R. Noyori, Nature Chem, 2005.

K. A. Sanderson-;-r and . Sheldon, Chem. Soc. Rev, vol.469, issue.7, 2011.

B. Pignataro, -. Wiley, and . Vch, New Strategies in Chemical Synthesis and Catalysis, 2012.

, New Avenues to Efficient Chemical Synthesis

P. H. Seeberger, T. Blume, and . Springer, , 2007.

S. J. Lippard, Nature, p.587, 2002.

M. S. Gibson and R. W. Bradshaw, Angew. Chem. Int. Ed, vol.7, p.919, 1968.

P. G. Wuts, -. Wiley, and . Weinheim, Greenes's Protective Groups in Organic Synthesis: Fifth Edition, Acc. Chem. Res, p.285, 1991.

J. O. Osby, M. G. Martin, and B. Ganem, Tetrahedron Lett, 1984.

S. Alford and H. M. Davies, Org. Lett, p.6020, 2012.

U. Sharma, P. Kumar, N. Kumar, B. Singh, ;. Kuo et al., Mini-Rev. Med. Chem, vol.10, p.678, 2010.

M. Varga, J. Evangelisto, ;. Wang, M. Caraballo, S. K. Larsson et al., J. Med. Chem, vol.43, p.2183, 2000.

G. E. Winter, D. L. Buckley, J. Paulk, and J. , J. Med. Chem, vol.103, p.191, 2015.

A. Roberts, S. Souza, J. E. Dhe-paganon, and . Bradner, Science, vol.348, p.1376, 2015.

Y. Wu, W. ;. Zhu, J. Hendsbee, W. K. Sun, H. Law et al., Chem. Soc. Rev, vol.28, p.7098, 2013.

A. D. Hendsbee, S. M. Mcafee, J. Sun, T. M. Mccormick, I. G. Hill et al., J. Mater. Chem. C, vol.3, p.8904, 2015.

A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little et al.,

D. P. Slater, B. Mcmahon, C. J. Bonillo, A. Stackhouse, C. M. Stephenson et al., Nature, vol.543, p.657, 2017.

S. E. Havlik, J. M. Simmons, V. J. Winton, and J. B. Johnson, J. Org. Chem, p.3588, 2011.

H. Adkins and H. I. Cramer, J. Am. Chem. Soc, vol.52, p.4349, 1930.

H. Hennige, R. P. Kreber, M. Konrad, and F. Jelitto, Chem. Ber, p.243, 1988.

A. Arevalo, S. Ovando-segovia, M. Flores-alamo, and J. J. Garcia, Organometallics, vol.32, p.2939, 2013.

M. J. Milewska, T. Bytner, and T. Polonski, Synthesis, p.1485, 1996.

A. J. Mcalees, R. Mccrindle, and D. W. Sneddon, J. Chem. Soc. Perkin Trans, 1977.

X. Meng, H. Li, Q. Lou, M. Cai, and Z. Li, Carbohydr. Res, vol.339, p.1497, 2004.

N. A. Tolmachova, V. G. Dolovanyuk, I. I. Gerus, I. S. Kondratov, V. V. Polovinko et al., Synthesis, 1149.

A. Muller, K. Polborn, and K. T. Wanner, J. Heterocycl. Chem, vol.44, p.575, 2007.

B. L. Chenard, F. S. Menniti, ;. Hofner, and C. E. , Curr. Pharm. Des, vol.5, p.381, 1999.

C. Hoesl, G. Parsons, K. T. Quack, and . Wanner, Bioorg. Med. Chem. Lett, p.2231, 2005.

S. Das, D. Addis, L. R. Knopke, U. Bentrup, K. Junge et al., Angew. Chem. Int. Ed, vol.50, p.9180, 2011.

R. Mccrindle, K. H. Overton, and R. A. Raphael, J. Chem. Soc, p.1869, 1962.

A. Kimura, Y. Takada, T. Inayoshi, Y. Nakao, G. Goetz et al., J. Org. Chem, p.1760, 2002.

R. Aoun, J. Renaud, P. H. Dixneuf, and C. Bruneau, Angew. Chem. Int. Ed, 2005.

X. Cui, A. E. Surkus, K. Junge, C. Topf, J. Radnik et al., Nature Commun, p.31, 2016.

A. M. Maj, I. Suisse, N. Pinault, N. Robert, and F. Agbossou-niedercorn, ChemCatChem, 2014.

J. Souvie, C. Fugier, J. Lecouve, ;. Sato, A. Tsubaki et al., , 1999.

N. T. Khi, H. Baik, H. Lee, J. Yoon, J. Sohn et al., Nanoscale, vol.6, p.11007, 2014.

M. Ito, A. Sakaguchi, C. Kobayashi, and T. Ikariya, J. Am. Chem. Soc, p.290, 2007.

O. O. Kovalenko, A. Volkov, and H. Adolfsson, Org. Lett, p.446, 2015.

L. Shi, X. Tan, J. Long, X. Xiong, S. Yang et al., Chem. Eur. J, vol.23, p.546, 2017.

A. Kumar, T. Janes, N. A. Espinosa-jalap, and D. Milstein, J. Am. Chem. Soc, p.7453, 2018.

Y. Kajita, S. Matsubara, and T. Kurahashi, J. Am. Chem. Soc, vol.130, p.6058, 2008.

T. N. Le, S. G. Gang, and W. Cho, J. Org. Chem, vol.69, p.2768, 2004.

P. J. Ruchelman, N. Houghton, A. Zhou, L. F. Liu, E. J. Liu et al., J. Med. Chem, vol.48, p.377, 1982.

L. Ackermann, Acc. Chem. Res, vol.47, p.281, 2014.

K. Fujiwara, T. Kurahashi, and S. Matsubara, Org. Lett, p.4548, 2010.

T. Sueda, A. Kawada, Y. Urashi, and N. Teno, Org. Lett, p.1560, 2013.

K. S. Deglopper, S. K. Fodor, T. B. Endean, and J. B. Johnson, Polyhedron, vol.114, p.393, 2016.

S. Higson, F. Subrizi, T. D. Sheppard, H. C. Hailes, and G. Chem, , vol.18, p.1855, 2016.

F. Chen, T. Wang, and N. Jiao, Angew. Chem. Int. Ed, vol.114, p.8960, 2012.

X. Yu, ;. Li, C. Cornella, R. Zarate, and . Martin, Chem. Soc. Rev, vol.45, p.6462, 2016.

M. S. Gibson and R. W. Bradshaw, Angew. Chem. Int. Ed, vol.7, p.919, 1968.

M. Wuts, Greenes's Protective Groups in Organic Synthesis: Fifth Edition

G. M. Wuts and E. , , pp.895-1193, 2014.

Y. Wu and W. Zhu, Chem. Soc. Rev, 2013.

A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little et al.,

D. P. Slater, B. Mcmahon, C. J. Bonillo, A. Stackhouse, C. M. Stephenson et al., Nature, vol.543, p.657, 2017.

X. Guo, F. S. Kim, S. A. Jenekhe, and M. D. Watson, J. Am. Chem. Soc, p.7206, 2009.

S. Ban, H. Xie, X. Zhu, and Q. Li, Eur. J. Org. Chem, p.6413, 2011.

G. E. Winter, D. L. Buckley, J. Paulk, J. M. Roberts, A. Souza et al., Science, vol.348, p.1376, 2015.

K. C. Schreiber and V. P. Fernandez, J. Org. Chem, p.1744, 1961.

R. E. Gawley, S. R. Chemburkar, A. L. Smith, and T. V. Anklekar, J. Org. Chem, p.5381, 1988.

K. Y. Koltunov, G. K. Prakash, G. Rasul, and G. A. Olah, Eur. J. Org. Chem, p.4861, 2006.

A. Arizpe, F. J. Sayago, A. I. Jimenez, M. Ordonez, and C. Cativiela, Eur. J. Org. Chem, p.6732, 2011.

S. Cacchi, G. Fabrizi, and L. Moro, Synlett, vol.741, p.82, 1998.

P. S. Anderson, M. E. Christy, C. D. Colton, W. Halczenco, G. S. Ponticello et al., J. Org. Chem, p.1519, 1979.

D. E. Patton and R. S. Drago, J. Chem. Soc. Perkin Trans. 1, 1611.

J. Aoun, P. H. Renaud, C. Dixneuf, ). S. Bruneau-;-c, J. M. Takebayashi et al., Angew. Chem. Int. Ed, vol.44, p.12832, 2005.

S. Das, D. Addis, L. R. Knoepke, U. Bentrup, K. Junge et al.,

;. G. Beller, B. Ding, Y. Lu, J. Li, Z. Wan et al., Angew. Chem. Int. Ed, vol.50, p.1013, 2011.

J. R. Cabrero-antonino, I. Sorribes, K. Junge, and M. Beller, Angew. Chem. Int

). J. Cabrero-antonino, R. Adam, V. Papa, M. Holsten, K. Junge et al., Chem. Sci, vol.55, p.5536, 2016.

M. Ito, A. Sakaguchi, C. Kobayashi, T. Ikariya, ;. Kajita et al., J. Am. Chem. Soc, vol.129, p.2939, 2007.

E. Valeur, M. M. Bradley-;-r, and T. D. Lanigan, Chem. Soc. Rev, vol.38, p.606, 2009.

;. R. Sheppard, J. De-figuereido, and J. Suppo, Eur. J. Org. Chem, p.7453, 2013.

M. Campagne, Chem. Rev, vol.116, p.12029, 2016.

S. Inoue, H. Shiota, Y. Fukumoto, N. Chatani, ;. Hasegawa et al., J. Am. Chem. Soc, vol.131, p.6898, 2009.

, Chem. Commun, vol.133, 2011.

, For ruthenium-catalyzed decarboxylation of esters and carboxylic acids, see: (a)

N. Chatani, H. Tatamidani, Y. Ie, F. Kakiuchi, S. Murai et al., Angew. Chem. Int. Ed, vol.123, p.83, 2001.

N. Zhao, ;. L. Chem, A. Huang, G. Biafora, and V. Zhang, , 1144.

L. J. Bragoni and . Goossen, Angew. Chem. Int. Ed, vol.55, p.6933, 2016.

X. Zhang and . Hong, J. Am. Chem. Soc, p.7224, 2017.

B. Demerseman, M. D. Mbaye, D. Semeril, L. Toupet, C. Bruneau et al., Eur. J. Inorg. Chem, vol.29, p.6891, 1162.

J. N. Coalter, I. , J. C. Bollinger, J. C. Huffman, U. Werner-zwanziger et al., New J. Chem, vol.24, p.9, 2000.

B. Li, H. Feng, N. Wang, J. Ma, H. Song et al., Chem. Eur. J, vol.18, p.230, 2012.

V. R. Pattabiraman and J. W. Bode, Nature, vol.480, p.471, 2011.

S. Takebayashi, J. M. John, and S. H. Bergens, J. Am. Chem. Soc, p.12832, 2010.

J. Hsieh and C. Cheng, Chem. Commun, vol.36, p.4554, 2005.

G. Ding, C. Li, Y. Shen, B. Lu, Z. Zhang et al., Adv. Synth. Catal, vol.358, p.1241, 2016.

S. Liu, Q. Deng, W. Fang, J. Gong, M. Song et al., Org. Chem. Front, 1261.

L. Zhang, Y. Li, L. Jin, F. Liang, and . Adv, , vol.5, p.65600, 2015.

P. Gupta, B. A. Shah, R. Parshad, G. N. Qazi, S. C. Taneja et al., , vol.9, p.1120, 2007.

P. Dawar, M. B. Raju, and R. A. Ramakrishna, Tetrahedron Lett, p.4262, 2011.

H. J. Kim, J. Kim, S. H. Cho, and S. Chang, J. Am. Chem. Soc, p.16382, 2011.

B. Khan, A. A. Khan, R. Kant, and D. Koley, Adv. Synth. Catal, vol.358, p.3753, 2016.

M. A. Ali, S. K. Moromi, A. S. Touchy, and K. Shimizu, ChemCatChem, vol.8, p.891, 2016.

S. L. Yedage, D. S. D'silva, B. M. Bhanage, and . Adv, , vol.5, p.80441, 2015.

S. Inoue, H. Shiota, Y. Fukumoto, and N. Chatani, J. Am. Chem. Soc, p.6898, 2009.

M. Wang, J. Lu, J. Ma, Z. Zhang, and F. Wang, Angew. Chem. Int. Ed, vol.54, p.14061, 2015.

C. D. Chu, Y. H. Qi, and W. Hao, Catal. Commun, 1527.

V. Kumar and G. S. Banker, Int. J. Pharm, p.61, 1992.

L. K. Rasmussen, M. Begtrup, and T. Ruhland, J. Org. Chem, p.6890, 2004.

R. Shrestha, P. Mukherjee, Y. Tan, Z. C. Litman, and J. F. Hartwig, J. Am. Chem. Soc, p.8480, 2013.

S. A. Worlikar and R. C. Larock, J. Org. Chem, p.7175, 2008.

B. Nammalwar, N. P. Muddala, F. M. Watts, and R. A. Bunce, Tetrahedron, p.9101, 2015.

M. V. De-almeida, F. M. Teixeira, M. V. Souza, G. W. Amarante, and C. C. ,

S. H. Alves, A. M. Cardoso, A. P. Mattos, H. C. Ferreira, and . Teixeira, Chem. Pharm. Bull, vol.55, p.223, 2007.

S. D. Sarkar and L. Ackermann, Chem. Eur. J, 2014.

F. J. Williams and P. E. Donahue, J. Org. Chem, p.3414, 1977.

Y. Shibata, K. Sasaki, Y. Hashimoto, and S. Iwasaki, Chem. Pharm. Bull, p.156, 1996.

X. Dong, J. Fan, X. Shi, K. Liu, P. Wang et al., J. Organomet. Chem, p.55, 2015.

X. Sun, X. Li, S. Song, Y. Zhu, Y. Liang et al., J. Am. Chem. Soc, vol.137, p.6059, 2015.

G. Ding, C. Li, Y. Shen, B. Lu, Z. Zhang et al., Adv. Synth. Catal, vol.358, p.1241, 2016.

A. M. Al-azzawi and M. S. Al-razzak, Int. J. Res. Pharm. Chem, issue.3, p.682, 2013.

W. S. Sun, Y. S. Park, J. Yoo, K. D. Park, S. H. Kim et al., J. Med. Chem, vol.46, p.85, 2003.

N. Matuszak, G. G. Muccioli, G. Labar, and D. M. Lambert, J. Med. Chem, p.7410, 2009.

C. Cheng, H. Tsai, M. Lin, and J. H. Chem, , p.73, 1995.

S. Wang, H. Huang, C. Bruneau, and C. Fischmeister, , vol.10, p.4150, 2017.

V. Kumar, S. Sharma, U. Sharma, B. Singh, N. Kumar et al., , p.3410, 2012.

K. Kaminski, B. Wiklik, and J. Obniska, Arch. Pharm. Chem. Life Sci, vol.347, p.840, 2014.

A. B. Charette, M. Grenon, A. Lemire, M. Pourashraf, and J. Martel, J. Am. Chem. Soc, vol.123, p.11829, 2001.

L. Ackermann, A. V. Lygin, and N. Hofmann, Angew. Chem. Int. Ed, vol.50, p.6379, 2011.

L. Zhang, S. Su, H. Wu, and S. Wang, Tetrahedron, p.10022, 2009.

F. Foubelo, F. Lloret, and M. Yus, Anal. Quimica, p.260, 1995.

T. Higuchi, R. Tagawa, A. Iimuro, S. Akiyama, H. Nagae et al., Chem. Eur. J, vol.23, p.12795, 2017.

U. Bratusek, S. Recnik, J. Svete, L. Golic, and B. , Stanovnik Heterocycles, vol.57, p.2045, 2002.

W. Yoo and C. Li, J. Am. Chem. Soc, vol.128, p.13064, 2006.

L. U. Nordstrøm, H. Vogt, and R. Madsen, J. Am. Chem. Soc, vol.130, p.17672, 2008.

X. Cui, Y. Zhang, F. Shi, and Y. Deng, Chem. Eur. J, 1021.

G. A. Molander and M. Hiebel, Org. Lett, p.4876, 2010.

P. Biallas, A. P. Häring, and S. F. Kirsch, Org. Biomol. Chem, p.3184, 2017.

H. Sheng, R. Zeng, W. Wang, S. Luo, Y. Feng et al., Adv. Synth. Catal, p.302, 2017.

V. Rajkumar, S. A. Naveen, and . Babu, , vol.6, p.1207, 2016.

T. B. Halima, J. K. Vandavasi, M. Shkoor, and S. G. Newman, , 2017.

T. Miura, Y. Takahashi, and M. Murakami, Chem. Commun, p.3577, 2007.

H. Xu and C. Wolf, Chem. Commun, p.1715, 2009.

G. Evindar and R. A. Batey, J. Org. Chem, p.1802, 2006.

C. K. Lee, J. S. Yu, Y. R. Ji, and J. H. Chem, , p.1219, 2002.

W. Xu, B. Huang, J. Dai, J. Xu, and H. Xu, Org. Lett, vol.18, p.3114, 2016.

K. Inamoto, M. Shiraishi, K. Hiroya, and T. Doi, Synthesis, vol.18, p.3087, 2010.

P. Wójcik, V. Rosar, A. Gniewek, B. Milani, and A. M. Trzeciak, J. Mol. Catal. A: Chemical, vol.425, p.322, 2016.

S. Ueda and H. Nagasawa, J. Org. Chem, p.4272, 2009.

K. Sasaki and D. Crich, Org. Lett, 2011.

Z. Wang, W. Fan, G. Deng, and W. Zhou, Tetrahedron Lett, p.5449, 2015.

Y. Zhu, C. Li, A. O. Biying, M. Sudarmadji, A. Chen et al., , 2011.

R. Sharma, R. A. Vishwakarma, and S. B. Bharate, Adv. Synth. Catal, vol.358, p.3027, 2016.

J. R. Martinelli, D. A. Watson, D. M. Freckmann, T. E. Barder, and S. L. Buchwald, J. Org. Chem, p.7102, 2008.

M. A. Ali, P. Saha, and T. Punniyamurthy, Synthesis, vol.6, p.908, 2010.

Y. Wang, D. Zhu, L. Tang, S. Wang, and Z. Wang, Angew. Chem. Int. Ed, vol.50, p.8917, 2011.

G. Hong, D. Mao, X. Zhu, S. Wu, and L. Wang, Org. Chem. Front, vol.2, p.985, 2015.

G. Meng, P. Lei, and M. Szostak, Org. Lett, 2017.

C. Wu, X. Xin, Z. Fu, L. Xie, K. Liu et al., , p.19, 1983.

T. Hattori, H. Okami, T. Ichikawa, S. Mori, Y. Sawama et al., Adv. Synth. Catal, p.3490, 2017.

M. Spallarossa, Q. Wang, R. Riva, and J. Zhu, Org. Lett, vol.18, p.1622, 2016.

L. R. Odell, D. Howan, C. P. Gordon, M. J. Robertson, N. Chau et al.,

J. Mccluskey, . Med, . S. Chem, L. Mangani, R. Cancian et al., J. Med. Chem, vol.53, p.5454, 2010.

K. M. Engle, T. Mei, M. Wasa, and J. Yu, Acc. Chem. Res, vol.45, p.788, 2012.

S. De-sarkar, W. Liu, S. I. Kozhushkov, and L. Ackermann, Adv. Synth. Catal, vol.356, p.1461, 2014.

S. Nakazono, Y. Imazaki, H. Yoo, J. Yang, T. Sasamori et al., Adv. Synth. Catal, vol.15, p.2582, 2009.

K. Raghuvanshi, K. Rauch, and L. Ackermann, Chem. Eur. J, vol.21, p.1790, 2015.

T. Sarkar, S. Pradhan, and T. Punniyamurthy, J. Org. Chem, p.6444, 2018.

Y. Wu, W. ;. Zhu, J. Hendsbee, W. K. Sun, H. Law et al., Chem. Soc. Rev, vol.28, p.7098, 2013.

E. S. Gore, Platinum Metals Rev, vol.27, 1983.

Y. Wang, C. Yang, Y. Chang, W. Wu, M. Sun et al.,

D. Lo, ;. Y. Trans, W. Xu, ;. Wan, J. Mueller et al., Adv. Synth. Catal, vol.54, p.1424, 1981.

G. L. Tullos, J. M. Powers, S. J. Jeskey, and L. J. Mathias, Macromolecules, vol.32, p.3598, 1999.

Y. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel et al., Org. Lett, vol.19, p.4216, 2017.

J. Hsieh and C. Cheng, Chem. Commun, p.4554, 2005.

N. A. Zakharova and N. V. Khromov-borisov, Zhurnal Organicheskoi Khimii, vol.6, p.116, 1970.

L. K. Rasmussen, M. Begtrup, and T. Ruhland, J. Org. Chem, p.6890, 2004.

X. Wang, W. Xiong, Y. Huang, J. Zhu, Q. Hu et al., Org. Lett, p.5818, 2017.

R. Shrestha, P. Mukherjee, Y. Tan, Z. C. Litman, and J. F. Hartwig, J. Am. Chem. Soc, p.8480, 2013.

S. A. Worlikar and R. C. Larock, J. Org. Chem, p.7175, 2008.

V. Kumar and G. S. Banker, Int. J. Pharm, p.61, 1992.

N. Sharma and G. Sekar, Adv. Synth. Catal, vol.358, p.314, 2016.

S. L. Yedage, D. S. D'silva, B. M. Bhanage, and . Adv, , vol.5, p.80441, 2015.

S. Liu, Q. Deng, W. Fang, J. Gong, M. Song et al., Org. Chem. Front, 1261.

X. Dong, J. Fan, X. Shi, K. Liu, P. Wang et al., J. Organomet. Chem, p.55, 2015.

S. D. Sarkar and L. Ackermann, Chem. Eur. J, 2014.

F. J. Williams and P. E. Donahue, J. Org. Chem, p.3415, 1977.

Y. Shibata, K. Sasaki, Y. Hashimoto, and S. Iwasaki, Chem. Pharm. Bull, p.156, 1996.

M. Wang, J. Lu, J. Ma, Z. Zhang, and F. Wang, Angew. Chem. Int. Ed, vol.54, p.14061, 2015.

S. De-sarkar and L. Ackermann, Chem. Eur. J, 2014.

H. J. Kim, J. Kim, S. H. Cho, and S. Chang, J. Am. Chem. Soc, p.16382, 2011.

K. Kaminski, B. Wiklik, and J. Obniska, Arch. Pharm. Chem. Life Sci, vol.347, p.840, 2014.

M. Kobeissi, O. Yazbeck, and Y. Chreim, Tetrahedron Lett, vol.55, p.2523, 2014.

N. Matuszak, G. G. Muccioli, G. Labar, and D. M. Lambert, J. Med. Chem, p.7410, 2009.

V. Kumar, S. Sharma, U. Sharma, B. Singh, N. Kumar et al., , vol.14, p.4150, 2012.

C. Lin, L. Zhen, Y. Cheng, H. Du, H. Zhao et al., Org. Lett, p.2684, 2015.

C. D. Chu, Y. H. Qi, and W. Hao, Catal. Commun, 1527.

S. Sharma, I. A. Khan, and A. K. Saxena, Adv. Synth. Catal, p.673, 2013.

B. Nammalwar, N. P. Muddala, F. M. Watts, and R. A. Bunce, Tetrahedron, p.9101, 2015.

R. J. Perry and S. R. Turner, J. Org. Chem, p.6573, 1991.

P. Wójcik and A. M. Trzeciak, Appl. Catal. A, p.73, 2018.

C. Yao, Y. Bao, T. Lu, and Q. Zhou, Org. Lett, 2018.

Y. Yamamoto, T. Hisa, Y. Arai, F. Saito, T. Yamamoto et al., Bioorg. Med. Chem, p.6807, 2015.

S. Mansor, N. Zakaria, A. Ariffin, and S. W. Ng, Acta Cryst, 1770.

M. J. Caulfield, M. G. Looney, R. A. Pittard, and D. H. Solomon, Polymer, vol.39, p.6541, 1998.

T. M. Pyriadi and A. M. Alazawi, J. Polym. Sci.: Part A: Polym. Chem, p.427, 1999.

J. Wang, L. Yang, C. Hou, and H. Cao, Org. Biomol. Chem, p.6271, 2012.

M. A. Khadim and L. D. Colebrook, Magnet. Res. Chem, p.259, 1985.

H. Xu and C. Wolf, Chem. Commun, p.1715, 2009.

Y. Duan, T. Song, X. Dong, and Y. Yang, Green Chem, 2018.

T. Yoneyama and R. H. Crabtree, J. Am. Chem. Soc, vol.108, p.2300, 1996.

S. Mukhopadhyay and A. T. Bell, Angew. Chem. Int. Ed, vol.42, p.2990, 2003.

R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh et al., Science, vol.280, p.560, 1998.

T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi et al., J. Am. Chem. Soc, vol.125, p.390, 2002.

J. Hinman, ;. C. Bois, and P. Espino, J. Am. Chem. Soc, vol.125, p.11510, 2003.

M. Wehn, J. Chow, and J. D. Bois, J. Am. Chem. Soc, vol.123, p.6935, 2001.

J. A. Dangel, D. Johnson, and . Sames, J. Am. Chem. Soc, vol.123, p.8149, 2001.

T. Newhouse and P. S. Baran, Angew. Chem. Int. Ed, vol.50, 2011.

K. I. Boisvert, ;. Goldberg, S. Qiu, ;. J. Gao, E. Dong et al., Angew. Chem. Int. Ed, vol.45, p.9238, 2012.

K. Ray, F. F. Pfaff, B. Wang, W. Nam, J. S. Am et al., Angew. Chem. Int. Ed, vol.136, p.3148, 2014.

C. Alonso, I. M. Najera, M. Pastor, C. Yus, and . J. Eur, , vol.16, p.5274, 2010.

W. Lyons, M. S. Sanford, ;. S. Enthaler, A. Company, and ;. Rao, Chem. Soc. Rev, vol.110, p.155, 2010.

V. S. Thirunavukkarasu, S. I. Kozhushkov, and L. Ackermann, Chem. Commun, vol.50, p.29, 2014.

K. M. Engle, T. Mei, M. Wasa, J. Yu-;-s.-de, W. Sarkar et al., Adv. Synth. Catal, vol.45, p.2872, 2012.

G. Dao-huy, P. Pototschnig, T. Schaaf, M. F. Wiesinger, J. Zia et al., Chem. Soc. Rev, vol.47, p.6603, 2018.

J. Yamaguchi, A. D. Yamaguchi, K. Itami, ;. Brueckl, R. D. Baxter et al., Angew. Chem. Int. Ed, vol.51, issue.2, p.826, 2012.

P. A. Abrams, E. J. Provencher, and . Sorensen, Chem. Soc. Rev, vol.47, p.8925, 2018.

R. Zhu, M. E. Farmer, Y. Chen, J. Yu, ;. Das et al., Angew. Chem. Int. Ed, vol.55, p.5439, 2014.

V. S. Thirunavukkarasu, J. Hubrich, L. Ackermann, ;. Kalyani, and M. S. Sanford, J. Am. Chem. Soc, vol.14, p.13285, 2005.

X. Shan, L. Yang, Y. Ma, and . Rao, Angew. Chem. Int. Ed, vol.51, p.13070, 2012.

X. Shan, Y. Han, Y. Lin, and . Rao, Org. Biomol. Chem, 2013.

Y. Sun, T. Sun, Y. Wu, X. Zhang, and Y. Rao, Chem. Sci, 2016.

N. Y. More, K. Padala, and M. Jeganmohan, J. Org. Chem, p.12691, 2017.

Y. Yuan, C. Bruneau, T. Roisnel, and R. Gramage-doria, J. Org. Chem, vol.84, p.1898, 2019.

K. Speck, T. Magauer, and ;. , Beilstein J. Org. Chem, vol.9, 2013.

;. M. Bhatia, D. E. Lunn, and A. Root, Curr. Top. Med. Chem, vol.17, p.189, 2017.

M. Martino, S. P. Flaherty, B. P. Kelley, D. D. Coovert, and A. H. Burghes,

G. E. Man, J. Morris, E. J. Zhou, C. J. Androphy, B. R. Sumner et al., Chem. Biol, 1489.

S. Kobayashi, Y. Iwasaki, and . Hashimoto, Chem. Pharm. Bull, vol.44, 1980.

J. S. Park, S. C. Moon, K. U. Baik, J. Y. Cho, E. S. Yoo et al., Arch. Pharm. Res, vol.25, p.137, 2002.

S. M. Allin, C. J. Northfield, M. I. Page, and A. M. Slawin, J. Chem. Soc. Perkin Trans, vol.17, p.428, 1715.

G. Braig, . Raabe, .. J. Can, ;. R. Chem, P. Hunter et al., Org. Biomol. Chem, vol.79, p.1277, 1261.

E. Thapa, S. Corral, B. S. Sardar, F. W. Pierce, and J. Foss, J. Org. Chem, vol.84, p.1025, 2019.

E. Kianmehr and S. B. Nasab, Eur. J. Org. Chem, p.1038, 2019.

K. Raghuvanshi, L. Rauch, and . Ackermann, Chem. Eur. J, vol.21, p.1790, 2015.

S. Sarkar, T. Pradhan, and . Punniyamurthy, J. Org. Chem, vol.83, p.6444, 2018.

K. Okada, T. Nobushige, M. Satoh, and . Miura, Org. Lett, vol.18, p.1150, 2016.

M. Padala and . Jeganmohan, Chem. Commun, vol.49, p.1278, 2013.

Y. Yuan, C. Bruneau, and R. Gramage-doria, Synthesis, vol.50, p.4216, 2018.

L. Ackermann-;-l.-ackermann, R. Vicente, and H. K. Potukuchi, 111, 1315. (b) L. Ackermann, vol.47, p.281, 2011.

O. Pirovano, N. Lett.-;-i.-fabre, G. L. Wolff, and E. Duc, , vol.12, p.5032, 2010.

C. Ferrer-flegeau, P. H. Bruneau, A. Dixneuf, R. Jutand-;-l.-ackermann, A. Vicente et al., Chem. Rev. Chapter, vol.19, p.157, 2008.

C. Shan, L. Zhu, L. Qu, R. Bai, and Y. Lan, Chem. Soc. Rev, vol.112, p.7552, 2012.

Y. Zhou, P. Chen, X. Lv, J. Niu, Y. Wang et al., Tetrahedron Lett, p.2232, 2017.

A. Verma, S. Patel, A. Meenakshi, A. Kumar, S. Yadav et al., Chem. Commun, p.1371, 2015.

C. Lin, L. Zhen, Y. Cheng, H. Du, H. Zhao et al., Org. Lett, p.2684, 2015.

J. Hsieh and C. Cheng, Chem. Commun, vol.36, p.4554, 2005.

K. Kaminski, B. Wiklik, and J. Obniska, Arch. Pharm. Chem. Life Sci, vol.347, p.840, 2014.

K. M. Engle, T. Mei, M. Wasa, J. Yu-;-s.-de, W. Sarkar et al., Adv. Synth. Catal, vol.45, p.2872, 2012.

G. Dao-huy, P. Pototschnig, T. Schaaf, M. F. Wiesinger, J. Zia et al., Chem. Soc. Rev, vol.47, p.5879, 2012.

J. Yamaguchi, A. D. Yamaguchi, and K. Itami, Angew. Chem. Int. Ed, vol.51, issue.5, p.369, 2012.

K. D. Cernak, S. Dykstra, P. Tyagarajan, S. W. Vachal, and . Krska, Chem. Soc. Rev, vol.45, p.546, 2016.

R. Zhu, M. E. Farmer, Y. Chen, J. Yu, ;. Das et al., For reviews, vol.55, p.5439, 2014.

E. N. Da-silva-junior, G. A. Jardim, R. S. Gomes, Y. Liang, L. Ackermann et al., For reviews, vol.54, p.7398, 2018.

S. Ahn and . Hong, Asian J. Org. Chem, p.191, 1136.

D. Kalyani, N. R. Deprez, L. V. Desai, M. S. Sanford-;-c, X. Yeung et al., J. Am. Chem. Soc, vol.127, p.7330, 2005.

. Sci, , 2010.

. Sanford, J. Am. Chem. Soc, 2011.

;. S. Sanford and C. K. Neufeld, Adv. Synth. Catal, vol.354, p.3517, 2012.

M. S. Seigerman, ;. D. Sanford, N. Li, and Y. Xu, Org. Lett, 2013.

L. Zhang, ;. Wang, D. Huang, and J. Wu, Chem. Commun, vol.50, p.14862, 2014.

Q. Huang, J. Guo, J. Li, and . You, Angew. Chem. Int. Ed, vol.53, p.12158, 2014.

W. Gao, J. Guo, Y. Xue, Y. Zhao, Y. Yuan et al., Org. Biomol. Chem, vol.137, p.8709, 2015.

J. A. Leitch, P. B. Wilson, C. L. Mcmullin, M. F. Mahon, Y. Bhonoah et al.,

H. Williams and C. G. Frost, , vol.6, p.5520, 2016.

Y. Cook, G. C. Bhonoah, and . Frost, J. Org. Chem, vol.81, p.10081, 2016.

D. Dong, L. Wang, and . Ackermann, Adv. Synth. Catal, p.966, 2017.

D. Kalyani, M. S. Sanford, ;. Kalyani, A. R. Dick, and W. , Org. Lett, vol.7, p.4149, 1141.

Q. Anani and M. S. Sanford, Tetrahedron, vol.62, p.11483, 2006.

W. Chan and . Yu, J. Am. Chem. Soc, vol.132, p.12862, 2010.

J. Chang, . Org, ;. Chem, J. Ryu, K. Kwak et al., J. Am. Chem. Soc, vol.78, p.11102, 2013.

V. Solano, J. Su, X. Zhou, M. J. Johansson, and B. Martin-matute, Chem. Eur. J, vol.22, p.3729, 2016.

M. H. Norman, D. J. Minick, G. C. Rigdon-;-g, R. Muller, S. Chen et al., J. Med. Chem, vol.39, p.192, 1996.

Y. Patterson, G. Chen, D. I. Kaplan, and . Stirling, Bioorg. Med. Chem. Lett, p.1625, 1999.

S. Nomura, K. Endo-umeda, A. Aoyama, M. Makishima, Y. Hashimoto et al., ACS Med. Chem. Lett, vol.6, p.902, 2015.

M. Hashimoto and . Ishikawa, Bioorg. Med. Chem. Lett, p.796, 2018.

Y. Kanda, H. Ando, K. Kawashima, T. Sugita, M. Suzuki et al., PCT Int. Appl, 2006.

S. A. Biller, R. M. Lawrence, and M. A. Pross, Statutory Invent. Regist. 1998, US 1729 H, 19980505.

T. Kitamura, Y. Fujiwara, ;. F. Comp, . V. Kakiuchi-;-i, and V. Seregin, Topics Organomet. Chem, vol.10, issue.1, p.213, 2007.

;. E. Gevorgyan, M. J. Beck, . I. Gaunt-;-s, L. Kozhushkov, and C. Ackermann, Topics Curr. Chem, vol.36, p.6495, 2007.

;. L. Sci, W. Zhou, and . Lu, Chem. Eur. J, vol.20, p.634, 2013.

M. Satoh, ;. Miura, P. H. Bruneau, ;. W. Dixneuf, P. Ma et al., Metal-Catalyzed Cross-Coupling Reactions and More, vol.55, p.16115, 1389.

R. Manikandan and M. Jeganmohan, Chem. Commun, vol.53, p.8931, 2017.

M. Sonoda, F. Kakiuchi, N. Chatani, and S. Murai, Bull. Chem. Soc. Jpn, vol.70, p.6144, 1997.

M. Padala and . Jeganmohan, Org. Lett, vol.14, p.1134, 2012.

P. Pimparkar, M. Madasamy, and . Jeganmohan, Chem. Commun, vol.48, p.193, 2012.

J. Li, C. Kornhaass, and L. Ackermann, Chem. Commun, vol.48, p.11343, 2012.

M. C. Reddy, M. Jeganmohan, ;. W. Ma, and L. , Eur. J. Org. Chem, p.1150, 2013.

C. Ackermann, . J. Eur, M. Reddy, P. Jeganmohan-;-r.-manikandan, M. Madasamy et al., Chem. Commun, vol.51, p.230, 2013.

X. Hu, J. Zhang, X. Yang, Y. Xu, and T. Loh, J. Am. Chem. Soc, vol.137, p.11232, 2012.

M. R. Lunn, D. E. Root, A. M. Martino, S. P. Flaherty, B. P. Kelley et al.,

A. H. Coovert, N. T. Burghes, G. E. Man, J. Morris, E. J. Zhou et al., Chem. Biol, vol.11, p.1489, 2004.

M. Drapeau and L. J. Goossen, Chem. Eur. J, vol.22, p.18654, 2016.

Y. Shi and . Zhang, Adv. Synth. Catal, vol.356, p.1419, 2014.

. For,

J. R. Suravajjala, L. C. Polam, and . Porter, Organometallics, vol.13, p.37, 1994.

W. S. Wolff and . Sheldrick, J. Organomet. Chem, vol.531, p.141, 1997.

R. G. Wiseman, M. J. Jones, and . Went, J. Organomet. Chem, vol.544, p.129, 1997.

J. R. Miura, J. B. Davidson, G. C. Hincapie, D. J. Burkey-;-e, R. A. Velarde et al., J. Am. Chem. Soc, vol.21, p.5795, 2002.

J. Zhang, R. Shrestha, J. F. Hartwig, and P. Zhao, Nature Chem, 1144.

C. Bruneau and R. Gramage-doria, Adv. Synth. Catal, vol.358, p.3847, 2016.

S. Gramage-doria, C. Achelle, F. Bruneau, V. Robin-le-guen, and T. Dorcet,

. Roisnel, J. Org. Chem, p.1462, 2018.

Y. Zhou, P. Chen, X. Lv, J. Niu, Y. Wang et al., Tetrahedron Lett, p.2232, 2017.

, 2-yl)isoindolin-1-one (2c): White solid, yield = 84%, 79.1 mg. Mp: 162-164 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.92 (d, J = 7.2 Hz, 1H), 7.51-7.43 (m, 2H), 7.41-7.36 (m, 3H), 7.31-7.22 (m, 4H)

, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 169

, ppm. HRMS (ESI) calcd. for

, 2-yl)isoindolin-1-one (2d): White solid, yield = 86%, 82.8 mg. Mp: 121-123 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.91 (d, J = 7.2 Hz, 1H), 7.53-7.42 (m, 5H), 7.37-7.34 (m, 2H), vol.7, pp.33-40

, HRMS (ESI) calcd. for

, -carboxylate (2e): White oil, yield = 55%, 59.2 mg. 1 H NMR (400 MHz, CDCl3): ? = 8

, Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.54-7.45 (m, 2H), vol.7, p.40

, Hz, 2H), 7.35-7.27 (m, 4H), 4.41 (q, J = 7.2 Hz, 2H), 4.17 (s, 2H), 1.40 (t, J = 7.2 Hz, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 168, vol.9

, 2-yl)isoindolin-1-one (2j): White solid, yield = 77%, 68.8 mg. Mp: 132-134 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.94 (d, J = 7.6 Hz, 1H), 7.53-7.42 (m, 6H), 7.29-7.26 (m, 3H), vol.7

. Mhz,

, HRMS (ESI) calcd. for

, 2-yl)isoindolin-1-one (2k): White oil, yield = 79%, 74.5 mg. 1 H NMR (400 MHz, CDCl3): ? = 7.93 (d, J = 6.8 Hz, 1H), 7.51-7.41 (m, 6H), 7.33-7, vol.3

, 2-yl)isoindolin-1-one (2l): Yellow solid, yield = 19%, 16.9 mg. Mp: 108-110 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.92 (d, J = 7.6 Hz, 1H), 7.54-7.43 (m, 6H), 7.38-7.30 (m, 3H)

, JC-F = 21.3 Hz), 52.4 ppm. 19 F{ 1 H} NMR (376 MHz, CDCl3): ? = -114.6 ppm. HRMS (ESI) calcd. for

, 2-yl)isoindolin-1-one (2p): White solid, yield = 55%, 49.7 mg. Mp: 153-155 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.85 (d, J = 7.6 Hz, 1H), 7.53-7.42 (m, 6H), 7.39-7.32 (m, 2H), 7.27-7.21 (m, 1H)

C. Mhz, 141.6, 136.9, 133.9, 132.1, 131.8 (d, JC-F = 1.4 Hz), 131.7, 131.5 (d, JC-F = 3.1 Hz), 129.6 (d, JC-F = 8.0 Hz), 129.3, 128.4, 128.1, 127.9, 126.7 (d, JC-F = 15.4 Hz), vol.124

, 2-yl)isoindolin-1-one (2q): White solid, yield = 74%, 66.7 mg. Mp: 146-148 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.94 (d, J = 6.4 Hz, 1H), 7.52-7.40 (m, 6H), 7.27 (d, J = 7.6 Hz, 1H), 7.22 (s, 1H), 7.20-7.14 (m, 2H), 7.06 (d, J = 7.2 Hz, 1H)

, -yl)isoindolin-1-one (2r): White oil, yield = 32%, 30.7 mg, H NMR (400 MHz, CDCl3): ? = 7.93 (d, J = 7.2 Hz, 1H), 7.53-7.42 (m, 6H), vol.1

, 65 (s, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 169, Hz, 1H), 7.00-6.94 (m, 2H), 6.82-6.79 (m, 1H), 4.19 (s, 2H), vol.3

, 2-yl)isoindolin-1-one (2s): Yellow solid, yield = 15%, 14.8 mg. Mp: 128-130 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.93 (d, J = 7.2 Hz, 1H), 7.55-7.44 (m, 6H), 7.40 (s, 1H), 7.32 (d, J = 7.2 Hz, 1H), 7.28-7.23 (m, 2H), 7.18 (dd, J = 7.6, 7.6 Hz, 1H), 4.23 (s, 2H) ppm. 13 C{ 1 H} NMR (100 MHz

, Mp: 226-228 o C. 1 H NMR (400 MHz, CDCl3): ? = 8.25 (dd, J = 2.0, 2.0 Hz, 1H), 2-yl)isoindolin-1-one (2t): Yellow solid, yield = 60%, 58.8 mg, vol.8

, White solid, yield = 62%, 58.7 mg. Mp: 169-171 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.94 (d, J = 7.2 Hz, 1H), 7.52-7.41 (m, 6H), vol.7, p.1363

, -(Naphthalen-2-yl)phenyl)isoindolin-1-one (2v): White solid, yield = 83%, 83.1 mg. Mp: 204-206 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.97-7.95 (m, 1H), 7.92 (s, 1H), 7.83-7.77 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.60-7.57 (m, 1H), 7.56-7.44 (m, 8H), 7.19-7.17 (m, 1H), 4.17 (s, 2H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 169

, 82 (s, 1H), 7.69 (d, J = 9, -Methoxynaphthalen-2-yl)phenyl)isoindolin-1-one (2w): Brown solid, yield = 70%, 76.7 mg. Mp: 176-178 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.96-7.94 (m, 1H), vol.7

, HRMS (ESI) calcd. for

, Naphthalen-1-yl)phenyl)isoindolin-1-one (2x): Brown oil, yield = 10%, 9, vol.8

H. Nmr, 400 MHz, CDCl3): ? = 7.83-7.75 (m, 4H), 7.62 (d, J = 8.0 Hz, 1H), 7.58-7.35 (m, 9H), 7.09 (d, J = 8.0 Hz, 1H), 4.02 (d, J = 16.8 Hz, 1H), 3.87 (d, J = 16.8 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 168.6, 141.5, 137.9

, mol%), KOAc (20 mol%) and K2CO3 (0.15 mmol, 1.5 equiv.) in NMP (0.5 mL) was stirred under Argon for 24 h at 150 °C. After being cooled to ambient temperature, the reaction mixture was diluted with DCM and then filtered through Celite. After evaporation of the solvent in vacuo, the crude product was analyzed by 1 H NMR spectroscopy studies. Crystallographic details: CCDC 1910249-1910254 (2c, 2d, 2g, 2o, 2s, 2q) contains the supplementary crystallographic data for this chapter, General procedure for the attempt of ruthenium-catalyzed arylation reactions using bromobenzene as aryl source

T. J. Donohoe, Science of Synthesis, vol.10, p.653, 2001.

K. Speck, T. K. Magauer-;-r, and . Bhatia, Beilstein J. Org. Chem, vol.9, p.189, 2013.

A. Iqbal, F. Herren, and O. , Wallquist in High Performance Pigments, p.243, 2009.

M. R. Lunn, D. E. Root, A. M. Martino, S. P. Flaherty, B. P. Kelley et al.,

A. H. Coovert, N. T. Burghes, G. E. Man, J. Morris, E. J. Zhou et al., Chem. Biol, vol.11, p.1489, 2004.

H. Miyachi, A. Azuma, E. Hioki, Y. Kobayashi, S. Iwasaki et al., Chem. Pharm. Bull, vol.44, p.137, 1980.

D. Hamprecht, F. Micheli, G. Tedesco, A. Checchia, D. Donati et al., Bioorg. Med. Chem. Lett, p.428, 2007.

S. M. Allin, C. J. Northfield, M. I. Page, A. M. Slawin, ;. Enders et al., Org. Biomol. Chem, vol.79, p.1528, 1261.

;. P. Csende, E. Thapa, S. Corral, and B. Sardar, Curr. Org. Chem, vol.5, p.1277, 2005.

S. Pierce, F. W. Foss, .. Yuan, C. Bruneau, and R. Gramage-doria, J. Org. Chem, vol.84, p.4216, 2018.

K. M. Engle, T. Mei, M. Wasa, J. Yu-;-s.-de, W. Sarkar et al., Adv. Synth. Catal, vol.45, p.2872, 2012.

G. Dao-huy, P. Pototschnig, T. Schaaf, M. F. Wiesinger, J. Zia et al., Chem. Soc. Rev, vol.47, p.6603, 2018.

J. Yamaguchi, A. D. Yamaguchi, K. Itami, ;. Brueckl, R. D. Baxter et al., Angew. Chem. Int. Ed, vol.51, issue.2, p.826, 2012.

P. A. Abrams, E. J. Provencher, and . Sorensen, Chem. Soc. Rev, vol.47, p.8925, 2018.

M. Miura, T. Satoh, ;. C. Top, T. Jia, Y. Kitamura et al., Organomet. Chem, vol.14, p.633, 2001.

T. Itami, . Curr, . Chem, L. Ping, Q. Wang et al., , vol.292, p.231, 2010.

;. H. Peng, M. Bohra, J. Wang, and . Mater, Adv. Synth. Catal, vol.359, 2017.

;. L. Chem, C. Theveau, C. Schneider, C. Fruit, and . Hoarau, ChemCatChem, vol.8, p.3183, 2016.

;. Chem, H. Zha, E. A. Qin, . Kantchev, and . Adv, , vol.48, p.30875, 2015.

;. U. Technol, A. Sharma, S. Modak, A. Maity, and D. Maji, Maiti in New Trends in Cross-Coupling: Theory and Applications, p.2251, 2005.

Z. Huang, G. Dong, ;. Djakovitch, and F. , 55, 5869. (m) L. Ackermann, vol.79, 2014.

;. I. Felpin, T. Hussain, A. Singh, and . Synth, ChemCatChem, 2014.

;. R. Catal, F. Rossi, M. Bellina, C. Lessi, and A. Manzini, , vol.356, p.1661, 2014.

. Synth, ;. Catal, W. Zhou, ;. Lu, and . Baudoin, Chem. Soc. Rev, vol.356, p.4902, 1158.

Y. Hashimoto, K. Hirano, T. Satoh, F. Kakiuchi, M. Miura et al., J. Org. Chem, p.638, 2012.

K. D. Collins, F. Lied, and F. Glorius, Chem. Commun, vol.50, p.4459, 2014.

W. Liu and L. Ackermann, Chem. Commun, vol.50, p.1878, 2014.

, Examples of site-selective C-O bond forming reactions via aromatic C-H bond functionalizations are also rare, see: (a) Y

Y. Zhang and . Rao, Chem. Sci, 2016.

R. Roisnel and . Gramage-doria, J. Org. Chem, vol.84, p.1898, 2019.

L. Ackermann, L. Wang, R. Wolfram, and A. V. Lygin, 14, 728. (b) K. Padala, M. Jeganmohan, vol.20, p.4092, 2012.

P. Manikandan, M. Madasamy, and . Jeganmohan, , vol.6, p.230, 2016.

G. S. Das, M. Kumar, and . Kapur, Eur. J. Org. Chem, p.5439, 2017.

S. Chung, J. Bouffard, and S. Lee, Chem. Soc. Rev, vol.46, p.4299, 2017.

P. Nareddy, F. Jordan, S. E. Brenner-moyer, M. Szostak, ;. Y. Acs-catal et al., Chem. Asian J, vol.6, p.1505, 2012.

C. Qiu, J. Gao, Z. Li, B. Guan, ;. Nareddy et al., Org. Lett, vol.17, p.3204, 2015.

M. C. Mo, G. Young, and . Dong, Chem. Soc. Rev, vol.44, p.7764, 2015.

F. Kakiuchi, S. Kan, K. Igi, N. Chatani, S. Murai et al., J. Am. Chem. Soc, vol.125, p.1698, 2003.

;. S. Soc, D. Hiroshima, T. Marsumura, F. Kochi, ;. Kakiuchi et al., Org. Lett, vol.127, p.5936, 2005.

, Chem. Soc, vol.126, p.15356, 2004.

;. S. Commun, D. V. Pastine, D. Gribkov, J. Sames, . Am et al., , 1185.

;. S. Soc, N. Ueno, F. Chatani, J. Kakiuchi, . Org et al., Chem. Commun, vol.72, p.5246, 1497.

;. Y. Commun, V. Zhao, and . Snieckus, Adv. Synth. Catal, vol.356, p.1527, 2014.

;. C. Catal, K. Sollert, A. Devaraj, P. J. Orthaber, and L. Gates, , vol.357, p.474, 2015.

T. Pilarski, C. J. Eur, . K. ;-r, A. Chinnagolla, M. Vijeta et al., Chem. Commun, vol.21, p.12992, 2015.

J. Ramana, . Org, . Chem, M. Hu, ;. Szostak et al., Organometallics, vol.80, p.159, 2015.

F. Kochi, J. Kakiuchi, . Org, ;. Chem, and V. Siopa, , vol.82, p.6503, 2017.

C. A. Cladera, J. Alfonso, G. Oble, and . Poli, Eur. J. Org. Chem, p.14, 1930.

T. Gensch, M. N. Hopkinson, F. Glorius, and J. Wencel-delord, Chem. Soc. Rev, vol.45, p.2900, 2016.

R. Manikandan and M. Jeganmohan, Chem. Commun, vol.53, p.8931, 2017.

, For the only alternative synthesis of 2a reported to date, J. Chem. Soc. Perkin Trans. 1, 1975.

D. Barnes, J. M. Mccall, G. Johnson, D. Fairfax, M. R. Johnson et al.,

. Appl, , 2007.

L. Ackermann-;-l.-ackermann, R. Vicente, and H. K. Potukuchi, 111, 1315. (b) L. Ackermann, vol.47, p.281, 2011.

O. Pirovano, N. Lett.-;-i.-fabre, G. L. Wolff, and E. Duc, , vol.12, p.5032, 2010.

C. Ferrer-flegeau, P. H. Bruneau, A. Dixneuf, C. Jutand, . J. Eur et al., J. Am. Chem. Soc, vol.19, p.7552, 2008.

G. A. Molander and N. Ellis, Acc. Chem. Res, vol.40, p.288, 2007.

S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano et al., Org. Lett. Chapter, vol.70, p.3123, 1783.

L. Ackermann, R. Born, P. Alvarez-bercedo, and A. , , 2006.

I. Ozdemir, S. Demir, B. Cetinkaya, and C. , , vol.46, 2007.

F. Gourlaouen, C. Maseras, P. H. Bruneau, P. H. Dixneuf-;-f.-pozgan, and . Dixneuf, Adv. Synth. Catal, vol.130, p.1737, 2008.

A. Prades, M. Poyatos, and E. Peris, Adv. Synth. Catal, vol.352, p.1155, 2010.

X. Yu, S. Yan, N. Wang, C. Tang, and . Xi, Organometallics, vol.29, p.3222, 2010.

P. B. Li, C. Arockiam, C. Fischmeister, P. H. Bruneau, . Dixneuf et al., Organometallics, vol.32, 1221.

. Seki, ;. M. Catal, ;. Seki, R. Bruneau, and . Gramage-doria, Org. Process Res. Dev, vol.20, p.3847, 2014.

P. Nareddy, F. Jordan, and M. Szostak, , vol.7, p.5721, 2017.

S. Gramage-doria, C. Achelle, F. Bruneau, V. Robin-le-guen, and T. Dorcet,

J. Roisnel, . Org, and . Chem, Eur. J. Org. Chem, vol.83, p.6083, 2018.

E. Kim, M. Jeong, B. M. Lee, and B. H. Kim, Heterocycles, p.1759, 2018.

T. Vogler and A. Studer, Adv. Synth. Catal, vol.350, 1963.

A. Verma, S. Patel, K. A. Meenakshi, A. Yadav, S. Kumar et al., Chem. Commun, p.1371, 2015.

T. Thatikonda, S. K. Deepake, and U. Das, 21, 2532. by column chromatography on silica gel, 2019.

, -oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2a): Brown solid, yield = 92%, 147.4 mg. Mp: 162-164 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.84 (d, J = 7.6 Hz, 1H), 7.58 (dd, J = 7.6, 7.2 Hz, 1H), 7.50-7.46 (m, 2H), 7.40-7.34 (m, 2H), 7.28-7.25 (m, 1H)

, Hz, 1H), 2.97 (dd, J = 18.4, 5.2 Hz, 1H), 2.76 (s, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 177, vol.9

, Methyl-3-(5-methyl-2-(1-oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2b): Brown solid, yield = 88%, 148.0 mg. Mp: < 50 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.83 (d, J = 8.0 Hz, 1H), vol.7

. Hz,

, Hz, 1H), 2.77 (s, 3H), 2.34 (s, 3H) ppm. 13 C{ 1 H} NMR, vol.8

, -Methoxy-2-(1-oxoisoindolin-2-yl)phenyl)-1-methylpyrrolidine-2,5-dione (2c): White solid, yield = 91%, 160.0 mg. Mp: 167-169 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.78 (d, J = 7.6 Hz, 1H), 7.53 (dd, J = 7.6, 7.2 Hz, 1H)

1. Hz, , vol.6

, C{ 1 H} NMR (100 MHz, CDCl3): ? = 177, vol.7

, -Chloro-2-(1-oxoisoindolin-2-yl)phenyl)-1-methylpyrrolidine-2,5-dione (2d): White solid, yield = 96%, 170.0 mg. Mp: 192-194 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.87 (d, J = 7.2 Hz, 1H), vol.7

. Hz,

1. Hz, 3.01 (dd, J = 18.4, 5.2 Hz, 1H), 2.82 (s, 3H) ppm

. Mhz, HRMS (ESI) calcd. for

, Ethyl 3-(1-methyl-2,5-dioxopyrrolidin-3-yl)-4-(1-oxoisoindolin-2-yl)benzoate (2e): Yellow solid, yield = 70%, 136.9 mg. Mp: < 50 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.97

, Hz, 1H), 7.43 (dd, J = 7.6, 7.2 Hz, 2H), vol.7

. Hz,

. Hz,

, C{ 1 H} NMR (100 MHz, CDCl3): ? = 177.4, 175.9

, Brown solid, yield = 85%, 155.0 mg. Mp > 260 o C dec. 1 H NMR (400 MHz, CDCl3): ? = 7.88 (d, J = 7.6 Hz, 1H), vol.7, p.95

J. Dd, (m, 2H), 2.85 (s, 3H) ppm

. Mhz, HRMS (ESI) calcd. for

, Methyl-3-(4-methyl-2-(1-oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2h): White solid, yield = 66%, 109.9 mg. Mp: 153-155 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.85 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 7.2, 7.2 Hz, 1H), vol.7

, -Methoxy-2-(1-oxoisoindolin-2-yl)phenyl)-1-methylpyrrolidine-2,5-dione (2i): White solid, yield = 76%, 132.9 mg. Mp: 154-156 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.87 (d, J = 7.6 Hz, 1H)

1. Hz, , vol.6

, Hz, 1H), 3.78 (s, 3H), 3.15 (dd, J = 18, Hz, 1H), 2.96 (dd, J = 18.8, 4.8 Hz, 1H), 2.79 (s, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 178, vol.6, p.1162

, Mp: 140-142 o C. This compound exists as a mixture (63:37) of two diastereo-atropoisomers due to the blocked rotation through the N-C(aryl) axis. 1 H NMR (400 MHz, CDCl3): ? = 7.89 (d, J = 7.6 Hz, 1H, major), 7.83 (d, J = 7.6 Hz, 1H, minor), 7.62-7.57 (m, 1H, major), 7.62-7.57 (m, 1H, minor), 7.52-7.45 (m, 2H, major), 7.52-7.45 (m, 2H, minor), 7.40-7.33 (m, 1H, major), 7.40-7.33 (m, 1H, minor), 7.18-7.13 (m, 1H, major), vol.7

J. C. Hz-;-d and J. -f-=-249-;-d, , vol.159

, Hz), 44.7 (d, JC-F = 2.6 Hz), vol.41

, CDCl3): ? = -118.8 (major), -119.4 (minor) ppm. HRMS (ESI) calcd. for

, -Oxoisoindolin-2-yl)phenyl)-1-phenylpyrrolidine-2,5-dione (2l): Brown solid, yield = 78%, 149.0 mg. Mp: 246-248 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.93 (d, J = 7.6 Hz, 1H), 7.61 (dd, J = 7.6, 7.2 Hz, 1H), vol.7

. Hz,

. Mhz, HRMS (ESI) calcd. for

, -oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2m): White solid, yield = 76%, 60.9 mg. Mp: < 50 o C. This compound exists as a mixture (53:47) of two diastereo-atropoisomers due to the blocked rotation, vol.1

J. Dd, .13 (m, 2H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 176.2, 174.6 (d, JC-F = 17.9 Hz), vol.7, p.247

, 7 (d, JC-F = 19.2 Hz), 54.2, 42.3, 37.3 (d, JC-F = 31.6 Hz) ppm (two carbon peaks overlap with another ones), 3, 123.1, 119.8 (d, JC-F = 5.0 Hz), vol.116, pp.19-20

. Mhz, CDCl3): ? = -119.2, -119.7 ppm. HRMS (ESI) calcd. for

. -bromophenyl, -oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2n): Brown solid, yield = 64%, 88.8 mg. Mp: 136-138 o C

H. Nmr, 400 MHz, CDCl3): ? = 7.94 (dd, J = 7.2, 6.4 Hz, vol.1

, -oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2o): Brown solid, yield = 70%

. Mhz, CDCl3): ? = 8.13 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 7.6 Hz, 1H), 7.61 (dd, J = 7.6, 7.2 Hz, 1H), vol.7

, Hz, 1H), 3.36 (d, J = 8.4 Hz, 2H) ppm. 13 C{ 1 H} NMR, vol.100

, -oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2p): Brown solid, yield = 88%, 174.0 mg, Mp: < 50 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.90 (d, J = 7.6 Hz, 1H), 7.61 (dd, J = 7.6, 7.2 Hz, 1H), 7.54-7.49 (m, 2H), 7.42-7, vol.3

. Mhz, HRMS (ESI) calcd. for

, -Oxoisoindolin-2-yl)phenyl)-1-(4-(trifluoromethyl)benzyl)pyrrolidine-2,5-dione (2q): White solid, yield = 88%, 81.3 mg. Mp: 78-80 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.89 (d, J = 7.6 Hz, 1H), 7.62 (dd, J = 7.6, 7.2 Hz, 1H), 7.54-7.50 (m, 4H), 7.43-7.35 (m, 4H), vol.7

. Hz, -Oxoisoindolin-2-yl)phenyl)-1-(thiophen-2-ylmethyl)pyrrolidine-2,5-dione (2r): White solid, yield = 58%, 70.1 mg, Mp: 216-218 o C. 1 H NMR (400 MHz, CDCl3): ? = 7.89 (d, J = 7.6 Hz, 1H), 7.62 (dd, J = 7.6, 7.2 Hz, 1H), vol.7, p.3

, Hz, 1H), 3.24 (dd, J = 18, Hz, 1H), 2.97 (dd, J = 18.8, 4.8 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, CDCl3): ? = 177, vol.6

, HRMS (ESI) calcd. for

, -Oxoisoindolin-2-yl)phenyl)pyrrolidine-2,5-dione (2s): Brown solid, yield = 10%, 14.8 mg. Mp: < 50 o C. 1 H NMR (400 MHz, acetone-d6): ? = 10.08 (s, br, 1H), 7.78 (d, J = 7.6 Hz, 1H), vol.17

. Hz,

, 2.95 (dd, J = 18.4, 5.6 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz

, Deuteration experiments

, In an oven dried Schlenk tube, to a solution of isoindolinone 1a (0.1 mmol, 1 equiv.) in DCE (0.45 mL) and D2O (0.05 mL) was added the combined reagents under argon

. Cu, The Schlenk tube was sealed with a Teflon cap and it was heated to 120 °C for 18 h. The reaction mixture was diluted in DCM and filtered using a silica plug eluting with DCM. The solvent was removed in vacuo and

G. Evano, C. Theunissen, A. Chem, C. Int-;-c-h-to, ;. Bonds et al., Comprehensive Organic Synthesis 2 nd Edition, vol.58, p.1101, 2014.

C. Sambiagio, D. Schoenbauer, R. Blieck, T. Dao-huy, G. Pototschnig et al., Chem. Soc. Rev, vol.47, p.1081, 2018.

L. Ackermann, G. Vaccaro, and . Chem, , vol.18, p.3471, 2016.

K. Yamaguchi and . Itami, Angew. Chem. Int. Ed, vol.51, p.251, 2012.

S. Murai, F. Kakiuchi, S. Sekine, Y. Tanako, A. Kamatani et al., Nature, vol.366, p.529, 1993.

, Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds

A. Weinheim, .. Germany, T. Hussain, . A. Singh-;-d, R. G. Colby et al., Adv. Synth. Catal, vol.356, p.1173, 2007.

D. A. Zhang, M. E. Spring-;-d.-alberico, M. Scott, and . Lautens, Chem. Soc. Rev, vol.43, p.9333, 2007.

C. Zhu, J. R. Falck, ;. Zhu, J. R. Falck, ;. Miura et al., Chem. Commun, vol.48, p.4658, 2012.

V. Lanke, K. R. Bettadapur, and K. R. Prabhu, Org. Lett, vol.17, p.4662, 2015.

Y. Moon, D. Jeong, S. Kook, and . Hong, Org. Biomol. Chem, vol.13, p.3918, 2015.

S. H. Sharma, Y. Han, N. K. Oh, S. H. Mishra, J. S. Lee et al., Org. Lett, vol.18, p.2568, 2016.

H. Jung, I. S. Kim, ;. Keshri, K. R. Bettadapur, and V. , Org. Lett, vol.18, p.4666, 2016.

K. R. Lanke, J. Prabhu, . Org, . H. Chem-;-s, S. Han et al., , vol.81, p.6056, 2016.

;. F. Chem, M. Jafarpour, . Shamsianpour, ;. S. Adv, Y. Sharma et al., Org. Lett. Chapter, vol.82, p.252, 2016.

K. R. Bettadapur, V. Lanke, K. R. Prabhu-;-s, N. K. Han, H. Mishra et al., Chem. Commun, vol.19, p.6251, 2017.

J. S. Kim, H. S. Lee, I. S. Kim, and . Kim, Adv. Synth. Catal, vol.359, p.2396, 2017.

N. K. Han, M. Mishra, S. Jeon, H. S. Kim, S. Kim et al., Adv. Synth. Catal, vol.359, p.3900, 2017.

J. Jeganmohan, . Org, ;. Chem, C. Zhao, C. Pi et al., Eur. J. Org. Chem, vol.83, p.6919, 2018.

S. Zhai, C. Qiu, H. Tao, H. Wang, and . Zhai, Chem. Commun, vol.54, p.4927, 2018.

J. Chen, H. Ren, W. Xie, M. Sun, B. Sun et al., Org. Chem. Front, vol.5, p.184, 2018.

S. Sharma, S. H. Han, H. Jo, S. Han, N. K. Mishra et al., Eur. J. Org. Chem, p.3611, 2016.

O. Zhang, . Chem, . S. Front-;-m, R. Sherikar, V. Kapanaiah et al., Chem. Commun, vol.54, p.11200, 2017.

O. Yu, . Biomol, . K. Chem-;-s, R. Banjare, P. C. Chebolu et al., Org. Lett, vol.16, p.4049, 2018.

B. Zhan, Y. Li, J. Xu, X. Nie, J. Fan et al., Angew. Chem. Int. Ed, vol.57, 1998.

D. Arzumanov, L. Levashov, and . Shemchuk, Russ. J. Org. Chem, vol.43, p.615, 2007.

H. Gali, K. R. Prabhu, S. R. Karra, and K. V. Katti, J. Org. Chem, p.676, 2000.

R. Manoharan and M. Jeganmohan, Asian J. Org. Chem, 2019.

L. Ackermann, E. Diers, A. Manvar, ;. W. Ma, L. Ackermann et al., Adv. Synth. Catal, vol.14, p.253, 2012.

J. Li, C. Kornhaass, and L. Ackermann, Chem. Commun, vol.48, p.11343, 2012.

M. C. Reddy and M. Jeganmohan, Eur. J. Org. Chem, p.1150, 2013.

N. Liang, S. Wang, H. Xu, B. Song, and . Wang, Eur. J. Org. Chem, 1950.

R. Chidipudi, M. D. Wieczysty, I. Khan, and H. W. Lam, Org. Lett, vol.15, p.570, 2013.

R. Manikandan and M. Jeganmohan, Org. Lett, vol.16, p.3568, 2014.

C. L. Wilson, M. F. Mcmullin, Y. Mahon, I. H. Bhonoah, C. G. Williams et al., Adv. Synth. Catal, vol.6, p.966, 2016.

;. A. Rueping, C. Bechtoldt, and K. Tirler, Angew. Chem. Int. Ed, vol.54, p.2801, 2015.

S. Raghuvanshi, C. Warratz, L. Kornhaass, ;. T. Ackermann, J. Li et al., Angew. Chem. Int. Ed, vol.55, p.3990, 2013.

K. Speck, T. Magauer, and ;. , Beilstein J. Org. Chem, vol.9, 2013.

;. M. Bhatia, D. E. Lunn, and A. Root, Curr. Top. Med. Chem, vol.17, p.189, 2017.

M. Martino, S. P. Flaherty, B. P. Kelley, D. D. Coovert, A. H. Burghes et al.,

G. E. Man, J. Morris, E. J. Zhou, C. J. Androphy, B. R. Sumner et al., Chem. Biol, 1489.

S. Kobayashi, Y. Iwasaki, and . Hashimoto, Chem. Pharm. Bull, vol.44, 1980.

J. S. Park, S. C. Moon, K. U. Baik, J. Y. Cho, E. S. Yoo et al., Arch. Pharm. Res, vol.25, p.137, 2002.

S. M. Allin, C. J. Northfield, M. I. Page, and A. M. Slawin, J. Chem. Soc. Perkin Trans, vol.17, p.428, 1715.

G. Braig, . Raabe, .. J. Can, ;. R. Chem, P. Hunter et al., Org. Biomol. Chem, vol.79, p.1277, 2001.

E. Thapa, S. Corral, B. S. Sardar, F. W. Pierce, and . Foss, J. Org. Chem, vol.84, p.1025, 2019.

S. Muniraj, K. R. Prabhu, and . Omega, , vol.2, p.4470, 2017.

P. Gandeepan, T. Mueller, D. Zell, G. Cera, S. Warratz et al., Chem. Rev, vol.119, p.2192, 2019.

K. N. Phani, T. Rogge, Y. S. Reddy, A. Bech-toldt, E. Clot et al., J. Org. Chem, vol.23, p.146, 2017.

K. M. Engle, T. Mei, M. Wasa, J. Yu-;-s.-de, W. Sarkar et al., Adv. Synth. Catal, vol.45, p.5439, 2012.

;. D. Ackermann, K. Kang, S. Ahn, and . Hong, Asian J. Org. Chem, vol.54, p.1136, 2018.

C. Shan, L. Zhu, L. Qu, R. Bai, Y. Lan et al., Chem. Soc. Rev, vol.47, p.7552, 1315.

P. H. Bruneau, A. Dixneuf, and . Jutand, J. Am. Chem. Soc, 2011.

D. L. Davies, S. A. Macgregor, and C. L. Mcmullin, Chem. Rev, vol.117, p.8649, 2017.

I. Fabre, N. Wolff, G. L. Duc, E. Ferrer-flegeau, C. Bruneau et al., Chem. Eur. J, vol.19, p.7595, 2013.

Y. Yuan, C. Bruneau, T. Roisnel, and R. Gramage-doria, Catal. Sci. Technol, vol.84, p.4711, 2019.

Y. Yuan, C. Bruneau, T. Roisnel, and R. Gramage-doria, Org. Biomol. Chem, vol.17, p.255, 2019.

J. A. Leitch, P. B. Wilson, C. L. Mcmullin, M. F. Mahon, Y. Bhonoah et al., , vol.6, p.5520, 2016.

H. Sun, A. Horatscheck, V. Martos, M. Bartetzko, U. Uhrig et al., Angew. Chem. Int. Ed, vol.56, p.6454, 2017.

N. Matuszak, G. G. Muccioli, G. Labar, and D. M. Lambert, J. Med. Chem, p.7410, 2009.

K. P. Haval, S. B. Mhaske, and N. P. Argade, Tetrahedron, vol.62, p.937, 2006.

X. Gao, L. Tang, L. Huang, Z. Huang, Y. Ma et al., Org. Lett, p.745, 2019.

D. Lubriks, I. Sokolovs, and E. Suna, Org. Lett, p.4324, 2011.

Y. Yuan, R. Kamaraj, C. Bruneau, T. Labasque, T. Roisnel et al., Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N-Substituted Phthalimide Derivatives, Org. Lett, vol.19, pp.6404-6407, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01639565

Y. Yuan, C. Bruneau, and R. Gramage-doria, Merging Transition-Metal Catalysis with Phthalimides: A New Entry to Useful Building Blocks, Synthesis, vol.50, pp.4216-4228, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908298

Y. Yuan, C. Bruneau, V. Dorcet, T. Roisnel, and R. Gramage-doria, Ru-Catalyzed Selective C-H Bond Hydroxylation of Cyclic Imides, J. Org. Chem, vol.84, pp.1898-1907, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02020140

Y. Yuan, C. Bruneau, T. Roisnel, and R. Gramage-doria, Ruthenium(II)-Catalysed Selective C(sp 2 )-H Bond Benzoxylation of Biologically Appealing N-Arylisoindolinones, Org. Biomol. Chem, vol.17, pp.7517-7525, 2019.

Y. Yuan, C. Bruneau, T. Roisnel, and R. Gramage-doria, Site-Selective Ru-Catalyzed C-H Bond Alkenylation with Biologically Relevant Isoindolinones: A Case of Catalyst Performance Controlled by Subtle Stereo-Electronic Effects of the Weak Directing Group, Catal. Sci. Technol, vol.9, pp.4711-4717, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02303389

Y. Yuan, C. Bruneau, T. Roisnel, and R. Gramage-doria, Site-Selective Ruthenium-Catalyzed C-H Bond Arylations with Boronic Acids: Exploiting Isoindolinones as a Weak Directing Group, J. Org. Chem, vol.84, pp.12893-12903, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02322072