent.
{ ext(0): rel(O,_, ) }.
% The intervals of extent.
interval (C,Min,Max): —
rel(_,C,_) ;
Min=#min{V,0: rel (O,C,V), ext(0)} ;
Max=max{V,0: rel(0,C,V), ext(O)}.
% Object is wvalid on Condition.
valid_on(0,C):— rel(O,C,V) ; interval (C,Min,Max) ; Mink=V ; V<=Max.
% Object is wvalid for all Conditions.
valid (0):— rel(O,_, ) ; valid_on(0,C): rel(_,C, ).
% Avoid any model that does not include mazimal number of objects.
:— not ext(0) ; wvalid (O).

p—

The use of the meta-programming directives #min and #max allows us to retrieve
the minimal and maximal value associated to the extent. Therefore, the predicate
interval (C,Min,Max) stands for the minimal and maximal values on condition
C, e.g. 5 and 6 for condition 1 when extent is {1,2,5}. Unlike the concept model
seen in Section 5.4.1, this model relies on an explicit choice rule for the extent
with subsequent constraints to ensure its maximality. Line 2 generates an answer
set for each element of the power set of the object set. Following lines will discard
answer sets that are not infinum, supremum or concept. Line 4 associates for each
condition the minimal and maximal values over the extent. Line 7 selects an object
and a condition such as they are associated to a value in the interval. Line 9 selects

all objects that are valid for all conditions, and line 11 ensures that they belong
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to the extent.
The code in section 5.4.2 can be reused without modifications to produce and

show the resulting pattern lattice.

5.6 Conclusion

Using the ASP language in the Biseau environment, some well-known FCA
structures (concept, object-oriented, iceberg, integer pattern lattices) have been
reconstructed. The main contribution of Biseau lies into the straightforward use of
the structure specifications to produce a simple code and a proper visualization.
To achieve that feat, Biseau is compiling a controlled subset of ASP atoms to
dot lines, effectively building a dot formatted file that is compiled to an image by
graphviz software. By letting the user manipulate the visualization with the full
power of ASP, Biseau enables the definition of graphs in intension. This gives an
abstract access to dot expressions and lets the user focus on the fast prototyping of
data exploration and the elaboration of mathematical properties. In other words,
Biseau allows user to work on the model processing data, instead of providing
an implementation of a single model to be used on particular data, as usually

performed in field-specialized software.

ASP-related Limits

ASP limits lies into the absence of float numbers handling, and scaling problems
inherited from the total grounding of data before solving. However, Potassco sys-
tem users may benefit from several extensions of the language like linear program-
ming [77], propagators [51], or the integration of Python scripts through a dedi-
cated API [47], allowing one to take advantage of other programming paradigms.
It is also possible to improve performances by an iterative replacement of bottle-
necks by dedicated algorithms. For instance, the concept mining can be replaced

by an implementation of the in-close algorithm [8].

Biseau is not limited to FCA

While this thesis focuses on the reconstruction of FCA visualization using Biseau,
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nothing prevents further developments towards other fields of application. For in-
stance, software engineering, to draw UML graphs using ASP as a domain specific
language, or semantic web, to post-process and visualize SPARQL query results, or

bioinformatics, to draw and explore biological networks such as boolean networks.
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CHAPTER 6

Conclusion and perspectives

This chapter summarizes the main contributions of this thesis and details a
number of research opportunities that we believe could usefully complement or

extend this work.

6.1 Conclusion

This thesis proposes a framework and practical programs for lossless graph
compression for visualization purposes. It elaborates on a useful practical tool,
Power Graph Analysis, which has demonstrated its relevance on many applications,
especially bioinformatics. We list here our main contributions, divided into four

areas.

Power Graph Analysis and Formal Concept Analysis

In chapter 2, we presented a formalization of the search space of Power Graph
Analysis. We have shown two versions of this search space, whose exponential size
with respect to the size of the graph leads to NP-completeness of the search. We
then explained the Royer et al. heuristic to reach practically good approximations
in this space, and presented our own optimizations to reduce it. We also intro-
duced our implementation of a search for approximated results, PowerGrASP,
along general optimizations that could be ported to other implementations of the
powergraph compression. We also expose the concept-cycle motif, which presence
in the graph precludes a greedy approach to reach an optimal compression, and

could thus be an interesting extension of Power Graph Analysis.

Triplet Concepts

Introduced in chapter 3, triplet concepts formalize the overlapping biclique mo-
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tif, where the two sets of nodes of a biclique are overlapping, thus defining a clique
integrated in the biclique. This contribution allows to unify the search for bicliques
and cliques proposed by Power Graph Analysis. In FCA, triplet concepts are a sub-
set of the formal concepts issued from the reflexive graph context. We have shown
different methods to yield the triplet concepts, starting from different representa-
tions of the input data (graph contexts, or concepts issued from it). The search
for triplets as a motif has been integrated in PowerGrASP, and some preliminary
results on it have been shown on the two main biological datasets. Triplet concepts

also represent the maximal cliques of a graph in a compact way.

Applications

In chapter 4, we validated our concept-based approach (implemented in Power-
GrASP) by reproducing the results of Power Graph Analysis. We have also shown
the performance gain of the different optimizations we have proposed. Finally, we
studied the presence of triplet concepts in the datasets, showing that (1) using
triplet concepts is equivalent to using concurrently bicliques and cliques, and (2)
that the search of triplet concepts with its three populated sets enabled us to un-
ravel a particular structure that was hidden in the graph and in the powergraph

only constituted of cliques and bicliques.

Software contribution

We have presented in chapter 5 Biseau, a general purpose software in graph
theory we used to reproduce main objects of Formal Concept Analysis, such as
concept lattice and derived structures. With this particular field of application, we
hope we have shown that Biseau can be used for a wide range of applications as

an exploratory tool for graph theory-based work.

6.2 Perspectives

Numerous developments and open problems would help to extend and deepen
our work. We have organized the perspectives into several subsections, starting
by theoretical issues, then applications and developments that are suggestions for

further research.
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6.2.1 Triplet-based Power Graph Analysis

Our proposal of explicitly representing overlapping bicliques in a graph through
triplet concepts seems a powerful framework to understand and extend the graph
compression process implemented in Power Graph Analysis, which is normally

using two motifs, bicliques and cliques.

The largest triplet concept search has been integrated in our own implementation
of this compression process, PowerGrASP. In the current version, triplet concepts
(A, B,C) are represented simply by creating a powernode for each set and using
four poweredges (Ax B, Ax C, Bx C and C x (). Such a direct representation is
however not optimal and we lacked time for a more sophisticated approach. Our
first suggestion wold be tying to group A and B sets in a common powernode, thus
allowing for a more compact representation (see Figure 3.5). While it would not
necessarily be feasible in all cases (sets A and B may be in different powernodes and
cannot be clustered without breaking the hierarchy condition), it would provide
an exact equivalent representation as a search using only bicliques and cliques.
To increase the compression ratio over the standard biclique+clique search, one
could even use a single-edge representation of a triplet by introducing overlapping
powernodes (see Figure 3.4). However, as this compact representation is based
on overlaps, it could quickly became a nightmare to understand because of the
overlapping parts being in interaction. Our idea to prevent this spaghetti problem
is to introduce a new constraint, ensuring that triplets are compressed in the single-
edge representation if and only if the C set belongs to a hierarchy, i.e. the C set

part is reused either completely or not at all by other motifs.

Open-problems
We end with three interesting open problems that the triplet concept approach

has raised.

— How to find a maximal set of (triplet) concepts that are necessary, i.e. used

in all optimal compression.

— (Can one predict, without processing the compression itself, the number of

poweredges that would result from compressing a given list of (triplet) con-
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cepts in a given order ?

— Can one adapt the normal form of triplets, or the definition of meet and join,

to obtain a lattice out of triplet concepts ?

6.2.2 Triplet concepts: admissibility = edge-maximality ?

We defined the admissible triplets, i.e. triplets candidates for edge-maximality:
using global conditions, some non edge-maximal triplets can be discarded without
comparing them to other triplets, thus reducing greatly the amount of triplets

yielded by the various generation methods (see section 3.6).

One can wonder if admissibility is synonymous to edge-maximality. On all the
tested cases, with all generation methods, the admissibility constraints were fil-
tering out all non edge-maximal triplets. From this intuition, we propose conjec-

ture 6.1 that remains to be established.

Conjecture 6.1. Maximality of admissible triplets

An admissible triplet is edge-mazimal.

If this conjecture holds true, the triplet concepts would be easier to mine, since
the admissibility constraints does not require a complete comparison of all pairs of
triplet concepts. It is also possible that our definition of admissible triplets requires

to be augmented with more constraints, for the conjecture to be verified.

6.2.3 Properties of (non) optimal powergraphs

Finding the optimal powergraphs is a NP-complete task. We however observed
that (non) optimal powergraphs presents some peculiarities, that may be used to
recognize them as such. This subsection exposes properties we found. More may

exist.

Conjecture 6.2. Optimal powergraph
Let P = (V,E, H) be a powergraph of the graph G. if Vp € V we have degree(p) =
1, then P is optimal.
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With conjecture 6.2, we explore the possibility to detect whether a powergraph
is optimal. For this specific conjecture, we observe that any powergraph where all
(power) nodes have a single neighbor is optimal. This property can only be held by
graphs with no motif overlap, since an overlap will require a motif set to be divided
in multiple powernodes. The (power) nodes linked to that set will necessarily be
linked to all produced powernodes, hence having a degree higher than 1.

While conjecture 6.2 only applies for a very small family of graphs, we suppose
that this type of easily computable property on powergraphs may help for the
compression task, for instance during the choice of concepts that could introduce
suboptimal constructs recognizable as such. Next paragraphs introduce a discus-

sion and another conjecture on the property of optimally compressed powergraphs.

Link between edge reduction and conversion rate

Edge reduction and conversion rate are two correlated metrics introduced by [94]
to measure quantitatively the Power Graph Analysis efficiency to simplify graphs.
Edge reduction indicates the compression ratio of edges, whereas the conversion
rate is a measure of the mean reduction of edges compared to the number of pow-
ernodes introduced. With conjecture 6.3, we propose that an optimal powergraph
is optimal both in edge reduction and in conversion rate. This conjecture would
hold if the powernode hierarchy and the amount of powernodes are (at least partly)

determined by the chosen motifs.

Conjecture 6.3. Conversion rate = edge reduction
An optimally compressed powergraph (i.e. having a mazimal edge reduction) has

a mazimal conversion rate.

Modification of the powergraph

We also suppose that detecting specific non-optimal parts of a powergraph may
be the basis for a post-process that tweaks the powernode hierarchy and the pow-
eredges of an existing powergraph in order to improve its edge reduction. For in-
stance, such operations are the merging of mergeable powernodes, or the search and
optimal compression of the concept-cycle motif (which however precludes greedy

approaches).
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Note that changing the hierarchy of powernodes requires to also change the
poweredges cover to conserve the underlying data. The rules of transformation may
be quite simple, but still needs to be formalized as a algebra over the powernode

hierarchy and poweredges cover, i.e. trees and graph.

6.2.4 Search strategies to achieve better compression

The search strategy for graph compression, presented in chapter 2, is relying on
the ordering of concepts by decreasing cover. We propose here two variations upon
this strategy, aiming at achieving better compression, and a final paragraph on

our implementation of an exact algorithm for optimal powergraph compression.

Beam search: looking n step ahead

A natural variant search space exploration method is to rely on the prediction
of the decomposition of later concepts in order to predict the best concept to
compress at a given step. A concept could therefore not only be selected with
respect to its edge cover, but also because it will favor future selection of formal
concepts, leading to a smaller number of poweredges. In our compression algorithm
(see Algorithm 3), the function selecting the concept to compress (best__concept())
may involve a recursive call to the compression algorithm itself in order to explore

the consequences of the choice.

Graph motif: predicting compression effect

The selection-transformation method, presented in section 2.4.2, proposes a
select-then-transform approach, where concepts to compress are first reduced and
ordered, then compressed according to the order. One can devise another method,
where the search space is first encoded as a motif graph in order to compute the
worst-case effects of transformations before performing the selection. Intuitively,
each node of the motif graph is a compressible motif, and there is a link between
two nodes if the compressible motifs are not independent. One first obvious use
of that graph is to detect a stable. All nodes of a stable in the motif graph are
compressible without interference.

The motif graph can also be used to explore the consequences of the compres-
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sion of a particular concept. Let each edge (x,y) have a valuation corresponding
to the number of poweredges necessary to compress y if x is compressed. When
a neighbor x; of y is compressed, the number of powernodes composing y may
increase. As such, the number of poweredges created by the compression of y
increases. More generally, the motif graph encodes the poweredge cost of the com-
pression, and may be used to predict efficiently if a given ordering of concepts is
better than another. Finally, detecting communities of compressible motifs in this
graph (by compressing it, for instance), may unravel specific parts of the graph
where heuristics fail to obtain an optimal compression, and enable to decide a

better compression for the overall community.

ASP implementation of a brute-force optimal compression

We wrote an ASP implementation that searches for the optimal compressions
with a brute-force approach. It is able to enumerate them, but is however quite
complex and will not be detailed here. It is accessible freely for reference!. The

approach is however quite limited in is current version.

First, the encoding does not deal well with the numerous symmetries, especially
because of implementation details which requires powernodes to be identified by
pairs of nodes. For instance, a clique of 5 elements will yield more than 20 optimal
solutions. All describe a single powernode with a reflexive poweredge and 5 nodes
inside, with sole difference being the choice of the 2 nodes that identifies the sole

powernode.

The performances are low, especially regarding memory usage. For instance,
a single clique of 50 nodes requires more than 15 Go of memory and at least 3
minutes of computation to be solved. With a graph of 10 nodes and a density of

0.2, 8 Go and 2 minutes are needed.

More work is necessary to determine how to get rid of symmetries, and if clever

constraints on the model may improve its efficiency.

1. lucas.bourneuf.net/thesis
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6.2.5 Justifiable graph decomposition

Conceptual clustering is a clustering method where found clusters may be dis-
carded because they do not fulfill some (statistical) conditions. Applied to Power Graph
Analysis, this could for instance change the concept choice heuristic, by selecting a
motif to compress only if it leads to the creation of clusters with high enrichment.

An obvious first application is in protein-protein interaction networks. The
compression process would rely on annotations on proteins encoding their roles,
and, using an hypergeometric test, would discard any motif which clusters likeli-
hood does not meet a given p-value requirement.

The output powergraph would then be justified by data annotations: pow-
ernodes encoding statistically strong modules may help the understanding of the

overall (power) graph structure.

6.2.6 Quasi-motifs

As described in section 2.2.3, quasi-motifs, i.e. motifs with few missing edges, can
be used to reveal larger relations. PowerGrASP supports quasi-bicliques as motif
to be searched and compressed, but no application of these features was shown.
Future development in that direction for this software should enable the definition
of quasi-triplets, and one obvious application is the search for quasi-motifs in data

presenting less stars and more complex and incomplete structures.

More generally, quasi-motifs introduces the notion of exception, i.e. constructs
that are not strictly corresponding to existing data in the input graph. Their
presence precludes the compression to be lossless, unless they are added to the
final representation. In the case of quasi-motifs, the exceptions are edges missing
in the input graph. Graphically, these quasi-motifs could be rendered as normal
motifs, augmented by a set of edges indicating those implied by the poweredges,

but not present in the input data.

Quasi-triplets

Likewise to [74] which defines u-tolerance bicliques, a p-tolerance quasi-triplet
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could be defined as per definition 6.1, where p limits the missing edges in the

overall triplet.

Definition 6.1. p-tolerance quasi-triplet
Let T, = (V4, Va2, V3) be a quasi-triplet, and p a small integer number. Then 7), is

a p-tolerance quasi-triplet if for each v € V;, ¢ =1 or 2 or 3,
1. v is disconnected from at most p number of vertices in V; UVy, j # k # 1,

2. v is adjacent to at least o number of vertices in V; U V;

It is easy to imagine a finer definition involving different limits for the missing
links, allowing for instance a lot of missing links in the biclique formed by sets A

and B, but requiring very few missing links in C.

6.2.7 AOQOC poset

Because of the possibly exponential number of concepts, some applications of
FCA proposed to limit themselves to the AOC-poset instead of working on the
full lattice [33, 55], since the growth of the AOC-poset is linearly bounded, and
its extraction from the data is achievable in time bounded by the size of the
context [13].

Such a simplification could be tested on Power Graph Analysis. Apart for
diminishing the number of concepts to consider, it seems adapted to graphs essen-
tially composed of stars such as the aphid RNA network presented in chapter 4.
Indeed, the AOC poset contains only bicliques covering at least all edges adjacent
to a node, typically stars. On the other hand, bicliques covering only strict subsets
of adjacent edges were needed to reach an optimal compression in some examples
we shown (see for instance the graph in Figure 2.3). In other word, by considering
only the AOC-poset, optimality cannot be guaranteed and a good approximation
is likely to be reachable only in graph involving mostly stars (see for instance the

AOC-poset-first compression shown in Figure 2.6).

AQOT-poset
The object triplets and the attribute triplets, the triplet counterparts of object
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and attribute concepts, remain to be defined properly, which will only be possi-
ble once a proper definition of the triplet concept lattice will be proposed. The
obtained Atribute Object Triplet poset (AOT poset) structure may propose the
same advantage as the AOC poset regarding the minimization of the number of
motifs to consider, along the interests of triplet concepts regarding the unraveled

graph motifs.

6.2.8 Strict MCE from triplet concepts

We have proposed an algorithm building the maximal cliques of a graph from
its triplet concepts. In that regard, triplet concepts act as a compressed version of
cliques (see section 3.10).

Two main questions remain. First, is it possible to enumerate maximal bicliques
using a variation of the same method 7 That is, from the triplet concepts ? Second,
is it possible to use the triplet concepts as an efficient representation of the sole

maximal cliques 7

6.2.9 Benchmark of triplet concept enumeration methods

The generation of random contexts, used in section 3.9.5 to compare the dif-
ferent implementations of the triplet concept search task, has been made using a
naive uniform randomization that targets a given density.

Because of the particular structure found in real data, a completely random
context and therefore our benchmark is not representative of real world data, which
may present some global properties. A better generation, not uniformly random
and mimicking the structure of real data, may impact the behavior of the triplet
concept enumeration programs.

For instance, the small-world property, where the distribution of nodes’ degree
follows a power-law, are often found in bioinformatics and social network graphs.
Graph contexts derived from this type of graph would improve the relevance of the

benchmark. Another method could rely on a synthetic formal context generator
dedicated to FCA tasks [91].

178



6.2.10 Further optimizations for powergraph compression

We described some methods to reduce the compression search space (see sec-
tion 2.7). We propose here some ideas for other optimizations methods that may
enable a better optimization of PowerGrASP or other implementation of the com-
pression process, in order to compress larger networks, including extended Ma-

trixrDB in our applications.

Graph filtering for triplets

Section 2.7.2 described the graph filtering optimization for cliques, bicliques and
stars. Having an equivalent for triplets may greatly decrease the amount of edges
to consider in a graph. Since a triplet that is not a biclique or a star is made of
triangles, a good filter for a non-biclique triplet may be to discard any node not

involved in at least one triangle (this is similar to the graph filtering for cliques).

Subgraph postponing

Some graph families may be easier to compress. Intuitively, a tree may be com-
pressed efficiently with stars centered on the parent, and children clustered in a
powernode. One can detect and ignore them in a first step, and compress them, if
necessary, once the full graph has been treated.

However, as for the concept-cycle motif we described in chapter 2 that a greedy
approach cannot compress optimally, a tree needs a particular compression process
to be compressed in a readable way. In fact, a tree being readable by nature, there
is even little interest into compressing it.

Some other graph families may be detected and compressed efficiently with a
dedicated algorithm exploiting their properties. An example of such graph family
is lattices, which cannot have any biclique with 3 or more elements in both sets.

More generally, the compression of subgraphs having special properties may be
postponed to after the compression of the graph without these easily compressed

parts.

Hierarchy-free graph first
Most optimizations we presented were only valid when treating an uncompressed

graph. But as soon as hierarchy is introduced, the optimizations are deactivated
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because the properties they exploit cease to hold on a powergraph. This drawback
may be avoided by anew two-step approach. It consists into a first compression pass
where the already compressed powernodes and their neighborhood are ignored,
then a second step where the graph is refined to take into account the powernode

hierarchy constraint.

6.2.11 Biseau

We presented in the final chapter an important software contribution we de-
veloped and applied to FCA, Biseau. Because of the overall complexity of this
program, there is room for supplementary developments and features. Since we
hope that software will be useful for later users, we have provided an online repos-
itory that we hape will help further developments. We list here those that seems

to us of greatest importance.

Biseau is mainly developed as an interface to assemble small scripts performing
specific and parametrizable tasks, for instance concept mining and lattice genera-
tion. A possible extension is to provide an automated system to easily publish and
retrieve scripts from other users, i.e. a centralized library of scripts allowing the

community of users to easily share scripts.

To improve significantly the user experience on Biseau and its graphical user
interface, developments on UX testing, error management, and features typically
found in text editors and IDEs could help user to write, understand and debug
produced ASP code. Also, implementing Biseau support for more graph description
languages such as GML or GEXF would enable the outsourcing of the visualization

to other (field-)specialized software.
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The compressed section graph of this thesis, where each node is a (sub)section,
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the other (direct reference, or reference of figure/table). Node color depends of
the referenced chapter. Nodes without edges are sections without any references
to other sections.
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Résumé : LAnalyse Power Graph est une
technique de compression sans perte de
graphe visant a réduire la complexité visuelle
d’un graphe. Le processus consiste a détecter
des motifs, les cliques et les bicliques, qui per-
mettent d’établir des groupes de nceuds orga-
nisés hiérarchiguement, des groupes d’arcs,
et finalement un graph réduit a ces groupes.
Cette thése propose tout d’abord la formalisa-
tion de I'espace de recherche de I'’Analyse Po-
wer Graph, en utilisant I'Analyse de Concepts
Formels comme base théorique pour exprimer
le processus de compression. Le traitement in-

dépendant de deux motifs présente des dif-
ficultés et nous proposons une notion unifi-
catrice, les concepts triplets, qui conduiront
a un motif unique plus général pour la com-
pression. LAnalyse Power Graph et la nou-
velle approche ont été implémentés dans un
formalisme logique de Programmation par En-
sembles Réponses (ASP), et nous présentons
quelques applications en bioinformatique pour
les deux approches. La thése se clot sur la
présentation d’'un environnement de visualisa-
tion et de spécification de haut-niveau en théo-
rie des graphes.

Title: A search space of graph motifs for graph compression:

From Powergraphs to triplet concepts
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Abstract: Power Graph Analysis is a loss-
less graph compression method aiming at re-
ducing the visual complexity of a graph. The
process is to detect motifs, cligues and bi-
cliques, which enables the hierarchical clus-
tering of nodes, the grouping of edges, and
ultimately a graph reduced to these groups.
This thesis exposes first the formalization of
the Power Graph Analysis search space, us-
ing Formal Concept Analysis as a theoreti-
cal ground to express the compression pro-
cess. Because the independent treatment of

two motifs presents some caveats, we propose
a unification framework, triplet concepts, which
encode a more general motif for compression.
Both Power Graph Analysis and the new ap-
proach have been implemented in Answer Set
Programming (ASP), a logical formalism, and
we present some applications in bioinformatics
of these two approaches. This thesis ends on
the presentation of an high-level specification
and visualization environment for graph the-
ory.
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