A. Ambroso, C. Chalons, F. Coquel, and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.43, pp.1063-1097, 2009.

A. Ambroso, C. Chalons, and P. A. Raviart, A Godunov type method for the sevenequation model of compressible two-phase flow, Computers and Fluids, vol.54, pp.67-91, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00517375

M. R. Baer and J. W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, pp.861-889, 1986.

G. Berthoud, Vapor explosions, Annual Review of Fluid Mechanics, vol.32, pp.573-611, 2000.

W. Bo, H. Jin, D. Kim, X. Liu, H. Lee et al., Comparison and validation of multiphase closure models, Computers and Mathematics with Applications, vol.56, pp.1291-1302, 2008.

A. Chauvin, Etude expérimentale de l'atténuation d'une onde de choc par un nuage de gouttes et validation numérique, 2012.

A. Chauvin, G. Jourdan, E. Daniel, L. Houas, and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, Physcis of Fluids, vol.23, p.113301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01459992

F. Coquel, T. Gallouët, J. M. Hérard, and N. Seguin, Closure laws for a two fluid two-pressure model, C. R. Acad. Sci. Paris, pp.927-932, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01484345

F. Coquel, J. M. Hérard, K. Saleh, and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer Nunziato model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.48, pp.165-206, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00795568

F. Coquel, J. M. Hérard, and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer Nunziato model, Journal of Computational Physics, vol.330, pp.401-435, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01261458

M. Essadki, Contribution to a unified modelling of fuel injection : from dense liquid to polydisperse evaporating spray, 2018.

G. Faccanoni, S. Kokh, and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM : Mathematical Modelling and Numerical Analysis, vol.46, pp.1029-1054, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00976983

T. Flätten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition, Mathematical Models and Methods in Applied Sciences, vol.21, issue.12, 2011.

S. Gavrilyuk, The structure of pressure relaxation terms : the one-velocity case, 2014.

S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two-phase compressible flows with micro inertia, Journal of Computational Physics, vol.175, pp.326-360, 2002.

B. E. Gelfand, Droplet breakup phenomena in flows with velocity lag, Progress in Energy and Combustion Science, vol.22, pp.201-265, 1996.

P. Helluy and H. Mathis, Pressure laws and fast Legendre transform, Mathematical Models and Methods in Applied Sciences, vol.21, pp.745-775, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00424061

P. Helluy and N. Seguin, Relaxation models of phase transition flows, ESAIM : Mathematical Modelling and Numerical Analysis, vol.40, pp.331-352, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00139607

J. M. Hérard, A three-phase flow model, Mathematical and Computer Modelling, vol.45, pp.732-755, 2007.

J. M. Hérard, A class of compressible multiphase flow models, Comptes Rendus Mathématique, vol.354, pp.954-959, 2016.

J. M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows, Computers and Fluids, vol.55, pp.57-69, 2012.

J. M. Hérard, K. Saleh, and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model, 2018.

T. Hibiki and M. Ishii, One-group interfacial area transport of bubbly flows in vertical round tubes, Int. J. of Heat and Mass Transfer, vol.43, pp.2711-2726, 2000.

A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart, Two phase flow modeling of deflagration to detonation transition : srtucture of the velocity relaxation zone, Physics of Fluids, vol.9, issue.12, 1997.

H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas, ESAIM : Mathematical Modelling and Numerical Analysis, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01615591

M. Massot, F. Laurent, D. Kah, and S. De-chaisemartin, A robust moment method for evaluation of the disappearance rate of evaporating sprays, SIAM Journal of Applied Mathematics, vol.70, pp.3203-3234, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00332423

R. Meignen, B. Raverdy, S. Picchi, and J. Lamome, The challenge of modelling fuelcoolant interaction. Part II : steam explosion, Nuclear Engineering and Design, vol.280, pp.528-541, 2014.

S. Müller, M. Hantke, and P. Richter, Closure conditions for non-equilibrium multicomponent models, Continuum Mechanics and Thermodynamics, vol.28, pp.1157-1190, 2016.

S. Picchi, MC3D version 3.9. Description of the physical models of the premixing application, 2017.

M. Pilch, Acceleration induced fragmentation of liquid drops, 1981.

M. Pilch and C. A. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration induced breakup of a liquid drop, Int. J. Multiphase Flow, vol.28, pp.741-757, 1987.

X. Rogue, G. Rodriguez, J. F. Haas, and R. Saurel, Experimental and numerical investigation of the shock induced fluidization of a particles bed, Shock Waves, vol.8, pp.29-46, 2014.

E. Romenski, A. A. Belozerov, and I. M. Peshkov, Conservative formulation for compressible multiphase flows, pp.1-21, 2014.

E. Rusanov, Calculation of interaction of non steady shock waves with obstacles, Journal of Computational Mathematics and Physics, vol.1, pp.267-279, 1961.

K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I : barotropic EOS, HAL preprint available on https, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737681

W. Yao and C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow, Int. J. of Heat and Mass Transfer, vol.47, pp.307-328, 2004.

. Les-travaux-de-ce-chapitre, H. Boukili, and J. M. Hérard, Simulation and preliminary validation of a three-phase flow model with energy

C. Edf-lab, , vol.6

A. M. I2m and . Université, , vol.39, p.13453

A. Ambroso, C. Chalons, F. Coquel, and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.43, pp.1063-1097, 2009.

A. Ambroso, C. Chalons, and P. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. and Fluids, vol.54, pp.67-91, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00517375

M. R. Baer and J. W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, pp.861-889, 1986.

C. Berthon, Contribution à l'analyse numérique des equations de Navier-Stokes compressibles à deux entropies spécifiques. Applications à la turbulence compressible, 1999.

G. Berthoud, Vapor explosions, Annual Review of Fluid Mechanics, vol.32, pp.573-611, 2000.

H. Boukili and J. M. Hérard, Relaxation and simulation of a barotropic three-phase flow model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.53, pp.1031-1059, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01745161

A. Chauvin, Étude expérimentale de l'atténuation d'une onde de choc par un nuage de gouttes et validation numérique, 2012.

A. Chauvin, G. Jourdan, E. Daniel, L. Houas, and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, Physcis of Fluids, vol.23, p.113301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01459992

F. Coquel, J. M. Hérard, and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer Nunziato model, Journal of Computational Physics, vol.330, pp.401-435, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01261458

D. A. Drew and S. L. , Passman Theory of Multicomponent Fluids, 1999.

P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Continuum Mech. Thermodyn, vol.4, pp.279-312, 1992.

S. Gavrilyuk, The structure of pressure relaxation terms : the one-velocity case, EDF report H-I83-2014-0276-EN, 2014.

S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two-phase compressible flows with micro inertia, Journal of Computational Physics, vol.175, pp.326-360, 2002.

B. E. Gelfand, Droplet breakup phenomena in flows with velocity lag, Progr. Energy Combust. Sci, vol.22, pp.201-265, 1996.

V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions, 2007.

E. Han, M. Hantke, and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition, Journal of Computational Physics, vol.338, pp.217-239, 2017.

M. Hantke and S. Müller, Closure conditions for a one temperature nonequilibrium multi-component model of Baer-Nunziato type, ESAIM proceedings, vol.66, pp.42-60, 2019.

J. M. Hérard, A three-phase flow model, Mathematical and Computer Modelling, vol.45, pp.732-755, 2007.

J. M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows, Computers and Fluids, vol.55, pp.57-69, 2012.

J. M. Hérard and H. Mathis, A three-phase flow model with two miscible phases, vol.53, pp.1373-1389, 2019.

J. M. Hérard, K. Saleh, and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model, HAL preprint available on https, 2018.

T. Y. Hou and P. G. Lefoch, Why nonconservative schemes converge to wrong solutions : error analysis, Mathematics of computation, vol.62, issue.206, pp.497-530, 1994.

I. Huhtiniemi, H. Hohmann, R. Faraoni, M. Field, R. Gambaretti et al., Technical Note No. I.96, vol.38, 1996.

O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer, ESAIM proceedings, vol.66, pp.84-108, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01976903

M. Ishii, Thermo-fluid dynamic theory of two-phase flows, Eyrolles -Collection de la Direction des Etudes et Recherches d'Electricité de France, 1975.

A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart, Two phase modeling of deflagration to detonation transition : srtucture of the velocity relaxation zone, Physics of Fluids, vol.9, issue.12, pp.3885-3897, 1997.

R. Meignen, B. Raverdy, S. Picchi, and J. Lamome, The challenge of modelling fuel-coolant interaction. Part II : steam explosion, Nuclear Engineering and Design, vol.280, pp.528-541, 2014.

S. Müller, M. Hantke, and P. Richter, Closure conditions for non-equilibrium multi-component models, Continuum Mechanics and Thermodynamics, vol.28, pp.1157-1189, 2016.

. Les-travaux-de-ce-chapitre, H. Boukili, and J. M. Hérard, Simulation and preliminary validation of a three-phase flow model with energy

C. Edf-lab, , vol.6

A. M. I2m and . Université, , vol.39, p.13453

G. Berthoud, Vapor explosions, Annual Review of Fluid Mechanics, vol.32, pp.573-611, 2000.

H. Boukili and J. M. Hérard, Relaxation and simulation of a barotropic three-phase flow model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.53, pp.1031-1059, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01745161

H. Boukili and J. M. Hérard, Simulation and validation of a three-phase flow model with energy
URL : https://hal.archives-ouvertes.fr/hal-02426425

F. Crouzet, F. Daude, P. Galon, J. Hérard, O. Hurisse et al., Validation of a two-fluid model on unsteady water-vapour flows, Computers and Fluids, vol.199, pp.131-142, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01302568

S. Gavrilyuk, The structure of pressure relaxation terms : the one-velocity case, EDF report H-I83-2014-0276-EN, 2014.

J. M. Hérard, A three-phase flow model, Mathematical and Computer Modelling, vol.45, pp.732-755, 2007.

J. M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows, Computers and Fluids, vol.55, pp.57-69, 2012.

I. Huhtiniemi, H. Hohmann, R. Faraoni, M. Field, R. Gambaretti et al., Technical Note No. I.96, vol.38, 1996.

O. Hurisse, Simulation des écoulements industriels diphasiques compressibles, 2017.

R. Meignen, B. Raverdy, S. Picchi, and J. Lamome, The challenge of modelling fuel-coolant interaction. Part II : steam explosion, Nuclear Engineering and Design, vol.280, pp.528-541, 2014.

, OECD research programme on fuel-coolant interaction steam explosion resolution for nuclear applications -SERENA, Organisation for Economic Co-operation and Development, Nuclear Energy Agency Committee on the Safety of Nuclear Installations, 2007.

, EV : 1. Sur le plan numérique, pour l'approximation du sous-système convectif on a considéré le schéma de Rusanov [64] à la fois pour le modèle barotrope et non barotrope. Le développement d'un solveur de Riemann plus robuste et surtout plus précis aurait un impact positif sur la précision du modèle global, Néanmoins, les aspects suivants peuvent être considérés, afin de rendre le modèle plus riche, plus robuste et mieux adapté aux scénarios d

C. Dans-le, Or, d'après l'analyse présentée dans le chapitre 2, les temps caractéristiques de relaxation ont un impact significatif sur les solutions du modèle. Il est donc nécessaire d'examiner la combinaison des algorithmes de relaxation vitesse et pression non instantanée avec les effets thermiques (relaxation de température et transfert de masse), afin de voir l'impact sur les résultats numériques, et permettre l'analyse d'un large spectre de temps de relaxation. En particulier, considérer un temps de relaxation non nul pour la vitesse permettra d'autoriser la variable d'aire interfaciale à évoluer en fonction de l'écoulement (en admettant des écarts de vitesse non nuls), choisi les algorithmes de relaxation instantanée pour les étapes de vitesse et pression

, Certains algorithmes mis en place reposent sur ces lois deux d'état pour garantir l'existence et unicité de solutions admissibles. Certes, les ordres de grandeur des solutions obtenues sont en accord assez satisfaisant avec les mesures expérimentales, mais il serait pertinent de considérer des lois d'état plus riches, afin de représenter de façon plus fidèle la physique des fluides, Les lois d'états choisies sont du type gaz parfait ou gaz raide

. Bibliographie,

M. E. Ahamadi and H. T. , Rakotondramiarana and Rakotonindrainy, Modeling and Simulation of Compressible Three-Phase Flows in an Oil Reservoir : Case Study of Tsimiroro Madagascar, American Journal of Fluid Dynamics, vol.4, pp.181-193, 2014.

A. Ambroso, C. Chalons, F. Coquel, and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.43, pp.1063-1097, 2009.

A. Ambroso, C. Chalons, and P. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. and Fluids, vol.54, pp.67-91, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00517375

M. R. Baer and J. W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, pp.861-889, 1986.

C. Berthon, Contribution à l'analyse numérique des equations de Navier-Stokes compressibles à deux entropies spécifiques. Applications à la turbulence compressible, 1999.

G. Berthoud, Vapor explosions, Annual Review of Fluid Mechanics, vol.32, pp.573-611, 2000.

Z. Bilicki and J. Kestin, Physical aspects of the relaxation model in two-phase flow, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.428, pp.379-397, 1990.

W. Bo, H. Jin, D. Kim, X. Liu, H. Lee et al., Comparison and validation of multiphase closure models, Computers and Mathematics with Applications, vol.56, pp.1291-1302, 2008.

M. Bonizzi and R. I. Issa, On the simulation of three-phase slug flow in nearly horizontal pipes using the multi-fluid model, Int. J. Multiphase Flow, pp.1719-1747, 2003.

H. Boukili and J. M. Hérard, Relaxation and simulation of a barotropic threephase flow model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.53, pp.1031-1059, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01745161

A. Chauvin, Étude expérimentale de l'atténuation d'une onde de choc par un nuage de gouttes et validation numérique, 2012.

A. Chauvin, G. Jourdan, E. Daniel, L. Houas, and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, Physcis of Fluids, vol.23, p.113301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01459992

S. Clerc, Numerical simulation of the homogeneous equilibrium model for two-phase flows, Journal of Computational Physics, vol.161, pp.354-375, 2000.

F. Coquel, T. Gallouët, J. M. Hérard, and N. Seguin, Closure laws for a two fluid two-pressure model, C. R. Acad. Sci. Paris, pp.927-932, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01484345

F. Coquel, J. M. Hérard, and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer Nunziato model, Journal of Computational Physics, vol.330, pp.401-435, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01261458

F. Coquel, J. M. Hérard, K. Saleh, and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer Nunziato model, ESAIM : Mathematical Modelling and Numerical Analysis, vol.48, pp.165-206, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00795568

F. Crouzet, F. Daude, P. Galon, J. Hérard, O. Hurisse et al., Validation of a two-fluid model on unsteady liquid-vapor water flows, Computers and Fluids, vol.199, pp.131-142, 2015.

D. A. Drew and S. L. , Passman Theory of Multicomponent Fluids, 2006.

P. Downar-zapolski, Z. Bilicki, L. Bolle, and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow, International journal of multiphase flow, vol.22, pp.473-483, 1996.

P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Continuum Mech. Thermodyn, vol.4, pp.279-312, 1992.

M. Essadki, Contribution to a unified modelling of fuel injection : from dense liquid to polydisperse evaporating spray, 2018.

G. Faccanoni, S. Kokh, and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium, ESAIM : Mathematical Modelling and Numerical Analysis, vol.46, pp.1029-1054, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00976983

I. Faille and E. Heintze, A rough finite volume scheme for modeling two-phase flow in a pipeline, Computers and Fluids, vol.28, pp.213-241, 1999.

T. Flätten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition, Mathematical Models and Methods in Applied Sciences, vol.21, issue.12, pp.2379-2407, 2011.

D. Furfaro and R. Saurel, A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows, Computers & Fluids, vol.111, pp.159-178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01278892

J. Gale, I. Tiselj, and A. Horvat, Two-fluid model of the WAHA code for simulations of water hammer transients, Multiphase Science and Technology, vol.20, pp.291-322, 2008.

T. Gallouët, P. Helluy, J. M. Hérard, and J. Nussbaum, Hyperbolic relaxation models for granular flows, ESAIM : Mathematical Modelling and Numerical Analysis, vol.44, issue.2, pp.371-400, 2010.

T. Gallouët, J. M. Hérard, and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Mathematical Models and Methods in Applied Sciences, vol.14, issue.15, pp.663-700, 2004.

S. Gavrilyuk, The structure of pressure relaxation terms : the one-velocity case, EDF report H-I83-2014-0276-EN, 2014.

S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two-phase compressible flows with micro inertia, Journal of Computational Physics, vol.175, pp.326-360, 2002.

B. E. Gelfand, Droplet breakup phenomena in flows with velocity lag, Progress in Energy and Combustion Science, vol.22, pp.201-265, 1996.

H. Guillard and F. Duval, A Darcy law for the drift velocity in a two-phase flow model, Journal of Computational Physics, vol.224, pp.288-313, 2007.

V. Guillemaud, Modéisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions, 2007.

L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables : Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, 1984.

E. Han, M. Hantke, and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition, Journal of Computational Physics, vol.338, pp.217-239, 2017.

M. Hantke and S. Müller, Closure conditions for a one temperature nonequilibrium multi-component model of Baer-Nunziato type, ESAIM proceedings, vol.66, pp.42-60, 2019.

P. Helluy and H. Mathis, Pressure laws and fast Legendre transform, Mathematical Models and Methods in Applied Sciences, vol.21, pp.745-775, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00424061

P. Helluy and N. Seguin, Relaxation models of phase transition flows, ESAIM : Mathematical Modelling and Numerical Analysis, vol.40, pp.331-352, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00139607

J. M. Hérard, A three-phase flow model, Mathematical and Computer Modelling, vol.45, pp.732-755, 2007.

J. M. Hérard, A class of compressible multiphase flow models, Comptes Rendus Mathématique, vol.354, pp.954-959, 2016.

J. M. Hérard and O. Hurisse, A simple method to compute standard two-fluid models, International Journal of Computational Fluid Dynamics, vol.19, issue.7, pp.475-482, 2005.

J. M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows, Computers and Fluids, vol.55, pp.57-69, 2012.

J. M. Hérard and H. Mathis, A three-phase flow model with two miscible phases, vol.53, pp.1373-1389, 2019.

T. Y. Hou and P. G. Lefoch, Why nonconservative schemes converge to wrong solutions : error analysis, Mathematics of computation, vol.62, issue.206, pp.497-530, 1994.

I. Huhtiniemi, H. Hohmann, R. Faraoni, M. Field, R. Gambaretti et al., Technical Note No. I.96, vol.38, 1996.

O. Hurisse, Simulation des écoulements industriels diphasiques compressibles, Université de Strasbourg, Thèse d'habilitation à diriger les recherches, 2017.

O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer, ESAIM proceedings, vol.66, pp.84-108, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01976903

M. Ishii, Thermo-fluid dynamic theory of two-phase flows, Collection de la Direction des Études et Recherches d'Électricité de France, 1975.

A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart, Twophase modeling of deflagration-to-detonation transition in granular materials : Reduced equations, Physics of Fluids, vol.13, issue.10, pp.3002-3024, 2001.

A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart, Two phase flow modeling of DDT : structure of the velocity relaxation zone, Physics of Fluids, vol.9, issue.12, pp.3885-3897, 1997.

D. Lhuillier, C. Chang, and T. G. Theofanous, On the quest for a hyperbolic effective-field model of disperse flows, Journal of Fluid Mechanics, vol.731, pp.184-194, 2013.

B. Li, H. Yin, C. Zhou, and F. Tsukihashi, Modeling of Three-phase Flows and Behavior of Slag/Steel Interface in an Argon Gas Stirred Ladle, ISIJ International, vol.48, pp.1704-1711, 2008.

S. Liang, W. Liu, and L. Yuan, Solving seven-equation model for compressible two-phase flow using multiple GPUs, Computers & Fluids, vol.99, pp.156-171, 2014.

H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas, ESAIM : Mathematical Modelling and Numerical Analysis, vol.53, pp.63-84, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01615591

M. Massot, F. Laurent, D. Kah, and S. De-chaisemartin, A robust moment method for evaluation of the disappearance rate of evaporating sprays, SIAM Journal of Applied Mathematics, vol.70, pp.3203-3234, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00332423

R. Meignen, B. Raverdy, S. Picchi, and J. Lamome, The challenge of modelling fuel-coolant interaction. Part II : steam explosion, Nuclear Engineering and Design, vol.280, pp.528-541, 2014.

S. Müller, M. Hantke, and P. Richter, Closure conditions for non-equilibrium multi-component models, Continuum Mechanics and Thermodynamics, vol.28, pp.1157-1190, 2016.

, OECD research programme on fuel-coolant interaction steam explosion resolution for nuclear applications -SERENA, Organisation for Economic Co-operation and Development, Nuclear Energy Agency Committee on the Safety of Nuclear Installations, 2007.

, Nuclear Energy Agency Committee on the Safety of Nuclear Installations, Reactivity Initiated Accident (RIA) Fuel Codes Benchmark Phase-II

M. Pelanti, K. M. Shyue, and T. Flåtten, A Numerical Model for Three-Phase Liquid-Vapor-Gas Flows with Relaxation Processes, Theory, Numerics and Applications of Hyperbolic Problems II, Springer Proceedings in Mathematics & Statistics, vol.237, pp.423-435, 2018.

V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phase flow, Journal of Computational Physics, vol.53, pp.124-151, 1984.

X. Rogue, G. Rodriguez, J. F. Haas, and R. Saurel, Experimental and numerical investigation of the shock induced fluidization of a particles bed, Shock Waves, vol.8, pp.29-45, 2014.

E. Romenski, A. A. Belozerov, and I. M. Peshkov, Conservative formulation for compressible multiphase flows, 2014.

. Vv and . Rusanov, Calculation of interaction of non steady shock waves with obstacles, Journal of Computational Mathematics and Physics, vol.1, pp.267-279, 1961.

K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I : barotropic EOS, ESAIM : Mathematical Modelling and Numerical Analysis, vol.63, pp.1763-1795, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01737681

K. Saleh and N. Seguin, Some mathematical properties of a barotropic multiphase flow model, HAL preprint available on https, 2018.

A. B. Soprano, A. F. Silva, and C. R. Maliska, Numerical Solution of the Multiphase Flow of Oil, Water and Gas in Horizontal Wells in Natural Petroleum Reservoirs, Mecánica Computacional, vol.XXXI, pp.683-693, 2012.

R. Saurel and R. , A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows, Journal of Computational Physics, vol.150, issue.2, pp.425-467, 1999.

R. Saurel, F. Petitpas, and R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics, vol.228, issue.5, pp.1678-1712, 2009.

I. Tiselj and S. Petelin, Modelling of two-phase flow with second-order accurate scheme, Journal of Computational Physics, vol.136, issue.2, pp.503-521, 1997.

S. Tokareva and E. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, Journal of Computational Physics, vol.229, issue.10, pp.3573-3604, 2010.

U. S. Glossary, Loss of coolant accident (LOCA

U. S. Glossary, Departure from nucleate boiling (DNB)

W. Wagnerand and H. J. Kretzschmar, IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, International Steam Tables : Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, pp.7-150, 2008.