A. K. Agrawal, H. M. Fowles, and L. D. Scott, Experimental characterization of multiconductor transmission lines in inhomogeneous media using time-domain techniques, IEEE Transactions Electromagnetic Compatibility, vol.21, 1979.

A. K. Agrawal, K. Lee, L. D. Scott, and H. M. Fowles, Experimental characterization of multiconductor transmission lines in the frequency domain, IEEE Transactions Electromagnetic Compatibility, vol.21, 1979.

A. K. Agrawal and H. J. Price, Experimental characterization of partially degenerate threeconductor transmission lines in the time domain, IEEE Transactions Electromagnetic Compatibility, vol.23, 1981.

B. K. , P. A. Wouters, and E. F. Steennis, High frequency modeling of a shielded fourcore low voltage underground power cable, IEEE Transactions on Dielectrics and Electrical Insulation, vol.22, 2015.

L. Ansoft and . Simplororer,

, Simplorer On-Line Help

J. A. Brandão and M. G. Das-neves, Basic principles concerning the experimental evaluation of the frequency-dependent parameters of shielded and unshielded three-phase symmetric cables, IEEE Transactions on Power Delivery, vol.26, 2011.

X. Chu, F. Lin, and Z. Yang, The analysis of time-varying resonances in the power supply line of high speed trains, International Power Electronics Conference, 2014.

S. Cristina and M. Feliziani, A nite element technique for multiconductor cable parameters calculation, IEEE Transactions on Magnetics, p.25, 1989.

. Emtp-emtpworks, Frequency dependent line: Fd m-phase, help topics EMTP software, 2003.

G. Frantz, Approche système pour l'étude de la compatibilité électromagnétique des réseaux embarqués, <NNT : 2015GREAT048>. <tel-01218578>, 2015.

D. A. Frickey, Conversions Between S, 2, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances, IEEE transactions on microwave theory and techniques, 1994.

Z. Gao, R. Ji, X. Zhang, X. Yuan, and D. Li, Finite-element modeling and impedance characteristics analysis of two parallel cables in aircraft power system, IEEE/CSAA International Conference on Aircraft Utility Systems (AUS), 2016.

G. G. Gentili and M. Salazar-palma, The denition and computation of modal characteristic impedance in quasi-tem coupled transmission lines, IEEE Transactions on Microwave Theory and Techniques, 1995.

S. Habib and B. Kordi, Calculation of multiconductor underground cables high-frequency per-unit-length parameters using electromagnetic modal analysis, IEEE Transactions on Power Delivery, vol.28, 2013.

J. He, G. Y. Sizov, P. Zhang, and N. A. Demerdash, A review of mitigation methods for overvoltage in long-cable-fed PWM AC drives, IEEE Energy Conversion Congress and Exposition, 2011.

B. Honarbakhsh and S. Asadi, Analysis of multiconductor transmission lines using the cn-fdtd method, IEEE Transactions Electromagnetic Compatibility, p.59, 2017.

M. Hosoya, The simplest equivalent circuit of a multi-terminal network, Bulletin of the College of Science, vol.70, 2000.

N. Idir, Y. Weens, and J. J. Franchaud, Skin eect and dielectric loss models of power cables, IEEE Transactions on Dielectrics and Electrical Insulation, vol.16, 2009.

W. C. Johnson, Transmission lines and networks, 1950.

R. J. Kerkman, D. Leggate, and G. L. Skibinski, Interaction of drive modulation and cable parameters on AC motor transients, IEEE Transactions on Industry Applications, p.33, 1997.

, Impedance measurement handbook, 2015.

J. Kim, D. Oh, and W. Kim, Accurate characterization of broadband multiconductor transmission lines for high-speed digital systems, IEEE Transactions on Advanced Packaging, vol.33, 2010.

J. Knockaert, J. Peuteman, J. Catrysse, and R. Belmans, A vector impedance meter method to characterize multiconductor transmission-line parameters, IEEE Transactions Electromagnetic Compatibility, vol.52, 2010.

M. Kuschke and K. Strunz, Transient cable overvoltage calculation and lter design: application to onshore converter station for hydrokinetic energy harvesting, IEEE Transactions on Power Delivery, vol.28, 2013.

B. Lathi, Linear Systems and Signals, 2002.

O. Magdun, A. Binder, C. Purcarea, A. Rocks, and B. Funieru, Modeling of asymmetrical cables for an accurate calculation of common mode ground currents, IEEE Energy Conversion Congress and Exposition, 2009.

J. R. Marti, Accurate Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulations, IEEE Transactions on Power Apparatus and Systems, 1982.

F. Medard, Contribution à la modélisation prédictive des comportements hautes fréquences des moteurs de traction, 2015.

T. Ming, S. Jianyang, G. Jianzhao, L. Hongjie, Z. Wei et al., Time-Domain Modeling and Simulation of Partial Discharge on Medium-Voltage Cables by Vector Fitting Method, IEEE Transactions on magnetics, vol.50, 2014.

S. J. Orfanidis, Electromagnetic waves and antennas, 2016.

C. Paul, Introduction to Electromagnetic compatibility, 2006.

C. Paul, Analysis of multiconductor transmission lines, 2008.

C. R. Paul, Decoupling the multiconductor transmission line equations, IEEE Transactions on Microwave Theory and Techniques, vol.44, 1996.

H. D. Paula, D. A. De-andrade, M. L. Chaves, J. L. Domingos, and M. A. De-freitas, Methodology for cable modeling and simulation for high-frequency phenomena studies in pwm motor drives, IEEE Transactions Power Electronics, vol.23, 2008.

H. D. Paula, M. V. Lisboa, J. F. Guilherme, M. L. Chaves, and W. P. Almeida, Characterization of cable arrangements in terms of the generated high-frequency quantities in PWM motor drives, Brazilian Power Electronics Conference, 2009.

L. A. Pipes, Matrix theory of multiconductor transmission lines, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.24, 1937.

, PSpice Application Notes. Transmission line applications in pspice. www.pspice.com/ resources/application-notes/transmission-lines-applications-pspice, 2016.

K. Raggl, T. Nussbaumer, and J. W. Kolar, Guideline for a Simplied Dierential-Mode EMI Filter Design, IEEE Transactions on Industrial Electronics, vol.57, 2010.

B. , Modélisation et optimisation des performances CEM d'une association variateur de vitesse -machine asynchrone, 2003.

B. Revol, J. Roudet, J. Schanen, and P. Loizelet, Emi study of three-phase inverter-fed motor drives, IEEE Transactions on Industry Applications, vol.47, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00741757

I. Rtca, D. C. Washington, and U. , DO-160G: Environmental Condictions and Test Procedures for Airborne Equipment, 2010.

S. Zhang, S. Jiang, X. Lu, B. Ge, and F. Z. Peng, Resonance Issues and Damping Techniques for Grid-Connected Inverters With Long Transmission Cable, IEEE Transactions, 2014.

R. Scheich, Caractérisation et prédétermination des perturbations électromagnétiques conduites dans les convertisseurs de l'électronique de puissance, 1993.

M. J. Scott, J. Brockman, B. Hu, L. Fu, L. Xu et al., Reected wave phenomenon in motor drive systems using wide bandgap devices, 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, 2014.

G. Skibinski, J. Erdman, J. Pankau, and J. Campbell, Assessing AC motor dielectric withstand capability to reected voltage stress using corona testing, Conference Record of the 1996 IEEE Industry Applications Conference, 1996. Thirty-First IAS Annual Meeting, IAS '96, vol.1, 1996.

I. Stevanovi¢, B. Wunsch, G. L. Madonna, and S. Skibin, High-frequency behavioral multiconductor cable modeling for emi simulations in power electronics, IEEE Transactions on Industrial Informatics, 2014.

A. Sugiura and Y. Kami, Generation and Propagation of Common-Mode Currents in a Balanced Two-Conductor Line, IEEE Transactions Electromagnetic Compatibility, vol.54, 2012.

, Practical characterization of lossy transmission lines using TDR, 2001.

, Tektronix. TDS3000C Series Digital Phosphor Oscilloscopes, 2013.

B. Touré, J. Schanen, L. Gerbaud, T. Meynard, J. Roudet et al., EMC Modeling of Drives for Aircraft Applications: Modeling Process, EMI Filter Optimization, and Technological Choice, IEEE Transactions on Power Electronics, vol.28, 2013.

L. Wang, C. N. Ho, F. Canales, and J. Jatskevich, High-Frequency Modeling of the Long-Cable-Fed Induction Motor Drive System Using TLM Approach for Predicting Overvoltage Transients, IEEE Transactions on Power Electronics, vol.25, 2010.

Y. Weens, N. Idir, R. Bausiere, and J. Franchaud, Modeling and simulation of unshielded and shielded energy cables in frequency and time domains, IEEE Transactions on Magnetics, vol.42, 2006.

D. F. Williams, Multiconductor transmission line characterization, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.20, 1997.

B. Wunsch, I. Stevanovi¢, and S. Skibin, Length-scalable multi-conductor cable modeling for emi simulations in power electronics, IEEE Transactions Power Electronics, p.151, 2016.

C. Yen, Z. Fazarinc, and R. L. Wheeler, Time-domain skin-eect model for transient analysis of lossy transmission lines, Proceedings of the IEEE, vol.70, 1982.

J. Zhang, J. L. Drewniak, D. J. Pommerenke, M. Y. Koledintseva, R. E. Dubro et al., Causalrlgc(f ) models for transmission lines from measureds-parameters, IEEE Transactions on Electromagnetic Compatibility, vol.52, 2010.

, Cross-section of the two-conductor 0.75 mm 2 cable

, Cross-section of the two-conductor 2.5 mm 2 cable

, Parameters of the cable of section 0.75 mm 2

, Per-unit-length parameters of the cable of section 0.75 mm 2

, Parameters of the cable of section 2.5 mm 2

, Per-unit-length parameters of the cable of section 2.5 mm 2

. .. Schematics, 38 section 2.5 mm2, with variations on the attenuation constant ?, p.41

, Schematics for the resonance analysis

. L-=-a+jb,

.. .. The,

. .. , A possible load for the desired voltage amplication, p.47

, The resonance frequency and maximum amplication position for the maximum amplication possible

Z. L. , Representation of an electrically short line, p.48

Z. L. ,

, Input impedance of the line under study

, Input impedance of the open-ended line

, Multiconductor transmission line, variables denition

, + 1)-port equivalent circuit

, Multiconductor transmission line, variables denition

, Self impedance measurement setup

, Mutual-impedance measurement setup

, Three-conductor cable cross-section

, Schematic: resonance-based validation experiment

, Connection of the voltage probe along the line

, Frequency domain voltage simulation

. .. , Experimental validation : resonance-due voltage amplication, p.69

, Schematic: input impedance validation experiment

, Theoretical input impedance calculation

. .. , Experimental validation : input impedance

, Cross-section of the three-conductor 2.5 mm 2 cable

. .. Three-conductor-cable-complex-parameters,

. .. , Schematic for numerical resonance analysis

. .. Dierential, , p.76

, Schematic for numerical resonance analysis

, Voltage amplication due to resonance on the three-conductor cable, in dierential and common mode, in function of the modal load

, Resonance frequencies of the three-conductor cable, in dierential and common mode, in function of the modal load

, Position of the maximal voltage amplication on the three-conductor cable, in dierential and common mode, in function of the modal load, p.81

.. .. This-example,

. .. Losses, 92 4.2 Equivalent network to represent the cable inductance

, Schematic of the multiconductor transmission line

, Parameters of periodical trapezoidal source

, Schematic for the time domain validation experiment

, Connection of the voltage probe along the line

. .. , The RL series load chosen for the experimental validation, p.102

, The RL series load connected to the two-conductor 2.5 mm 2 cable, p.102

. .. , Results of the validation experiment with series RL load, p.103

. .. , Short line model of the system, valid for low frequencies, vol.104

. .. , The voltage along the line on the frequency domain, p.105

, Vatidation results for the RL series C parallel load

, Validation results for the RL series C parallel load, 4M Hz resonance105

, Cross-section of the three-conductor 2.5 mm 2 cable

). .. , , p.1

). .. ,

). .. ,

, Current I 2 (0)

. .. , Simulation of V 1 ( c ) for three dierent cable parameter sets, vol.109

. .. Cable, 110 5.1 Induction motor fed with long cable

, Measurement schematics to characterize the three-phase motor: input impedance measured between points a and b

, Motor Leroy Somer 1.5 kW measured impedances

, Equivalent circuit of one phase of the motor

, Cross-section of the 4x1, 5 mm 2 cables

. .. Lisn,

. .. , Simulation model -Induction motor fed with long cable, p.120

, Frequency response relative to V a , c = 70m

, Frequency response relative to V b , c = 70m

. .. Frequency, , p.121

.. .. Voltage,

.. .. , , p.122

.. .. , , p.122

, Phase-to-phase voltages at x = c for c = 12 m

, Schematic of the DC link with voltage elevation: boost converter at the cable input and buck converter at the cable output

, Cross-section of the two-conductor 2.5 mm 2 cable

S. .. , Transfer function of the currents at the line extremities, relative to I, p.125

. .. The-capacitor, , p.125

, Current sources modeling the DC-DC converters, without DC component, p.126

, Cross-section of the three-conductor 2.5 mm 2 cable

, Simulation model of the DC link with common mode

, Transfer functions relative to the sources in the system

, Schematic for the CM input impedance Z CM

, Sources I S and V k approximated as ideal trapezoidal sources, p.133

. .. , , vol.134

. .. System-under-study,

, Three-conductor cable cross-section

.. .. Filter-structure,

, System equivalent circuit in common mode

. .. , Switching device equivalent circuit in dierential mode, p.139

, Simulation of the CM voltage generated by the buck converter, p.139

. V-&gt;-0dbv-in and . Black, V = ?60 dBV in red

, Frequencies of the maximum in common mode

, Position of the maximum in common mode

. I-=-?,

, Frequencies of the maximum in dierential mode

, Position of the maximum in dierential mode

. .. , Schematic of two-conductor system with passive load

, Two-conductor cables loss related parameters

. .. , ABCD parameters of the Minicircuits T6-4T balun

. .. G.1-;, Cross-section of the 4x1.5 mm 2 cables, with labeled conductors, vol.21

H. , Measurement schematics to characterize the three-phase motor: input impedance measured between points a and b

, Motor input impedance measurement setup

. .. , Motor input impedance measurement setup: compensation SHORT

, Motor input impedance measurement setup: connections for measurements

Z. Impedances and Z. .. , , p.25

. .. , Schematic of the three-phase motor as a 4 input device

. .. , Comparison of the two motor experimental characterizations, p.28

. .. Resonance, 21 2.2 Maximum dierence between the impedance measured using congurations A and B, relative to the measurement in cong

, Maximum dierence between the impedance measured in congurations A and B, relative to the impedance measured in cong. A; impedance analyzer powered through a LISN

, Frequency-Domain Model Resonance Frequency and Amplitude Relative Errors, p.30

, at the resonance frequencies of the short-circuited line (cf. Fig. 2.33)

, at the resonance frequencies of the open-ended line (cf. Fig. 2.33)

. .. , Range of values used in the numerical analysis of the resonance

, Frequency-Domain Model Resonance Frequency and Amplitude Relative Errors, p.68

. .. , Range of values used in the numerical analysis of the resonance, p.79

, Resonance characteristics -modal base

, Characteristics of the predicted resonance

, Characteristics of the predicted resonances

, Fixed cable parameters for resonance analysis

, Parameters of two-level voltage inverter

, Time domain simulation parameters

. .. , Parameters of the dierential mode DC link model (cf. Fig. 5.17), p.124

, Parameters of the model (Fig. 5.24)

, Parameters of the system model

, Filter designed with the classic approach given in [39], to meet the RTCA DO-160G standard

, Parameters of the resonance surface response calculation

, Filter designed with resonance surface response

A. , Hyperbolic function denitions and identities

. .. D.1-;, Conversion between the two-port devices models

. .. , Input impedance measured for motor characterization, p.27