J. Cook, Quantifying the consensus on anthropogenic global warming in the scientific literature, Environmental Research Letters, vol.8, issue.2, pp.1748-9326, 2013.

N. Oreskes, Beyond the ivory tower. The scientific consensus on climate change, vol.306, pp.1095-9203, 2004.

R. William and . Anderegg, In: Proceedings of the National Academy of Sciences of the United States of America 107, vol.27, pp.1091-6490, 2010.

J. Cook, Consensus on consensus: a synthesis of consensus estimates on human-caused global warming, Environmental Research Letters, vol.11, issue.4, pp.1748-9326, 2016.

, Summary for Policymakers, Climate Change 2013 -The Physical Science Basis. Ed. by Intergovernmental Panel on Climate Change, pp.1-30, 2014.

M. Van-aalst, Climate Change 2014: Impacts, Adaptation, and Vulnerability, Assessment Report, pp.1-76, 2013.

M. K. Hubbert, Nuclear Energy and the Fossil Fuel, 1956.

U. Bardi, Peak oil: The four stages of a new idea, In: Energy, vol.34, issue.3, pp.323-326, 2009.

R. Hirsch, R. Bezdek, and R. Wendling, Peaking of world oil production: Impacts, mitigation, & risk management, 2005.

P. De-almeida and P. D. Silva, The peak of oil production-Timings and market recognition, Energy Policy, vol.37, pp.301-4215, 2009.

K. Robèrt, Strategic sustainable development -selection, design and synergies of applied tools, Journal of Cleaner Production, vol.10, issue.3, pp.959-6526, 2002.

A. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, vol.91, pp.1385-8947, 2003.

X. Lang, Preparation and characterization of bio-diesels from various bio-oils, Bioresource Technology, vol.80, issue.1, pp.960-8524, 2001.

A. María and A. , How the U.S. caused the tortilla crisis, 2007.

J. Hider, Tortilla crisis hits the poor as clean fuel drives up corn price -The Times, 2007.

C. Elsworth, Mexico's poor suffer as tortilla price rises -Telegraph, 2007.

M. Aresta and A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges, Dalton Transactions, vol.28, pp.1477-9226, 2007.

T. Sakakura, J. Choi, and H. Yasuda, Transformation of Carbon Dioxide, Chemical Reviews, vol.107, pp.9-2665, 2007.

T. Sakakura and K. Kohno, The synthesis of organic carbonates from carbon dioxide, Chemical Communications, vol.11, pp.1359-7345, 2009.

G. Centi and S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, vol.148, pp.920-5861, 2009.

Y. Richardson, J. Blin, and A. Julbe, A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts, Progress in Energy and Combustion Science, vol.38, pp.765-781, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01690088

K. Murdoch, Sabatier Methanation Reactor for Space Exploration, 1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005.

C. Junaedi, Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction, 41st International Conference on Environmental Systems. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011.

E. M. Petersen, A. J. Meier, and J. Tessonnier, Carbon Dioxide Methanation for Human Exploration of Mars: A Look at Catalyst Longevity and Activity Using Supported Ruthenium, 2018.

. Ec--european-commission, Accelerating Clean Energy Innovation

, COM(2016) 763 final, 2016.

F. Chang, Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation, Applied Catalysis A: General, vol.247, issue.2, pp.926-860, 2003.

M. Ku?mierz, Kinetic study on carbon dioxide hydrogenation over Ru/?-Al2O3 catalysts, Catalysis Today, vol.137, pp.920-5861, 2008.

K. Yu, Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation, In: Applied Catalysis B: Environmental, vol.84, pp.926-3373, 2008.

J. Park and E. W. Mcfarland, A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2, Journal of Catalysis, vol.266, pp.21-9517, 2009.

T. Szailer, Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts, Topics in Catalysis, vol.46, pp.1022-5528, 2007.

W. Wei and G. Jinlong, Methanation of carbon dioxide: an overview, Frontiers of Chemical Science and Engineering, vol.5, issue.1, 2011.

G. Du, Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steadystate reaction, Journal of Catalysis, vol.249, pp.21-9517, 2007.

F. Chang, M. Tsay, and S. Liang, Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange, Applied Catalysis A: General, vol.209, pp.772-781, 2001.

G. Costas, . Vayenas, G. Costas, and . Koutsodontis, Non-Faradaic electrochemical activation of catalysis, The Journal of Chemical Physics, vol.128, pp.21-9606, 2008.

S. Bebelis, H. Karasali, and C. G. Vayenas, Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes, Journal of Applied Electrochemistry, vol.38, pp.21-891, 2008.

E. I. Papaioannou, Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure, Catalysis Today, vol.146, pp.920-5861, 2009.

M. Bailera, Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2, In: Renewable and Sustainable Energy Reviews, vol.69, pp.1364-0321, 2017.

, ZSW: PtG 250 (P2G®)

, Audi Technology Portal

K. Ghaib and F. Ben-fares, Power-to-Methane: A stateof-the-art review, Renewable and Sustainable Energy Reviews, vol.81, pp.433-446, 2018.

M. A. Aziz, CO ¡sub¿2¡/sub¿ methanation over heterogeneous catalysts: recent progress and future prospects, Green Chemistry, vol.17, issue.5, pp.2647-2663, 2015.

D. Gordon, C. H. Weatherbee, and . Bartholomew, Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel, Journal of Catalysis, vol.77, issue.82, pp.90186-90191, 1982.

L. John, A. E. Falconer, and . Za?li, Adsorption and methanation of carbon dioxide on a nickel/silica catalyst, Journal of Catalysis, vol.62, pp.21-9517, 1980.

S. Fujita, Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state, Reaction Kinetics and Catalysis Letters 33.1 (Mar. 1987), pp.179-184

C. Schild, A. Wokaun, and A. Baiker, On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study. Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity, Journal of Molecular Catalysis, vol.63, p.85147, 1990.

A. L. Lapidus, The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts, Petroleum Chemistry, vol.47, issue.2, pp.75-82, 2007.

R. E. Hayes, W. J. Thomas, and K. E. Hayes, A study of the nickel-catalyzed methanation reaction, Journal of Catalysis, vol.92, pp.21-9517, 1985.

R. Z. Van-meerten, The kinetics and mechanism of the methanation of carbon monoxide on a nickel-silica catalyst, Applied Catalysis, vol.3, issue.1, pp.80221-80223, 1982.

M. A. Vannice, The Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen, Catalysis Reviews, vol.14, pp.161-4940, 1976.

G. A. Martin, M. Primet, and J. A. Dalmon, Reactions of CO and CO2on Ni SiO2above 373 K as studied by infrared spectroscopic and magnetic methods, Journal of Catalysis, vol.53, pp.321-330, 1978.

M. Marwood, R. Doepper, and A. Renken, In-situ surface and gas phase analysis for kinetic studies under transient conditions The catalytic hydrogenation of CO2, Applied Catalysis A: General, vol.151, issue.1, pp.926-860, 1997.

D. E. Peebles, D. W. Goodman, and J. M. White, Methanation of carbon dioxide on nickel(100) and the effects of surface modifiers, The Journal of Physical Chemistry, vol.87, pp.4378-4387, 1983.

R. M. Watwe, Theoretical Studies of Stability and Reactivity of CHx Species on Ni(111), Journal of Catalysis, vol.189, pp.21-9517, 2000.

M. Ackermann, Hydrogenation of carbon monoxide on Ni(1 1 1) investigated with surface X-ray diffraction at atmospheric pressure, Surface Science, vol.557, 2004.

D. and W. Blaylock, Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions, The Journal of Physical Chemistry C, vol.113, pp.4898-4908, 2009.

J. Ren, Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory, Applied Surface Science, vol.351, pp.504-516, 2015.

C. Rafael and . Catapan, DFT Study of the Water-Gas Shift Reaction and Coke Formation on Ni(111) and Ni(211) Surfaces". In: The Journal of Physical Chemistry C 116, vol.38, pp.1932-7447, 2012.

S. Choe, Adsorbed Carbon Formation and Carbon Hydrogenation for CO ¡sub¿2¡/sub¿ Methanation on the Ni(111) Surface: ASED-MO Study, Bulletin of the Korean Chemical Society, vol.26, pp.253-2964, 2005.

F. Fischer, P. Tropsch, and . Dilthey, Reduction of carbon monoxide to methane in the presence of various metals, Brennst. Chem, vol.6, pp.265-271, 1925.

P. Panagiotopoulou, D. I. Kondarides, and X. E. Verykios, Selective methanation of CO over supported Ru catalysts, In: Applied Catalysis B: Environmental, vol.88, pp.926-3373, 2009.

V. Jiménez, Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts, Applied Catalysis A: General, vol.390, pp.926-860, 2010.

L. Falbo, Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for Power-to-Gas applications, In: Applied Catalysis B: Environmental, vol.225, pp.926-3373, 2018.

J. Polanski, Oxide passivated Ni-supported Ru nanoparticles in silica: A new catalyst for low-temperature carbon dioxide methanation, In: Applied Catalysis B: Environmental, vol.206, pp.926-3373, 2017.

K. E-a-seddon, ;. R-seddon, and . Clark, The Chemistry of Ruthenium, p.9781483289908, 1984.

L. David and . King, A Fischer-Tropsch study of supported ruthenium catalysts, Journal of Catalysis, vol.51, pp.386-397, 1978.

G. Jones, First principles calculations and experimental insight into methane steam reforming over transition metal catalysts, Journal of Catalysis, vol.259, pp.21-9517, 2008.

B. Hubert, The Ammonia-Synthesis Catalyst of the Next Generation: Barium-Promoted Oxide-Supported Ruthenium, Angewandte Chemie International Edition, vol.40, pp.1061-1063, 20010316.

C. T-v-choudhary, D. Sivadinarayana, and . Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catalysis Letters, vol.72, pp.197-201, 2001.

S. Michlewska, Ruthenium dendrimers as carriers for anticancer siRNA, Journal of Inorganic Biochemistry, vol.181, pp.18-27, 2018.

G. Chen, Synthesis, characterization and cancer cell growth inhibition activity of ruthenium(II) complexes bearing bidentate pyrrole-imine ligands, Journal of Organometallic Chemistry, vol.868, 2018.

J. Scaff and M. Dias, Pro-apoptotic activity of ruthenium 1-methylimidazole complex on non-small cell lung cancer, Journal of Inorganic Biochemistry, 2018.

O. Brian, M. Regan, and . Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films, Nature, vol.353, pp.737-740, 1991.

F. Gao, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell, Chem. Commun, vol.23, pp.2635-2637, 2008.

N. Onozawa-komatsuzaki, Near-IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis(quinolin-2-yl)pyridine derivatives, Solar Energy Materials and Solar Cells, vol.95, pp.927-0248, 2011.

R. Prataap, Effect of electrodeposition modes on ruthenium oxide electrodes for supercapacitors, Current Applied Physics, vol.18, pp.1567-1739, 2018.

E. Sar?ca, S. Akbayrak, and S. , Ruthenium(0) nanoparticles supported on silica coated Fe3O4 as magnetically separable catalysts for hydrolytic dehydrogenation of ammonia borane, International Journal of Hydrogen Energy, pp.360-3199, 2018.

S. Akbayrak, Ruthenium(0) nanoparticles supported on magnetic silica coated cobalt ferrite: Reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane, Journal of Molecular Catalysis A: Chemical, vol.394, pp.1381-1169, 2014.

A. Fernando, Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters, Chemical Reviews, vol.115, pp.6112-6216, 2015.

A. Cotton and I. Shim, Bonding in the diruthenium molecule by ab initio calculations, Journal of the American Chemical Society, vol.104, pp.7025-7029, 1982.

K. Kalyan, K. Das, and . Balasubramanian, Electronic states of Ru2, The Journal of Chemical Physics, vol.95, pp.2568-2571, 1991.

J. Kim and J. Kim, Density functional and multireference ab initio study of the ground and excited states of Ru2, Chemical Physics Letters, vol.592, pp.9-2614, 2014.

S. Paranthaman, Performance of Density Functional Theory and Relativistic Effective Core Potential for Ru-Based Organometallic Complexes, The Journal of Physical Chemistry A, vol.120, pp.2128-2134, 2016.

L. Wang and D. , Removing Critical Errors for DFT Applications to Transition-Metal Nanoclusters: Correct Ground-State Structures of Ru Clusters, The Journal of Physical Chemistry B, vol.109, pp.23113-23117, 2005.

J. David, R. J. Dooling, L. J. Nielsen, and . Broadbelt, A densityfunctional study of the interaction of nitrogen with ruthenium clusters, Chemical Engineering Science, vol.54, pp.9-2509, 1999.

W. Zhang, H. Zhao, and L. Wang, The Simple Cubic Structure of Ruthenium Clusters, The Journal of Physical Chemistry B, vol.108, issue.7, pp.1520-6106, 2004.

Y. Bae, Atomic Structures and Magnetic Behavior of Small Ruthenium Clusters, Materials transactions, vol.46, pp.159-162, 2005.

F. Aguilera-granja, Study of the Structural and Electronic Properties of Rh N and Ru N Clusters ( N ¡ 20) within the Density Functional Theory, Journal of Physical Chemistry A, vol.113, 2009.

S. Li, Structural and electronic properties of Run clusters (n=2-14) studied by first-principles calculations, In: Physical Review B -Condensed Matter and Materials Physics, vol.76, p.10980121, 2007.

I. Demiroglu, DFT Global Optimization of Gas-Phase Subnanometer Ru-Pt Clusters, The Journal of Physical Chemistry C, vol.121, pp.10773-10780, 2017.

J. Gavnholt and J. Schiotz, Structure and reactivity of ruthenium nanoparticles, Phys. Rev. B, vol.77, p.35404, 2008.

H. Shi, P. Koskinen, and A. Ramasubramaniam, Self-Consistent Charge Density-Functional Tight-Binding Parametrization for PtRu Alloys, The Journal of Physical Chemistry A, vol.121, pp.2497-2502, 2017.

R. Abdaljalil and N. Umran, Effect of encapsulation (Ru & Pd) small clusters in fullerene (C60) on electronic and magnetic properties: DFT, AIP Conference Proceedings 1888, vol.1, p.20001, 2017.

,

Y. Nanba, T. Ishimoto, and M. Koyama, Structural Stability of Ruthenium Nanoparticles: A Density Functional Theory Study, The Journal of Physical Chemistry C, vol.121, pp.27445-27452, 2017.

T. M. Soini, Extending the cluster scaling technique to ruthenium clusters with hcp structures, Surface Science, vol.643, pp.156-163, 2016.

. Th and . Frauenheim, A Self-Consistent Charge Density-Functional Based Tight-Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology, vol.217, pp.41-62, 2000.

T. Frauenheim, Atomistic Simulations of Complex Materials: Ground-State and Excited-State Properties, J. Phys.: Condens. Matter, vol.14, pp.3015-3047, 2002.

M. Wahiduzzaman, DFTB Parameters for the Periodic Table: Part 1, Electronic Structure", In: Journal of Chemical Theory and Computation, vol.9, pp.4006-4017, 2013.

E. Jwa, Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts, Fuel Processing Technology, vol.108, pp.89-93, 2013.

M. Nizio, Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts, International Journal of Hydrogen Energy, vol.41, pp.11584-11592, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01289154

G. Chen, Plasma assisted catalytic decomposition of CO2, In: Applied Catalysis B: Environmental, vol.190, pp.926-3373, 2016.

M. Nizio, Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts, Catalysis Communications 83, pp.1566-7367, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01318335

J. Van-durme, Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review, In: Applied Catalysis B: Environmental, vol.78, pp.926-3373, 2008.

M. A. Malik, Y. Minamitani, and K. H. Schoenbach, Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic Reactor, IEEE Transactions on Plasma Science, vol.33, pp.93-3813, 2005.

/. Tps, , 2004.

E. Marotta, DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing, Environmental Science and Technology, vol.41, pp.5862-5868, 2007.

R. Atkinson and J. Arey, Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmospheric Environment, vol.37, pp.1352-2310, 2003.

T. Nozaki, Dissociation of vibrationally excited methane on Ni catalyst: Part 1. Application to methane steam reforming, Catalysis Today, vol.89, pp.920-5861, 2004.

J. and C. Whitehead, Plasma catalysis: A solution for environmental problems, Pure and Applied Chemistry, vol.82, pp.1329-1336, 2010.

H. J. Gallon, Plasma-assisted methane reduction of a NiO catalyst-Low temperature activation of methane and formation of carbon nanofibres, In: Applied Catalysis B: Environmental, vol.106, pp.926-3373, 2011.

C. De-bie, Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations, Plasma Sources Science and Technology, vol.20, 2011.

I. Vasilii, V. N. Avdeev, and . Parmon, Molecular Mechanism of the Formic Acid Decomposition on V ¡sub¿2¡/sub¿ O ¡sub¿5¡/sub¿ /TiO ¡sub¿2¡/sub¿ Catalysts: A Periodic DFT Analysis, The Journal of Physical Chemistry C, vol.115, pp.21755-21762, 2011.

A. E-c-neyts and . Bogaerts, Understanding plasma catalysis through modelling and simulation-a review, Journal of Physics D: Applied Physics, vol.47, pp.22-3727, 2014.

J. Mazur and R. J. Rubin, Quantum Mechanical Calculation of the Probability of an Exchange Reaction for Constrained Linear Encounters, The Journal of Chemical Physics, vol.31, pp.21-9606, 1959.

C. George, A. Schatz, and . Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H+H ¡sub¿2¡/sub¿, The Journal of Chemical Physics, vol.65, pp.4668-4692, 1976.

U. Manthe, T. Seideman, and W. H. Miller, Full-dimensional quantum mechanical calculation of the rate constant for the H ¡sub¿2¡/sub¿ +OH-¿H ¡sub¿2¡/sub¿ O+H reaction, The Journal of Chemical Physics, vol.99, pp.21-9606, 1993.

C. George, H. Schatz, and . Elgersma, A quasi-classical trajectory study of product vibrational distributions in the OH + H2 -¿ H2O + H reaction, Chemical Physics Letters, vol.73, issue.1, pp.21-25, 1980.

G. Ochoa-de-aspuru and D. C. Clary, New Potential Energy Function for Four-Atom Reactions. Application to OH + H 2". In: The Journal of Physical Chemistry A 102, vol.47, pp.1089-5639, 1998.

G. Wu, A new potential surface and quasiclassical trajectory study of H+H2O-¿OH+H2, The Journal of Chemical Physics, vol.113, pp.21-9606, 2000.

M. Yang, Ab initio potential-energy surfaces for the reactions OH+H2¡-¿H2O+H, The Journal of Chemical Physics, vol.115, issue.1, pp.21-9606, 2001.

J. Chen, A global potential energy surface for the H 2 + OH ¡-¿ H 2 O + H reaction using neural networks, The Journal of Chemical Physics, vol.138, pp.21-9606, 2013.

N. Balakrishnan and G. D. Billing, Integral cross sections and rate constants for the reaction OH+H ¡sub¿2¡/sub¿ -¿H ¡sub¿2¡/sub¿ O+H: A semiclassical wave packet approach, The Journal of Chemical Physics, vol.101, pp.2785-2792, 1994.

N. Balakrishnan and G. D. Billing, A mixed quantal/classical study of the reaction OH + H2 -¿ H2O + H, Chemical Physics Letters, vol.233, pp.145-153, 1995.

P. Commission,

, Centro Ricerche Casaccia

A. Laganà and . Riganelli, Reaction and molecular dynamics : proceedings of the, European School on Computational Chemistry, vol.75, 1999.

A. Lombardi, A bond-bond portable approach to intermolecular interactions: Simulations for N-methylacetamide and carbon dioxide dimers, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

, LNCS. PART, vol.7333, pp.387-400, 2012.

S. Falcinelli, Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.7971

. Springer, , p.9783642396366, 2013.

D. Cappelletti, Experimental Evidence of Chemical Components in the Bonding of Helium and Neon with Neutral Molecules, Chemistry -A European Journal, vol.21, p.15213765, 2015.

B. Brunetti, Energy dependence of the Penning ionization electron spectrum of Ne* (3P2,0)+Kr, European Physical Journal D, vol.38, pp.21-27, 2006.

M. Alagia, The soft X-ray absorption spectrum of the allyl free radical, Phys. Chem. Chem. Phys, vol.15, pp.1463-9076, 2013.

S. Falcinelli, Measurements of Ionization Cross Sections by Molecular Beam Experiments: Information Content on the Imaginary Part of the Optical Potential, Journal of Physical Chemistry A, vol.120, p.15205215, 2016.

D. Cappelletti, S. Falcinelli, and F. Pirani, The intermolecular interaction in D¡inf¿2¡/inf¿ -CX¡inf¿4¡/inf¿ and O¡inf¿2¡/inf¿ -CX¡inf¿4¡/inf¿ (X = F, Cl) systems: Molecular beam scattering experiments as a sensitive probe of the selectivity of charge transfer component, In: Journal of Chemical Physics, vol.145, p.219606, 2016.

. Plc-s, EN/ABOUT US -L'energia che crea il tuo futuro

A. Capriccioli, Report on PROGEO progress, Virt&l-comm, vol.8, pp.1-2, 2015.

. Contatti,

, Johnson Matthey offers the series of KATALCO methanation catalysts for hydrogen production

S. Falcinelli, Methane production by CO2 hydrogenation reaction with and without solid phase catalysis, Fuel 209, pp.16-2361, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01868290

A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, Journal of Computational Physics, vol.17, issue.1, p.10902716, 1975.

H. Müller-krumbhaar and K. Binder, Dynamic properties of the Monte Carlo method in statistical mechanics, Journal of Statistical Physics, vol.8, issue.1, pp.1-24, 1973.

W. Cai, Intrinsic Mobility of a Dissociated Dislocation in Silicon, Phys. Rev. Lett, vol.84, pp.3346-3349, 2000.

B. Meng and W. H. Weinberg, Dynamical Monte Carlo studies of molecular beam epitaxial growth models: interfacial scaling and morphology, Surface Science, vol.364, pp.39-6028, 1996.

W. Young and E. Elcock, Monte Carlo studies of vacancy migration in binary ordered alloys: I, Proceedings of the Physical Society, vol.89, p.735, 1966.

S. A. Baeurle, T. Usami, and A. A. Gusev, A new multiscale modeling approach for the prediction of mechanical properties of polymer-based nanomaterials, Polymer 47, vol.26, pp.32-3861, 2006.

M. Stamatakis and D. G. Vlachos, A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics, The Journal of Chemical Physics, vol.134, pp.21-9606, 2011.

R. Diestel, Graph Theory. 5th, p.3662575604, 2018.

J. Keith, Keith James) Laidler. Chemical kinetics. Harper & Row, p.531, 1987.

P. Birbara and F. Sribnik, Development of an improved Sabatier reactor, vol.79, pp.1-10, 1979.

J. Nielsen, Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions, The Journal of Chemical Physics, vol.139, pp.21-9606, 2013.

C. Coletti and G. D. Billing, Quantum-Classical Methods: a Quantum-Classical Approach to Diatom-Diatom Reactive Scattering and VV Energy Transfer, Reaction and Molecular Dynamics, pp.257-270, 2000.

N. Balakrishnan and G. Billing, Integral cross sections and rate constants for the reaction OH+H 2 -¿H 2 O+H: A semiclassical wave packet approach, The Journal of Chemical Physics, vol.101, pp.21-9606, 1994.

T. Helgaker, E. Uggerud, H. J. Aa, and . Jensen, Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and Hessians: application to translational energy release upon fragmentation, Chemical Physics Letters, vol.173, pp.145-150, 1990.

W. Chen, W. L. Hase, and H. B. Schlegel, Ab initio classical trajectory study of H2CO-¿H2+CO dissociation, Chemical Physics Letters, vol.228, pp.436-442, 1994.

R. Steckler, Ab initio direct dynamics study of OH+HCl-¿Cl+H 2 O, The Journal of Chemical Physics, vol.106, issue.10, pp.21-9606, 1997.

Y. Paukku, Global ¡i¿ab initio¡/i¿ ground-state potential energy surface of N ¡sub¿4¡/sub¿, The Journal of Chemical Physics, vol.139, pp.21-9606, 2013.

S. Rampino, Configuration-Space Sampling in Potential Energy Surface Fitting: A Space-Reduced Bond-Order Grid Approach, The Journal of Physical Chemistry A, vol.120, pp.1089-5639, 2016.

T. Ishida and G. C. Schatz, Automatic potential energy surface generation directly from ab initio calculations using Shepard interpolation: A test calculation for the H2+H system, The Journal of Chemical Physics, vol.107, issue.9, pp.21-9606, 1998.

M. Majumder, S. A. Ndengue, and R. Dawes, Automated construction of potential energy surfaces, Molecular Physics, vol.114, pp.26-8976, 2016.

J. N. , John Norman) Murrell. Molecular potential energy functions, J. Wiley, p.197, 1984.

E. Garcia and A. Lagana, Diatomic potential functions for triatomic scattering, Molecular Physics, vol.56, pp.26-8976, 1985.

O. Frank and . Ellison, A Method of Diatomics in Molecules. I. General Theory and Application to H2O, Journal of the American Chemical Society, vol.85, p.15205126, 1963.

B. Fu, E. Kamarchik, and J. M. Bowman, Quasiclassical trajectory study of the postquenching dynamics of OH A2+ by H2/D2 on a global potential energy surface, The Journal of Chemical Physics, vol.133, pp.21-9606, 2010.

D. H. Zhang, M. A. Collins, and S. Y. Lee, First-principles theory for the H + H2O, D2O reactions, Science, vol.290, p.368075, 2000.

C. M. Handley and P. L. Popelier, Potential Energy Surfaces Fitted by Artificial Neural Networks, The Journal of Physical Chemistry A, vol.114, issue.10, pp.1089-5639, 2010.

F. Pirani, Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations, Physical Chemistry Chemical Physics, vol.10, pp.1463-9076, 2008.

A. Stone, The Theory of Intermolecular Forces, p.9780199672394, 2013.

S. Gómez, -. Carrasco, and O. Roncero, Coordinate transformation methods to calculate state-to-state reaction probabilities with wave packet treatments, The Journal of Chemical Physics, vol.125, pp.21-9606, 2006.

, Lecture Notes -Physical Chemistry -Chemistry -MIT OpenCourse-Ware

G. Gabriel, R. N. Balint-kurti, C. Dixon, and . Clay-marston, Grid methods for solving the Schrödinger equation and time dependent quantum dynamics of molecular photofragmentation and reactive scattering processes, International Reviews in Physical Chemistry, vol.11, issue.2, pp.317-344, 1992.

A. Edward, R. E. Mccullough, and . Wyatt, Quantum Dynamics of the Collinear (H, H ¡sub¿2¡/sub¿ ) Reaction, The Journal of Chemical Physics, vol.51, issue.3, pp.21-9606, 1969.

A. Edward, R. E. Mccullough, and . Wyatt, Dynamics of the Collinear H+H ¡sub¿2¡/sub¿ Reaction. II. Energy Analysis, The Journal of Chemical Physics, vol.54, pp.21-9606, 1971.

M. Feit, J. Fleck, and A. Steiger, Solution of the Schrödinger equation by a spectral method, Journal of Computational Physics, vol.47, issue.3, pp.412-433, 1982.

D. Kosloff and . Kosloff, A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics, Journal of Computational Physics, vol.52, issue.1, pp.21-9991, 1983.

J. V. Lill, G. A. Parker, and J. C. Light, Discrete variable representations and sudden models in quantum scattering theory, Chemical Physics Letters, vol.89, issue.6, pp.9-2614, 1982.

J. C. Light, I. P. Hamilton, and J. V. Lill, Generalized discrete variable approximation in quantum mechanics, The Journal of Chemical Physics, vol.82, pp.21-9606, 1985.

J. A. Fleck, J. R. Morris, and M. D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere, Applied Physics, vol.10, issue.2, pp.129-160, 1976.

D. André, H. Bandrauk, and . Shen, Improved exponential split operator method for solving the time-dependent Schrödinger equation, Chemical Physics Letters, vol.176, pp.9-2614, 1991.

D. André, H. Bandrauk, and . Shen, Higher order exponential split operator method for solving time-dependent Schrödinger equations, Canadian Journal of Chemistry, vol.70, pp.8-4042, 1992.

D. André, H. Bandrauk, and . Shen, Exponential split operator methods for solving coupled time-dependent Schrödinger equations, The Journal of Chemical Physics, vol.99, issue.2, pp.21-9606, 1993.

H. Tal-ezer and R. Kosloff, An accurate and efficient scheme for propagating the time dependent Schrödinger equation, The Journal of Chemical Physics, vol.81, pp.21-9606, 1984.

C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards, vol.45, p.255, 1950.
URL : https://hal.archives-ouvertes.fr/hal-01712947

T. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczos reduction, The Journal of Chemical Physics, vol.85, pp.21-9606, 1986.

H. Henry and . Suzukawa, Empirical testing of the suitability of a nonrandom integration method for classical trajectory calculations: Comparisons with Monte Carlo techniques, The Journal of Chemical Physics, vol.59, pp.4000-4008, 1973.

N. P. , Nikola? Pantele?monovich) Buslenko et al. The Monte Carlo method : the method of statistical trials, p.9781483155579

L. Lapidus and J. H. Seinfeld, Numerical solution of ordinary differential equations, p.9780080955834, 1971.

J. Butcher, Numerical Methods for Ordinary Differential Equations, Numerical + Methods + for + Ordinary + Differential + Equations+, p.9780471967583, 2008.

G. Donald, J. T. Truhlar, and . Muckerman, Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods". In: Atom -Molecule Collision Theory, pp.505-566, 1979.

M. Herman, Dynamics by Semiclassical Methods". In: Annual Review of Physical Chemistry, vol.45, pp.83-111, 1994.

G. D. Billing, Quantum corrections to the classical path equations: Multitrajectory and Hermite corrections, The Journal of Chemical Physics, vol.107, issue.11, pp.21-9606, 1998.

G. D. Billing, Mixed Quantum-Classical Methods, Encyclopedia of Computational Chemistry, 2002.

G. D. Billing, Time-dependent quantum dynamics in a Gauss-Hermite basis, The Journal of Chemical Physics, vol.110, pp.21-9606, 1999.

G. D. Billing, Trajectory driven second quantization approach to quantum dynamics, Chemical Physics, vol.242, issue.3, pp.341-351, 1999.

G. D. Billing, Quantum-Classical Methods, pp.115-129, 2000.

G. E. Moore, Cramming more components onto integrated circuits, vol.38, p.4, 1965.

G. E. Moore, Progress in digital integrated electronics [Technical literaiture, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International Electron Devices Meeting, In: IEEE Solid-State Circuits Society Newsletter, vol.11, issue.3, pp.36-37, 1975.

L. Dagum and R. Menon, OpenMP: an industry standard API for sharedmemory programming, IEEE Computational Science and Engineering, vol.5, pp.46-55, 1998.

M. Hermanns, Parallel Programming in Fortran 95 using OpenMP, 2002.

A. Laganà, A rotating bond order formulation of the atom diatom potential energy surface, The Journal of Chemical Physics, vol.95, issue.3, pp.21-9606, 1991.

A. Laganà, Potential energy representations in the bond order space, Chemical Physics, vol.168, issue.92, pp.87167-87175, 1992.

A. Kurnosov, Closer versus Long Range Interaction Effects on the Non-Arrhenius Behavior of Quasi-Resonant O ¡sub¿2¡/sub¿ + N ¡sub¿2¡/sub¿ Collisions, The Journal of Physical Chemistry A, vol.121, pp.1089-5639, 2017.

L. Pacifici, A high-level ¡i¿ab initio¡/i¿ study of the N ¡sub¿2¡/sub¿ + N ¡sub¿2¡/sub¿ reaction channel, Journal of Computational Chemistry, vol.34, pp.2668-2676, 2013.

E. Garcia and A. Lagana, A new bond-order functional form for triatomic molecules, Molecular Physics, vol.56, pp.26-8976, 1985.

P. Palmieri, E. Garcia, and A. Laganá, A potential energy surface for the Li+HCl reaction, The Journal of Chemical Physics, vol.88, issue.1, pp.21-9606, 1988.

A. Lagana, Scalar and vector properties of the magnesium + hydrogen fluoride reaction on a bond order surface, The Journal of Physical Chemistry, vol.95, pp.8379-8384, 1991.

A. Laganà, Ab initio calculations and dynamical tests of a potential energy surface for the Na+FH reaction, The Journal of Chemical Physics, vol.106, pp.21-9606, 1998.

A. Laganà, G. Ochoa-de-aspuru, and E. Garcia, The largest angle generalization of the rotating bond order potential: Three different atom reactions, The Journal of Chemical Physics, vol.108, pp.21-9606, 1998.

E. Garcia, Modeling the global potential energy surface of the N + N2 reaction from ab initio data, Physical Chemistry Chemical Physics, vol.10, pp.1463-9076, 2008.

A. Rodriguez, A LAGROBO strategy to fit potential energy surfaces: the OH + HCl reaction, Chemical Physics Letters, vol.360, pp.304-312, 2002.

R. Zellner and . Steinert, Vibrational rate enhancement in the reaction OH + H2(? = 1) -¿ H2O + H, Chemical Physics Letters, vol.81, issue.3, pp.568-572, 1981.

G. C. Light and J. H. Matsumoto, The effect of vibrational excitation in the reactions of OH with H2, Chemical Physics Letters, vol.58, pp.578-581, 1978.

H. Dong, J. Z. Zhang, and . Zhang, Full-dimensional time-dependent treatment for diatom-diatom reactions: The H 2 +OH reaction, The Journal of Chemical Physics, vol.101, issue.2, pp.21-9606, 1994.

B. Zhao, Z. Sun, and H. Guo, State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State, Journal of the American Chemical Society, vol.137, pp.15964-15970, 2015.

. A-r-ravishankara, Kinetic study of the reaction of hydroxyl with hydrogen and deuterium from 250 to 1050 K, The Journal of Physical Chemistry, vol.85, pp.2498-2503, 1981.

V. Schmidt, Study of OH Reactions at High Pressures by Excimer Laser Photolysis -Dye Laser Fluorescence, Berichte der Bunsengesellschaft für physikalische Chemie, vol.89, pp.321-322, 1985.

W. Heisenberg, Mehrkrperproblem und Resonanz in der Quantenmechanik, Zeitschrift fur Physik, vol.38, pp.1434-6001, 1926.

P. A. Dirac, On the Theory of Quantum Mechanics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.112, pp.1364-5021, 1926.

J. C. Slater, The Theory of Complex Spectra, Physical Review, vol.34, pp.1293-1322, 1929.

. Chr, M. S. Møller, and . Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, pp.31-899, 1934.

E. Schrödinger, Quantisierung als Eigenwertproblem, Annalen der Physik, vol.385, 1926.

L. D. , Lev Davidovich) Landau et al. Quantum mechanics : non-relativistic theory, p.9780080503486, 1977.

C. J. Cramer, Essentials of Computational Chemistry Theories and Models, vol.42, pp.334-342, 2004.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society 23.05, pp.305-346, 1927.

E. Fermi, Un metodo statistico per la determinazione di alcune proprieta dell atomo, Accademia Nazionale dei Lincei, vol.6, pp.602-607, 1927.

P. A. Dirac, Note on Exchange Phenomena in the Thomas Atom, Mathematical Proceedings of the Cambridge Philosophical Society, p.376, 1930.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, 1964.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, 1965.

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, pp.31-9007, 1980.

. Bibliography,

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, pp.163-1829, 1981.

G. Ortiz and P. Ballone, Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas, Physical Review B, vol.50, issue.3, pp.163-1829, 1994.

F. Herman, J. P. Van-dyke, and I. B. Ortenburger, Improved Statistical Exchange Approximation for Inhomogeneous Many-Electron Systems, Physical Review Letters, vol.22, pp.31-9007, 1969.

P. John, K. Perdew, and . Burke, Comparison shopping for a gradientcorrected density functional, International Journal of Quantum Chemistry, vol.57, issue.3, pp.3-5, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, pp.31-9007, 1996.

Y. Zhang, W. Pan, and W. Yang, Describing van der Waals Interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional, The Journal of Chemical Physics, vol.107, pp.21-9606, 1998.

B. Montanari, P. Ballone, and R. O. Jones, Density functional study of molecular crystals: Polyethylene and a crystalline analog of bisphenol-A polycarbonate, The Journal of Chemical Physics, vol.108, pp.21-9606, 1998.

C. David, D. V. Patton, M. R. Porezag, and . Pederson, Simplified generalizedgradient approximation and anharmonicity: Benchmark calculations on molecules, Physical Review B, vol.55, pp.163-1829, 1997.

A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, The Journal of Chemical Physics, vol.98, issue.2, pp.21-9606, 1993.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, pp.21-9606, 1993.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, pp.163-1829, 1988.

A. D. Becke, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, The Journal of Chemical Physics, vol.104, issue.3, pp.21-9606, 1998.

. Jean-louis and . Calais, Quantum chemistry workbook : basic concepts and procedures in the theory of the electronic structure of matter, Quantum + Chemistry + Workbook % 3A + Basic + Concepts + and + Procedures + in + the + Theory+of+the+Electronic+Structure+of+Matter, p.9780471594352, 1994.

D. C-m-goringe, E. Bowler, and . Hernández, Tight-binding modelling of materials, In: Reports on Progress in Physics, vol.60, pp.1447-1512, 1997.

W. , M. C. Foulkes, and R. Haydock, Tight-binding models and density-functional theory, Physical Review B, vol.39, pp.163-1829, 1989.

D. Porezag, Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon, Physical Review B, vol.51, pp.163-1829, 1995.

R. Pariser, Theory of the Electronic Spectra and Structure of the Polyacenes and of Alternant Hydrocarbons, vol.24, pp.21-9606, 1956.

G. Robert, R. G. Parr, and . Pearson, Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society, vol.105, pp.7512-7516, 1983.

R. S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.23, pp.21-9606, 1955.

M. Rapacioli, Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: Application to polycyclic aromatic hydrocarbon clusters, The Journal of Chemical Physics, vol.130, pp.21-9606, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418594

J. D. Thompson, C. J. Cramer, D. G. Truhlar, ;. Pm3, B. et al., Parameterization of charge model 3 for AM1, In: Journal of Computational Chemistry, vol.24, pp.1291-1304, 2003.

P. Winget, Charge Model 3: A Class IV Charge Model Based on Hybrid Density Functional Theory with Variable Exchange, The Journal of Physical Chemistry A, vol.106, pp.1089-5639, 2002.

D. J. Wales, Energy Landscapes: From Clusters to Biomolecules, pp.1-111, 2007.

M. R. Hoare and J. Mcinnes, Statistical mechanics and morphology of very small atomic clusters, Faraday Discussions of the Chemical Society, vol.61, p.12, 1976.

C. J. Tsai and K. D. Jordan, Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters, The Journal of Physical Chemistry, vol.97, pp.11227-11237, 1993.

P. K. Jonathan, D. J. Doye, and . Wales, Calculation of thermodynamic properties of small Lennard-Jones clusters incorporating anharmonicity, The Journal of Chemical Physics, vol.102, p.219606, 1995.

F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Reviews of Modern Physics, vol.77, issue.1, pp.34-6861, 2005.

/. Revmodphys,

B. Hartke, Global geometry optimization of clusters using genetic algorithms, The Journal of Physical Chemistry, vol.97, pp.22-3654, 1993.

Y. Xiao and D. E. Williams, Genetic algorithm: a new approach to the prediction of the structure of molecular clusters, Chemical Physics Letters, vol.215, pp.9-2614, 1993.

Z. Li and H. Scheraga, Monte Carlo-minimization approach to the multipleminima problem in protein folding, Proceedings of the National Academy of Sciences of the United States of America, vol.84, pp.27-8424, 1987.

P. K. Jonathan, D. J. Doye, and . Wales, Thermodynamics of Global Optimization, Physical Review Letters, vol.80, pp.31-9007, 1998.

M. Glenn, J. P. Torrie, and . Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid, Chemical Physics Letters, vol.28, pp.578-581, 1974.

G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, In: Journal of Computational Physics, vol.23, issue.2, pp.90121-90129, 1977.

A. Laio and M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.12562-12568, 2002.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by simulated annealing, vol.220, pp.36-8075, 1983.

N. Metropolis, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.21-9606, 1953.

Y. Sugita and Y. Okamoto, Replica-exchange molecular dynamics method for protein folding, Chemical Physics Letters, vol.314, pp.9-2614, 1999.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.52, issue.2, pp.26-8976, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.556-2791, 1985.

T. Heine, DeMonNano software package, 2015.

F. Augusto, P. Oliveira, T. Philipsen, and . Heine, DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium, J. Chem. Theory Comput, vol.11, pp.5209-5218, 2015.

C. Kerpal, Far-IR Spectra and Structures of Small Cationic Ruthenium Clusters: Evidence for Cubic Motifs, The Journal of Physical Chemistry C, vol.119, pp.10869-10875, 2015.

E. Waldt, Structural evolution of small ruthenium cluster anions, The Journal of Chemical Physics, vol.142, p.24319, 2015.

W. Eugen, Structures of Medium-Sized Ruthenium Clusters: The Octahedral Motif, ChemPhysChem 15.5 (, pp.862-865

. Charles, Introduction to solid state physics, p.9780471415268, 2005.

F. Luiz and . Oliveira, Benchmarking Density Functional Based Tight-Binding for Silver and Gold Materials: From Small Clusters to Bulk, The Journal of Physical Chemistry A, vol.120, pp.8469-8483, 2016.

C. Moore, No Title. Ed. by National Bureau of Standards, 1949.

J. Hölzl and F. Schulte, Work Function of Metals, 1979.

. J-c-rivière, Work function : measurements and results, Solid State Surface Science, p.1, 1969.

. Herbert-b-michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, vol.48, pp.4729-4733, 1977.

M. O. Selme and P. Pecheur, Electronic structure of hexagonal iron layers, Journal of Magnetism and Magnetic Materials, vol.93, pp.285-289, 1991.

M. Seidl and M. Brack, Liquid Drop Model for Charged Spherical Metal Clusters, Annals of Physics, vol.245, pp.3-4916, 1996.