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Abstract

Combinatorial structure of monomial ideals.
Michela Ceria – XXVI ciclo

Scuola di Dottorato in Scienza ed Alta Tecnologia
Università degli Studi di Torino – Gennaio 2014

In this Thesis, we study monomial ideals from a combinatorial point of view.
We are mainly interested in the structure of the associated Groebner escalier but, sometimes,
we have also to deal with the initial ideal.
First of all, we examine all the existing combinatorial methods to compute the Groebner es-
calier N(I(X)) associated to the zerodimensional radical ideal I(X) of a finite set of distinct
points X. More precisely, we start from Cerlienco-Mureddu correspondence and we exam-
ine the other methods which came up later on, such as Gao-Rodrigues-Stroomer method,
Lederer’s variation and Lex Game.
Next, we face the problem of constructing a linear factorization of a minimal Groebner ba-
sis for a zerodimensional radical ideal. The existence of such a factorization has been stated
and proved by Maria Grazia Marinari and Teo Mora, in the Axis of Evil Theorem [2, 69, 70]. In
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this Thesis we give an alternative constructive proof, together with an algorithm computing
concretely the factorization and we study deeply the structure of the Groebner escalier, in
connection to the Axis of Evil factorization.
Then, we develop a visual language in order to represent finite sets of terms and infinite
order ideals via bidimensional pictures, the Bar Codes.
We show that the pictures we get allow us to read easily many properties of the monomial
ideal (expecially connected to Janet decomposition for terms [54, 55, 56, 57]) and to develop
an iterative version of the Axis of Evil algorithm.
Thanks to the Bar Code structure, moreover, we are able to connect commutative algebra
and enumerative combinatorics, by giving a bound for the number of strongly stable ideals
with a fixed constant affine Hilbert polynomial, by putting them in biunivocal correspon-
dence with plane partitions.
Finally, we show how the Axis of Evil theorem can be applied to coding theory, more pre-
cisely to the decoding procedure for binary BCH codes and to the computation of sparse
general error locator polynomials.
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Introduction

This thesis is centered on an exam of the combinatorial structure of both the initial ideal and
the Groebner escalier of an ideal of the ring of polynomials.
Many properties of an ideal I can be deduced by studying its initial ideal with respect to
some term ordering. The initial ideal is a monomial ideal, namely it has a generating set
only composed of terms and it is possible to recover the monomial basis of the quotient
algebra (the Groebner escalier) from it.
In the case of a zerodimensional radical ideal I , namely the ideal of a finite set of distinct
points X, the Groebner escalier N(I) is a finite set.
Clearly it is possible to recover it from the initial ideal, but this is rather ineffective. Indeed,
in order to get the initial ideal it is necessary to compute the Groebner basis of I from some
generating set of polynomials. The computation is performed via Buchberger algorithm,
and it is well known that this algorithm is heavy from a computational point of view. The
first mathematicians who dealt with this problem are Buchberger and Moeller in [12] (1982).
In the cited paper, they developed a polynomial algorithm which computes the reduced lex-
icographical Groebner basis of a zerodimensional radical ideal via interpolation on the finite
set of distinct points representing the associated variety. Apart from the Groebner basis, the
algorithm provides also the terms in the lexicographical Groebner escalier.
A few years later, Cerlienco and Mureddu [20, 21, 22] developed a combinatorial algorithm,
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2 Introduction

computing the lexicographical Groebner escalier directly from the points of X, exploiting
a series comparisons among the coordinates. This algorithm provides a biunivocal corre-
spondence between the points in X and the terms in the Groebner escalier: the so called
Cerlienco-Mureddu Correspondence.
Next, other methods, optimizing Cerlienco-Mureddu algorithm, have been developed, for
instance by Felszeghy-B. Ráth-Rónyai, Gao-Rodrigues-Stroomer and Lederer.
We give an overall view of these methods, equipped with detailed examples.
Thanks to the structure of the (finite) lexicographical Groebner escalier, it is possible to ex-
amine also the structure of the zerodimensional radical ideal defining a given finite set of
distinct points X.
Via the so called Axis of Evil theorem, M.G. Marinari and T. Mora enhanced the classical
Lazard structural theorem to the case of n > 2 variables. The Axis of Evil theorem assures, for
a minimal lexicographical Groebner basis of a zerodimensional radical ideal, the existence
of a factorization linear in the leading terms.
The Axis of Evil theorem is one of the main topics of this thesis.
We will give a computational proof of the theorem, providing an interpolation algorithm à
la Moeller, which computes the above factorization (called Axis of Evil factorization) and then
we will give some variations of the aforesaid algorithm. Moreover, we give another combi-
natorial method to compute the Groebner escalier, providing an ordering on the terms and
on the corresponding points which makes the interpolation simpler.
The Axis of Evil factorization can be applied to the field of coding theory. More precisely, we
deal with the decoding of BCH codes, in the realm of the so called Cooper’s philosophy [28, 29],
which introduces the use of Groebner bases for decoding.
Starting from the works by Chen [23, 24, 25], Cooper’s ideas have been improved by intro-
ducing and studying the syndrome variety in order to optimize the decoding process. In this
context are also placed many interesting works by Mora, Orsini and Sala [78, 82, 83], from
which arises the application of the Axis of Evil theorem to decoding BCH codes. In these
papers, the general error locator polynomial, whose roots are the exactly the error locations, is
introduced.
Sparsity of this polynomial would be rather important for pratical applications and it would
be appreciable if such polynomial grew linearly with the cardinality if the base field Fq over
which the code is defined.
In a joint work with M. Sala and T. Mora, we exploit the Axis of Evil factorization to find
a sparse general error locator polynomial, minimizing the number of points to work with
and computing the structure of the associated Groebner escalier.
We will see that encouraging results can be found in some simplified case. The points con-
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figurations we get, turn out to have a very precise structure, connected to the cycles of the
base field.
Since it is a work in progress, we will give only partial results for the mentioned cases.

Studying the Groebner escalier, the necessity to represent it visually arose. There are
some graphical representation of the Groebner escalier in literature, but they are rather com-
plicated to draw if the cardinality of N(I) is a big number (and impossible in the case of an
infinite N(I)) or if the number of involved variables is higher than five.
In this thesis we develop a simple bidimensional representation for finite and infinite Groeb-
ner escaliers, called Bar Code diagram. Such a diagram is also simple to encode in a computer,
so it can be useful from a computational point of view.
First of all, it enabled us to find a new combinatorial method for the Groebner escalier, anal-
ogous to the aforesaid ones and enjoying many of their best features. Secondly, it gave us
the possibility to find an iterative algorithm to compute the Axis of Evil factorization of a
minimal lexicographical Groebner basis for the ideal of a finite set of distinct points.

Moreover, studying the shape of the Bar Code diagram for strongly stable monomial ideals
with constant affine Hilbert polynomial we noticed that the diagrams are joined by a sort of
“pattern”.
Examining it, we started connecting objects belonging to different fields, namely: strongly
stable ideals (from commutative algebra), and plane partitions of integer numbers (from
enumerative combinatorics). This work is still in progress and we display here only partial
results, namely the ones for strongly stable ideals in two or three variables, with constant
affine Hilbert polynomial.
For the case of two variables, we have proved a biunivocal correspondence between strongly
stable ideals and integer partitions of p, so we are able to count exactly their number. For
three variables, instead, we have proved the biunivocal correspondence between strongly
stable ideals and some particular plane partitions, for whose number, for now, we only have
an upper bound.

Finally, exploiting the properties of the generating sets of monomial ideals, it is possible to
deal with the following

Problem 0.0.1. Given any monomial ideal J / P := k[x1, ..., xn], find a characterization for the
familyMf(J) of all homogeneous ideals I /P such that the basis of P/I is given by the set of terms
in the Groebner escalier N(J) of J .
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This problem has been deeply analyzed in [8, 27, 64] for the case J strongly stable ideal,
which is also the most suitable case for studying the Hilbert scheme. In [8, 27], the families
of the formMf(J) for J strongly stable have studied, giving also computational methods
to deal with them.
In a joint work with T. Mora and M. Roggero [19], we generalize the problem above to arbi-
trary monomial ideals on the polynomial ring with coefficients in a commutative ring.
In order to give such a generalization, we exploit and enhance some concepts introduced by
Janet [54, 55, 56, 57], such as the definition of multiplicative variable and the one of complete
system, leading to the so called Janet decomposition for terms.
Starting from the generating set of a monomial ideal, Janet gives a very precise decompo-
sition of the ideal itself (and also of its Groebner escalier). In Janet’s theory the ideals are
generated by the so called involutive bases.
If we draw the Bar Code of a finite set of terms (not necesarily an order ideal) we can an-
swer some combinatorial problems on Janet decomposition. For example, we can detect the
multiplicative variables or decide on the completeness of a system.
We have to point out that Janet gave two different definitions of multiplicative variable, pre-
sented in [54, 55] and in [56], totally equivalent if we are in general coordinates. In [19], we
compare them and we introduce the notion of stably complete set of terms, indicating sets for
which both conditions hold. Each monomial ideal J has one and only one stably complete
set of generators (possibly made of infinitely many terms) that we call star set and denote
by F(J). The star set can be computed from the Groebner escalier of J using again the
Bar Code structure in a very simple way. Furthermore, in analogy with [8, 27] we define a
reduction procedure with respect to a homogeneous set of polynomials marked on a stably
complete system proving its noetherianity.
The most interesting cases are the ones involving ideals with finite stably complete gener-
ating set , i.e. the quasi stable ideals, whose star set is exactly the Pommaret basis. Note that
a monomial ideal is stable if and only if its star set coincides with the monomial basis.
Properties of the star set allowed us to provide a new version of Moeller algorithm which
computes a lexicographical involutive basis for the zerodimensional radical ideal of a finite
set X of distinct points via interpolation on the elements of X.
During my PhD I worked under the supervision of Professors M.G. Marinari, T. Mora and
M. Roggero, cooperating also with Professors F. Cioffi, W. Decker and H. Schoenemann.
With these last ones I implemented, using the the computer algebra system Singular [30],
two libraries which are part of version 3-1-6 of the software. In this thesis I explain how the
implementaton has been made and we also attach the source code.
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In chapter 1, we give all the notation needed in the whole thesis, involving polynomials
and Groebner bases, Groebner duality and Macaulay bases, Graph Theory, expecially trees
and tries, and we recall the main features of Moeller algorithm. We also define the existing
visual representations for terms: the tower structure and the diagrams introduced by M.G.
Marinari and L. Ramella.
Chapter 2 is devoted to the study of all the combinatorial methods for computing the Groeb-
ner escalier of the ideal of a finite set of distinct points. We start with Cerlienco-Mureddu
correspondence, then we examine Gao-Rodrigues-Stroomer method with the variation pro-
posed by Lederer and finally the Lex Game algorithm by Felszeghy-B. Ráth-Rónyai.
In chapter 3, after explaining Lazard’s algorithm for monomial bases, the Macaulay’s trick
and Lazard structural theorem, we introduce the Axis of Evil theorem by Marinari and
Mora and the associated algorithm. This algorithm gives a simple proof for Marinari-Mora
theorem.
The whole chapter 4 describes a new version of the Axis of Evil algorithm, under suitable
hypotheses. In order to make the interpolation process simpler, we define an interpolation
oriented alternative to the algorithms described in chapter 2.
In chapter 5 we first define the Bar Code of a finite set of terms, studying its main features.
Then we define the star set in terms of Bar Codes (so from the Groebner escalier point of
view), proving its characterization in terms of generating sets. After that, we extend both
the notion of Bar Code and of star set to infinte Groebner escaliers. We give then some
applications, such as another alternative algorithm to the ones of chapter 2 and a related
iterative version of the Axis of Evil algorithm. Moreover, we present some first results in
enumerative combinatorics for strongly stable ideals.
In chapter 6, we first recall the theory developed in [8, 27] for J-marked families, explain-
ing how it leads to the Singular libraries we implemented. After that, we deal with Janet
decomposition for terms, relating the problem to the Bar Code structure of the generating
set for a monomial ideal.
After defining the star set, we characterize stable and quasi stable ideals and we define the
notherian reduction procedure for homogeneous polynomials, marked on a stably complete
set. Moreover, we study J-marked families using the reduction procedure.
We give then an historical note on the concepts by Janet we exploited and, at the very end,
we describe the Moeller version which computes an involutive basis in the zerodimensional
radical case.
Dulcis in fundo, chapters 7 and 8 are devoted to apply the Axis of Evil algorithm to coding
theory.
More precisely, chapter 7 starts giving the most important notions of error correcting codes
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and then it focuses on cyclic and BCH codes, by treating Cooper’s decoding philosophy,
Chen’s works on the syndrome variety and all the improvements by T. Mora, E. Orsini and
M. Sala, introducing the concept of general error locator polynomial.
On the other hand, chapter 8, treats the decoding process for BCH codes by determining
the general error locator polynomial and showing how the structure of the Groebner es-
calier and the Axis of Evil algorithm can help in finding a sparser locator.
Finally appendix A and B contain respectively the Singular code of our libraries and the
data obtained by computing the locator polynomials and the related points configurations.
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Getting started.





CHAPTER 1

Notation and preliminaries.

1.1 Polynomials and Groebner bases.

In this thesis, we follow the notation of [77, 79].
We let P := k[x1, ..., xn] the graded ring of polynomials in n variables with coefficients in
the field k.
We usually denote by S := k[x0, ..., xn] the ring of polynomials in n + 1 variables and
coefficients in the base field k.
The semigroup of terms, generated by the set {x1, ..., xn} is:

T := {xα1
1 · · ·xαnn , (α1, ..., αn) ∈ Nn}.

Denoting τ = xα1
1 · · ·xαnn , we define deg(τ) =

∑n
i=1 αi, the degree of τ and, for each

h ∈ {1, ..., n} degh(τ) := αh is the h-degree of τ .

For each d ∈ N, Td denotes the d-degree part of T , and for each M ⊆ T , Md = M ∩ Td,
whereas T (d) is the degree ≤ d part of T , with |Td| =

(
n+d−1

d

)
. We use analogous notation

for P , observing that by abuse of notation we also denote by P(d) the vector space gener-

9
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ated by T (d).
Letting α = (α1, ..., αn) ∈ Nn, we will often write xα instead of xα1

1 · · ·xαnn .
We define also the set

T [m] := T ∩ k[x1, ..., xm] = {xa1
1 · · ·xamm / (a1, ..., am) ∈ Nm}.

A semigroup ordering< on T is a total ordering such that τ1 < τ2 ⇒ ττ1 < ττ2, ∀τ, τ1, τ2 ∈ T .
A semigroup ordering is called inf-limited if:

• xi < 1, for each i ∈ {1, ..., n};

• for each infinite decreasing sequence in T , τ1 > ... > τj > ... and each τ ∈ T there is
an r ∈ N, with τr < τ .

For each semigroup ordering < on T , we can represent a polynomial f ∈ P as a linear
combination of terms arranged w.r.t. <, with coefficients in the base field k:

f =
∑
τ∈T

c(f, τ)τ =

s∑
i=1

c(f, τi)τi : c(f, τi) ∈ k∗, τi ∈ T , τ1 > ... > τs,

with T(f) = Lt(f) := τ1 the leading term of f , Lc(f) := c(f, τ1) the leading coefficient of f ,
Lm(f) = M(f) := c(f, τ1)τ1 the leading monomial of f and tail(f) := f − c(f,T(f))T(f) the
tail of f .
Letting δ := degn(f) the degree of f w.r.t. xn we can write uniquely

f =

δ∑
i=0

gix
i
n ∈ k[x1, ..., xn−1][xn], gi ∈ k[x1, ..., xn−1], gδ 6= 0

denoting by Lp(f) := gδ the leading polynomial of f and by Tp(f) = g0 the trailing polynomial
of f w.r.t n.

For each term τ ∈ T and xj |τ , the only υ ∈ T such that τ = xjυ is called j-th predecessor
of τ .

A subset N ⊆ T is an order ideal if τ ∈ N⇒ σ ∈ N∀σ|τ 1. A subset N ⊆ T is an order ideal
if and only if T \ N = J is a semigroup ideal (i.e. τ ∈ J ⇒ στ ∈ J, ∀σ ∈ T ).
For each semigroup ideal J ⊂ T , N(J) := T \T(J) and its monomial basis G(J) satisfies the
conditions below

G(J) := {τ ∈ J | each predecessor of τ ∈ N(J)} =

= {τ ∈ T |N(J) ∪ {τ} order ideal, τ /∈ N(J)}.

1The corresponding notion for Nn is named Ferrers diagram.
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For all subsets G ⊂ P , T{G} := {T(g), g ∈ G} and T(G) is the semigroup ideal
{τT(g), τ ∈ T , g ∈ G}.

We define also M{G} := {M(g), g ∈ G} and M(G) := {M(aτg), a ∈ k∗, τ ∈ T , g ∈ G}.
For any ideal I/P the monomial basis of the semigroup ideal T(I) = T{I} is called monomial
basis of I , the ideal In(I) := (T(I)) is the initial ideal and the border set of I is:

B(I) := {xhτ, 1 ≤ h ≤ n, τ ∈ N(I)} \ N(I) =

= T(I) ∩ ({1} ∪ {xhτ, 1 ≤ h ≤ n, τ ∈ N(I)}).

If I := (G) we have M(I) := M(G).
Fixed a term order < on T , we have the following results:

Lemma / Definition 1.1.1 ([70, 79]). It holds:
P ∼= I ⊕ k[N(I)];

P/I ∼= k[N(I)];

∀f ∈ P , ∃!g := Can(f, I) =
∑
τ∈N(I) γ(f, τ,<)τ ∈ k[N(I)], called canonical form of f with

respect to I , such that f − g ∈ I.

Definition 1.1.2 ([20]). Given a term order�, a monomial basis forA := P/I(X), [τ1], ..., [τS ],

with τ1 � ... � τS is minimal w.r.t � if, for each monomial basis [τ ′1], ..., [τ ′S ], with τ ′1 � ... �
τ ′S it holds ∀j = 1, ..., S, τj � τ ′j .

We will usually denote a monomial basis for a quotient algebra only with the terms,
omitting the square brackets.

Definition 1.1.3 ([79]). A Groebner basis of I is a set G ⊂ I such that T(G) = T{I};
a minimal Groebner basis is a Groebner basis H such that do not exist divisibility rela-

tions among the leading terms of its members: T{H} = G(I);
the unique reduced Groebner basis of I is the set: G′(I) := {τ − Can(τ, I) : τ ∈ G(I)}.

Each member of the reduced Groebner basis has a leading term which does not divide any
term of another member.

Unless otherwise specified, we consider the lexicographic order induced by (x0 <)x1 <

... < xn, i.e:

(xα0
0 )xα1

1 · · ·xαnn < (xβ0

0 )xβ1

1 · · ·xβnn ⇔ ∃j |αj < βj , αi = βi, ∀i > j.

This is a term order, that is a semigroup ordering such that 1 is lower than every variable or,
equivalently, it is a well ordering.
If N = {τ1, ..., τm} is an order ideal and τ1 < ... < τm w.r.t. lex, then also N′ = {τ1, ..., τh} is
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an order ideal, ∀h < m.
A term order is called degree compatible if, for each τ1, τ2 ∈ T ,

deg(τ1) < deg(τ2)⇒ τ1 < τ2.

Let X = {P1, ..., PS} ⊂ kn be a finite set of distinct points,

Pi := (ai1, ..., ain), i = 1, ..., S,

the ideal of points of X is

I(X) := {f ∈ P : f(Pi) = 0, ∀i}.

On the contrary, if I / P is an ideal, we define its associated variety as

V (I) = {P ∈ kn, f(P ) = 0, ∀f ∈ P}.

For each 1 ≤ m ≤ n, we define the projection maps as:

πm : kn → km

(X1, .., Xn) 7→ (X1, ..., Xm),

πm : kn → kn−m+1

(X1, .., Xn) 7→ (Xm, ..., Xn)

and, for P ∈ kn, X ⊂ kn, let

Πs(P,X) := {Pi ∈ X|πs(Pi) = πs(P )},

Πs(P,X) := {Pi ∈ X|πs(Pi) = πs(P )},

extending in the obvious way the meanings of πs(d), πs(d),Πs(d, D),Πs(d, D) to d ∈ Nn

and D ⊆ Nn.
With the same notation πm we indicate also

πm : T ∼= Nn → Nm ∼= T [m] such that xa1
1 · · ·xann 7→ xa1

1 · · ·xamm .

Consider and ideal I / P . We denote the set of polynomials in I with degree lesser or
equal then d by I(d) = I ∩ P(d). Such a set is a vector subspace of the vector space P(d).

Definition 1.1.4. Let I / P be an ideal. The affine Hilbert function of I is the function

HFI : N→ N

d 7→ dim(P(d)/I(d)).
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For d sufficiently large, the affine Hilbert function of I can be written as

HFI(d) =

l∑
i=0

bi

(
d

l − i

)
,

where l is the Krull dimension of V (I),bi are integers and b0 is positive.

Definition 1.1.5. The polynomial which is equal to HFI(d) for d sufficiently large is called
the affine Hilbert polynomial of I . It is denoted by HI(d).

We describe now the analogous concepts for the homogeneous case. Let Sd ⊂ S be the
set consisting of the homogeneous polynomials of total degree d and the polynomial 0, and
Id = I ∩ Sd with I / S homogeneous ideal.

Definition 1.1.6. With the above notation, the Hilbert function of I is

hHFI : N→ N

d 7→ dim(Sd/Id).

Given a homogeneous ideal I / S, for d sufficiently large, we can write the Hilbert func-
tion as a polynomial, namely

hHFI(d) =

l∑
i=0

bi

(
d

l − i

)
,

i.e. the Hilbert polynomial of I , denoted by hHI(d).
Finally, we recall the following definitions, which will be particularly useful in chapter 6.

Definition 1.1.7. Let F = {τ1, ..., τs} ⊆ T be an ordered subset of terms, generating an ideal
J = (F ). The module

Syz(F ) = {(g1, ..., gs) ∈ P s,
s∑
i=1

giτi = 0}

is the syzygy module of F .
We denote an element in Syz(F ) by (g1, ..., gs) and we call it syzygy among F .

Definition 1.1.8. The S-polynomial of two polynomials f and g w.r.t. a term ordering<, such
that Lc(f) = Lc(g) = 1 is

S(f, g) :=
lcm(T(f),T(g))

T(f)
f − lcm(T(f),T(g))

T(g)
g
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1.2 Groebner duality

In this section, we consider P = k[x1, ..., xn] as a k-vector space. In this perspective, we
define the k-functionals on P .

Definition 1.2.1. A k-functional l on P is a linear morphism l : P → k, i.e. an element of
the k-vector space P∗ := Homk(P,k).

We point out that

f ∈ P, l ∈ P∗ ⇒ l(f) =
∑
τ∈T

c(f, τ)l(τ).

We can equip P∗ with a P-modulo structure, defining ∀l ∈ P∗, f ∈ P

(l · f)(g) := l(fg), ∀g ∈ P.

Definition 1.2.2. Two sets L := {l1, ..., ls} ⊆ P∗ and q = {q1, ..., qs} ⊆ P are called:

• triangular if li(qj) = 0, ∀i < j;

• biorthogonal if li(qj) = δij =

{
1, i = j

0, i 6= j

Given a k-vector subspace L ⊆ P∗ let

P(L) := {g ∈ P | l(g) = 0,∀l ∈ L}

and, for each k-vector subspace Q ⊆ P let

L(Q) = {l ∈ P∗ | l(g) = 0, ∀g ∈ Q}.

Definition 1.2.3. A subset of P∗ is called dual basis of a k-vector subspace Q ⊂ P if it is a
basis of L(Q).

Lemma / Definition 1.2.4 ([1]). For each k-vector subspace Q,Q1, Q2 ⊂ P , L,L1, L2 ⊂ P∗

it holds:

1. Q / P ⇒ L(Q) is a P-module;

2. L is a P-module⇒ P(L) / P;

3. Q1 ⊆ Q2 ⇒ L(Q1) ⊇ L(Q2);

4. L1 ⊆ L2 ⇒ P(L1) ⊇ P(L2);
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5. L(Q1 ∩Q2) ⊃ L(Q1) + L(Q2);

6. P(L1 ∩ L2) ⊃ P(L1) + P(L2);

7. L(Q1 +Q2) = L(Q1) ∩ L(Q2);

8. P(L1 + L2) = P(L1) ∩P(L2);

9. Q = P(L(Q));

10. L ⊂ L(P(L));

11. dimk(L) <∞⇒ L = L(P(L)).

An ideal has a finite dual basis (L1, ..., Ls) if and only if it is zerodimensional of degree s.
P and L define a duality between finite dimensional P-modules of functionals and zerodi-
mensional ideals.

Let X = {P1, ..., PS} ⊂ kn a finite set of points

Pi := (ai1, ..., ain), i = 1, ..., S.

For each i we denote by li ∈ P∗ the linear functional consisting of the evaluation at Pi, i.e.

li(f) = evPi(f) = f(ai1, ..., ain), ∀f(x1, ..., xn) ∈ P,

We can extend definition 1.2.2 in order to work with finite sets of distinct points.
If X = {P1, ..., PS} is such a set and q = {q1, ..., qS} ⊆ P , we say that they are triangular
(biorthogonal) if, letting li := evaluation at Pi, ∀1 ≤ i ≤ S, q and L := {l1, ..., lS} are
triangular (biortogonal).
Then, we call

L(X) := Spank({li, 1 ≤ i ≤ S}) ⊂ P∗;

which is dual to the ideal of points I(X).
Now, we loosely base on [73], sketching the main properties of differential operators.
For each i1, ..., in ∈ N define the differential operators

D(i1, ..., in) : P → P

given by
1

i1! · · · in!

∂i1+...+in

∂xi11 · · · ∂x
in
n

.

The summation i1 + ...+ in is called degree of D(i1, ..., in).
By the natural isomorphism Nn ∼= T we indifferently use the notationD(i1, ..., in) andD(τ),
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if τ = xi11 · · ·xinn ∈ T .
We point out that D(0, ..., 0) = D(1) is the identity.
Then, we denote D := {D(τ)|τ ∈ T } and by Spank(D) the k-vector space generated by D
and we define the degree of an element in Spank(D) as the maximal degree of the D(τ)’s
appearing in it.
For each j = 1, ..., n we define σxj : D → D ∪ {0} the antiderivative w.r.t. xj as

σxj (D(i1, ..., in)) := D(i1, ..., ij − 1, ..., in) if ij ≥ 1

σxj (D(i1, ..., in)) := 0 if ij = 0

We use the notation σxixj for σxiσxj = σxjσxi =: σxixj and, for each τ ∈ T , defining στxj =

σxjστ , we have a map στ : D → D ∪ {0}, which can be extended to a k-endomorphism of
Spank(D) still denoted by στ .

We notice that
∀τ, τ ′ ∈ T , στστ ′ = σττ ′

and we point out that στD(µ) 6= 0 if and only if τ |µ.

Definition 1.2.5. A k-vector subspace V ⊂ Spank(D) is closed if the following conditions
hold:

1. dimkV ≤ ∞;

2. ∀τ ∈ T , ∀∂ ∈ V, στ (∂) ∈ V .

Let P = (a1, ..., an) ∈ kn andM(P ) = (x1 − a1, ..., xn − an) / P be the corresponding
maximal ideal and ev(P ) the evaluation functional in P .
Each ∂ ∈ Spank(D) induces a functional ∂(P ) ∈ P∗ defined by ∂(P )(f) = ev(P )(∂f).

Proposition 1.2.6. ∀f ∈ P, ∂ ∈ D

∂(xkf) = xk∂(f) + σxk(∂)(f)

therefore
∂(P )(xjg) = aj∂(P )(g) + ev(P )(σxj (∂)(g)).

Proposition 1.2.7. Let P ∈ kn, ∆ := {∂1, ..., ∂r} ⊂ Spank(D); then the set

Q := {f ∈ P|∂i(P )(f) = 0, i = 1, ..., r}

is an ideal if and only if ∆ is closed.
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Proposition 1.2.8. Let P ∈ kn,M(P ) the corresponding maximal ideal and V ⊂ Spank(D)

a closed subspace; then

JP (V ) := {f ∈ P|∂(P )(f) = 0, ∀∂ ∈ V }

is anM(P )-primary ideal.

Proposition 1.2.9. There is a one to one correspondence between theM(P )-primary ideals
of P and the closed subspaces of Spank(D).
More precisely, eachM(P )-primary ideal Q corresponds to a closed subspace

∆P (Q) := {∂|∂(P )(f) = 0, ∀f ∈ Q},

while each closed subspace V ⊂ Spank(D) corresponds to theM(P )-primary ideal

JP (V ) := {f ∈ P|∂(P )(f) = 0, ∀∂ ∈ V }.

Moreover,

dimk(∆P (Q)) = mult(Q) = deg(Q) e mult(JP (V )) = dimk(V ).

LetM /P be a maximal ideal without zeroes in kn and Y = {P1, P2, ..., Pr} its zeroes in
k
n

, where k is the algebraic closure of k. We call ki the minimal algebraic field extension of
k, containing all the coordinates of Pi.

Proposition 1.2.10. LetM/P be a maximal ideal without zeroes in kn and Y = {P1, P2, ..., Pr}
its zeroes in k

n
, where k is the algebraic closure of k. Then there is a one to one correspon-

dence, betweenM-primary ideals and the closed subspaces of Spank1(D).
EachM-primary ideal Q corresponds to the closed subspace of Spank1(D)

∆(Q) = {∂|∂(P1)(f) = 0∀f ∈ Q}.

To each closed subspace V ⊂ Spank1
(D) corresponds theM-primary ideal

J (V ) = {f ∈ P |∂(P1)(f) = 0, ∀∂ ∈ V },

so that Q = J (∆(Q)) and V = ∆(J (V )).

Theorem 1.2.11. Every 0-dimensional ideal I / P is uniquely defined by a set of points
P1, ..., Pr ∈ k

n
(k the algebraic closure of k) which are not conjugate over k and, for any

point Pi = (ai1, ..., ain) a closed subspace

∆i = Spanki(∂i1, ..., ∂in) ⊂ Spanki(D),
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ki = k(ai1, ..., ain) so that f ∈ I if and only if ∀i, j, ∂ij(P )(f) = 0.
For each i, let αi1 , ..., αiti a k-basis of ki so that ∀i, j exist k-functionalsLijk ∈ P∗, k = 1, ..., ti

with ∂ij(Pi)(f) =
∑
Lijk(f)αik.

Then I is defined by {Lijk|i = 1, ..., r, j = 1, ..., si, k = 1, ..., ti}.

Now, following [2], we give a glimmer of Macaulay bases.
For each polynomial f ∈ P (or for each series f ) we denote by L(f) its lowest degree non-zero
homogeneous component, whereas ord(f) = deg(L(f)) is its order or underdegree.
We fix an infinite set of indeterminates, labeled with the elements in T , namely Z = {ζτ , τ ∈
T } and we have naturally the rings k[ζτ ]τ∈T and k[[ζτ ]]τ∈T .

Definition 1.2.12. A dialytic equation of an ideal I / P is a linear combination∑
τ∈T

aτζτ ∈ k[ζτ ]τ∈T

such that ∑
τ∈T

aττ ∈ I.

For each term ν ∈ T , the ν-derivative of
∑
τ∈T aτζτ is the dialytic equation

∑
τ∈T aτζτν ,

corresponding to ∑
τ∈T

aττν = ν
∑
τ∈T

aττ ∈ I.

Definition 1.2.13. The inverse functions or modular equations of I are the equations of the
form ∑

τ∈T
cτζτ ∈ k[[ζτ ]]τ∈T ,

with
∑
τ∈T cτaτ = 0, for each ∑

τ∈T
aττ ∈ I.

We can naturally extend the notion of lowest degree component and order to dialytic
equations and inverse functions and, for each inverse function

∑
τ∈T cτζτ ∈ k[[ζτ ]]τ∈T , we

can define a linear functional γ ∈ P∗, namely the one associating the element cτ to each τ .
Following Macaulay’s notation, we express these equations as Laurent series∑

τ∈T
cττ
−1 =

∑
(α1,...,αn)∈Nn

c(α1,...,αn)x
−α1
1 · · ·x−αnn ∈ k[[x−1

1 , ..., x−nn ]].

The set of all Laurent series which are inverse functions of I is called inverse system.
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Definition 1.2.14. An inverse function
∑
τ∈T cττ

−1 for which exists γ ∈ N such that

deg(τ) > γ ⇒ cτ = 0

is called Noetherian equation.

For each term τ ∈ T we can define a functional

M(τ) : P → k

f 7→ c(f, τ),

for each f =
∑
τ∈T c(f, τ)τ ∈ P.

We denote by M = {M(τ), τ ∈ T } the set containing all these functionals, whereas Spank(M) ⊆
P∗ is the k-vector space generated by M.
Each semigroup ordering < on T induces an ordering on M:

M(τ) ≤M(ω)⇔ τ ≤ ω.

For each l =
∑
τ∈T c(τ, l)M(τ) ∈ Spank(M), we define the support of l as

S(l) = {τ ∈ T , c(τ, l) 6= 0}.

If f :=
∑
τ∈T aττ ∈ P and l :=

∑
τ∈T cτM(τ) ∈ Spank(M) we have

l(f) =
∑
τ∈T

aτ cτ =
∑

τ∈S(l)∩S(f)

aτ cτ ,

so Spank(M) is the set of all the Noetherian equations.
For each Λ ⊂ Spank(M) and for each k-vector subspace P ⊂ P we denote

I(Λ) := {f ∈ P : l(f) = 0, ∀λ ∈ Λ};

M(P) := {l ∈ Spank(M), l(f) = 0, ∀f ∈ P}.

In analogy with the antiderivatives for elements of T , for each j ∈ {1, ..., n}, given M ∈
Spank(M) we define for each τ ∈ T

σj(M(τ)) :=

{
M(ω) if τ = xjω

0 if xj - τ

Since for each i, j σiσj = σjσi we can define inductively στ ∈ Endk(Spank(M)), for each
τ ∈ T , σxjτ := σxjστ so that, for all τ ′, ω ∈ T
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στ ′(M(ω)) :=

{
M(ν) if ω = τ ′ν

0 if τ ′ - ω

We can extend the definition to polynomials: ∀f =
∑
i ciτi ∈ P ,

σf (l) :=
∑
i

ciστi(l)

and we equip Spank(M) with a P-module structure, letting

lf := σf (l), ∀f ∈ P, ∀l ∈ Spank(M).

Definition 1.2.15. A k-vector subspace Λ of Spank(M) is called xj-stable if σi(l) ∈ Λ,∀l ∈ Λ

and stable if σf (l) ∈ Λ, ∀l ∈ Λ and f ∈ P.

If l :=
∑
i ciM(τi) ∈ Spank(M), ci ∈ k \ {0}, τi ∈ T , τ1 < τ2 < ... < τi < ..., we

denote by T<(l) = τ1 the leading term of l and for Λ ⊂ Spank(M) T<{Λ} := {T<(l), l ∈ Λ},
N<{Λ} := T \ T<{Λ}.

Definition 1.2.16. Referring to definition 1.2.14 and to the comments above, a basis {l1, ..., li, ...}
of a stable vector subspace Λ ⊂ Spank(M) is a Macaulay basis of Λ w.r.t. an inf-limited or-
dering < if

1. T{Λ} = {T (li)} ⊆ T is an order ideal;

2. li = M(T (li)) +
∑
ν∈N(Λ) ξ(ν, T (li))M(ν), for each i and suitable ξ(ν, T (li)) ∈ k.

We conclude this section defining a special kind of ideals, called Cerlienco-Mureddu ideals.
For each zerodimensional ideal I / P , we set X = V (I); ∀P = (a1, ..., an) ∈ X we define

λP : P → P

xi 7→ xi + ai, i = 1, ..., n,

MP = (x1 − a1, ..., xn − an) and QP theMP -primary component of I .
We define ΛP := M(λP (QP )) ⊂ Spank(M) and {λνP := l(ν) : ν ∈ N<(λP (QP ))} the
Macaulay basis of ΛP .
We suppose it ordered so that each vector subspace Lσ := Spank({lν1

, ..., lνσ}) is a P-
module and we set

L := {λ1, ..., λs} = {lνPλP : ν ∈ N<(λP (QP )), P ∈ X},
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ordered so that each vector subspace Lσ := Spank({l1, ..., lσ}) is a P-module.
Then, we set Y = {Y1, ..., Ys}{(P, ν) ∈ N<(λP (QP )), P ∈ X} enumerated so that

Yj = (P, ν)⇔ λj = lνPλP .

Following [79], we suppose each λP (QP ) to be a monomial ideal.

Definition 1.2.17. With the previous notation, the ordered sets L and Y are a Macaulay
representation and a Cerlienco-Mureddu skeleton of I := P(L); each λ = lνPλP is a Cerlienco-
Mureddu functional and each Y = (P, ν) ∈ Y a Cerlienco-Mureddu card.
Moreover, if ∀λ = lνPλP ∈ L, λ = M(λ) = M(ν)λP then I is a Cerlienco-Mureddu ideal.

1.3 Graphs, trees, forests.

Here we recall some basic notions of Graph Theory. For more details see [45].

Definition 1.3.1. A graph G is the datum of:

• a nonempty set V (G) whose elements are called vertices or nodes;

• a set of non ordered couples of distinct vertices E(G) whose elements are called edges.

We summarize some terminology of Graph Theory

Notation 1.3.2. The degree deg(a) of a given vertex a ∈ V (G) is the number of edges incident
with a.
A subgraph of a given G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
A walk in a graphG is a sequence a0, e1, a1, ...., eh, ah, a0, ..., ah ∈ V (G) and e1, ..., eh ∈ E(G),
such that aj−1, aj are connected by ej , j = 1, ..., h.
A path is a walk whose set of vertices does not contain repeated elements; a cycle or circuit is
a closed walk i.e. a walk such that a0 = ah.
A graph G is:

• connected if for any couple of vertices there exists a path joining them;

• acyclic or forest if it does not contain any cycle;

• a tree if it is acyclic and connected (any subgraph of a tree is also a tree). All the trees
of more than one vertex contain at least two vertices of degree 1, called leaves.
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To each graph G can be associated a picture consisting of points (corresponding to the
nodes of V (G)) and segments (corresponding to the edges of E(G)).
In particular, for each drawing of a given tree, the topmost node is called root of the tree. A
rooted tree is a tree with a conspicuous root.
Fixed a root, we can read the elements of a tree from the root to the leaves.
The level of a node in a tree is its distance from the root. In particular, the root is at level 0.
The height of a tree is the maximal level of its nodes.
In a couple of nodes connected by an edge (so that their levels differ by one) the node of
lowest level is called father and the other one is called child. In a similar way, we speak of
ancestors and descendants for connected nodes whose levels differ for more than one.

Definition 1.3.3. A trie is a rooted tree such that each edge is labeled by an element of a
fixed alphabet.

1.4 Points, terms and towers.

In this section, we introduce a simple way to represent points and terms. It will be very
useful, especially while studying the combinatorial methods to compute the Groebner es-
calier associated to the ideal of a finite set of distinct points. We will exploit the natural
isomorphism T ↔ Nn, starting with the case of n = 2 and then generalizing to an arbitrary
n.
Given a set X′ = {P ′1, ..., P ′S} ⊂ k2 let r be the number of distinct prime coordinates
of the Pi’s, we group the points w.r.t. their first coordinates, obtaining r subset X′1 =

{P1,1, ..., P1,l1}, ...,X′r = {Pr,1, ..., Pr,lr}.
Each point Pi,j = (a1,i,j , a2,i,j) ∈ X′ is represented in the plane as a rectangle, labeled with
the couple (a1,i,j , a2,i,j). If Pi,j , Pk,l belong to the same X′h ⊂ X′, their corresponding rect-
angles are superimposed and the rectangle on the bottom is the one corresponding to the
point appearing first in X′h, so each X′h is said corresponding to a tower in the plane.

(a1,a2) (a3,a4) (a8,a9)

(a1,a5) (a3,a6)

(a3,a7)

Figure 1.1: Tower structure in the plane (1).
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The first tower has to be drawn so that the left side lies on the x2-axis and all the subse-

quent towers have the left side lying on the right side of the previous one, as shown in the
picture above.
Each rectangle in the tower is associated to a couple in N2, representing its position, in the
following way

(0,0) (1,0) (2,0)

(0,1) (1,1)

(1,2)

Figure 1.2: Tower structure in the plane (2).

Consider the isomorphism T → N2, sending a term xα = xα1
1 xα2

2 ∈ T to the point (α1, α2) ∈
N2. We can naturally associate to each point in the tower the term identified by its position.
For the picture above, we get {1, x1, x

2
1, x2, x1x2, x1x

2
2}.

Example 1.4.1. Let X′ = {(0, 0), (1, 1), (0, 1), (1, 2), (1, 3)}.
Grouping the points w.r.t. their first coordinates we get X′0 = {(0, 0), (0, 1)}
X′1 = {(1, 1), (1, 2), (1, 3)}.
and we cand draw the towers as in picture 1.3

(0,0) (1,1)

(0,1) (1,2)

(1,3)

Figure 1.3: The tower structure of X′ : points.

Identifying each term xα = xα1
1 xα2

2 ∈ k[x1, x2] with the point (α1, α2) ∈ N2 we can also
draw the picture with terms below where points and terms are related by their position.

Let us see another example.



24 Chapter 1. Notation and preliminaries.

1 x1

x2 x1x2

x1x
2
2

Figure 1.4: The tower structure of X′ : terms.

Example 1.4.2. For the set X′ = {(1, 0), (2, 3), (1, 1)}we get

(1,0) (2,3)

(1,1)

1 x1

x2

Consider first example 1.4.1.
A Groebner basis (actually the reduced one, computed here using Singular, [30]) of I(X′)

w.r.t. lex induced by x1 < x2 is {x2
1−x1, x1x

2
2−x2

2−x1x2+x2, x
3
2−2x1x

2
2−4x2

2+x2
1x2+7x1x2+

3x2 − 3x2
1 − 3x1} and so the lexicographical Groebner escalier is N = {1, x1, x2, x1x2, x

2
2}.

Such a set does not coincide with the one identified by the towers we drew.
For 1.4.2, the situation is different. The reduced Groebner basis is {x2

1−3x1 +2, x1x2−x2−
3x1 + 3, x2

2−x2− 6x1 + 6} and then the Groebner escalier is N = {1, x1, x2}, coinciding with
the one identified by the towers. If, in example 1.4.1 we shift to the right the point (1, 3),
we obtain again a picture with towers but we have the coincidence as in 1.4.2. In the case
n = 2, such a shifting can be avoided by reordering the towers in decreasing order by height. An
explanation of this fact is given in chapter 2, especially in remark 2.2.8.
If the picture with towers of a set X′ leads to the Groebner escalier of I(X′), we call it tower
structure of X′. It is mixed if one or more shifts have been performed in order to obtain a
representation of the Groebner escalier, unmixed otherwise.
Associating a tower structure to X′, we notice that the horizontal lines represent the powers
of x1 appearing in terms with a fixed exponent of x2.
It means that, if we take a term τ = xα1

1 xα2
2 , all the other terms appearing in the horizontal

line which contains τ are of the form σ = xβ1

1 xα2
2 .

Browsing these rows ordinately from the bottom to the top we associate to each one of them
a power of x2: more precisely to the lowest one x0

2, to the one lying above x1
2, and so on.

We call these horizontal lines x2-ranges, while the x1-ranges are the single rectangles. We
will give a formal definition of range in chapter 5, while introducing the Bar Code structure.
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Notice that also the exponents of x1 are ordered if we read each line from left to right.
Now, given S points, we have associated them S terms. We consider the x2-ranges, in-
creasingly ordered with respect to the exponent of x2 identifying them. Let r2,0, ..., r2,j their
cardinalities.
The terms of the x2-range corresponding to x0

2 are numbered from 1 to r2,0, the ones of the
x2-range corresponding to x1

2 from r2,0 + 1 and r2,0 + r2,1 and so on.
We can see an example of such a reordering in picture 1.52.

1 2

3 4

1

2

Figure 1.5: Reordering of ranges in 2 variables.

All these definitions can be generalized to the case of 3 or more variables.
We deal then with a set X′′ = {P ′′1 , ..., P ′′L} ⊂ k3, constructing the towers similarly.

1. We draw the tower picture of X′ := π2(X). For each couple (a1, a2) ∈ X′, label
the rectangle corresponding to it with one of the points in the fiber π−1

2 (a1, a2), say
(a1, a2, a3).

2. Since π−1
2 (a1, a2) may contain more than one point, draw the rectangles corresponding

to the elements of π−1
2 (a1, a2) \ {(a1, a2, a3)} over (a1, a2, a3) along the x3 direction.

Example 1.4.3. Consider the set

X′′ = {(1, 0, 0), (1, 0, 1), (2, 0, 0), (1, 1, 0), (2, 0, 1), (1, 1, 1), (2, 1, 0), (2, 1, 1)} ⊆ k3.

We have π2(X′′) = {(1, 0), (2, 0), (1, 1), (2, 1)}:

(1,0,0) (2,0,0)

(1,1,0) (2,1,0)

2The x1-ranges have been numbered using normal font numbers, while the x2-ranges have been numbered
using boldface numbers.
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Since π−1
2 (1, 0) = {(1, 0, 0), (1, 0, 1)}, π−1

2 (2, 0) = {(2, 0, 0), (2, 0, 1)}, π−1
2 (1, 1) = {(1, 1, 0),

(1, 1, 1)} and π−1
2 (2, 1) = {(2, 1, 0), (2, 1, 1)}, we get the picture on the left. We display on the

right the terms whose exponents’ lists represent the positions in which the points are placed.
Points:

(1,0,0) (2,0,0)

(1,1,0) (2,1,0)

(1,0,1) (2,0,1)

(1,1,1) (2,1,1)

Terms:

1 x1

x2 x1x2

x3 x1x3

x2x3 x1x2x3

A Groebner basis of I(X′′) w.r.t. lex induced by x1 < x2 < x3 is {x2
1−3x1+2, x2

2−x2, x
2
3−x3}

and so the corresponding Groebner escalier is {x1x2x3, x2x3, x1x3, x3, x1x2, x2, x1, 1}, which
is an order ideal and it is exactly the set of terms characterized by the tower picture, which
turns out to be an unmixed structure for X′′.

Consider the x3-ranges, increasingly ordered with respect to the exponent of x3 indentify-
ing them and let r3,0, ..., r3,h their cardinalities.
We number from 1 to r3,0 the terms of the form xi1x

j
2x

0
3, according to the rule stated above

for the case of two variables.
Then, we number from r3,0 + 1 to r3,0 + r3,1 the terms of the form xi1x

j
2x

1
3, according to the

rule stated above for the case of two variables and so on.
Notice that if a term τ = xα1

1 xα2
2 xα3

3 , belongs to a certain x3-range, all the other terms of the
same x3-range are of the form σ = xβ1

1 xβ2

2 xα3
3 .

The following picture 1.6 represents an example of the reordering rule.

We numbered the 8 x1-ranges with the normal font, the 4 x2-ranges in boldface and the
2 x3-ranges with the gothic font.
One can repeat all the construction (obtaining analogous mixed and unmixed tower struc-
tures) in the same way, applying it to any finite set of distinct points X = {P1, ..., PS} ⊆
kn, n > 3 and generalize the idea of range.
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1 2 1

3

1

4 2

5 6 3

7

2

8 4

Figure 1.6: Reordering of ranges in 3 variables.

1.5 Graphical representation of terms in a small number of

variables.

In this section we show how to represent graphically terms of degree r in 3, 4 or 5 variables.
We will construct some diagrams, developed by M. G. Marinari and L. Ramella in [75] in
order to draw strongly stable ideals.
Consider first the case of terms of degree r, belonging to the polynomial ring k[x, y, z] in 3

variables, ordered as x < y < z.
First of all, we draw on the bottom right the maximal variable (namely z), raised to the
power r. Then, we construct a diagram, drawing the other terms, according to the rules
below.

↑: the exponent of z decreases by one, while the exponent of y increases by one;

←: the exponent of y decreases by one, while the exponent of x increases by one.

Example 1.5.1. According to the rules ↑, ←, the diagram representing the 10 terms of degree
3 in three variables is:
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x3 x2y xy2 y3

x2z xyz y2z

xz2 yz2

z3

As a matter of fact, every time we move up in the diagram above, the exponents of the
variable z decrease, in favour of the powers of y.
In the same way, each step to the left means decreasing the exponent of y, making the one
of x increase.

Suppose now to have one variable more, namely consider the polynomial ring k[x, y, z, t]

with x < y < z < t.
We start again drawing on the bottom right the maximal term w.r.t. the lexicographical
order, namely tr. Then we extend the rules ↑, ← explained for three variables as

↖: the exponent of t decreases by one, while the exponent of z increases by one;

←: the exponent of z decreases by one, while the exponent of y increases by one;

↑: the exponent of y decreases by one, while the exponent of x increases by one.

Example 1.5.2. The diagram representing the 20 terms of degree 3 in 4 variables is
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x3

x2y x2z

x2t

xy2 xyz xz2

xyt xzt

xt2

y3 y2z yz2 z3

y2t yzt z2t

yt2 zt2

t3

As in the case of three variables, the picture above follows the rules↖, ↑, ← .

For brevity’s sake, we can also draw the diagram without specify the terms and substituting
them with bullets. This method can be very useful in order to display the terms of a certain
degree r, distinguishing the ones contained in a certain ideal and the ones belonging to the
Groebner escalier.
For this purpose, we will use black bullets for the terms in the ideal and white bullets for
the terms belonging to the associated Groebner escalier.

Example 1.5.3. Consider the ideal I = (x, z2, y2) / k[x, y, z]. At degree 2 we will have:
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In chapter 5, we will introduce a new graphical representation for terms, allowing to
increase ad libitum the number of variables.
We display here also a diagram in five variables

x2

xy

y2

xz

yz

z2

xt

yt

xu

zt

yu t2

zu

tu

u2
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1.6 Moeller algorithm.

In 1982, Buchberger and Moeller ([12]) proposed an algorithm that, given a zerodimensional
ideal I defined by s functionals l1, ..., ls and a term order <, computes a Groebner basis and
a triangular sequence q1, ..., qs for a permutation lσ(1), ..., lσ(s) of the given functionals.
Many different versions of Moeller algorithm have been deeply studied by M.G. Marinari,
H.M. Moeller and T. Mora in [73]. Here we briefly sketch two of them3.
The first version is iterative on terms and it computes the reduced Groebner basis G and a
triangular sequence q. This version generalizes the original Buchberger-Moeller algorithm,
for the case in which functionals are evaluations at a point.
The elements of the Groebner escalier and of the reduced Groebner basis are contained in
two lists, which are updated in each iterative step, until each element of T is in N(I) or in
T(G). At each step, the algorithm finds the minimal term τ not already settled in N(I) or
in T(G) and computes vect(τ), the vector of evaluations of τ at the functionals. If vect(τ) is
linearly dependent w.r.t. {vect(σ), σ ∈ N(I)} then a new element is added to G; otherwise,
we update the list q.

Remark 1.6.1. We point out that Moeller algorithm is independent from the given term
order <.

The algorithm leans on the subroutine GaussRed, which performs Gaussian reduction.

Algorithm 1 Gaussian reduction.
1: procedure GAUSSRED(p, v, q1, ..., qr, vect(1), ..., vect(r))→ p, v

2: for i = 1, ..., r do
3: v = v − l′i(p)vect(i)
4: p = p− l′i(p)qi
5: end for
6: end procedure

The second version is iterative on functionals. At each step the Groebner escalier, the
triangular sequence and the reduced Groebner basis are computed.

3There are also versions computing the Border basis [70].
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Algorithm 2 Moeller algorithm 1.
1: procedure MOEL1(l1, ..., ls)→ G,q
2: G = ∅
3: List = {1} . List contains terms ordered w.r.t. <. Repeated elements are not allowed. Anyway the algorithm takes track of the number of times a repeated

term would be inserted there.

4: N = ∅
5: r = 0 . N contains the Groebner escalier, while r = |N|.

6: while List 6= ∅ do
7: τ := Min(List,<)

8: List = List \ {τ}.
9: if τ /∈ T(G) then

10: v = (l1(τ), ..., ls(τ))

11: (p, v) = GaussRed(τ, v, q1, ..., qr)

12: if v = 0 then
13: G = G ∪ {p}
14: else
15: r + +

16: j = min(i, li(p) 6= 0)

17: l′r = lj

18: vect(r) = lj(p)
−1v

19: qr = lj(p)
−1p

20: N = N ∪ {τ}
21: List = List ∪ {xjτ, ∀j}
22: end if
23: end if
24: end while
25: end procedure
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Algorithm 3 Moeller algorithm 2.
1: procedure MOEL2(l1, ..., ls)→ G,q
2: G = {1}
3: v(1) = (l1(1), ..., ls(1))

4: for r = 1...s do
5: τ = min{T(f), f ∈ G, lr(f) 6= 0}
6: let f ∈ G, with T(f) = τ

7: G = G \ {f}
8: qr = l−1

r (f)f

9: vect(r) = l−1
r (f)v(f)

10: for each f ∈ G s.t. T(f) > τ do
11: f = f − lr(f)qr

12: v(f) = v(f)− lr(f)vect(r)

13: end for
14: for i = 1, ..., n do
15: if xiτ /∈ (T(G)) then
16: v = (l1(xiτ), ..., ls(xiτ))

17: (p, v(p)) = GaussRed(xiτ, q1, ..., qr)

18: G = G ∪ {p}
19: end if
20: end for
21: end for
22: end procedure
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In [73] is also proved that the computational complexity of the algorithms above is the
same, in term of operations in k.
More precisely, denote by

• n the number of variables;

• s the number of functionals;

• g = |G|;

• f the cost of functional evaluation.

The latter is actually a distributed cost: csf is the number of operations needed in order to
evaluate s functionals at c terms.

More precisely:

• f = 1 if the functionals are evaluations at rational points;

• f ≤ s if the functionals are evaluations at algebraic points or evaluations of differential
conditions at rational points4.

• f ≤ 2ns if functionals include coefficients of canonical forms under a change of coor-
dinates

• f ≤ s2 if functionals are evaluations at rational points with multiplicity conditions
given by differential conditions.

Proposition 1.6.2. Both the algorithm have complexity

1

2
s3 + s2g + fs(s+ g) ≤ O(ns3 + fns2).

4In this case, a preprocessing is needed and it is polynomial in a natural measure for the input.
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escalier.





CHAPTER 2

Combinatiorial methods for the
Groebner escalier.

2.1 Introduction.

In this chapter, we summarize all the different methods to compute the Groebner escalier of
a zerodimensional radical ideal I(X) / k[x1, ..., xn], the ideal of a finite set of distinct points
X = {P1, ..., PS} ⊂ kn, where k is an arbitrary field.
These methods arose from the need to compute the Groebner escalier without passing
through the Groebner basis computation, which can often be long and complicated.
Among these methods, we recall:

1. Cerlienco-Mureddu Correspondence;

2. Gao-Rodrigues-Stroomer method (and Lederer’s variation);

3. the Lex Game.

37
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The first one is iterative, while the others, requiring a preprocessing on the input points,
drop out iterativity in favor of speed.
The most important methods are Cerlienco-Mureddu Correspondence and the Lex Game.
In chapters 4 and 5 we will see how to develop two algorithms which solve the same prob-
lem and are linked to the Lex Game, though having different aims.
The first one (providing an ordering both on the Groebner escalier and on X) is an interpo-
lation oriented algorithm as it is aimed to simplify the interpolation part. The second one is
halfway between of 1. and 3., taking advantage of the main features of both of them.

2.2 Cerlienco-Mureddu Correspondence.

Cerlienco-Mureddu Correspondence is the very first algorithm that, given a finite set of dis-
tinct points X, computes the Groebner escalier N(I(X)) associated to I(X) (without passing
through a Groebner basis of I(X)) .
It dates back to the early nineties, with the articles [20, 21] where it is also generalized to the
case of multiple points, using functionals1.
Cerlienco-Mureddu face first (see [20], p. 1, 2) the following problems:

(1) given X and S distinct values χ1, ..., χS find p ∈ k[x1, ..., xn] such that p(Pi) = χi, i =

1, ..., S;

(2) analogous to (1) but knowing also the values of some partial derivatives (possibly
different ones for each point) at Pi.

In order to have existence and uniqueness for the solution of (1), they force p to be of the
form a1τ1 + ... + aSτS , where ai ∈ k, i = 1, ..., S and τ1, ..., τS are terms such that their
equivalence classes modulo I(X) form a (monomial) basis for the quotient algebra A :=

k[x1, ..., xn]/I(X). Moreover, they require the monomial basis to be minimal (see definition
1.1.2) w.r.t. the given term order <
The solution of problem (1) is immediate if a monomial basis is known. In [20] three differ-
ent solutions for this subproblem are proposed ([20] p.2):

1. look for a nonzero order S minor of a suitable matrix;

2. start from a system of generators for I(X) and use the Groebner bases theory;

1For example evaluations of polynomials and their derivatives at points.
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3. use a purely combinatorial algorithm (the one we call Cerlienco-Mureddu correspondence).
giving a minimal monomial basis for the quotient, w.r.t lex induced by x1 ≺ .... ≺ xn)
directly from X.

Remark 2.2.1. We point out that the Groebner escalier associated to a zerodimensional ideal
I is also provided by Moeller algorithm [1, 12, 73].

2.2.1 The elementary ideal and problem (1).

In the first part of [20], Cerlienco-Mureddu describe a way to compute a system of genera-
tors for a zerodimensional radical ideal I(X), given X = {P1, ..., PS}. We only sketch it and
show a very simple example.

Definition 2.2.2. An ideal I / k[x1, ..., xn] is called elementary if it is generated exactly by n
polynomials, each one containing only one variable, i.e.

I = (γ1(x1), ..., γn(xn)).

Clearly this set of polynomials is also its reduced Groebner basis w.r.t. any term order.
Take then X and perform the following steps.

1. Associate to it an elementary ideal I ′:

• take the supset X′ of X consisting of the points P = (a1, ..., an) ∈ kn such that for
each 1 ≤ j ≤ n, aj is the j-th coordinate of some point of X 2;

• I ′ = I(X′) is an elementary ideal, say I ′ = (γ1, ..., γn), where γj ∈ k[xj ], deg(γj) =

hj are such that γj(a) = 0 if and only if a is the j-th coordinate of at least a point
in X.

2. Observe that the Groebner escalier turns out to be

N<(X′) = {xα = xα1
1 · · ·xαnn , | 0 ≤ αj ≤ hj − 1} = {xα

(1)

, ..., xα
(n)

};

3. LetH be the matrix whose rows consist of the evaluations of the terms in N(X′) in the
points of X′ .
This is a non-degenerate matrix, so it has an inverse matrixH−1 = (hr,s).

2Note that if we have hj possible values for the j-th coordinate, for each 1 ≤ j ≤ n, h = |X′| = h1 · · ·hn ≥ S.
We suppose to append to X the points of X′ \X.
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4. Associate to the s-th column ofH−1 the polynomial

ps =

S∑
r=1

hr,sx
αr .

5. J := (pS+1, ..., ph, γ1, ..., γn) = I even if in general this system of generators is not a
Groebner basis for I .

Example 2.2.3. Consider the polynomial ring k[x, y], equipped with the lexicographical or-
der induced by 1 < x < y, take the simple set X0 = {(0, 0), (1, 0), (1, 1)} and complete it to
X′0 = {(0, 0), (1, 0), (1, 1), (0, 1)}. Since there are 2 possible values for each coordinate, it is
clear that |X′0| = 4 > 3 = |X0|.
We can compute (using Singular) I ′ = (x2− x, y2− y), N< = {1, x, y, xy}. The first matrix is

H =


1 0 0 0

1 1 0 0

1 1 1 1

1 0 1 0


and it is not degenerate, det(H) = −1; the inverse matrix is

H−1 =


1 0 0 0

−1 1 0 0

−1 0 0 1

0 −1 1 −1

 .

So, adding to the generators of I ′ the polynomial p4 = y − xy we obtain a system of gener-
ators for I3.

If we know a Groebner basis G and the Groebner escalier N of I , the solution of problem 1

is trivial:

1. considerH and its inverseH−1;

2. let χ =t (χ1, ..., χS);

3. the required polynomial is p =
∑m
j=1(H−1χ)jx

αj .

3In this oversimplified situation it holds that {x2 − x, y2 − y, y− xy} is actually a Groebner basis of I . But this
is not true in general.
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Example 2.2.4. Consider the same X0 of example 2.2.3 and χ = (1, 2, 3). In this situation
the reduced Groebner basis {x2−x, y2−y, xy−y} is very simple and the Groebner escalier
is likewise simple: N = {1, x, y}. We have then

B =

 1 0 0

1 1 0

1 1 1

 ,

and det(B) = −1, while the inverse matrix is

B−1 =

 1 0 0

−1 1 0

0 −1 1

 .

The required polynomial is then p = x+ y + 1.

In order to obtain the same result we can also proceed in another way:

1. attach χi as n+ 1-th coordinate of Pi, for each i = 1, ..., S, forming a new set Y;

2. add a new variable t to the ring supposing it much bigger w.r.t. the other ones;

3. compute the reduced Groebner basis of I(Y) and take the polynomial q whose lead-
ing term is t: (−1) · (q − t) is our required p.

Example 2.2.5. Referring to examples 2.2.3, 2.2.4, we take again X0 and construct Y =

{(0, 0, 1), (1, 0, 2), (1, 1, 3)} from it.
We also take χ = (1, 2, 3). We have I(Y) = (x2 − x, xy − y, y2 − y, t − y − x − 1), so, as we
expected, p = x+ y + 1.

2.2.2 Matrices and problem (1).

Until now, for their purposes, Cerlienco-Mureddu required the knowledge of the Groebner
escalier that we have always computed by using the reduced Groebner basis of the treated
ideal.
In section 3.3 of [20], Cerlienco-Mureddu state a one-to-one correspondence between the
bases of the quotient algebra and the nonzero order S minors of the matrix H′ obtained as
H, but only using the points in X.
IfA is one of such minors,BA := {b1, ..., bS} is the set of terms corresponding toA’s columns
and we take BA as a basis of the quotient algebra.
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We then find y = p(x1, ..., xn) using
b1 . . . bS y

α1

A
...
αS

 = 0

If the chosen minor is somehow “convenient”4 one can use it to compute the reduced
Groebner basis of our ideal of points in the following way.

1. Take G = {τ1, ..., τl} the monomial basis for the semigroup ideal T \ N(I(X)).

2. Denote C(i) := {b1, ..., bS , τi} and by Di the matrix whose first row is C(i)
< , while the

other ones are the rows of C(i)
< (X)5. Let then gi = det(Di).

3. The reduced Groebner basis is {g1, ..., gl}.

Example 2.2.6. Take again the set X0. G = {x2, xy, y2}. We then have to define three
matrices:

D1 =


1 x y x2

1 0 0 0

1 1 0 1

1 1 1 1

 .

whose determinant is g1 = −x2 + x,

D2 =


1 x y xy

1 0 0 0

1 1 0 0

1 1 1 1

 .

whose determinant is g2 = −xy + y and

D3 =


1 x y y2

1 0 0 0

1 1 0 0

1 1 1 1

 .

whose determinant is g3 = −y2 + y. We have obtained the reduced Groebner basis of the
ideal I(X).

4Convenient means that if we take another set of S terms (among the ones in the Groebner escalier of the
elementary ideal I(X′)) which are smaller or equal to the maximal in BA, the determinant of the corresponding
minor (evaluating in X) is 0.

5in Cerlienco-Mureddu notation, it means evaluating the terms of C in X. The j-th row of C is the evaluation
of te terms in C in Pj ∈ X
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2.2.3 The combinatorial algorithm.

Cerlienco-Mureddu define a purely combinatorial algorithm in order to produce directly
the lexicographical Groebner escalier from X.
More precisely, they prove that there is a one-to-one correspondence which sends each point
of X to a term in the Groebner escalier N(I(X)). The idea underlying the algorithm is the
following: take a point Pi ∈ X, i > 16 and find the exponent dis of the maximal variable
xs, s ≤ n appearing in the term to be associated to Pi by Φ. It consists finding the maximal
length s′ for a sequence of coordinates- from the first on- shared by Pi with a previous
point:s = s′ + 1. Then, among the points sharing the first s′ coordinate with Pi, we choose
the one with maximal index (say Pm: in the algorithm we only keep trace of the index m).
It is dis = dms + 1. This means that our Pi will be drawn in the first range w.r.t xs+1, ..., xn

and the exponent of xs gives us also the xs-range in which to put it.
Then the algorithm restricts to this range and proceeds in the same way with x1, ..., xs−1

7.
Repeating all the procedure we are able, in a finite number of steps, to settle Pi and obtain
Φ(Pi) via the list of exponents of the corresponding term.
More precisely we have algorithm 4.

Example 2.2.7. Take the set, proposed for the first time by Gao-Rodrigues-Stroomer in [39]
X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)},
and consider the ring k[x, y, z, t], equipped with the lexicographical order induced by
1 < x < y < z < t.
Consider the points numbered in the order in which they appear in X1.

We run now Cerlienco-Mureddu algorithm on X1:
P1 = (1, 1, 2, 3): it is the first point so it corresponds automatically to 1.
P2 = (1, 1, 2, 4): s = 4, m = 1, so Φ(P2) = x?y?z?t; then we repeat the algorithm on
Q = {(1, 1, 2)} obtaining {1} and then Φ(P2) = t.
P3 = (1, 1, 2, 5): s = 4, m = 2, so Φ(P3) = x?y?z?t2; we then repeat the algorithm on
Q = {(1, 1, 2)} obtaining {1} and then Φ(P3) = t2.
P4 = (1, 2, 1, 1): s = 2, m = 3, so Φ(P4) = x?yz0t0 = x?y; we then repeat the algorithm on
Q = {(1)} obtaining {1} and then Φ(P4) = y.
P5 = (1, 2, 1, 2): s = 4, m = 4, so Φ(P5) = x?y?z?t; we then repeat the algorithm on
Q = {(1, 1, 2), (1, 2, 1)}.

6Obviously, Φ(P1) = 1, since I({P1}) is maximal and so its Groebner escalier is clearly the singleton {1}. We
take the first point as a base case for this inductive algorithm.

7So we project the points of the restricted range with πs−1
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Algorithm 4 Cerlienco-Mureddu algorithm.
1: procedure CEMU(X)→ Φ(X)

2: if S = 1 then
3: Φ(X) := {d1} = {(0, ..., 0)}.
4: end if
5: if 1 < S then
6: d1 = (0, ..., 0) . This is the base step for the algorithm

7: for l = 2 to S do
8: s = σ(Pl,X).
9: for i = n to 1 do

10: if i > s then
11: dli = 0.
12: end if
13: if i = s then
14: find the maximal integer m, (1 ≤ m ≤ l − 1) s.t πs−1(Pm) = πs−1(Pl),

πs+1(dm) = (0, ..., 0) = πs+1(dl). . Pm is the σ -antecedent ofPl w.r.t. (P1, ..., Pl−1),Φ((P1, ..., Pl−1)).

15: dls = dms + 1.
16: end if
17: if i < s then
18: W(Pl,X) := {P ∈ X|Φ(P ) = d = (∗, ...∗, dls, 0, ..., 0), } =

{Pj1, ..., Pjr}.
19: Q := πs−1(W(Pl,X)). . If h < r = |W(Pl,X)|, then πs−1(Pjh) 6= πs−1(Pl).Moreover, since Φ is

inductive, if h < k ≤ r then πs−1(Pjh) 6= πs−1(Pjk). |Q| = |W(Pl,X)| = r < l.

20: Φ(Q) = CEMU(Q) := {d̃1, .., d̃r}
21: πs−1(dl) = d̃r. . We know Φ(Q) = (d̃1, .., d̃r) and ∀1 ≤ i < r, d̃i = πs−1(dji).

22: break.
23: end if
24: end for
25: end for
26: end if
27: return Φ(X).

28: end procedure
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P5,1 = (1, 1, 2): it is the first point, corresponding to 1.
P5,2 = (1, 2, 1): s = 2, m = 1, so Φ(P5,2) = x?y1z0; we then repeat the algorithm on

Q′ = {1}, obtaining {1} and then Φ(P5,2) = y.
We obtain by recursion the partial result {1, y} and then Φ(P5) = yt.
P6 = (1, 2, 2, 1): s = 3, m = 5, so Φ(P6) = x?y?z1t0 = x?y?z; we then repeat the algorithm
on Q = {(1, 2)}, obtaining {1} and then Φ(P6) = z.
P7 = (1, 2, 2, 2): s = 4, m = 6, so Φ(P7) = x?y?z?t; we then repeat the algorithm on
Q = {(1, 1, 2), (1, 2, 1), (1, 2, 2)}.

P7,1 = (1, 1, 2): it is the first point, corresponding to 1.
P7,2 = (1, 2, 1): s = 2, m = 1, so Φ(P7,2) = x?y1z0; we then repeat the algorithm on

Q′ = {1}, obtaining {1} and then Φ(P7,2) = y.
P7,3 = (1, 2, 2): s = 3, m = 2, so Φ(P7,3) = x?y?z1; we then repeat the algorithm on

Q′′ = {(1, 2)}, obtaining {1} and then Φ(P7,3) = z.
We obtain by recursion the partial result {1, y, z} and then Φ(P7) = zt.
P8 = (3, 1, 1, 2): s = 1, m = 7, so Φ(P8) = x1y0z0t0 = x.
P9 = (3, 1, 2, 2): s = 3, m = 8, so Φ(P9) = x?y?z1t0 = x?y?z; we then repeat the algorithm
on Q = {(1, 2), (3, 1)}:

P9,1 = (1, 2): it is the first point, so we associate 1 to it; P9,2 = (3, 1): s = 1, m = 1, so
Φ(P9,2) = xy0z0t0 = x.
We obtain by recursion the partial result {1, x}, so Φ(P9) = xz.
P10 = (3, 1, 2, 3):s = 4, m = 9, so Φ(P10) = x?y?z?t; we then repeat the algorithm on
Q′ = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (3, 1, 2)}.

P10,1 = (1, 1, 2): it is the first point, corresponding to 1.
P10,2 = (1, 2, 1): s = 2, m = 1, so Φ(P10,2) = x?y1z0; we then repeat the algorithm on

Q′ = {1}, obtaining {1} and then Φ(P10,2) = y.
P10,3 = (1, 2, 2): s = 3, m = 2, so Φ(P10,3) = x?y?z1; we then repeat the algorithm on

Q′′ = {(1, 2)}, obtaining {1} and then Φ(P10,3) = z.
P10,4 = (3, 1, 2): s = 1, m = 3, so Φ(P10,4) = x1y0z0 = x.

We obtain by recursion the partial result {1, y, z, x}, so Φ(P10) = xt.

P11 = (3, 3, 1, 1): s = 2, m = 10, so Φ(P11) = x?y1z0t0 = x?y; we then repeat the algorithm
on Q = {1, 3}.

P11,1 = 1: the first point is associated to 1;
P11,2 = 3: s = 1, then Φ(P11,2) = x.

We obtain by recursion the partial result {1, x}, so Φ(P11) = xy.
P12 = (3, 4, 1, 1): s = 2, m = 11, so Φ(P12) = x?y2z0t0 = x?y2; we then repeat the algorithm
on Q = {3}, obtaining {1}, so Φ(P12) = y2.
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P13 = (3, 4, 1, 2):s = 4, m = 12, so Φ(P13) = x?y?z?t; we then repeat the algorithm on
Q = {(1, 1, 2), (1, 2, 1), (1, 2, 2), (3, 1, 2), (3, 4, 1)}.

P13,1 = (1, 1, 2): it is the first point, corresponding to 1.
P13,2 = (1, 2, 1): s = 2, m = 1, so Φ(P13,2) = x?y1z0; we then repeat the algorithm on

Q′ = {1}, obtaining {1} and then Φ(P13,2) = y.
P13,3 = (1, 2, 2): s = 3, m = 2, so Φ(P13,3) = x?y?z1; we then repeat the algorithm on

Q′′ = {(1, 2)}, obtaining {1} and then Φ(P13,3) = z.
P13,4 = (3, 1, 2): s = 1, m = 3, so Φ(P13,4) = x1y0z0 = x.
P13,5 = (3, 4, 1) : s = 2, m = 4, so Φ(P13,5) = x?y1z0 = x?y; we repeat the algorithm on

Q′′ = {1, 3}:
P13,5,1 = 1: the first point corresponds to 1;
P13,5,2 = 3: s = 1, m = 1, so Φ(P13,5,2) = x.

We obtain by recursion the partial result {1, y, z, x, xy}, so Φ(P13) = xyz.
In conclusion, the final result is N = Φ(X1):
N[1] = 1

N[2] = t

N[3] = t2

N[4] = y

N[5] = yt

N[6] = z

N[7] = zt

N[8] = x

N[9] = xz

N[10] = xt

N[11] = xy

N[12] = y2

N[13] = xyt

Remark 2.2.8 ([70, 79]). In the case of the polynomial ring in two variables, we can find in a
simple way a possible Cerlienco-Mureddu-like correspondence between points and terms.
Given a finite set of distinct points X = {P1, ..., PS} ⊂ k2, with Pi = (ai1, ai2), we com-
pute the projection w.r.t. the first coordinate, namely π1(X) = {a0, ..., ar−1} and we denote
d(i) := |{(x1, x2) ∈ X, x1 = ai}|.
We can assume d(1) ≥ .... ≥ d(r), up to a renumbering of the elements ai, i = 0, ..., r − 1.
There exist values bi,l, i ∈ {0, ..., r − 1}, l ∈ {0, ..., d(i)− 1} such that

X = {(ai, bil), 0 ≤ i ≤ r − 1, 0 ≤ l < d(i)}.
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Therefore

1. N(I(X)) = {xi1xl2, 0 ≤ i ≤ r − 1, 0 ≤ l < d(i)};

2. Φ(ai, bil) = xi1x
l
2.

This means reordering the towers by height in order to compute the tower structure.

The most important feature of Cerlienco-Mureddu algorithm is its iterativity on X.
Cerlienco-Mureddu do not study the computational complexity of their algorithm, but
Lundqvist ([67]) does it, stating the following

Proposition 2.2.9 ([67]). The combinatorial algorithm described has complexity O(n2S2).

In [20] and [21], Cerlienco-Mureddu generalize their procedure to multiple points.

2.2.4 Application to the reduced Groebner basis.

In their papers [20, 21, 22], Cerlienco-Mureddu refer to the properties of of Ferrers dia-
grams. For a Ferrers diagram, they also employ the notion of dihedral elements in the proof
of the correctness for their combinatorial algorithm.

Definition 2.2.10. If F is a Ferrers diagram, an element j ∈ Nn is external dihedral for F if:

1. {i ∈ Nn/i < j} ⊆ F;

2. {i ∈ Nn/j ≤ i} ∩ F = ∅.

Definition 2.2.11. With the same notation of definition 2.2.10, an element j ∈ Nn is called
internal dihedral for F if:

1. {i ∈ Nn/i ≤ j} ⊆ F;

2. {i ∈ Nn/j > i} ∩ F = ∅.

They develop an algorithm which computes the reduced Groebner basis of I(X), induc-
tively on |X|.
Denote by F the Ferrers diagram associated to N(I(X))8, and let f1 < ... < fs their external
dihedral elements. The reduced Groebner basis of I(X) has the form

G(I(X)) = {xf1 − p1, ..., x
fs − ps},

8It is simply the set of the n-tuples of exponents corresponding to the elements of the Groebner escalier.
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where pi only contain terms smaller than xfi .
Take P = (a1, ..., an) /∈ X, X′ = X ∪ {P} and let F′,G′ the analogous sets as F,G.
Let j the minimal index such that P is not a zero of xfj − pj , then one can easily see that
N(I(X)) ∪ {xfj} is a basis for k[x1, ..., xn]/I(X′).
Notice that the external dihedral elements of F, different from fj are external dihedral also
of F′; the possible remaining elements of F′ are of the shape fj +eh (e1 = (1, 0, ..., 0), ..., en =

(0, 0, ..., 1)). In order to find the basis G′ we have to consider the following polynomials:

1. for each external dihedral fi different from fj (i 6= j) we have

gi = xfi − pi −
Ai
Aj

(xfj − pj),

where Ai = evP (xfi − pi), Aj = evP (xfj − pj);

2. for each fj + eh, gj,h = (xh − ah)(xfj − pj).

Actually, here they are only rewriting Moeller algorithm in the version iterative on func-
tionals ([73], algorithm 2).
In [20], Cerlienco-Mureddu discuss how to simiplify the algorithm in the bidimensional
case.

Proposition 2.2.12. Let X ⊂ k2. If the points of X have r different x-coordinates ρ1, ..., ρr

and there are hi points having ρi as first coordinate. Assuming h1 ≥ ... ≥ hr, the associated
order ideal is:

1, y, ..., yh1−1

x, xy, ..., xyh2−1

...

xr−1, ..., xr−1yhr−1.

If we think again about the tower structure introduced above, we can interpret the
proposition 2.2.12 as follows:
ordering the towers in non-increasing order by height, we obtain the Groebner escalier, under the
identification defined above. See 2.2.8

Remark 2.2.13. Come now back to examples 1.4.1, 1.4.2. We can see that the towers are not
non-increasingly ordered, but that, if we do it, we obtain the Groebner escalier.
If we look at example 1.4.3, we see that it is exactly the output of Cerlienco-Mureddu
algorithm on

X′′ = {(1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (1, 0, 1), (2, 0, 1), (1, 1, 1), (2, 1, 1)},
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where the points are taken in the order they are listed.

In [21, 22] Cerlienco-Mureddu also state an application of the algorithm to n-linearly
recursive functions.

2.3 Gao-Rodrigues-Stroomer method.

In [39], Gao-Rodrigues-Stroomer , in the special case k perfect field, study the relationship
between the fibers πn−1(X) ⊆ kn−1 of a given set of distinct points X ⊆ kn and a minimal
Groebner basis for I(X) under an elimination order for xn.
Moreover they explain how to use their results in order to simplify systems of equations.
They “do not describe how to calculate a Groebner basis for a given set of points” (p.3),
but there is a paper by Farr and Gao doing it [35], as well as, clearly, Moeller algorithm does
[12, 73].
In the case where the elimination ordering is exactly the lexicographical one (x1 < ... < xn),
Gao-Rodrigues-Stroomer introduced a combinatorial non-iterative algorithm in order to
compute directly the Groebner escalier N(I(X)), i.e. an alternative algorithm to the one
by Cerlienco-Mureddu .
Actually they compute the Ferrers diagram F(X) containing the exponents’ lists of the terms
belonging to N(I(X)).
They first make some preprocessing on the given points, namely they construct a tree asso-
ciated to them and this is the step excluding iterativity.
Then, usign a “merging” procedure, they read the tree and return the Groebner escalier.
Let us examine the procedure more in details.
The first step consists to associate to X a tree T (X) of height n, whose nodes are labeled
with the coordinates of the points (except that the root, i.e. the 0 level node, which is simply
labeled with “root”).
From the root arise as many edges as the first coordinate values, from each 1 level node arise
as many edges as the second coordinate values corresponding to the given first coordinate
value and so on. The S leaves (one for each point) are so ordinately labeled with the n-th
coordinates.
If two points share the first k coordinates, then their corresponding paths coincide from
level 0 to level k + 1.
After giving the tree construction, they define the merging procedure of Ferrers diagrams.

Procedure 2.3.1. Let F1, ...,Fk ⊆ Nn−1 be Ferrers diagrams.
For each P = (p2, ..., pN ) ∈ Nn−1 let δ(P ) be the number of Ferrers diagrams containing P .
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Merging these Ferrers diagrams means construct the Ferrers diagram

F := M(F1, ...,Fk) = {(j, p2, ..., pN ) | 0 ≤ j < δ(p2, ..., pN )} ⊆ Nn

Gao-Rodrigues-Stroomer algorithm then, consists of the following three steps:

• construct T (X);

• if n = 1, then F(X) = {0, 1, ..., |X| − 1};

• otherwise:

– consider the subtrees T1, ..., Tl of T (X), obtained removing the root from it and
taking the elements of the resulting subforest;

– assume to have computed recursively F1, ...,Fl, i.e. the Ferrers diagrams associ-
ated to the points drawn in T1, ..., Tl;

– F(X) is obtained by merging F1, ...,Fl.

Example 2.3.2. Take (as in example 2.2.7) the set
X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)},
and consider the ring k[x, y, z, t], equipped with the lexicographical order induced by 1 <

x < y < z < t. The tree associated to the set is

root

1 3

1 2 1 3 4

2 1 2 1 2 1 1

3 4 5 1 2 1 2 2 2 3 1 1 2

The merging process works as follows. In the picture below, we represent each step of the
algorithm, using arrows in order to point out what sets are merged together and what is the
final result of each merging operation:
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root root root root root root root

0 1 2 0 1 0 1 0 0 1 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13

root root root root root

0 0 1 0 1 0 0

0 1 2 0 1 0 1 0 1 0 0 0 1

1 2 3 4 5 6 7 9 10 8 11 12 13

root root

0 1 0 1 2

0 1 0 0 1 0 0

0 1 2 0 1 0 1 0 1 0 0 0 1

1 2 3 6 7 4 5 9 10 8 12 13 11

root

0 1

0 1 2 0 1

0 1 0 0 0 1 0

0 1 2 0 1 0 1 0 0 1 0 0 1

1 2 3 6 7 4 5 11 9 10 8 12 13

The final result is then
root

0 1

0 1 2 0 1

0 1 0 0 0 1 0

0 1 2 0 1 0 1 0 0 1 0 0 1

1 2 3 6 7 4 5 11 9 10 8 12 13

In both the previous pictures, the numbers not surrounded by the circles are not to be in-
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tended as nodes for some graph. They denote the indices of the points corresponding to the
element of the Ferrers diagram at each step (see 2.3.3 below for more details). We summa-
rize here the steps outlined in the picture. Start with the leaves:
F1 = {0, 1, 2}
F2 = {0, 1}
F3 = {0, 1}
F4 = {0}
F5 = {0, 1}
F6 = {0}
F7 = {0, 1}
and perform the first merging step.
F8 = M(F1) = {(0, 0), (0, 1), (0, 2)}
F9 = M(F2,F3) = {(0, 0), (0, 1), (1, 0), (1, 1)}
F10 = M(F4,F5) = {(0, 0), (0, 1), (1, 0)}
F11 = M(F6) = {(0, 0)}
F12 = M(F7) = {(0, 0), (0, 1)}.
Now we merge again:
F13 = M(F8,F9) = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)}
F14 = M(F10,F11,F12) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 0, 0)}
and, in conclusion,
F(X) = F15 = M(F13,F14) = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 1, 0),

(0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 2, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),

(1, 1, 0, 0), (1, 1, 0, 1)}, so the final result, as expected, is
N(I(X)) = {1, t, t2, z, , zt, y, yt, y2, x, xt, xz, xy, xyt}.

Remark 2.3.3. Reading [39], we can notice that there is no explicit intent to stress a biunivocal
correspondence between the points and the terms belonging to N(I(X)).
There is only one example (i.e. exactly example 2.3.2) which can be interpreted in this di-
rection (as I did in the picture).
Moreover there is no explicit intent to give the output arranged in some order.
Anyway, we can notice a rather strange fact (again from example 2.3.2): the terms are or-
dered w.r.t. lex, but induced by xn < ... < x1 (t < z < y < x), while the Groebner escalier is
computed using the reversed ordering x1 < ... < xn (x < y < z < t).

The authors do not give any complexity analysis of their algorithm.

Remark 2.3.4. I underline here a strange fact about Gao-Rodrigues-Stroomer method.
In [35], the authors explicitly say for the first time their way to sort the points of the given X,
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referring to [39], and so making one think that this is the sorting criterion also for [39].
Actually, in [39] there is no declaration on how to decide what is the order of the i-th coor-
dinates to be drawn at level i.
To be more precise, in [35], they say:
The details of this ordering, motivated by [39], are quite simple. If x1 < x2 < ... < xn, then group
the points first according to the x1-coordinate; these groups are ordered in a nonincreasing order by
size. Within each of the groups, repeat the process, but according to the x2-coordinate. Continue for
x3, ..., xm.
The surprising fact is that this criterion is not followed in the only example displayed in [39]!
Look at example 2.3.2. Level one is well arranged according to Farr-Gao’s criterion, but we
cannot assert the same for level 2. In fact, the subtree containing (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1),

(1, 2, 2, 2) should have been drawn on the left w.r.t. the one containing (1, 1, 2, 3), (1, 1, 2, 4),

(1, 1, 2, 5), but it is only one example of this curious fact. The tree, according to [35], should
have been:

root

1 3

2 1 1 4 3

1 2 2 12 1 1

1 2 1 2 3 4 5 23 2 1 2 1

Lundqvist, Felszeghy-B. Ráth-Rónyai never say anything about it (even if their tree mirrors
it), while Lederer does not display any example of the Groebner escalier’s construction.

2.4 Lederer’s variation.

Lederer, in [63], gives an alternative to Buchberger-Moeller algorithm, in order to compute a
lexicographical Groebner basis of a zerodimensional radical ideal, basing his computation
on Lagrange interpolation.
In the same paper he discusses a non-iterative method in order to compute directly the
Groebner escalier.
It turns out that this method is equivalent to the one by Gao-Rodrigues-Stroomer discussed
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above (for less than a reordering on the set to be “merged”).
Let Dn the set containing all the Ferrers diagram in Nn and take two elements D,D′ ∈ Dn.

Lederer defines their sum D +D′ ∈ Dn:

D +D′ := {d ∈ Nn0 | d̂ ∈ p̂(D) ∪ p̂(D′), d1 < |p̂−1(d̂) ∩D|+ |p̂−1(d̂) ∩D′|}.

Then he gives a representation of the summation operator: “Draw a coordinate system of Nn0
and insert D. Place a translate of D′ somewhere on the 1-axis. The translate has to be sufficiently
far out, so that D and the translate of D′ do not intersect. Then take the elements of the translate
of D′ and drop them down along the 1-axis until they lie on top of an element of D, just as in the
popular game Connect4, which might be known to one reader or the other. The result is D + D′.”
In conclusion the summation of two Ferrers diagrams consists of make one “slide on the
other”, only avoiding the overlapping of elements.
Clearly the summation (which is commutative and associative!) can be extended to more
than two Ferrers diagrams.

Remark 2.4.1. It is very simple to notice that the summation defined above is totally equiva-
lent to the merging operation, while taking away a coordinate means “restrict to a subtree”,
as Gao-Rodrigues-Stroomer do.

These informations are the only ones needed in order to compute the Groebner escalier.
Lederer, given X, proceeds by induction over n.

X If n = 1, F(X) = {1, ..., |X| − 1}.

X In order to pass from n− 1 to n, proceed as follows.

? 1. Take ∀a1 ∈ p(X) the set H(a1) = p−1(a1) ∩X.

? 2. ConsiderH(a1) as a subset of kn−1 via the projection map p̂: in this way F(H(a1)) ⊆
Dn−1 is defined by the induction hypothesis.

? 3. Identify each F(H(a1)) as an element of Dn, adding a 0 as first component to each
element of it.

? 4. Set F(X) =
∑
a1∈p(X) F(H(a1)).

Example 2.4.2. Take again X1, as in examples 2.2.7, 2.3.2, namely
X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)}.
We can perform Lederer’s algorithm on this set. Since we will need to compute H(a1) in
more than one nested step, we will use superscripts ′ in order to distinguish the different
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steps.
The first coordinates of the points in X1 are 1, 3:
H(1) = {P1, ..., P7}
H(3) = {P8, ..., P13}. Denote by P (i) the set containing the indexes of the points in H(i).
We should compute F(H(1)) + F(H(3)), but we need to know the addenda.
Focus on H(1) (forget H(3), for the moment), thinking about it in k3.
H(1) = {(1, 2, 3), (1, 2, 4), (1, 2, 5), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}, corresponding to the
set of indexes (of the associated points)
P (1) = {1, 2, 3, 4, 5, 6, 7} since the first coordinate values are 1 and 2 we will need to work
with
H ′(1) = {(1, 2, 3), (1, 2, 4), (1, 2, 5)}
P ′(1) = {1, 2, 3}
H ′(2) = {(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}
P ′(2) = {4, 5, 6, 7} and F(H(1)) = F(H ′(1)) + F(H ′(2)).
Focus on H ′(1) thinking about it in k2:
H ′(1) = {(2, 3), (2, 4), (2, 5)}.
It has only 2 as first coordinate, so we have only H ′′(2) = {3, 4, 5}, P ′′(2) = {1, 2, 3}.
The Ferrers diagram F(H ′′(2)) = {0, 1, 2} (corresponding to the points individuated by the
elements of P ′′(2), taken in order) can be thought in k2 as explained in ? 3., so
F(H ′(1)) = {(0, 0), (0, 1), (0, 2)}.
Now consider H ′(2) in k2:
H ′(2) = {(1, 1), (1, 2), (2, 1), (2, 2)}.
Its first coordinates are 1, 2, so F(H ′(2)) = F(H ′′(1)) + F(H ′′(2)), with
H ′′(1) = {1, 2}
P ′′(1) = {4, 5} H ′′(2) = {1, 2} P ′′(2) = {6, 7}.
We have F(H ′′(1)) = {0, 1} = F(H ′′(2)) and we see it in k2, obtaining
F(H ′(2)) = {(0, 0), (1, 0), (0, 1), (1, 1)}.
While summing we take the elements in order i.e. for example we have two couples with 0

in second place since we find 0 in both F(H ′′(1)) and F(H ′′(2)), so we associate (0, 0) to P4

(4 is associated to the 0 element of the first Ferrers diagram) and (1, 0) to P6 (6 is associated
to the 0 element of the second Ferrers diagram).
We always behave this way for the sum.
Finally we can compute
F(H(1)) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2)}, associated to the fol-
lowing reordering of P (1):
{1, 4, 6, 2, 5, 7, 3}.
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Now we focus on H(3), thinking about it in k3.
H(3) = {(1, 1, 2), (1, 2, 2), (1, 2, 3), (3, 1, 1), (4, 1, 1), (4, 1, 2)}.
P (3) = {8, 9, 10, 11, 12, 13} Its first coordinates are 1, 3, 4, so we have
H ′(1) = {(1, 1, 2), (1, 2, 2), (1, 2, 3)}
P ′(1) = {8, 9, 10} H ′(3) = {(3, 1, 1)}
P ′(3) = {11}
H ′(4) = {(4, 1, 1), (4, 1, 2)}
P ′(4) = {12, 13}.
Consider H ′(1) as a subset of k2

H ′(1) = {(1, 2), (2, 2), (2, 3)}.
Its first coordinates are 1 and 2, so F(H ′(1)) = F(H ′′(1)) + F(H ′′(2)), with
H ′′(1) = {2}
P ′′(1) = {8} H ′′(2) = {2, 3} P ′′(2) = {9, 10}.
F(H ′′(1)) = {0},F(H ′′(2)) = {0, 1}, so
F(H ′(1)) = {(0, 0), (1, 0), (0, 1)}, associated to {8, 9, 10}.
Now take H ′(3) in k2:
H ′(3) = {(1, 1)}, whose associated Ferrers diagram is (by the same reasoning made before
for the case of only one first coordinate) F(H ′(3)) = {(0, 0)}.
Take at the end H ′(4) = {(1, 1), (1, 2)} whose associated Ferrers diagram is obtained pass-
ing through H ′′(4) = {1, 2} and P ′′(4) = {12, 13}:
F(H ′(4)) = {(0, 0), (0, 1)}, associated to {12, 13}.
F(H(3)) = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)} (associated to {8, 11, 12, 9, 10, 13})
and
F(X) = F(H(1)) + F(H(3)) = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0),

(0, 0, 1, 0), (1, 0, 1, 0), (0, 0, 0, 1), (0, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 1), (0, 0, 1, 1),

(0, 0, 0, 2), (0, 2, 0, 0)}.
In conclusion
N(I(X)) = {1, x, y, xy, z, xz, t, xt, yt, xyt, zt, t2, y2} is associated to
{1, 8, 4, 11, 6, 9, 2, 10, 5, 13, 7, 3, 12}.

Remark 2.4.3. Reading [63], as in [39], we can notice that there is no explicit intent to stress a
biunivocal correspondence between the points and the terms belonging to N(I(X)).
Actually it can be done (as I tried to in example 2.4.2), while defining the sets P (i)’s and the
way to combine them w.r.t. the sum.
Moreover there is no explicit intent to give the output arranged in some order.
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2.5 The Lex Game.

The mathematicians Felszeghy-B. Ráth-Rónyai , in [37], introduce the so called “Lex Game”,
which leads to a non-iterative combinatorial algorithm in order to compute the Groebner
escalier of I(X), the ideal of a finite set X of distinct points, w.r.t the lexicographical order,
induced by xn < ... < x1.
They do not compute a Groebner basis of I(X) (but they cite a couple of papers studying it,
namely [49, 58]), focusing their efforts on computing the Groebner escalier of I(X), when X

is a set of points admitting as components only 0, 1 and having the number of ones (Ham-
ming weight) in a fixed D ⊆ Z.
In the same paper is stated a formula for triangular polynomials and also another formula
which permits to compute the normal form of a polynomial using the separators.
The “Lex Game”, from which their reasoning starts, is a game with two players (Lea and
Stan), consisting of the following rules. Take a field k, a finite set ∅ 6= V ⊆ kn and
w = (w1, ..., wn) ∈ Nn.
V and w are “public”, the players know them.
Lea’s goal is to guess the element v ∈ V which Stan is thinking about. She has wn attempts
in order to guess vn and she wins if she manages to do it; if not, Stan reveals vn and Lea
tries with vn−1.
Lea wins if guesses a vi right, while Stan wins if he has to reveal v1.
Stan’s strategy is to keep saying “no” as long as the suffix known to Lea is consistent with
some v ∈ V .
It turns out that Stan is able to win this way if and only if xw ∈ N(I(V )) and this leads to
the study of the Groebner escalier.
A very precise description of the algorithm, together with a full example and a complexity
study can be found in [67].
The first step consists on a preprocessing on the given points, in order to associate them a
tree, called “point trie” by Lundqvist.
Let us equip k with an equivalence relation, denoted by = and extend it to kn by a =

(a1, ..., an) = (b1, ..., bn) = b if ai = bi, ∀i ∈ {1, ..., n}.

Definition 2.5.1. The witness of two different n-tuples a, b is the minimal i such that ai 6= bi.

Consider now our points P1, ...PS ∈ X ⊆ kn and denote by Σi the the set of equivalence
classes of πi(Pj), i = 1, ..., n, j = 1, ..., S. We represent an equivalence class as a set contain-
ing the indices of the points in the class, instead of taking trace of the points. We usually
order the classes by size, even if the algorithm works for any other ordering.
Clearly Σ0 = {{1, ...S}}, Σn = {{1}, ..., {S}}, |Σn| = S
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Definition 2.5.2. The witness list is the set W of all i ∈ {1, ..., n} such that Σi−1 6= Σi, i.e. the
set of witnesses.

Definition 2.5.3. The witness matrix is an upper-triangular matrix C = (cij) with elements
in W ∪ {0} such that , for i < j, the value cij is the witness of vi and vj .

Using the Σi’s we can represent the points in a trie structure (namely the point trie).
More precisely we label the vertices with the elements of Σi’s and there is an edge from
Σi,k ∈ Σi to Σi+1,h,∈ Σi+1 when Σi+1,h ⊆ Σi,k. Such an edge is labeled vi+1,j for some
j ∈ Σi+1,h.
This way, we have fixed a one-to-one correspondence between the elements of X and the
paths from the root to the leaves in the tree.
We point out that the point trie is constructed iteratively on the points of the given set.
Once the point trie is constructed, we have to read it, constructing a new trie, the “lex trie”,
from which is possible to recover the Groebner escalier. We proceed in the following way.

• Fix some level h > 0 and call v0, ..., vj the set of vertices on level h (at level 0 we have
v0 = {1, ..., S}).

• For a class {i1, ..., ik} ∈ Σn−h we let va,b = va,b ∪ {ik} if ik ∈ va and exactly b elements
in {i1, ..., ik−1} also belong to va.

• The vertex set of level h+ 1 consists of the nonempty va,b.

• If va,b 6= ∅, there is an edge b between va and va,b.

This new construction is no more iterative: we need to know all the elements in the given set
and their structure summarized in the point tree in order to get the lex trie.

Remark 2.5.4. Neither Felszeghy-B. Ráth-Rónyai nor Lundqvist say to have intent to define
a one to one correspondence between points of X and terms in N(I(X)). Anyway, this
correspondence is clearly defined in their examples, namely in the lex trie construction (see
2.5.5 below).

Example 2.5.5. Take the set
X2 = {(3, 2, 1, 1), (4, 2, 1, 1), (5, 2, 1, 1), (1, 1, 2, 1), (2, 1, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1),

(2, 1, 1, 3), (2, 2, 1, 3), (3, 2, 1, 3), (1, 1, 3, 3), (1, 1, 4, 3), (2, 1, 4, 3)},
and the polynomial ring k[x, y, z, t], equipped with the lexicographical order induced by
t < z < y < x.
Working with this set X2 it is the same as working with
X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),
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(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)},
i.e. reversing the ordering of the coordinates of the points.
Let us first construct the point trie, passing through the Σ′is, containing the equivalence
classes, ordered by size.
This ordering is not explicitly stated but actually Felszeghy-B. Ráth-Rónyai and Lundqvist
use it in the examples.
Σ0 = {{1, 2, 3, ..., 13}}
Σ1 = {{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13}}
Σ2 = {{4, 5, 6, 7}, {1, 2, 3}, {8, 9, 10}, {12, 13}, {11}}
Σ3 = {{4, 5}, {6, 7}, {1, 2, 3}, {9, 10}, {8}, {12, 13}, {11}}
Σ4 = {{4}, {5}, {6}, {7}, {1}, {2}, {3}, {9}, {10}, {8}, {12}, {13}, {11}}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

{1, 2, 3, 4, 5, 6, 7} {8, 9, 10, 11, 12, 13}

{4, 5, 6, 7} {1, 2, 3} {8, 9, 10} {12, 13}{11}

{4, 5} {6, 7} {1, 2, 3} {9, 10} {8} {12, 13} {11}

{4} {5} {6} {7} {1} {2} {3} {9} {10} {8} {12} {13} {11}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 5 2 3 2 1 2 1

Now we proceed with the lex trie construction:
v0 = {1, 2, ..., 13}
h = 1 : iteration on Σ3:
v0,0 = {4, 6, 1, 9, 8, 12, 11} =: v0

v0,1 = {5, 7, 2, 10, 13} =: v1

v0,2 = {3} =: v2

h = 2: iteration on Σ2:
v0,0 = {4, 1, 8, 12, 11} =: v0

v0,1 = {6, 9} =: v1

v1,0 = {5, 2, 10, 13} =: v2

v1,1 = {7} =: v3

v2,0 = {3} =: v4

h = 3: iteration on Σ1:
v0,0 = {1, 8} =: v0

v0,1 = {4, 11} =: v1
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v0,2 = {12} =: v2

v1,0 = {6, 9} =: v3

v2,0 = {2, 10} =: v4

v2,1 = {5, 13} =: v5

v3,0 = {7} =: v6

v4,0 = {3} =: v7

h = 4: iteration on Σ0:
v0,0 = {1}
v0,1 = {8}
v1,0 = {4}
v1,1 = {11}
v2,0 = {12}
v3,0 = {6}
v3,1 = {9}
v4,0 = {2}
v4,1 = {10}
v5,0 = {5}
v5,1 = {13}
v6,0 = {7}
v7,0 = {3}
The lex trie is then

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

{4, 6, 1, 9, 8, 12, 11} {5, 7, 2, 10, 13} {3}

{4, 1, 8, 12, 11} {6, 9} {5, 2, 10, 13} {7} {3}

{1, 8} {4, 11} {12} {6, 9} {2, 10} {5, 13} {7} {3}

{1} {8} {4} {11} {12} {6} {9} {2} {10} {5} {13} {7} {3}

0 1 2

0 1 0 1 0

0 1 2 0 0 1 0 0

0 1 0 1 0 0 1 0 1 0 1 0 0

Lastly, the Groebner escalier is
N(I(X)) = {1, x, y, xy, y2, z, xz, t, xt, yt, xyt, zt, t2}, corresponding to the following reorder-
ing of our point set: {1, 8, 4, 11, 12, 6, 9, 2, 10, 5, 13, 7, 3}, the order of the lex trie’s leaves, read
from left to right.

The complexity of the Lex Game algorithm by Felszeghy-B. Ráth-Rónyai has been stud-
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ied both by Lundqvist and by the authors themselves.
The last conclusive bound they found for the complexity is

O(nS + Smin(S, nr)),

where S is the number of points in the given finite set X and n the number of variables in
the ring.
This is actually the complexity of the (iterative) construction of the point trie, since the
construction of the lex trie is O(nS).





CHAPTER 3

The original Axis of Evil Theorem.

3.1 Introduction

In this chapter we begin to face the problem of “constructing a linear factorization of a lexico-
graphical Groebner basis” for zerodimensional radical ideals.
Initially in [2] and then in [69, 70, 71], M.G. Marinari and T. Mora studied the structure of a
zerodimensional ideal I , especially in the case in which I =

√
I and its Macaulay basis B(I)

consists of the evaluations at a finite set of distinct points X (see also [79]).
The obtained result, named “Axis of Evil theorem” by T. Mora in some lecture notes soon
after, presents a precise description of the structure of a zerodimensional ideal.
In this setting, this theorem represents, to all intents and purposes, an enhancement for the
description of the Groebner basis of an ideal in k[x1, x2] given by Lazard in [62].
The theorem says that in a restricted case which includes the radical one1, for each term
τ := xd1

1 · · ·xdnn belonging to the monomial basis G(I) of the initial ideal of I , it is possi-
ble to produce linear factors γmδτ := xi − f(x1, . . . , xi−1), 1 ≤ m ≤ n, 1 ≤ δ ≤ dm such

1The most general version of the Axis of Evil Theorem holds for Cerlienco-Mureddu ideals (see 1.2.17).

63
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that the polynomials fτ :=
∏n
m=1

∏dm
δ=1 γmδτ form a minimal lexicographical Groebner ba-

sis of I ; each such factors were obtained by producing an appropriate decomposition of the
given Macaulay basis B(I) =

⊔n
m=1

⊔dm
δ=1 Smδ(τ) and interpolating over the monomial set

obtained applying Cerlienco-Mureddu Algorithm over the set of functionals Smδ(τ).
We quote here the original statement of the Axis of Evil theorem as in [2]

Theorem 3.1.1. Let X = {P1, ..., Ps} ⊂ kn be a finite set of points
I ⊂ P the radical ideal whose roots are the elements in X, < the lexicographical order on P
N := N<(I) the result of Cerlienco-Mureddu Correspondence
G<(I) := {τ1, ..., τr} the monomial basis of T<(I) := T \ N, τi := xd1i

1 · · ·xdνiν for each i.
Then there is a combinatorial algorithm such that letting for each i,m, δ,
Nmδi := N(Xmδi) be the result of Cerlienco-Mureddu Correspondence
γmδi := xm +

∑
ω∈Nmδi c(γmτ , ω)ω the unique polynomial (computable by interpolation) s.t.

γmδi(x) = 0 for all x ∈ Xmδi and
γmi =

∏
δ γmδi

pi := γνi

li :=
∏ν−1
j=1 γij ∈ k[x1, ...xν−1]

Hi := lipi

and it holds:

1. {H1, ...,Hr} is a (not-reduced) minimal Groebner basis of I ;

2. if jν is the value such that τjν < xν+1 ≤ τjν+1, then {Hτ1 , ...,Hτjν
} is a minimal

Groebner basis of I ∩ k[x1, ..., xν ];

3. if j(νδ) is the value such that τj(νδ) < xδν+1 ≤ τj(νδ)+1; then {l1, ..., lj(νδ)} is a Groebner
basis of J(Yνδ);

4. for each i, 2 ≤ i ≤ r, pi ∈ (Hj , j < i) : li.

The theorem 3.1.1 above has been proved by T. Mora in [79], as a consequence of Moeller
algorithm and interpreted as a sort of “interpolating variation” of Cerlienco-Mureddu algorithm.
In the book [79], the theorem above is presented in its most generalized version for Cerlienco-
Mureddu ideals (see definition 1.2.17).
In this thesis, we want to provide a constructive proof for the existence of the factorization
in the radical case.
Such a proof turns out to be naturally associated to an algorithm (i.e. algorithm 5), allow-
ing to get concretely the “linear” factorization of a zerodimensional radical ideal I , starting
from the finite set of distinct points X = V (I).
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We will call algorithm 5 Axis of Evil algorithm from now on.
In order to compute the factorization we need to calculate the Groebner escalier N = N(I),
directly from the elements in X and the monomial basis G = G(I) from N = N(I). As
seen in chapter 2, the first problem is solved using alternatively the Cerlienco-Mureddu
Correspondence, the Lex Game, the Gao-Rodrigues-Stroomer algorithm or the Lederer’s
algorithm. The second problem can be solved by an algorithm due to Lazard.
In section 3.2 we will deal exactly with Lazard’s algorithm.
In section 3.3, we will give an overview of Lazard’s structural theorem and of another result
about factorization, named Macaulay’s Trick.
In the fourth section we will explain the Axis of Evil algorithm in detail, and in section 3.5
we will summarize some results which can be considered as consequences of the Axis of
Evil theorem.
Finally, in section 3.6 we will give a very detailed example of execution of the original Axis
of Evil algorithm 5.

3.2 Considerations on the monomial basis and Lazard’s al-

gorithm.

In this section, we make some remarks on the behaviour of the monomial basis G(I) of a
zerodimensional ideal I .
First of all, we deal with the most efficient way to compute it from the Groebner escalier
N(I) of I , namely Lazard’s algorithm.
After that, we will study the structure of G(I) degree by degree, defining the concept of
natural expansion.
We will exploit the diagrams defined in 1.5 in order to represent and distinguish the terms
in N(I) and G(I).
Lazard’s algorithm ([36, 79]) is a very simple but powerful tool in order to study zerodi-
mensional ideals.
It has been developed in [36], actually being a part of FGLM algorithm.
The aim of Lazard’s algorithm is to compute the monomial basis G(I) of a zerodimensional
ideal I / k[x1, ..., xn] having, as input, only the Groebner escalier N(I). This algorithm is
iterative on the terms in N(I) = {τ1, ..., τs}. Start with |N(I)| = 1, namely N(I) = {1}2. Then
the monomial basis is G(I) = {x1, ..., xn}, since for each j ∈ {1, ..., n} the only existing pre-
decessor of xj is 1 ∈ N(I), while no other term σ can belong to G(I), being multiple of at

2The only order ideal with cardinality one is exactly the singleton {1}, by the definition of order ideal itself.
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least a variable.
Set also L = [x1, ..., xn] i.e. a list containing the products 1 · xj , for j = 1, ..., n.
The above steps constitute the basis for our procedure.
Let |N(I)| > 1, Gi−1 = {τ ′1, ..., τ ′h} be the monomial basis associated to the order ideal
Ni−1 = {1, τ2, ..., τi−1}, i ≤ S and L the list (ordered w.r.t. lex) containing the products
of the form τkxj , for k = 1, ..., i − 1, j = 1, ..., n, with τkxj /∈ Ni−1. We do not allow repe-
titions in L, so if σ = xj0τj0 = xj1τj1 , σ is reported only once in L, but it is marked with a
number, i.e. the number of times it has been computed.
Consider then τi ∈ N(I); in order to compute the monomial basis associated to Ni =

{τ1, ..., τi}, Lazard’s algorithm performs the the steps displayed below on τi.

• remove τi both from L and from Gi−1;

• Computes all the products σj,i = xjτi, for each j = 1, ..., n.

• Inserts each σj,i in L. For each σj,i already appearing in L, the algorithm marks the
number of times it has been computed and selected for insertion.

• All the terms appearing in L, marked exactly with the number of their variables, are
the elements of Gi, the monomial basis associated to Ni.

Remark 3.2.1 ([36]). We study now Lazard algorithm from the efficiency point of view. As
proved in [36], its complexity is O(n2s2), where s = |N(I)| and n is the number of variables
in the given polynomial ring. In the same paper, the authors remarked also that, with a
more efficient implementation, involving priority queues, the complexity of the algorithm
can be improved to O(n2s log(ns)).

We give now a simple example of execution for Lazard’s algorithm.

Example 3.2.2. Consider the order ideal N(I) = {1, x1, x2, x1x2, x3} ⊆ k[x1, x2, x3]. In order
to compute G(I) we proceed term by term as displayed in in the list below.

1: this is the base case, so we get L = [x1, x2, x3] and all the terms coincide with the
monomial basis associated to {1}.

x1: we get L = [x2
1, x2, x1x2, x3, x1x3]. All terms appear only once, two of them containing

two variables, namely x1x2, x1x3, do not belong to the monomial basis associated to
{1, x1}.

x2: we get L = [x2
1, x1x2︸︷︷︸

2 times

, x2
2, x3, x1x3, x2x3]. This time, x1x2 turns out to be in the mono-

mial basis, since it appears twice and it contains two variables, which is not the case
for x1x3, x2x3.
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x1x2: here, we obtain L = [x2
1, x

2
1x2, x

2
2, x1x

2
2, x3, x1x3, x2x3, x1x2x3]. All the terms appear

once, so we remove all the ones containing more than one variable.

x3: for x3, finally, we get L = [x2
1, x

2
1x2, x

2
2, x1x

2
2, x1x3︸︷︷︸

2 times

, x2x3︸︷︷︸
2 times

, x1x2x3, x
2
3]. Here, we have

to remove x2
1x2, x1x

2
2, x1x2x3.

The monomial basis for N(I) = {1, x1, x2, x1x2, x3} is then G(I) = {x2
1, x

2
2, x1x3, x2x3, x

2
3}.

Dealing with the monomial basis, we also study its behaviour degree by degree, repre-
senting it in a very concrete way. This goal can be achieved defining the natural expansion.

Definition 3.2.3. Let H ⊆ Tj for some j ∈ N∗ we set C(0)(H) := H and, for all l ∈ N∗

C(l)(H) = {τ ∈ Tl, ∃σ ∈ H, σ | τ}.
The set C(l)(H) is the natural expansion of H at degree l.

Given then a finite order ideal N, we arrange it by degree, obtaining N0, N1, · · · Nh,
where h is the maximal degree of terms belonging to N.
The monomial basis G associated to such an N can have at most degree h+ 1.
As a matter of fact, if τ ∈ G with deg(τ) = d > h + 1 its predecessors will belong to N

and then we have terms of degree d − 1 ≥ h + 1 in the order ideal, what is impossible by
hypothesis.

Example 3.2.4. There are situations in which N contains monomials of degree at most h, but
also the minimal basis shares the same property.
Take I = (x3, y2, z2, xy) / k[x, y, z], whose Groebner escalier is:
N0 = {1}
N1 = {x, y, z}
N2 = {yz, xz, x2}
N3 = {x2z}:

The monomial basis does not contain elements of degree 4.

We call Gi the i-degree part of the monomial basis G(I).



68 Chapter 3. The original Axis of Evil Theorem.

Lemma 3.2.5. For all i = 0, ..., h+ 1

Ti \ (Ni ∪
i−1⋃
j=1

C(i)(Gj)) = Gi.

Proof: The inclusion Ti \ (Ni∪
⋃i−1
j=1 C

(i)(Gj)) ⊇ Gi is trivial, so we only prove the converse,
Ti \ (Ni ∪

⋃i−1
j=1 C

(i)(Gj)) ⊆ Gi.
Consider τ ∈ Ti \ (Ni ∪

⋃i−1
j=1 C

(i)(Gj)). Clearly τ ∈ I .
Let σ the h-th predecessor of τ ; if σ ∈ I , ∃θ ∈ G(I) with σ = θ · µ for a suitable µ ∈ T .
Then τ = θ · µ · xh i.e. τ ∈

⋃i−1
j=1 C

(i)(Gj). �

Example 3.2.6. For I = (x3, y2, z2, xy) / k[x, y, z], (see example 3.2.4) we have G0 = G1 = ∅,
G2 = T2 \ {yz, xz, x2} = {y2, z2, xy} and G3 = T3 \ ({xy2, xyz, x2y, xz2, yz2, z3, y3, y2z} ∪
{x2z}) = {x3}.

3.3 Macaulay Trick and Lazard Structural Theorem.

In this section, we focus on two famous results on factorized Groebner bases, namely Macaulay
Trick and Lazard structural theorem.
We start dealing with the setting examined by Macaulay, studying a way to solve the prob-
lem below.

Problem 3.3.1. Given a finite set of terms {τ1, ..., τr} ⊂ T and a term order< on T , construct
a set of polynomials {g1, ..., gr} ⊂ P such that:

• for each i ∈ {1, ..., r}, T(gi) = τi;

• G := {g1, ..., gr} is a Groebner basis for the ideal I = (G), that is

T(I) = T(G) = (τ1, ..., τr).

Description 3.3.2. In order to look for a solution, we first construct a finite sequence

M := [σ1, ..., σs] ⊆ T

satisfying:

a. for each i, 1 ≤ i ≤ r exists a subset Ji ⊂ {1, ..., s} such that τi =
∏
l∈Ji σl;

b. for each i, j 1 ≤ i < j ≤ r, lcm(τi, τj) =
∏
l∈Ji∪Jj σl
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Remark 3.3.3. We point out that, by definition, M is a finite sequence and not a set, so repeti-
tions among the elements appearing in M are allowed.

Example 3.3.4. For the terms τ1 := x2 and τ2 := xy in k[x, y], we get

σ1 := σ2 := x, σ3 := y

and
J1 := {1, 2}, J2 := {1, 3}.

Remark 3.3.5. The finite sequence satisfying conditions a. and b. is not unique.
Given {τ1, ..., τr} ⊂ T , more than one sequence can produce the required result, as shown
in the following example.

Example 3.3.6. For the terms τ1 := x4, τ2 := x3y3 in k[x, y] we can consider first the se-
quence

M1 := [x, x3, y3].

Using the list M1, we have J1 = {1, 2}, J2 = {2, 3}.
Indeed, we have x · x3 = x4 = τ1, x3 · y3 = x3y3 = τ2 and it holds

lcm(x4, x3y3) = x4y3 = x · x3 · y3 =
∏

l∈J1∪J2

σl.

Moreover, we notice that GCD(x4, x3y3) = x3 =
∏
l∈J1∩J2

σl.

However, M1 is not the unique sequence compatible with conditions a. and b.
Consider indeed the sequence

M2 := [x, x, x, x, y, y, y].

For M2, we get J1 = {1, 2, 3, 4}, J2 = {1, 2, 3, 5, 6, 7}.
Indeed, x · x · x · x = x4 = τ1 and x · x · x · y · y · y = x3y3 = τ2.
Moreover, it holds lcm(x4, x3y3) = x4y3 = x · x · x · x · y · y · y.

We describe now an algorithmic method in order to compute concretely a sequence of
the required shape.
Given a set of terms {τ1, ..., τr} ⊂ T , defined as τ1 := x

α1,1

1 · · ·xα1,n
n , ..., τr := x

αr,1
1 · · ·xαr,nn .

For this set, we can consider the following sequence, only composed by single variables:

M := [x1, ...., x1, x2, ..., x2, ...., xn, ..., xn],

where for each 1 ≤ h ≤ n, xh appears exactly αh := max{α1,h, ..., αr,h} times so that |M | =∑n
h=1 αh and we number the elements of M from 1 to |M |.
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Given any term τi = x
αi,1
1 · · ·xαi,nn in the given set, the associated Ji can be computed as

follows

Ji = {1, ..., αi,1, αi + 1, ..., α1 +αi,2 − 1, ..., α1 + ...+αn−1 + 1, ..., α1 + ...+αn−1 +αi,n − 1}.

We show a simple example of the above construction.

Example 3.3.7. If the given terms are τ1 = x4
1, τ2 = x3

1, τ3 = x2, τ4 = x2
1, we consider the

sequence
M = [x1, x1, x1, x1, x2],

labelling its elements as L = [1, 2, 3, 4, 5]. The term τ1 = x4
1 contains only x1, with exponent

4, so we get J1 = {1, 2, 3, 4}.
For τ2 = x3

1, we take the first three numbers, labelling copies of x1, so J2 = {1, 2, 3}.
Since τ3 = x2, we get J3 = {5} and finally, for τ4 = x2

1, we obtain J4 = {1, 2}.
The crucial fact is to take the first numbers of the list L for the variables. Indeed, if we take
J ′4 = {3, 4} instead of J4, we get lcm(τ2, τ4) = x4

1, since we have to derive it from J2 ∪ J ′4 =

{1, 2, 3, 4}, but this is clearly false.

Clearly, condition a. of description 3.3.2 is fulfilled: τi =
∏
l∈Ji σl.

On the other hand, suppose to consider the union Ji ∪ Jj of two sets obtained from a finite
sequence as above. Such operation corresponds to take the common and non common
factors of the associated terms τi, τj , raised to the maximal exponents they appear with. It
exactly means computing the least common multiple between τi and τj :

lcm(τi, τj) =
∏

l∈Ji∪Jj

σl.

For each l, 1 ≤ l ≤ s we choose a polynomial hl ∈ P = k[x1, ..., xn] such that T(hl) < σl

and we define:
γl := σl − hl, ∀l, 1 ≤ l ≤ s;

gi :=
∏
l∈Ji

γl, ∀i, 1 ≤ i ≤ r.

It holds T(gi) =
∏
l∈Ji σl.

With the above notation, for each couple of indices i, j, 1 ≤ i < j ≤ r, denoted

T(i, j) = lcm(T(gi),T(gj)) = lcm(τi, τj),

we choose ti,j , tj,i ∈ T defined as

ti,jT(gi) = tj,iT(gj).
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Assuming

lcm(τi, τj) =
(∏

l∈Ji σl ·
∏
l∈Jj σl∏

l∈Ji∩Jj σl

)
=

∏
l∈Ji∪Jj

σl =
∏
l∈Ji

σl ·
∏

l∈Jj\Ji

σl =
∏
l∈Jj

σl ·
∏

l∈Ji\Jj

σl,

it clearly holds
ti,j :=

∏
l∈Jj\Ji

σl,

tj,i :=
∏

l∈Ji\Jj

σl.

Proposition 3.3.8. With the above notation, the set G := {g1, ..., gr} is a Groebner basis.

Proof: We prove that, considered two arbitrary i, j, 1 ≤ i < j ≤ r, the S-polynomial S(i, j)

has a Groebner representation.
For this purpose, we define

φi,j :=
( ∏
l∈Jj\Ji

γl

)
− ti,j ;

φj,i :=
( ∏
l∈Ji\Jj

γl

)
− tj,i;

We know that
ti,j = T

( ∏
l∈Jj\Ji

γl

)
tj,i = T

( ∏
l∈Ji\Jj

γl

)
and, since in φi,j , φj,i we subtract to the above products exactly the leading terms, we can
affirm that T(φi,j) < ti,j and T(φj,i) < tj,i.
We prove then that the required representation is

S(i, j) = −φi,jgi + φj,igj .

In effect this is true since, by the properties of union

0 = −
∏

l∈Ji∪Jj

γl +
∏

l∈Jj∪Ji

γl =

so, manipulating the formula, we get

= −
∏
l∈Ji

γl

( ∏
l∈Jj\Ji

γl

)
+
∏
l∈Ji

γl

( ∏
l∈Ji\Jj

γl

)
=
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= −gi
( ∏
l∈Jj\Ji

γl

)
+ gj

( ∏
l∈Ji\Jj

γl

)
=

but, by definition of φi,j , φj,i,

= −(φi,j + ti,j)gi + (φj,i + tj,i)gj = −φi,jgi + φj,igj − (ti,jgi − tj,igj) =

and by definition of S-polynomial

= −φi,jgi + φj,igj − S(i, j).

For being effectively a Groebner representation, the condition on the leading terms must be
fulfilled.
Anyway, the following relations imply directly that condition:

T(φi,jgi) < ti,jT(gi) = lcm(T(gi),T(gj)) = tj,iT(gj) > T(φj,igj).

�

This way, we have then solved the problem 3.3.1.
We switch now to a new problem, solved by Macaulay.
Consider a finite set of distinct points X = {P1, ..., PS} ⊂ kn, with Pi := (ai1, ..., ain) and set
the following notation:

• ∀i, li ∈ P∗ = Homk(P, k) is the linear functional, operating the “evaluation” in the
associated point:

li(f) = f(ai1, ..., ain) ∀f(x1, ..., xn) ∈ P;

• L(X) := Spank({li, 1 ≤ i ≤ S}) ⊂ P∗

• I(X) := {f ∈ P : f(Pi) = 0, ∀i} = P(L(X)), the ideal of points for X .

Under the above notation, we can present the following result by Macaulay (see [68]).
Let N ⊂ T be a finite order ideal.
Let J := T \ N be the associated semigroup ideal and G(J) := {τ1, ..., τr}, with τl =

xα1l
1 · · ·xαnln for each l.

Since N is a finite set, for each i ∈ {1, ..., n}we need to have a di ∈ N such that

xdii ∈ G(J)

and, moreover,
αil ≤ di ∀l.
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Example 3.3.9. If we consider the polynomial ring k[x1, x2] and we take the finite order
ideal N = {1, x1, x2, x

2
2, x1x2}, the associated monomial basis is G = {x3

2, x
2
1, x1x

2
2} and, in

this case, d1 = 2, d2 = 3.

For each i, j, e, j 6= e we choose the elements

aij ∈ k, 1 ≤ i ≤ n, 0 ≤ j ≤ di : aij 6= aie

and, for each l, 1 ≤ l ≤ r

gl :=

n∏
i=1

αil−1∏
j=0

(xi − aij),

for which, trivially T(gl) = τl holds.
We associate to each term t = xα1

1 · · ·xαnn ∈ N an affine point

a(t) := (a1α1
, ..., anαn) ∈ kn

and we set
X := {a(t) : t ∈ N}.

We obtain then

Corollary 3.3.10. With the above notation, for each degree-compatible term order, we have:

1. N = N(I(X));

2. G(I(X)) := {g1, ..., gr} is the reduced Groebner basis of I(X).

Proof: First of all, we notice that we are under the hypotheses of proposition 3.3.8.
Indeed, the chosen numbers aij play the role of the elements hl defined above ( we consider
the list containing all the terms σl constructed as explained before: aij is the element related
to the i-th variable and the j + 1-th exponent for xi).
Moreover, the product constituting the polynomials gi’s, for i = 1, ..., n and j = 0, ..., αil − 1

coincides with the product of the γl with l ∈ Ji.
With that, the set G = {g1, ..., gr} represents a Groebner basis for the ideal J = (g1, ..., gr)

and N is the Groebner escalier for the ideal whose Groebner basis is G.
Since by construction, all the polynomials vanish over X , we have J ⊆ I(X).
Moreover, by the relations

mult(J) = |N| = |X| = mult(I(X)),



74 Chapter 3. The original Axis of Evil Theorem.

we can conclude J = I(X).
We can say that G = G(J) = G(I(X)) is a Groebner basis of I(X) and N = N(I(X)).
Such a basis is also the reduced one because:

• it is composed by monic polynomials;

• G is minimal;

• the polynomials gi, i = 1, ..., r, have the form T(gi) − Can(T(gi), i), since Supp(gi) \
{T(gi)} ⊆ N. Actually, these terms divide T(gi) by construction. Moreover, the poly-
nomials gi belong to the ideal.

�

Let us consider now a very simple example.

Example 3.3.11. In the polynomial ring k[x, y], we consider the finite order ideal N =

{1, x, y}. In our notation the monomial basis turns out to be G = {x2, xy, y2}.
The pure powers of x, y in G3 have to be raised to the exponents d1 = d2 = 2 in the above
notation, since 2 is the minimal power of x, y in N. Indeed, no mixed products of the form
xiyj can have i or j greater than the value in the corresponding pure power, by minimality
of G and x2, y2 ∈ G.
Fix the following values:
a10 = 0, a11 = 1, a20 = 0, a21 = 1, obtaining the points:
a(1) = (0, 0);
a(x) = (0, 1);
a(y) = (1, 0),
i.e. X = {(0, 0), (0, 1), (1, 0)}. The polynomials gi, i = 1, ..., 3, will be

g1 := x2 − x;

g2 := xy;

g3 := y2 − y,

and we have exactly I(X) = {g1, g2, g3}.

Given an arbitrary

σ = xα1
1 · · ·xαnn ∈ {xjτ/1 ≤ j ≤ n, τ ∈ N},

3They surely exist, since |N| <∞.
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in the zerodimensional case, we have that αi ≤ di, for each i ∈ {1, ..., n}, so it is natural to
consider the following polynomials:

gσ :=

n∏
i=1

αi−1∏
j=0

(xi − aij), σ = xα1
1 · · ·xαnn ∈ {xjτ/1 ≤ j ≤ n, τ ∈ N}

and study their relations, leaning on the notation above.
First of all, we reorder the order ideal N := {τ1, ..., τS} increasingly w.r.t the lexicographical
order induced by x1 < ... < xn and we set ai := a(ti) in order to fix also an order both on X

and L(X).
Finally, we set qi := gτi , for each i ∈ {1, ..., S}. It holds

Lemma 3.3.12. With the above notation, we get

1. B(I(X)) = {gτ/τ ∈ B(I(X))};

2. G(I(X)) = {gτ/τ ∈ G(I(X))};

3. q(X) = {qi/1 ≤ i ≤ S}.

Proof:

1. For this statement, we barely follow the line of 3.3.10: the polynomials belong to I(X)

and their leading terms are in the border set, while the other terms appearing in their
support belong to the Groebner escalier;

2. it is 3.3.10;

3. we have to prove that the qi’s are triangular, i.e. li(tj) = 0 for i < j.
In our case, the functionals are the evaluations at points, so we need to prove that
gtj (a(ti)) = 0, i < j.
By the ordering given to the terms, τi < τj . It means that, if τi = x

αi,1
1 · · ·xαi,nn and

τj = x
αj,1
1 · · ·xαj,nn , there exists h ∈ {1, ..., n} such that αj,h > αi,h.

For this reason, constructing gτj we get a factor vanishing in aτi and then we can
conclude.

�

If we deal with the polynomial ring in two variables k[x1, x2], the Groebner basis constructed
via Macaulay’s trick for an ideal I as before, is an example illustrating Lazard structural the-
orem.



76 Chapter 3. The original Axis of Evil Theorem.

This theorem describes the structure of a lexicographical minimal Groebner basis for an
ideal I / k[x1, x2].

The proof considers P = k[x1, x2] = k[x1][x2] and bases on the fact that k[x1] is a Principal
Ideal Domain (PID).
We can then extend it to the more general caseR[x], withR PID, to describe Groebner bases.
In order to understand the statement of Lazard structural theorem, we first recall the fol-
lowing definitions.

Definition 3.3.13. The content rf ∈ R, with R PID, of a polynomial f(x) ∈ R[x] is the GCD
of its coefficients. A polynomial f(x) ∈ R[x] is called primitive if rf = 1.
The primitive part of f(x) ∈ R[x] is the polynomial p0(x) ∈ R[x] such that f(x) = rfp0(x).

We first prove the following

Proposition 3.3.14. Let R be a principal ideal ring and I / P := R[x] an ideal. Let F :=

{f0, ..., fs} be a minimal Groebner basis of I , ordered so that

deg(f0) ≤ ... ≤ deg(fs)

and, for each i, denote by ci := Lc(fi), ri ∈ R \ {0} and by pi ∈ P the content and the
primitive part of fi. We can further assume that such basis is reduced, in the sense that

fi = M(fi) + Can(M(fi), F ).

Then

1. deg(f0) < ... < deg(fs);

2. for each 0 ≤ i < s there is Gi+1 ∈ R such that ci = Gi+1ci+1

3. Gi+1fi+1 ∈ (f0, ..., fi) for each 0 ≤ i < s.

Proof: Let us set d(i) := deg(fi) for each i. By hypothesis, we have d(i) ≤ d(i+ 1).
We prove, first of all, that the case d(i) = d(i+ 1) cannot occur. Indeed, if d(i) = d(i+ 1) we
can define the element

h := bifi + bi+1fi+1 ∈ I,

where c, bi, bi+1 belong to R and bici + bi+1ci+1 = c = GCD(ci, ci+1), so that cxd(i+1) =

M(h) ∈ M(I).

Since M(h) ∈ M(I) there exists an index j with M(fj) | M(h) | M(fi+1)4.

4 The first divisibility relation comes from the fact that M(h) ∈ M(I), while the second one is consequence of
T(fi+1) = xd(i+1) and c = GCD(ci, ci+1)|ci+1.
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This chain of relations assures that M(fj)|M(fi+1) i.e. gives a divisibility relation between
the leading terms of two elements in the basis. By the minimality, this is impossible, so
d(i) < d(i+ 1).

Both xd(i+1)d(i)fi and fi+1 are in the ideal and have degree d(i + 1); then for c, bi, bi+1 ∈ R
such that bici + bi+1ci+1 = c = GCD(ci, ci+1), h := bix

d(i+1)−d(i)fi + bi+1fi+1 ∈ I , so that
cxd(i+1) = M(h) ∈ M(I) and M(fj) | M(h) for some j. If ci+1 6= GCD(ci, ci+1), then j < i+ 1

and M(fj)|M(fi+1), getting a contradiction. As a conclusion, ci+1 | ci for each i.
Since Gi+1fi+1 − xd(i+ 1)− d(i)fi is a polynomial of degree less than d(i + 1) reducing to
0 w.r.t. the Groebner basis, so Gi+1fi+1 ∈ (f0, ..., fi). �

Theorem 3.3.15. With the same notation, if moreoverR is a domain, denoting by p := p0 the
primitive part of f0 and Gs+1 := rs ∈ R \ {0} the content of of fs, then for each i, 0 ≤ i < s

there is Hi+1 ∈ P , d(i) := deg(Hi) such that

• f0 = pG1 · · ·Gs+1;

• fj = pHjGj+1 · · ·Gs+1, 1 ≤ j ≤ s

and

1. ri = Gi+1 · · ·Gs

2. Lc(Hi) = 1 for each i

3. d(1) < ... < d(s);

4. for each i, we have Hi+1 ∈ (G1 · · ·Gi, H1G2 · · ·Gi, ...,Hi−1Gi, Hi);

Proof: Let p andGs+1 be, respectively, the primitive part and the content ofGCD(f0, ..., fk)

in R[x]; a set {g0, ..., gs} is a minimal Groebner basis if and only if so is for {gg0, ..., ggs}, we
can divide by pGs+1 and assume that p = Gs+1 = 1 and GCD(f0, ..., fs) = 1. Under this
assumption, Gi+1fi+1 ∈ (f0, ..., fi) for each i, 0 ≤ i < k so, inductively, we have

• p0|fj , ∀j ≤ i⇒ p0|fj , ∀j ≤ i+ 1;

• ci|fj , ∀j ≤ i⇒ ci = Gi+1ci+1|Gi+1fi+1, ∀j ≤ i+ 1⇒
⇒ ci+1|fj , ∀j ≤ i+ 1.

Therefore,GCD(f0, ..., fs) = 1 gives that p0 = cs = 1 and each ci verifies ci|fi, so it coincides
with ri.
By induction, we have

lc(p)ri = ci = Gi+1ci+1 = lc(p)Gi+1ri+1 = lc(p)Gi+1 · · ·Gs.
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Setting Hi := fi
ci

for each i, we obtain lc(Hi) = 1, d(i) + deg(p) = deg(fi) and finally, we
point out that Gi+1fi+1 ∈ (f0, ..., fi): dividing Gi+1 · · ·Gs we can conclude. �

Example 3.3.16. Consider again example 3.3.11, and set the lexicographical order, x < y.
The Groebner basis is {x2 − x, xy, y2 − y}, which is ordered as in 3.3.15.
We have p = 1, G1 = x1, G2 = x, G3 = 1, H1 = y, H2 = y2 − y, d(1) = 1 < d(2) = 2 and
H2 ∈ (G1, H1).

In the next example, we apply Macaulay trick, showing a relationship with Lazard struc-
tural theorem.

Example 3.3.17. Consider the polynomial ring in three variables P = k[x1, x2, x3], the asso-
ciated set of terms T and the lexicographical order induced by x1 < x2 < x3.
Moreover, consider the order ideal

N := {1, x1, x
2
1, x2, x1x2, x

2
1x2, x

2
2, x1x

2
2, x

3
2, x3, x1x3, x

2
1x3, x2x3, x

2
2x3, x

3
2x3, x

2
3}.

For each couple of indices i, j, we choose aij = j and we consider the terms

σ ∈ ({1} ∪ {xjτ/1 ≤ j ≤ n, τ ∈ N}).

We will get:

1 : is a term in the order ideal N: t1 = 1 ∈ N. The corresponding point is a(1) =

(a10, a20, a30) = (0, 0, 0) ∈ k3 and we have g1 = q1 = 1 ∈ q(X).

x1 : t2 = x1 ∈ N, a(x1) = (1, 0, 0), so q2 = gt2 = gx1
= x1 ∈ q(X).

x2
1 : t3 = x2

1 ∈ N, a(x2
1) = (2, 0, 0), so q3 = gt3 = gx2

1
= x1(x1 − 1) ∈ q(X).

x3
1 : x3

1 /∈ N, and it is the product by x1 of a term in N. Actually x3
1 ∈ G (all the predecessors

belong to N). Finally gx3
1

= x1(x1 − 1)(x1 − 2) ∈ G(I).

We proceed similarly:

x2 : τ4 = x2 ∈ N, a(x2) = (0, 1, 0), q4 = gτ4 = gx2
= x2 ∈ q(X).

x1x2 : τ5 = x1x2 ∈ N, a(x1x2) = (1, 1, 0), q5 = gτ5 = gx1x2
= x1x2 ∈ q(X).

x2
1x2 : τ6 = x2

1x2 ∈ N, a(x2
1x2) = (2, 1, 0), q6 = gτ6 = gx2

1x2
= x1(x1 − 1)x2 ∈ q(X).
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x3
1x2 : x3

1x2 ∈ B (caveat lector: x3
1 /∈ N!), gx3

1x2
= x2(x1 − 1)(x1 − 2) ∈ B(I).

x2
2 : τ7 = x2

2 ∈ N, a(x2
2) = (0, 2, 0), q7 = gτ7 = gx2

2
= x2(x2 − 1) ∈ q(X).

x1x
2
2 : τ8 = x1x

2
2 ∈ N, a(x1x

2
2) = (1, 2, 0), q8 = gτ8 = gx1x2

2
= x1x2(x2 − 1) ∈ q(X).

x2
1x

2
2 : x2

1x
2
2 ∈ G, gx2

1x
2
2

= x1(x1 − 1)x2(x2 − 1) ∈ G(I).

x3
2 : τ9 = x3

2 ∈ N, a(x3
2) = (0, 3, 0), q9 = gτ9 = gx3

2
= x2(x2 − 1)(x2 − 2) ∈ q(X).

x1x
3
2 : τ10 = x1x

3
2 ∈ N, a(x1x

3
2) = (1, 3, 0), q10 = gτ10

= gx1x3
2

= x1x2(x2 − 1)(x2 − 2) ∈ q(X).

x2
1x

3
2 : x2

1x
3
2 ∈ B, gx2

1x
3
2

= x1(x1 − 1)x2(x2 − 1)(x2 − 2) ∈ B(I).

x4
2 : x4

2 ∈ G, gx4
2

= x2(x2 − 1)(x2 − 2)(x2 − 3) ∈ G(I).

x1x
4
2 : x1x

4
2 ∈ B, gx1x4

2
= x1x2(x2 − 1)(x2 − 2)(x2 − 3) ∈ B(I).

x3 : τ11 = x3 ∈ N, a(x3) = (0, 0, 1), q11 = gτ11 = gx3 = x3 ∈ q(X).

x1x3 : τ12 = x1x3 ∈ N, a(x1x3) = (1, 0, 1), q12 = gτ12
= gx1x3

= x1x3 ∈ q(X).

x2
1x3 : τ13 = x2

1x3 ∈ N, a(x2
1x3) = (2, 0, 1), q13 = gτ13 = gx2

1x3
= x1(x1 − 1)x3 ∈ q(X).

x3
1x3 : x3

1x3 ∈ B, gx3
1x3

= x1(x1 − 1)(x1 − 2)x3 ∈ B(I).

x2x3 : τ14 = x2x3 ∈ N, a(x2x3) = (0, 1, 1), q14 = gτ14 = gx2x3 = x2x3 ∈ q(X).

x1x2x3 : x1x2x3 ∈ G, gx1x2x3
= x1x2x3 ∈ G(I).

x1x
4
2 : x1x

4
2 ∈ B, gx1x4

2
= x1x2(x2 − 1)(x2 − 2)(x2 − 3) ∈ B(I).

x2
1x2x3 : x2

1x2x3 ∈ B, gx2
1x2x3

= x1(x1 − 1)x2x3 ∈ B(I).

x2
2x3 : τ15 = x2

2x3 ∈ N, a(x2
2x3) = (0, 2, 1), gx2

2x3
= g15 = q15 = x2(x2 − 1)x3 ∈ q(X).

x1x
2
2x3 : x1x

2
2x3 ∈ B, gx1x2

2x3
= x1x2(x2 − 1)x3 ∈ B(I).

x3
2x3 : τ16 = x3

2x3 ∈ N, a(x3
2x3) = (0, 3, 1), gx3

2x3
= g16 = q16 = x2(x2 − 1)(x2 − 2)x3 ∈ q(X).

x1x
3
2x3 : x1x

3
2x3 ∈ B, gx1x3

2x3
= x1x2(x2 − 1)(x2 − 2)x3 ∈ B(I).

x4
2x3 : x4

2x3 ∈ B, gx4
2x3

= x2(x2 − 1)(x2 − 2)(x2 − 3)x3 ∈ B(I).

x2
3 : τ17 = x2

3 ∈ N, a(x2
3) = (0, 0, 2), gx2

3
= g17 = q17 = x3(x3 − 1) ∈ q(X).

x1x
2
3 : x1x

2
3 ∈ G, gx1x2

3
= x1x3(x3 − 1) ∈ G(I).



80 Chapter 3. The original Axis of Evil Theorem.

x2
1x

2
3 : x2

1x
2
3 ∈ B, gx2

1x
2
3

= x1(x1 − 1)x3(x3 − 1) ∈ B(I).

x2x
2
3 : x2x

2
3 ∈ G, gx2x2

3
= x2x3(x3 − 1) ∈ G(I).

x2
2x

2
3 : x2

2x
2
3 ∈ B, gx2

2x
2
3

= x2(x2 − 1)x3(x3 − 1) ∈ B(I).

x3
2x

2
3 : x3

2x
2
3 ∈ B, gx3

2x
2
3

= x2(x2 − 1)(x2 − 2)x3(x3 − 1) ∈ B(I).

x3
3 : x3

3 ∈ G, gx3
3

= x3(x3 − 1)(x3 − 2) ∈ G(I).

Now, we connect to Lazard Structural Theorem, considering the ideal I ∩ k[x1, x2], whose
Groebner basis is

{gx3
1
, gx2

1x
2
2
, gx4

2
} = {f0, f1, f2}.

The structure is exactly the one of the theorem

• f0 = x1(x1 − 1)(x1 − 2) = G1G2, dove G1 = (x1 − 2), G2 = x1(x1 − 1);

• f1 = x1(x1 − 1)x2(x2 − 1) = H1G2, con H1 = x2(x2 − 1);

• f2 = x2(x2 − 1)(x2 − 2)(x2 − 3) = H2;

p = G3 = 1, fulfilling the theorem.

3.4 The Axis of Evil algorithm.

For I =
√
I , the Axis of Evil Theorem by Marinari and Mora, somehow extends Lazard

structural theorem 3.3.15 to the case of n variables, giving a remarkable improvement.
In this thesis, we give a constructive proof for

Theorem 3.4.1 (Marinari-Mora). Consider a 0-dimensional radical ideal I . Denote by N(I)

the associated Groebner escalier and G(I) = {τ1, ..., τr} ⊂ T , τi := x
di,1
1 · · ·xdi,nn the mono-

mial basis for the lexicographical initial ideal In(I).
A combinatorial algorithm and interpolation provide polynomials

γmδi = xm − gmδi(x1, ..., xm−1),

for each i ∈ {1, ..., r}, m ∈ {1, ..., n} and δ ∈ {1, ..., di,m} such that the products

fi =
∏
m

∏
δ

γmδi, i = 1, ..., r

form a minimal Groebner basis of I , with respect to the lexicographical order induced by
x1 < ... < xn.
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Clearly, for the polynomials fi of theorem 3.4.1, we have T(fi) = τi for i = 1, ..., r.
Hence, taken a finite set of distinct points X = {P1, ..., PS} and denoted by I := I(X)

the ideal of X, the first step in order to find the factorized minimal Groebner basis G :=

G(I(X)) of I is to compute the monomial basis G(I).
Clearly G(I) can be computed passing through the usual Groebner basis computation. Any-
way, we want to do it in a pure combinatorial way, deriving G(I) from the Groebner escalier
N(I) := N(I(X)).
As explained in chapter 2, we can get N(I) directly from the points in X via the Cerlienco-
Mureddu correspondence or the Felszeghy-B. Ráth-Rónyai Lex Game, them Gao-Rodrigues-
Stroomer method or the Lederer’s algorithm.
For the time being, we follow [79] and we only use Cerlienco-Mureddu Correspondence,
but also the other methods work.
Moreover, in next chapter, we will study how to improve the Axis of Evil algorithm, ex-
ploiting a suitable method for computing the Groebner escalier.
At this stage, we can suppose as known:

• N(I), obtained via Cerlienco-Mureddu Correspondence;

• G(I), produced applying Lazard’s algorithm to N(I).

The pseudocode of the algorithm is displayed in 5. For an implementation, see [103].

If the variables in P = k[x1, ..., xn] are ordered as usual, namely x1 < x2 < ... < xn, we
know that the first generator τ1 in G(I) is τ1 = x

d1,1

1 for some d1,1 ∈ N, since I is zerodimen-
sional.
Computing the factors composing the polynomial f1 ∈ G such that T(f1) = τ1 is particu-
larly simple. Indeed, if τ1 = x

d1,1

1 ∈ G(I), then all the terms 1, x1, ..., x
d1,1−1
1 ∈ N(I).

As seen in chapters 1, 2, while discussing Moeller algorithm and the computational meth-
ods for the Groebner escalier, the condition 1, x1, ..., x

d1,1−1
1 ∈ N(I), means that the points in

X have exactly d1,1 different first coordinates.
Being an element of G, f1 has to vanish at all points of X. Hence, if we compute the set

N1(τ1) := {xi1/ i < d1,1} = {ω ∈ T [1], τ1 > ωx
d1,2

2 · · ·xd1,n
n ∈ N(I)},

being d1,2 = ... = d1,n = 0, we get exactly N1(τ1) = {1, x1, ..., x
d1,1−1
1 }.

These terms correspond, by Cerlienco-Mureddu correspondence, to the first d1,1 points
with different first coordinates, say A1(τ1) = {Pα1

, ..., Pαd1,1
}.

For each 1 ≤ j ≤ d1,1, let aj be the first coordinate of Paj . We let B1(τ1) = {a1, ..., ad1,1
} and
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Algorithm 5 The Axis of Evil algorithm.
1: procedure AOE(X,G(I(X)) := {τ1, ..., τr})→ R . R contains a factorized minimal Groebner basis of I .

Require: We denote τj = x
dj,1
1 · · ·xdj,nn for j = 1, ..., n.

Ensure: Axis of Evil factorization.
2: R = ∅
3: for i = 1 to r do
4: N1(τj) := {xi1/ i < dj,1} = {ω ∈ T [1], τj > ωx

dj,2
2 · · ·xdj,nn ∈ N}

5: A1(τj) := {Φ−1(xi1x
dj,2
2 · · ·xdj,nn )/ i < dj,1} ⊂ X.

6: B1(τj) := π1(A1(τj)) ⊂ k.
7: γ1τj :=

∏
a∈B1(τj)

(x1 − a).
8: for m = 2 to n do
9: ζmτj :=

∏m−1
ν=1 γντj .

10: Dm0 := {Pi ∈ X/ ζmτj (Pi) 6= 0}.
11: if |Dm0| = 0 then
12: R = [R, ζmτj ].
13: break.
14: end if
15: Nm(τj) := {ω ∈ T [m], τj > ωx

dj,m+1

m+1 · · ·xdj,nn ∈ N}.
16: for δ = 1 to dj,m do
17: Amδ(τj) := {Φ−1(vx

dj,m−δ
m x

dj,m+1

m+1 · · ·xdj,nn )|v ∈ T [m − 1], vx
dj,m−δ
m ∈

Nm(τj)} ∩Dm(δ−1)(τj).
18: Emδ(τj) := Φ(πm(Amδ(τj))).
19:

γmδτj := xm +
∑

ω∈Emδ(τj)

c(γmτj , ω)ω,

such that γmδτj (P ) = 0, ∀P ∈ Amδ(τj).
20: ξmδ :=

∏m−1
ν=1 γντj

∏δ
d=1 γmdτ .

21: Dmδ(τj) := {Pi ∈ X/ ξmδ(Pi) 6= 0} ⊆ X

22: if |Dmδ(τj)| = 0 then
23: R = [R, ξmδ].
24: break.
25: end if
26: end for
27: γmτj :=

∏
δ γmδτj .

28: end for
29: end for
30: return R.
31: end procedure
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we compute the polynomial

γ1τ1 :=

d1,1∏
j=1

(x1 − aj).

Since T(γ1τ1) = τ1 and γ1τ1 vanishes over all X, f1 = γ1τ1 , so we have found the first
element of G.
Moreover, not only the factors composing f1 but also f1 itself is reduced, since Supp(f1) \
{τ1} ⊆ {1, x1, ..., x

d1,1−1
1 } ⊆ N(I). We point out that f1 has been determined as the product

of exactly d1,1 factors.

Example 3.4.2. Let X = {(1, 0), (2, 3), (4, 6), (0, 7), (5, 2), (4, 1), (2, 6), (2, 7), (0, 6)} ⊂ R2.
We draw the unmixed tower structure we can get from X in order to have an overall view
of the set.

2,3 4,6 0,7 1,0 5,2

2,6 4,1 0,6

2,7

Since we are dealing now with points in only 2 coordinates, Cerlienco-Mureddu algorithm
turns out to be simplified. More precisely, we get the Groebner escalier by a tower reorder-
ing (2.2.8), so

N(I) = {1, x1, x
2
1, x

3
1, x

4
1, x2, x1x2, x

2
1x2, x

2
2}.

The monomial basis is G(I) = {x5
1, x

3
1x2, x1x

2
2, x

3
2}, so minLex(G(I)) = x5

1. We get

N1(τ1) := {1, x1, x
2
1, x

3
1, x

4
1}

and its elements correspond to the points

A1(τ1) = {(2, 3), (4, 6), (0, 7), (1, 0), (5, 2)}.

The projection π1(A1(τ1)) is exactly the set containing the first coordinates, so it turns out to
be

B1(τ1) = {2, 4, 0, 1, 5}.

We obtain the polynomial (fulfilling the tasks of lines from 4 to 7 of algorithm 5)

f1 = γ1τ1 = x1(x1 − 2)(x1 − 4)(x1 − 1)(x1 − 5) = x5
1 − 12x4

1 + 49x3
1 − 78x2

1 + 40x1,

clearly vanishing at all X.
We know that f1 belongs to the minimal Groebner basis of theorem 3.4.1, but it also belongs
to the reduced Groebner basis, since x1, x

2
1, x

3
1, x

4
1 ∈ N(I).

Actually, if we compute via Singular [30] the reduced Groebner basis of I(X) we get
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• x5
1 − 12x4

1 + 49x3
1 − 78x2

1 + 40x1, that is exactly our f1;

• 2x3
1x2 − 12x2

1x2 + 16x1x2 − x4
1 + 7x3

1 − 14x2
1 + 8x1;

• 4x1x
2
2 − 8x2

2 + 6x2
1x2 − 64x1x2 + 104x2 − 9x4

1 + 107x3
1 − 426x2

1 + 664x1 − 336;

• 12x3
2 − 192x2

2 − 18x2
1x2 + 36x1x2 + 972x2 − 149x4

1 + 1583x3
1 − 5218x2

1 + 5296x1 − 1512.

We show now how to find fj from τj = x
dj,1
1 · · ·xdj,nn , j ≤ r = |G(I)|. We refer to

algorithm 5.
Similarly to what done for τ1, we first study the first coordinates, namely we compute the
set

N1(τj) := {xi1/ i < dj,1} = {ω ∈ T [1], τj > ωx
dj,2
2 · · ·xdj,nn ∈ N(I)}.

By Cerlienco-Mureddu correspondence, each term in N(I) is associated to a point of X,
so we can define

A1(τj) := {Φ−1(xi1x
dj,2
2 · · ·xdj,nn )/ i < dj,1} ⊂ X

and, if we project w.r.t the first coordinate, we get B1(τj) := π1(A1(τj)) ⊂ k. The factors in
x1 are of the form (x1 − a) for a ∈ B1(τj), so the partial factor in xdj,11 is

γ1τj :=
∏

a∈B1(τj)

(x1 − a),

again following lines from 4 to 7 of algorithm 5.
We construct now the set

D20 := {Pi ∈ X/ γ1τj (Pi) 6= 0},

containing all the points in the given X such that γ1τj do not vanish. If D20 is the empty set,
then fj = γ1τj . In this case, we do not have to deal with τj anymore5 (we have executed
what prescribed in lines 9-14).
Otherwise, we construct the set

N2(τj) := {ω ∈ T [2], τj > ωx
dj,3
3 · · ·xdj,nn ∈ N(I)},

containing the terms ω in the two variables x1, x2 such that τj > ωx
dj,3
3 · · ·xdj,nn in the Groeb-

ner escalier (line 15) and, for each δ from 1 to dj,2, we compute the set of points where to
interpolate, namely

A2δ(τj) := {Φ−1(vx
dj,2−δ
2 x

dj,3
3 · · ·xdj,nn )|v ∈ T [1], vx

dj,2−δ
2 ∈ N2(τj)} ∩D2(δ−1)(τj)

5It happens only for τ1 since only one pure power of x1 can occur in G(I), by the minimality of G(I).
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and the set of terms appearing in the current factor, i.e. E2δ(τj) := Φ(π2(A2δ(τj))).
With the above data, we perform the interpolation step and we finally get the factor

γ2,δτj := x2 +
∑

ω∈E2δ(τj)

c(γ2τj , ω)ω,

such that γ2δτj (P ) = 0, ∀P ∈ A2δ(τj).

We compute then D2δ(τj) := {Pi ∈ X/ ξ2δ(Pi) 6= 0} ⊆ X, where ξ2δ is the product of all the
factors we have computed for τj . We stop if it is empty.
Repeating for each δ, we get all the factors with leading term x2. The set N2(τj) turns out to
be partitioned w.r.t. the exponents of x2

6 (and we have fulfilled the tasks of lines from 16 to
26).
At this point, we check whether the product of the current factors vanishes over all X. If so,
such a product is fj , so we continue with another term in G(I). Otherwise, we repeat for
x3, ..., xn, stopping the procedure for τj and storing fj when we reach the last coordinate or
when the product of the current factors vanish over all X (see line 8-14).
When fj is stored, we perform in the same way with the other generators (line 3).
We point out that the polynomials γmδτj we get are only linear in the leading terms.
From now on we will call such a factorization (linear) Axis of Evil factorization.

Remark 3.4.3. By construction and essentially by Cerlienco-Mureddu correspondence and
the consequent construction of the sets Emδ(τj), we get T(γmδτj ) = xm.

Even if algorithm 5 leans on Cerlienco-Mureddu correspondence, whose most impor-
tant feature is iterativity on the points, it is not iterative on the elements of X. Indeed all the
Cerlienco-Mureddu biunivocal correspondence has to be known in order to proceed in the
execution of the algorithm.

Remark 3.4.4. Let τj := x
dj,1
1 · · ·xdj,nn ∈ G(I). The required polynomial fj = τj + tail(fj) ∈

G(I) has exactly dj =
∑n
i=1 dj,i factors: dj,1 with leading term x1, dj,2 with leading term x2

and so on. As we can see in line 16 of algorithm, every variable xi, i = 1, ..., n, appears only
dj,i times in the execution of the algorithm.

Remark 3.4.5. The sets Nm(τj) := {ω ∈ T [m], τj > ωx
dj,m+1

m+1 · · ·xdj,nn ∈ N(I)} are con-
structed in order to find the points where one has to interpolate.
We point out that Nm(τj) ⊆ Nh(τj) for m ≤ h.
If ω ∈ Nm(τj), ω ∈ T [m] and τj > ωx

dm+1

m+1 · · ·xdnn ∈ N(I). Since m ≤ h, ω ∈ T [h]; as
ωx

dh+1

h+1 · · ·xdnn | ωx
dm+1

m+1 · · ·xdnn we have

6By computing the terms appearing in Amδ(τj).
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ωx
dh+1

h+1 · · ·xdnn ∈ N(I) and ωxdh+1

h+1 · · ·xdnn ≤ x
dm+1

m+1 · · ·xdnn < τj .
Since for each term µ ∈ N(I) such that µ > τj , Cerlienco-Mureddu provides a point Pµ′

such that ∃k ∈ {1, ..., n} Pµ, Pµ′ have the first k coordinates and µ′ < µ, in order to obtain
polynomials vanishing on all the points of X it is not necessary to interpolate in the whole
Φ−1(N) as it suffices to consider only those corresponding to µ ∈ N(I) with µ < τj .

Example 3.4.6. Consider the set

X = {(0, 1, 2), (1, 4, 5), (0, 2, 1), (1, 5, 3), (0, 3, 0), (0, 2, 5), (1, 4, 6), (1, 5, 4)}

and denote, as usual, I := I(X).
As shown in the (mixed) tower structure below, the Groebner escalier of its associated ideal
is

N(I) = {1, x1, x2, x1x2, x
2
2, x3, x1x3, x2x3}.

0,1,2 1,4,5

0,2,1 1,5,3

0,3,0

0,2,5

1,5,4

1,4,6

The monomial basis is then G(I) = {x2
1, x1x

2
2, x

3
2, x1x2x3, x

2
2x3, x

2
3}.

We focus on τ2 = x1x
2
2 and we observe that x2x3 ∈ N(I) is greater than τ2 w.r.t. the lexico-

graphical order induced by x1 < x2 < x3.
With the notation due to Cerlienco-Mureddu we can say that Φ−1(x2x3) = (1, 5, 4), and we
can notice that:

• the factor x2 − 5 produced in order to make f2 vanish on the point (1, 5, 3) makes also
f2 vanish on the point (1, 5, 4), since π2(1, 5, 3) = (1, 5) = π2(1, 5, 4);

• we have (1, 5, 3) = Φ−1(x1x2) and x1x2 < τ2.

For completeness’ sake, we report here the whole Axis of Evil factorization of I , computed
using Singular:

x2
1: f1 = x1(x1 − 1);

x1x
2
2: f2 = x1(x2 − 5)(x2 − 4);

x3
2: f3 = (x2 − 3)(x2 − 3x1 − 2)(x2 − 3x1 − 1);
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x1x2x3: f4 = (x1 − 1)(x2 − 2)(x3 + x2 − 3);

x2
2x3: f5 = (x2 − 5)(x2 − 2x1 − 2)(x3 + x2 − 3)

x2
3: f6 = (x3 + 2x2 − 5x1 − 9)(x3 + x1x2 + x2 − 10x1 − 3).

Remark 3.4.7. The terms mentioned in remark 3.4.5, smaller than the current τj , are found
“releasing” all the variables one by one.
Imagining the terms in T as points in Nn (each term is identified with the n-tuple of its
exponents, see chapter 1) we can think of our releasing as an increment by one of the ‘directions’
where we can move.
At each step we count out all the points in which the polynomial already vanishes and we
stop the computation when the current factorized polynomial vanishes on the whole X.

Example 3.4.8. Consider again the set

X = {(1, 0), (2, 3), (4, 6), (0, 7), (5, 2), (4, 1), (2, 6), (2, 7), (0, 6)} ⊂ R2

of example 3.4.2.
We point out that in the first step for τj , while computingN1(τj) andA1(τj), we release only
x1 and we list the terms of the form xi1x

dj,2
2 · · ·xdj,nn , so the ones with the same exponents as

τj in x2, ..., xn, which correspond to points lying in a higher tower than the one over which
τj lies.
We have

N(I) = {1, x1, x
2
1, x

3
1, x

4
1, x2, x1x2, x

2
1x2, x

2
2},

and the monomial basis is G(I) = {x5
1, x

3
1x2, x1x

2
2, x

3
2}.

For example, focus on τ2 = x3
1x2. For this term we have N1(τ2) = {1, x1, x

2
1} and, conse-

quentely, A1(τ2) = {(2, 6), (4, 1), (0, 6)}. As shown in the (unmixed) tower structure below,
the terms belong to towers higher than the one over which τ2 lies:

2,3 4,6 0,7 1,0

x3
1x2

5,2

2,6 4,1 0,6

2,7

Remark 3.4.9. For each δ ∈ {0, ..., dj,m} and for each τj ∈ G(I(X)), τj 6= τ1, define the sets

Smδ(τj) := {vxdj,m−δm ∈ Nm(τj), v ∈ T [m− 1]} ⊂ Nm(τj).

Notice that, for δ1, δ2 ∈ {0, ..., dj,m}, δ1 6= δ2, we get Smδ1(τj) ∩ Smδ2(τj) = ∅ and that
Nm(τj) =

⋃dj,m
δ=0 Smδ(τj), so the subsets Smδ(τj) which are nonempty form a partition of
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Nm(τj).
Even if in Algorithm 5 there is no need to define explicitly the subsets Smδ(τj), those for
δ ∈ {1, ..., dj,m} are essentially used in the construction of the sets Amδ(τj), δ ∈ {1, ..., dj,m}
(see line 17). This means that the subsets Smδ(τj) come into play in the choice of the points
where to interpolate while constructing of the current factor.
Notice that

Sm0(τj) = {vxdj,mm ∈ Nm(τj), v ∈ T [m− 1]} ⊂ Nm(τj).

is not used in the construction (in line 16 we consider δ = 1, ..., dj,m), even if by any chance
Sm0(τj) 6= ∅. Actually, it holds Sm0(τj) ⊆ Nm−1(τj), so each σ ∈ Sm0(τj) has already been
considered: the current factorized polynomial already vanishes in Φ−1(σx

dj,m+1

m+1 · · ·xdj,nn ).

Remark 3.4.10. The steps made by the algorithm on each τj are totally independent both on
those made and on those to be made on a term τk (it is indifferent whether j ≷ k) belonging
to G(I), so we will obtain the same factorizations even if we launch the computation on a
list of unordered terms.
Clearly, the result of our computation is not the reduced Groebner basis of the given ideal,
it is only one of the minimal Groebner bases but we can obtain the reduced Groebner basis
via simple reduction.

Example 3.4.11. Consider again the set

X = {(0, 1, 2), (1, 4, 5), (0, 2, 1), (1, 5, 3), (0, 3, 0), (0, 2, 5), (1, 4, 6), (1, 5, 4)}

of example 3.4.6 and denote, I := I(X).
We already know the Axis of Evil factorization by example 3.4.6, but now we reduce all the
polynomials.
The underlined terms represent the ones we have to reduce.

x2
1: f1 = x2

1 − x1 is already reduced.

x1x
2
2: f2 = x1x

2
2 − 9x1x2 + 20x1 is again reduced, so there is nothing to do.

x3
2: f3 = x3

2 − 6x1x
2
2 − 6x2

2 + 9x2
1x2 + 27x1x2 + 11x2 − 27x2

1 − 27x1 − 6 is not reduced. We
have to reduce it using f1, f2, obtaining f ′3 = x3

2 − 6x2
2 − 18x1x2 + 11x2 + 66x1 − 6.

x1x2x3: f4 = x1x2x3−x2x3−2x1x3 +2x3 +x1x
2
2−x2

2−5x1x2 +5x2 +6x1−6 has to be reduced
using f2. One gets f ′4 = x1x2x3 − x2x3 − 2x1x3 + 2x3 − x2

2 + 4x1x2 + 5x2 − 14x1 − 6.

x2
2x3: f5 = x2

2x3 − 2x1x2x3 − 7x2x3 + 10x1x3 + 10x3 + x3
2 − 2x1x

2
2 − 10x2

2 + 16x1x2 + 31x2 −
30x1 − 30 is not reduced. We have to preform Buchberger reduction on it using f2, f3

and we get f ′5 = x2
2x3 − 9x2x3 + 6x1x3 + 14x3 − 6x2

2 + 24x1x2 + 30x2 − 84x1 − 36.
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x2
3: f6 = x2

3 + x1x2x3 + 3x2x3 − 15x1x3 − 12x3 + 2x1x
2
2 + 2x2

2 − 5x2
1x2 − 34x1x2 − 15x2 +

50x2
1 + 105x1 + 27 is not reduced. If we use f1, f2, f4 on it, we obtain f ′6 = x2

3 + 4x2x3−
13x1x3 − 14x3 + 3x2

2 − 25x1x2 − 20x2 + 129x1 + 33.

The reduced Groebner basis turns then out to be

G′ = {x2
1 − x1, x1x

2
2 − 9x1x2 + 20x1, x

3
2 − 6x2

2 − 18x1x2 + 11x2 + 66x1 − 6,

x1x2x3 − x2x3 − 2x1x3 + 2x3 − x2
2 + 4x1x2 + 5x2 − 14x1 − 6,

x2
2x3 − 9x2x3 + 6x1x3 + 14x3 − 6x2

2 + 24x1x2 + 30x2 − 84x1 − 36,

x2
3 + 4x2x3 − 13x1x3 − 14x3 + 3x2

2 − 25x1x2 − 20x2 + 129x1 + 33}

Remark 3.4.12 ([73]). Notice that the sets Emδ(τj) and the interpolating polynomials γmδτj
of algorithm 5 can be obtained via Moeller algorithm and projection through πm of the
points found Amδ(τj), as well as via Cerlienco-Mureddu Correspondence and other inter-
polation methods.

Remark 3.4.13. Fix a term τj ∈ G(I). If some P = (a1, ..., an) ∈ X belongs to Amδ(τj),
2 ≤ m ≤ n, 1 ≤ δ ≤ dj,m, then the linear factor vanishing in P , namely γmδτj , is constructed
involving only the first m coordinates of P , i.e. a1, ..., am.

Remark 3.4.14. Although the minimal Groebner basis we get by the Axis of Evil algorithm
is not reduced, we can point out that the linear factors γmδτj we get are reduced in the sense
that Supp(γmδτj ) \ {xm} ⊆ {τ ∈ N(I) | τ < xm} by the construction of Emδ(τj).

Example 3.4.15. If we consider the set X = {(0, 0), (1, 2), (0, 2), (3, 4), (0, 6)}, the minimal
Groebner basis produced by the Axis of Evil algorithm is

G = {x3 − 4x2 + 3x, xy − x2 − x, y3 − 4

3
xy2 − 8y2 +

32

3
xy + 12y − 16x},

and the linear factors identifying G are

a. x;

b. x− 1;

c. x− 3;

d. y − x− 1;

e. y − 6;

f. y − 2;



90 Chapter 3. The original Axis of Evil Theorem.

g. y − 4
3x.

Factors a, b, c, e, f are of the form x− l, y − h, with l, h constants, so their support is formed
by the leading terms x or y and by 1 ∈ N. Factors d and g satisfy again the property of 3.4.14,
since

• Supp(y − x− 1) \ {y} = {1, x} ⊂ N(I) and 1 < x < y;

• Supp(y − 4
3x) \ {y} = {x} ⊂ N(I) and x < y.

Developing an algorithm one has to face the problems of termination and correctness.
As for our algorithm, termination is guaranteed since it essentially operates with the fol-
lowing three loops:

− a loop on the elements of G(I) (line 3);

− a loop on the variables of the polynomial ring (line 8);

− for each variable appearing in a term τj ∈ G(I), a loop on its exponent (line 16).

The first loop is clearly finite by Dickson’s Lemma (c.f. [79]), while the second is finite since
the polynomial ring has a finite number of variables.
As regards the third one, it is trivially finite since the exponents are natural numbers.
The algorithm could go to infinity if it was |N(I)| =∞, but this is not the case for our zerodi-
mensional radical ideal I . Finally, it relies on Cerlienco-Mureddu algorithm and Moeller
algorithm so also the computation of the set Amδ(τj) and the interpolation step terminate.
Let us study the correctness of the algorithm.

Lemma 3.4.16. The obtained factorized polynomials vanish on each point of X.

Proof: Consider the polynomial γτ associated to the term τ = xα1
1 · · ·xαnn ∈ G(I).

We prove that it vanishes on Pµ ∈ X, corresponding, via Cerlienco-Mureddu , to the term
µ = xβ1

1 · · ·xβnn ∈ N(I).
Since τ ∈ G(I) and µ ∈ N(I), τ 6= µ. Therefore, there are only two possibilities:

1. µ <Lex τ . By the definition of Lex, ∃i ∈ {1, ..., n} such that αi > βi and αj = βj

for each i + 1 ≤ j ≤ n, so βi = αi − δ, for some δ > 0. We set ω := xβ1

1 · · ·x
βi
i . By

hypothesis, µ ∈ N(I) and µ = ωx
αi+1

i+1 · · ·xαnn < τ , so ω ∈ Ni(τ).
As Pµ = Φ−1(µ) = Φ−1(xβ1

1 · · ·x
βi−1

i−1 x
αi−δ
i x

αi+1

i+1 · · ·xαnn ), either Pµ ∈ Di(δ−1)(τ) (thus
γτ vanishes in Pµ), or Pµ ∈ Aiδ(τ) but, in this case, by the interpolation step (lines
18-19), γτ vanishes in Pµ.
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2. µ >Lex τ . This time ∃i ∈ {1, ..., n} such that βi > αi, βj = αj for each j ∈ {i+ 1, ..., n}.
By Cerlienco-Mureddu correspondence, ∃µ′ := x

β′1
1 · · ·x

β′n
n ∈ N(I) such that:

a. Φ−1(µ′) = Pµ′ with πi−1(Pµ) = πi−1(Pµ′);

b. β′h = αh, ∀h ∈ {i, i+ 1, ..., n}.

If µ′ < τ , then µ′ ∈ Ni−1(τ) so, as in 1, γτ vanishes in Pµ′ and the linear factor making
γτ vanish in Pµ′ is computed involving at most the first i − 1 coordinates of Pµ (c.f.
remark 3.4.13), so that γτ turns out to vanish also in Pµ.
If µ′ > τ , we can repeat with µ′ instead of µ and conclude by induction.

�

Corollary 3.4.17. The ideal generated by our polynomials is exactly I(X).

Proof: By lemma, 3.4.16, the polynomials vanish on all the points of the set X and the
equality comes out by multiplicity reasons. �

Algorithm 5 and lemma 3.4.16 constitute a constructive proof of the Axis of Evil Theorem
3.4.1.

Remark 3.4.18. The polynomials f1, ..., fr of theorem 3.4.1 form a minimal Groebner basis
because:

• they vanish on all the points of X (lemma 3.4.16);

• their heads T(f1) = τ1, ...,T(fr) = τr form exactly G(I(X)).

Remark 3.4.19. We point out that:

• if τj = x
dj,1
1 · · ·xdj,nn ∈ G(I), the polynomials we are looking for have to contain exactly∑n

i=1 di factors. It is impossible that a partial product vanishes on the whole X. In
fact, if so, there would be a polynomial f ∈ I such that T(f) /∈ (G(I)).

• if we obtain a factorized polynomial f such that its leading term T(f) belongs to the
minimal basis G(I), then f vanishes over all X, because of 3.4.16.

This implies that the termination criteria for algorithm 5 are correct.

Remark 3.4.20. Cerlienco-Mureddu Correspondence is performed on an ordered set of
points and this ordering influences the biunivocal correspondence we get. For example,
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if we consider first the set X1 = (P1 = (1, 0), P2 = (1, 1)) we obtain Φ(P1) = 1, Φ(P2) = x2,
whereas if we have X2 = (P2 = (1, 1), P1 = (1, 0)), we obtain Φ(P2) = 1, Φ(P1) = x2.
The Axis of Evil algorithm works correctly for each biunivocal correspondence we can get
by ordered sets of points (so also with the biunivocal correspondences we can recover from
another method for the Groebner escalier).

It is well known that Cerlienco-Mureddu correspondence allows to compute the Groeb-
ner escalier of zerodimensional ideals, even if they are not radical. Unfortunately, in general,
it is not possible to produce an Axis of Evil factorization in case of multiplicity.
We display here a meaningful counterexample, due to M.G. Marinari and T. Mora.

Example 3.4.21 ([70, 79]). Consider the following ideal, given with its primary decomposi-
tion:
J := (x2

1, x2 + x1, x3) ∩ (x2
1, x2 − x1, x3 − 1) =

= (x2
1, x1x2, x

2
2, x1x3 − 1

2x1 − 1
2x2, x2x3 − 1

2x1 − 1
2x2, x

2
3 − x3) / C[x1, x2, x3].

Denote by f1, ..., f6 the generators.
J is 0-dimensional being x2

1, x
2
2, x

2
3 ∈ T(J) (see [79]), but it is not radical as

√
J = (x2, x

2
3 − x3, x1).

For such an ideal the Axis of Evil does not hold.
Consider the polynomial f4 = x1x3 − 1

2x1 − 1
2x2.

By the Axis of Evil theorem (3.4.1), its factorization should be of the form:

(x1 + ...)(x3 + ...)

and we should have

x1x3 −
1

2
x1 −

1

2
x2 + Px2

1 +Qx1x2 +Rx2
2, P,Q,R ∈ C[x1, x2, x3],

we can only reduce deleting the multiples of x2
1, x1x2, x

2
2, in order to obtain f4 so we must

have − 1
2x2 in it. We can not obtain it through reductions, so the only chance is to have a

product of the form

k ∗ hx2,

with h, k constants such that hk = − 1
2 , in particular both different from 0.

A priori, there are two possibilities:

- (x1 + k)(x3 + hx2 + ...);

- (x1 + hx2 + ...)(x3 + k + ...).
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The second one is impossible: the polynomial having x1 as head can not contain vari-
ables greater than x1, so we consider only:

(x1 + k + ...)(x3 + hx2 + ...) obtaining x1x3 + hx1x2 + kx3 −
1

2
x2 + ...

We can delete the term x1x2 but kx3 can not be reduced.

The Axis of Evil Theorem can be generalized in case of Cerlienco-Mureddu ideals (see
[79] for more details).

3.5 Consequences of the Axis of Evil Theorem.

We enumerate here some theorems which can be viewed as “corollaries” of the Axis of Evil
Theorem (see , for example, [2]), quoting their general statements. Clearly they can only be
deduced by 3.4.1 under our hypotheses.

We start with Lazard Structural Theorem 3.3.15, concerning minimal lexicographical Groeb-
ner basis of an ideal I / k[x1, x2]. The original proof, viewing k[x1, x2] as k[x1][x2], strongly
uses that k[x1] is a Principal Ideal Domain (PID). Norton-Sălăgean [81] reformulated it for
R[x] with R any PIR7.
Next result is the one by Norton-Sălăgean.

Theorem 3.5.1 (Norton-Sălăgean). With the notation of theorem 3.3.15, each

Hi+1 ∈ (fj , j < i) : ri.

In fact, we have ri =
∏n−1
m=1

∏dm
δ=1 γmδti and Hi =

∏dn
δ=1 γnδti .

The next result is Kalkbrener theorem ([60], [79]), which is a stronger characterization of the
lexicographical ordering.
For each subset G ⊂ k[x1, ..., xn], i ∈ {1, ..., n}, ∀δ ∈ N set

Gi,δ = {p ∈ G |p ∈ k[x1, ..., xi], degi(p) ≤ δ} and Lpi,δ(G) = {Lp(p), p ∈ Gi,δ} ⊆ k[x1, ..., xi−1].

Theorem 3.5.2 (Kalkbrener). With the previous notation, let I/k[x1, ..., xn] be an ideal. Then
the following are equivalent:

• G is a Groebner basis of I w.r.t, the lexicographical order < induced by x1 < ... < xn;

• Lpi,δ(G) is a Groebner basis of Lpi,δ(I), i = 1, ..., n, ∀δ ∈ N.

7Principal ideal ring.
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Finally we mention Gianni-Kalkbrener theorem, whose situation is a bit more complicated
(see [59], [44], [79]).

Theorem 3.5.3 (Gianni-Kalkbrener). Consider the lex order induced by x1 < ... < xn and a
zerodimensional ideal I / k[x1, ..., xn] with Groebner basis G„ whose elements are increas-
ingly ordered w.r.t. lex on the leading terms, and Gd = G ∩k[x1, ..., xd]. For α = (b1, ..., bd) ∈
V (Id) define the projection map

Φα : k[x1, ..., xn]→ k[xd+1, ..., xn] s.t. f(x1, ..., xn) 7→ f(b1, ..., bd, xd+1, ..., xn).

Let σ be the minimal value s.t. Φα(Lp(gσ)) 6= 0 and j, δ the values s.t.

gσ = Lp(gσ)xδ+1
j + ... ∈ k[x1, ..., xj ] \ k[x1, ..., xj−1].

Then
1. j = d+ 1

2. ∀g ∈ Gd, Φα(g) = 0;
3. ∀g ∈ Gd+1,δ , Φα(g) = 0;
4. Φα(gσ) = gcd(Φα(g), g ∈ Gd+1) ∈ k[xd+1];
5. ∀b ∈ k, (b1, ..., bd, b) ∈ V (Id+1)⇔ Φα(gσ)(b) = 0.

Clearly (1-3) are essentially a corollary of theorem 3.5.1; on the other side, (4-5) appar-
ently cannot be deduced from the Axis of Evil Theorem.

3.6 The Axis of Evil in pratice: a detailed example.

In this paragraph, we simulate in detail the Axis of Evil algorithm, giving a precise example
of its main features.
We will examine the redistribution performed on the given points using their mixed tower
structure.
Consider the set
X := {(4, 0, 0), (2, 1, 4), (2, 4, 0), (3, 0, 1), (2, 1, 3), (1, 3, 4), (2, 4, 3), (2, 4, 2), (1, 0, 2)}.
First of all, we apply Cerlienco-Mureddu algorithm on X.
P1 := (4, 0, 0) : is a single point, so Φ({(4, 0, 0)}) = (0, 0, 0)

P2 := (2, 1, 4) : s = 1, m = 1, (1, 0, 0)

P3 := (2, 4, 0) : s = 2, m = 2, (0, 1, 0)

P4 := (3, 0, 1) : s = 1, m = 1, (2, 0, 0)
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P5 := (2, 1, 3) : s = 3, m = 2, (0, 0, 1)

P6 := (1, 3, 4) : s = 1, m = 4, (3, 0, 0)

P7 := (2, 4, 3) : s = 3, m = 3,W = {(2, 1, 3), (2, 4, 3)}, t7 = (0, 1, 1)

P8 := (2, 4, 2) : s = 3, m = 7, (0, 0, 2)

P9 := (1, 0, 2) : s = 2, m = 6,W = {(2, 4, 0), (1, 0, 2)}, t9 = (1, 1, 0).
Then N := {1, x1, x2, x

2
1, x3, x

3
1, x2x3, x

2
3, x1x2}.

We display here the tower structure individuated by Cerlienco-Mureddu correspondence
between X and N.

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

We apply now Lazard algorithm in order to get the monomial basis:

1 : we get L = [x1, x2, x3] and G1 = {x1, x2, x3};

x1 : removing x1 and computing the products, we have L = {x2
1, x2, x1x2, x3, x1x3}, so

G2 = {x2
1, x2, x3};

x2 : L = {x2
1, x1x2︸︷︷︸

2times

, x2
2, x3, x1x3, x2x3}, so G3 = {x2

1, x1x2, x
2
2, x3};

x2
1 : L = {x3

1, x1x2︸︷︷︸
2times

, x2
1x2, x

2
2, x3, x1x3, x

2
1x3, x2x3}, so G4 = {x3

1, x1x2, x
2
2, x3};

x3 : L = {x3
1, x1x2︸︷︷︸

2times

, x2
1x2, x

2
2, x1x3︸︷︷︸

2times

, x2
1x3, x2x3︸︷︷︸

2times

, x2
3}, so

G5 = {x3
1, x1x2, x

2
2, x1x3, x2x3, x

2
3};

x3
1 : L = {x4

1, x1x2︸︷︷︸
2times

, x2
1x2, x

3
1x2, x

2
2, x1x3︸︷︷︸

2times

, x2
1x3x

3
1x3, x2x3︸︷︷︸

2times

, x2
3}, so

G6 = {x4
1, x1x2, x

2
2, x1x3, x2x3, x

2
3};

x2x3 : L = {x4
1, x1x2︸︷︷︸

2times

, x2
1x2, x

3
1x2, x

2
2, x1x3︸︷︷︸

2times

, x2
1x3x

3
1x3, x1x2x3, x

2
2x3, x

2
3, x2x

2
3}, so

G7 = {x4
1, x1x2, x

2
2, x1x3, x

2
3};
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x2
3 : L = {x4

1, x1x2︸︷︷︸
2times

, x2
1x2, x

3
1x2, x

2
2, x2x3︸︷︷︸

2times

, x2
1x3x

3
1x3, x1x2x3, x

2
2x3, x1x

2
3, x2x

2
3︸︷︷︸

2times

, x3
3}, so

G8 = {x4
1, x1x2, x

2
2, x1x3, x2x

2
3, x

3
3};

x1x2 : L = {x4
1, x

2
1x2︸︷︷︸

2times

, x3
1x2, x

2
2, x1x

2
2, x1x3︸︷︷︸

2times

, x2
1x3x

3
1x3, x1x2x3︸ ︷︷ ︸

2times

, x2
2x3, x1x

2
3, x2x

2
3︸︷︷︸

2times

, x3
3},

so G9 = {x4
1, x

2
1x2, x

2
2, x1x3, x2x

2
3, x

3
3}.

Then we obtain

G = {x4
1, x

2
1x2, x

2
2, x1x3, x2x

2
3, x

3
3}

The terms in G are exactly the input for the Axis of Evil algorithm and they are already or-
dered w.r.t. our ordering. We denote them by τi for i = 1, ..., 6.
Starting with τ1 = x4

1 we obtain:
N1(τ1) = {1, x1, x

2
1, x

3
1},

A1(τ1) = {(4, 0, 0), (2, 1, 4), (3, 0, 1), (1, 3, 4)}: these are the corresponding points via Cerlienco-
Mureddu;
B1(τ1) = {4, 2, 3, 1}
γ1τ1 = (x1−4)(x1−2)(x1−3)(x1−1): all the linear factors are only depending from x1 and
they are computed in the same time.
We highlight in the picture the points making γ1τ1 vanish and we distinguish them, using
colours, w.r.t. the linear factor vanishing on them (i.e. w.r.t. their first coordinates).

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

m = 2: ζ2τ1 = γ1τ1 . Since, as we can also see in the picture above, D20(τ) = ∅, we stop
here obtaining, as first result, a polynomial f1 := ζ2τ1 = γ1τ whose leading term is τ1 ∈ G,
while the lower monomials belong to N. By construction, f1 ∈ I(X), since it vanishes in
every point of X. It is then an element of our minimal Groebner basis.
For τ2 = x2

1x2 we get: N1(τ2) = {1, x1}, A1(τ2) = {(2, 4, 0), (1, 0, 2)}, B1(τ2) = {2, 1},
γ1τ2 = (x1 − 2)(x1 − 1)
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4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

Passing to m = 2 we have:
ζmτ2 = γ1τ2

D20(τ2) = {(4, 0, 0), (3, 0, 1)} (the two non-colored points in the picture above).
We cannot stop here, since we got a polynomial not vanishing at all the points. Moreover, we
point out that its head is different from τ2 ∈ G.

N2(τ2) = {1, x1, x
2
1, x

3
1, x2, x1x2}; doing so, we find all the terms of the previous step and

some new ones. We start the loop on δ:
δ = 1: A21(τ2) = {(4, 0, 0), (3, 0, 1)} = D20

The terms vxdm−δm are 1, x1, x
2
1, x

3
1, corresponding to the points P1, P2, P4, P6.

Since the polynomial already vanishes on P2, P6, we consider only the other two points.
E21(τ2) = {1, x1}, γ21τ2 = x2; ξ21 = γ1τ2γ21τ2 = (x1 − 2)(x1 − 1)x2; D21(τ2) = ∅:

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

Remark that γ2τ2 is actually γ21τ2 .

τ3 = x2
2: N1(τ3) = ∅; A1(τ3) = ∅; B1(τ3) = ∅

m = 2 : D20(τ3) = X

N2(τ3) = {1, x1, x
2
1, x

3
1, x2, x1x2}; δ = 1:

A21(τ3) = {(2, 4, 0), (1, 0, 2)};
E21(τ3) = {1, x1};
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γ21τ3 = x2 − 4x1 + 4

ξ21 = γ1τ3γ21τ3 = x2 − 4x1 + 4;

D21(τ3) = {(4, 0, 0), (2, 1, 4), (3, 0, 1),

(2, 1, 3), (1, 3, 4)};
δ = 2:
A22(τ3) = {(4, 0, 0), (2, 1, 4), (3, 0, 1),

(1, 3, 4)}
The terms vxdm−δm are 1, x1, x

2
1, x

3
1 corresponding exactly to P1, P2, P4, P6.

E22(τ3) = {1, x1, x
2
1, x

3
1}; γ22τ3 = 2x2 − x2

1 + 7x1 − 12;

ξ22 = (x2 − 4x1 + 4)(2x2 − x2
1 + 7x1 − 12); D22(τ3) = ∅;

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

τ4 = x1x3 :

N1(τ4) = {1};
A1(τ4) = {(2, 1, 3)};
B1(τ4) = {2}
γ1τ4 = (x1 − 2)

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2
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m = 2 : N2(τ4) = {1}, D20(τ4) = {(4, 0, 0), (3, 0, 1), (1, 3, 4), (1, 0, 2)}
δ = 1; D21(τ) = D20(τ);

m = 3 : N3(τ4) = {1, x1, x2, x
2
1, x3, x

3
1, x1x2}; ζmτ4 = (x1 − 2);

D30(τ4) = {(4, 0, 0), (3, 0, 1), (1, 3, 4), (1, 0, 2)};
δ = 1:
A31(τ4) = {(4, 0, 0), (3, 0, 1), (1, 3, 4),

(1, 0, 2)}
The terms are 1, x1, x

2
1, x

3
1, x2, x1x2, corresponding to P1, P2, P3, P4, P6, P9, and P2, P3 can be

neglected.
E31(τ4) = {1, x1, x

2
1, x2}; γ31(τ4) = 6x3 − 4x2 + x2

1 − x1 − 12;

ξ31 = (x1 − 2)(6x3 − 4x2 + x2
1 − x1 − 12); D31(τ4) = ∅ and γ3τ4 = γ31(τ4).

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

τ5 = x2x
2
3 : N1(τ5) = ∅; A1(τ5) = ∅; B1(τ5) = ∅

m = 2:
N2(τ5) = {1};
D20(τ5) = X;

δ = 1:
A21(τ5) = {(2, 4, 2)};
E21(τ5) = {1};
γ21τ5 = x2 − 4

ξ21 = x2 − 4;

D21(τ5) = {(4, 0, 0), (2, 1, 4), (3, 0, 1),

(2, 1, 3), (1, 3, 4), (1, 0, 2)};
m = 3 : ζ3τ5 = x2 − 4; D30(τ5) = D21(τ5);
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4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

N3(τ) = N(X);

δ = 1:
A31(τ) = {(2, 1, 3)}.
E31(τ) = {1};
γ21τ = x3 − 3

ξ31 = (x2 − 4)(x3 − 3);

D31(τ) = {(4, 0, 0), (2, 1, 4), (3, 0, 1),

(1, 3, 4), (1, 0, 2)};

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

δ = 2 : A32(τ) = D31(τ); E32(τ) = {1, x1, x
2
1, x

3
1, x2};

γ32τ = x3 − 4x2 − 5x3
1 + 41x2

1 − 96x1 + 48;

ξ32 = (x2 − 4)(x3 − 3)(x3 − 4x2 − 5x3
1 + 41x2

1 − 96x1 + 48); D32(τ) = ∅;
γ3τ = (x3 − 3)(x3 − 4x2 − 5x3

1 + 41x2
1 − 96x1 + 48);
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4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

τ6 = x3
3 : N1(τ6) = ∅; A1(τ6) = ∅; B1(τ6) = ∅

m = 2 : D20(τ6) = X; N2(τ6) = ∅;
δ = 1 : A21(τ6) = ∅; D21(τ6) = X;
m = 3 : D30 = X;

N3(τ6) = N(X); δ = 1:
A31(τ6) = {(2, 4, 2)};
E31(τ6) = {1};
γ31τ6 = x3 − 2;
ξ31 = x3 − 2;

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

D31(τ6) = {(4, 0, 0), (2, 1, 4), (2, 4, 0),

(3, 0, 1), (2, 1, 3), (1, 3, 4), (2, 4, 3)};
δ = 2 : A32(τ6) = {(2, 1, 3), (2, 4, 3)}; E32(τ6) = {1, x2}; γ32τ6 = x3 − 3;
ξ32 = (x3 − 2)(x3 − 3); D32 = {(4, 0, 0), (2, 1, 4), (2, 4, 0), (3, 0, 1), (1, 3, 4)};



102 Chapter 3. The original Axis of Evil Theorem.

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

δ = 3 : A33(τ6) = D32; E33(τ6) = {1, x1, x
2
1, x

3
1, x2};

γ33τ6 = 6x3 + 8x2 − 5x3
1 + 35x2

1 − 54x1 + 24;
ξ33 = (x3 − 2)(x3 − 3)(6x3 + 8x2 − 5x3

1 + 35x2
1 − 54x1 + 24);

D33(τ6) = ∅;
γ3τ6 = (x3 − 2)(x3 − 3)(6x3 + 8x2 − 5x3

1 + 35x2
1 − 54x1 + 24).

4,0,0 2,1,4 3,0,1 1,3,4

2,4,0 1,0,2

2,4,3

2,1,3

2,4,2

The factorized reduced Groebner basis for I(X) w.r.t. lex is:

G(I(X)) =
{

(x1 − 4)(x1 − 2)(x1 − 3)(x1 − 1), (x1 − 2)(x1 − 1)x2,

(x2 − 4x1 + 4)(2x2 − x2
1 + 7x1 − 12), (x1 − 2)(6x3 − 4x2 + x2

1 − x1 − 12),

(x2 − 4)(x3 − 3)(x3 − 4x2 − 5x3
1 + 41x2

1 − 96x1 + 48),

(x3 − 2)(x3 − 3)(6x3 + 8x2 − 5x3
1 + 35x2

1 − 54x1 + 24)
}
,
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while the reduced Groebner basis of I(X) w.r.t. lex is:

G′(I(X)) =
{
x4

1 − 10x3
1 + 35x2

1 − 50x1 + 24, x2x
2
1 − 3x2x1 + 2x2,

x2
2 − 2x2x1 − x2 + 2x3

1 − 16x2
1 + 38x1 − 24, x3x1 − 2x3 − 2

3x2x1 + 4
3x2 +

+ 1
6x

3 − 1
2x

2
1 − 5

3x1 + 4, x2
3x2 − 4x2

3 − 7x3x2 + 28x3 + 8
3x2x1 +

+ 20
3 x2 − 16

3 x
3 + 48x2 − 344

3 x1 + 32, x3
3 − 5x2

3 + 8
3x3x2 − 14

3 x3 − 16
9 x2x1

− 40
9 x2 + 73

9 x
3
1 − 197

3 x2
1 + 1358

9 x1 − 72
}
,

and it is obtained reducing the polynomials in G(I(X)), each one w.r.t. the previous ones.





CHAPTER 4

Intermezzo: factorization à la
Macaulay.

4.1 Introduction.

As we explained in chapter 3, given a finite set of distinct points X = {P1, ..., PS}, the orig-
inal Axis of Evil algorithm provides a minimal Groebner basis for the zerodimensional
radical ideal of these points I := I(X), factorized in a very peculiar way we called "Axis of
Evil factorization".
Such a factorization is constructed providing, for each term τ ∈ G(I) a partition X =⊔n
m=1

⊔dm
δ=1 Smδ(τ) of the points.

As we highlighted in the detailed example of section 3.6, the points are grouped differently
at each step: the points in which we have to interpolate the single factors depend on the
term τ ∈ G(I) we are considering in the current step of the algorithm.
Moreover, we can notice that in the original Axis of Evil algorithm 5 of chapter 3 some lin-
ear factors appearing in the Axis of Evil factorization associated to some terms in G(I) are

105
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independently computed more than once.
To be more precise, if some factor f appears in the Axis of Evil factorization associated to r
terms, then it is computed independently r times.
In this chapter we study the tower structure of points (see 1.4) in order to establish up to
what extent it is possible to minimize the number of computed factors.
We will obtain again an Axis of Evil factorization for a minimal Groebner basis of the ideal
I = I(X), starting from X and passing through the computation of both the Groebner es-
calier N(I), via some combinatorial algorithm, and of G(I) from N(I), via Lazard algorithm
3.2.
We will also show that, in some cases, we can get an Axis of Evil factorization à la Macaulay,
in the sense that, if τ = xα1

1 · · ·xαnn ∈ G(I), fτ is the polynomial in I(X) whose factorization
we want to compute and f (j)

i are linear factors with T(f
(j)
i ) = xi, then

fτ = f
(1)
1 · · · f (α1)

1 f
(1)
2 · · · f (α2)

2 · · · f (1)
n · · · f (αn)

n .

Actually, we will show that it is not possible in general.
We will show then that it is possible to construct a similar factorization for some more sets
of points, explaining

• how to decide whether a set of points admits such a factorization;

• how to get concretely the factorization.

For this factorization, no repeated factors are computed. More precisely, once examined the
tower structure associated to X, we exactly know how many factors we need in order to
obtain the factorization and which are the corresponding ranges. We only deal with these
factors, computing them iteratively on the points.
Anyway, the whole algorithm is not iterative on X, requiring some preprocessing on the
points: we need to know all their tower structure before starting the computation.
For this aim, we define another combinatorial method for computing the Groebner escalier
N(I) directly from X, namely the Jumping algorithm, whose aim is to provide a biunivocal
correspondence between points and terms in N(I), taking into account the tower structure.

4.2 First step: back to towers.

In this section, we examine the tower structures of some sets of points in kn, n ≥ 2, putting
these structure in relation with the Axis of Evil factorization.
Let us start with the case n = 2. In two variables, the situation is rather simple.
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Indeed, as seen in 2.2.8 each set of points X ⊂ k2 has an unmixed tower structure. Indeed, it is
possible to find out the Groebner escalier by reordering the towers in nonincreasing order
by height.
For example, if X = {(0, 0), (1, 3), (0, 1), (0, 2), (1, 4)} and, as usual, I = I(X), we can get the
following unmixed tower structure, associated to N(I) = {1, x1, x2, x1x2, x

2
2} ⊂ k[x1, x2]

0,0 1,3

0,1 1,4

0,2

The monomial basis associated to N(I) is G(I) = {x2
1, x1x

2
2, x

3
2}, so, if we want to get an Axis

of Evil factorization, we have to compute a linear factorization for fx2
1
, fx1x2

2
and fx3

2
, such

that T(fx2
1
) = x2

1, T(fx1x2
2
) = x1x

2
2 and T(fx3

2
) = x3

2.
Consider the following lists of polynomials:

Ξ1 = [x1, x1 − 1] = [f
(1)
1 , f

(2)
1 ]

Ξ2 = [x2 − 3x1, x2 − 3x1 − 1, x2 − 2] = [f
(1)
2 , f

(2)
2 , f

(2)
3 ].

Actually, f (1)
1 , f

(2)
1 come from interpolation on the points corresponding to 1, x1, i.e. to the

terms of the first x2-range, whereas f (1)
2 , f

(2)
2 , f

(2)
3 are interpolated respectively on the points

of the first, the second and the third x2-range.
If we take

fx2
1

= x1(x1 − 1) = f
(1)
1 f

(2)
1

fx1x2
2

= x1(x2 − 3x1)(x2 − 3x1 − 1) = f
(1)
1 f

(1)
2 f

(2)
2

fx3
2

= (x2 − 3x1)(x2 − 3x1 − 1)(x2 − 2) = f
(1)
2 f

(2)
2 f

(2)
3

we obtain an Axis of Evil factorization à la Macaulay for a minimal Groebner basis of I(X).
The case of n = 3 is a bit more cumbersome. Indeed for some sets does not exist an unmixed
tower structure.
Let us consider a minimal example, i.e. X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1)}.
For this, the towers turn out to be mixed regardless the way in which the points are dis-
posed.
For example we can represent the Groebner escalier N(I(X)) as
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0,0,0 1,0,0

0,1,0

1,0,1

The monomial basis associated to N(I(X)) is G(I(X)) = {x2
1, x1x2, x

2
2, x1x3, x2x3, x

2
3}.

The fact of having mixed towers actually affects the factorization. Consider the lists of
polynomials

Ξ1 = [x1, x1 − 1] = [f
(1)
1 , f

(2)
1 ]

Ξ2 = [x2, x2 − 1] = [f
(1)
2 , f

(2)
2 ]

Ξ3 = [x3, x3 − 1] = [f
(1)
3 , f

(2)
3 ].

We got the polynomials in Ξ1 interpolating in the points of the first x2-range. The polyno-
mials in Ξ2 are obtained by interpolating over the first and the second x2-range, whereas
the ones in Ξ3 interpolating respectively on the first and the second x3-range.
We get an Axis of Evil factorization for a minimal Groebner basis of I(X) by

fx2
1

= x1(x1 − 1) = f
(1)
1 f

(2)
1

fx1x2
= x1x2 = f

(1)
1 f

(1)
2

fx2
2

= x2(x2 − 1) = f
(1)
2 f

(2)
2

fx1x3 = (x1 − 1)x3 = f
(2)
1 f

(1)
3

fx2x3 = x2x3 = f
(1)
2 f

(1)
3

fx2
3

= x3(x3 − 1) = f
(1)
3 f

(2)
3 .

Notice that fx1x3
= (x1 − 1)x3 = f

(2)
1 f

(1)
3 that we have highlighted on purpose, is not really

Macaulay-like, since we do not take f (1)
1 . Anyway, it is not so different and, mainly, the

factors in Ξ1,Ξ2,Ξ3 are enough to get the whole factorization.
Let us consider the case n = 4. Here, the situation can be even more complicated. Clearly
there can be sets which cannot have unmixed towers. Look at the following simple set:

X = {(2, 0, 0, 0), (1, 0, 0, 0), (2, 1, 0, 0), (1, 1, 0, 0), (2, 0, 1, 0), (1, 0, 1, 0), (2, 0, 0, 2), (1, 1, 0, 2)}.

We can represent its tower structure as:
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x1

x2

x3

x4

x1

x2

x3

2,0,0,0 1,0,0,0

2,1,0,0 1,1,0,0

2,0,1,0 1,0,1,0

2,0,0,2 1,1,0,2

and the Groebner escalier is N(I(X)) = {1, x1, x2, x1x2, x3, x1x3, x4, x1x4}. Consider now
the sets

Ξ1 = [x1 − 2, x1 − 1] = [f
(1)
1 , f

(2)
1 ]

Ξ2 = [x2, x2 − 1] = [f
(1)
2 , f

(2)
2 ]

Ξ3 = [x3, x3 − 1] = [f
(1)
3 , f

(2)
3 ]

Ξ4 = [x4, x4 − 2] = [f
(1)
4 , f

(2)
4 ],

obtained as in the examples above. The term x2x4 belongs to the monomial basis associated
to N(I(X)). If we want to find a factorization for fx2x4

we first take f (1)
4 , vanishing at all the

points of the first x4-range, but none of the linear factors in Ξ2 vanishes at both (2, 0, 0, 2) and
(1, 1, 0, 2): the factors in Ξ2 are not enough to provide the whole Axis of Evil factorization.

4.3 Second step: the Jumping algorithm.

The Jumping algorithm places itself in the context introduced in chapter 2, where combina-
torial methods to compute the (finite) Groebner escalier of a zerodimensional radical ideal
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are defined.
This algorithm configures itself as an alternative to the methods already proposed and, in
particular, it shows a strong relationship with Felszeghy-B. Ráth-Rónyai Lex Game of which
it is, to all intents and purposes, a variation.
Indeed, it exploits again the idea of ordering the points of a given finite set in a trie struc-
ture, but it proceeds differently in its concrete construction.
The result of this new construction is again a one to one correspondence between the points
in the set and the terms constituting the Groebner escalier, but the tower reordering is taken
into account while constructing the Groebner escalier.
We can interpret the Jumping algorithm as an interpolation oriented Lex Game, since in some
case it can help to produce an Axis of Evil factorization à la Macaulay.
We explain now the algorithm in detail.
Consider a finite set of distinct points X = {P1, ..., PS} ⊆ kn.
As usual, we denote by I = I(X) the (zerodimensional radical) ideal associated to X and
N(I) = N(I(X)) its Groebner escalier. In order to construct N(I), the algorithm

a) constructs a trie T(X) associated to X, we name children trie, a variation of the point
trie by Felszeghy-B. Ráth-Rónyai ;

b) constructs the lex trie as in the Lex Game.

As we had already studied step b) in chapter 2, we only deal with step a).
Therefore, we equip again kn with the equivalence relation we denoted by =

a = (a1, ..., an) = (b1, ..., bn) = b if ai = bi, ∀i ∈ {1, ..., n} (see 2.5).
Taken then our points P1, ...PS ∈ X ⊆ kn, we define the equivalence classes of πi(Pj), i =

1, ..., n, j = 1, ..., S, calling them Σi and representing them as sets containing the indices of
the points in the class, instead of taking trace of the points.
Clearly Σ0 = {{1, ..., S}}, Σn = {{1}, ..., {S}}, |Σn| = S.
Then, we construct a trie whose vertices are labeled with the elements Σi,k ∈ Σi, for i =

1, ..., n, k = 1, ..., |Σi|. We set an edge from Σi,k ∈ Σi to Σi+1,h,∈ Σi+1 when Σi+1,h ⊆ Σi,k

and we label it with the (i+ 1)-th coordinate of the points in Σi+1.
As a second step, we have to put an ordering on the classes. More precisely, we examine the
levels from n−2 to 0 and we order the children of each node in the level under consideration.
We perform the steps described below.

a) For each node a at level n−2, we order its children b1, ..., bh1 , according to the number
of leaves depending on them. If ci nodes depend on bi and and cj nodes depend on
bj and ci > cj for i, j ∈ {1, ..., h1}, then we pose bi on the left of bj . Possibly, there can
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be nodes from which depend the same number of leaves. In this case, their mutual
position is indifferent.
While making this ordering, we keep track in a list L of the number of leaves depend-
ing on each child. We do not allow repetitions in L, so if some number occurs more
than once, we keep track of it together with the number of time it occurs.

b) For each node a at level n − 3 we order its children b1, ..., bh2
, associating to each of

them a list containing the number of children and the list obtained in the previous step,
separating with a marker the two objects. Then we compare the lists. We put on the
left a node if in the corresponding list we find a bigger number or the same number
occurring more times. If two lists are equal, the mutual position of the associated
children is indifferent.
While ordering the nodes, we prepare a new list, analogous to the list L of a) in which,
for each block identified by the markers, we write down the numbers we examine,
again equipped with the number of times they occur.

c) For each node a of level i, we order its children. Each of them is equipped as before
with a list, containing the number of nodes depending on it and the list obtained in the
previous step (always equipped with markers). Then we compare the lists as before,
keeping track again of the data in order to use them in the next step.

At the end we obtain an ordering on the classes in the trie.

Example 4.3.1. Consider the set

X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)}.

For this set, we compute the equivalence classes Σi , i = 0, ..., 4.
The first class, Σ0, is trivial: Σ0 = {{1, 2, 3, ..., 13}}
For Σ1, we observe that π1(X1) = {1, 3}, so |Σ1| = 2. Its two elements are the set Σ1,1 =

{1, 2, 3, 4, 5, 6, 7} and the set Σ1,2 = {8, 9, 10, 11, 12, 13}.
We have Σ1 = {{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13}}.
For Σ2 we proceed in the same way and we put the points starting with the couples (1, 2),

(1, 1), (3, 1), (3, 4), (3, 3):
Σ2 = {{1, 2, 3}, {4, 5, 6, 7}{8, 9, 10}, {11}, {12, 13}}.
Constructing Σ3, we are setting the points starting with these 3-tuples: (3, 1, 2), (3, 1, 1), (3, 4, 1),

(3, 3, 1), (1, 2, 1), (1, 2, 2), (1, 1, 2).
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Consequently, we get Σ3 = {{1, 2, 3}, {4, 5}, {6, 7}, {8}, {9, 10}, {11}, {12, 13}}.
Finally, we write down the single points:
Σ4 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}}. Up to now, we did
not yet order the classes, so we get:

{1,2,3,4,5,6,7,8,9,10,11,12,13}

{1,2,3,4,5,6,7} {8,9,10,11,12,13}

{1,2,3} {4,5,6,7} {8,9,10} {11} {12,13}

{1,2,3} {4,5} {6,7} {8} {9,10} {11} {12,13}

{1} {2} {3} {4} {5} {6}{7} {8} {9}{10} {11}{12}{13}

1 3

1 2 1 3 4

2 1 2 1 2 1 1

3 4 5 1 2 1 2 2 2 3 1 1 2

Now we order the classes.
Since the node {1, 2, 3} at level 3 is the only one depending on the node {1, 2, 3} at level 2

we do not have to order it. We only keep track that 3 leaves depend on it.
We have to order the nodes {4, 5}, {6, 7} at level 3 (depending on the node {4, 5, 6, 7} at level
2). Since two leaves depend on each of them, their mutual position is indifferent. We keep
track of the fact that 2 leaves occur twice.
Consider then {8}, {9, 10} (depending on the level 2 node {8, 9, 10}). The set {9, 10} goes on
the left of {8}. Indeed {9, 10} has 2 leaves, whereas {8} has only one. We keep track of the
numbers of leaves, which are 2, 1, each one appearing once. The sets {11} and {12, 13} have
not to be ordered (as it was for the first set). We only keep track of the leaves. So we have:

[ 3︸︷︷︸
1

] [ 2︸︷︷︸
2

] [ 2︸︷︷︸
1

1︸︷︷︸
1

] [ 1︸︷︷︸
1

] [ 2︸︷︷︸
1

]

{1,2,3} {4,5} {6,7} {9,10}{8} {11} {12,13}

{1} {2} {3} {4} {5} {6} {7} {9}{10}{8} {11} {12}{13}

Then, for each node at level 2, we attach to the corresponding lists obtained before and
displayed in the first row of the above picture also the number of children, obtaining:
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[1| 3︸︷︷︸
1

]

[2| 2︸︷︷︸
2

],

referring to the children of {1, 2, 3, 4, 5, 6} and
[2| 2︸︷︷︸

1

, 1︸︷︷︸
1

]

[1| 1︸︷︷︸
1

]

[1| 2︸︷︷︸
1

],

referring to the children of {8, 9, 10, 11, 12, 13}.
Then we compare the lists and we get

[ 2︸︷︷︸
1

, 1︸︷︷︸
1

| 3︸︷︷︸
1

, 2︸︷︷︸
2

] [ 2︸︷︷︸
1

1︸︷︷︸
2

| 2︸︷︷︸
2

1︸︷︷︸
2

]

{4,5,6,7} {1,2,3}

{4,5} {6,7} {1,2,3}

{4} {5} {6} {7} {1} {2} {3}

{8,9,10} {12,13} {11}

{9,10} {8} {12,13} {11}

{9} {10} {8} {12}{13}{11}

The lists we have to compare to order {1, 2, 3, 4, 5, 6, 7} and {8, 9, 10, 11, 12, 13} are
[2| 2︸︷︷︸

1

, 1︸︷︷︸
1

| 3︸︷︷︸
1

, 2︸︷︷︸
2

]

and
[3| 2︸︷︷︸

1

1︸︷︷︸
2

| 2︸︷︷︸
2

1︸︷︷︸
2

].

Since 3 > 2 we get
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{1,2,3,4,5,6,7,8,9,10,11,12,13}

{8,9,10,11,12,13} {1,2,3,4,5,6,7}

{8,9,10} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

After computing and ordering Σ1, ...,Σn as explained above, we consider Σn. This class
is composed of singletons, since the elements of X are all distinct by hypothesis.
We report on Σn−1, ...,Σ0 the ordering of the points induced by the order of the singletons
in Σn. This means that we reorder the points in the sets composing the classes.

Example 4.3.2. Referring to example 4.3.1, we have n = 4 and we reorder the points accord-
ing to
Σ4 = {{9}, {10}, {8}, {12}, {13}, {11}, {4}, {5}, {6}, {7}, {1}, {2}, {3}}, obtaining
Σ0 = {{9, 10, 8, 12, 13, 11, 4, 5, 6, 7, 1, 2, 3}}
Σ1 = {{9, 10, 8, 12, 13, 11}, {4, 5, 6, 7, 1, 2, 3}}
Σ2 = {{9, 10, 8}, {12, 13}, {11}, {4, 5, 6, 7}, {1, 2, 3}}
Σ3 = {{9, 10}, {8}, {12, 13}, {11}, {4, 5}, {6, 7}, {1, 2, 3}}
Σ4 = {{9}, {10}, {8}, {12}, {13}, {11}, {4}, {5}, {6}, {7}, {1}, {2}, {3}}.

Definition 4.3.3. The children trie T(X) of a finite set of distinct points X is the point trie
associated to classes ordered w.r.t. the rules explained above.

The children trie T(X) is such that ht(T(X)) = n. Clearly, we have defined a biunivocal
correspondence between the points in the given set X and the paths from the root to the
leaves in the tree.

Example 4.3.4. Consider again the set X1 of examples 4.3.1, 4.3.2. We draw again the asso-
ciated children trie:
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{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

which has a strong link with the Lex Game point trie. Anyway, both the ordering of the
classes and the internal order of elements in the classes are different.
Namely, the Lex Game point trie is:

{1,2,3,4,5,6,7,8,9,10,11,12,13}

{1,2,3,4,5,6,7} {8,9,10,11,12,13}

{4,5,6,7} {1,2,3} {8,9,10}{12,13} {11}

{4,5} {6,7} {1,2,3} {9,10} {8} {12,13}{11}

{4} {5} {6} {7} {1} {2} {3} {9}{10}{8}{12}{13}{11}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 5 2 3 2 1 2 1

which turns out to be different from the children trie displayed above.

Once we have computed the children trie T(X), we only have to perform the lex trie
algorithm on T(X) in order to determine the Groebner escalier N(I).

Example 4.3.5. Referring to the set X1 of example 4.3.4, we perform the lex trie construction.
The first set is:
v0 = {9, 10, 8, 12, 13, 11, 4, 5, 6, 7, 1, 2, 3}.
We set h = 1, so we iterate on Σ3, getting
v0,0 = {9, 8, 12, 11, 4, 6, 1} =: v0

v0,1 = {10, 13, 5, 7, 2} =: v1

v0,2 = {3} =: v2.
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For h = 2, we perform the iteration on Σ2:
v0,0 = {9, 12, 11, 4, 1} =: v0

v0,1 = {8, 6} =: v1

v1,0 = {10, 13, 5, 2} =: v2

v1,1 = {7} =: v3

v2,0 = {3} =: v4.
For h = 3, the iteration on Σ1 produces
v0,0 = {9, 4} =: v0

v0,1 = {12, 1} =: v1

v0,2 = {11} =: v2

v1,0 = {8, 6} =: v3

v2,0 = {10, 5} =: v4

v2,1 = {13, 2} =: v5

v3,0 = {7} =: v6

v4,0 = {3} =: v7

Finally, for h = 3, the iteration on Σ0 gives
v0,0 = {9} =: v0

v0,1 = {4} =: v1

v1,0 = {12} =: v2

v1,1 = {1} =: v3

v2,0 = {11} =: v4

v3,0 = {8} =: v5

v3,1 = {6} =: v6

v4,0 = {10} =: v7

v4,1 = {5} =: v8

v5,0 = {13} =: v9

v5,1 = {2} =: v10

v6,0 = {7} =: v11

v7,0 = {3} =: v12

So the output trie is

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,8,12,11,4,6,1} {10,13,5,7,2} {3}

{9,12,11,4,1} {8,6} {10,13,5,2} {7} {3}

{9,4} {12,1} {11}{8,6} {10,5} {13,2} {7} {3}

{9} {4} {12} {1} {11} {8} {6} {10} {5} {13} {2} {7} {3}

0 1 2

0 1 0 1 0

0 1 2 0 0 1 0 0

0 1 0 1 0 0 1 0 1 0 1 0 0
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The correctness of the algorithm follows from the one of the Lex Game (see chapter 2).
For each h = 1, ..., n, at level n − h, the points in the same class have at least the first
n − h coordinates in common, but we have already settled the corresponding powers of
xn−h+2, ..., xn. When we examine h and n − h in the lex trie construction, we settle the
powers of xn−h+1, looking at the number of points with the same first n − h coordinates
and whose corresponding terms have the same powers of xn−h+2, ..., xn.
Thanks to the children trie construction, while browsing the points, the first points we take
into account are those corresponding to higher towers in the subsequent variable (and in
case of equality, to the bigger number of high towers in such a variable). If we get again an
equality, the comparison passes to the next variable.
This way, we are taking into account the tower reordering, trying to avoid shifts, when it is
possible.
Notice that the reordering of the points in the single classes is crucial, as it is shown in the
following example.

Example 4.3.6. Take, as usual, the set
X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)},
and compute the sets Σi, taking care to order the equivalence classes as in the Jumping
algorithm, but not reordering the points in the classes.

Σ0 = {{1, 2, 3, ..., 13}}
Σ1 = {{8, 9, 10, 11, 12, 13}, {1, 2, 3, 4, 5, 6, 7}}.
The class starting with 3 is put before the one starting with 1.
Σ2 = {{8, 9, 10}, {12, 13}, {11}, {4, 5, 6, 7}, {1, 2, 3}}.

We put now in order the following couples:
(3, 1), (3, 4), (3, 3), (1, 2), (1, 1).
Σ3 = {{9, 10}, {8}, {12, 13}, {11}, {4, 5}, {6, 7}, {1, 2, 3}}. The 3-tuples are:
(3, 1, 2), (3, 1, 1), (3, 4, 1), (3, 3, 1), (1, 2, 1), (1, 2, 2), (1, 1, 2).

Σ4 = {{9}, {10}, {8}, {12}, {13}, {11}, {4}, {5}, {6}, {7}, {1}, {2}, {3}}
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The classes are now in the order set by the jumping algorithm and the tree has exactly the
same shape, even if it contains the points in a different order (see example 4.3.4).

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

{8, 9, 10, 11, 12, 13} {1, 2, 3, 4, 5, 6, 7}

{8, 9, 10} {12, 13} {11} {4, 5, 6, 7} {1, 2, 3}

{9, 10} {8} {12, 13} {11} {4, 5} {6, 7} {1, 2, 3}

{9} {10} {8} {12} {13}{11} {4} {5} {6} {7} {1} {2} {3}

3 1

1 4 3 2 1

2 1 1 1 1 2 2

2 3 2 1 2 1 1 2 1 2 3 4 5

The root of the lex trie is v0 = {1, 2, 3, 4, 5, 6, 7, , 8, 9, 10, 11, 12, 13}.
For h = 1, we iterate on Σ3, so
v0,0 = {9, 8, 12, 11, 4, 6, 1} =: v0

v0,1 = {10, 13, 5, 7, 2} =: v1

v0,2 = {3} =: v2.
For h = 2, performing an iteration on Σ2 we get
v0,0 = {8, 12, 11, 4, 1} =: v0

v0,1 = {9, 6} =: v1

v1,0 = {10, 13, 5, 2} =: v2

v1,1 = {7} =: v3

v2,0 = {3} =: v4.
For h = 3, iterating on Σ1 we get
v0,0 = {8, 1} =: v0

v0,1 = {11, 4} =: v1

v0,2 = {12} =: v2

v1,0 = {9, 6} =: v3

v2,0 = {10, 2} =: v4

v2,1 = {13, 5} =: v5

v3,0 = {7} =: v6

v4,0 = {3} =: v7.
Finally for h = 4, we have an iteration on Σ0, so
v0,0 = {1} =: v0

v0,1 = {8} =: v1

v1,0 = {4} =: v2

v1,1 = {11} =: v3

v2,0 = {12} =: v4

v3,0 = {6} =: v5
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v3,1 = {9} =: v6

v4,0 = {2} =: v7

v4,1 = {10} =: v8

v5,0 = {5} =: v9

v5,1 = {13} =: v10

v6,0 = {7} =: v11

v7,0 = {3} =: v12.
The final trie is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

{1, 4, 6, 8, 9, 11, 12} {2, 5, 7, 10, 13} {3}

{1, 4, 8, 11, 12} {6, 9} {2, 5, 10, 13} {7} {3}

{1, 8} {4, 11} {12}{6, 9} {2, 10} {5, 13} {7} {3}

{1} {8} {4} {11} {12} {6} {9} {2} {10} {5} {13} {7} {3}

0 1 2

0 1 0 1 0

0 1 2 0 0 1 0 0

0 1 0 1 0 0 1 0 1 0 1 0 0

In conclusion, if we do not order the points we obtain another biunivocal correspondence.
We represent it below, by displaying the associated tower structure:
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Not ordered:

x

y

z

t

x

y

z

t

x

y

z

1,1,2,3 3,1,1,2

1,2,1,1 3,3,1,1

3,4,1,1

x

y

z

t

x

y

z

t

x

y

z

1,2,2,1 3,1,2,2

1,1,2,4 3,1,2,3

1,2,1,2 3,4,1,2

1,2,2,2

1,1,2,5

Ordered:

x

y

z

t

x

y

z

t

x

y

z

3,1,2,2 1,2,1,1

3,4,1,1 1,1,2,3

3,3,1,1

3,1,1,2 1,2,2,1

3,1,2,3 1,2,1,2

3,4,1,2 1,1,2,4

1,2,2,2

1,1,2,5

Let us see an example of unmixed towers.

Example 4.3.7. Consider the set X = {(1, 1, 2, 4), (0, 1, 0, 0), (1, 2, 3, 6), (0, 3, 0, 1), (0, 2, 0, 0),

(0, 5, 3, 1), (0, 1, 0, 1), (0, 1, 1, 1), (0, 2, 1, 0), (1, 1, 2, 5), (0, 3, 0, 4), (0, 2, 0, 1), (1, 1, 1, 3), (0, 2, 1, 3),

(1, 1, 1, 4), (0, 1, 1, 2)} = {P1, ..., P16}.
The associated children trie is
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{2,7,8,16,5,12,9,14,4,11,6,1,10,13,15,3}

{2,7,8,16,5,12,9,14,4,11,6} {1,10,13,15,3}

{2,7,8,16} {5,12,9,14}{4,11} {6} {1,10,13,15} {3}

{2,7} {8,16} {5,12} {9,14} {4,11} {6} {1,10} {13,15} {3}

{2} {7} {8}{16}{5}{12}{9}{14}{4}{11}{6} {1}{10}{13}{15} {3}

0 1

1 2 3 5 1 2

0 1 0 1 0 3 2 1 3

0 1 1 2 01 0 3 1 4 1 4 5 3 4 6

Performing as usual, we get the lex trie below

{2,7,8,16,5,12,9,14,4,11,6,1,10,13,15,3}

{2,8,5,9,4,6,1,13,3} {7,16,12,14,11,10,5}

{2,5,4,6,1,3} {8,9,13} {7,12,11,10} {16,14,15}

{2,1} {5,3}{4} {6}{8,13} {9} {7,10} {12} {11} {16,15} {14}

{2} {1} {5} {3} {4} {6} {8}{13}{9} {7}{10}{12}{11}{16} {15}{14}

0 1

0 1 0 1

0 1 2 3 0 1 0 1 2 0 1

0 1 0 1 0 00 1 0 0 1 0 0 0 1 0

and the following tower structure, that is unmixed.
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0,1,0,0 1,1,2,4

0,2,0,0 1,2,3,6

0,3,0,1

0,5,3,1

x1

x2

x3

x4

x1

x2

x3

0,1,1,1 1,1,1,3

0,2,1,0

0,1,0,1 1,1,2,5

0,2,0,1

0,3,0,4

0,1,1,2 1,1,1,4

0,2,1,3

4.4 Third step: Axis of Evil Macaulay factorization.

In this section, denoting as usual by X a finite set of distinct points and by I = I(X) the
zerodimensional radical ideal of points, we try to compute an Axis of Evil factorization of a
lexicographical minimal Groebner basis of I , so that it is as similar as possible to the factor-
ization à la Macaulay examined in 4.2 and minimizing the number of factors to compute.
For the original Axis of Evil algorithm, we pointed out that the method used in order to
construct the Groebner escalier does not affect the correctness of the algorithm (3.4.20).
In this case, we suppose to employ always the Jumping algorithm in order to properly pass
from the points in X to the terms in the Groebner escalier N(I(X)).
Take the set X and apply the Jumping algorithm, obtaining the Groebner escalier N(I(X))

ordered in the lex trie, but also keeping stored in memory the children trie.
We denote by

ΦJumping : X→ N(I(X))
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Pi 7→ τi,

the biunivocal correspondence provided by the Jumping algorithm.
Notice that we have a biunivocal correspondence between points in X and terms in the
Groebner escalier, we consider X reordered by the algorithm above in such a way that
Pi ↔ τi and that the τi are in increasing order w.r.t. lex.
For brevity’s sake, we employ the notation Xj = {P1, ..., Pj} and Nj = N(I(Xj)).
In order to compute the required factorization, we proceed as follows.

1. The first term is τ1 = 1 and it corresponds to a point P1 = (a1,1, ..., a1,n)1.

2. Construct n lists Ξi, i = 1, ..., n 2, each one containing the factor xi − a1,i, i = 1, ..., n.

3. Construct 2 list L1, H1 containing n entries equal to 1.

4. Set G1 = {x1, ..., xn}

5. For τj = xj11 · · ·xjnn ∈ N(I(X)), j = 2, ..., n repeat steps 6-9

6. Construct lists Lj = Lj−1, Hj = [j, ..., j︸ ︷︷ ︸
n times

].

7. Compute the minimal monomial basis Gj associated to Nj . The idea is to perform for
each point one step of Lazard algorithm (c.f. section 3.2). Referring to the explanation
given of Lazard’s algorithm it essentially means removing τj from the current basis
and inserting x1τj , ..., xnτj , possibly incrementing the number associated to them if
they already appeared in the basis: the elements of Gj are the ones appearing as many
times as the number of variables dividing them.

8. If jn = 0 compute the triangular polynomial associated to the corresponding Pj w.r.t
Xj−1, exactly as performed in Moeller algorithm (see section 1.6).
More precisely:

• associate to τj the corresponding linear factors, via the Association procedure de-
scribed in (2) below, and multiply them, obtaining a polynomial fj , such that
T (fj) = τj ;

• the triangular polynomial is qj = 1
fj(Pj)

fj .

Otherwise, if jn 6= 0 go directly to the next step.

1This is the base case for our algorithm, since I({P1}) = (x1 − a1,1, ..., xn − a1,n), which is “naturally factor-
ized”.

2One list for each variable: they will contain all the necessary linear factors in order to find the required minimal
Groebner basis.
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9. Let xh = max(τj). Perform a sort of BFS3 on the children trie starting from the root
Σ0, from level 1 to n, namely

• consider the first point Pl of Σ1,k ∀Σ1,k ∈ Σ1
4;

• if Pl = Pj , set Lj [1] = k and Σ0 = Σ1,k as new root and repeat the horizontal
reading on the subtree whose root is Σ1,k, using the projection π2 to compare the
points;

• if Pl 6= Pj and π1(Pl) = π1(Pj) set Lj [1] = Ll[1], Hj [1] = Hl[1] and Σ0 = Σ1,k

as new root and repeat the horizontal reading on the subtree whose root is Σ1,k,
using the projection π2 to compare the points;

• if Pl 6= Pj and π1(Pl) 6= π1(Pj) continue the horizontal reading with Σ1,k+1.

10. For each xs, s < h, take the xs-range of Pj and of the point Pl found for level l in the
BFS. For each point Pm in the xs-range of Pj check whether there is a point in the xs-
range of Pl, sharing the first s coordinates with Pm. If it is not possible to find it stop
the execution. The factorized polynomials fσ , σ ∈ G(I) of the minimal Groebner basis
we are looking for are computable via the association procedure described below, for
each σ ∈ G(I), σ < τj . For the other ones, we have to switch to the first Axis of Evil
algorithm 55.

11. For each xl, l ≥ h, we update the factors in the variable xl as follows.

• If τj = xmh , i.e. it is a pure power, then add xh − aj,h to the linear factors whose
leading term is xh. Then interpolate the factors in xh+1, ..., xn associated to the
ranges containing Pj , using the interpolation algorithm (1) described below. Set
Lj [h] = |Ξh|.

• If τj , is not a pure power, use the interpolation algorithm (1) on the last factors in
xi, i = h..., n and set Lj [h] = |Ξh|.

12. Associate to each term in Gm = G(I(X)) a factorized polynomial via the Association
procedure (2) and return the result.

Let us now examine the subroutines needed to perform the algorithm.
(1) Interpolation algorithm
for the point Pj , j = 2, ...,m and a generic factor p, letting ΦJumping(Pj) = τj and max(τj) =

3In the sense that the nodes of the trie are examined horizontally, see [61].
4We are reading the first point for each set labeling the nodes in the first level of the children trie.
5This is not a problem since the factorization of algorithm 5 is computed independently for each term in the

monomial basis (see 3.4.10).
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xh. Denote by Ps the point found for level h−1 in the BFS and by qs its associated triangular
polynomial.

i) Compute v = evPj (p);

ii) If T (p) ≤ τj assign to p the value p− vqs.

iii) If T (p) > τj assign to p the value p− vqj ;

(2) Association procedure
for a term σ = xj11 · · ·x

jh
h .

1) store the first jh factors in Ξj ;

2) set σ′ = xjhh

3) consider Pl = Φ−1
Jumping(σ

′);

4) compute xi = max( σσ′ );

5) store Ξi[Ll[i]];

6) set σ′ = σ′xi;

7) set Pl = Φ−1
Jumping(σ

′);

8) repeat steps from 4) to 7) until σ′ = σ.

Remark 4.4.1. If τj ∈ N(I), max(τj) = xn, then we can omit the computation of the corre-
sponding triangular polynomial qj . Indeed, T(qj) = τj ≥ xn, so this qj can never be used to
interpolate the linear factors, since if so, qj can modify the leading term.

Remark 4.4.2. Notice that, unlike the originary Axis of Evil algorithm, this version performs
a loop on X.
Anyway, it cannot be really iterative on the points since we need to have performed the
Jumping algorithm as a preprocessing.

Remark 4.4.3. Given X = {P1, ...., PS} (ordered via the jumping algorithm), consider sub-
sets Y = {P1, ..., Pt} ⊆ X, t ≤ S.
We point out that our algorithm, being iterative on the points, can also produce the linear
factorization for a minimal Groebner basis of the vanishing ideal of every such Y. If such
factorization is needed we can show it, computing G(I(Y)) and applying the association
procedure not only at the end (step 12.).
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Algorithm 6 The Macaulay-like Axis of Evil algorithm.
1: procedure AOE2(X,N,T(X))→ G . G contains a factorized minimal Groebner basis of I(X).

Require: the elements N are in increasing order w.r.t lex, x1 < ... < xn and they have been
computed via the Jumping algorithm, so that also X is consequently ordered.

Ensure: the Macaulay-like Axis of Evil factorization.
2: for i = 1 to n do
3: Ξi = xi − a1i

4: L1[i] = 1

5: H1[i] = 1

6: G1[i] = xi

7: end for
8: for j = 2 to S do
9: Lj = Lj−1

10: Hj = [j, ..., j︸ ︷︷ ︸
n times

]

11: Gj = Laz(N[1, ..., j]) . Laz is one step of Lazard’s algorithm.
12: if αjn = 0 then
13: Rj = Assoc(τj ,Ξ1, ...,Ξn, L1, ..., Lj−1,N[1, ..., j])

14: fj =
∏|Rj |
k=1Rj [k]

15: qj =
fj

fj(Pj)

16: end if
17: h = max(τj)

18: BFS(T(X), h, Pj)

19: Test(τj , h− 1) . Test is a procedure which compares the coordinates of the
points as explained in step 10 of the algorithm.

20: if τj = xmh then
21: Ξh = xh − ajh
22: Lj [h] = |Ξh|
23: for l = h+ 1 to n do
24: Ξl[|Ξl|] = Interp(Pj ,Ξl[|Ξl|],N[1, ..., j], Hj)

25: end for
26: else
27: for l = h to n do
28: Ξl[|Ξl|] = Interp(Pj ,Ξl[|Ξl|],N[1, ..., j], Hj)

29: end for
30: end if
31: end for
32: for h = 1 to |GS | do
33: G = Assoc(σh,Ξ1, ...,Ξn, L1, ..., LS ,N)

34: end for
35: end procedure
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Algorithm 7 The Association Procedure.
1: procedure ASSOC(σ, Ξ1, ...,Ξn, L1, ..., Li, N→ R) . R contains the linear factors.

Require: the elements N are in increasing order w.r.t the lexicographical order w.r.t. x1 <

... < xn and they have been computed via the Jumping algorithm, so that also X is
consequently ordered.

Ensure: the factors for the polynomial in the minimal basis whose head is σ.
2: h = max(σ)

3: R = [Ξh[1], ...,Ξh[jh]]

4: σ′ = xjhh
5: P = Φ−1

Jumping(σ
′)

6: while(σ′ 6= σ)

7: i = max( σσ′ )

8: R = R ∪ [Ξi[LP [i]]]

9: σ′ = σ′xi

10: P = Φ−1
Jumping(σ)

11: end while
12: end procedure

Algorithm 8 The Interpolation Procedure.
1: procedure INTERP(Pj , p,N, Hj , N→ p) . p is the factorized polynomial.

Require: the elements N are in increasing order w.r.t the lexicographical order w.r.t. x1 <

... < xn and they have been computed via the Jumping algorithm, so that also X is
consequently ordered.

Ensure: interpolation of p in Pj .
2: v = p(Pj)

3: if T(p) ≤ τj then
4: h = max(τj)

5: s = Hj [h− 1]

6: p = p− vqs
7: else
8: p = p− vqj
9: end if

10: end procedure
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Algorithm 9 The BFS Procedure.
1: procedure BFS(T(X), h, Pk )→ L . L is the list of factors associated toPk .

Require: T(X) is the children trie, h is the maximal level of T(X) we have to deal with and
Pk the point under consideration.

Ensure: The BFS of the children trie.
2: for i = 1 to n do
3: for j = 1 to T(X)[i] do . T(X)[i] is the number of nodes at level i

4: if T(X)[i][j][1] == Pk then
5: Lk[i] = j

6: T = Subtree(T(X)[i][j],T(X))

7: break;
8: end if
9: if T(X)[i][j][1][i] == Pk[i] then

10: Lk[i] = LT(X)[i][j][1][i]

11: Lk[i] = T(X)[i][j][1]

12: T = Subtree(T(X)[i][j],T(X))

13: break;
14: end if
15: end for
16: end for
17: end procedure
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Remark 4.4.4. Let {(ai,1, ..., ai,l, ∗, ..., ∗)} be the points in biunivocal correspondence to the
terms of a certain xl-range.
By construction, the factors having xl as head vanish on the point of the shape (ai,1, ..., ai,l) ∈
kl and we have exactly one factor for each xl-range contained in the first xl+1-range.
By the association procedure, we can observe that, for each h, the first l xh-factors vanish
at the points, corresponding via the Jumping algorithm, to terms τ with max(τ) = xh and
degh(τ) < l.

Remark 4.4.5. Consider a point Pj ∈ X, corresponding to a term τj ∈ N(I(X)), and the
execution of our algorithm on it, referring especially to step 8. For each m = 1, ..., h − 1,
consider the set Ωm = {P ∈ Xj−1 |πm(P ) = πm(Pj)}. In step 8 we are looking for the point
Pl ∈ Ωm, such that τl = min(ΦJumping(Ωm)). Performing it, we do not need to scan all the
points in Xj−1, but only one for each element of the class Σm in the children trie. This is a
facility provided by the jumping algorithm: the first element of each Σm is always put in
biunivocal correspondence with the minimal lexicographical term in the class.

Remark 4.4.6. We point out that the computation of the triangular polynomial and the in-
terpolation process come directly from Moeller algorithm (see section 1.6).

The algorithm ends in a finite number of steps, performing loops in a finite set of points
and terms.
Suppose now that the test of step 10 passes for each point so that we continue with the
algorithm in this chapter until we reach the last point and we prove that our new algorithm
is correct. First of all, we need the following

Lemma 4.4.7. Let N(I), |N(I)| < ∞ be the Groebner escalier of a zerodimensional radical
ideal I and let N(J) = N(I) ∪ {τ}, τ = maxLex(N(J)). If xk > min(τ), then xkτ /∈ G(J).

Proof: By assumption, τ ∈ G(I), τ = maxLex(N(J)). Let xk > min(τ).
Since xkτ

min(τ) > τ , then xkτ
min(τ) /∈ N(J), so xkτ /∈ G(J), by the characterization of G(J)6. �

Proposition 4.4.8. With the previous notation, G := GS = G(I(X)).

Proof: It is obvious that G1 = G(I({P1})). Suppose that Gi−1 = G(I({P1, ..., Pi−1})). We
prove that the analogous equality holds for Gi.
First of all, we point out that, since the Groenbner escalier has been constructed via the
Jumping algorithm, the term σi = xβ1

1 · · ·xβnn , associated to Pi is the maximal term in Ni

6At least one of the predecessors of xkτ does not belong to N(J).
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w.r.t. lex (by the lex trie construction, described in [37, 67]).
By the above comment and by lemma 4.4.7, if τ = xα1

1 · · ·xαnn ∈ Gi := G(I({P1, ..., Pi}))
then, either τ = xkσi, xk ≤ min(τ) or τ ∈ Gi−1.

In the first case, we observe that σi ∈ Gi−1, so fσi vanishes7 at P1, ..., Pi−1 and fσi | fxkσi
by the association procedure.
Moreover, the exponents’ list of σi identifies the first point not annihilating fσi (the first xk-
range whose corresponding points do not make fσi vanish is the xk-range containing σi).
The interpolation procedure and the association procedure on the variable xk ensure then
that fxkσi vanishes at P1, ..., Pi. Indeed fσi vanishes in P1, ..., Pi−1 and the factor in xk we
take vanishes in Pi.

In the second case, namely τ ∈ Gi−1, it can be either τ > σi or τ < σi.
In order to continue, we need the technical fact proved below.

Fact 4.4.9. For the case τ > σi, only two possibilities may arise, namely:

A) τ = xh, xh > max(σi);

B) τ = x
αj0
j0

x
αj0+1

j0+1 · · ·xαnn , with αn = degn(σi), αn−1 = degn−1(σi),...,αj0+1 = degj0+1(σi)

and αj0 = degj0(σi) + 1.

In order to prove the assertion, we first prove that two variables xl > xk ≥ max(σi) cannot appear
with nonzero exponent in τ . Indeed, if it was so, τ

xk
∈ Ni (being τ ∈ Gi) and τ

xk
> σi, that contra-

dicts the maximality of σi ∈ Ni.
On the other hand, if some xk ≥ max(σi) appears in τ and degk(τ) = degk(σi) + l, with l > i,
again τ

xk
∈ Ni and τ

xk
> σi, thus also this possibility cannot occur.

By the comments above, if xh > max(σi), xh | τ , then any other xl ≥ max(σi) does not divide τ
and, moreover, degh(τ) = 1.
Being σi - τ (σi, τ ∈ Gi−1), for j = 1, ...,max(σi), it cannot be always αj ≥ βj , so ∃k ∈
{1, ...,max(σi)} with αk < βk.
If αk > 0, τ

xk
∈ Ni and τ

xk
> σi, so this possibility cannot occur.

Otherwise, if αk = 0 and there is some l ∈ {1, ...,max(σi)} with αl > 0, by the same argument as
before we have a contradiction. Thus, necessarily degh(τ) = 1, degl(τ) = 0, for all l 6= h.

Let now max(τ) = max(σi). Then, as τ > σ, αn > βn or αn = βn, . . ., αj0+1 = βj0+1,
αj0 > βj0 , reasoning as above, αj0 = βj0 + 1. No variables xl, l ∈ {1, ..., j0 − 1} can divide τ by

7The polynomial fσi is such that T(fσi ) = σi.
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the maximality of σi in Ni. Thus we conclude that τ = x
αj0
j0

x
αj0+1

j0+1 · · ·xαnn , with αn = degn(σi),
αn−1 = degn−1(σi),. . .,αj0+1 = degj0+1(σi) and αj0 = degj0(σi) + 1.

Let then τ ∈ Gi−1, τ > σi. By the above lemma we know that only cases A), B) can occur,
so we study them from an interpolation point of view. We know that fτ already vanishes at
P1, ..., Pi−1.

A) fxh vanishes at Pi: it is a straightforward consequence of the interpolation procedure.

B) fτ vanishes at Pi: the first xi-range whose corresponding points do not make fσi van-
ish is the one containing σi, so the assertion is again a consequence of the interpolation
procedure, applied to the xi-factor corresponding to that range.

If, instead, τ < σi, let xh = max(σi). Then, by the correspondence given by the Jumping
algorithm, there is a point Pj , sharing with Pi the first h − 1 coordinates, such that for the
corresponding term σj degh(σj) = degh(σi). If fτ vanishes at Pj , then it also vanishes at
Pi, by the association procedure. If σj < τ ,fτ vanishes at Pj and then in Pi (remark 4.4.4).
Otherwise, we can we can repeat with σj instead of σi and conclude by induction. �

Remark 4.4.10. The algorithm works correctly in each characteristic for the base field.

Remark 4.4.11. The same interpolating algorithm can also be used in order to compute an
Axis of Evil factorization for the border basis of our ideal I(X).
Once computed the border set B(I(X)), we proceed as before. The only modification needed
is in the association procedure, since, in step (2) it can happen to obtain a term τ /∈ N(I(X)),
so it is impossible to apply ΦJumping . This is the case for terms τ ∈ B(I(X)) \ G(I(X)).
We solve the problem picking randomly the needed number of factors in the lists Ξ1, ...,Ξn

involved by the variables of τ not already associated to a factor.
In order to get the border basis from the factorization, clearly, we have to reduce.

We show now some examples of the execution.

Example 4.4.12. We consider again the set
X1 = {(1, 1, 2, 3), (1, 1, 2, 4), (1, 1, 2, 5), (1, 2, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2),

(3, 1, 1, 2), (3, 1, 2, 2), (3, 1, 2, 3), (3, 3, 1, 1), (3, 4, 1, 1), (3, 4, 1, 2)} = {P1, ..., P13}.
We have reordered the points via the jumping algorithm in examples 4.3.1, 4.3.4 and 4.3.5,
so we have already constructed both the children trie and the lex trie, i.e.
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{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

and

{9, 10, 8, 12, 13, 11, 4, 5, 6, 7, 1, 2, 3}

{9, 8, 12, 11, 4, 6, 1} {10, 13, 5, 7, 2} {3}

{9, 12, 11, 4, 1} {8, 6} {10, 13, 5, 2} {7} {3}

{9, 4} {12, 1} {11}{8, 6} {10, 5} {13, 2} {7} {3}

{9} {4} {12} {1} {11} {8} {6} {10} {5} {13} {2} {7} {3}

0 1 2

0 1 0 1 0

0 1 2 0 0 1 0 0

0 1 0 1 0 0 1 0 1 0 1 0 0

Therefore, we can start the new interpolation process.
We denote in boldface the points involved by the BFS. The first point is P9 = (3, 1, 2, 2),
corresponding τ9 = 1. The linear factors involved here are trivially X = {x − 3} = {x1},
Y = {y − 1} = {y1}, Z = {z − 2} = {z1}, T = {t− 2} = {t1}, while L9 = [1, 1, 1, 1].

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

The second point in the new configuration is P4 = (1, 2, 1, 1), corresponding to τ4 = x,
while the triangular polynomial is q4 = 1

evP4
(x1) = −1

2 (x− 3). The minimal monomial basis
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is G = {x2, y, z, t}.
We list now the factors:
X = {x− 3, x− 1} = {x1, x2}: we add a new factor in x.
Y = {y + 1

2x−
5
2} = {y1}: we assign to y1 the new value y1 − evP4

(y1)q4.
Z = {z − 1

2x−
1
2} = {z1}: z1 → evP4

(z1)q4.

T = {t− 1
2x−

1
2} = {t1}: t1 → evP4

(t1)q4.

We have L4 = [2, 1, 1, 1]:

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

For P12 = (3, 4, 1, 1) we perform as before:
N = {1, x, y}, q12 = 1

evP12
(y1)

= 1
3y1 and the minimal monomial basis is G = {x2, xy, y2, z, t}.

The factors are:
X = {x − 3, x − 1} = {x1, x2}: the factors in x remain unchanged from now on, so we stop
listing them.
Y = {y + 1

2x−
5
2 , y − 4} = {y1, y2}: we add y2, so y1 remains unchanged from now on.

Z = {z + 1
3y −

1
3x−

4
3} = {z1}: z1 → z1 − evP12

(z1)q12.
T = {t+ 1

3y −
1
3x−

4
3} = {t1}: t1 → t1 − evP12

(t1)q12.
L12 = [1, 2, 1, 1]:
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{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

y-factor and then x1 since P12 has 3 as first coordinate. For P1 = (1, 1, 2, 3) we have:
N = {1, x, y, xy}, q1 = 1

evP1
(x1y1) = 1

2x1y1 and G = {x2, y2, z, t}.
For the listed factors we have:
Y = {y+ 1

2x−
5
2 , y−

3
2x+ 1

2} = {y1, y2}: we interpolate y2, but we cannot use the triangular
polynomial q1 since T (q1) = xy > y. So we go down and pick q4, obtaining y2 → y2 −
evP1

(y2)q4.
Z = {z − 1

3xy + 4
3y −

1
6x

2 + x− 23
6 } = {z1}: here we can use q1: z1 → z1 − evP1

(z1)q1.
T = {t− 5

6xy + 17
6 y −

5
12x

2 + 3x− 91
12} = {t1}: t1 → t1 − evP1

(t1)q1.
L1 = [2, 2, 1, 1] :

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

For P11 = (3, 3, 1, 1), since N = {1, x, y, xy, y2} and q11 = −1
2 y1y2, we have to add a factor in

y and interpolate z1, t1 using q11. The monomial basis is G = {x2, xy2, y3, z, t}, whereas the
factors are:
Y = {y + 1

2x−
5
2 , y −

3
2x+ 1

2 , y − 3} = {y1, y2, y3}
Z = {z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 } = {z1}
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T = {t− 1
6y

2 − 2
3xy + 19

6 y −
7
24x

2 + 7
3x−

59
8 } = {t1}.

L11 = [1, 3, 1, 1]:

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

The pointP8 = (3, 1, 1, 2) gives N = {1, x, y, xy, y2, z}, q8 = −z1 and G = {x2, xy2, y3, xz, yz, z2, t}.
Y = {y + 1

2x −
5
2 , y −

3
2x + 1

2 , y − 3} = {y1, y2, y3}: from now on, the factors in y remain
unchanged, so we stop listing them.
Z = {z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 , z − 1} = {z1, z2}: we add a new factor.

T = {t− 1
6y

2 − 2
3xy + 19

6 y −
7
24x

2 + 7
3x−

59
8 } = {t1}: t1 → t1 − evP8(t1)q8.

G = {x1x2, y1y2x1, y1y2y3, x1z1, y1z1, z1z2, t1}. L8 = [1, 1, 2, 1]:

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

P6 = (1, 2, 2, 1), N = {1, x, y, xy, y2, z, xz}, q6 = − 1
2x1z1, G = {x2, xy2, y3, yz, z2, t}

Z = {z − 1
6y

2 − 1
6xy + 5

3y −
1
24x

2 + 1
3x −

29
8 , z + 1

2x −
5
2} = {z1, z2}: z2 → z2 − evP6(z2)q4,

since T (q6) = xz > z.

T = {t− 1
6y

2 − 2
3xy + 19

6 y −
7
24x

2 + 7
3x−

59
8 } = {t1}: t1 → t1 − evP6(t1)q6.

L6 = [2, 1, 2, 1] :
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{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

Take now P10 = (3, 1, 2, 3), obtaining N = {1, x, y, xy, y2, z, xz, t}. From now on we do not
need to compute triangular polynomials anymore.
G = {x2, xy2, y3, yz, z2, xt, yt, zt, t2}
Z = {z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 , z + 1

2x−
5
2} = {z1, z2}

Since also the factors in z remain unchanged from now on, we stop listing them. T =

{t− 1
6y

2 − 2
3xy + 19

6 y −
7
24x

2 + 7
3x−

59
8 , t− 3} = {t1, t2}: we add a new factor t2 (t1 remains

always unchanged) and we have L10 = [1, 1, 1, 2]

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

For P5 = (1, 2, 1, 2), we have N = {1, x, y, xy, y2, z, xz, t, xt} and
G = {x2, xy2, y3, yz, z2, yt, zt, t2}.
We only have to interpolate t2, using t2 − evP5

(t2)q4:
T = {t− 1

6y
2 − 2

3xy + 19
6 y −

7
24x

2 + 7
3x−

59
8 , t−

1
2x−

3
2} = {t1, t2}

L5 = [2, 1, 1, 2].
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{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

For P13 = (3, 4, 1, 2), we have N = {1, x, y, xy, y2, z, xz, t, xt, yt} and
G = {x2, xy2, y3, yz, z2, xyt, y2, zt, t2}.
X = {x− 3, x− 1} = {x1, x2}
Y = {y + 1

2x−
5
2 , y −

3
2x+ 1

2 , y − 3} = {y1, y2, y3}
Z = {z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 , z + 1

2x−
5
2} = {z1, z2}

We interpolate again t2, but using q12:
T = {t− 1

6y
2− 2

3xy+ 19
6 y−

7
24x

2+ 7
3x−

59
8 , t+

1
3y−

1
3x−

7
3} = {t1, t2}, so t2 → t2−evP13

(t2)q12,
obtaining
L13 = [1, 2, 1, 2].

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

For P2 = (1, 1, 2, 4), we have
N = {1, x, y, xy, y2, z, xz, t, xt, yt, xyt} and
G = {x2, xy2, y3, yz, z2, y2t, zt, t2}.
X = {x− 3, x− 1} = {x1, x2}
Y = {y + 1

2x−
5
2 , y −

3
2x+ 1

2 , y − 3} = {y1, y2, y3}
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Z = {z − 1
6y

2 − 1
6xy + 5

3y −
1
24x

2 + 1
3x−

29
8 , z + 1

2x−
5
2} = {z1, z2}

We interpolate t2: t2 → t2 − evP2(t2)q1:
T = {t− 1

6y
2− 2

3xy+ 19
6 y−

7
24x

2 + 7
3x−

59
8 , t−

5
6xy+ 17

6 y−
5
12x

2 + 3x− 103
12 } = {t1, t2} and

we get
L2 = [2, 2, 1, 2]

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

The point P7 = (1, 2, 2, 2) gives
N = {1, x, y, xy, y2, z, xz, t, xt, yt, xyt, zt},
G = {x2, xy2, y3, yz, z2, y2t, xzt, t2}.
X = {x− 3, x− 1} = {x1, x2}
Y = {y + 1

2x−
5
2 , y −

3
2x+ 1

2 , y − 3} = {y1, y2, y3}
Z = {z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 , z + 1

2x−
5
2} = {z1, z2}

Since t2 vanishes in P7 there are no changes to perform on the factors:
T = {t− 1

6y
2− 2

3xy+ 19
6 y−

7
24x

2 + 7
3x−

59
8 , t−

5
6xy+ 17

6 y−
5
12x

2 + 3x− 103
12 } = {t1, t2} and

we obtain
L7 = [2, 1, 2, 2].

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1
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For P3 = (1, 1, 2, 5) we have: N = {1, x, y, xy, y2, z, xz, t, xt, yt, xyt, zt, t2},
G = {x2, xy2, y3, yz, z2, y2t, xzt, xt2, yt2, zt2t3}.
X = {x− 3, x− 1} = {x1, x2}
Y = {y + 1

2x−
5
2 , y −

3
2x+ 1

2 , y − 3} = {y1, y2, y3}
Z = {z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 , z + 1

2x−
5
2} = {z1, z2}

Here we only add a factor:
T = {t− 1

6y
2− 2

3xy+ 19
6 y−

7
24x

2 + 7
3x−

59
8 , t−

5
6xy+ 17

6 y−
5
12x

2 +3x− 103
12 , t−5} = {t1, t2, t3}.

L3 = [2, 1, 1, 3] :

{9,10,8,12,13,11,4,5,6,7,1,2,3}

{9,10,8,12,13,11} {4,5,6,7,1,2,3}

{9,10,8} {12,13} {11} {4,5,6,7} {1,2,3}

{9,10} {8} {12,13} {11} {4,5} {6,7} {1,2,3}

{9} {10}{8}{12}{13} {11} {4} {5} {6} {7} {1} {2} {3}

1 3

2 1 1 4 3

1 2 2 2 1 1 1

1 2 1 2 3 4 52 3 2 1 2 1

The final Groebner basis is:
G = {x1x2, y1y2x1, y1y2y3, y1z1, z1z2, y2y1t1, x2z1t1, t1t2x2, t1t2y2, t1t2z1t1t2t3}, i.e.

• f1 = (x− 3)(x− 1);

• f2 = (y + 1
2x−

5
2 )(y − 3

2x+ 1
2 )(x− 3);

• f3 = (y + 1
2x−

5
2 )(y − 3

2x+ 1
2 )(y − 3);

• f4 = (y + 1
2x−

5
2 )(z − 1

6y
2 − 1

6xy + 5
3y −

1
24x

2 + 1
3x−

29
8 );

• f5 = (z − 1
6y

2 − 1
6xy + 5

3y −
1
24x

2 + 1
3x−

29
8 )(z + 1

2x−
5
2 );

• f6 = (y + 1
2x−

5
2 )(y − 3

2x+ 1
2 )(t− 1

6y
2 − 2

3xy + 19
6 y −

7
24x

2 + 7
3x−

59
8 );

• f7 = (x−1)(z− 1
6y

2− 1
6xy+ 5

3y−
1
24x

2 + 1
3x−

29
8 )(t− 1

6y
2− 2

3xy+ 19
6 y−

7
24x

2 + 7
3x−

59
8 );

• f8 = (x− 1)(t− 1
6y

2 − 2
3xy+ 19

6 y−
7
24x

2 + 7
3x−

59
8 )(t− 5

6xy+ 17
6 y−

5
12x

2 + 3x− 103
12 );

• f9 = (t− 1
6y

2− 2
3xy+ 19

6 y−
7
24x

2 + 7
3x−

59
8 )(t− 5

6xy+ 17
6 y−

5
12x

2 +3x− 103
12 )(y− 3

2x+ 1
2 );
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• f10 = (t− 1
6y

2 − 2
3xy + 19

6 y −
7
24x

2 + 7
3x−

59
8 )(t− 5

6xy + 17
6 y −

5
12x

2 + 3x− 103
12 )(z −

1
6y

2 − 1
6xy + 5

3y −
1
24x

2 + 1
3x−

29
8 );

• f11 = (t− 1
6y

2− 2
3xy+ 19

6 y−
7
24x

2 + 7
3x−

59
8 )(t− 5

6xy+ 17
6 y−

5
12x

2 + 3x− 103
12 )(t− 5);

In this example we have considered a mixed tower structure but we could go to the end of
the algorithm.

If for some set of points X we know (for example for theoretical reasons) that it is possi-
ble to associate to it an unmixed tower structure, we can appreciably simplify the execution.
Indeed, we know that.

• We do not need the sort of BFS on the trie (and actually we do not need the lists
Hi, Li): by the unmixed tower structure we already know that if Pτ corresponds to τ =

xα1
1 · · ·xαnn then Pτ ′ , corresponding to τ ′ = τ

x
αi
i ···x

αn
n

share its first (i − 1) coordinates
with Pτ .

• We do not need the association procedure : the factorization we obtain is properly à la
Macaulay.

• We do not need to perform any test on the ranges.

Let us see an example of this situation.

Example 4.4.13. Let us consider the set X = {(0, 1, 1), (1, 1, 1), (0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0)}.
Let us start computing N(I(X)).
We have:
Σ0 = {{1, 5, 3, 2, 6, 4}}
Σ1 = {{1, 5, 3}, {2, 6, 4}}
Σ2 = {{1, 5}, {3}, {2, 6}, {4}}
Σ3 = {{1}, {5}, {3}, {2}, {6}, {4}}

The children trie is

{1,5,3,2,6,4}

{1,5,3} {2,6,4}

{1,5} {3} {2,6} {4}

{1} {5} {3} {2} {6} {4}

0 1

1 2 1 2

1 0 0 1 0 0
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Now we construct the lex trie. For h = 1, we have n− h = 2, so we iterate on Σ2, getting
v0 = {1, 3, 2, 4}
v1 = {5, 6}.
Then we continue with h = 2 and, since n− h = 1, we iterate on Σ1, obtaining
v0,0 = {1, 2} =: v0

v0,1 = {3, 4} =: v1

v1,0 = {5, 6} =: v2

Finally, for h = 3, we iterate on Σ0 and we finally get v0,0 = {1}
v0,1 = {2}
v1,0 = {3}
v1,1 = {4}
v2,0 = {5}
v2,1 = {6}
and the lex trie is

{1,2,3,4,5,6}

{1,3,2,4} {5,6}

{1,2} {3,4} {5,6}

{1} {2} {3} {4} {5} {6}

0 1

0 1 0

0 1 0 1 0 1

Now, we deal with the factorization, iterating on the points. In this case, the tower
structure is unmixed, so we can simplify the execution:

0,1,1 1,1,1

0,2,0 1,2,0

0,1,0 1,1,0

Let us start with P1 = (0, 1, 1), corresponding to τ1 = 1 ∈ N(I). The associated triangular
polynomial is q1 = 1 and, up to now, the linear factors are
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Ξ1 = {x1}
Ξ2 = {x2 − 1}
Ξ3 = {x3 − 1}.
The second point, P2 = (1, 1, 1), corresponds to τ2 = x1 and we have q2 = x1. The lists of
factors are
Ξ1 = {x1, x1 − 1}: we added a new polynomial in x1

Ξ2 = {x2 − 1}
Ξ3 = {x3 − 1}.
Consider now P3 = (0, 2, 0), corresponding to τ3 = x2 and to the triangular polynomial
q3 = x2 − 1.
The lists of factors are
Ξ1 = {x1, x1 − 1}
Ξ2 = {x2 − 1, x2 − 2}: we added a new polynomial in x2

Ξ3 = {x3 + x2 − 2}: we have interpolated as x3 − 1→ (x3 − 1) + q3.
For P4 = (1, 2, 0) we have τ4 = xy, q4 = x1(x2 − 1) and the factors become:
Ξ1 = {x1, x1 − 1}
Ξ2 = {x2 − 1, x2 − 2}
Ξ3 = {x3 + x2 − 2}.
For P5 = (0, 1, 0), we get τ5 = x3 and we do not compute the triangular polynomial, since
its head term would be x3 and we cannot use it to interpolate.
The list of factors are
Ξ1 = {x1, x1 − 1}
Ξ2 = {x2 − 1, x2 − 2}
Ξ3 = {x3 + x2 − 2, x3}: we added a new factor in x3.
For P6 = (1, 1, 0), we get τ6 = x1x3 and, as for P5, we have no need to compute the triangu-
lar polynomial.
The final list of factors are
Ξ1 = {x1, x1 − 1}
Ξ2 = {x2 − 1, x2 − 2}
Ξ3 = {x3 + x2 − 2, x3}.
The factorization we get is:

G = {x1(x1 − 1), (x2 − 1)(x2 − 2), (x3 + x2 − 2)(x2 − 1), x3(x3 + x2 − 1)}

and it is an Axis of Evil factorization à la Macaulay
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The version of the Axis of Evil algorithm we are examining now displays many differ-
ences with the original one.
The factors are updated at each step and not computed each time from the beginning. More-
over, some linear factors are used several times i.e. in relation with more than one head,
even if they have been computed only once.
This was not in the original Axis of Evil procedure, where for each term in G(I) it was nec-
essary to interpolate specifically each factor, possibly computing the same factor more than
once.

Example 4.4.14. Given X = {(0, 0, 0), (1, 0, 2), (3, 3, 4), (0, 2, 0), (1, 2, 4), (0, 3, 3), (0, 0, 1), (1, 0, 1)},
we perform on it both the original Axis of Evil algorithm and the second version.
We suppose X and N(I(X)) = {1, x, x2, y, xy, y2, z, xz} be ordered as provided by the jump-
ing algorithm. As explained before, this is necessary only for the second version.
The tower structure turns out to be

0,0,0 1,0,2 3,3,4

0,2,0 1,2,4

0,3,3

0,0,1 1,0,1

The monomial basis is G(I(X)) = {x3, x2y, xy2, y3, x2z, yz, z2}.
The original algorithm produces:

• f1 = x(x− 1)(x− 3);

• f2 = x(x− 1)(y − 3);

• f3 = x(y − 2)(y − 3
2x+ 3

2 );

• f4 = y(y − 2)(y − 3);

• f5 = x(x− 1)(z − 4);

• f6 = y(z − 3y + 11
6 x

2 − 35
6 x+ 6);

• f7 = (z − 1)(z − y2 − xy + 2y + 7
3x

2 − 13
3 x).

All the repeated factors have been computed each time they appear in the factorization, so,
for example, we compute the same factor (x− 1) three times.
Consider now the second algorithm. The factorized basis we get is
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• x(x−1)(x−3);

• x(x−1)(y− 1
2x(x−1));

• x(y− 1
2x(x−1))(y−2);

• (y−3)(y− 1
2x(x−1))(y−2);

• x(x−1)(z−y2+ 1
2x

2y− 3
2xy+2y+ 1

2x
3− 7

6x
2− 4

3x);

• (y− 1
2x(x−1))(z−y2+ 1

2x
2y− 3

2xy+2y+ 1
2x

3− 7
6x

2− 4
3x);

• (z−y2+ 1
2x

2y− 3
2xy+2y+ 1

2x
3− 7

6x
2− 4

3x)(z−1).

In this case, even if a factor repeats more than once in the factorized basis, it is computed
only once.

There is something more: in this new version of the Axis of Evil algorithm, we interpo-
late at each point P ∈ X, only in some variables.
More precisely, if ΦJumping(P ) = τ and max(τ) = xh, we interpolate only in xh, ..., xn.
In the original algorithm, we compute separately all the needed factors.
This means that the number of computed factors decreases with the second version of the
algorithm.
In 4.4.14, for example, we noticed that, from P4, the list of the factors in x maintains un-
changed. The same happens for the y factors from P7 on.

Let qi be the triangular polynomial associated to a point Pi ∈ X.
We have T(qi) = ΦJumping(Pi) = τi. If τi is bigger than the variable in which we are
interpolating it is not possible to use qi because if we do it, we would change the leading
term of the linear factor.
For example, if ΦJumping(Pi) = xy we cannot interpolate the y factor vanishing in Pi using
qi.
We would need then another triangular polynomial, but we don’t have to compute it, thanks
to the list L, constructed exploiting the sort of BFS we perform on the children tree 4.4.1.

We also notice that, when we reach a term τ ∈ N(I(X)) such that max(τ) = xn we do not
need to compute any triangular polynomial more: the ones we have are enough in order to
perform the whole interpolation step.
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Example 4.4.15. If we take, for example, the set
X = {(1, 1), (2, 3), (1, 2), (2, 4), (1, 3), (2, 6), (1, 4), (2, 5), (1, 6), (2, 7), (1, 11), (2, 14)} ⊂ k2, the
Groebner escalier is
N(I(X)) = {1, x, y, xy, y2, xy2, y3, xy3, y4, xy4, y5, xy5} ⊂ k[x, y].
While performing our algorithm, we only have to compute and store the triangular poly-
nomial associated to (2, 3), even if |X| = 12. This happens because the term corresponding
to the third point, i.e. (1, 2), contains the maximal variable and so does every subsequent
term.

The arrangement of X in towers is all we need in order to interpolate: once it is given,
we exactly know which are the points and the polynomials to pick in order to obtain the
correct factors.
In the original Axis of Evil we had to check at each step which points already vanish in a
partial factorized polynomial.
On the other hand, computational evidence shows that in general the linear factors obtained
from the original Axis of Evil algorithm are sparser than the ones obtained via the new al-
gorithm. Actually, for the first version, we know that the number of terms for a linear factor
is bounded above by |X|+ 1 (the leading term plus as many terms as the points to interpo-
late in, by the interpolation step of 5), whereas we do not have such a bound for the second
version. Moreover, in the second version, the factors are not reduced.

Let us deal with Macaulay’s trick and the Axis of Evil.

Example 4.4.16. Taken the set X = {(0, 0), (1, 2), (0, 3)}, we have N(I(X)) = {1, x, y} and
G(I(X)) = x2, xy, y2.
The first Axis of Evil factorization is

• f1 = x(x− 1);

• f2 = x(y − 2);

• f3 = (y − 3)(y − 2x).

while the second one is

• f1 = x(x− 1);

• f2 = x(y − 2x);

• f3 = (y − 2x)(y − 3).
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A factorization à la Macaulay requires only two factors in x and two factors in y, so the first
factorization is not à la Macaulay, while the second does.

Remark 4.4.17. Given a finite set of distinct points X, the Axis-of-Evil theorem finds for the
lexicographical Groebner basis of I(X) a factorization linear in the leading terms, passing
through the lexicographical Groebner escalier à la Cerlienco-Mureddu N(X) of I(X), while
Macaulay’s trick, given an order ideal N finds a set of points X̃ such that N(I(X̃)) = N and
the lexicographical Groebner basis of I(X̃) is linearly factorized .
If X is a finite set of distinct points as generated by Macaulay’s trick, the Axis-of-Evil fac-
torization is linear, not only in the heads.
If X is a finite set of arbitrary distinct points, the Axis-of Evil factorization is not really linear
and, given an order ideal N there exist sets X of distinct points such that N(I(X)) = N, but
the lexicographical Groebner basis of I(X) has no linear factorization à la Macaulay.
We display now an example which shows that the Axis of Evil algorithm makes Macaulay’s
trick not work.
Consider again the set X0 = {(3, 0, 0), (3, 1, 4), (1, 2, 3), (1, 2, 5)} and the polynomial ring
k[x, y, z] equipped with the lexicographical order induced by 1 < x < y < z. The Groebner
escalier associated to I(X0) is N(I(X0)) = {1, x, y, z}, while the minimal monomial basis of
the initial ideal is G(I(X0)) = {x2, xy, xz, y2, yz, z2}.
According the second procedure, there should be two factors whose leading term is x, say
X1, X2, two factors whose leading term is y (Y1, Y2) and two factors whose leading term is
z (Z1, Z2). These factors should be of the following form:

• x+ a, a ∈ k;

• y + f(x), f(x) ∈ k[x];

• z + g(x, y), g(x, y) ∈ k[x, y].

Focus on xy, xz. If Macaulay’s trick holds in the required Groebner basis there should be
both X1Y1 and X1Z1. The factor X1 can be only (x− 1), (x− 3), so there are two cases:

• X1 = (x− 1): the polynomial (x− 1)Y1 must vanish on all the points of X0. We know
that it vanishes on (1, 2, 3), (1, 2, 5) because of the factor (x−1), so Y1 should vanish on
(3, 0, 0), (3, 1, 4). It means that it must hold simultaneously f(3) = 0 and f(3) = −1,
but the evaluation of a polynomial f(x) ∈ k[x] is unique, so we have a contradiction;

• X1 = (x − 3): there are no problems for (x − 3)Y1, while we encounter an analogous
contradiction for (x − 3)Z1. The latter should vanish on all the points of X0 and
we know that it does for (3, 0, 0), (3, 1, 4). This means that Z1 should vanish on both
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(1, 2, 3) and (1, 2, 5), so it should hold g(1, 2) = −3 and g(1, 2) = −5, i.e. again a
contradiction.

This example is minimal, since if we remove a point from X0 the argument does not work
anymore.
Notice that the problem is related to the left shifting of the towers we have in the second
z-range.
Conversely, we can show that the Axis-of-Evil context includes cases which are not contem-
plated by Macaulay’s trick.
Take for example N = {1, x, y, z} ⊆ k[x, y, z], imposing, as usual, the lexicographical order
with x < y < z. Macaulay recovers from N a set of points X and a set G of polynomials such
that, called I = I(X), N = N(I) and G is the reduced Groebner basis of I .
We stress the fact that Macaulay’s trick imposes strong conditions on the set of points, so it
does not recover all the sets of points with a given Groebner escalier N.
First of all, Macaulay recovers from N(I) the monomial basis G(I). In our example G(I) =

{x2, xy, xz, y2, yz, z2}.
In G(I) he isolates the pure powers of all the variables, which are present there since N is a
finite set: d1 = dx = 2, d2 = dy = 3, d3 = dz = 2. After that, for each i, j, l, j 6= l takes the
elements

ai,j ∈ k, i = 1, ..., 3, j = 1, ..., di, ai,j 6= ai,l,

namely a1,0 = 1, a1,1 = 2, a2,0 = 3, a2,1 = 4, a3,0 = 5, a3,1 = 6.

The polynomials in the reduced Groebner basis are defined by the following formula,
where X = [x, y, z] :

gm =

3∏
i=1

ei,m−1∏
j=0

(X[i]− ai,j), m ∈ G(I).

In our example we have:
g1 = (x− 1)(x− 2), T (g1) = x2

g2 = (x− 1)(y − 3), T (g2) = xy

g3 = (x− 1)(z − 5), T (g3) = xz

g4 = (y − 3)(y − 4), T (g4) = y2

g5 = (y − 3)(z − 5), T (g5) = yz

g6 = (z − 5)(z − 6), T (g6) = z2.
Finally X = {(a1,e1 , ..., a3,e3) ∈ kn|xe1ye2ze3 ∈ N}, i.e.

X = {(1, 3, 5), (2, 3, 5), (1, 4, 5), (1, 3, 6)}.

For example, also X′ = {(1, 3, 5), (2, 3, 5), (1, 4,7), (1, 3, 6)} has the same Groebner escalier
as X, but we cannot recover it since there are only two possible third coordinates.
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We display now an example of tower structure making our algorithm stop before getting
the whole factorization.

Example 4.4.18. Let us consider the set

X = {(2, 0, 0, 0), (1, 0, 0, 0), (2, 1, 0, 0), (1, 1, 0, 0), (2, 0, 1, 0), (1, 0, 1, 0), (2, 0, 0, 2), (1, 1, 0, 2)}

with tower structure

x1

x2

x3

x4

x1

x2

x3

2,0,0,0 1,0,0,0

2,1,0,0 1,1,0,0

2,0,1,0 1,0,1,0

2,0,0,2 1,1,0,2

The Groebner escalier is N(I(X)) = {1, x1, x2, x1x2, x3, x1x3, x4, x1x4} and the monomial
basis is G(I(X)) = {x2

1.x
2
2, x2x3, x

2
3, x2x4, x3x4, x

2
4}. Let us start with P1 = (2, 0, 0, 0), which

corresponds to τ1 = 1 and to the triangular polynomial q1 = 1. The lists of factors are
Ξ1 = {x1 − 2}
Ξ2 = {x2}
Ξ3 = {x3}
Ξ4 = {x4}
For P2 = (1, 0, 0, 0) we have τ2 = x and q2 = −(x1 − 2). The lists of factors are
Ξ1 = {x1 − 2, x1 − 1}
Ξ2 = {x2}
Ξ3 = {x3}
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Ξ4 = {x4}
For P3 = (2, 1, 0, 0) we get τ3 = x2 and q3 = x2. The lists of factors are
Ξ1 = {x1 − 2, x1 − 1}
Ξ2 = {x2, x2 − 1}
Ξ3 = {x3}
Ξ4 = {x4}
For P4 = (1, 1, 0, 0) we have τ4 = x1x2 and q4 = −(x1 − 2)x2. The lists of factors are
Ξ1 = {x1 − 2, x1 − 1}
Ξ2 = {x2, x2 − 1}
Ξ3 = {x3}
Ξ4 = {x4}
For P5 = (2, 0, 1, 0) we get τ5 = x3 and q5 = x3. The lists of factors are
Ξ1 = {x1 − 2, x1 − 1}
Ξ2 = {x2, x2 − 1}
Ξ3 = {x3, x3 − 1}
Ξ4 = {x4}
For P6 = (1, 0, 1, 0) we have τ6 = x1x3 and q6 = −x3(x1 − 2). The lists of factors are
Ξ1 = {x1 − 2, x1 − 1}
Ξ2 = {x2, x2 − 1}
Ξ3 = {x3, x3 − 1}
Ξ4 = {x4}
For P7 = (2, 0, 0, 2) we get τ7 = x4 and we do not need to compute the triangular polyno-
mial since τ7 contains the maximal variable. The lists of factors are
Ξ1 = {x1 − 2, x1 − 1}
Ξ2 = {x2, x2 − 1}
Ξ3 = {x3, x3 − 1}
Ξ4 = {x4, x4 − 2}
For P8 = (1, 1, 0, 2) we get τ8 = x1x4 and we do not need to compute the triangular polyno-
mial since τ8 contains the maximal variable.
This time we have to stop. Indeed, we have to compare the x2-ranges of P4 and P8 and, as
one can see by the tower structure drawn above, the test fails.
We can then keep the computed factors and use the Association procedure to produce:

(x1 − 1)(x1 − 2), x2(x2 − 1), x2x3, x3(x3 − 1)

but, in order to finish, we have to switch to the original Axis of Evil algorithm:

x4(x2 + x1 − 2), x3x4, x4(x4 − 2).





Part III

The Bar-Code language and some
applications.





CHAPTER 5

The Bar-Code.

5.1 Introduction.

In this chapter, we define the main tool of this thesis: the Bar-Code diagram associated to a
set of terms M .
In chapter 1, we defined two graphical representations for an M :

1. the diagrams introduced by M.G. Marinari and L. Ramella for terms in 3, 4, 5 variables,
which are particularly useful when dealing with problems involving terms arranged
by degree (1.5);

2. the pictures with towers and the towers structures, which have been used connecting
points and terms (1.4).

Actually, these representations can be handled only if we have a small number of terms and
variables, otherwise the pictures become too complicated, if not impossible: how to draw, for
example, a 5-dimensional picture with towers?
For our studies, we usually have to represent the Groebner escalier of a monomial ideal J .
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If J is not zerodimensional, however, N(J) is an infinite set, so it becomes very difficult to
draw it: how to bridle the infinite?
In order to break through this impasse, we introduced the Bar-Code diagram, which is a bidi-
mensional picture mirroring exactly all the properties of the potential n-dimensional picture
described above for any given set of terms M . The Bar-Code flattens everything in dimen-
sion 2 (simpler to handle) and is also very easy to draw.
Starting with the finite case, we will see how to connect such a picture to M and how to
read properties directly by it.
After that, we will define infinite Bar Codes, in order to represent infinite set of terms.
Then, we will start dealing with applications of this construction, which turn out to be
mainly combinatorial.

5.2 What is a Bar-Code? The finite case.

In this section we explain how to construct a Bar-Code diagram.
First of all, we associate to each term τ = xα1

1 · · ·xαnn ∈ T a list of n terms ( one for each
variable in P). More precisely, for each i ∈ {1, ..., n}, we let

Pxi(τ) := xαii · · ·x
αn
n ∈ T , i.e. Pxi(τ) =

τ

xα1
1 · · ·x

αi−1

i−1

.

We can extend this procedure to a finite set of terms M ⊂ T , defining, for each i ∈ {1, ..., n},

M [i] := Pxi(M) := {σ ∈ T | ∃τ ∈M,Pxi(τ) = σ}.

These operations on a term τ will play a fundamental role for the construction of the Bar-
Code diagram.
Here we list some useful features.

1. For each τ ∈ T , Px1(τ) = τ.

2. If τ = xα1
1 · · ·xαnn , αi = degi(τ) = 0 then Pxi(τ) = x

αi+1

i+1 · · ·xαnn .

3. The lex inequalities are maintained:

τ <Lex σ ⇒ Pxi(τ) ≤ Pxi(σ).

4. For each term τ and for any couple of indices i, j, say 1 ≤ i < j ≤ n we have

xi ≤ xj ⇒ Pxj (Pxi(τ)) = Pxi(Pxj (τ)) = Pxj (τ).
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Example 5.2.1. In k[x1, x2, x3] consider τ = x1x
3
2x

4
3.

Clearly Px1(τ) = x1x
3
2x

4
3, while Px2(τ) = x3

2x
4
3 and Px3(τ) = x4

3.
For σ1 = x2x

5
3 >Lex τ , Px2(τ) = x3

2x
4
3 <Lex Px2(σ1) = x2x

5
3.

For σ2 = x5
1x

3
2x

4
3 >Lex τ , Px2(τ) = x3

2x
4
3 = Px2(σ2).

Px3(Px2(τ)) = Px2(x3
2x

4
3) = x4

3 = Px2(Px3(τ)).

Now M ⊆ T will be a finite list of terms increasingly ordered w.r.t. lex.

Proposition 5.2.2. With the previous notation, if M is an order ideal in T then, for each
1 < i ≤ n, M [i] is an order ideal in T [i, n].

Proof: It is sufficient to prove the statement for i = 2; the general case can be brought back
to this one by changing the indices of the variables.
For each σ ∈ M [2] and υ | σ we have υ ∈ M [2]. Namely, by definition of M [2] there exists
τ ∈M such that τ = xα1

1 σ. Clearly υ | τ , so that υ ∈M and υ = Px2(υ) ∈M [2]. �

The following examples show that the converse of proposition 5.2.2 does not hold.

Example 5.2.3. In k[x1, x2, x3], the set M = M [1] = {1, x1, x2, x1x2, x
2
1x2} ⊂ k[x1, x2, x3] is

not an order ideal, since x2
1x2 ∈M but x2

1 /∈M , x2
1 | x2

1x2.
Yet M [3] = {1, 1, 1, 1, 1}, and M [2] = {1, 1, x2, x2, x2} (seen as sets, so removing repeated
elements) are order ideals.

Example 5.2.4. The set M = M [1] = {1, x1, x2, x3, x1x3, x2x3, x
2
2x3} is not an order ideal,

since x2
2x3 ∈ M and x2

2 /∈ M , as well as M [2] = {1, 1, x2, x3, x3, x2x3, x
2
2x3} (x2

2x3 ∈ M [2],
while x2

2 /∈M [2]), whereas M [3] = {1, 1, x3, x3, x3, x3} is an order ideal.

Basing on the properties stated above, we construct a picture associated to a list
M = [τ1, ..., τm].

Description 5.2.5. The Bar Code (or, simply, B-C) B := BM of M is a “matrix”, obtained in
the following way.
We construct a (n+ 1)×m table, containing ordinately the terms of M in the 0-th row, and
in the (i, j) position, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, the term Pxi(τj).
The first row contains then the terms in M [1], i.e. the given elements of M , the second row
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contains the terms in M [2] and so on:

τ1 ... τn

Px1
(τ1) ... Px1

(τM )

Px2
(τ1) ... Px2

(τM )
...

...
Pxn(τ1) ... Pxn(τM )

.

If a row contains some repeated terms, they are adjacent.
We replace the above “matrix” with an (n+ 1)×m table, constructed as follows.
The first row contains the ordered terms ofM (assumed not to contain repeated terms). The
second row (corresponding to M [1]) contains as many segments as the elements of M .
The i-th row (corresponding to M [i−1]) contains as many segments as the distinct elements
of M [i−1] in such a way that to a set of r equal elements in M [i−1] corresponds a unique
segment of length r, for each 2 ≤ i ≤ n.

The segments composing the i-th line are called xi-bars or, simply, i-bars.

Remark 5.2.6. Point out that we required not to have repeated elements in M in order for
1-bars all to have the same length, that we set as unitary.
Therefore, from now on, we suppose to have always finite lists of distinct terms.

Example 5.2.7. Given M = {x1, x
2
1, x2x3, x1x

2
2x3, x

3
2x3} ⊂ k[x1, x2, x3], we have:

M [1] = {x1, x
2
1, x2x3, x1x

2
2x3, x

3
2x3}

M [2] = {1, 1, x2x3, x
2
2x3, x

3
2x3}

M [3] = {1, 1, x3, x3, x3},
leading to the 4× 5 table on the left and then to the B-C on the right:

x1 x2
1

x2x3 x1x
2
2x3 x

3
2x3

x1 x2
1

x2x3 x1x
2
2x3 x

3
2x3

1 1 x2x3 x2
2x3 x3

2x3

1 1 x3 x3 x3

x1 x2
1

x2x3 x1x
2
2x3 x

3
2x30

1

2

3

We now give a formal definition for the concept of range introduced in 1.4.

Definition 5.2.8. Given M = {τ1, ..., τm} ⊆ T , for any τj ∈ M (j = 1, ...,m), and 1 ≤ i ≤ n,
the xi-range of τj in M is the set

R(i, τj) := {σ ∈M |Pxi(σ) = Pxi(τj)}.

We will consider as representative for a range R(i, τj) its minimal element w.r.t. lex.
By construction, there is a one to one correspondence between ranges and bars in each line.



5.2. What is a Bar-Code? The finite case. 157

Example 5.2.9. Given M = {x1, x
2
1, x2x3, x1x

2
2x3, x

3
2x3} as in example 5.2.7, the bars in BM

(read from the left to the right) correspond to the ranges in the following way:

• first line (thick in the picture below): R(1, x1), R(1, x2
1), R(1, x2x3),

R(1, x1x
2
2x3), R(1, x3

2x3);

• second line (thin in the picture below): R(2, x1), R(2, x2x3), R(2, x1x
2
2x3), R(2, x3

2x3);

• third line (dotted in the picture below): R(3, x1), R(3, x2x3).

x1 x2
1

x2x3 x1x
2
2x3 x

3
2x30

1

2

3

Up to now, we represented each term τ = xα1
1 · · ·xαnn ∈ T , as a point in the n-dimensional

space, considering the k-th exponent αk as the k-th coordinate, k = 1, ..., n of the corre-
sponding point Pτ (see section 1.4). We point out that this representation mirrors the range’s
subdivision.

Example 5.2.10. Given N = {1, x1, x
2
1, x2, x3} ⊆ k[x1, x2, x3], we get the picture below:

1 x1 x2
1

x2

x3

As in section 1.4, we notice that the single rectangles correspond to the x1-ranges.
We select as many “planes” as the x3-exponents of the elements in N. On the “plane” corre-
sponding to x0

3 we group the elements in N in horizontal lines according to their x2-exponent
so that on the bottom line lie the terms of N which are pure powers of x1, in increasing order
w.r.t. lex and in the higher line the terms having 1 as x2-exponent, and so on.
A similar procedure is followed in the remaining x3-planes.
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Such a representation can become very complicated, when the number of the points
and/or the variables increases, i.e. when dealing with a large number of points, and/or
high-dimensional spaces. If we want to keep track of the range subdivision and of the
properties of the terms which can be read by their mutual position in the n-dimensional
space, we pass to the corresponding B-C. This is always a bidimensional picture but all the
information on the terms is stored there.

Example 5.2.11. Considering again the set M = {1, x1, x
2
1, x2, x3} ⊆ k[x1, x2, x3] of example

5.2.10 we can easily draw BM, the corresponding B-C:

3

2

1

0 1 x1 x2
1

x2 x3

The 1-bars represent the single terms. The 2-bars group together the terms which were
represented before as grouped horizontally rectangles. Finally, the 3-bars include all the terms
whose corresponding rectangles lie in the same plane.
Point out that M is an order ideal.

Now, we describe the properties of Bar-Codes, in order to characterize the corresponding
pictures.

Definition 5.2.12. An n-B-C diagram B consists of n superimposed, horizontal lines, frag-
mented in segments called bars. Lines and bars are numbered from the top to the bottom
and from the left to the right. Bars are such that

1. the bars composing the i-th row are called i-bars;

2. for each 1 ≤ i ≤ n− 1, under each i-bar in B lies at most one (i+ 1)-bar of B;

3. the 1-length of each 1-bar in B is conventionally set equal to 1;

4. for each 1 ≤ j < i ≤ n and for each i-bar A in B, the length of A w.r.t. j (shortly, the
j-length of A) is the number of j-bars in B lying above A and is denoted by lj(A); the
1-length of A is simply called length of A and is denoted by l(A);

5. for each 1 ≤ i ≤ n the sum of the lengths of the i-bars is the same.

Therefore, if a bar C lies under a bar D, l(C) ≥ l(D).

For each 1 ≤ i ≤ n, we denote by A(i)
1 , ..., A

(i)
µ(i) the i-bars.

We call bar list of a Bar-Code B the list LB := (µ(1), ..., µ(n)), i.e. the list reporting the number
of segments composing each row in B.
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Example 5.2.13. Let B be the B-C.

1

2

3

Consider for example the dotted line. It is composed of two bars A1, A2 (A1 is the blue bar,
whereas A2 is the red bar). We have l1(A1) = 2, l1(A2) = 3 and l2(A1) = 1, l2(A2) = 3.

Remark 5.2.14. 1) Conditions 1-5 of definition 5.2.12, mirror the properties of the Pxi .
2) Given B, an n-B-C, one gets an (n− h)-B-C erasing h lines of B.
3) Fixed any i-bar (2 ≤ i ≤ n) of an n- B-C, the bars of the first i − 1 lines lying above it

form an (i− 1)-(sub) B-C.
4) µ(1) ≥ µ(2) ≥ ... ≥ µ(n).

Given a Bar Code B:

• a sub-Bar Code of B is the set B′ obtained by extracting some (even non-consecutive)
lines from B;

• for every 1 ≤ l < n, an l-block associated to a bar A of B is the set containing A itself
and all the bars of the (l − 1) lines lying immediately above A.

Example 5.2.15. In the Bar-Code B displayed below, the outlined part is a 2-block, namely
the one associated to A(2)

1 .

1

2

3

We come now to a turning point of our deal, since we need to associate to a given n-Bar-
Code B, a finite set of terms MB, with B = BMB

.
In order to achieve this goal follow the rules below:

Bc1. Let {A(n)
1 , ..., A

(n)
µ(n)}, denote the n-bars of B and let l1(A

(n)
1 ) = l0, ..., l1(A

(n)
µ(n)) = lµ(n).

SubstituteA(n)
1 with l0 copies of a random pure power xa0

n ,A(n)
2 with l1 copies of a pure

power xa1
n , a1 > a0, . . ., A

(n)
µ(n) with lµ(n)−1 copies of a pure power xaµ(n)

n , aµ(n)−1 >

aµ(n)−2.

Bc2. Take lines i, i+ 1, i = 1, ..., n− 1 and construct all the possible blocks.
Repeat the construction inductively on the blocks, multiplying each term obtained in
the i-th line (1 ≤ i < n) by the term corresponding to the bar lying under it.
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These two rules produce exactly the Pxi ’s for some MB, so that operating on MB according
to description 5.2.5, we obtain back B.
Notice that the sets of terms which can be produced using Bc1 and Bc2 on a Bar-Code B are
infinite. Indeed, we can start in Bc1 with any power of xn and we can increase such a power
by any natural number, while passing to a subsequent n-bar and the same reasoning can be
applied to each inductive step, as shown in the example below.

Example 5.2.16. Consider the following B:

3

2

1

Two consistent sets of terms associated to B are, for example:

x2 x3
1x2 x5

1x2 x5
2 x1x

5
2 x6

3

x2 x3
1x2 x5

1x2 x5
2 x1x

5
2 x6

3

x2 x2 x2 x5
2 x5

2 x6
3

1 1 1 1 1 x6
3

,

1 x1 x2
1 x2 x1x2 x3

1 x1 x2
1 x2 x1x2 x3

1 1 1 x2 x2 x3

1 1 1 1 1 x3

that is MB = {x2, x
3
1x2, x

5
1x2, x

5
2, x1x

5
2, x

6
3} and M ′B = {1, x1, x

2
1, x2, x1x2, x3}; note that M ′B

is an order ideal whereas MB is not.
In both cases, if we repeat on the 4 × 6 tables above the construction described in 5.2.5 we
obviously get back to B.

Making Bc1 stricter, one gets BBc1, which can improve the properties of the resulting set
MB ⊂ T :

BBc1. Let {A(n)
1 , ..., A

(n)
µ(n)+1} be the n-bars of the given B, with l1(A

(n)
1 ) = l0, ..., l1(A

(n)
µ(n)) =

lµ(n). Substitute A(n)
1 with l0 copies of x0

n, A(n)
2 with l1 copies of x1

n, . . ., A
(n)
µ(n) with

lµ(n)−1 copies of xµ(n)−1
n .

Point out that BBc1 is simply a particular case of Bc1.

Example 5.2.17. Referring to example 5.2.16, the first set of terms associated to B can be
obtained only if we apply Bc1, whereas the second is obtained using BBc1. This is the
reason making order ideal the (unique!) set of terms obtained using BBc1 (see next lemma
5.2.23).

In this context, we need to point out that we cannot associate an order ideal to every Bar-Code.
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Example 5.2.18. Given M = {x1, x
2
1, x2x3, x1x

2
2x3, x

3
2x3} (which is not an order ideal) the

associated B-C is BM:

0

1

2

3

x1 x2
1

x2x3 x1x
2
2x3 x

3
2x3

which cannot be associated to any order ideal.
Using either Bc1, Bc2 or BBc1,Bc2, we obtain terms of the form:

xα1
1 xβ1

2 xγ1

3 xα2
1 xβ1

2 xγ1

3 xδ12 x
γ2

3 xδ22 x
γ2

3 xδ32 x
γ2

3

xβ1

2 xγ1

3 xβ1

2 xγ1

3 xδ12 x
γ2

3 xδ22 x
γ2

3 xδ32 x
γ2

3

xγ1

3 xγ1

3 xγ2

3 xγ2

3 xγ2

3

,

with γ1 < γ2, δ1 < δ2 < δ3, α1 < α2 and so:

MB = {xα1
1 xβ1

2 xγ1

3 , x
α2
1 xβ1

2 xγ1

3 , x
δ1
2 x

γ2

3 , x
δ2
2 x

γ2

3 , x
δ3
2 x

γ2

3 }.

If MB were an order ideal, all the divisors of its elements should have to belong to MB, so,
even supposing γ1 = 0, γ2 = 1 and δ1 = 0, δ2 = 1, δ3 = 2, we would need to simultaneously
have β1 = 0, β1 = 1, β1 = 2, that is clearly impossible.
Actually the problem is that to a power of x3 which is not the smallest one we associate
three increasing powers of x2 , whereas to the smallest power of x3 we only associate 1 as
power of x2. This implies that any set of terms associated to the given B cannot be an order
ideal, since some divisors are surely missing.

Inspired by example 5.2.18, we define admissible Bar-Codes as follows:

Definition 5.2.19. A Bar Code B is admissible if it exists at least one order ideal MB.

A non-admissible B-C cannot be associated to an order ideal by definition, whereas the
reverse does not hold, as we showed in example 5.2.16 where an admissible B-C is associ-
ated to a set MB not satisfying the order ideal property.
A question then arises: which are the admissible Bar Codes?

Let B be a Bar Code and let MB be the associated set of terms, via rules Bbc1 and Bc2.
For each i ∈ {1, ..., n− 1}, we fix a 3-block, composed of a (i+ 2)-bar A, all the (i+ 1)-bars
B1, ..., Bh over A and all the i-bars over A1.

1Such a condition is degenerate for i = n− 1, sinceAwould be an (n+ 1)-bar, so, for convenience, we imagine
in the proof the whole diagram underlined by a unique "(n+ 1)-bar".
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We check whether li(Bj) ≥ li(Bj+1), j = 1, ..., h− 1. If not, B is not admissible. If so, for
i = 3, ..., n, fixed an (i+ 1)-bar we consider two consecutive i-blocks B1, and B2, lying over
it and consisting of two consecutive i-bars A1, A2 and of all the bars lying above them. By
the previous relation, li−1(A1) ≥ li−1(A2).

For each j = 1, ..., li−1(A2), we check li−2(C1,j) ≥ li−2(C2,j), where C1,j , C2,j are the j-th
(i− 1)-bars over A1, A2. If this test fails for some j, then the Bar-Code is not admissible.
Then, isolated the (i − 1)-blocks associated to C1,j , C2,j , we check the analogous property
for all the couples of (i− 2)-bars above the isolated blocks and so on. We prove now that if
all the tests pass, then MB is an order ideal.

If τ = xα1
1 · · ·xαnn ∈MB and xi | τ let τ ′ = τ

xi
= xα1

1 · · ·x
αi−1
i · · ·xαnn .

We want to prove that in the original B there is a bar corresponding to τ ′ so that τ ′ ∈MB.
For each 1 ≤ j ≤ n let A(j)

hj
be the j-bar underlying τ . Since τ, τ ′ have the same n,

(n− 1), ..., (i + 1) exponents, if really τ ′ ∈ MB, then it must lie over A(j)
hj

for j = i + 1, ..., n.

Additionally, τ ′ lies over A(i)
hi−1. Since li−1(A

(i)
hi−1) ≥ li−1(A

(i)
hi

), we can find the (i − 1)-bar
A

(i−1)
l over A(i)

hi−1 corresponding to the exponent αi−1 of τ ′. By the second test, the inequal-
ity also held for A(i−1)

l and A(i−1)
hi−1

, so we can find a bar corresponding to the exponent αi−2

of τ ′. By induction, we can conclude that τ ′ ∈MB.
We now prove that conversely, if N is an order ideal, its associated Bar Code BN passes

the two tests above.
For each barC(i+2), i = 1, ..., n−12, consider the associated 3-block denotingB(i+1)

1 , ..., B
(i+1)
h

the (i + 1)-bars over C(i+2). If β1 = li(B
(i+1)
j ) < li(B

(i+1)
j+1 ) = β2, for some j < h. By Bbc1,

Bc2, σ = xβ2−1
i xji+1x

αi+2

i+2 · · ·xαnn ∈ N. But, since β1 = li(B
(i+1)
j ) < li(B

(i+1)
j+1 ) = β2, the term

σ′ = xβ2−1
i xj−1

i+1x
αi+2

i+2 · · ·xαnn /∈ N, and this contradicts the order ideal property, being σ′ | σ.

Example 5.2.20. Example 5.2.18 shows a B-C failing the first test at the 3-blocks depending
on the "degenerate" 4-bar:

1

2

3

4

Example 5.2.21. Taken the following B, we show that the second test fails:

2Again we consider also the "degenerate" (n+ 1)-bar.
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1

2

3

4

Even if we apply BBc1 and Bc2 to B we do not get an order ideal: the resulting set is indeed
MB = {1, x1, x2, x3, x2x3, x

2
3, x1x

2
3} and x1x

2
3 ∈ MB, whereas x1x3 /∈ MB.

Focus on the second and the third line and consider the blocks associated to A(3)
2 and A

(3)
3 ,

namely:

1

2

3

the fact that x1x
2
3 ∈ MB, whereas x1x3 /∈ MB is mirrored by the fact that l1(A

(2)
3 ) < l1(A

(2)
5 ).

Remark 5.2.22. Consider a finite set of distinct terms M = {τ1, ..., τm} ⊆ T and fix an
i ∈ {1, ..., n}. For j = 2, ...,m, compute τj,j−1 =

τj
GCD(τj ,τj−1) .

If M is an order ideal, then τj,j−1 consists of a unique variable by definition.
If max(τj,j−1) > xi, then τj−1, τj do not lie over the same i-bar.

By rules BBc1 and Bc2 the following holds trivially.

Lemma 5.2.23. If B is an admissible B-C there is only one order ideal MB associated to it.

In the remaining sections, we will mostly deal with admissible Bar Codes, even if we
will have some applications in which this property will not be required.

5.3 The star set.

We are going to associate to a finite order ideal N ⊆ T a new set of terms, arising from
its admissible Bar Code BN. Rather loosely, these terms appear in correspondence with the
ends of the rows from 1 to n and with some “holes” inside the rows from 1 to n− 1.
In this section, N = {τ1, ..., τr} will be an order ideal, B = BN the associated admissible Bar
Code and I the monomial ideal such that N(I) = N.
First of all, we put a star at the end of each row of B as identification mark. We also put the
same mark at each “hole” (between two consecutive bars) lying above a “hole” of the next
line (hence no such star occurs in the last row).
Finally, we associate to each star a term, for instance to a star lying in the i-th row and
after the j-th column we associate xiPxi(τj) (thus to the end of the i-th row we associate
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xiPxi(τr)).
We denote by FN the obtained set of terms and call it the star set of N.
We will call Bar Code pictures the Bar Codes equipped with the star set.

Example 5.3.1. Given the order ideal N = {1, x1, x2, x3} ⊂ k[x1, x2, x3], so that N = N(I)

with I = (x2
1, x1x2, x

2
2, x1x3, x2x3, x

2
3), its admissible B-C is B:

3

2

1

0 1 x1 x2 x3

The “hole” between A(1)
1 and A(1)

2 does not lie above a hole of the second row, so we do not
associate any star to it; on the other hand, in the hole between A(1)

2 and A(1)
3 we put a star to

which we associate x2
1.

Continuing this way along all B, we obtain the following two pictures
0

3

2

1

∗
∗ ∗

∗ ∗ ∗
1 x1 x2 x3 0

3

2

1

x2
3

x2
2

x2x3

x2
1

x1x2 x1x3

1 x1 x2 x3

for which FN = {x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3}.

Note that in this case it holds FN = G(I).

Next example shows that in general the star set FN does not coincide with the minimal
generating set of the monomial ideal I .

Example 5.3.2. Given the order ideal N = {1, x1, x2, x
2
2, x3} ⊂ k[x1, x2, x3], so that N = N(I)

with I = (x2
1, x1x2, x

3
2, x1x3, x2x3, x

2
3), the corresponding admissible Bar Code, equipped

with the star set is and FN = {x2
1, x1x2, x1x

2
2, x1x3, x

3
2, x2x3, x

2
3} ) G(I).

3

2

1

0

x2
3

x3
2

x2x3

x2
1

x1x2 x1x
2
2

x1x3

1 x1 x2 x2
2

x3

Figure 5.1: A Bar Code picture.
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In Janet’s context, for a monomial ideal I , it arises the set

F(I) = {xα ∈ T \ N(I) | xα

min(xα)
∈ N(I)}

(especially connected with the so called involutive bases, see chapter 6).
As a matter of fact we can prove:

Proposition 5.3.3. With the above notation FN = F(I).

Proof: First of all, we prove FN ⊆ F(I).
Let σ be the term corresponding to the star between Pxi(τj) and Pxi(τj+1), for τj , τj+1 ∈ N.
Then, σ = xiPxi(τj) by definition and degi(σ) > degi(τj), but degh(σ) = degh(τj), for each
h > i.

We now show that σ /∈ N.
If σ ∈ N, then it must lie over the same (i+ 1)-bar as τj , but over the subsequent i-bar w.r.t.
to the i-bar associated to τj , which cannot exist since σ arises from a star.
On the other hand, σ

min(σ) = Pxi(τj) | τj , so Pxi(τj) ∈ N by definition of order ideal. Thus
σ ∈ F(I).

We prove now that F(I) ⊆ FN.
Let σ ∈ F(I), min(σ) = xk, so that σ

xk
∈ N. Let A be the k-bar of σ

xk
and let τl ∈ N be the

rightmost element lying over A (so that degh(τl) = degh( σxk ), h = k, ..., n).
We have to examine the terms τl, τl+1 ∈ N.
First of all, notice that τl+1 >Lex τl by assumption and it cannot be that degh(τl+1) =

degh(τl), h = k, ..., n since, if it were so, τl would not have been the rightmost term ly-
ing over the k-bar A.
If degk(τl+1) > degk(τl) and degj(τl+1) = degj(τl), j = k + 1, ..., n, then it would be that
σ ∈ N, contradicting σ ∈ F(I).
Thus, the (k+1)-bar underlyingA breaks in correspondence to the end ofA itself, so σ ∈ FN.
�

Thanks to proposition 5.3.3, by abuse of notation, we will call star set both FN and F(I).

Remark/Definition 5.3.4. It holds G(I) ⊆ FN ⊆ B(I).
Since FN = F(I), we have FN ⊆ B(I) because of the definition of F(I) and in general this
inclusion may be strict. Analogously G(I) ⊆ FN.
If FN = G(I), we say that BN is a full Bar Code.

Example 5.3.5. a) Consider the order ideal N = {1, x2, x
2
2, x

3
2, x

4
2} ⊂ k[x1, x2], so that I =

(x1, x
5
2).

The associated B-C picture is:



166 Chapter 5. The Bar-Code.

2

1

0

x5
2

x1 x1x2 x1x
2
2 x1x

3
2 x1x

4
2

1 x2 x2
2 x3

2 x4
2

We have FN = {x1, x1x2, x1x
2
2, x1x

3
2, x1x

4
2, x

5
2} = B(I).

b) Let N = {1, x1, x
2
1, x2, x3, x1x3} ⊂ k[x1, x2, x3], so that I = (x3

1, x1x2, x
2
2, x

2
1x3, x2x3, x

2
3).

The associated Bar Code picture is:

1 x1 x2
1

x2 x3 x1x30

1

2

3

x3
1

x1x2
x2

1x3

x2
2

x2x3

x2
3

Since FN = G(I) = {x3
1, x1x2, x

2
2, x

2
1x3, x2x3, x

2
3}, BN is a full B-C.

B(I) = {x3
1, x1x2, x

2
1x2, x

2
2, x

2
1x3, x2x3, x1x2x3, x

2
1x3, x

2
3} ) FN.

5.4 Infinite Bar Codes.

In this section we extend the notion of Bar Code to the case of non-zerodimensional mono-
mial ideals.
We will first explain how to draw their B-C diagram, showing how to represent the infinite
part of the Groebner escalier and then we will also study how to derive the star set from the
B-C diagram.
If J is a non-zerodimensional monomial ideal we have |N(J)| = ℵ0 and still its minimal
basis G(J) is a finite set, say G(J) = {σ1, ..., σr}.
We start examining the structure of N(J) in a very simple case.

Example 5.4.1. Let J = (x1x2)/k[x1, x2]. In this simple case, we can represent the Groebner
escalier N(J) = {xm1 , m ≥ 0} ∪ {xl2, l ≥ 0} in the plane:

1 x1 x3
1 ···

x2

x2
2

...

If we examine the x2-ranges composing N(J), we can observe that R(2, 1) is an infinite set,
being R(2, 1) = {xm1 , m ≥ 0}. Since x1x2 ∈ G(J), R(2, x2) is the singleton R(2, x2) = {x2}.
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All the terms xα1
1 xα2

2 , α1, α2 ≥ 1 belong to J , and no pure powers of x2 belong to J , so,
for each i > 1, R(2, xi2) is the singleton containing xi2 itself: therefore we have an infinite
x2-tower in the Groebner escalier.

We will draw the Bar Code inductively on the variables x1, ..., xn, using as a benchmark
the monomial basis G(J).
In the case n = 1, if J = (xα1

1 ) we have:

1 x1 ..... xα1−1
1

0

1

and, if J = (0)

1
→

where the symbol→ stays for infinitely many 1 blocks, corresponding to the powers xi1, i ∈
N∗ which belong to the (infinite) Groebner escalier.
Let us deal with the simple case n = 2.

a) Consider the set G(J) ∩ T [1], possibly containing the unique element of G(J), which is a
pure power of x1. We then distinguish G(J) ∩ T [1] 6= ∅ and G(J) ∩ T [1] = ∅.
In the first case, xα1 ∈ G(J), so N(J) ∩ T [1] = {1, x1, ..., x

α−1
1 } and we draw its Bar-Code

obtaining:

1 x1 ..... xα−1
1

0

1

underlining it by a unique x2-bar; we obtain a Bar-Code that we denote by B1.
In the second case, no pure power of x1 occurs in G(J), so we draw only the Bar-Code of
term 1, putting after its single bar the symbol → underlining the obtained picture with a
2-bar: we denote again B1 the obtained picture.
The symbol → stays for infinitely many 1 blocks, corresponding to the powers xi1, i ∈ N∗

which belong to the (infinite) Groebner escalier.
b) Then we consider G(J) \ (G(J) ∩ T [1]), containing all the terms divisible by x2, x1x2.
If it is the empty set, we put the symbol → after the 2-bar, the one drawn in B1 before.
Otherwise, we order its elements w.r.t. lex. Let τ1 be the first element and let deg2(τ1) = e.

We multiply the terms lying over B1 by x2, ..., x
e
2 and we copy, under them, the Bar-Code

structures of B1 e times.
On the first (e − 1) 2-bars we cannot have any multiple of a generator, since, in this case,
there would be an element σ ∈ G(J) \ (G(J) ∩ T [1]) with deg2(σ) < e.
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The possible multiples of the generators will lie over the last 2-bar we drew. Considering
this bar:

• if τ1 = xe2 we delete τ1 and all the bars under it;

• if τ1 = xl1x
e
2 consider the 1-bars. More precisely, if xe2 is followed by →, we remove

the symbol and we add the terms x1x
e
2, ..., x

l−1
1 xe2, each one underlined by a 1-bar.

Otherwise, we delete all the multiples of τ1, checking the terms from right to left.

Then repeat this procedure for the other terms in the set, replacing B1 with the last 2-block.
At the end, we put a symbol→ after the last 2-block if no pure powers of x2 occur in the set.
Let us see a first example

Example 5.4.2. Consider the monomial ideal J = (x2
1x

2
2) / k[x1, x2].

We have G(J) ∩ T [1] = ∅, so the first step produces the Bar Code B1 below.

1
→

Then, we consider σ ∈ G(J) \ (G(J) ∩ T [1]) = {x2
1x

2
2}.

Since deg2(x2
1x

2
2) = 2 we get:

1
→

x2

→

x2
2

→

We consider the last 2-bar. Since we have the symbol→, but x2
1x

2
2 ∈ G(J) we finally get:

1

→

x2

→

x2
2 x1x

2
2

→

We now state the general procedure for the case n > 2.
Suppose we have computed Bh−1, 2 ≤ h ≤ n, involving the terms divisible only by
x1, ..., xh−1. We find the first h-block by underlining Bh−1 with the first h-bar.
Consider G[h] := (G(J) ∩ T [h]) \ (G(J) ∩ T [h− 1]).
If G[h] is empty, we put an→ after the first h-bar (meaning that the first h-block repeats in-
finitely many times and at each repetition the terms over the previous copy are multiplied
by xh). Then, we underline the obtained picture with the first (h+ 1)-bar.
Otherwise, if G[h] 6= ∅, we order it w.r.t. lex and, for each τ ∈ G[h], by definition, max(τ) =
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xh. Denoting F the rightmost h-block we drew, we let degh(τ) = αh and β the maximal
h-degree of the terms lying above F (of course β = 0 if τ is the smallest element of G[h]). We
write αh − β copies of F and at each repetition the terms over the previous copy are again
multiplied by xh. If some multiple of τ appears among the terms inserted so far in the Bar
Code picture it will lie above the (αh−β)-th copy of F , from now on denoted by F̃ (since for
the previous ones the h-degree is too small) and it has to be removed since it cannot belong
to N(J), so we have to modify F̃ .

(a) If τ = xαhh we simply need to remove the whole F̃ .

(b) If τ = xα1
1 · · ·x

αh−1

h−1 x
αh
h , (α1, ..., αh−1) 6= (0, ..., 0) let xi = max( τ

x
αh
h

) < xh, we must
distinguish two subcases:

(b1) xi = min(τ): for each i-bar of F̃ we consider the related i-block. We must erase
the possible multiples of τ and all the bars of F̃ lying under them. In particular,
if the i-block under consideration is followed by an →, denoting γ the i-degree
of the terms involved, we add αi − γ − 1 copies of our i-block erasing from them
the possible multiples of τ and related bars, as well as the→ (if αi − γ − 1 < 0

both the whole i-block and the→ have to be deleted).

(b2) Otherwise we again consider the i-blocks of the i-bars of F̃ , distinguishing three
possibilities for each i-block H .

1. The i-degree of the terms over H is smaller then αi and H is not followed by
an→. In this case, no term over H is multiple of τ as its i-degree is too small,
so H does not have to be modified.

2. The i-degree γ of the terms overH is smaller than αi, butH is followed by an
→. In this case we remove the arrow and we make αi−γ copies ofH putting
an → on the lower right-hand corner of the last copy H̃ . By construction,
the terms lying above H̃ have αi as i-degree, so the possible multiples of τ
should lie over it. We then compute max( τ

x
αi
i x

αh
h

), repeating (b) for H̃ and
τ

x
αi
i x

αh
h

, until we reach min(τ) (and we apply (b1) for it).

3. The i-degree of the terms over H is greater or equal than αi. In this case
computing max( τ

x
αi
i x

αh
h

), we repeat the last part of 2.

We show that for each τ ∈ G[h], steps (a),(b) ensure that the Bar Code picture we obtain
does not contain τ . If τ is a pure power of xh, by (a) clearly the Bar Code picture we obtain
does not contain τ (as we have deleted the whole F̃ ). If τ is not a pure power of xh, step
(b) essentially checks whether for each variable xi < xh, such that xi | τ , it can be that
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an i-degree is greater or equal than αi and deletes all the possible elements satisfying this
condition.
At this point, the only possible multiples σ of τ that could appear in the Bar Code picture
we drew treating τ are such that max(σ) = xh and degh(σ) = αh (up to this moment there
does not appear in the picture neither terms containing the variables greater than xh nor
terms with maximal variable xh and degh greater than αh). If τ were a pure xh-power we
would have deleted all the F̃ block (and so all the multiples of τ w.r.t. x1, ..., xh) by (a). If
τ were not a pure xh-power by (b) we would have deleted inside F̃ all the terms having
exponents greater or equal to those of τ w.r.t. x1, ..., xh. So no σ with τ | σ, max(σ) = xh and
degh(σ) = αh appears in the Bar Code picture obtained up to τ .
Possible multiples σ of τ with either max(σ) > xh or degh(σ) > αh should arise from terms
of G(J) greater than τ . Let τ ′ be the term in G(J) next to τ and let H be the last H-block we
got from τ , all of whose terms have xh as maximal variable.
We distinguish three possibilities according to the part of the Bar Code we have to copy:

1. the last h-block H a finite number of times;

2. the whole Bar Code (i.e. we are constructing the first (h+ 1)−block);

3. a sub-Bar Code ending with an→.

As for 1 we are adding h-blocks, incrementing the xh-exponents of the involved terms keep-
ing the other exponents fixed: this way we cannot get multiples of τ since the xi-exponents
i = 1, ..., h− 1 are too small.
As for 2 we are introducing (h+1)−blocks incrementing the xh+1 exponents of the involved
terms keeping fixed the exponents of x1, ..., xh and again we cannot get multiples of τ .
As for 3 we are copying a sub-Bar Code ending with an→. Since we have already seen how
the exponents of xh, xh+1 can increase (respectively in 1 and 2), we know that our arrow
must refer to an i-block with i = 1, ..., h − 1. Increasing the xi-exponents again we must
distinguish whether the i-block we are manipulating is a copy of something inside H (in
which case some exponent of the variables smaller than xh is too little) or not (this means
that it lays on an h-block with xh-exponent smaller than αh).
Up to now we have seen that no terms in T(J) can appear in the Bar Code picture we are
drawing. Finally, we show that each τ ∈ N(J) actually appears in the Bar Code picture.
We know that 1 actually appears, this implies that for each i-block the leftmost term over it
does not contain variables smaller than xi.
Let τ ∈ N(J) and let max(τ) = xh. By construction if τ belongs to the Bar Code picture
it must lie over the first h + 1, ..., n bar. Let then αh = degh(τ) and let β be the maximal
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h-degree of terms of the first (h + 1)−bar (so that the last h-block we drew has an → or
xβ+1
h ∈ G(J)). Two possibilities can arise:

• αh ≤ β: we move to the h-bar corresponding to αh and look what happens for the
xh−1-exponent;

• αh > β means that xβ+1
h /∈ G(J) [54], thus after the last h-block there is an arrow. So

there is σ ∈ N(J) with degh(σ) = β and if σ is represented in N(J) also τ does. We
look then for σ inductively on the variables.

Clearly if we have an arrow in the inductive step we do not have a pure power but also xαhh
and the intermediate variables which have already been fixed [54].
Let us see some significant examples.

Example 5.4.3. Let J = (x2
2x3) / k[x1, x2, x3]. Assume we have computed the Bar Code B2

of the terms divided only by x1 and x2, underlining B2 by a first 3-bar. We have:

0

1

2

3

1

→
→

Consider G(J) \ (G(J)∩T [2]). Since it is not empty, we deal with its only element τ = x2
2x3.

We have deg3(τ) = 1, so we make only one copy of the first 3-block and we get:

0

1

2

3

1 x3

→
→

→
→

Now, x2 = max( τx3
) = min(τ), so we perform as in (b1), getting:

0

1

2

3

1 x3 x2x3

→
→

→ →

Since there are no pure powers of x3, we finally get:

0

1

2

3

1 x3 x2x3

→
→

→ →

→
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Example 5.4.4. Let J = (x1x2x3)/k[x1, x2, x3]. The first two steps are the same as in example
5.4.3 so we have:

0

1

2

3

1 x3

→
→

→
→

Then, since max( τx3
) = x2 6= min(x1x2x3) we first draw:

0

1

2

3

1 x3 x2x3

→ →
→

→
→

and finally, dealing with x1 = min(τ), we get the final picture:

0

1

2

3

1 x3 x2x3

→

→
→

→
→

Given a Bar Code B, we naturally extend to infinity the concept of j-length. The only
difference is the presence of→: if, over an (i + 1)-bar C there are the i-bars A1, ..., Ak and
after Ak → occurs, then li(C) =∞.
Also for infinite Bar Codes we can define the analogous of rules Bbc1 and Bc2, in order to
associate to them infinite sets of terms. The only difference is again represented by→, in this
case we write down as many terms as the 1 bars really drawn in the diagram, performing
the same Bbc1 and Bc2 as in the finite case, so disregarding→.
Again, the problem of admissibility arises, but it can be solved exactly as in the finite case,
exploiting the extension to infinity of the length functions.

Example 5.4.5. Consider the infinite Bar Code B

1

2

3

→

We have l2(A
(3)
1 ) =∞, l2(A

(3)
2 ) = 2.

If we apply Bbc1, Bc2 we get
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1 x1 x2 x3 x1x3 x2x3

→1 1 x2 x3 x3 x2x3

1 1 1 x3 x3 x3

so MB = {1, x1, x3, x1x3, x2x3} ∪ {xm2 , m ≥ 1}. Such a set is an order ideal and actually B

passes both the admissibility tests generalized to infinity.

Example 5.4.6. The Bar Code
x1

x2

x3

→

is not admissible, failing simultaneously both the tests.

Example 5.4.7. The Bar Code

1

2

3

→

is not admissible, since it fails the first test for the 3-block formed by the 3 block associated
to the A(3)

1 .

Example 5.4.8. Consider the Bar Code displayed below.

1

2

3

→

It passes the first test, but it fails the second one: the comparison failing is the one between
the 2-blocks over A(3)

1 , A
(3)
2 .

As for the finite case, we can read the (infinite) star set FN directly from the Bar-Code.
First of all, we consider the holes between two bars, not filled by→ and we proceed as in
the finite case (computing the Px_(_)’s of the last term before the hole) and we do the same
also for the bars at the end of a line, if there is not the symbol→.
The obtained terms belong to FN for the same reasons as for finite Bar Codes and we call
them finite terms.

Proposition 5.4.9. With the notation above, the star set FN consists of the terms of the form

τx
αj1
j1
· · ·xαjljl

, αji ≥ 0,

where:
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• τ is a finite term in the h-th bar (h ∈ {1, ..., n});

• xji , ji > h, s.t. on the jj-bar, under the star corresponding to τ , there is the symbol
“→”.

Proof: In what follows, we denote by J the monomial ideal such that N = N(J).
If τ is a finite term, it belongs to FN by 5.3.3. If we consider a finite term xkω ∈ FN,
min(xkω) = xk and we suppose to have the symbol → on a hole in the xl-line (l > k)
under the star corresponding to xkω ∈ FN, we get that ωxml ∈ N for each m and xkωxnl ∈ J ,
being a multiple of xkω. This implies xkωxml ∈ FN for each m.
This holds also in the case we have more than one variable displaying→ under a finite term.
The only difference is that we can increase the exponent of each of these variables.
Consider now xkω ∈ FN, min(xkω) = xk. If it is a finite term we have nothing to prove.
Suppose then that xkω is not a finite term. This means that ω ∈ N is represented in the Bar
Code in the repetition induced by→ placed on one or more than one variable greater than
xk. Then, there is ω′ ∈ N, i.e. the term followed by the symbols→, obtained dividing it by
these variables. The term xkω

′ is a finite term, so we can conclude. �

Example 5.4.10. Let us consider the ideal J = (x1x3, x2x
2
3) / k[x1, x2, x3].

0

1

2

3

1 x3 x2
3

→
→ →

→

We get F(J) = {x1x
m
2 x3, m ≥ 0} ∪ {x1x

l
3, l ≥ 2} ∪ {x2x

k
3 , k ≥ 2}.

Example 5.4.11. For the monomial ideal J = (x2, x
2
3) / k[x1, x2, x3] we have

0

1

2

3

1 x3

→ →

The star set is FN = {x2, x2x3, x
2
3}.

We point out that in those case the star set is finite, even if the Groebner escalier is infinite.
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5.5 How to encode a Bar Code?

Given a finite set of terms M = {τ1, ..., τm} ⊆ T , we have to face the problem of encoding a
Bar Code in a computer.
Indeed there are differences between the visual representation one can give to data and the
way a computer stores them in memory.
The most suitable data structure which can be used to encode a Bar Code is the trie structure.
More precisely, we label the root with the set M , that we suppose, as usual, ordered w.r.t.
lex. Each edge adjacent to the root represents an increasing Pxn w.r.t. lex and we label
each node at level 1 with the sets of terms sharing the same Pxn ’s. Continuing this way
with xn−1, ..., x1 we get a trie in which the terms are arranged w.r.t. their Pxi ’s, grouping
together at level 1 ≤ i ≤ n the ones whose Pxi ’s are the same.
Essentially, each edge represents a bar: the edges connecting level 0 to level 1 are the n-bars,
the ones connecting level 1 to level 2 are the (n− 1)-bars and so on.
This way, reading information from a Bar Code becomes the same as reading information
from a trie.

Example 5.5.1. For M = {x1, x
3
1, x2x3, x

2
2x3, x

5
3} ⊆ k[x1, x2, x3], we have:

x1 x3
1 x2x3 x2

2x3 x5
3

x1 x3
1 x2x3 x2

2x3 x5
3

1 1 x2x3 x2
2x3 x5

3

1 1 x3 x3 x5
3

so the Bar Code is:

x1 x3
1

x2x3 x2
2x3 x5

3
0

1

2

3

and we encode it as

M

{x1, x
3
1} {x2x3, x

2
2x3} {x5

3}

{x1, x
3
1} {x2x3} {x2

2x3} {x5
3}

{x1} {x3
1} {x2x3} {x2

2x3} {x5
3}

1 x3 x5
3

1 x2x3 x2
2x3 x5

3

x1 x3
1

x2x3 x2
2x3 x5

3
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As seen in description 5.2.5, we have to compute the Px_(_) of each τj ∈ M, j = 1, ...,m

and τj , τj+1 lie over the same i-bar if Pxi(τj) = Pxi(τj+1), for j = 1, ...,m− 1, i = 1, ..., n.
Since M is ordered w.r.t. lex, thus possible repeated P_(_) are adjacent, we can perform the
construction as follows:

• read the xn exponents and arrange the terms into the xn-ranges, allocating the first
level of the trie;

• for each node in the trie, read the xn−1 exponents and allocate the second level;

• repeat until x1 is reached.

Such an encoding has complexity O(nm), since, for each τj ∈ M, j = 1, ...,m we only have
to read the exponents, one by one.
Now we discuss the next item, i.e. how to encode the Bar Code picture, adding the stars.
Since the bars are in correspondence with the edges in the trie, the construction we perform
to settle the stars, costs computationally speaking, as attaching a new node to each node of
level 0, ..., n− 1, so it is O(nr), where r + 1 is the maximal degree of a node in the trie.
The encoding of an infinite Bar Code is similar, but we label only the edges followed by→
with an R, meaning that the corresponding bar (and the whole subtree depending on it) is
repeated infinite times.
For the complexity of an infinite Bar Code, we notice that we have to deal at most with
terms of degree d, where d is the sum of the maximal degrees of x1, ..., xn in the terms of
G(J) and we deal with them at most once for each variable.

5.6 A Bar-Code algorithm for a finite set of distinct points.

In this section, we describe how to compute the Groebner escalier N of the ideal I(X) of a
finite set of distinct points X, setting a biunivocal correspondence between such points and
the elements of N.
As explained in chapter 1, there are several algorithms dealing with this problem, such as,
for example, Cerlienco-Mureddu Correspondence and the Lex Game.
The most important feature of Cerlienco-Mureddu Correspondence is its iterativity on the
elements of X, whereas the Lex Game (as the other methods described in chapter 1) is faster
then Cerlienco-Mureddu algorithm but, requiring some preprocessing on X, it is not itera-
tive.
The algorithm developed here, places itself halfway between the Cerlienco-Mureddu Corre-
spondence and the other methods. Indeed, our algorithm maintains Cerlienco-Mureddu’s
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iterativity but, thanks to the B-C structure, it shares some facilities with the Lex Game.
Let us consider a set X = {P1, ..., PS} ⊆ kn, Pi = (ai1, ..., ain), for i = 1, ..., S and define
N(i) := N(I({P1, ..., Pi})) = {τ1, ..., τi}, B(i) = BN(i) and Xi = {P1, ..., Pi}.
First of all, we recall that |N(S)| = |N(X)| = |X| = S.
We can associate a trie T(X) to the set X. Such a trie is constructed iteratively on the points
of X and ht(T(X)) = n is the number of coordinates of each point.
The edges are labeled with the coordinates of the points. The root is labeled with the set
{1, ..., S}, whereas a node at level l is labeled by the set {α1, ..., αh}, α1 < ... < αh, where
Pα1

, ..., Pαh ∈ X are the points whose first l coordinates are equal to the ones identified by
the edges in the path from the root to the considered node.

Example 5.6.1. Given the set X = {(1, 0, 0), (0, 1, 0), (1, 1, 2), (1, 0, 3)}, we display here the
construction of T(X).
We start with P1 = (1, 0, 0), associating to it T(X1):

{1}

{1}

{1}

{1}

1

0

0

The second point P2 = (0, 1, 0) has no common coordinates with P1, so T(X2) is

{1, 2}

{1}

{1}

{1}

{2}

{2}

{2}

1

0

0

0

1

0

The point P3 = (1, 1, 2) shares the first coordinate with P1, so for T(X3) we get
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{1, 2, 3}

{1, 3}

{1}

{1}

{2}

{2}

{2}

{3}

{3}

1

0

0

0

1

0

0

0

The point P4 = (1, 0, 3) shares the first two coordinates with P1. The final trie T(X) =

T(X4) is

{1, 2, 3, 4}

{1, 3, 4}

{1, 4}

{1}

{2}

{2}

{2}

{3}

{3}{4}

1

0

0

0

1

0

0

00

The sets labeling the nodes correspond to the classes Σi, i = 0, ..., n in the Lex Game
algorithm and in the Jumping algorithm but in this case they are not ordered w.r.t. any
criterion. Indeed, their order depends only on the order of the elements in X.

Example 5.6.2. Take the set X of example 5.6.1, but order the points in this way: X =

{P2, P1, P3, P4}.
For the set ordered this way, we get

{2, 1, 3, 4}

{2} {1, 3, 4}

{2} {1, 4} {3}

{2} {1} {4} {3}

0 1

1 0 1

0 0 3 2

The trie we constructed and the Bar Code are the main tools for our algorithm.
Let us explain the whole construction for X = {P1, ..., PS}.
For S = 1 we construct T(X1) and we set N(1) = {1}.
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{1}

{1}

{1}

...

{1}

a11

a21

an−1 1

a1n

The B(1) displayed below is the associated B-C:

1

...

x1

xn

The above construction for i = 1 has to be considered as the base step for the algorithm.
This step is correct since, if the given set is the singleton {P1}, the associated ideal is the
maximal ideal I({P1}) = (x1 − a1,1, ..., xn − a1,n) and so the Groebner escalier is clearly
N(1) = {1}.
We construct N inductively on i = 2, ..., S, associating a term τi to each Pi, through the
following steps.

1. Set a list D = [∅, ..., ∅︸ ︷︷ ︸
m times.

]3.

2. Construct T(Xi).

3. Compute the maximal integer s, such that Πs−1(Pi,X) 6= ∅, i.e. the level of the trie in
which the path in T (Xi) corresponding to Pi forks4.

4. Since τi will then belong to R(s+ 1, 1), point to its corresponding bar, namely A(s+1)
1 .

5. Let L be the subset of the set of terms over A(s+1)
1 , consisting of all the terms τj corre-

sponding to points Pj such that πs−1(Pi) = πs−1(Pj). Then compute τl = MaxLex(L)

and keep track of the value l, calling it the s− 1 antecedent of Pi.

3If we set D[3] = 4, we imagine D = [∅, ∅, 4, ∅, ..., ∅︸ ︷︷ ︸
m−3 times.

]

4In Cerlienco-Mureddu language, this integer is the σ-value of the point Pi; see [20, 21, 22] for more details.
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6. Take the s-bar lying under τl, say A(s)
h . The term τi has to lie over A(s)

h+1 and also this
bar lies over A(s+1)

1 . There are two different possibilities:

a. this A(s)
h+1 has not been constructed yet;

b. this A(s)
h+1 has already been constructed.

7. If a. occurs, set τi = xsτj , where τj := Min(R(s, τl)) and update the B-C adding A(s)
h+1

to it.

8. If b. occurs, move to A(s)
h+1. Then

(a) let Y = {Pα1 , ..., Pαh} be the set of points corresponding to the terms lying over
A

(s)
h+1;

(b) set D[αj ] = 1, j = 1, ..., h;

(c) read the path of Pi in the coordinate trie, from level s to level 0, looking for the
first node f whose label contains at least an element αj (index of a point in Y) in
addition to i: f + 1 is the new σ-value.
Browsing the elements of the node’s label keeping the left, the f -antecedent of
Pi is its nearest element not sharing more than f coordinates with any of the
remaining points of the label (so we are in the first s− 1, ..., f + 2 bar).

(d) Repeat the steps 6− 8, until level 0 has been reached.

9. We obtain N(i) = {τ1, ..., τi} and B(i), the associated B-C. If i < S increment it by one
and repeat all. Otherwise quit.

Example 5.6.3. Consider the set:
X = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 2, 3), (1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 2, 3)} ⊆ R4.
The first point, P1 = (0, 0, 0, 0), corresponds to τ1 = 1:

{1}

{1}

{1}

{1}

{1}

0

0

0

0
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1
x1

x2

x3

x4

We set D = ∅ and we proceed with P2 = (0, 0, 0, 1).

{1, 2}

{1, 2}

{1, 2}

{1, 2}

{1} {2}

0

0

0

0 1

The σ-value is s = 4, whereas the B-C antecedent is clearly P1. Since there is not a x4-bar
after the one over which τ1 lies, we construct it, setting τ2 = x4. The Bar Code turns out to
be:

x1

x2

x3

x4

1 x4

For P3 = (0, 1, 2, 3) we have

{1, 2, 3}

{1, 2, 3}

{1, 2} {3}

{1, 2} {3}

{1} {2} {3}

0

0

0

0 1

1

2

3
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and s = 2, so the term τ3 we have to determine will lie on the first x3-bar of the first x4-bar.
The B-C antecedent is then P1 and we construct a new x2-bar, getting τ3 = x2.

x1

x2

x3

x4

1 x2 x4

For P4 = (1, 0, 0, 0), s = 1.

{1, 2, 3, 4}

{1, 2, 3} {4}

{1, 2} {3} {4}

{1, 2} {3} {4}

{1} {2} {3} {4}

0

0

0

0 1

1

2

3

1

0

0

0

The B-C antecedent is P1 and we construct a new x1-bar, so τ4 = x1.

1 x1 x2 x4

x1

x2

x3

x4

For P5 = (1, 0, 0, 1), s = 4 and l = 4:

{1, 2, 3, 4, 5}

{1, 2, 3} {4, 5}

{1, 2} {3} {4, 5}

{1, 2} {3} {4, 5}

{1} {2} {3} {4} {5}

0

0

0

0 1

1

2

3

1

0

0

0 1
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We restrict to the second x4-bar, setting D[2] = 1. This means restricting to the trie

{2, 5}

{2} {5}

{2} {5}

{2} {5}

{2} {5}

0

0

0

1

1

0

0

1

In this recursive step, we have s = 1, l = 2, then τ5 = x1x4.

1 x1 x2 x4 x1x4

x1

x2

x3

x4

Finally, we deal with P6 = (1, 1, 2, 3), for which s = 2 and l = 4.

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

{1, 2} {3} {4, 5} {6}

{1, 2} {3} {4, 5} {6}

{1} {2} {3} {4} {5} {6}

0

0

0

0 1

1

2

3

1

0

0

0 1

2

3

1

We restrict to P3, P6, so D[3] = 1:
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{3, 6}

{3} {6}

{3} {6}

{3} {6}

{3} {6}

0

1

2

3

1

2

3

1

and s = 1, l = 3 then τ6 = x1x2.
The Groebner escalier is N = {1, x1, x2, x1x2, x4, x1x4} and the Bar Code is

1 x1 x2 x1x2 x4 x1x4

x1

x2

x3

x4

Remark 5.6.4. If min(τi) = xj , the algorithm adds a new j-bar to the diagram and, by the
properties of Px_(_), also an l-bar lying over it, for each l = 1, ..., j− 1. The (j+ 1), ..., n-bars
lying under the added ones are simply lengthened by 1 each time, while all the other bars
remain unchanged.

The accuracy of the algorithm follows from the one of Cerlienco-Mureddu correspondence,
since we are essentially following the same line, exploiting the information we obtain at
each step.
The algorithm terminates since it performs a loop on |X| and reads the trie, whose levels
are n and these numbers are finite.
Let us now deal with the computational complexity of the algorithm.
As seen in chapter 2, the complexity of the original Lex Game algorithm is:

O(nS + Smin(S, nr)),

where S is the number of points in the given finite set X and n is the number of variables
in the ring, i.e. the complexity of the (iterative) construction of the point trie, since the
construction of the lex trie is O(nS).

Let us now examine the differences between our algorithm and the Lex Game.
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Fix a point Pj , j 6= 1. In step j, we first compute the analogous of Cerlienco-Mureddu
σ-value s and of the σ-antecedent; we exploit them in order to settle the exponent of the
maximal variable in the associated term τj .

Such a step is totally equivalent to one of the iterative steps in the point trie construction,
so, for each point, we will have O(n+ min(S, nr)).
Then we have the inductive step, that is essentially the composition of the following steps:

1. take the s bar containing τj (which has been fixed in the first step) and restrict to the
corresponding points in the point trie: we get a reduced point trie (RPT from now on).
This goal is achieved exploiting the list D, whose nonempty entries are only the ones
associated to the paths we are restricting to;

2. find the lowest level f + 1 in the RPT in which Pj forks, finding the σ-value and the
f -antecedent;

This settles the penultimate variable appearing in τj . We have to repeat the above two steps
for each variable occurring in τj .
By the way, we have to point out that if we are in an xi-bar different from the first (and this
is the case for each recursion step), we need to have at least half of the P1, ..., Pj−1 in the first
bar, by the admissibility for Bar-Codes. This means that the RTP we construct contains at
most half of the points in the first recursion step, a quarter of the points in the second and
so on.
We remind also that each level is examined twice.
This leads to the following complexity for Pj : O(nr + 2

∑n
i=1

S
2i ), where r is the maximal

number of forks depending on a node. We can conclude that the complexity for a single
point is O(n+ min(S, nr) + nr + S) = O(nr + S + min(S, nr))

Now, we have to deal with S points, so we get O(nrS + S2 + Smin(S, nr)).
Clearly O(nrS + S2 + Smin(S, nr)) ≥ O(nS + Smin(S, nr)) and it is due to having an iter-
ative construction.
The complexity of our algorithm is strictly inferior than the complexity O(n2S2) of the orig-
inal Cerlienco-Mureddu algorithm, where the main advantage was exactly iterativity.

5.7 The star set and the monomial basis.

As explained in section 5.2, we can associate the star set FN to each B-C, corresponding to
an order ideal N.
In general, FN is not the minimal set of generators for the monomial ideal I whose Groebner
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escalier is N. In remark 5.3.4, we showed that G(I) ⊆ FN ⊆ B(I).
First of all, we explain how FN is modified by the insertion of a new element in N.
Consider a finite set of distinct points X′ = {P1, ..., PS−1}.
Suppose we have found the Groebner escalier of I(X′), namely N′ = {τ1, ..., τS−1} and sup-
pose the Bar-Code to have been drawn.
Moreover, we suppose FN′ to be known, so we have already associated the star set to the
Bar Code.
We add to X′ a new point PS , obtaining the set X = {P1, ..., PS}.
We explained before that we can get the term τS corresponding to the new point PS ex-
ploiting the Bar Code. We obtain this way the Groebner escalier associated to I(X), namely
N = {τ1, ..., τS} and we modify consequently the Bar Code.
Let xh = min(τS) be the minimal variable appearing in the new term τS .
The Bar-Code is modified this way:

• for each xi, i ≤ h, we add a new xi-bar under τS ;

• for each xi, i > h we extend the xi-bar under τS .

This implies that we have to modify only the stars lying on lines corresponding to the vari-
ables xi, i ≤ h.
Since setting a star on the i-th line means looking at the “holes” in the (i + 1)-th line, we
have to look at lines 2, ..., h+ 1.
More precisely, we proceed this way.

1 Look at the (h+1)-bar lying under τS . Since we added a new h-bar, we have to remove
the star before the h-bar corresponding to τS , replacing it with a star after that bar.

2 We add a star after each 1, ..., h− 1 bar lying under τS .

We obtain this way the star set FN.
If we want to obtain the monomial basis G(I(X)), we only have to check whether the new
inserted elements are multiple of the previous terms in the same bar.
The construction above bases on the following

Proposition 5.7.1. Let N = N(I), |N| < ∞ be the Groebner escalier associated to a zerodi-
mensional radical ideal and let FN be the corresponding (finite) star set.
Given τ ∈ G(I), we denote by N′ = N(I) ∪ {τ} the order ideal obtained by adding τ to N,
that is naturally associated to a monomial ideal J , so that N′ = N(J). It holds:

FN′ = (FN \ {τ}) ∪ {xjτ, xj ≤ min(τ)}.
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Proof: By remark 5.3.4, we have G(J) ⊆ FN′ ⊆ B(J) and, by definition of border set,
B(J) = (B(I) \ {τ}) ∪ {xjτ, j = 1, ..., n}.
Clearly, if xj ≤ min(τ) then xjτ

min(xjτ) =
xjτ
xj

= τ ∈ N′.
If xj > min(τ) we have two possibilities:

a. xjτ ∈ FN: in this case xjτ
min(τ) ∈ N and xjτ

min(τ) 6= τ , so xjτ ∈ FN′

b. xjτ /∈ FN: in this case xjτ
min(τ) 6= τ /∈ N and then xjτ /∈ FN′ .

All the terms in FN \ {τ} also belong to FN′ whereas, for each σ ∈ (B(I) \ {τ}) \ FN, if
σ

min(σ) = τ then we are in case b. above; otherwise σ /∈ FN′ . �

We will see in chapter 6 that the set FN represents the leading set for a lexicographical
involutive basis. Let us consider an example.

Example 5.7.2. We start with one single point in R4, namely P1 = (0, 0, 0, 0). We set
I1 = I({P1}) and N1 = N(I1).

Applying the Bar-Code algorithm for the Groebner escalier, we get N1 = {1} and the dia-
gram below:

0

1

2

3

4

1

∗
∗
∗
∗

The stars (read from the top to the bottom) correspond to the terms x1, x2, x3, x4.
We get FN1

= G(I1) = {x1, x2, x3, x4}.
We add a new point P2 = (0, 1, 0, 0) and we set I2 = I({P2}) and N2 = N(I2).

We get N2 = {1, τ2 = x2}, with the Bar-Code below:

0

1

2

3

4

1 x2

∗ ∗
∗ ∗

∗
∗

The red stars are the modified ones, whereas the blue one is the one we delete.
We get FN2 = {x1, x1x2, x

2
2, x3, x4} and, being x | xy, G(I2) = {x1, x

2
2, x3, x4}.
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Setting P3 = (1, 0, 0, 0) and I3 = I({P3}), we get N3 = N(I3) = {1, τ2, τ3 = x1}.
The associated Bar-Code is:

0

1

2

3

4

1 x1 x2

∗ ∗ ∗
∗
∗
∗

In this case the star set coincides with the monomial basis, having:
FN3 = G(I3) = {x2

1, x1x2, x
2
2, x3, x4}.

We consider P4 = (1, 0, 1, 0) and we define: I4 = I({P1, P2, P3, P4}).
The Groebner escalier is N4 = N(I4) = {1, τ2, τ3, τ4 = x4}.

0

1

2

3

4

1 x1 x2 x3

∗ ∗ ∗
∗ ∗
∗ ∗

∗

Removing the blue star and putting on the red one, we get:

FN4
= G(I4) = {x2

1, x1x2, x
2
2, x1x3, x2x3, x

2
3, x4}

Considered P5 = (1, 1, 0, 0), we have: I5 = I({P1, P2, P3, P4, P5}) and
N5 = N(I5) = {1, τ2, τ3, τ4, τ5 = x1x2}.
The associated Bar-Code is:

0

1

2

3

4

1 x1 x2 x1x2 x3

∗ ∗ ∗ ∗
∗ ∗

∗
∗

Removing the blue star and adding the red one, we getFN5 = {x2
1, x

2
1x2, x

2
2, x1x3, x2x3, x

2
3, x4}.

This time, the star set does not coincide with the monomial basis, namely

G(I5) = {x2
1, x

2
2, x1x3, x2x3, x

2
3, x4}.

The point P6 = (1, 0, 0, 1) corresponds to τ6 = t, so I6 = I({P1, P2, P3, P4, P5, P6}) and
N6 = N(I6) = {1, τ2, τ3, τ4, τ5, τ6} :
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0

1

2

3

4

1 x1 x2 x1x2 x3 x4

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

Removing the blue star and adding the red ones, we get

FN6
= {x2

1, x
2
1x2, x

2
2, x1x3, x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4}.

The monomial basis is

G(I6) = {x2
1, x

2
2, x1x3, x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4}.

We add P7 = (0, 0, 1, 0) and we have

I7 = I({P1, P2, P3, P4, P5, P6, P7}), N7 = N(I7) = {1, τ2, τ3, τ4, τ5, τ6, τ7 = x1x3}.
The Bar-Code is:

0

1

2

3

4

1 x1 x2 x1x2 x3 x1x3 x4

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗

We obtain

FN7
= {x2

1, x
2
1x2, x

2
2, (x

2
1x3), x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4}

and

G(I7) = {x2
1, x

2
2, (x

2
1x3), x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4}.

Finally, for P8 = (1, 1, 1, 0), we set I8 = I({P1, P2, P3, P4, P5, P6, P7, P8}) and N7 = N(I7) =

{1, τ2, τ3, τ4, τ5, τ6, τ7, τ8 = x2x3}.
The Bar-Code is displayed below:

0

1

2

3

4

1 x1 x2 x1x2 x3 x1x3 x2x3 x4

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗
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We finally get

FN8
= {x2

1, x
2
1x2, x

2
2, x

2
1x3, x1x2x3, x

2
2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4},

and
G(I8) = {x2

1, x
2
2, x1x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4}.

Remark 5.7.3. Let B be a B-C and suppose the above steps have been performed. If we read
the terms corresponding to the remaining stars proceeding vertically, from the leftmost star
to the rightmost one, we obtain the elements of G(I) ordered w.r.t <, simply by construction.
Indeed, given τj = xα1

1 · · ·xαnn , it is clearly obvious that

xiPxi(τj) = xαi+1
i x

αi+1

i+1 · · ·x
αn
n < x

αi+1+1
i+1 x

αi+1

i+2 · · ·x
αn
n = xi+1Pxi+1

(τj),

so the lex inequality holds for terms corresponding to superimposed stars.
Now, let xh be the maximal variable for which the h-bar underlying τj is followed by a star.
This means that the last bar breaking after τj is the underlying (h+ 1)-bar. We have then to
compare x1Px1(τj+l), l > 0 and xhPxh(τj). The terms over the subsequent (h+ 1)-bar, w.r.t.
τj , have either a bigger (h+ 1)-degree or a bigger k-degree, for k > h+ 1. From this fact we
can conclude that xhPxh(τj) < x1Px1(τj+l).

5.8 A Bar Code version of the Axis of Evil algorithm.

In this section, we develop a third version of the Axis of Evil algorithm. Such a version will
be iterative on the elements of the given finite set X = {P1, ..., PS} of distinct points and it
will exploit the Bar Code structure in order to give the Axis of Evil factorization for:

• a lexicographical involutive basis I(X);

• a minimal lexicographical Groebner basis of I(X).

If B is the B-C corresponding to N = N(I(X)), we associate a polynomial to each bar in
B in such a way that, if p(i)

j is the polynomial associated to a bar A(i)
j in the i-th line, i =

1, ..., n; j = 1, ..., |µ(i)|, then T(p
(i)
j ) = xi. We also show how to multiply the obtained factors

in order to get the factorized bases JS and GS for I(X).
We give first the main algorithm, supposing the following subroutines to be known:

• Tp(l,B, τi), which is devoted to the computations of triangular polynomials

• DiagReading(B, τi) i.e. the one producing the polynomials of the required bases.
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Consider initially the case S = 1. As explained in section 5.6, the B-C associated to a single
point is naturally:

10

1

n

...

and we then have N = {1}.
We define the triangular polynomial q1 = 1 and n sets X1 = {x1−a1,1}; ....;Xn = {xn−a1,n},
one for each variable in the polynomial ring. The required polynomials are the elements of
X =

⋃n
i=1 Xi. We notice that G1 = J1 = {x1 − a1,1, ..., xn − a1,n} is the reduced Groebner

basis of I({P1}) and it coincides with the involutive basis.
These computations constitute the base step for our algorithm.

Consider now the case S > 1. For each i = 2, ..., S perform the following steps.

1. We compute the term τi = xα1
1 · · ·xαnn ∈ N(i), associated to Pi, and B(i) = BN(i), the

associated B-C, by the algorithm developed in section 5.6.

2. Compute the triangular polynomial qi = Tp(n+ 1,B(i), τi).

3. As explained in remark 5.6.4, for each l ∈ {1, ..., n}, only one l-bar, sayA(l)
jl

, is modified
by the algorithm of section 5.6. We have to make some small adjustments only on the
polynomials corresponding to the modified bars, i.e. pj1 , ..., pjn , maintaining the other
ones unchanged. More precisely, if min(τi) = xj ,max(τi) = xh, j, h ≤ n we proceed
as follows:

(a) for each l ∈ {1, ..., j}, compute the polynomial xl − ai,l and insert it in Xl in the
position corresponding to the one of the added bar in the l-th line;

(b) for each l ∈ j + 1, ..., h, compute pjl − evPi(pjl)Tp(l,B(i), τi);

(c) for each l ∈ h+ 1, ..., n, compute pjl − evPi(pjl)Tp(n+ 1,B(i), τi).

4. When i = S , if we want to compute the minimal Groebner basis, then compute
G(I(X)) by the algorithm of section 5.7 and, for each σ ∈ G(I(X)) perform
DiagReading(B(i), σ). The elements of Xj , j = 1, ..., n are the polynomials of theorem
3.4.1, while the output produced by DiagReading(B(i), σ) is a minimal Groebner ba-
sis for I(X).
If the involutive basis is required, we proceed the same way with F(I(X)) instead of
G(I(X)).
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We explain now the procedure Tp(l,B, τi), which computes the l-th triangular polynomial,
for l = 2, ..., n+ 1.

1. For l = 2, ..., n take the l-bar lying under τi, sayA(l)
j and isolate the block B′ composed

by the 1, 2, ..., (l − 1)-bars lying over A(l)
j . Then, delete A(l)

j and set τ ′i = τi
x
αl
l ···x

αn
n
.

2. For l = n+ 1 we have B′ = B and τ ′i = τi.

3. Perform the diagonal reading DiagReading(B′, τ ′i), obtaining a polynomial fi ∈ Gi−1

such that T (fi) = τ ′i ;

4. Set qi = 1
evPi (fi)

fi

Lastly, we examine the procedure DiagReading(B, τi), whose task is to multiply conve-
niently the polynomials in Xj , j = 1, ..., n, in order to produce a polynomial fi ∈ Gi−1 such
that T (fi) = τi = xα1

1 · · ·xαnn .

1. Compute f (n)
i = p

(n)
1 · · · p(n)

αn , where p(n)
1 , ..., p

(n)
αn are the polynomials in Xn correspond-

ing to the bars A(n)
1 , ..., A

(n)
αn .

2. Let A(n−1)
l the leftmost bar lying over A(n+1)

αn . Then f (n−1)
i = p

(n−1)
l · · · p(n−1)

αn−1 , where
p

(n−1)
l , ..., p

(n−1)
αn−1 are the polynomials in Xn−1 corresponding to the barsA(n−1)

l , ..., A
(n−1)
αn−1 .

3. Repeat step (2) for n− 2, n− 3, ..., 1.

4. fi = f
(n)
i · f (n−1)

i · · · f (1)
i .

Remark 5.8.1. The subroutine Tp(l,B, τi) produces interpolators à la Moeller. It essentially
computes the polynomial of the minimal Groebner basis Gi−1, whose leading term is τi,
without computing or storing the whole Gi−1. Thanks to the B-C structure and to the
procedure DiagReading(B, τi), we can exploit the (previously computed) polynomials of
Xj , j = 1, ..., n in order to get the required interpolators.

The algorithm explained above ensures the existence of the polynomials of the form stated
in theorem 3.4.1.

We prove now the following

Proposition 5.8.2. With the above notation, we have

I := ({DiagReading(B, σ) |σ ∈ G(I(X))}) = I(X).
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Proof: Consider the polynomial γτ associated to the term τ = xα1
1 · · ·xαnn ∈ G(I).

We prove that it vanishes on Pµ ∈ X, corresponding to the term µ = xβ1

1 · · ·xβnn ∈ N(I).
Since τ ∈ G(I) and µ ∈ N(I), τ 6= µ. Therefore, there are only two possibilities:

1) µ <Lex τ . In this case the polynomial obviously vanishes by DiagReading, since
we pick a bar under µ and the polynomial corresponding to that bar has already been inter-
polated at the point.

2) µ >Lex τ . This time ∃i ∈ {1, ..., n} such that βi > αi, βj = αj for each
j ∈ {i+ 1, ..., n}.
By Cerlienco-Mureddu correspondence, ∃µ′ := x

β′1
1 · · ·x

β′n
n ∈ N(I) such that:

a. Φ−1(µ′) = Pµ′ with πi−1(Pµ) = πi−1(Pµ′);

b. β′h = αh, ∀h ∈ {i, i+ 1, ..., n}.

If µ′ < τ , then, as in 1, γτ vanishes in Pµ′ and the linear factor making our polynomial
vanish in Pµ′ is computed using at most the first i− 1 coordinates of Pµ, so that γτ turns out
to vanish also in Pµ.
If µ′ > τ , we can repeat with µ′ instead of µ and conclude by induction. �

Example 5.8.3. Let us consider the set

X = {(0, 0, 0), (1, 2, 3), (1, 4, 5), (0, 1, 4), (1, 4, 6), (0, 0, 2), (0, 2, 2)}.

Take first P1 = (0, 0, 0), for which τ1 = 1, then N(1) = {1} and B(1) is the B-C displayed
below.

x1

x2

x3

1

We have q1 = 1 and X1 = {x1}, X2 = {x2}, X3 = {x3}.
Consider then P2 = (1, 2, 3), for which τ2 = x1, N(2) = {1, x1} and B(2) is

1 x1

x1

x2

x3

The diagonal reading is trivial and it leads to q2 = x1. The factors are:
X1 = {x1, x1 − 1} to get this set from the X1 of the previous step, we add the polynomial
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corresponding to the new bar;
X2 = {x2 − 2x1}, obtained as x2 − evP2(x2)q2;
X3 = {x3 − 3x1}, i.e. x3 − evP2(x3)q2.

Take then P3 = (1, 4, 5). We get τ2 = x2, N(3) = {1, x1, x2} and q3 = 1
2 (x2 − 2x1).

1 x1 x2

x1

x2

x3

The factors are:
X1 = {x1, x1 − 1, x1 − 1}
X2 = {x2 − 2x1, x2 − 4}
X3 = {x3 − x2 − x1} i.e. (x3 − 3x1)− evP3

(x3 − 3x1)q3.
Consider P4 = (0, 1, 4), which is associated to τ4 = x1x2. The current Groebner escalier

is N(4) = {1, x1, x2, x1x2}, corresponding to the following B(4):

1 x1 x2 x1x2

x1

x2

x3

The polynomials in the three variables x1, x2, x3 are:
X1 = {x1, x1 − 1, x1 − 1, x1};
X2 = {x2 − 2x1, x2 − 4− 3(x1 − 1)}, since T (q4) = x1x2 > x2, we compute Tp(2,B(4), τ4) =

−(x1 − 1);
X3 = {x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1)}; being T (q4) = x1x2 < x3 we do not need to
compute another interpolator.

Take then P5 = (1, 4, 6), getting τ5 = x3, N(5) = {1, x1, x2, x1x2, x3} and q5 = x3 − x2 −
x1 + 3(x2 − 2x1)(x1 − 1).

1 x1 x2 x1x2 x3

x1

x2

x3

The factors are:
X1 = {x1, x1 − 1, x1 − 1, x1, x1 − 1}
X2 = {x2 − 2x1, x2 − 4− 3(x1 − 1), x2 − 4}
X3 = {x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1), x3 − 6}.
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Take P6 = (0, 0, 2), associated to τ6 = x1x3. The current Groebner escalier is N(6) =

{1, x1, x2, x1x2, x3, x1x3} and the interpolator is q6 = − 1
2 (x1 − 1)(x3 − x2 − x1 + 3(x2 −

2x1)(x1 − 1)).

1 x1 x2 x1x2 x3 x1x3

x1

x2

x3

The factors are:
X1 = {x1, x1 − 1, x1 − 1, x1, x1 − 1, x1}
X2 = {x2 − 2x1, x2 − 4− 3(x1 − 1), x2 − 4− 4(x1 − 1)}
X3 = {x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1), x3 − 6 − 4(x1 − 1)}; being T (q6) = x1x3 > x3,
we compute q = −(x1 − 1), via the procedure Tp(3,B(6), x1x3), so restricting to the block
containing only A(1)

5 , A
(1)
6 , A

(2)
3 .

The last point, P7 = (0, 2, 2) is associated to τ7 = x2
2, so the final Groebner escalier is

N = N(7) = {1, x1, x2, x
2
2, x1x2, x3, x1x3}. We have q7 = 1

2 (x2 − 2x1)(x2 − 4− 3(x1 − 1)). We
compute now the minimal monomial basis G = {x2

1, x1x
2
2, x

3
2, x2x3, x

2
3} and the set F(I) =

{x2
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x2x3, x

2
3}.

1 x1 x2 x1x2 x2
2

x3 x1x3

x1

x2

x3

The factors are:
X1 = {x1, x1 − 1, x1 − 1, x1, x1, x1 − 1, x1}
X2 = {x2 − 2x1, x2 − 4− 3(x1 − 1), x2 − 2, x2 − 4− 4(x1 − 1)}
X3 = {x3−x2−x1 +3(x2−2x1)(x1−1)+3(x2−2x1)(x2−4−3(x1−1)), x3−6−4(x1−1)}.
At the end we have

G7 = {x1(x1 − 1), x1(x2 − 2x1)(x2 − 4− 3(x1 − 1)), (x2 − 2x1)(x2 − 4− 3(x1 − 1))(x2 − 2),

(x2 − 4− 4(x1 − 1))(x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1) + 3(x2 − 2x1)(x2 − 4− 3(x1 − 1))),

(x3 − 6− 4(x1 − 1))(x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1) + 3(x2 − 2x1)(x2 − 4− 3(x1 − 1)))}

and
J7 = {x1(x1 − 1), (x2 − 2x1)x1(x1 − 1), x1(x2 − 2x1)(x2 − 4− 3(x1 − 1)),

(x2 − 2x1)(x2 − 4− 3(x1 − 1))(x2 − 2),
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x1(x1 − 1)(x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1) + 3(x2 − 2x1)(x2 − 4− 3(x1 − 1))),

(x2 − 4− 4(x1 − 1))(x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1) + 3(x2 − 2x1)(x2 − 4− 3(x1 − 1))),

(x3 − 6− 4(x1 − 1))(x3 − x2 − x1 + 3(x2 − 2x1)(x1 − 1) + 3(x2 − 2x1)(x2 − 4− 3(x1 − 1)))}

5.9 Enumerative combinatorics on strongly stable ideals.

This section is about a possible application of Bar Codes to enumerative combinatorics.
Using the Bar Code structure, we want to approach the quest for an integer bounding the
number of some special zerodimensional monomial ideals, called strongly stable ideals, with
fixed constant Hilbert polynomial.
We will start to outline a connection between two objects, which appear to be very different
and far, namely:

a) strongly stable monomial ideals I / P ;

b) integer partitions and plane partitions.

Objects of type a) belong to the field of commutative algebra, whereas those of type b) are
related to enumerative combinatorics. Linking them by means of the Bar Code structure
of the Groebner escaliers, we will give a bound to the number of zerodimensional strongly
stable monomial ideals of a fixed multiplicity.
First of all, we recall the definition of strongly stable ideal. Chapter 6 will deal with strongly
stable ideals.

Definition 5.9.1 ([27]). A monomial ideal I / P = k[x1, ..., xn] is called strongly stable if, for
every term τ ∈ I and pair of variables xi, xj such that xi|τ and xi < xj , then also τxj

xi

belongs to I or, equivalently, for every σ ∈ N(I), and pair of variables xi, xj such that xi|σ
and xi > xj , then also σxj

xi
belongs to N(I).

A first property, useful for the following computations, is that Bar Codes of strongly
stable ideals are full.

Lemma 5.9.2. For all strongly stable ideal J / P , it holds:

F(J) = {xα ∈ T \ N(J) | xα

min(xα)
∈ N(J)} = G(J),

i.e. all the stars in the associated Bar Code correspond to a term of the monomial basis.
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Proof: The inclusion G(J) ⊆ F(J) holds for any monomial ideal I / k[x1, ..., xn] (5.3.4), so
we only prove the other one. Actually, it easily comes from the definition of strongly stable
ideal. Indeed, consider xα ∈ F(J). We show that all its predecessors belong to the Groebner
escalier N(J).
Let xi = min(xα) and let xj > xi be a variable appearing in xα with nonzero exponent.
By definition xα

xi
∈ N(J) and also xα

xj
= xα

xi
xi
xj
∈ N(J), so we can conclude. �

We will see another proof of this fact in chapter 6, while defining stable ideals.
Let us now examine the shape of the Bar Code of a strongly stable ideal, that for short we
will call strongly stable Bar Code.

Proposition 5.9.3. Let J /k[x1, ..., xn] be a zerodimensional strongly stable monomial ideal,
and B := BN(J) the Bar Code associated to its (finite) Groebner escalier.
Fixed a (i + 2)-bar A, for i ∈ {1, ..., n − 1}5, let C1, ..., Ch be the (i + 1)-bars over A. Then
li(C1) > ... > li(Ch).

Proof: In order to prove the assertion, we proceed by contradiction.
Since the case li(Cj) < li(Cl) for i < l implies that the Bar Code is even not admissible,
suppose that li(Cj) = li(Cl) for i < l and take τ = xα1

1 · · ·xαnn , i.e. the rightmost term lying
over Cl. Over Cl we have αi + 1 i-bars.
By definition of strongly stable ideal, the term σ = xα1

1 · · ·x
αi+1
i xαi+1−1

i+1 · · ·xαnn ∈ N(J).
But this implies that we should have at least αi + 2 > αi + 1 i-bars over Cl and this is a
contradiction. �

Remark 5.9.4. The condition of proposition 5.9.3 holds for each strongly stable ideal, but
there are also non-strongly stable monomial ideals fulfilling them, so the reverse does not
hold.

Let us see an example of the problem emphasized in remark 5.9.4.

Example 5.9.5. Let J = (x3
1, x1x2, x

2
2, x

2
1x3, x2x3, x

2
3) / k[x1, x2, x3] (see example 5.3.5).

The corresponding Groebner escalier is N = N(J) = {1, x1, x
2
1, x2, x3, x1x3} and the associ-

ated Bar Code B is displayed in the picture below:

5For i = n − 1, we consider as (n + 1)-bar a line underlining the whole diagram. We use it only in theory, for
some proofs, even if we never draw it concretely.
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0

1

2

3

1 x1 x2
1

x2 x3 x1x3

x3
1

x1x2
x2

1x3

x2
2

x2x3

x2
3

The bar list of B is (6, 3, 2) and the star set is FN = G(J) = {x3
1, x1x2, x

2
2, x

2
1x3, x2x3, x

2
3}.

The condition of Lemma 5.9.3 holds with i = 1, 2. Indeed we can only isolate the sub-Bar
Codes

0

1

2

3

1 x1 x2
1

x2

x3 x1x30

1

2

3

for which the condition holds and the same is valid for the x2-bars, with respect to the whole
diagram:

0

1

2

3

4

1 x1 x2
1

x2 x3 x1x3

Anyway, J is not a strongly stable ideal, since xz ∈ N(J), while xy ∈ J .

Remark 5.9.6. Let B be the Bar Code associated to the Groebner escalier N(J) of a zerodi-
mensional strongly stable ideal J .
If we consider the bars A(i+1)

1 , ..., A
(i+1)
µ(i+1) in the (i + 1)-th line, it is not true in general that

li(A
(i+1)
1 ) > ... > li(A

(i+1)
µ(i+1)), as shown in the examples below.

Example 5.9.7. For I = (t2, tz, z2, ty, zy, y2, tx, zx, yx, x3) / k[x, y, z, t] the associated B-C is:

0

1

2

3

4 t2

z2 zt

y2 yz yt

x3 xy xz xt

1 x x2 y z t
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The ideal I is strongly stable, but we have

2 = l2(A
(3)
1 ) > l2(A

(3)
2 ) = l2(A

(3)
3 ) = 1.

Example 5.9.8. The monomial ideal I = (z2, zy2, y3, zyx, y2x, zx2, yx2, x3) / k[x, y, z] is as-
sociated to the Bar Code displayed below

0

1

2

3 z2

y3 y2z

x3 x2y xy2
x2z xyz

1 x x2 y xy y2 z xz yz

This monomial ideal is strongly stable, but

l1(A
(2)
1 ) = 3, l1(A

(2)
2 ) = 2, l1(A

(2)
3 ) = 1, l1(A

(2)
4 ) = 2 and l1(A

(2)
5 ) = 1,

so the considered lengths are not all in nonincreasing order.

Let us start examining the Bar Code structure of the Groebner esalier for zerodimen-
sional strongly stable ideals, starting from the case of two variables.
First of all, let us look to some examples.
The only strongly stable ideal with affine Hilbert polynomial equal to 1 is the maximal ideal
J1 = (x1, x2), whose Bar Code is trivially

0

1

2

1
x1

x2

The associated bar list is then (1, 1).
If we examine the strongly stable monomial ideals in two variables with affine Hilbert poly-
nomial equal to 2 we get J1 = (x2

1, x2), whose Bar Code is

0

1

2

1 x1

x2
1

x2

and the associated bar list is (2, 1).
For the affine Hilbert polynomial H_(t) = 3 we have J1 = (x3

1, x2) J2 = (x2
1, x1x2, x

2
2).

The Bar Code associated to J1 is

0

1

2

1 x1 x2
1

x3
1

x2



200 Chapter 5. The Bar-Code.

and the bar list is (3, 1).
The Bar Code associated to J2 is

0

1

2

1 x1 x2

x2
1

x1x2

x2
2

and the bar list is (3, 2).
We summarize in the following table the bar lists of strongly stable ideals corresponding to
each H_(t).

H_(t) Bar lists Ideals

H_(t) = 1 (1, 1) (x1, x2)

H_(t) = 2 (2, 1) (x2
1, x2)

H_(t) = 3 (3, 1), (3, 2) (x3
1, x2), (x2

1, x1x2, x
2
2)

H_(t) = 4 (4, 1), (4, 2) (x4
1, x2), (x3

1, x1x2, x
2
2)

H_(t) = 5 (5, 1), (5, 2), (5, 2) (x5
1, x2), (x4

1, x1x2, x
2
2), (x3

1, x
2
1x2, x

2
2)

H_(t) = 6 (6, 1), (6, 2), (6, 2), (6, 3) (x6
1, x2), (x5

1, x1x2, x
2
2), (x4

1, x
2
1x2, x

2
2), (x3

1, x
2
1x2, x1x

2
2, x2)

· · · · · · · · ·

Observing the second column of the table, we can notice some “pattern” in their distribu-
tions.
Driven by this pattern, we examine more deeply the Bar code structure of these ideals.

For this purpose, we need the following

Definition 5.9.9 ([101]). A partition of p ∈ N is a sequence (α1, ..., αk) ∈ Nk such that∑k
i=1 αi = p and α1 ≥ ... ≥ αk

We regard two partitions as identical if they only differ in the number of terminal 0’s.
For example (3, 2, 1) = (3, 2, 1, 0, 0).
Informally, we regard a partition α = (α1, ..., αk), say with αk > 0 as a way of writing p as a
sum of positive integers, disregarding the order of the summands.
The nonzero terms are called parts of α and we say that α has k parts if

k = |{i, αi > 0}|.

We are interested to the special case α1 > ... > αk i.e. to integer partitions of p into k distinct
parts.
We are now ready to prove the following proposition
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Proposition 5.9.10. The number of strongly stable Bar Codes for terms in k[x1, x2], whose
bar list is (p, h), p, h ∈ N, p ≥ h equals the number of integer partitions of p in h distinct
parts, namely

p = α1 + ...+ αh, αi > 0, i = 1, ..., h.

Proof: In order to prove the assertion, we want to establish a biunivocal correspondence
between

B(p,h) := {strongly stable Bar Codes with bar list (p, h)}

and

I(p,h) := {(α1, ..., αh) ∈ Nh, α1 > ... > αh,

h∑
i=1

αi = p}.

We set then

Ξ : B(p,h) −→ I(p,h)

B 7→ (l1(A
(2)
1 ), ..., l1(A

(2)
h )).

Let B be a strongly stable Bar-Code, whose bar list is (p, h). It is associated to the set of terms
MB = N(J), for J / k[x1, x2] strongly stable.
The sequence (l1(A

(2)
1 ), ..., l1(A

(2)
h )) satisfies l1(A

(2)
1 ) > ... > l1(A

(2)
h ) by proposition 5.9.3

and since |N(J)| = p, then
∑h
i=1 l1(A

(2)
i ) = p, so we exactly have an integer partition of p

into h distinct parts.
On the other hand, let (α1, ..., αh) ∈ I(p,h). We construct the (unique) Bar Code B(p,h) asso-
ciated to this h-tuple, namely a Bar Code formed by h x2-bars such that over the first x2-bar
there lie α1 x1-bars, and so on.
We have to prove that the associated MB is the Groebner escalier N(J) of a strongly stable
ideal J / k[x1, x2].

Consider σ := xβ1

1 xβ2

2 ∈MB, 0 < β2 < h6.
By definition 5.9.1, we only have to prove that σ′ = σx1

x2
∈ MB, but this is obviously true,

since, over the (β2 − 1)-th x2-bar it lies at least one x1-bar more than the x1-bars lying over
the β2-th x2-bar. �

We point out that, if H_(t) = p, the Bar list (p, 1) corresponds to the ideal J = (xp1, x2) which
is a very particular strongly stable ideal: a lex segment ideal.
More precisely, for each degree i, J is k-spanned by the first H_(i) terms w.r.t. lex.
The bar list (p, 1) is clearly the one presenting the minimal value for h. Now we should try
to understand which is the maximal value for h.

6For β2 = 0 there is nothing to prove since we cannot perform any operations as in definition 5.9.1.
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Proposition 5.9.11. The maximal value for h in a bar list (p, h) of a strongly stable Bar Code
is the maximal integer h such that h(h+1)

2 ≤ p.

Proof: By proposition 5.9.10, the strongly stable Bar Codes are in biunivocal correspon-
dence with the integer partitions of H_(t) = p into h distinct parts α1 + ... + αh = p. The
minimal values we can assign to αi, i = 1, ..., h are (h − 1), (h − 2), ..., 2, 1, whose sum is
h(h+1)

2 . Since we are looking for partitions of p, we should have h(h+1)
2 ≤ p. �

In order to deal with strongly stable ideals J /k[x1, ..., xn] for n > 2, the following corollary
will be rather useful.

Corollary 5.9.12. The number of strongly stable Bar Codes for terms in k[x1, ..., xn], n > 2,
whose bar list is (p, h, 1, ..., 1), p, h ∈ N, p ≥ h equals the number of integer partitions of p in
h distinct parts, namely

p = α1 + ...+ αh, αi > 0, i = 1, ..., h.

Moreover, the maximal value for h in the bar list (p, h, 1, ..., 1) is the maximal integer h such
that h(h+1)

2 ≤ p.

Proof: It is a straightforward consequence of propositions 5.9.10 and 5.9.11, noticing that,
if we have only 1 x3, ..., xn-bars, x3, ..., xn do not occur in any term of MB with nonzero
exponent. �

By the previous comments, we are able to count the number of strongly stable ideals J /
k[x1, x2] with H_(t, J) = p.
The following proposition is a consequence of 5.9.10 and 5.9.11.

Proposition 5.9.13. The number of strongly stable ideals J with H_(t, J) = p is

h∑
i=1

Q(p, i),

where h is the maximal integer such that h(h+1)
2 ≤ p and Q(p, i) is the number of integer

partitions of p into i distinct parts.

The numberQ(p, i) of integer partitions of p into i distinct parts has already been studied
in literature. For example, we can find in [101] the formulas regulating it:

∀p, i ∈ N, i 6= 1, Q(p, i) = P

(
p−

(
i

2

)
, i

)
, Q(p, 1) = 1
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where

∀n, k ∈ N, P (n, k) = P (n− 1, k − 1) + P (n− k, k),

with 
P (n, k) = 0 for k > n

P (n, n) = 1

P (n, 0) = 0

Example 5.9.14. For the polynomial ring k[x1, x2], consider H_(t) = 10.
By our formulas, we have exactly 10 strongly stable monomial ideals with H_(t) = 10.
More precisely, they are:

? J1 = (x10
1 , x2);

? J2 = (x9
1, x1x2, x

2
2);

? J3 = (x8
1, x

2
1x2, x

2
2);

? J4 = (x7
1, x

3
1x2, x

2
2);

? J5 = (x7
1, x1x

2
2, x2x

2
1, x

3
2);

? J6 = (x6
1, x

4
1x2, x

2
2);

? J7 = (x6
1, x1x

2
2, x

3
1x2, x

3
2);

? J8 = (x5
1, x

2
2x1, x2x

4
1, x

3
2);

? J9 = (x5
1, x

2
2x

2
1, x2x

3
1, x

3
2);

? J10 = (x4
1, x

3
2x1, x

2
2x

2
1, x2x

3
1, x

4
2).

Example 5.9.15. The strongly stable monomial ideals with H_(t) = 100 are exactly 444793.

We now try to study the case of three variables, which is a little more cumbersome than
the previous case of only two variables.
Let us start with some examples.
If, in k[x1, x2, x3], x1 < x2 < x3, we consider H_(t) = 1, we can associate to it only one
strongly stable monomial ideal, namely the maximal ideal J1 = (x1, x2, x3), whose Bar
Code is
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0

1

2

3

1
x1

x2

x3

and the associated bar list is (1, 1, 1).
For H_(t) = 2, we get J1 = (x2

1, x2, x3) / k[x1, x2, x3], whose Bar Code is

0

1

2

3

1 x1

x2
1

x2

x3

and the corresponding bar list is (2, 1, 1).
Let us take now H_(t) = 3.
The associated strongly stable ideals are J1 = (x3

1, x2, x3), J2 = (x2
1, x1x2, x

2
2, x3), whose bar

lists are (3, 1, 1), (3, 2, 1), since their Bar Codes are, respectively,

0

1

2

3 x3

x2

x3
1

1 x1 x2
1

and

0

1

2

3 x3

x2
2

x2
1

x1x2

1 x1 x2

If we continue taking p(t) = 4 we obtain 3 different strongly stable ideals, namely J1 =

(x3, x2, x
4
1), J2 = (x3, x

2
2, x2x1, x

3
1) and J3 = (x2

3, x3x2, x
2
2, x3x1, x2x1, x

2
1).

Their Bar-lists are (4, 1, 1), (4, 2, 1), (4, 3, 2), corresponding to the following Bar Codes:

0

1

2

3 x3

x2

x4
1

1 x1 x2
1 x3

1
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0

1

2

3 x3

x2
2

x3
1

x1x2

1 x1 x2
1

x2

0

1

2

3 x2
3

x2
2

x2x3

x2
1

x1x2 x1x3

1 x1 x2 x3

As for the bidimensional case, we summarize some partial result in the following table:

H_(t) Bar lists Ideals

1 (1, 1, 1) (x1, x2, x3)

2 (2, 1, 1) (x2
1, x2, x3)

3

(3, 1, 1), (3, 2, 1) (x3
1, x2, x3),

(x2
1, x1x2, x

2
2, x3)

4

(4, 1, 1), (4, 2, 1), (x3, x2, x
4
1),

(4, 3, 2) (x3, x
2
2, x2x1, x

3
1),

(x2
3, x3x2, x

2
2, x3x1, x2x1, x

2
1).

5

(5, 1, 1), (5, 2, 1), (x3, x2, x
5
1), (x3, x

2
2, x1x2, x

4
1)

(5, 2, 1), (5, 3, 2) (x3, x
2
2, x2x

2
1, x

3
1), (x2

3, x3x2, x
2
2, x3x1, x2x1, x

3
1)

Table 5.1: Strongly stable ideals, with affine Hilbert polynomial and bar lists.

By corollary 5.9.12, we can use the formulas for two variables in order to count the strongly
stable monomial ideals associated to bar lists of the form (p, h, 1). This means that we only
have to deal with the bar lists of the form (p, h, k), such that k > 1.

Definition 5.9.16. The minimal sum of a given list of positive integers [α1, ..., αg] is the integer

Sm([α1, ..., αg]) :=

g∑
i=1

αi(αi + 1)

2
.

The following lemma is a straightforward consequence of proposition 5.9.3.

Lemma 5.9.17. With the previous notation, it holds:

1. min(k) = 2;



206 Chapter 5. The Bar-Code.

2. max(k) = maxk≥2{k| ∃L ∈ I(p,k′), with Sm(L) ≤ p}, k′ = k(k+1)
2

3. min(h) = k(k+1)
2 ;

4. max(h) = max
k(k+1)

2 ≤l≤p−1

{l|Q(h, k) 6= 0 and L ∈ I(h,k) ⇒ Sm(L) ≤ p}.

Thanks to the previous lemma 5.9.17 we know which are the bar lists that occur in the
computation for H_(t) = p.
Next step is to understand how many strongly stable ideals with H_(t) = p and bar-list (p, h, k)

there exist.
More precisely, fixed (p, h, k), we compute the integer partitions of h in k parts, representing
the numbers of x2-bars over the k x3-bars. Suppose (α1, ..., αk), α1 > ... > αk,

∑k
i=1 αi = h

being one of these partitions. Then, we construct a k × α1 matrix M having the following
shape:

M =


a1,1 ... ... ... ... ... a1,α1

0 ... a2,2 ... ... a2,α2+1 0...
...

...
...

...
...

...
...

0 ... 0 ak,k ... ak,αk+k−1 0...

 .

Each row represents the structure over an x3 bar:

• let αjhj be a nonzero entry of the j-th row; then over A(3)
j (the corresponding 3-bar) of

B there lie exactly αjhj 2-bars;

• the value of each ai,j is the number of x1-bars over the j-th 2-bar of the j-th 3-bar.

Moreover, we set the following two conditions, holding on the entries of the matrix for
i = 1, ..., k − 1 j = 1, ..., α1 − 1:

1. ai,j > ai,j+1;

2. ai,j ≥ ai+1,j ;

3.
∑k−1
i

∑α1−1
j ai,j = p.

The number of nonzero entries is clearly h. From now on we use these matrices, that we
call IP-type associated to (p, h, k)7, in order to count strongly stable monomial ideals, with
H_(t) = p.

7This name stands for integer partition type, since we will connect them to the classical theory of integer parti-
tions.
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Proposition 5.9.18. There is a one-to-one correspondence between strongly stable Bar Codes
in three variables, with bar list (p, h, k) and IP-type matrices associated to (p, h, k).

Proof: Consider a strongly stable Bar Code B, with bar list (p, h, k), associated to N(J), the
Groebner escalier of the strongly stable ideal J .
Its h x2-bars are distributed as (l2(A

(3)
1 ), ..., l2(A

(3)
k )) and, by proposition 5.9.3, l2(A

(3)
1 ) >

... > l2(A
(3)
k ).

We associate to B a (k× l2(A
(3)
1 ))-matrix with the same procedure as above. More precisely:

ai,j =

{
0 if j < i

l1(B
(2)
i,j ) otherwhise, where B(2)

i,j is the i-th 2-bar over the j-th 3-bar.

The relation
∑k−1
i

∑α1−1
j ai,j = p is a straightforward consequence of the definition of Bar

Code.
Since l2(A

(3)
1 ) > ... > l2(A

(3)
k ), each row is shifted to the right of one entry and, again by

proposition 5.9.3, ai,j > ai,j+1.
We only have to prove that ai,j ≥ ai+1,j .
By the previous comments, the case ai,j = 0, ai+1,j 6= 0 cannot occur.
If ai,j 6= 0, ai+1,j = 0 there is nothing to prove, so we only have to deal with the case
ai,j , ai+1,j 6= 0.
The value ai,j means that xai,j−1

1 xβ2x
i−1
3 ∈ N(J), lying over A(3)

i is the (β + 1)-th term of the
2-bars lying over A(3)

i and also that xai,j1 xβ2x
i−1
3 /∈ N(J). Similar comments hold for ai+1,j ,

for which xai+1,j−1
1 xβ−1

2 xi3 ∈ N(J). Suppose by contradiction ai,j < ai+1,j .
By the strongly stable property, xai+1,j−1

1 xβ2x
i−1
3 ∈ N(J), but this is impossible since

x
ai+1,j−1
1 xβ2x

i−1
3 | xai,j1 xβ2x

i−1
3 /∈ N(J).

Let now M be an IP-type (k×αk)-matrix, with h nonzero entries and
∑k−1
i

∑α1−1
j ai,j = p.

We associate M to a Bar Code B as follows:

• we draw k 3-bars, one for each row of the matrix;

• we draw over the i-th 3-bar as many 2-bars as the number of nonzero entries in the
i-th row of M ;

• we conclude drawing over the j-th 2-bar as many 1-bars as the value of the nonzero
entry corresponding to the j-th x2-bar in the matrix.

By construction, the above B is admissible.
Moreover, since

∑k−1
i

∑α1−1
j ai,j = p, we have exactly p 1-bars, so we are representing the
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Groebner escalier N(J) of a zerodimensional ideal such that H_(t, J) = p.
We prove that it is strongly stable. More precisely, for each xα1

1 xα2
2 xα3

3 ∈ N(J), we need to
prove that

1. xα1
1 xα2+1

2 xα3−1
3 ∈ N(J);

2. xα1+1
1 xα2

2 xα3−1
3 ∈ N(J);

3. xα1+1
1 xα2−1

2 xα3
3 ∈ N(J).

Point 1 is clearly true by ai,j ≥ ai+1,j . Indeed α3− 1 and α3 represent two consecutive rows
and α2 + 1 and α2 represent the same column by the shifting. We are requiring that there is
α1 in the position identified by α3 − 1, α2 + 1.
Similarly, point 2 is true by ai,j > ai,j+1 and ai,j ≥ ai+1,j , whereas ai,j > ai,j+1 ensures
point 3. �

Thanks to this proposition, we can find a bound for the number of strongly stable Bar Codes
with H_(t) = p.
For this purpose, we need some definitions from the theory of plane partitions.

Definition 5.9.19. A plane partition α of a positive integer p ∈ N, is a partition of p in which
the parts have been arranged in a 2-dimensional array.
Such an array is weakly decreasing across rows and down columns. Different configura-
tions are regarded as different plane partitions.
A plane partition α is called row strict if it is decreasing on the rows and column strict if it is
decreasing on the columns.
We call shape of the plane partition α the list (α1, ..., αk), where αi is the number of entries
for the i-th row of the array, i = 1, ..., k.

Conventionally, the zero values in the table are not written down and they are replaced
by blanks.

Example 5.9.20. The matrix
4 2 1

3 1

represents a plane partition of p = 11 with shape (3, 2). Such a plane partition is simultane-
ously row strict and column strict.
The following plane partition of p = 12 is only column strict

4 4

3 1
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and its shape is (2, 2).

Definition 5.9.21. A strict shifted plane partition is a plane partition such that each row is
indented only one space w.r.t. the previous row and

• rows are weakly decreasing (from the left to the right);

• columns are strictly decreasing (from the top to the bottom).

Example 5.9.22. The plane partition
4 4 3

3 1

is a strict shifted plane partition of p = 15.

Definitions 5.9.19 5.9.21 and are classical definitions, found in literature.
For our purpose, we require our partitions to be:

• such that the rows will be indented potentially more than one space;

• weakly decreasing down columns;

• strictly decreasing across rows.

Definition 5.9.23. The hook length of an entry c in a matrix M is the following sum:

h(c) = d(c) + s(c) + 1

where d(c) are the entries on the right of c, while s(c) is the number of entries below c.

We also need the following

Lemma 5.9.24. If a plane partition is an array as
a1,1 a1,2 a1,3...

...
...

......
a1,2 a2,2 0

a1,3 0 0

 .

and it is column strict, then it contains the arrays of the form
a1,1 a1,2 a1,3....

...
...

......
0... a2,2 a2,3

0 0... a3,3

 .
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Proof: With the previous notation, since ai,j > ai,j+1 ≥ ai+1,j+1, then ai,j > ai+1,j+1, for
i = 1, ..., k − 1 j = 1, ..., α1 − 1. �

Remark 5.9.25. The correspondence between the two plane partitions of lemma 5.9.24 is
not a bijection since for example (

12 8 6

11 5 0

)
.

cannot be shifted to the right.

If λ is the integer partition of µ(2), giving the shape of the matrix, we can give the gen-
erating function of column strict plane partitions of p with shape λ, namely

qN(λ)
∏
c

1

1− qh(c)
,

where c is an entry of the matrix, h(c) its hook length and N(λ) =
∑
i iλi.

This function gives the number of matrices of shape λ arranged by weight: its Taylor series
at a given degree p gives the number of matrices of weight p.
Let us see a trivial example.

Example 5.9.26. Let p = 4; we want to count the number of matrices of type(
A B

C 0

)
with A+B + C = 4.
It turns out that there exists only one matrix of this kind, namely(

2 1

1 0

)
.

We now count the number of matrices of the above type via the generating function. The
shape of the matrix is (2, 1).
We have h(A) = 3, h(B) = h(C) = 1 and the the generating function turns out to be

q4 1

1− q3

1

(1− q)2
.

If we take its Taylor series at degree 4 we have exactly 1.
In this case, the number of these plane partitions coincides with the one of the particular
plane partitions we are looking for, even if it is not true in the general case, where we only
obtain an upper bound.
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Now we apply these facts to a very precise affine Hilbert polynomial, making detailed
computations.

Example 5.9.27. Let us count the number of strongly stable ideals in k[x1, x2, x3] having
affine Hilbert polynomial H_(t) = 10.

First of all, we enumerate the bar-lists. There are bar lists of the form (10, h, 1), for h =

1, ..., 4. Then, there are others of the form (10, h, k) where k = 2, 3. Indeed, we cannot find
a partition of 10 = 4·5

2 in 4 parts, such that their minimal sum is smaller or equal than 10,
whereas for k = 3 we can find a partition of 6 = 3·4

2 in 3 parts with minimal sum smaller or
equal than 10, namely 6 = 3 + 2 + 1, Sm([3, 2, 1]) = 10. For k = 2 we have min(α) = 3 = 2·3

2

and max(α) = 5 since there are no partitions of 6 into two distinct parts with minimal sum
smaller or equal than 10, whereas there is one for 5, i.e. 5 = 3 + 2, Sm([3, 2]) = 9.
We repeat for k = 3 finding min(α) = 6 = max(α). The bar-lists are then:

1. (10, 1, 1);

2. (10, 2, 1);

3. (10, 3, 1);

4. (10, 4, 1);

5. (10, 3, 2);

6. (10, 4, 2);

7. (10, 5, 2);

8. (10, 6, 3);

For 1, 2, 3, 4 above, i.e.

1. (10, 1, 1);

2. (10, 2, 1);

3. (10, 3, 1);

4. (10, 4, 1).

We proceed as in 2 variables: Q(10, 1) +Q(10, 2) +Q(10, 3) +Q(10, 4) = 10.
Consider now (10, 3, 2).
Since 3 = 2 + 1 we only have matrices of type

M =

(
a1,1 a1,2

0 a2,2

)
.
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We shift and we get the hook lengths

M =

(
3 1

1 0

)
,

while N(λ) = 4, so the generating function we have to examine is q4 1
1−x3

1
(1−x)2 and we get

a bound of 12 strongly stable Bar Codes.
Direct computation shows that their actual number in this case is 7.
Take then (10, 4, 2)

Since 4 = 3 + 1, we only have to deal with these matrices

M =

(
a1,1 a1,2 a1,3

0 a2,2 0

)
,

leading to the following hook numbers

M =

(
4 2 1

1 0 0

)
,

N(λ) = 5 and the generating function q5 1
(1−q4)

1
(1−q2)

1
(1−q)2 . In conclusion we get a bound

of 14 over 5 real strongly stable Bar Codes.
Consider now (10, 5, 2). We have 5 = 4 + 1 = 3 + 2, so we would have two cases to examine
but, since Sm([4, 1]) > 10, we only deal with the second partition, getting the matrices

M =

(
a1,1 a1,2 a1,3

0 a2,2 a2,3

)
.

and

M =

(
4 3 1

2 1 0

)
.

SinceN(λ) = 7, we have q7 1
(1−q4)(1−q3)(1−q2)(1−q)2 , from which we get a bound of 7 strongly

stable Bar Codes. Their actual number is 1 (again by direct computation).
We conclude with (10, 6, 3), for which by 6 = 3 + 2 + 1. We obtain the matrices

M =

 a1,1 a1,2 a1,3

0 a2,2 a2,3

0 0 a3,3

 .

and

M =

 5 3 1

3 1 0

1 0 0

 .
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Since N(λ) = 10 we have q10 1
(1−q5)(1−q3)2(1−q)3 leading to 1 which is simultaneously the

bound and the exact number.
In conclusion we have exactly 24 strongly stable ideals in 3 variables with constant affine
Hilbert polynomial H_(t) = 10 and our bound returns 44.

This work is still in progress. As shown by example 5.9.27, it would be good to sharpen
this bound and I think it could be done by concentrating our study on generating functions
for plane partitions. Moreover, we are studying a generalization to n variables.





CHAPTER 6

J-marked bases and J-marked
families.

6.1 Introduction.

In this chapter, ideals I / P are examined from another point of view.
Indeed, while our previous studies were mainly focused on the Groebner escalier N(I), now
our starting point is a generating set for I , which in general is not the monomial basis G(I)

(so multiple terms are allowed).
In particular, we deal with the following problem

Problem 6.1.1. Given any monomial ideal J / P find a characterization for the familyMf(J) of
all homogeneous ideals I / P such that the basis of P/I is given by the set of terms in the Groebner
escalier N(J) of J .

The most relevant examples of ideals I ∈ Mf(J) are the ideals I such that In<(J) w.r.t.
some term-ordering <, but in general these form a proper subset ofMf(J). Therefore, we

215
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must overcome the Groebner framework.
A computational description of the whole familyMf(J) is obtained in [8, 27] for J strongly
stable. These families are optimal for many applications, for instance for an effective study
of Hilbert schemes (see [10]).
In section 6.2, we recall the main results of [8, 27] and we explain how the connected algo-
rithms, described and analyzed in the above two papers can be concretely implemented in
Singular [30]. This is a work done in collaboration with F. Cioffi, W. Decker, H. Schoene-
mann and M. Roggero.
Then, we relax both the assumption of polynomial ring over a field allowing polynomial
rings over any commutative ring and the assumption of strong stability for J , allowing any
monomial ideal, so we pass from P = k[x1, ..., xn] to Q := A[x1, ..., xn], where A is any
commutative ring. We address then the problem below:

Problem 6.1.2. Given any monomial ideal J / Q, find a characterization for the familyMf(J) of
all homogeneous ideals I /Q such that the A-moduleQ/I is free with basis given by the set of terms
in the Groebner escalier N(J) of J .

In this chapter, we give then an overall view on what can be said about the above
question for an arbitrary monomial ideal J , enhancing some ideas introduced by Janet in
[54, 55, 56].
This is a joint work with Teo Mora and Margherita Roggero [19].
The main ideas we deal with are those of multiplicative variable and complete system, leading
to the so called Janet decomposition for terms (see section 6.3). These concepts date back to the
late nineteenth century and the first decades of the twentieth one. In the historical note at
section 6.7 we present a detailed overview of their appearances, evolution and applications.
By exploiting the he Bar Code BM associated to a finite set of terms M = {τ1, ..., τm} ⊂ Q,
it is very simple to find the multiplicative variables of each τj , j = 1, ...,m and to detect the
completeness of M .
Both the multiplicative variables of τj ∈ M and the completeness of M itself strongly de-
pend on the order given to the variables.
A problem one can face is:

Problem 6.1.3. Given a finite set of terms M = {τ1, ..., τm} ⊆ T is there any ordering on the
variables x1, ..., xn such that M is complete?

We will show that also this problem can be solved exploiting the Bar Code (6.3).
In Janet’s theory the ideals I are generated by the so called involutive bases (after Zarkov).
Indeed, Janet develops his ideas assuming to be in generic coordinates. Hence the homo-
geneous ideals I and J he considers satisfy many good properties that always hold after
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having performed a generic linear change of coordinates. In particular, J is the generic initial
ideal of I w.r.t. the (deg)-revlex ordering.

From a computational point of view, a general change of coordinates is remarkably
heavy. For this reason, we are interested to enhance the theory, getting rid of the generic
coordinate assumption. Indeed, Janet’s ideas permit to go beyond this context and to re-
cover results and techniques of both Groebner basis theory and J-marked basis theory. In
fact we do not need to impose a term-ordering on the given polynomial ring.

We identify two essential features that are key points for most computations in both the
above frameworks:

I) I is generated by a set of polynomials, marked on the terms of a suitable generating
set of the monomial ideal J ;

II) there is a reduction process w.r.t. these marked polynomials, that is used to rewrite
each element of P/I as an element of the free A-module 〈N(J)〉.

Janet’s notions of multiplicative variable and complete system allow to construct such marked
set of generators for I and to define an efficient reduction process.
We examine and compare two different definitions of multiplicative variable given by Janet
in [54, 55] and in [56], that are equivalent in general coordinates. We underline similarities
and differences and introduce the notion of stably complete set of terms, when both con-
ditions hold. We show that every monomial ideal J has only one stably complete set of
generators (possibly made of infinitely many terms) that we called star set and denoted by
F(J) (5.3, 6.4).

Furthermore, we define a reduction procedure with respect to a homogeneous set of
polynomials marked on a stably complete system F(J) and prove its noetherianity (6.5).
As a consequence we are able to give a first, general answer to Problem 6.1.2 .

Of course, the most interesting cases are those of ideals J such that their generating sta-
bly complete setM is finite. We prove that they are the quasi stable ideals (6.4) and thatF(J)

is their Pommaret basis. Among them, those such that F(J) coincides with the monomial
basis are exactly the stable ones.
For the class of quasi stable ideals J we give a more complete and effective answer to Prob-
lem 6.1.2. Indeed, we prove that our description of Mf(J) is natural, in the sense that it
defines a representable functor from the category of Z-algebras to the category of sets. We
give then an effective procedure computing equations for the scheme that represents this
functor (c.f. 6.6).
Moreover, switching to our usual point of view on ideals, so mainly dealing with the Groeb-
ner escalier, we show how to generalize Moeller algorithm in order to obtain an involutive
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basis for a zerodimensional radical ideal, starting with the associated finite set of distinct
points (see 6.6).

6.2 Singular libraries on strongly stable ideals and marked

bases.

In the papers [8, 27], given a strongly stable monomial ideal J , the authors study the families

Mf(J) := {I / S, such that S = I ⊕ N(J) as k − vector space},

and they establish what are the conditions makingMf(J) an affine scheme.
In order to study these families, they introduce some special homogeneous polynomials,
called J-marked polynomials, naming J-marked sets the sets of J-marked polynomials.
A J-marked set G such that I := (G) ∈Mf(J) is called J-marked basis.
If J is a strongly stable monomial ideal1 such a basis shares many properties with the ho-
mogeneous reduced Groebner basis .
Then, they define a reduction procedure and a Buchberger-like criterion, in order to decide
whether a J-marked set is a J-marked basis or not.
Moreover, they prove that there is a biunivocal correspondence between the ideals I ∈
Mf(J) and the points of an affine scheme, consequentely named J-marked scheme in [27].
Basing on the theory developed in these papers, we implemented two libraries in order to
study J-marked bases and J-marked schemes.
They have been written in the programming language provided by the open source com-
puter algebra system Singular ([30]) and integrated in the 3-1-6 release of this software.
More precisely:

• JMBTest.lib ([17]) is a library which checks whether a J-marked set G is a J-marked
basis or not;

• JMSConst.lib ([18]) is a library which computes the equations of the J-marked
scheme associated to a strongly stable monomial ideal J .

In this section, we recall the theory underlying the implementations and we explain the li-
braries themselves.
In the next sections, while talking about involutiveness, we will generalize most of the no-
tions below to monomial ideals satisfying weaker properties than the strongly stable one.

1It is enough for J to be strongly stable, we do not require J to be zerodimensional as was in 5.9.
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The source code can be found in appendix A.
Let us start recalling the concept of J-normal form.

Definition 6.2.1. Given a monomial ideal J / S and an ideal I / S, a J-normal form modulo
I of a polynomial h ∈ S is a polynomial h0 ∈ S such that h− h0 ∈ I and Supp(h0) ⊆ N(J).

Clearly, if I is an homogeneous ideal, also the J-normal from modulo I of an homoge-
neous polynomial turns out to be homogeneous.

Definition 6.2.2. A marked polynomial is a polynomial f ∈ S, with a specific term in
Supp(f) that we call head term of f , denoting it Ht(f).

We denote by

G = {fτ = τ −
∑

cτγx
γ , Ht(fτ ) = τ}

a finite set of homogeneous marked polynomials

Definition 6.2.3. The set G is called J-marked set if the head terms Ht(fτ ) constitute the
monomial basis G(J) of a given J and all the xγ are in N(J).
A J-marked set G is a J-marked basis if N(J) is a basis of S/G as a k-vector space.

We usually denote by Gp the degree p part of G.
Given a set G of J-marked polynomials, the Singular library JMBTest.lib ([17]) checks
whether such a set is a J-marked basis or not.
The output is a boolean value: 1 for true, 0 for false, following the usual conventions.
In order to increase the computation’s speed, the input marked polynomials are arranged
by degree, as a list of lists of polynomials: G = [GaJ , ...,GaJ+h], where aJ is the minimal
degree for a homogeneous polynomial in the given J-marked set G and aJ + h is clearly
their maximal degree.
The head terms of the elements in G have to make up the monomial basis G(J) of a strongly
stable ideal J and we think them ordered with respect to a degree compatible term order.
In the procedure, our usual variable ordering x1 < x2 < ... < xn (or x < y < z in the case of
three variables or less) is supposed.
Since the head terms we choose for the input G are not necessarily the leading terms of the
given polynomials with respect to any term order (see [27] for more details), it is necessary
to highlight them precisely and this makes essential the introduction of a new data type,
satisfying this requirement.
In JMBTest.lib, a new data type for Singular, i.e. jmp, the J-marked polynomial, is then
introduced.
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Example 6.2.4. To define r3 = zy2 − x2y ∈ k[x, y, z], Ht(r3) = zy2 we type:
jmp r3;

r3.h= z ∗ y2;

r3.t=−x2 ∗ y;
where the suffix .h identifies the head terms, while the suffix .t identifies the tails.

Definition 6.2.5. We call J-marked family, the family Mf(J) containing all the homoge-
neous ideals I such that N(J) is a basis S/I as a k-vector space.

Given a homogeneous ideal I and fixed a term ordering <, if In<(I) = J , then I ∈
Mf(J), but in general also other ideals belong to a J-marked family.

Proposition 6.2.6 ([27]). If G is a J-marked set, TFAE:

1. G is a J-marked basis;

2. (G) ∈Mf(J);

3. each polynomial h ∈ S has a unique J-normal form modulo (G).

If I ∈Mf(J) then it obviously contains a J-marked set.
If G ⊂ S is a J-marked basis, it is unique for I := (G).
Since J-marked sets have better properties in the case J strongly stable (5.9.1), we place
us in this case. The strongly stable property for J can be checked by examining only the
elements of G(J) ([27]). Basing on this fact, we implemented the procedure BorelCheck, a
subroutine for the main procedure of the library JMSConst.lib, which can also be used on
his own. This subroutine takes G(J) and the base ring as input, returning 1 if J is strongly
stable and 0 otherwise.
Its functioning is rather simple, since it iterates on the monomial basis and, ∀τ ∈ G(J),∀xi |
τ, xj > xi, it checks whether τij :=

τxj
xi

is in the ideal or not, breaking and reporting a failure
when it detects a τij /∈ J .
Given an invertible matrix A = (aij) ∈ GLn(k) and a polynomial f ∈ S, we denote by A(f)

the standard action of GLn(k) on S, under the substitution

xi 7→
∑
j

aijxj

and, for I / S, A(I) := {A(f)| f ∈ I}.
The strongly stable property implies the Borel-fixed one, i.e. if J /S is strongly stable, it is

fixed under the action of the subgroup of lower triangular invertible matrices, the notions
being equivalent in the case char(k) = 0 (c.f. [31, 79]).
As it will be useful to understand the whole chapter, we recall here the following
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Definition 6.2.7 ([43]). A property holding for A(I) for each matrix A in a Zariski open
subset of GLn(k) is said to hold for general or generic coordinates.

Galligo’s theorem ([38]) says that, if we are in generic coordinates and fixed a term order
<, the initial ideal of some ideal I w.r.t <, is a constant Borel-fixed monomial ideal, conven-
tionally denoted by gin(I) and called the generic initial ideal of I .
The strongly stable property is very important, since it allows many different applications
as, for example, tho study the Hilbert scheme [8, 27, 64].
In [27], given a J-marked set

G = {fτ = τ −
∑

cτγx
γ , Ht(fτ ) = τ ∈ G(J)}

the authors define a reduction process à la Buchberger w.r.t. G, denoting it by G−→.

Definition 6.2.8. A reduction relation G−→ is noetherian if the length r of any sequence h =

h0
G−→ h1

G−→ . . .
G−→ hr is bounded by an integer number m = m(h).

The noetherianity says that if we continue rewriting terms according to G−→, we always
obtain, after a finite number of reductions, a polynomial whose support is contained in
N(J).
We will write h G−→∗ g if h G−→ g and Supp(g) ⊂ N(J), so it is not possible to reduce anymore.
An important result of [11, 86] is that, if such a reduction process à la Buchberger is noethe-
rian, then there exists an admissible term ordering < such that

{Ht(f), f ∈ G} = {T<(f), f ∈ G}.

We remark that for J-marked sets the reduction can be non-noetherian.
We recall now some results from [27].

Proposition 6.2.9 ([27]). We have the following properties.

• If G = {fτ = τ −
∑
cτγx

γ , Ht(fτ ) = τ ∈ G(J)} is a J-marked set, with J strongly
stable, each polynomial in P has a J-normal form modulo (G).

• Let J a strongly stable ideal and G a J-marked set. Then G is a J-marked basis if and
only if N(J) is free in P/(G).

• For I / S homogeneous, it holds

I ∈Mf(J)⇔ I has a J-marked basis
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Consider now a strongly stable monomial ideal J , a J-marked set G, and the homoge-
neous ideal I = (G). We outline the procedure of [8, 27] in order to determine a J-normal
form of an homogeneous polynomial modulo G.
This is the basis for our Singular libraries.
First of all, for each degree m we define

Wm = {xδfα, deg(xδ) + deg(Ht(fα)) = m, fα ∈ G},

letting Ht(xδfα) = xδHt(fα), Wm is a J-marked set.
Then, denoted by aJ := min{m ∈ N, Im 6= (0)}, we define for m = aJ , ..., s (c.f. [27]):{

Vm := Gm form = aJ

Vm := Gm ∪ {gβ : xβ ∈ Jm \ Gm} form > aJ

where gβ := xigε with xi = min(xβ) and gε the unique polynomial of Vm−1 whose head
term is exactly xε = xβ/xi.
The procedure of TestJMark.lib constructing the polynomials Vm is VConst, which follows
the algorithm VConstructor of [27].
VConst takes G as input, together with an integer number c, representing the maximal de-
gree for the Vm’s we need to construct2.
The output is a list V , containing the polynomials Vm’s, arranged by degree. More precisely,
since actually each g ∈ Vm is the product of a marked polynomial fτ ∈ G by a term σ ∈ T
such that max(σ) ≤ min(τ), we store only:

• σ ∈ T ;

• the position of the marked polynomial fτ in the list G.

The polynomials in Vm are constructed iteratively on the degree, from the minimal one, aJ ,
to the required c.
The polynomials in VaJ are exactly the ones in G(aJ ). For each j = aJ + 1, ..., c, we add to the
elements of Gj3 all the products of polynomials fτ ∈ Vj−1’s by the variables xi ≤ min(τ).
Each Vm can be equipped with a total ordering �m according to the following rules.

1. Considered two polynomials fα, fα′ ∈ G set

fα ≤min fα′ ⇔ deg(fα) ≤ deg(fα′) or deg(fα) = deg(fα′)

and
min

( Ht(fα)

GCD(Ht(fα), Ht(fα′))

)
≤ min

( Ht(fα′)

GCD(Ht(fα), Ht(fα′))

)
.

2The criterion to determine the value of c will be explained in what follows.
3We remark that, possibly, Gj = ∅.
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2. Let xδfα, xδ
′
fα′ ∈Wm, then

xδfα �m xδ
′
fα′ ⇔ xδ >Lex x

δ′ or xδ = xδ
′

and fα ≥ fα′ .

Given the list V , obtained running VConst, the subroutine OrderingV produces the order-
ing induced by the two rules above. It depends on GJmpMins which deals with rule 1. and
TernCompare which deals with rule 2.

Since each element of V has not been encoded as a jmp, but with a term and the position of
its related polynomial of G, the procedure directly deals with this information and does not
need concretely to construct the involved jmp’s.
The polynomials in V are fundamental both for the J-marked basis test and for the J-
marked scheme constructor because of the following

Proposition 6.2.10. Let J be a strongly stable monomial ideal, G a J-marked set and I = (G).
Each term τ ∈ Jm \ Gm can be reduced to a J-normal form modulo G using Vm and the
reduction procedure is noetherian in Sm.

The first version of the Buchberger-like criterion for J-marked families is:

Theorem 6.2.11 ([27]). Let J a strongly stable monomial ideal G a J-marked set and I = (G).
Then, ∀fτ , fτ ′ ∈ G:

I ∈Mf(J)⇔ S(fτ , fτ ′)
Vm−−→∗ 0.

Such a criterion has been enhanced in [8], via the introduction of the star decomposition
and Eliahou-Kervaire S-polynomials.

Definition 6.2.12 ([8, 33]). Given a strongly stable monomial ideal J in S, with monomial
basis G(J), and a monomial xγ ∈ J , we define xγ = xα ∗J xη,with γ = α + η, xα ∈
G(J) and min(xα) ≥ max(xη). Such a decomposition exists and is unique.

Definition 6.2.13. Given a J-marked set G, a couple of polynomials fα, fβ ∈ G, withHt(fα) =

xα, Ht(fβ) = xβ , is called Eliahou-Kervaire couple if it holds: xjxα = xβ ∗J xη for some
xj > min(xα). The S-polynomials between an Eliahou-Kervaire couple of polynomials
fα, fβ are called Eliahou-Kervaire S-polynomials of G and they are denoted by SEK(fα, fβ).
By definition SEK(fα, fβ) = xjfα − xηfβ , for some xj > min(xα), with xjxα = xβ ∗J xη.

The Eliahou-Kervaire polynomials (or EK-polynomials, see [8, 33]) are constructed by
the procedures below, which arise from the star product:

• EKCouples, which checks whether a couple of terms is an Eliahou-Kervaire couple;
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• EKPolys, which construct all the EK-couples, given the input J-marked set G;

• EKPolynomials, which finally computes the Eliahou-Kervaire polynomials.

While constructing the EK-polynomials, we also keep track of their maximal degree s.

Proposition 6.2.14 ([8]). With the usual notation it holds I ∈ Mf(J) if and only if for each
EK-polynomial computed by G, it holds SEK(fα, fβ)

Vm−−→∗ 0.

Once we have obtained the polynomials of the list V and the EK-polynomials, the last
step consists of reducing each EK-polynomial q of degree m with respect to the Vm’s, via
a Buchberger-type reduction denoted by Vm−−→. If one of these EK-polynomials does not re-
duce to 0, the algorithm breaks and reports a negative outcome.
Given then a J-marked set G, we can then summarize the steps executed by the main func-
tion TestJMark in JMBTest.lib as follows:

1. if G contains only one polynomial return 14;

2. if not, perform the following steps:

a. compute the list E of the EK-couples and keep track of their degree;

b. store the minimal degree aJ of the elements of G (i.e. the degree of its first ele-
ment) and store also the maximal degree s of the EK-polynomials found in the
previous step;

c. compute VaJ , VaJ+1, ..., Vs;

d. for i from 1 to |E|, compute the i-th EK-polynomial q corresponding to the i-th
EK-couple stored in E and denote by w be its degree;

e. reduce q w.r.t Vw, returning 0 and breaking if the reduction does not produce 0

and going again to step d. otherwise;

The Buchberger-type reduction is performed via the Singular command reduce, in order
to take advantage of its potentialities. In order to make the procedure reduce individuate
the head terms (which can eventually not be compatible with any term order), we multiply
them by a fictitious variable, much greater than xn.
We display now two examples of execution for JMBTest.lib. The first is very simple and
presented with some more comments. The second is heavier from a computational point of
view and it is displayed with its execution time.

4If only one polynomial r1 is given in input, the function automatically gives positive answer, since a single
polynomial is surely a J-marked basis. Clearly this situation happens under the hypothesis that the ideal J of S is
a principal strongly stable ideal.
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Example 6.2.15. Let us start with a very simple example:
ring r = 0, (x, y, z),rp;

jmp r1;

r1.h= z3;

r1.t=poly(0);

jmp r2;

r2.h=z2 ∗ y;
r2.t=poly(0);

jmp r3;

r3.h=z ∗ y2 ;

r3.t=−x2 ∗ y;
jmp r4;

r4.h=y5;

r4.t=poly(0);

list G1=list(list(r1,r2,r3),list(),list(r4));

Executing our test we obtain that it is not a J-marked basis:
TestJMark(G1,r);

⇒ 0.

In fact, the three EK-polynomials are SEK1 = 0, SEK2 = −x2yz, SEK3 = x2y4, while the V
polynomials are:
V3 = {y2z− x2y, yz2, z3}
V4 = {xy2z− x3y, xyz2, xz3,y3z− x2y2, y2z2, yz3, z4}
V5 = {y5,x2y2z− x4y, x2yz2, x2z3,xy3z− x3y2, xy2z2, xyz3,

y4z− x2y3, y3z2, y2z3, xz4, yz4, z5}
V6 = {xy5,x3y2z− x5y, x3yz2, x3z3, y6,x2y3z− x4y2, x2y2z2, x2yz3,

xy4z − x3y3, xy3z2, xy2z3,y5z − x2y4, y4z2, y3z3, x2z4, xyz4, y2z4, xz5, yz5, z6}. Since SEK2

does not go to zero, G2F is not a J-marked basis.

Example 6.2.16. Consider now the following polynomials, proposed in [9]
f1 := x2

5 + 4x2
1 + 17

3 x1x2 − 83
12x1x3 − 23

4 x2x3,

f2 := x4x5 − 3
4 x2x3 − 5

4 x1x3 + x1x2,

f3 := x2
4 − ax4 + x2a+ 25

6 x2x3 + x2
2 + 71

18x1x3 − 28
9 x1x2 − 5x2

1,

f4 := x3x5 − 3
4 x2x3 + 3

4x1x3 − x1x2,

f5 := x3x4 − x2x3,

f6 := x2
3 − 85

24 x2x3 − 317
72 x1x3 + 71

18x1x2 + 2x2
1,

f7 := x2x5 − 3
4 x2x3 − 5

4 x1x3 + x1x2,

f8 := x2x4 − x2x3 − x1x3 + x1x2,
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f9 := x1x5 − 1
4x2x3 + 1

4x1x3 − x1x2,

f10 := x1x4 − x1x2,

f11 := x2
2x3 + x3

1,

f12 := x3
2 − x2x3a− x3x1a+ ax2

2 + x2x1a+ 5
9x

3
1,

f13 := x2x1x3 − 11
9 x

3
1, f14 := x1x

2
2 − 8

9x
3
1, f15 := x2

1x3 + x3
1, f16 := x2

1x2 + 2
3x

3
1, f17 := x4

1.

and homogenize them, obtaining the Singular code:
ring r=(0, a),(x(0..5)),rp;

jmp f1;

f1.h=x(5)2;

f1.t=4 ∗ x(1)2 + (17/3) ∗ x(1) ∗ x(2)− (83/12) ∗ x(1) ∗ x(3)− (23/4) ∗ x(2) ∗ x(3);

jmp f2;

f2.h=x(4) ∗ x(5);

f2.t=−(3/4) ∗ x(2) ∗ x(3)− (5/4) ∗ x(1) ∗ x(3) + x(1) ∗ x(2);

jmp f3;

f3.h=x(4)2;

f3.t=−a ∗x(0) ∗x(4) + a ∗x(0) ∗x(2) + (25/6) ∗x(2) ∗x(3) +x(2)2 + (71/18) ∗x(1) ∗x(3)−
(28/9) ∗ x(1) ∗ x(2)− 5 ∗ x(1)2;

jmp f4;

f4.h=x(3) ∗ x(5);

f4.t=−(3/4) ∗ x(2) ∗ x(3) + (3/4) ∗ x(1) ∗ x(3)− x(1) ∗ x(2);

jmp f5;

f5.h=x(3) ∗ x(4);

f5.t=−x(2) ∗ x(3);

jmp f6;

f6.h=x(3)2;

f6.t=−(85/24) ∗ x(2) ∗ x(3)− (317/72) ∗ x(1) ∗ x(3) + (71/18) ∗ x(1) ∗ x(2) + 2 ∗ x(1)2;

jmp f7;

f7.h=x(2) ∗ x(5);

f7.t=−(3/4) ∗ x(2) ∗ x(3)− (5/4) ∗ x(1) ∗ x(3) + x(1) ∗ x(2);

jmp f8;

f8.h=x(2) ∗ x(4);

f8.t=−x(2) ∗ x(3)− x(1) ∗ x(3) + x(1) ∗ x(2);

jmp f9;

f9.h=x(1) ∗ x(5);

f9.t=−(1/4) ∗ x(2) ∗ x(3) + (1/4) ∗ x(1) ∗ x(3)− x(1) ∗ x(2);

jmp f10;
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f10.h=x(1) ∗ x(4);

f10.t=−x(1) ∗ x(2);

jmp f11;

f11.h=x(2)2 ∗ x(3);

f11.t=x(1)3;

jmp f12;

f12.h=x(2)3;

f12.t=−a ∗ x(0) ∗ x(2) ∗ x(3) − a ∗ x(0) ∗ x(3) ∗ x(1) + a ∗ x(0) ∗ x(2)2 + a ∗ x(0) ∗ x(2) ∗
x(1) + (5/9) ∗ x(1)3;

jmp f13;

f13.h=x(2) ∗ x(1) ∗ x(3);

f13.t=−(11/9) ∗ x(1)3;

jmp f14;

f14.h=x(1) ∗ x(2)2;

f14.t=−(8/9) ∗ x(1)3;

jmp f15;

f15.h=x(1)2 ∗ x(3);

f15.t=x(1)3;

jmp f16;

f16.h=x(1)2 ∗ x(2);

f16.t=(2/3) ∗ x(1)3;

jmp f17;

f17.h=x(1)4;

f17.t=poly(0);

list G1V= list( list(f6,f10,f8,f5,f3,f9,f7,f4,f2,f1),

list(f16,f14,f12,f15,f13,f11), list(f17));

TestJMark(G1V,r);

Running TestJMark on them we obtain that this set is a J-marked basis, for all values of the
parameter and the result is achieved in 4870ms.

As it can be seen by the example 6.2.16 above, the library JMBTest.lib clearly works if
the coefficients are numerical but also if the coefficients contain some parameters, provided
that they are correctly defined in the ring declaration, according to Singular’s syntax.

In [27] is provided the construction of an affine scheme, whose points are in biunivocal cor-
respondence with the ideals I ∈Mf(J) for J strongly stable.
Taken an xα ∈ G(J), construct the polynomials Fα := xα −

∑
cαγx

γ , where xγ ∈ N(J)|α|
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and the cαγ ’s are parameters, calling C the set containing them and defining N := |C|. Let
G be the set of all the Fα, which turns out to be a J-marked set with Ht(Fα) = xα. Using
the J-marked set G, via an unique specialization of the elements of C in kN , we can obtain
the J-marked basis of every ideal I ∈ Mf(J) by the uniqueness of the J-marked basis. Re-
member that not all the specializations produce an ideal ofMf(J).
Once we have computed the analogous of the Vm polynomials, whose coefficients are al-
lowed to be parameters, that we call Vm, we produce the EK-couples and the analogous of
the EK-polynomials for this case.
For each EK-polynomial q, deg(q) = m, we reduce it w.r.t. Vm and we consider the coeffi-
cients of the obtained polynomial as generators of an ideal I of k[C].

Theorem 6.2.17. There is a one to one correspondence between the ideals ofMf(J) and the
points of the affine scheme in kN defined by the ideal I.

Definition 6.2.18. The affine scheme defined by the ideal I is called J-marked scheme and it
is denoted by S(J).

Given the monomial basis G(J) of a strongly stable ideal J , arranged in a list increas-
ingly ordered by degree, the Singular library JMSConst.lib computes the equations of
the associated J-marked scheme (6.2.18).
It is strongly related with JMBTest.lib, since the criterion used in order to perform the
J-marked basis test is exploited also here (c.f. 6.2.14).
Employing the calculation of the Groebner escalier, degree by degree5, the software (more
precisely the subroutine NumNewVar) computes the cardinality N of the set C, containing
the parameters and then it generates a tail for each head τ ∈ G(J) (see the procedure New-
Tails).
Then, ArrangeTails reorders the obtained jmp’s by degree in a list of lists G.
Next step is, exactly as before, the computation of the EK-polynomials and of the V polyno-
mials of the same required degrees.
After that, a Buchberger-type reduction is again performed on the EK-polynomials, w.r.t.
the V polynomials of the same degree6 and the nonzero coefficient of the resulting poly-
nomials are precisely the equations of the required J-marked scheme, so they are collected
and returned as final output.
We summarize here the steps of the main function JMarkedScheme on an input ideal J :

a. perform BorelCheck and exit if J is not strongly stable;

5The computation refers to the generators of J .
6Remember that we are dealing with homogeneous polynomials.
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b otherwise, continue as follows:

1. for each generator xα of J find the Groebner escalier of degree |α|, N(J)|α| and
store both N(J)|α| and its cardinality;

2. produce a J-marked set, attaching to each xα a tail, which is a linear combination
of parameters in C, with coefficients in N(J)|α| for each |α|;

3. compute the listE of EK-couples, taking track of the degree of the corresponding
EK-polynomials;

4. for i from 1 to |E|, compute the i-th EK-polynomial q corresponding to the i-th
EK-couple previously stored inE and let w be its degree;

5. reduce q w.r.t Vw, and store the coefficients of the reduced polynomial in a list S;

6. repeat step 5. for all the EK-polynomials.
At the end, S contains the equations of the required scheme (see [27]).

Now we display two examples of execution of JMSConst.lib. As for JMBTest.lib, the
first example is simple and provided with some comments, while the second is heavier and
displayed with the execution time.

Example 6.2.19. Let us first take the simple example given by the strongly stable ideal
J = (x8

1, x
2
2, x1x2, x3) of k[x0, ..., x3].

The corresponding Singular code is
ring r=0,(x(0..3)),rp;

ideal Borid=x(3), x(1) ∗ x(2), x(2)2, x(1)8;

JMarkedScheme(Borid,r);

[1] :

(−c(1) ∗ c(7) + c(1) ∗ c(4) ∗ c(6)− c(1) ∗ c(4)2 ∗ c(5))

[2] :

(c(1) ∗ c(9) + c(1) ∗ c(5)2)

[3] :

(c(1) ∗ c(10) + c(1) ∗ c(4) ∗ c(9)− c(1) ∗ c(5) ∗ c(8) + 2 ∗ c(1) ∗ c(5) ∗ c(6)− c(1) ∗ c(4) ∗ c(5)2)

[4] :

(c(1) ∗ c(11) + c(1) ∗ c(4) ∗ c(10)− c(1) ∗ c(6) ∗ c(8) + c(1) ∗ c(5) ∗ c(7) + c(1) ∗ c(6)2− c(1) ∗
c(4) ∗ c(5) ∗ c(6))

[5] :

(c(1) ∗ c(4) ∗ c(11)− c(1) ∗ c(7) ∗ c(8) + c(1) ∗ c(6) ∗ c(7)− c(1) ∗ c(4) ∗ c(5) ∗ c(7))

[6] :
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(c(7)− c(4) ∗ c(6) + c(4)2 ∗ c(5))

[7] :

(−c(9)− c(5)2)

[8] :

(−c(10)− c(4) ∗ c(9) + c(5) ∗ c(8)− 2 ∗ c(5) ∗ c(6) + c(4) ∗ c(5)2)

[9] :

(−c(11)− c(4) ∗ c(10) + c(6) ∗ c(8)− c(5) ∗ c(7)− c(6)2 + c(4) ∗ c(5) ∗ c(6))

[10] :

(−c(4) ∗ c(11) + c(7) ∗ c(8)− c(6) ∗ c(7) + c(4) ∗ c(5) ∗ c(7))

[11] :

(−c(1) ∗ c(20) + c(1) ∗ c(4) ∗ c(19)− c(1) ∗ c(4)2 ∗ c(18) + c(1) ∗ c(4)3 ∗ c(17)− c(1) ∗ c(4)4 ∗
c(16) + c(1) ∗ c(4)5 ∗ c(15) − c(1) ∗ c(4)6 ∗ c(14) + c(1) ∗ c(4)7 ∗ c(13) + c(1) ∗ c(8) ∗ c(12) −
c(1) ∗ c(6) ∗ c(12) + 2 ∗ c(1) ∗ c(4) ∗ c(5) ∗ c(12)− c(1) ∗ c(4)8)

[12] :

(c(1) ∗ c(7)− c(1) ∗ c(4) ∗ c(6) + c(1) ∗ c(4)2 ∗ c(5))

[13] :

(c(1) ∗ c(7) ∗ c(13)− c(1) ∗ c(4) ∗ c(6) ∗ c(13) + c(1) ∗ c(4)2 ∗ c(5) ∗ c(13)− c(1) ∗ c(4) ∗ c(7) +

c(1) ∗ c(4)2 ∗ c(6)− c(1) ∗ c(4)3 ∗ c(5))

[14] :

(c(1) ∗ c(7) ∗ c(14)− c(1) ∗ c(4) ∗ c(6) ∗ c(14) + c(1) ∗ c(4)2 ∗ c(5) ∗ c(14)− c(1) ∗ c(4) ∗ c(7) ∗
c(13) + c(1) ∗ c(4)2 ∗ c(6) ∗ c(13)− c(1) ∗ c(4)3 ∗ c(5) ∗ c(13) + c(1) ∗ c(4)2 ∗ c(7)− c(1) ∗ c(4)3 ∗
c(6) + c(1) ∗ c(4)4 ∗ c(5))

[15] :

(c(1) ∗ c(7) ∗ c(15)− c(1) ∗ c(4) ∗ c(6) ∗ c(15) + c(1) ∗ c(4)2 ∗ c(5) ∗ c(15)− c(1) ∗ c(4) ∗ c(7) ∗
c(14)+c(1)∗c(4)2∗c(6)∗c(14)−c(1)∗c(4)3∗c(5)∗c(14)+c(1)∗c(4)2∗c(7)∗c(13)−c(1)∗c(4)3∗
c(6)∗c(13)+c(1)∗c(4)4 ∗c(5)∗c(13)−c(1)∗c(4)3 ∗c(7)+c(1)∗c(4)4 ∗c(6)−c(1)∗c(4)5 ∗c(5))

[16] :

(c(1) ∗ c(7) ∗ c(16)− c(1) ∗ c(4) ∗ c(6) ∗ c(16) + c(1) ∗ c(4)2 ∗ c(5) ∗ c(16)− c(1) ∗ c(4) ∗ c(7) ∗
c(15) + c(1) ∗ c(4)2 ∗ c(6) ∗ c(15)− c(1) ∗ c(4)3 ∗ c(5) ∗ c(15) + c(1) ∗ c(4)2 ∗ c(7) ∗ c(14)− c(1) ∗
c(4)3 ∗ c(6) ∗ c(14) + c(1) ∗ c(4)4 ∗ c(5) ∗ c(14)− c(1) ∗ c(4)3 ∗ c(7) ∗ c(13) + c(1) ∗ c(4)4 ∗ c(6) ∗
c(13)− c(1) ∗ c(4)5 ∗ c(5) ∗ c(13) + c(1) ∗ c(4)4 ∗ c(7)− c(1) ∗ c(4)5 ∗ c(6) + c(1) ∗ c(4)6 ∗ c(5))

[17] :

(c(1) ∗ c(7) ∗ c(17)− c(1) ∗ c(4) ∗ c(6) ∗ c(17) + c(1) ∗ c(4)2 ∗ c(5) ∗ c(17)− c(1) ∗ c(4) ∗ c(7) ∗
c(16)+c(1)∗c(4)2∗c(6)∗c(16)−c(1)∗c(4)3∗c(5)∗c(16)+c(1)∗c(4)2∗c(7)∗c(15)−c(1)∗c(4)3∗
c(6)∗c(15)+c(1)∗c(4)4∗c(5)∗c(15)−c(1)∗c(4)3∗c(7)∗c(14)+c(1)∗c(4)4∗c(6)∗c(14)−c(1)∗
c(4)5∗c(5)∗c(14)+c(1)∗c(4)4∗c(7)∗c(13)−c(1)∗c(4)5∗c(6)∗c(13)+c(1)∗c(4)6∗c(5)∗c(13)+
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c(1)∗c(9)∗c(12)+c(1)∗c(5)2 ∗c(12)−c(1)∗c(4)5 ∗c(7)+c(1)∗c(4)6 ∗c(6)−c(1)∗c(4)7 ∗c(5))

[18] :

(−c(1) ∗ c(5) ∗ c(20) + c(1) ∗ c(4) ∗ c(5) ∗ c(19) + c(1) ∗ c(7) ∗ c(18) − c(1) ∗ c(4) ∗ c(6) ∗
c(18)− c(1) ∗ c(4) ∗ c(7) ∗ c(17) + c(1) ∗ c(4)2 ∗ c(6) ∗ c(17) + c(1) ∗ c(4)2 ∗ c(7) ∗ c(16)− c(1) ∗
c(4)3 ∗ c(6) ∗ c(16)− c(1) ∗ c(4)3 ∗ c(7) ∗ c(15) + c(1) ∗ c(4)4 ∗ c(6) ∗ c(15) + c(1) ∗ c(4)4 ∗ c(7) ∗
c(14)− c(1) ∗ c(4)5 ∗ c(6) ∗ c(14)− c(1) ∗ c(4)5 ∗ c(7) ∗ c(13) + c(1) ∗ c(4)6 ∗ c(6) ∗ c(13) + c(1) ∗
c(10) ∗ c(12) + c(1) ∗ c(5) ∗ c(6) ∗ c(12) + c(1) ∗ c(4)6 ∗ c(7)− c(1) ∗ c(4)7 ∗ c(6))

[19] :

(−c(1)∗c(6)∗c(20)+c(1)∗c(4)∗c(5)∗c(20)+c(1)∗c(7)∗c(19)−c(1)∗c(4)∗c(7)∗c(18)+

c(1)∗c(4)2∗c(7)∗c(17)−c(1)∗c(4)3∗c(7)∗c(16)+c(1)∗c(4)4∗c(7)∗c(15)−c(1)∗c(4)5∗c(7)∗
c(14)+c(1)∗c(4)6∗c(7)∗c(13)+c(1)∗c(11)∗c(12)+c(1)∗c(5)∗c(7)∗c(12)−c(1)∗c(4)7∗c(7))

[20] :

(c(20)− c(4) ∗ c(19) + c(4)2 ∗ c(18)− c(4)3 ∗ c(17) + c(4)4 ∗ c(16)− c(4)5 ∗ c(15) + c(4)6 ∗
c(14)− c(4)7 ∗ c(13)− c(8) ∗ c(12) + c(6) ∗ c(12)− 2 ∗ c(4) ∗ c(5) ∗ c(12) + c(4)8)

[21] :

(−c(7) + c(4) ∗ c(6)− c(4)2 ∗ c(5))

[22] :

(−c(7)∗c(13)+c(4)∗c(6)∗c(13)−c(4)2∗c(5)∗c(13)+c(4)∗c(7)−c(4)2∗c(6)+c(4)3∗c(5))

[23] :

(−c(7) ∗ c(14) + c(4) ∗ c(6) ∗ c(14)− c(4)2 ∗ c(5) ∗ c(14) + c(4) ∗ c(7) ∗ c(13)− c(4)2 ∗ c(6) ∗
c(13) + c(4)3 ∗ c(5) ∗ c(13)− c(4)2 ∗ c(7) + c(4)3 ∗ c(6)− c(4)4 ∗ c(5))

[24] :

(−c(7) ∗ c(15) + c(4) ∗ c(6) ∗ c(15)− c(4)2 ∗ c(5) ∗ c(15) + c(4) ∗ c(7) ∗ c(14)− c(4)2 ∗ c(6) ∗
c(14) + c(4)3 ∗ c(5) ∗ c(14)− c(4)2 ∗ c(7) ∗ c(13) + c(4)3 ∗ c(6) ∗ c(13)− c(4)4 ∗ c(5) ∗ c(13) +

c(4)3 ∗ c(7)− c(4)4 ∗ c(6) + c(4)5 ∗ c(5))

[25] :

(−c(7) ∗ c(16) + c(4) ∗ c(6) ∗ c(16)− c(4)2 ∗ c(5) ∗ c(16) + c(4) ∗ c(7) ∗ c(15)− c(4)2 ∗ c(6) ∗
c(15)+c(4)3 ∗c(5)∗c(15)−c(4)2 ∗c(7)∗c(14)+c(4)3 ∗c(6)∗c(14)−c(4)4 ∗c(5)∗c(14)+c(4)3 ∗
c(7) ∗ c(13)− c(4)4 ∗ c(6) ∗ c(13) + c(4)5 ∗ c(5) ∗ c(13)− c(4)4 ∗ c(7) + c(4)5 ∗ c(6)− c(4)6 ∗ c(5))

[26] :

(−c(7) ∗ c(17) + c(4) ∗ c(6) ∗ c(17)− c(4)2 ∗ c(5) ∗ c(17) + c(4) ∗ c(7) ∗ c(16)− c(4)2 ∗ c(6) ∗
c(16) + c(4)3 ∗ c(5) ∗ c(16)− c(4)2 ∗ c(7) ∗ c(15) + c(4)3 ∗ c(6) ∗ c(15)− c(4)4 ∗ c(5) ∗ c(15) +

c(4)3 ∗ c(7)∗ c(14)− c(4)4 ∗ c(6)∗ c(14) + c(4)5 ∗ c(5)∗ c(14)− c(4)4 ∗ c(7)∗ c(13) + c(4)5 ∗ c(6)∗
c(13)−c(4)6 ∗c(5)∗c(13)−c(9)∗c(12)−c(5)2 ∗c(12)+c(4)5 ∗c(7)−c(4)6 ∗c(6)+c(4)7 ∗c(5))

[27] :

(c(5) ∗ c(20)− c(4) ∗ c(5) ∗ c(19)− c(7) ∗ c(18) + c(4) ∗ c(6) ∗ c(18) + c(4) ∗ c(7) ∗ c(17)−
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c(4)2 ∗ c(6) ∗ c(17) − c(4)2 ∗ c(7) ∗ c(16) + c(4)3 ∗ c(6) ∗ c(16) + c(4)3 ∗ c(7) ∗ c(15) − c(4)4 ∗
c(6) ∗ c(15) − c(4)4 ∗ c(7) ∗ c(14) + c(4)5 ∗ c(6) ∗ c(14) + c(4)5 ∗ c(7) ∗ c(13) − c(4)6 ∗ c(6) ∗
c(13)− c(10) ∗ c(12)− c(5) ∗ c(6) ∗ c(12)− c(4)6 ∗ c(7) + c(4)7 ∗ c(6))

[28]:

(c(6) ∗ c(20)− c(4) ∗ c(5) ∗ c(20)− c(7) ∗ c(19) + c(4) ∗ c(7) ∗ c(18)− c(4)2 ∗ c(7) ∗ c(17) +

c(4)3 ∗ c(7) ∗ c(16) − c(4)4 ∗ c(7) ∗ c(15) + c(4)5 ∗ c(7) ∗ c(14) − c(4)6 ∗ c(7) ∗ c(13) − c(11) ∗
c(12)− c(5) ∗ c(7) ∗ c(12) + c(4)7 ∗ c(7))

In fact, there are 20 new parameters to insert and the obtained marked polynomials de-
pending on the new variables are x3 + (c1)x2 + (c2)x1 + (c3)x0, x1x2 + (c4)x0x2 + (c5)x2

1 +

(c6)x0x1 + (c7)x2
0,x2

2 + (c8)x0x2 + (c9)x2
1 + (c10)x0x1 + (c11)x2

0, x8
1 + (c12)x7

0x2 + (c13)x0x
7
1 +

(c14)x2
0x

6
1 + (c15)x3

0x
5
1 + (c16)x4

0x
4
1 + (c17)x5

0x
3
1 + (c18)x6

0x
2
1 + (c19)x7

0x1 + (c20)x8
0.

The 5 EK-polynomials are (c4) ∗ x0 ∗ x2 ∗ x3 + (c5) ∗ x2
1 ∗ x3 + (c6) ∗ x0 ∗ x1 ∗ x3 + (c7) ∗ x2

0 ∗
x3 + (−c1) ∗ x1 ∗ x2

2 + (−c2) ∗ x2
1 ∗ x2 + (−c3) ∗ x0 ∗ x1 ∗ x2

(c4) ∗ x0 ∗ x2
2 + (c5) ∗ x2

1 ∗ x2 + (−c8 + c6) ∗ x0 ∗ x1 ∗ x2 + (c7) ∗ x2
0 ∗ x2 + (−c9) ∗ x3

1 + (−c10) ∗
x0 ∗ x2

1 + (−c11) ∗ x2
0 ∗ x1

(c8) ∗ x0 ∗ x2 ∗ x3 + (c9) ∗ x2
1 ∗ x3 + (c10) ∗ x0 ∗ x1 ∗ x3 + (c11) ∗ x2

0 ∗ x3 + (−c1) ∗ x3
2 + (−c2) ∗

x1 ∗ x2
2 + (−c3) ∗ x0 ∗ x2

2

(c12) ∗ x7
0 ∗ x2 ∗ x3 + (c13) ∗ x0 ∗ x7

1 ∗ x3 + (c14) ∗ x2
0 ∗ x6

1 ∗ x3 + (c15) ∗ x3
0 ∗ x5

1 ∗ x3 + (c16) ∗
x4

0 ∗ x4
1 ∗ x3 + (c17) ∗ x5

0 ∗ x3
1 ∗ x3 + (c18) ∗ x6

0 ∗ x2
1 ∗ x3 + (c19) ∗ x7

0 ∗ x1 ∗ x3 + (c20) ∗ x8
0 ∗ x3 +

(−c1) ∗ x8
1 ∗ x2 + (−c2) ∗ x9

1 + (−c3) ∗ x0 ∗ x8
1

(c12) ∗ x7
0 ∗ x2

2 + (c13 − c4) ∗ x0 ∗ x7
1 ∗ x2 + (c14) ∗ x2

0 ∗ x6
1 ∗ x2 + (c15) ∗ x3

0 ∗ x5
1 ∗ x2 + (c16) ∗

x4
0 ∗ x4

1 ∗ x2 + (c17) ∗ x5
0 ∗ x3

1 ∗ x2 + (c18) ∗ x6
0 ∗ x2

1 ∗ x2 + (c19) ∗ x7
0 ∗ x1 ∗ x2 + (c20) ∗ x8

0 ∗ x2 +

(−c5) ∗ x9
1 + (−c6) ∗ x0 ∗ x8

1 + (−c7) ∗ x2
0 ∗ x7

1, from which the above equations can be found.

Example 6.2.20. Consider now a more complicated example.
We type on Singular the following code:
LIB"JMSConst.lib";

ring r = 0, (x(0..5)),rp;

ideal Borid=x(1)2 ∗ x(2), x(0) ∗ x(2)2, x(1) ∗ x(2)2, x(2)3, x(1)2 ∗ x(3),

x(0) ∗ x(2) ∗ x(3), x(1) ∗ x(2) ∗ x(3), x(2)2 ∗ x(3), x(0) ∗ x(3)2, x(1) ∗ x(3)2, x(2) ∗ x(3)2,

x(3)3, x(1)2 ∗ x(4), x(0) ∗ x(2) ∗ x(4), x(1) ∗ x(2) ∗ x(4), x(2)2 ∗ x(4),

x(0) ∗ x(3) ∗ x(4), x(1) ∗ x(3) ∗ x(4), x(2) ∗ x(3) ∗ x(4), x(3)2 ∗ x(4), x(0) ∗ x(4)2,

x(1) ∗ x(4)2, x(2) ∗ x(4)2, x(3) ∗ x(4)2, x(4)3, x(1)2 ∗ x(5), x(0) ∗ x(2) ∗ x(5),

x(1) ∗ x(2) ∗ x(5), x(2)2 ∗ x(5), x(0) ∗ x(3) ∗ x(5), x(1) ∗ x(3) ∗ x(5), x(2) ∗ x(3) ∗ x(5), x(3)2 ∗
x(5), x(0) ∗ x(4) ∗ x(5), x(1) ∗ x(4) ∗ x(5), x(2) ∗ x(4) ∗ x(5),

x(3) ∗ x(4) ∗ x(5), x(4)2 ∗ x(5), x(0) ∗ x(5)2, x(1) ∗ x(5)2, x(2) ∗ x(5)2, x(3) ∗ x(5)2,

x(4) ∗ x(5)2, x(5)3, x(1)4;
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JMarkedScheme(Borid,r);

According to the Singular timer function, the 1860 equations resulting for the ideal J =

Borid in k[x0, ..., x5] have been computed in about 1 minute and 12 seconds.

To conclude, we point out that the libraries JMBTest.lib and JMSConst.lib pro-
vide solutions only for the homogeneous case. As explained in [9], it is possible to work with
marked bases and schemes in the non-homogeneous case and so we would like to pro-
vide also an implementation in this new setting. A possible application is the problem of
smoothability of some local Gorenstein Artin algebras.

6.3 Janet decomposition.

In this section we loosely base on the paper [54], where Janet first defines the notion of
multiplicative variable for a term τ with respect to a given set M ⊆ T .

For completeness’ sake, we recall Janet’s decomposition into disjoint classes for terms in
the semigroup ideal generated by M .

Each of them contains:

1. a term τ ∈M ;

2. the set of terms obtained multiplying τ by products of multiplicative variables, that
we call offspring of τ and denote by offM (τ).

The main difference with respect to Janet’s papers is that we remove the finiteness con-
dition on M , showing that it is not necessary for our purposes.

Definition 6.3.1. [54, ppg.75-9] Let M ⊂ T be a set of terms and τ = xα1
1 · · ·xαnn be an

element ofM . A variable xj is called multiplicative for τ with respect to M if there is no term
in M of the form τ ′ = xβ1

1 · · ·x
βj
j x

αj+1

j+1 · · ·xαnn with βj > αj . We will denote by multM (τ) the
set of multiplicative variables for τ with respect to M .

Definition 6.3.2. With the previous notation, the offspring of τ with respect to M is the set

offM (τ) := {τxλ1
1 · · ·xλnn |where λj 6= 0 only if xj is multiplicative for τ w.r.t. M}.

Example 6.3.3. Consider the set M = {x3
1, x

3
2, x

4
1x2x3, x

2
3} ⊆ k[x1, x2, x3].

Let τ = x3
1, so α1 = 3, α2 = α3 = 0. The variable x1 is multiplicative for τ w.r.t M since

there are no terms τ ′ = xβ1

1 xβ2

2 xβ3

3 ∈M satisfying both conditions:

• β1 > 3;
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• β2 = β3 = 0.

On the other hand, x2 is not multiplicative for τ since τ ′′ = x3
2 ∈M satisfies

τ ′′ = xγ1

1 x
γ2

2 x
γ3

3 with γ2 = 3 > 0 = α2, γ3 = α3 = 0.
Similarly, x3 is not multiplicative since x2

3 ∈M .
In conclusion, we have multM (τ) = {x1}.

Remark 6.3.4. Observe that, by definition of multiplicative variable, the only element in
offM (τ) ∩M is τ itself.
Indeed, if τ ∈ M and also τσ ∈ M for a non constant term σ, then max(σ) cannot be
multiplicative for τ , hence τσ /∈ offM (τ).

Given a finite set of terms M ⊆ T , we can easily list the multiplicative variables of its
elements by a Bar Code construction.
More precisely, let BM the Bar Code associated to M , as defined in 5.2.5. After drawing BM ,
we place the stars in the diagram as for the star set computation, obtaining the Bar Code
picture (c.f. section 5.3).
Let A be an i-bar, followed by a star. Then, for all τ = xα1

1 · · ·xαnn ∈ M lying over A,
xi ∈ mult(τ).
Indeed, if i = n, @σ ∈M such that degn(σ) > αn because, if there was such a σ, by hypoth-
esis, being σ >Lex τ , it would lie over a n-bar posed on the right of A so, by construction, A
would not be followed by a star.
On the other hand, if i < n, let B be the (i+ 1)-bar over which A lies. The bar A is followed
by a star so, as explained in section 5.3, also B interrupts in correspondence of the end of
the bar A.
If xi was non multiplicative for τ then ∃σ = xβ1

1 · · ·x
βi
i x

αi+1

i+1 · · ·xαnn with βi > αi. The term
σ would lie over B (degi+1(σ) = αi+1 = degi+1(τ)) but it would be over an i-bar A′, posed
on the right of A over B, which cannot exist by the procedure to set the stars.
Let now τ = xα1

1 · · ·xαnn ∈ M and let xi ∈ mult(τ). We prove that the i-bar A underlying τ

is followed by a star.
As done for the comments above, we denote by B the (i+ 1)-bar over which the bar A lies.
If A is not followed by a star, B does not interrupt in correspondence to the end of A, so
there is an i-bar A′ over B and posed on the right of A.
If σ ∈M is a term lying over A′, degi(σ) = αi + 1, degi+1(σ) = αi+1,...,degn(σ) = αn and so,
by definition 6.3.1, xi is not multiplicative for τ .

Example 6.3.5. For the set M = {x3
1, x

3
2, x

4
1x2x3, x

2
3} ⊆ k[x1, x2, x3] of example 6.3.3, we

have the following Bar Code picture
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0

1

2

x3
1 x3

2 x4
1x2x3 x2

3

3

∗ ∗ ∗ ∗
∗ ∗ ∗

∗

Then:

• mult(x3
1) = {x1};

• mult(x3
2) = {x1x2};

• mult(x4
1x2x3) = {x1, x2};

• mult(x2
3) = {x1, x2, x3}.

In paper [54], Janet defining multiplicative variables as in Definition 6.3.1, provides both
a decomposition for the semigroup ideal T(M) generated by a finite set of terms M and a
decomposition for the complementary set N(M).
On the other hand, in [55, 56], he defines multiplicative variables in the following way.

6.3.6. A variable xj is multiplicative for τ ∈ T if and only if xj ≤ min(τ).

We denote by mult the multiplicative variables in this sense.
These two definitions of multiplicative variables appear to be very different.
First of all, in the first formulation, the set of multiplicative variables for a term in M de-
pends on the whole set M , while in the second it is completely independent on the set M .
Indeed, the two notions are not equivalent for a general set M , as shown by the following
examples.

Example 6.3.7. In k[x1, x2, x3] consider the ideal I = (x2
1x2, x1x

2
2) and letM be its monomial

basis. Then, multM (x2
1x2) = {x1, x3} and multM (x1x

2
2) = {x1, x2, x3} while only x1 can be

multiplicative according to the other notion of multiplicative variable.

Example 6.3.8. Taken the setM = {x2
1x2, x1x

2
2} ⊆ k[x1, x2], we getmultM (x1x

2
2) = {x1, x2},

while of course x1 ≤ min(x1x
2
2) but x2 > min(x1x

2
2).

However, they are equivalent in Janet setting, that is if M is the generating set of the
generic initial ideal of homogeneous ideals I .
More generally, we will see that they turn out to be equivalent also ifM is the monomial ba-
sis G(J) of a strongly stable ideal J and ifM is the special set of generators of any monomial
ideal J denoted by F(J) (see 5.3 and 6.4).
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We will see that stronger results can be proved when a set M is such that the two defini-
tions of multiplicative variables coincide.

The following definition is a key point for this chapter.

Definition 6.3.9. [54, ppg.75-9] A set of terms M ⊂ T is called complete if for every τ ∈ M
and xj /∈ multM (τ), there exists τ ′ ∈M such that xjτ ∈ offM (τ ′).

Moreover, M is stably complete if it is complete and for every τ ∈M it holds multM (τ) =

{xi | xi ≤ min(τ)}.
If a set M is stably complete and finite, then it is the Pommaret basis of J = (M) and we
denote it byH(J).

Remark 6.3.10. If M = {τ} ⊆ Q is a singleton, it is complete, with mult(τ) = {x1, ..., xn}.

Let us examine some examples.

Example 6.3.11. In k[x1, x2, x3] consider the ideal I = (x2
1, x1x2, x3).

Both M0 = {x2
1, x1x2, x3} and each generating set of I with the shape

Mi = {x2
1, x1x2, x3, x2x3, ..., x

i
2x3} are complete systems of terms. In fact, for M0:

− multM0
(x2

1) = {x1}, x2
1x2 ∈ offM0

(x1x2), x2
1x3 ∈ offM0

(x3);

− multM0
(x1x2) = {x1, x2}, x1x2x3 ∈ offM0

(x3);

− multM0
(x3) = {x1, x2, x3}.

For Mi, i ≥ 1:

− multMi
(x2

1) = {x1}, x2
1x2 ∈ offMi

(x1x2), x2
1x3 ∈ offMi

(x3);

− multMi
(x1x2) = {x1, x2}, x1x2x3 ∈ offMi

(x2x3);

− multMi
(x3) = {x1, x3}, x2x3 ∈ offMi

(x2x3);

− multMi
(xj2x3) = {x1, x3}, xj+1

2 x3 ∈ offMi
(xj+1

2 x3), 0 ≤ j < i;

− multMi(x
i
2x3) = {x1, x2, x3}.

Example 6.3.12. Consider the ideal J = (xy) / k[x, y].
The monomial basis M0 = G(J) = {xy} is a complete system with multM0(xy) = {x, y}.
Also the setM = {xhy | h ≥ 1} ⊆ k[x, y], x < y, is a complete system, again according to the
first definition. It generates the same ideal (xy), but has infinitely many elements. Anyway,
it is not stably complete. In fact, for each xhy ∈M , multM (xhy) = {y}, since no terms of the
form xlye with e > 1 belong to M ; on the other hand x /∈ multM (xhy) since xh+1y ∈M .
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Example 6.3.13. Let M be the set of terms {x, y2} in k[x, y], with x < y.
The multiplicative variables for every term inM are those lower than or equal to its minimal
one:
mult(x) = {x}mult(y2) = {x, y}.
However, M is not complete since yx does not belong to the offspring of any term in M .

The following example shows that a complete generating set of terms can loose com-
pleteness when the ideal is enlarged.

Example 6.3.14. Let M = {x2, xy} ⊂ k[x, y] and J = (M). It is a complete system, but it is
not stably complete, since y is multiplicative for xy, although min(xy) = x.
Adding to M a term in N(J), we get a new set M0 and J0 = (M0), whose Janet decomposi-
tion clearly changes. For example, if M0 = {x2, xy, y2}we get a stably complete system.
On the other hand, if M0 = {x2, xy, y3} the system is not complete anymore, since xy2 does
not belong to the offspring of any term in the set.

From definition 6.3.1 of multiplicative variable, Janet deduces the following straightfor-
ward corollary

Corollary 6.3.15 ([54]). Let M = {τ1, ..., τm} ⊆ T be a finite set of terms, τi = x
α

(i)
1

1 · · ·xα
(i)
n
n

and τ ′i = x
α

(i)
1

1 · · ·xα
(i)
n−1

n−1 = τi

x
degn(τi)
n

, for i = 1, ...,m.

Let Dn := {β ∈ N|∃τ ∈ M, degn(τ) = β}, α(n) := max(D) and, for each β ∈ Dn, define
M ′β := { τ

x
degn(τ)
n

, τ ∈M and degn(τ) = β} .
Then M is complete if and only if the two conditions below hold:

1. ∀β ∈ Dn, M ′β is a complete set;

2. ∀τ ′i ∈M ′β , β < α(n) there exists j ∈ {1, ...,m} such that

• τ ′i ∈ off(τ ′j);

• τ ′j ∈M ′β+1.

Completeness of a given finite set M can be detected by exploiting the Bar Code struc-
ture.
If τ ∈M and xi /∈ mult(τ), let A be the i-bar underlying τ and A′ the subsequent i-bar7.
If, ∀σ over A′, σ - xiτ , the system is not complete.
If ∃σ over A′, σ | xiτ , so that xiτ = ση, let V := {xj , 1 ≤ j ≤ n, xj | η}, the set of the
variables appearing in η with nonzero exponent. If, for each xj ∈ V , the j-bar underlying σ

7We recall that the last term in M is ξ := maxLex(M) and, by the comments above, mult(ξ) = {x1, ..., xn}.
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is followed by a star, then τ ∈ off(σ) and we continue examining the next term in M .
If there exists a variable xj ∈ V such that the the j-bar underlying σ is not followed by a
star, then the system is not complete.
First of all, we explain why we look for σ only over A′ and not over other i-bars.

• xiτ /∈ off(σ) for σ lying over A, since A is not followed by a star.

• Let A′′ be an i-bar posed on the right of A′. If σ lies over A′′, xiτ /∈ off(σ) since σ - τ ,
being degj(σ) > degj(xiτ) for some j ≥ i.

• LetA′′′ be an i-bar posed on the left ofA. If σ = xβ1

1 · · ·xβnn lies overA′′′, then σ <Lex τ
and σ cannot be such that degj(σ) = αj for j = i, ..., n because, if it is like that, it would
lay over A.
This implies that if xj = max{xh, h = 1, ..., n, degh(σ) < degh(τ)}, then xj /∈ mult(σ):

τ = xα1
1 · · ·xαnn , αj > βj , αj+1 = βj+1, ..., βn = αn

Now, let τ ∈M , x1 ∈ mult(τ), A the i-bar underlying τ and A′ the subsequent i-bar.
If it is possible to find a σ | xiτ lying over A′, with all the bars lying under σ and corre-
sponding to the variables of η := xiτ

σ followed by stars, then τ ∈ off(σ). It is clear since the
variables in η turn out to be multiplicative for τ .
On the other hand, if τ ∈ off(σ), the bars underlying σ, which correspond to the variables
of η := xiτ

σ are followed by stars. Indeed, η is composed by multiplicative variables for σ.

Another problem one can pose is:

Problem 6.3.16. Given a finite set of terms M = {τ1, ..., τm} ⊆ T is there any ordering on the
variables x1, ..., xn such that M is complete?

As explained above, the Bar Code construction allows to detect the completeness of
M . Clearly such a construction depends on the variables’ ordering, so if we want to solve
problem 6.3.16 we should draw and check n! different Bar Codes, which turns out to be
rather tedious and time consuming.
Exploiting again the Bar Code structure and corollary 6.3.15, we can look for the solution of
6.3.16 in a "greedy" way, so that most of the tests can be skipped.
More precisely, considered M = {τ1, ..., τm}, we perform the steps described below.

Step a) Quest for the maximal variable.
Let C be the set containing all the candidates for being the maximal variable in the
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ordering we are going to construct.
A priori, all the variables can be good candidates for the role of maximal variable, so
C = {x1, ..., xn}. It is necessary to examine the variables, in order to estabilish which
of them can really hold this position, in order to have a complete system.

1. For i = 1, ..., n, compute the sets

Di := {β ∈ N|∃τ ∈M, degi(τ) = β}.

2. Read each of these sets: if, for some 1 ≤ j ≤ n, there are two γ1, γ2 ∈ Dj ,
γ1 < γ2 − 1 and ∃γ3, γ1 < γ3 < γ2, such that γ3 /∈ Dj , then xj cannot be the
maximal variable for our ordering. Indeed, if so, M ′γ3

= ∅ and this contradicts
corollary 6.3.15. In this case, exclude xj from C.

Test) IfC = ∅, none of the variables can be the maximal one and this implies that the system
is not complete for any variable ordering. Otherwise, we continue.

Choice) Pick an element xi ∈ C 6= ∅ which we assume to be the maximal variable for the
ordering we are constructing. Then set C = C \ {xi}8.

Step b) Divisors and multiplicative variables.

1. Write down the terms in M , arranging them w.r.t. their i-degree. If, for some
τj1, τj2 ∈ M , degi(τj1) = degi(τj2) and τj1 | τj2, then write τj1 on the left of τj2.
This operation is equivalent to draw the lowest line of the Bar Code associated to
the variable ordering we are creating step by step9. From now on, we denote by
A(i)

_ these bars. We encode them, together with the terms.

2. For each τj1, lying overA(i)
1 , check whether there are terms τj2 overA(i)

2 such that
degh(τj2) ≤ degh(τj1), for each h 6= i. Do the same for the couples of consecutive
i-bars A(i)

2 , A(i)
3 ; ...;A(i)

µ(i)−1, A(i)
µ(i).

– If the quest has positive outcome, we keep track of the terms we found, to-
gether with all the variables h 6= i for which the strict inequality holds. These
are those we need to belong to mult(τj2) so that xiτj1 ∈ off(τj2).

– If, for some term τ there are no σ satisfying the properties described above,
the test fails10. So we break.

8This means that we examine xi as maximal variable only once.
9If xi is the maximal variable, for each τ ∈M , Pxi (τ) = x

degi(τ)
i , so each i-bar identifies an i-degree.

10Actually, this means that, in corollary 6.3.15, point 2. is not verified.
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Test 2) If Step b) reports a failure, delete the bars and go to Test)11. Otherwise continue.

Once a variable has been selected, we have to choose the following one in order of magni-
tude.
We have as information, the Bar Code already drawn, the variable already settled, together
with the list of the other possible candidates for the whole set of positions under consid-
eration at this point and the list of variables we need to be multiplicative for each term.
Moreover, if we are not dealing with the second variable in order of magniture, we have
some information on the previous variables, namely for which terms they are multiplica-
tive.
We have to repeat what follows for settling down the other variables, until we get either an
ordering (i.e. we have settled all the variables, so that we can quit with a positive outcome)
or a situation in which all the bars are unitary (we will explain this situation below).

Ordering) If all the variables have been settled, we have found an ordering on the variables, for
which M is complete, so we quit with positive outcome. Otherwise we continue with
the next step.

Unitary) If all the examined bars are unitary12, we can quit with a positive outcome since the
ordering on the other variables, not already examined, is indifferent. Otherwise we
continue with the next step.

Step c) Next variable.

Candidates) For each bar A(j)
h , h = 1, ..., µ(j), on the topmost line already drawn, there is a

set of terms lying over it.
Execute Step a) over each of these sets (forgetting about the variables already
settled) and intersect the obtained sets of candidates.

Test 3) If such an intersection is empty, we have to come back. More precisely we delete
the topmost line in the Bar Code (and the related information, except that the
candidate list). Then, if there are no bar left, we go to Test), otherwise, we repeat
Test 3) on the set of candidates related to the variable treated in the previous step
13. If it is nonempty, we continue with the following step.

Pick) Select an element xl from the list of candidates found in Candidates) and delete
it from the list.

11i.e. we change the candidate maximal variable: M cannot be complete w.r.t. any variable ordering with
maximal variable xi.

12Notice that singletons are complete. Moreover, all the variables not already settled have to be multiplicative.
13We are selecting another element in the list of candidates for the variable treated in the previous step.
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Step b’) Divisors and multiplicative variables. Since this step is analogous to Step b), we only
sketch it, referring to Step b).

1. Order the terms over each bar w.r.t. their degree on the new candidate. If,
for some τj1, τj2 ∈ M , degi(τj1) = degi(τj2) and τj1 | τj2, then write τj1 on
the left of τj2. Draw the associated bars.

2. Repeat the same test as in Step b) 2 for all the couples of consecutive bars
lying over the same one w.r.t. the variable treated in the previous step. Keep
track of the terms or report failure and break as in Step b) 2.

Test 2) If Step b’) reports a failure, delete the upmost line of the Bar Code and go back to
Test 3). Otherwise continue with next step.

Compatibility) The new candidate xl has to be compatible with the variables chosen so far.

1. Read the terms of which we have kept track, together with the variables we
need to be multiplicative, in order to have a complete set of terms.

2. If xl is one of the variables associated to some τ , check whether is multiplica-
tive or not. This means looking whether τ lies on the rightmost l-bar over
the underlying bar (in this case xl is multiplicative for τ ) or not. Notice that
a negative outcome do not authomatically exclude the completeness of the
system, since a term could potentially have associated to it more than one
term arising from Steps b), b’), equipped with some variables, required to be
multiplicative.

∗ If xl is not multiplicative for some τ , but τ is not the only term we have
recorded for the term under consideration, we mark τ as failed w.r.t xl14.

∗ If, for some term in M , all the associated terms we have kept track of
give a negative outcome, the test fails15. So we break.

Test 4) If the Compatibility) fails, we change candidate for the current variable, i.e. we
reset the markers set for xl, we delete the upmost line in the Bar Code and we go
to Test 3). Otherwise we quit Step c).

Redirection) Go to Ordering).

Example 6.3.17. Consider M = {x1x
3
2, x

3
1x2} ⊂ k[x1, x2]. Such a set is not complete by a)

since D1 = D2 = {1, 3}.
As a confirmation, we can see that, if x1 < x2, we have

14If the test passes, the failed terms are not examined anymore.
15The first condition of 6.3.15 is not verified.
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0

1

2

x3
1x2 x1x

3
2

∗ ∗
∗

Thenmult(x3
1x2) = {x1},mult(x1x

3
2) = {x1, x2} and x3

1x
2
2 does not belong either to off(x3

1x2)

or to off(x1x
3
2).

On the other hand, if x2 < x1, we have

0

2

1

x1x
3
2 x3

1x2

∗ ∗
∗

Thusmult(x1x
3
2) = {x2},mult(x3

1x2) = {x1, x2} and x2
1x

3
2 does not belong either to off(x3

1x2)

or to off(x1x
3
2).

Example 6.3.18. Consider

M = {x2x3, x
2
1, x

2
3, x

2
2, x1x2, x1x2x4, x

2
1x4, x4x3, x

2
2x4, x

2
1x3} ⊂ k[x1, x2, x3, x4].

Step a) D1 = D2 = D3 = {0, 1, 2}, D4 = {0, 1}.
Each variable is a good candidate for being the maximal one, so we move to Step b), choos-
ing, for example, x3, getting

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x4x3 x2
3

3

For A(3)
1 , A

(3)
2 , A

(3)
3 we test the divisors.

For A(3)
1 , A

(3)
2 :

• x2
1 → x2

1x3. We do not keep track of any variable.

• x1x2 → x2x3. We keep track of x1.

• x2
2 → x2x3. We keep track of x2.

• x2
1x4 → x2

1x3. We keep track of x4. x2
1x4 → x3x4. We keep track of x1.

• x1x2x4 → x2x3. We keep track of x1, x4. x1x2x4 → x3x4. We keep track of x1, x2.

• x2
2x4 → x2x3. We keep track of x2, x4. x2

2x4 → x3x4. We keep track of x2.
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For A(3)
2 , A

(3)
3 :

• x2
1x3 → x2

3. We keep track of x1.

• x2x3 → x2
3. We keep track of x2.

• x3x4 → x2
3. We keep track of x4.

We do not have a negative outcome for any term, so we continue with Step c). Being A(3)
3

overlied only by x2
3 (only one term!) we do not need to take this bar into account (all the

variables different from x3 are good candidates!).
All the variables are good candidates for being the second in order of magnitude and, for
example, we choose x4, getting:

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x3x4 x2
3

4

3

We check the divisors (forgetting about x3):

• x2
1 → x2

1x4. We do not keep track of any variable.

• x1x2 → x1x2x4. We do not keep track of any variable.

• x2
2 → x2

2x4. We do not keep track of any variable.

and

• x2
1 → x4. We keep track of x1.

• x2 → x4. We keep track of x2.

Then we pass to Compatibility):

• x2
1x4: x2

1x3 does not lie on the rightmost 4-bar, so x4 is not multiplicative. Since we
have more than one term associated to x2

1x4, we only delete x2
1x3 and keep x3x4.

The same reasoning holds for x1x2x4, x
2
2x4.

• x3x4: x2
3 lies on the rightmost 4-bar so it passes the test.

We continue choosing x2 as next variable and we get:
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x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x3x4 x2
3

2

4

3

This way, all the sets overlying the 2-bars are singletons. We check on the 2-bars to have
nonincreasing exponents for x1 and this is true. Moreover, we check that x2 is multiplicative
where it is marked, i.e. for x2x3, x3x4 but it clearly holds.
The system M is complete for x1 < x2 < x4 < x3 and its final Bar Code w.r.t. the chosen
ordering is

x2
1

x1x2 x2
2 x2

1x4 x1x2x4 x2
2x4 x2

1x3 x2x3 x3x4 x2
3

1

2

4

3

The following technical lemma will be very useful throughout the paper. As a first appli-
cation, we will prove (theorem 6.3.20) that a system of termsM (possibly infinite) is complete
if and only if the offsprings of the elements in M form a partition of the semigroup ideal
generated by M .

Lemma 6.3.19. [57, pg.23] Let τ , τ ′ be elements of a set of termsM and xj be a variable such
that xj /∈ multM (τ) and xjτ ∈ offM (τ ′). Then τ <Lex τ

′. If, moreover, xj ≤ min(τ), then
τxj = τ ′ ∈M .

Proof. First of all, we observe that τ 6= τ ′, since xj /∈ multM (τ). By definition of off-
spring, we have that τxj = τ ′σ′, where σ′ is a product of multiplicative variables for τ ′.
Let us assume by contradiction that τ >Lex τ ′ and let xi be the maximal variable such that
degi(τ) > degi(τ

′). Then, xi|σ′, hence xi ∈ multM (τ ′), but this is impossible by definition of
multiplicative variable, since also τ is in M .

Now let us assume that xj ≤ min(τ) and σ′ 6= 1. If xj |σ′, then τ = σ′

xj
τ ′ ∈M ∩ offM (τ ′),

which is not possible by Remark 6.3.4. If, on the contrary, xj 6 |σ′ we get a contradiction with
the previous assertion, since in this case τ ′ ≤Lex τ ′σ′

max(σ′) <Lex
τ ′σ′

xj
= τ .

Theorem 6.3.20. Let M be a set of terms (possibly infinite).

If τ, τ ′ ∈M and τ 6= τ ′, then offM (τ) ∩ offM (τ ′) = ∅.
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If, moreover, M is complete and T(M) is the semigroup ideal it generates, then ∀γ ∈
T(M), ∃τ ∈ M such that γ ∈ offM (τ). Hence, the offsprings of the elements in M give a
partition of T(M).

Proof. To prove the first assertion, let us assume by contradiction that τσ = τ ′σ′ ∈ offM (τ)∩
offM (τ ′) 6= ∅ and let τ >lex τ ′. If xi is the maximal variable such that degi(τ) > degi(τ

′),
then xi|σ′. By definition of offspring, xi ∈ multM (τ ′), but this is impossible by definition of
multiplicative variable, since also τ is in M .

Now we assume that M is complete and prove the second fact. We argue by contra-
diction. Suppose T(M) ) O :=

⋃
σ∈M offM (σ) and take any term γ in T(M) \ O. As M

generates T(M), there are terms in M that divide γ: let τ be the one which is maximal with
respect to <lex. If γ = τσ, the term σ contains at least a variable xi which is not multiplica-
tive for τ , since τσ /∈ offM (τ). Then γ = τxiη and τxi /∈ offM (τ).

By the completeness of M , we have τxi ∈ O, namely there is a term τ ′ ∈ M such
that τxi = τ ′σ′ ∈ offM (τ ′). By Lemma 6.3.19 i), τ ′ >Lex τ , and this is not possible since
τ ′|γ = τxiη = τ ′σ′η.

Thanks to the previous result, if M is a complete system, each term in T(M) can be
written in a unique way as a product of

1. an element τ ∈M ;

2. a term xη = xηii · · ·x
ηj
j , with xi, ..., xj ∈ multM (τ).

This fact suggests the following

Definition 6.3.21. Let M be a complete system of terms. The star decomposition of every
term γ ∈ (M) with respect to M , is the unique couple of terms (τ, η), with τ ∈M , such that
γ = τη and γ ∈ offM (τ). If (τ, η) is the star decomposition of γ with respect to M , we will
write γ = τ ∗M η.

Remark 6.3.22. From the results stated above, we obtain the following explicit formula for
the Hilbert function of (M):

hHF(M)(k) =

(
k + n

n

)
−

∑
τ∈M deg(τ)≤k

(
k − deg(τ) + sτ − 1

sτ − 1

)
,

where sτ is the number of multiplicative variables for τ w.r.t M and we set equal to 0 every
binomial with a negative numerator or a negative denominator.

Thus, this formula makes sense also for infinite sets M , since for every k there are only
finitely many non-zero summands.
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If M is a finite set of terms and r is the maximal degree of its elements, this formula gives
the value of the Hilbert polynomial for every k ≥ r.

The following lemma will be very useful for the reduction process we will define in
section 6.5.

Lemma 6.3.23. Let M be a stably complete system of terms and let γ be a term such that
γ = τ ∗M η and also γ = ση′ with σ /∈ T(M).
Then η′ >Lex η.

Proof. By definition of stable completeness, min(τ) ≥ max(η). If η′ <Lex η, then η′|η and
τ |σ. This is not possible since τ ∈ T(M) and σ /∈ T(M).

6.4 Star set and quasi stable ideals

In this section, we take again under consideration the star set of a given monomial ideal
J / P :

F(J) := {xα ∈ T \ N(J) | xα

min(xα)
∈ N(J)}.

We will prove that it is a complete system with many interesting properties in common
with the minimal monomial basis of strongly stable ideals.

Theorem 6.4.1. For every monomial ideal J , the star set F(J) is the unique stably complete
system of generators of J . Hence, if M is stably complete, M = F((M)).

Proof. Let τ := xαkk · · ·xαnn be any monomial in F(J).
Assume xi is not multiplicative, so that xiτ ∈ J , xiτ = τ ′σ′, τ ′ ∈M . Then Lemma 6.3.19

implies τ <Lex τ ′ whence xi > min(τ).
Let xi > xk := min(τ) and set σ0 := τxi, σr := σr−1

min(σr−1) for r = 1 . . . , αk + · · · + αi−1.
Note that xαii · · ·xαnn /∈ J , since it divides τ

min(τ) ∈ N(J), while σ := σ0 ∈ J , since it is a
multiple of τ . Then, in the sequence of terms σi, 0 ≤ i ≤ αk + · · ·+αi−1, we find an element
σj that belongs to J , while the following one does not.

Then σj ∈ F(J), so that xiτ ∈ offF(J)(σj) and xi is not multiplicative for τ w.r.t. F(J).

Take τ = xαkk · · ·xαnn ∈ F(J), and a variable xi /∈ multF(J)(τ). By the previous re-
sult xi > xk = min(τ). By definition of non-multiplicative variable, there is a term σ′ =

xti x
αi+1

i+1 · · ·xαnn ∈ F(J), for some integer t > αi. Let us consider the minimum one.
If t = αi + 1, then xiτ = xαkk · · ·xti · · ·xαnn ∈ offF(J)(σ

′).
If, on the contrary, t > αi + 1, then σ′′ = xαi+1

i · · ·xαnn ∈ N(J) by definition. Let us
consider, as in the previous proof, the sequence of terms σ0 := τxi ∈ J , σr := σr−1

min(σr−1) for
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r = 1 . . . ,
∑k−1
j=k αj . Since the last one is σ′′, we can find in this sequence a suitable σj ∈ I

such that σj+1 ∈ N(J), that is σj ∈ F(J) and xiτ ∈ offF(J)(σj).

In order to prove that every stably complete set of terms M , with J = (M) is exactly
F(J), we first notice that clearly G(J) ⊆M and G(J) ⊆ F(J).
Moreover, it is sufficient to prove that F(J) ⊆ M . Let σ ∈ F(J), i.e. σ

min(σ) = ω ∈ N(J).

Then, there exists τ ∈ M such that σ ∈ off(τ) and so σ = τη, with either η = 1 or max(η) ≤
min(τ).
This implies that either τ = σ or τ | ω, but the second alternative is impossible since both
τ ∈M and ω ∈ N(J).

Remark 6.4.2. i. For an arbitrary monomial ideal J the set F(J) can be infinite. For
example, if J = (x) / k[x, y], x < y, then F(J) = {xyn | n ∈ N}.

ii. Not all the complete systems turn out to be of the form of a star set.
For example, the complete system M = {xhy, h ≥ 1} ⊆ k[x, y] of Example 6.3.12 is
not the star set of the ideal J := (M).
Indeed, N(J) = {xm, m ≥ 0} ∪ {yl, l > 0} and all the terms of the form xyk, k > 1, do
not belong to M , even if xyk

min(xyk)
= yk ∈ N(M).

Moreover, for h > 1, x
hy
x = xh−1y ∈M , so xhy /∈ F(J).

Better results hold if the monomial ideal J satisfies one of the following conditions,
weaker then the strongly stable property (see section 6.6).

Definition 6.4.3. A monomial ideal J is called stable if it holds

τ ∈ J, xj > min(τ) =⇒ xjτ

min(τ)
∈ J

A monomial ideal J is called quasi stable if it holds

τ ∈ J, xj > min(τ) =⇒ ∃t ≥ 0 :
xtjτ

min(τ)
∈ J.

We will show that this notion of quasi stable ideal coincides with the one given in [100],
by proving that J actually has a Pommaret basis.

Remark 6.4.4. • Obviously, a stably complete system M is also stable, and a stable set
is also quasi stable.

• In order to verify whether the conditions above are satisfied for a given ideal J it is
sufficient to check the terms in the basis G(J).
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Proposition 6.4.5. Let J be a monomial ideal. Then TFAE:

i) J is stable

ii) F(J) = G(J)

Proof. i)⇒ ii) The inclusion G(J) ⊆ F(J) is true for every monomial ideal by definition of
star set. We prove now that γ /∈ F(J) for every term γ ∈ J \ G(J).
By hypothesis, ∃τ ∈ G(J), such that γ = τσ and σ 6= 1.
Let xk := min(γ). If xk|σ, then γ

min(γ) = τ σ
xk
∈ J , so that γ /∈ F(J).

If, on the other hand, xk - σ and xj is any variable dividing σ, then xj > xk and xk =

min(τ). By the stability of J we have xjτ
xk
∈ J , hence γ

xk
= τσ

xj

xj
xk
∈ J , hence again γ /∈ F(J).

ii) ⇒ i) If ii) holds, then G(J) is the only stably complete system generating J . By
remark 6.4.4, we can check the stability on the terms xα ∈ G(J). Let xj > xk := min(xα).
By hypothesis there exists xβ ∈ G(J) such that xjxα ∈ offG(J)(x

β), and, since xα ∈ G(J), of
course xαxj /∈ G(J). Hence xβ |xjx

α

xk
and so xαxj

xk
∈ J .

Proposition 6.4.6. Let J be a monomial ideal. Then TFAE:

i) J is quasi stable

ii) |F(J)| <∞

iii) F(J) = H(J) is the Pommaret basis of J .

Proof. i) ⇒ ii) Let a be the maximum of the degrees of elements in G(J) and let t be such
that xtjx

α

min(xα) ∈ J for every xα ∈ G(J) and xj > min(xα). We prove that F(J) is contained
in P<d where d := a + tn. Let xαxη ∈ J≥d with xα ∈ G(J) and xk be min(xαxη). If xk|xη ,
then obviously xαxη

xk
= xα x

η

xk
∈ J , so xαxη /∈ F(J). If, on the other hand, xk 6 |xη , then

xk = min(xα). Moreover, every variable dividing xη is higher than xk and at least one of
them , let us call it xj , appears in xη with exponent ≥ t, as deg(xη) ≥ nt. Then xtjx

α

xk
∈ J ,

hence xαxη

xk
=

xtjx
α

xk
· x

η

xtj
∈ J and xαxη /∈ F(J).

ii)⇒ iii) By ii)F(J) is finite, and by 6.4.1 is stably complete, so it is clearly the Pommaret
basis of J .

iii)⇒ i) By remark 6.4.4, we check the quasi stability on the terms xα ∈ G(J). Let xj >
xk := min(xα). By the hypothesis on the finiteness of F(J), there exists m � 0 such that
xαxmj /∈ F(J). Moreover, being F(J) a stably complete system, there exists xβ ∈ F(J) such

that xmj x
α ∈ offF(J)(x

β) and xβ |x
m
j x

α

xk
. Therefore, x

m
j x

α

xk
∈ J , namely J is quasi stable.
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Example 6.4.7. In k[x, y, z] with x < y < z:

• considered J = (z, y2), we get M = F(J) = G(J) = {z, y2}, since J is stable;

• taken the ideal J ′ = (z2, y), we get M = F(J) = {z2, yz, y} ⊃ G(J).
In fact, J is quasi stable, but it is not stable;

• given J = (y), the star set is M = F(J) = {zky | k ≥ 0}, and |F(J)| is infinite, since J
is not stable.

Remark 6.4.8. By remark 6.4.6, each zerodimensional ideal is quasi stable, since its star set
is finite, as one can see by drawing the Bar Code of the corresponding Groebner escalier (see
section 6.8 for more details).
Moreover, for non zerodimensional ideals, we can simply decide about their quasi stability
by their (infinite) Bar Codes.
Indeed, by proposition 5.4.9, we only have to draw the corresponding infinite Bar Code and
to check whether there is a finite term, under which lies at least one→. If it is the case , the
ideal is not quasi stable, since the star set is infinite. If not, the ideal is quasi stable.

6.5 M -marked sets and reduction process.

In this section, we generalize the notions of J-marked polynomial, J-marked basis and J-
marked family given in [8, 27] for J strongly stable.
In those papers, the involved polynomials are marked on the monomial basis of the given
monomial ideal J . Here, we give the analogous definitions for any monomial ideal, pro-
vided that the involved polynomials are marked on a complete generating system in the
sense of definition 6.3.9.
After determining the setting, we extend to it the reduction process of the quoted papers.
At the end, we will see that such a generalized procedure does not need to be noetherian
for every complete system of terms. We will need to add some hypotheses on the given
complete system in order to overcome this problem.
We point out that, as in [8, 27], we do not introduce any term-ordering and this represents
an important difference w.r.t. Janet’s papers.
Moreover, we consider polynomials with coefficients in a ring, not necessarily in a field.

Definition 6.5.1. Let M be a complete system of terms and J be the ideal it generates.

• An M -marked set is a finite set G of homogeneous (monic) marked polynomials fα =

xα −
∑
cαγx

γ , with Ht(fα) = xα ∈M and Supp(fα − xα) ⊂ N(J), so that |Supp(f) ∩
J | = 1.
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• An M -marked basis G is an M -marked set such that N(J) is a basis of Q/(G) as A-
module, i.e. Q = (G)⊕ 〈N(J)〉 as an A-module.

• The M -marked familyMf(M) is the set of all homogeneous ideals I that are generated
by an M -marked basis.

Remark 6.5.2. Observe that the above definition of marked familyMf(M) is consistent with
that given in the Introduction ofMf(J) for a monomial ideal J . Indeed, if I ∈Mf(M), then
I ∈Mf(J) with J = (M). On the other hand, for every given J there are complete systems
M that generate it, for instance M = F(J) and Mf(J) = Mf(M). In fact, if I ∈ Mf(J),
every polynomial h can be uniquely written as a sum f + g with f ∈ I and g ∈ 〈N(J)〉;
especially for every xα ∈M , we have

xα = fα + gα, fα ∈ I and gα ∈ 〈N(J)〉. (6.1)

Then I contains the M -marked basis

G = {fα = xα − gα , xα ∈M}.

Furthermore G is an M -marked basis since (G) ⊆ I and Q = (G) + 〈N(J)〉 = I ⊕ 〈N(J)〉.
The only difference between the two notationsMf(J) andMf(M) with M a complete

system generating J , is that using the second one we present every ideal of the family by
means of a special set of generators depending on M . Note that, by the definition itself of
Mf(J), we can assert that for every ideal I ∈ Mf(J) the M -marked basis generating it is
unique.

We define now a reduction procedure for terms and polynomials, with respect to a ho-
mogeneous set G of polynomials, marked on a complete system of terms M .
The usual reduction process with respect to G consists of substituting each term xαxη , mul-
tiple of an head term xα = Ht(fα), with the polynomial (xα − fα)xη = gαx

η .
We add an extra condition to the standard procedure, namely that this substitution can be
performed only in the case xαxη = xα ∗M xη .

Definition 6.5.3. Let M be a complete system and G an M -marked set. We will denote by
G−→ the transitive closure of the relation h

G−→ h − cfαxη , where xαxη = xα ∗M xη is a term
that appears in hwith a non-zero coefficient c. We will say that G−→ is noetherian if the length
r of any sequence h = h0

G−→ h1
G−→ . . .

G−→ hr is bounded by an integer number m = m(h).
This is equivalent to say that if we continue rewriting terms in this way we always obtain,
after a finite number of reductions, a polynomial whose support is contained in N(J).

We will write h G−→∗ g if h G−→ g and Supp(g) ⊂ N(J).
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In general, the relation G−→ is not noetherian, namely there are sequences of reduction of
infinite length.

Example 6.5.4. Let M := {xz, yz, y2} a set of terms in k[x, y, z] with x < y < z. We find the
following sets of multiplicative variables:

• multM (xz) = {x, z}

• multM (y2) = {x, y}

• multM (yz) = {x, y, z}

and check that M is complete.
Let G the M -marked set {fxz = xz − xy, fyz = yz − z2, fy2 = y2}.
Then we have the infinite sequence of reductions:

xz2 = xz ∗M z
G−→ xz2 − fxzz = xyz = yz ∗M x

G−→ xyz − fyzx = xz2...

However, the reduction G−→ is always noetherian if G is marked on a stably complete
system. In order to prove this fact we will use the following special subset of the ideal (G).

Definition 6.5.5. Let G be an M -marked set on a complete system of terms M and let J :=

(M). For each degree s, we will denote by G(s) the set of homogeneous polynomial

G(s) := {fαxη | xα ∗M xη ∈ (M)s}

marked on the terms of Js in the natural way Ht(fαxη) = xαxη .

Remark 6.5.6. Observe that if G is a M -marked set on a stably complete system of terms M ,
for every homogeneous polynomial g of degree s, g G−→ h implies that g−h =

∑m
i=1 cifαix

ηi ∈
〈G(s)〉.

It is worth noticing as a direct consequence of Lemma 6.3.23 that if fαxη ∈ G, then
every term in Supp(xαxη − fαxη) either belongs to N((M)) or is of the type xα

′ ∗M xη
′

with
xη
′
<Lex x

η .

Lemma 6.5.7. Let G be a M -marked set on the stably complete system of terms M = F(J).

1. Every term in Supp(xβxε − fβxε) either belongs to N((M)) or is of the type xα ∗M xη

with xη <Lex xε.

2. If fβ ∈ F(J), then all the polynomials fαixηi ∈ G(s) used in the reduction of xβxε

(except fβxε if it belongs to G(s)) are such that xε >Lex xηi .
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3. If g =
∑m
i=1 cifαix

ηi , with ci ∈ k − {0} and fαix
ηi ∈ G(s) are pairwise different, then

g 6= 0 and its support contains some term of the ideal J .

Proof. (1) is a direct consequence of Lemma 6.3.23.
(2) Assume that the statement holds for every term xβ

′
xε
′
, with xε

′
<Lex x

ε. At a first
step of reduction of xβxε we use the polynomial fαxη where xβxε = xα ∗M xη , so that
xη ≤Lex xε; moreover every term in the support of the obtained polynomial either belongs
to N((M)) or is of the type xα

′ ∗M xη
′

with xη
′
<Lex x

η (Remark 6.5.6). Then we conclude
since we assumed the property holds for all those terms.

(3) We assume that the summands in g are ordered so that xη1 ≥Lex xηi for every i =

1, . . . ,m and show that xη1+α1 belongs to the support of g.
The term xα1+η1 cannot appear as the head of fαixηi for some i 6= 1 because the star

decomposition of a term is unique. Moreover it cannot appear in fαix
ηi − xαi+ηi since

xα1+η1 = xβxηi , with xβ ∈ N(J) would imply xηi >Lex xη1 (see Lemma 6.3.23), against the
assumption.

Theorem 6.5.8. Let G be an M -marked set on a stably complete system of terms M and let
J be the ideal generated by M .

Then the reduction process G−→ is noetherian and, for every integer s, Qs = 〈G(s)〉 ⊕
〈N(J)s〉. Indeed, for every h ∈ Qs

h = f + g with f ∈ 〈G(s)〉 and g ∈ 〈N(J)s〉 ⇐⇒ h
G−→∗ g and f = h− g

Proof. Let G = {fα | xα ∈M}.
We observe that we have 〈G(s)〉 ∩ 〈N(J)s〉 = {0} by Lemma 6.5.7.

In order to prove that the module 〈G(s)〉 + 〈N(J)s〉 coincides with Ps it is sufficient to
show that it contains all the terms in Js \M , being obvious for those in M , for which xα =

fα + gα (see 6.1).
Let τ be a term in Js.

If τ = xα ∗M xη , we may assume of having already proved the statement for all the terms
τ ′ = xα

′ ∗M xη
′

with xη
′
<Lex x

η .
We have xαxη = fαx

η + (xα − fα)xη where Supp(xα − fα) ⊂ N(J). If xβ is any term
in this support, then either xβ+η ∈ N(J) or xβ+η = xα

′ ∗M xη
′

with xη
′
<Lex x

η by Lemma
6.3.23. This allows us to conclude Qs = 〈G(s)〉+ 〈N(J)s〉.

Finally, in order to prove that G−→ is noetherian it is sufficient to observe that every reduc-
tion step substitutes a term of J of the type xα ∗M xη with xαxη − fαxη . Indeed, by remark
6.5.6, each τ ∈ Supp(xαxη − fαxη) \ N((M)) has the form xα

′ ∗M xη
′
, xη

′
<Lex x

η and this
permits to conclude by induction.
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As a straightforward consequence of the previous result, we obtain the following

Corollary 6.5.9. If M is a stably complete system and G is an M -marked set, the following
are equivalent:

• G is an M -marked basis

• for every s: 〈G(s)〉 = (G)s

• for every h ∈ (G): h G−→∗ 0

• if h− g ∈ (G) and Supp(g) ⊂ N(J), then h G−→∗ g.

Remark 6.5.10. We point out that if G is a M -marked set, but not a M -marked basis, then
there are polynomials in the ideal (G) whose support is contained in N((M)). Hence, we do
not have a "normal form" of a polynomial h modulo (G), since, in general, there are several
polynomials g′ such that Supp(g′) ⊂ N(J) and h− g′ ∈ (G). However, the reduction process
h
G−→∗ g with respect to a F(J)-marked set G gives a unique reduced polynomial g for every

polynomial h.

Using the reduction process, we can now answer Problem 6.1.2 and characterize the
ideals I that belong to the marked familyMf(J).

Theorem 6.5.11. Let G be a F(J)-marked set. Then:

(G) ∈Mf(J)⇐⇒ ∀fβ ∈ G, ∀xi > min(xβ) : fβxi
G−→∗ 0

Proof. Since "⇒" is a straightforward consequence of Corollary 6.5.9, we only prove "⇐".
More precisely, we prove that (G)m = (G(m)), showing that if fβ ∈ G and deg(xβ+ε) = m,
then fβxε is either an element of G(m) itself or a linear combination of polynomials in G(m).
If this were not true, we can choose an element fβxε /∈ 〈G(m)〉 with xε minimal with respect
to <Lex. As fβxε /∈ G(m), at least one variable xi appearing in xε with nonzero exponent is

non-multiplicative for xβ . Let xε = xix
ε′ . By hypothesis fβxi

G−→∗ 0, so that fβxi is a linear
combination

∑
cifαix

ηi of polynomials in G(|β|+1). By Lemma 6.5.7 we have xηi <Lex xi.
Now fβx

ε = (fβxi)x
ε′ = (

∑
cifαix

ηi)xε
′

=
∑
cifαix

ηi+ε
′
, where xηi+ε

′
<Lex xix

ε′ = xε.
Now we get a contradiction, since fαixηi+ε

′ ∈ 〈G(m)〉 by the minimality of xε.

Example 6.5.12. Let J be the monomial ideal (x3, xy, y3) in k[x, y] with x < y. Its star set is
F(J) = {x3, xy, xy2, y3}. Using the criterion given in Theorem 6.5.11, we can easily check
that the F(J)-marked set G := {f1 := x3, f2 := xy − x2 − y2, f3 := xy2, f4 = y3} (in bold
the head terms) is a F(J)-market basis:
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• yf1 = xf1 + x2f2 + xf3
G−→∗ 0,

• yf2 = f1 − xf2 − f4
G−→∗ 0

• yf3 = xf4
G−→∗ 0.

This is a simple example of a marked basis which is not a Groebner basis. In fact, it is
obvious that Ht(f2) = xy cannot be the leading term of f2 with respect to any term-ordering
and, more generally, that J cannot be the initial ideal of the ideal (G), even though (G) ⊕
N(J) = k[x, y].

A wider family of ideals of this type are presented in [27, Example 3.18 and Appendix].

Remark 6.5.13. Let xβxi = Ht(fβxi), if xβxi = xαxη ∈ off(xα) then the first step of reduc-
tion of the polynomial fβxi is actually fβxi

G−→ S(fβ , fα) := lcm(xβ ,xα)
xβ

fβ − lcm(xβ ,xα)
xα fα =

fβxi−fαxη , namely the S-polynomial of fα, fβ . Therefore we could reformulate the criterion
given by Theorem 6.5.11 as follows:

(G) ∈Mf(J)⇐⇒ ∀fα, fβ ∈ G : S(fα, fβ)
G−→∗ 0.

However Theorem 6.5.11 shows that it is sufficient to check a special subset of the S-polynomials
that corresponds to the basis for the first syzygies of the terms in F(J). If J is quasi stable,
this basis is the one considered in [99]. It is obvious that the maximal degree of these special
S-polynomials cannot exceed 1 + max{deg(xα) | xα ∈ F(J)}. Indeed, if J is quasi stable,
reg(J) = max{deg(τ), τ ∈ F(J)} as proved in [48, 54, 100].

Remark 6.5.14. If J is a quasi stable monomial ideal and G is an F(J)-marked set, then
there are only a finite number of reduction to perform in order to decide if a F(J)-marked
set G is a basis. We will use this algorithm in order to endow the marked familyMf(J) of a
structure of affine scheme

If the considered monomial ideal is not quasi stable, then the (unique) stably complete
generating set is infinite. Actually this does not necessarily exclude we can exploit it even
from a computational point of view.

6.6 Marked families, schemes and functors

In this section we follow [8, 27] and show how it is possible to associate a scheme to each
marked familyMf(J). Due to the naturality of this construction, we can mimic the one of
[64], and define marked families as functors.
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Our results are very similar, but more general, than those of [8, 27, 64]; in fact in those
papers the ideal J is assumed to be strongly stable.

Obviously, a strongly stable ideal is also stable, so that F(J) = G(J). If J is strongly
stable, the notions of G(J)-marked sets, G(J)-marked bases and G(J)-marked family in-
troduced in the previous sections exactly correspond to those of J-marked sets, J-marked
bases, J-marked family considered in [8, 27] and the reduction procedure G−→ with respect
to a G(J)-marked set G introduced in definition 6.5.3 coincides with the one used in those
papers.

Moreover, for such an ideal J , the scheme structure that we will define is the same ob-
tained in [8, 27] and used in [10, 64] for a local study of Hilbert schemes. Indeed, for every
monomial ideal J , if I ∈Mf(J), then the ideals I and J share the same Hilbert polynomial
(and also the same Hilbert function), so that they correspond to points in the same Hilbert
scheme.

The scheme we associate toMf(J) only depends on the monomial ideal J , but the way
we use in order to define it needs a set of generators M complete, finite and such that for
every M -marked set G the reduction procedure G−→ is noetherian.

Then, in the following J will be a quasi stable monomial ideal andM will be its finite
star-set F(J), (according to Seiler’s notation, it is the Pommaret basisH(J)).

Let {xα1 , ..., xαs} be the terms in M and consider the polynomial ring B := A[C], where
C is a compact notation for the set of variables Ci,β i = 1, . . . , s and xβ ∈ N(J)deg(αi). We
also define the M -marked set in B[x1, ..., xn]

G := {fαi := xαi +
∑

Ci,βx
β |xβ ∈ N(J)|αi|,Ht(fαi) = xαi}.

Clearly, every M -marked set can be obtained specializing G, namely as φ(G) for a suitable
morphism ofA-algebras φ : A[C]→ A. Moreover, by the uniqueness of theM -marked basis
generating each ideal inMf(J), we can assert that for every ideal I ∈ Mf(J) there exists a
unique specialization φ such that (φ(G)) = I .

We use Theorem 6.5.11 in order to construct a set of polynomials R that will define the
scheme we associate to M . If g is a polynomial in B[x1, ..., xn], we denote by coeffx(g) the
set of coefficients of g with respect to the only set of variables x1, . . . , xn; hence coeffx(g) ⊂
B = A[C] is a set of polynomials in the variables C. For every xαi ∈ M and xj > min(xαi),
let gαi,j ∈ B[x1, . . . , xn] be such that fαixj

G−→∗ gαi,j .

Definition 6.6.1. LetM be a stably complete system in T ,A be any ring, andR be the union
of coeffx(gαi,j) for every xαi ∈M and xj > min(xαi).
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We will call M -marked scheme over the ring A, and denote by MfM (A) the affine scheme
Spec(A[C]/(R)).

Remark 6.6.2. Every M -marked set in A[x1, . . . , xn] is a M -marked basis if and only if the
coefficients of the terms in the tails satisfy the conditions given byR.

In particular, if A = k is an algebraically closed field, then the closed points of MfM (A)

correspond to the ideals in the marked familyMf(J) where J is the ideal in k[x1, . . . , xn]

generated by M .

Remark 6.6.3. The above construction ofR is in fact independent from the fixed commutative
ring A, in the sense that it is preserved by extension of scalars. We can first choose Z as the
coefficient ring and then apply the standard map Z→ A.

More formally, for every stably complete set of termsM we can define a functor between
the category of Z-algebras to the category of sets

MfM : Z-Alg→ Set

that associates to any Z-algebra A the set MfM (A) := Mf(MA[x1, . . . , xn]) and to any
morphism φ : A→ B the map

MfJ(φ) : MfM (A) −→ MfM (B)

I 7−→ I ⊗A B.

Moreover, again following [64], it is possible to prove that MfM is a representable func-
tor represented by the scheme MfM (Z) = Spec(Z[C]/(R)).

6.7 Historical notes.

Through the trivial interpretation of derivatives

1

α1! · · ·αn!

∂α1+α2+...+αn

∂xα1
1 ∂xα2

2 . . . ∂xαnn
,

in terms of the corresponding term τ = xα1
1 xα2

2 . . . xαnn ∈ T , Riquier [87, 88, 89] was able
to algebraically transform the problem of solving differential partial equations in terms of
ideal membership.

After introducing the concept (but not the notion) of S-polynomials he proved that if
the normal form (in terms of Gauss-Buchberger reduction) of each S-polynomial among the
elements of the basis G goes to zero then
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• the given basis G generates the related ideal;

• the generic solution of the PDE can be given (and computed) as series in terms of ini-
tial conditions which can be described and formulated in terms of a Hironaka-Galligo-
like decomposition [38, 51] (but more general) of the related escalier N;

if not all normal forms are 0, then, exactly as in Buchberger Algorithm, the non-zero normal
forms are included in the basis and the procedure is repeated.

For instance, the system [89, pp.188-9]

∂3u

∂y3
= A(x, y, z),

∂2u

∂x∂z
= B(x, y, z),

∂3u

∂x2∂y
= C(x, y, z),

must satisfy the integrability conditions

∂2A

∂x∂z
=
∂3B

∂y3
,

∂2A

∂x2
=
∂2C

∂y2
,

∂2B

∂x∂y
=
∂C

∂z
;

in which case the initial conditions have the shape

u = φ0(z)
∂u
∂y = φ1(z)
∂2u
∂y2 = φ2(z)

 x− x0 = y − y0 = 0,

∂u
∂x = α0

∂2u
∂x∂y = α1

∂3u
∂x∂y2 = α2

 x− x0 = y − y0 = z − z0 = 0,

∂2u
∂x2 = ψ(x) y − y0 = z − z0 = 0.

In his theory, Riquier was assuming that the set T of the terms was ordered by a term-
ordering; he was mainly using [89, p.67] the deglex ordering induced by x1 > x2 > · · · > xn,

but he gave a large class of term-orderings to which his theory was applicable; actually (but
he never stated that) his characterization is the classical one of all term-orderings [34, 90].
He was however forced to restrict himself to degree-compatible term-orderings in order to
be granted convergency.

In his gaussian reduction, Riquier, as Buchberger, considered as head term of each "marked"
polynomial its maximal term.

In his considerations on generic initial ideal, Delassus [32], followed by Robinson [91]
used (deg)-rev-lex induced by x1 < x2 · · · < xn and the minimal term as head term of each
“marked” polynomial.
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In order to "harmonize" the two notations, Janet in [54, 57] applied deglex induced by
x1 < x2 < · · · < xn and chose the maximal term as head term, but expressed all terms as (!)
xαnn x

αn−1

n−1 . . . xα1
1 , while in [55] went back to use deglex induced by x1 > x2 > · · · > xn.

What is worst, in [56] Janet not only applied deglex induced by x1 < x2, · · · < xn but
presented all results within his notation; so, in his presentation of Delassus’s result, the head
term is again, à la Buchberger, the maximal one.

This is not helpful, as regards his reformulation of the previous results on generic initial
ideals and stability; thus while, for Robinson [91, 92] and Gunther [46, 47] a generic initial
ideal ε(I) satisfies

µ ∈ ε(I), xh | µ, i < h =⇒ xi
µ

xh
∈ ε(I),

according [56] the formula is

µ ∈ ε(I), xh | µ, i > h =⇒ xi
µ

xh
∈ ε(I).

Under the suggestion of Hadamard [84], Janet dedicated his doctorial thesis [54] to a
reformulation of Riquier’s results in terms of Hilbert’s results [50].

In particular, given a finite set of monomials M , he associates to each term τ ∈ M , as
functions of its relation with the other elements of M , a set of variables which he labels
multiplicative (Definition 6.3.1) and a subset of terms in (M) which he called his class and
which we labeled as its offspring and considered M complete (Definition 6.3.9) when the
disjoint offsprings of M cover (M).

He then gave [54, p.80] a procédé régulier pour obtenir un système complet base d’un module
donné which ne pourra se prolonger indéfiniment; it simply consisted to enlarge M with the
elements xt /∈ ∪τ∈MoffM (τ), t ∈M , x non-multiplicative for t.

Janet can now formulate [57, p.75] Riquier’s procedure. One can assume to have a finite
basis G ⊂ P ; denoting M = {T(f) : f ∈ G},

• we enlarge M in order to made it complete and at the same time

• we similarly enlarge G, adding xg to G when we add xT(g) /∈ ∪τ∈MoffM (τ);

• we then perform Riquier’s test, which, for a complete systems, consists in computing
the normal form of each element xg, g ∈ G, x non-multiplicative for T(g).

Janet [54, p.112-3] further remarks (in connection with Hilbert’s syzygy theory) that the
reduction-to-zero of all such elements give a basis S of the syzygy module of G. Actually
he repeatedly applied the same procedure to S, thus computing a resolution of G and antic-
ipating Schreyer’s Algorithm [94].
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Next, in 1924, Janet [55] moved his interest in extending the study to the homogeneous
case, adapting his approach on one side to the solution of partial differential equation given
by E. Cartan [14, 15, 16] via his characters and test and on the other side to the introduction
by Delassus [32] of the concept of generic initial ideal and the precise description of it given
by Robinson [91, 92] and Gunther [46, 47]; he thus discussed the notion of système de forms
(de même ordere) en involution. The notion, as he explains, is independent from the variable
chosen and allows to assign to the system a series of values σ(p)

i , 1 ≤ i ≤ n, p ∈ N which [57,
p.87] sont évidemment invariables lorsq’on fait un changement linéaire et homogène des variables
indépendantes which, under the assumption of generality, allow to describe the structure of
the generic escalier of the considered ideal.
The procedure, given a finite set G of forms, repeatedly produces à la Macaulay a linear basis
Bp of (G)p by performing linear algebra on the set {xig : g ∈ Bp−1, 1 ≤ i ≤ n}; termination
is granted when the formula (6.2) below is satisfied.

Given a homogeneous ideal I ⊂ k[x1, x2, . . . , xn], where the variables are assumed to
be generic, so that N(I) is stable, Janet defined [55, pp.30-2],[56, p.30],[57, pp.90-1],[84, p.93,
p.99] multiplicative variables according 6.3.6, introduced values σ(p)

i (I) (or σ(p)
i for short

when no confusion is possible) for every 1 ≤ i ≤ n, and p ∈ N, which can be described as

σ
(p)
i := # {τ ∈ N(I),deg(τ) = p,min(τ) = i}

and, fixing a value p and denoting σi := σ
(p)
i , and σ′i := σ

(p+1)
i proved

Proposition 6.7.1 (Janet). It holds,

1. σ′1 + σ′2 + . . .+ σ′n ≤ σ1 + 2σ2 + . . .+ nσn;

2.
∑n
i=1 σ

′
i =

∑n
i=1 iσi =⇒ σ′j =

∑n
i=j σi for each j.

3.
∑n
i=1 σ

′
i =

∑n
i=1 iσi =⇒

∑n
i=1 σ

(P+1)
i =

∑n
i=1 iσ

(P )
i for each P > p.

He can then state

Definition 6.7.2 (Janet). [57, pp.90-1] A finite set E ⊂ P of forms of degree at most p gen-
erating the ideal I ⊂ P , is said to be involutive16 if, with the present notation, it satisfes the
formula

n∑
i=1

σ
(p+1)
i =

n∑
i=1

iσ
(p)
i . (6.2)

16en involution.
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Thus, once the iterated Macaualy-like procedure satisfies (6.2) at degree p̄ then it suc-
cessfully terminates and the finite bases produced by it is involutive; Janet is therefore able
to present the ideal {τ ∈ T(I),deg(τ) ≥ p̄} by explicitly producing[57] the decomposition

{τ ∈ T(I),deg(τ) ≥ p̄} = tτ∈MoffM (τ)

where M is the stably complete set M = {τ ∈ T(I),deg(τ) ≥ p̄} and to express its Hilbert
polynomial as

hHI(t) =

n−1∑
h=1

(
t− p+ h− 1

h− 1

)
σ

(p)
h (I).

In our context, the characterization of σ(p)
i and definition 6.7.2 lead to the following

Proposition 6.7.3. With the previous notation, if J is a quasi stable monomial ideal, then

n∑
i=1

σ
(p+1)
i (J) =

n∑
i=1

iσ
(p)
i (J).

The same equality holds if I is a homogeneous ideal generated by a J-marked basis G
with J quasi stable.

Therefore G is an involutive basis.

Proof. For the first statement we observe that if p ≥ p every term τ ∈ Jp+1 can be written in
a unique way as a product τ = θxi, with θ ∈ Jp and xi a multiplicative variable for θ, i.e.
xi ≤ min(θ).

If I is the homogeneous ideal generated by a J-marked set G, then for the corresponding
fτ ∈ G(p+1) we have fτ = fθxi with fθ in G(p) and of course xi ≤ min(θ).

If G is a J-marked basis, then we get the equality since (G)t = (G(t)) for every t (Corollary
6.5.9).

Note that for an ideal I generated by a J-marked set G which is not a marked basis, only
the inequality

∑n
i=1 σ

(p+1)
i ≤

∑n
i=1 iσ

(p)
i holds true, since (G)t ⊇ (G(t)).

The iterated Macaualy-like procedure gives also a fine decomposition of N(I)≥p̄−1 as
follows:

• Janet partitions the set N(I)p−1 as Np−1 = tn−1
i=0 Ni associating to

– N0 the monomials τ ∈ Np−1(I) for which x1τ ∈ T(I);

– while each of the σ1 elements τ = υ
x1
∈ N(I)p−1 \N0, class(υ) = 117, is inserted in

Ni if it is one of the σi elements which can be expressed as τ = υi
xi
, class(υi) = i

17In this context, a term ω ∈ T has class(ω) = i if ω ∈ T [i, n] \ T [i+ 1, n].
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but is not one of the σi+1 elements which can be expressed as τ = υi+1

xi+1
, class(υi+1) =

i+ 1.

• he then associates to each τ ∈ Ni a set mult(τ) = {xj , 1 ≤ j ≤ i} of multiplicative
variables and a set off(τ) := {τω, ω ∈ T [1, i]} as its offspring

• and states
{τ ∈ N(I),deg(τ) ≥ p̄− 1} = tn−1

i=0 tτ∈Ni off(τ).

Riquier’s and Janet’s results were introduced to the Computational Algebra commuta-
tive at the MEGA-90 Symposium in 1990 by a survey by Pommaret [85] of his theory and,
two years later, through a paper by F. Schwarz [95] where he remarked:

The concept of a Gröbner base and algorithmic methods for constructing it for a
given system of multivariate polynomials has been established as an extremely
important tool in commutative algebra. It seems to be less well known that
similar ideas have been applied for investigating partial differential equations
(pde’s) around the turn of the century in the pioneering work of the French
mathematicians Riquier and Janet. [...] their theory [...] is basically a critical-
pair/completion procedure. All basic concepts like term-ordering, reductions
and formation of critical pairs are already there.

This prompted V. Gerdt to suggest his coworkers Zharkov and Blinkov to investigate
whether the results by Janet and Pommaret could be translated from pde’s to polynomial
rings in order to produce an effective alternative approach to Buchberger’s Algorithm; the
conclusion of this investigation [107, 108] was successful — the proposed algorithm was
able to give a solution with a speed-up of 20 w.r.t. degrevlex Buchberger’s algorithm on
classical test-suites and caused sensation in the community.

Unfortunately, among the two constructions proposed by Janet, they hitted the involu-
tive one, which is not a Buchberger-like procedure and presented it as such, remarking that
in general does not terminate and that the basis is not necessarily finite unless the ideal is
0-dimensional. What is worst, they attributed to Pommaret their mistakes, thus introducing
in literature a “bad” fictional Pommaret division compared with the “good” Janet division
(related to Janet completion [54] procedure).

An algorithm based on Janet’s notion [54] of completeness is reported in [40, 41, 42]
Involutiveness is the argument of the Habilitation thesis (2002) of Seiler [97, 99, 100]; an

improved version has recently appeared as [98]. Finiteness is a required condition for the
notion of Pommaret bases [48].
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6.8 An involutive Moeller Algorithm.

In this section we develop a version of Moeller algorithm which computes a lexicographical
reduced involutive basis for a zero-dimensional radical ideal I , requiring only the finite set
of distinct points X := V (I).
Consider a finite set of distinct points X = {P1, ..., PS}. As explained while talking about
the Bar-Code Axis of Evil algorithm, if X = {P1}, P1 = (a1,1, ..., a1,n), the ideal I = I(X) is
the maximal ideal I = (x1 − a1,1, ..., xn − a1,n).
The initial ideal J = In<(I) = (x1, ..., xn) is quasi stable, being zerodimensional (6.4.8). As
a matter of fact, given τ ∈ J , ∃xh | τ , 1 ≤ h ≤ n. Consider now xj > min(τ) and compute
σ =

xjτ
min(τ) . Clearly xj | σ, so σ ∈ J and J is definitively quasi stable.

We can also get the quasi stability of J using the Bar Code. In fact, the Groebner escalier
associated to J is N(J) = {1} and the Bar Code is

1

...

The star set is then F(J) = {x1, ..., xn} and equals the monomial basis G(J), so J is stable
by proposition 6.4.5.
Clearly, this implies that the reduced Groebner basis G1 = {x1 − a1,1, ..., xn − a1,n} is also
the reduced involutive basis. J1

We point out that the polynomials in J1 are ordered. More precisely, the first polynomial is
the one whose leading term is x1 = min(G(J)). The leading term of the second polynomial
is x2 > x1 and so on. The last polynomial is xn − a1,n and xn = max(G(J)). We say, by
abuse of notation, that the polynomials are ordered with respect to lex.
The triangular polynomial for {P1} is q1 = 1.
We consider the data obtained for the singleton {P1} as the basis for our procedure in the
case |X| = m > 1.
In this setting, we consider the point P2 = (a2,1, ..., a2,n). If, for some j ∈ {1, ..., n}, a1,j =

a2,j , the polynomial xj − a1,j ∈ J1 computed before vanishes in P2.
This implies that if f ∈ J1 is the minimal polynomial with respect to lex not vanishing
in P2 and xj = T (f), j ≤ n, then P2 shares the first j − 1 coordinates with P1: a1,1 =

a2,1, ..., aj−1,1 = aj−1,2.
As seen while talking about the original Moeller algorithm, T (f) is the term corresponding
to P2 in the Groebner escalier N({P1, P2}).
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Since T (f) ∈ N({P1, P2}), it cannot belong to the minimal basis anymore, so we remove f
from the Groebner basis.
More precisely f vanishes in P1, while f(P2) 6= 0. We construct then q2 = 1

f(P2)f which is
the second triangular polynomial.
All the polynomials in J1 whose leading term is smaller than T (f) vanish in P2, and so
they automatically belong to J2, but we cannot assert the same for the polynomials g ∈ J1

with T(g) > T(f) so we need to interpolate them in P2. The polynomials obtained this way
belong to J2.
By proposition 5.7.1, now, we have to insert in J2 the polynomials τ − Can(τ, I({P1, P2})),
for τ ∈ {xjT (f), xj ≤ min(T(f))}.
In order to compute them, we only have to perform the interpolating procedure GaussRed
from the original Moeller algorithm on these terms. Once this step is completed, we get J2.
Suppose now to have computed Ji−1 and let us explain the steps to perform for the point
Pi.

− Find τ = min{T(f) | f ∈ Ji−1 and f(Pi) 6= 0}. Let τ = T(g) for g ∈ Ji−1.

− As before, τ ∈ N(I({P1, ..., P − i})), so we add it to the Groebner escalier, removing it
from the monomial basis.

− Set Ji = Ji−1 \ {g}.

− Compute the triangular polynomial qi = 1
g(P1)g.

− For each f ∈ Ji−1 with T(f) > τ , interpolate in Pi: f = f − f(Pi)qi. Substitute in Ji f
with its new value.

− Compute the terms xjτ , for xj ≤ min(τ) (5.7.1). We have at least one term, namely
min(τ)τ .

− Apply the subroutine GaussRed to the terms of the previous step.

− Insert in Ji the obtained polynomials.

If i = S, the algorithm stops and returns Ji = JS . Otherwise, i is incremented by one and
the steps above repeated.
We display now the pseudocode of this Moeller version.

We display now an example of the execution of algorithm 10.
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Algorithm 10 Involutive basis Moeller algorithm.
1: procedure JANM(X)→ J ,N, q . J is the

reduced involutive basis of I , N is the associated Groebner escalier and q is a triangular
set for X. Denote X = {P1, ..., PS}, Pi = (ai,1, ..., ai,n), i = 1, ..., n.

2: J = {x1 − a1,1, ..., xn − a1,n}
3: N = {1}
4: q = {1} . This is the output for the case |X| = 1.
5: for i = 2 to n do
6: τ = min{T(f), f ∈ J , f(Pi) 6= 0}
7: N = N ∪ {τ}
8: Let f ∈ J such that T(f) = τ

9: J = J \ {f}
10: q = q ∪ { 1

f(Pi)
f}

11: for each f ∈ J with T(f) > τ do
12: f = f − f(Pi)qi

13: end for
14: for j ≤ min(τ) do
15: p = GaussRed(xjτ)

16: J = J ∪ {p}
17: end for
18: end forreturn J ,N, q.
19: end procedure
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Example 6.8.1. We consider the set X = {(0, 1, 4), (1, 0, 1), (0, 2, 0), (1, 3, 4), (0, 3, 2), (1, 0, 6)} ∈
R3 and we apply to it algorithm 10 in order to compute the reduced involutive basis of
I = I(X) / k[x1, x2, x3].
In order to clarify how the structure varies as we add a new point, we draw the Bar Code
and the tower structure step by step.
As explained in the comments above, the first point P1 = (0, 1, 4) is associated to

• J = {x1, x2 − 1, x3 − 4};

• N = {1};

• q = {1}.

The Bar Code equipped with the star set is

1
x1

x2

x3

0

1

2

3

while the tower structure is

0,1,4

We take these data as base points for the procedure and we continue with P2 = (1, 0, 1).

Since the minimal polynomial in the current J , not vanishing in P2 is x1, then N = {1, x1}
and q2 = x1. The Bar Code is

0

1

2

3

1 x1

x2
1

x2

x3

and the tower structure is

0,1,4 1,0,1

We remove x1 from the involutive basis, so J = {x2 − 1, x3 − 4}. We interpolate these
polynomials using q2 in order to make them vanish both in P1 and in P2:
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x2 − 1→ x2 − 1− evP2(x2 − 1)q2 = x2 + x1 − 1;

x3 − 4→ x3 + 3x1 − 4;

so we get J = {x2 + x1 − 1, x3 + 3x1 − 4}.
Since min(x1) = x1, we only have to apply GaussRed only to the term x2

1. Since x2
1 already

vanishes in P1, we get x2
1 − x1, so J = {x2

1 − x1, x2 + x1 − 1, x3 + 3x1 − 4}.
We consider now the point P3 = (0, 2, 0). Since x2

1 − x1 vanishes in P3, while evP3(x2 + x1 −
1) = 1, we get N = {1, x1, x2} and q3 = x2 + x1 − 1.
The Bar Code is

0

1

2

3

1 x1 x2

x2
1

x1x2

x2
2

x3

the tower structure is

0,1,4 1,0,1

0,2,0

We get J = {x2
1 − x1, x3 + 3x1 − 4}.

We interpolate the polynomial in x3:

x3 + 3x1 − 4→ x3 + 3x1 − 4− evP3
(x3 + 3x1 − 4)q3 = x3 + 4x2 + 7x1 − 8.

Since min(x2) = x2, we add to the star set the terms x1x2, x
2
2, so we have to apply GaussRed

to these terms:

x1x2 → x1x2;

x2
2 → x2

2 − 3x2 − 2x1 + 2.

Then we get J = {x2
1 − x1, x1x2, x

2
2 − 3x2 − 2x1 + 2, x3 + 4x2 + 7x1 − 8}.

Consider the point P4 = (1, 3, 4). The first polynomial non vanishing in P4 is x1x2, so
N = {1, x1, x2, x1x2} and q4 = 1

3x1x2.
The Bar Code is

0

1

2

3

1 x1 x2 x1x2

x2
1 x2

1x2

x2
2

x3
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the tower structure is

0,1,4 1,0,1

0,2,0 1,3,4

We have J = {x2
1 − x1, x

2
2 − 3x2 − 2x1 + 2, x3 + 4x2 + 7x1 − 8}, so we interpolate the last

two polynomials:

x2
2 − 3x2 − 2x1 + 2→ x2

2 − 3x2 − 2x1 + 2

x3 + 4x2 + 7x1 − 8→ x3 − 5x1x2 + 4x2 + 7x1 − 8,

then J = {x2
1 − x1, x

2
2 − 3x2 − 2x1 + 2, x3 − 5x1x2 + 4x2 + 7x1 − 8}.

Since min(x1x2) = x1, we have to deal with x2
1x2, obtaining x2

1x2 − x1x2, so J = {x2
1 −

x1, x
2
1x2 − x1x2, x

2
2 − 3x2 − 2x1 + 2, x3 − 5x1x2 + 4x2 + 7x1 − 8}.

We continue with P5 = (0, 3, 2). The first polynomial not vanishing in P5 is x2
2−3x2−2x1+2,

so N = {1, x1, x2, x1x2, x
2
2} and q5 = 1

2 (x2
2 − 3x2 − 2x1 + 2).

The Bar Code is

1 x1 x2 x1x2 x2
2

0

1

2

3

x2
1 x2

1x2 x1x
2
2

x3
2

x3

the tower structure is

0,1,4 1,0,1

0,2,0 1,3,4

0,3,2

We have J = {x2
1 − x1, x

2
1x2 − x1x2, x3 − 5x1x2 + 4x2 + 7x1 − 8} and we only have to

interpolate the polynomial in x3:

x3 − 5x1x2 + 4x2 + 7x1 − 8→ x3 − 5x1x2 − 3x2
2 + 13x2 + 13x1 − 14.

Since min(x2
2) = x2, we apply GaussRed to x1x

2
2, x

3
2:

x1x
2
2 → x1x

2
2 − 3x1x2;
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x3
2 → x3

2 − 6x2
2 − 2x1x2 + 11x2 + 6x1 − 6,

so J = {x2
1− x1, x

2
1x2− x1x2, x1x

2
2− 3x1x2, x

3
2− 6x2

2− 2x1x2 + 11x2 + 6x1− 6, x3− 5x1x2−
3x2

2 + 13x2 + 13x1 − 14}.
At the end, we conclude with P6 = (1, 0, 6). All the polynomials in the current J vanish in
P6 but x3 − 5x1x2 − 3x2

2 + 13x2 + 13x1 − 14.
Thereby, the final Groebner escalier is N = {1, x1, x2, x1x2, x

2
2, x3} and q6 = 1

5 (x3 − 5x1x2 −
3x2

2 + 13x2 + 13x1 − 14). Then J = {x2
1 − x1, x

2
1x2 − x1x2, x1x

2
2 − 3x1x2, x

3
2 − 6x2

2 − 2x1x2 +

11x2 + 6x1 − 6}.
The Bar Code is

0

1

2

3

1 x1 x2 x1x2 x2
2

x3

x2
1 x2

1x2 x1x
2
2

x1x3

x3
2

x2x3

x2
3

the tower structure is

0,1,4 1,0,1

0,2,0 1,3,4

0,3,2

1,0,6

In order to get the involutive basis we only have to perform GaussRed to x1x3, x2x3, x
2
3:

x1x3 → x1x3 − x3 + 4x1x2 + 3x2
2 − 13x2 − 14x1 + 14;

x2x3 → x2x3 − 5x2
2 − 8x1x2 + 19x2 + 18x1 − 18;

x2
3 → x2

3 − 7x3 + 11x2
2 + 14x1x2 − 45x2 − 4x1 + 46.

The output is then

• N = {1, x1, x2, x1x2, x
2
2, x3};

• q = {1, x1, x2+x1−1, 1
3x1x2,

1
2 (x2

2−3x2−2x1+2), 1
5 (x3−5x1x2−3x2

2+13x2+13x1−14)};

• J = {x2
1 − x1, x

2
1x2 − x1x2, x1x

2
2 − 3x1x2, x

3
2 − 6x2

2 − 2x1x2 + 11x2 + 6x1 − 6, x1x3 −
x3 + 4x1x2 + 3x2

2− 13x2− 14x1 + 14, x2x3− 5x2
2− 8x1x2 + 19x2 + 18x1− 18, x2

3− 7x3 +

11x2
2 + 14x1x2 − 45x2 − 4x1 + 46}.
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The correctness of the algorithm is a straightforward consequence of the one of the orig-
inal Moeller algorithm and from proposition 5.7.1 on the variations of the star set when we
add a term to the Groebner escalier.





Part IV

The Axis of Evil Theorem applied
to error correcting codes.





CHAPTER 7

Error correcting codes and locator
polynomials.

7.1 Introduction.

Coding theory is a rather recent subject. As a matter of fact, it dates back to 1948, with an
illuminating paper by Claude Elwood Shannon [96], which originated both coding theory
and information theory.
In this chapter we recall the notions on error correcting codes, needed to understand the
joint work with Massimiliano Sala and Teo Mora, examined in chapter 8, which links the
Axis of Evil Theorem to error correcting codes.
First of all, we introduce the notion of code and some preliminary definitions.
Starting with the so called Cooper’s philosophy [28, 29], going on with Chen’s works [24, 25]
and with the papers by Teo Mora, Emanuela Orsini and Massimiliano Sala [77, 82, 83],
the idea of exploiting Groebner bases computations in order to decode cyclic codes gained
around and became more and more important.
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In these works, given some well determined set of polynomials, the lexicographical reduced
Groebner basis is computed and employed for the decoding process, in order to detect and
correct the errors eventually occurred during a transmission, by making some computations
with the so called locator polynomials.
Being rather complicated to get the errors from the syndromes, Cooper has the idea to turn
the problem into a problem on polynomials. More precisely, Cooper takes a (finite) set of
polynomials FC , such that the error locations are in V (FC) and he computes the lexico-
graphical reduced Groebner basis of I = (FC). The required error locator polynomial can
be directly computed via the elimination property of lexicographical Groebner bases.
Chen et al. developed Cooper’s theory, following two directions. More precisely:

• they gave an approach to decoding via Newton identities, which was improved by
Augot-Bardet-Faugere [3, 4];

• they introduced the so called syndrome variety and the related syndrome ideal and
proposed to deduce via a Groebner basis pre-computation a series of polynomials
from which they deduce the plain error locator polynomial for each error and asso-
ciated syndromes. This approach has been refined by Loustaunau and York [66] and
Caboara-Mora [13].

The investigation on the structure of the syndrome variety and on its Groebner basis shows
that most of its roots are spurious [23] and that the pre-computed polynomials have tele-
scopical relations [6, 13].
Finally, Orsini and Sala [78] improved the decoding process by eliminating the spurious so-
lutions of the system and introduced the general error locator polynomial.
In further investigations (in cooperation with Teo Mora) [82, 83], they also highlighted the
importance for the general error locator polynomial to be sparse: this is the main link with
our work (chapter 8).
In the first section, we recall the basic concepts of coding theory, starting with the communi-
cation channel model proposed by Shannon. In sections 7.3 and 7.4 we deal with linear codes
and a peculiar typology of linear codes, called cyclic codes, showing their main features.
In section 7.5, we introduce Cooper’s philosophy and the developments proposed in the
following years.

7.2 A glimmer of error correcting codes.

It is possible to declare that both coding theory and information theory date back to the mile-
stone paper by Claude Elwood Shannon “A mathematical theory of communication”, pub-
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lished in 1948 [96].
In this paper, the author describes a scheme of a communication channel, as in the following
picture 7.1.

Information Source

A
Message

x=(x1,...,xk)

Transmitter

Signal
(codeword)

c=(c1,...,cn)

Noise Source
(error)

e=(e1,...,en)

Received
Signal
y=c+e Estimated

Message
x̂

Destination

B

Figure 7.1: The communication channel by C.E. Shannon.

A communication channel consists five different parts.

• The Information source: is the source producing the message to be sent to a receiving
terminal. As remarked by Shannon, the message can be of various types, such as a
sequence of letters as in a telegraph or a single function of time f(t) as occurs for
radio or telephony.

• The Transmitter: is the device operating on the message, encoding it, in order to produce
a signal, which is suitable for the transmission on the channel.

• The Channel: is the medium used to transmit the signal from the transmitter to the
receiver. For example a channel can be a band of radio frequencies or a cable.

• The Receiver: is the device performing the inverse operation of the transmitter. More
precisely, it decodes the signal, extracting the message from it.

• The Destination: is the person or thing to which the message is intended.

The channel can be noisy, i.e. when the information passes through it, there can be some
interference.
The encoding procedure is an injective map from the space containing the possible mes-
sages to a larger space. Roughly speaking, it adds some redundancy to the given message,
lengthening it.
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On the other hand, the decoding procedure recovers the original message.

For simplicity’s sake, from now on we assume (as it is usually done) the encoding to be
a linear function between two vector spaces.
In the next sections, we give an overall view of the fundamentals of coding theory, loosely
following [53, 77].

7.3 Linear codes.

Linear codes have been deeply studied, since they have algebraic properties making them
much easier to describe than the non-linear ones.
We denote by Fq := GF (q), with q = pm and p a prime number, the finite field of cardinality
q and we write (Fq)n for the vector space constituted by the n-tuples of the elements in Fq ,
which are regarded as row vectors.

Definition 7.3.1. Given k, n ∈ N, such that 1 ≤ k ≤ n, a linear code C is a vector subspace of
(Fq)n of dimension k.
We say that C is a linear code over Fq of length n and dimension k, for short [n, k]q code.
A vector c ∈ C is named codeword or word for short.

The codewords are indifferently denoted by

c = (c1, ..., cn) = c1c2...cn.

Each ci, i = 1, ..., n is called symbol.
We define the usual scalar product on (Fq)n and we denote it by “·”. This way, if C ⊂ (Fq)n

is a vector subspace, then we can define the dual vector space C⊥ and then we can talk
about dual codes.

Definition 7.3.2. If C is an [n, k]q code, its dual code is the set C⊥, containing the vectors
orthogonal to all the words in C, i.e.

C⊥ = {c′ ∈ (Fq)n, c′ · c = 0, ∀c ∈ C}.

The dual code of an [n, k]q code is clearly an [n, n− k]q code.

Definition 7.3.3. A generator matrix of an [n, k]q code C is a (k × n)-matrix G whose rows
form a basis of C as a Fq-vector space.
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An [n, k]q code C, in general, has more than one generating matrix.
If G = (Ik|A), where Ik is the (k× k)-identity matrix, G is a generator matrix in standard form.
Given a generator matrix G of the given [n, k]q code C, any set of k independent columns of
G corresponds to a set of coordinates, forming the so called information set of C.
The remaining r = n− k coordinates form the redundancy set of C, while r is its redundancy.
The encoding of a linear code is very simple. Given a message m ∈ (Fq)k and a generator
matrix G, we can obtain the word c ∈ (Fq)n by simple matrix multiplication c = mG.

When G is a generator matrix in standard form we get c = (m,mA): the message m is
composed by the first k components of c. Such an encoding is called systematic.

Definition 7.3.4. A parity-check matrix for an [n, k]q codeC is a generator ((n−k)×n)-matrix
H for C⊥.

We can represent a linear code C exploiting the parity-check matrix H :

∀x ∈ (Fq)n, Htx = 0⇔ x ∈ C.

Let us now briefly describe a transmission process. Suppose one has to send the message
x ∈ (Fq)k. The transmitted word is then c = xG ∈ (Fnq ).
Let y ∈ (Fq)n the received n-tuple. Due to the interference peculiar to the channel, there are
exactly four possibilities which can come up:

a. y = c ∈ C: the receiver deduces (correctly) that no errors have occurred during the
transmission and recovers the message as x.

b. y /∈ C: the receiver is able to deduce that some error has occurred. It detects and
corrects the errors by supposing that the correct word is the one in C differing from y

in the minimal number of positions.

c. y /∈ C: again the receiver is able to deduce that some error has occurred, but if it tries
a correction as in b. it gets another codeword, different from c and so it gets a wrong
message.

d. y ∈ C, but y 6= c: in this case, the receiver believes no errors have occurred and it is
completely wrong.

In order to correct the errors, the receiver needs to find the codeword having the “highest
possibility” of been sent by the transmitter, so it needs to understand how the noise can affect
the transmitted word.

Definition 7.3.5 ([77]). A q-ary symmetric channel, denoted by SC from now on, is a channel
satisfying the conditions below:
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1. the component of a transmitted word (an element of Fq that here we name generally
“symbol”) can be changed by the noise only to another element of Fq ;

2. the probability that a symbol becomes another one is the same for all pairs of symbols;

3. the probability that a symbol changes during the transmission1 does not depend on
its position;

4. if the i-th component is changed, then this fact does not affect the probability of change
for the j-th components, even if j is close to i.

In his paper [96], Shannon considers a channel with input alphabet a1, ..., ak and output
alphabet b1, ..., bl, supposing that each output letter depends statistically on the correspond-
ing input letter only according to a fixed probability. We write P(bj |ai) for the probability
that bj is received if ai is transmitted.
Such a channel is called discrete memoryless channel, DMC for short.
In particular, he deals with binary symmetric codes [105].
If we take a binary code of k words of length n (we choose k out of 2n words), we say that
the information rate is R = n−1log2(k).
Consider a binary symmetric code with error probability 0 < p < 1

2 and suppose to have a
code consisting of M vectors, chosen in {0, 1}n, with some decoding rule. Denote by Pi the
probability that an error occurs, after decoding, if xi ∈M is transmitted. The probability of
error when using this code is

Perror = M−1
M∑
i=1

Pi.

We define P∗(M,n, p) as the minimum of Perror over all codes with the given parameters.
The capacity of the binary symmetric code is C = 1 + p · log(p) + (1− p)log(1− p).
We state now Shannon’s fundamental theorem.

Theorem 7.3.6. Let Mn := 2[Rn], where 0 < R < C. Then P ∗(Mn, n, p)→ 0 if n→∞.

This means that there is a sequence of codes with information rate tending to R and er-
ror probability tending to 0. In other words, given ε > 0 and R < C there is a code with rate
> R and error probability < ε.
From now on, we assume to have a SC, such that all the words are sent with the same proba-
bility and that the probability of a symbol to be corrupted is less than the one of being maintained
unchanged by the interference.

1It is the error probability, namely the probability of an error to occur.
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Actually, this assumption is merely theoretical, since it is not reasonable in practice. Any-
way, it allows a simple construction of the theory, so it is classically accepted.
Under our hypotheses, we can construct a “good code” separating the codewords inside
(Fq)n as much as possible and this leads to the following

Definition 7.3.7. Given two elements v,w ∈ (Fq)n, the Hamming distance of v,w is the
number dH(v,w) of coordinates in which they differ.

Definition 7.3.8. The Hamming weight of v ∈ (Fq)n is the number of its nonzero coordinates,
i.e. w(u) := dH(u,0).

Definition 7.3.9. The distance of a code C is the minimal distance between two distinct
words

dH(C) := min{dH(v,w)|v,w ∈ C, v 6= w}.

Given an [n, k]q code C, we denote it by [n, k, d]q code if d = dH(C).
The distance is very important for a linear code, since it allows to compute two fundamental
numbers:

• the error detection capability, i.e. the number of errors that the code can detect;

• the error correction capability, namely the number of errors that the code can correct.

Theorem 7.3.10 ([77]). If C is an [n, k, d]q code it has

• error detection capability l = d− 1;

• error correction capability t = b (d−1)
2 c.

From now on, we denote t the error correction capability of a code C.

Theorem 7.3.11 (Singleton Bound, [77]). Given an an [n, k, d]q code C it holds

d ≤ n− k + 1.

Each code for which equality holds is called minimum distance separable code or simplyMDS.

Proposition 7.3.12 ([52]). If the employed code is SC with error correction capability t and
the probability of a symbol to be corrupted is less than the one of being maintained un-
changed by the interference, then the sent codeword with the highest probability is the one
nearest w.r.t. Hamming distance to the received vector. Such a codeword is unique if no
more than t errors have occurred.

Consider an [n, k]q code C and let
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• c ∈ (Fnq ) the transmitted word;

• e ∈ (Fnq ) the occurred error;

• y ∈ (Fnq ) the received vector.

It holds
y = c + e

and, given y, we want to find an e of minimal weight such that y − e ∈ C. For this purpose,
we consider the parity check matrix H and we have

Hty = Ht(c + e) = Ht(e) = s ∈ (Fn−kq ).

Definition 7.3.13. All the elements of the form s = Hty ∈ (Fn−kq ) are called syndromes. In
particular, we say that s is the syndrome corresponding to y.

We point out that the syndrome depends only on the occurred error, not on the trans-
mitted word.
If v ∈ (Fq)n we define its associated coset as

v + C = {v + c| c ∈ C}.

We get:
v,w ∈ (Fq)n are in the same coset ⇔ v −w ∈ C.

The given vector space (Fq)n can be partitioned into qn−k cosets of size qk.

Proposition 7.3.14. Given an [n, k, d]q code C, v,w ∈ (Fq)n belong to the same coset if and
only if they have the same syndrome.

Definition 7.3.15. Given a coset v +C of an [n, k, d]q code C and a vector w ∈ v +C, w is a
coset leader if it is an element of minimum weight in v + C.

With the previous notation, we define correctable syndromes.

Definition 7.3.16. If s is a syndrome corresponding to an error of weight w(s) ≤ t , then we
say that s is a correctable syndrome.

Theorem 7.3.17 (Correctable syndromes, [77]). If C is an [n, k]q code with error correction
capability t and the occurred errors are in number smaller or equal then t, then there exists
only one error e corresponding to the correctable syndrome s = He and e is the unique coset
leader of e + C.
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Now we are ready to decode a linear code.
Given the received vector y ∈ (Fq)n, we first compute the syndrome s = Hy. Then we find
a coset leader for the coset associated to s (7.3.14), say z. The decoded word is c = y−z and
we only have to recover the message from it.
In order to perform the procedure above, we need to construct a matrix, called standard ar-
ray, containing all the vectors in (Fq)n, which are 2n, ordered by coset. We can conclude that
the complexity of the decoding procedure is exponential in terms of memory occupancy.
Both the problem of decoding a linear code and the general problem of finding the distance
of a linear code are NP-complete, as shown in [5, 7, 106]. There are no algorithms decoding
linear codes in polynomial time.

7.4 Cyclic codes.

In this thesis we will deal with some peculiar codes, called cyclic codes.

Definition 7.4.1. An [n, k, d]q code C is called cyclic if

(c0, ..., cn−1) ∈ C ⇔ (c1, ..., cn−1, c0) ∈ C.

Essentially, definition 7.4.1 says that a cyclic permutation of the components of a word
gives again a word of C.
Cyclic codes can be algebraically described through a polynomial representation for words.
More precisely, denoted by Fq[x] the polynomial ring in one variable with coefficients in
the finite field Fq , we consider the principal ideal I = (xn − 1) / Fq[x] and the quotient
R := Fq[x]/I and we construct the following bijection

Wp : (Fq)n → R

v = (v0, ..., vn−1) 7→ v0 + ...vn−1x
n−1.

Thanks to Wp, we can view a linear code as a subset of R; in the following theorem, we
characterize cyclic codes.

Theorem 7.4.2. An [n, k, d]q code C is cyclic if and only if C is an ideal of the quotient ring
R.

BeingR a PIR, for each C, there is a unique monic polynomial generating it, the generator
polynomial g of C.
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It holds deg(g) = n − k and g | xn − 1. Using g =
∑n−k
i=0 gix

i one can recover a generator
matrix for the code:

G =


g0 g1 · · · gn−k 0 · · · 0

0 g0 · · · gn−k 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 g0 g1 · · · gn−k


Moreover, given f ∈ R, we have

f ∈ C ⇔ ∃q ∈ R| f = qg.

In analogy with matrices, we can define the parity check polynomial of C from the generator

polynomial.
Actually, g | (xn − 1) and it is unique, so the parity check polynomial is simply the polyno-
mial h ∈ R such that

h(x) =
xn − 1

g(x)

and, for f(x) ∈ C, we have

f(x) ∈ C ⇔ f(x) = q(x)g(x)⇔ f(x)h(x) = q(x)(g(x)h(x)) = 0 inR.

We remark also that the generator polynomial of the dual code C⊥ is g⊥(x) = xdeg(h)h(x−1)

(c.f. [77]).
We deal now with the problem of encoding and decoding, given an [n, k, d]q code C with
generator polynomial g, which allows to encode q-ary messages of length k by adding n−k
symbols as redundancy.
Let then m = (m0, ...,mk−1) a message and consider the associatedm(x) =

∑k−1
i=0 mix

i ∈ R.
We can obtain a systematic encoding form(x). For this purpose, we multyplym(x) by xn−k

and we divide the result by g(x), getting

m(x)xn−k = q(x)g(x) + r(x)

with deg(r(x)) < deg(g(x)) = n−k, so the reminder r(x) can be viewed as an (n−k)-vector.
Joining the k-vector m with the (nk)-vector r we obtain an n- vector c, which is the encoded
word, i.e.

c(x) := m(x)xn−k − r(x).

Therefore, the decoding process is immediate, if no errors occur, since the message is con-
stituted by the last k components of the received vector.
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When the receiver gets a vector and has to check the presence or absence of errors, only has
to check whether the remainder of the division of the polynomial associated to the received
vector by g is equal to zero to state that “probably” no errors have occurred. If the reminder
is not zero, it gives the syndrome, so the error can be corrected in the same way as described
in the previous section.
Given Fq , we have xn − 1 =

∏r
j=1 fj , fj irreducible over the base field.

Since cyclic codes of length n over Fq are generated by divisors of xn−1, each of these codes
corresponds to a subset of {fj}rj=1.
In particular, let us assume GCD(n, q) = 1, Fqm the splitting field of xn − 1 over Fq and a a
primitive n-th root of unity over Fq . Clearly

xn − 1 =

n−1∏
i=0

(x− ai)

and the generator polynomial of G has, as roots, some powers of a

Definition 7.4.3. The complete defining set of an [n, k, d]q cyclic code C with GCD(n, q) = 1

and generator polynomial gC is

SC,a := SC = {i1, ..., in−k|gC(aij ) = 0, j = 1, ..., n− k}

From now on, we fix a primitive n-th root of the unity a and we always write SC instead
of SC,a.
We can collect the integers modulo n into q-cyclotomic classes Ci:

{1, ..., n− 1} =
⋃
Ci, Ci = {1, qi, ..., qri},

where r is the smallest integer such that i ∼= iqr mod n.
The complete defining set is then a collection of q-cyclotomic classes. For this reason, there
are some SC′ ⊂ SC which are sufficient to specify the code unambiguously. We call each of
them defining set.
Some special cyclic codes are the so called BCH codes, which allow decoding procedures that
are faster than the one sketched above (see [77] for more details).

Theorem 7.4.4 (BCH bound). Consider an [n, k, d]q cyclic code C, with GCD(n, q) = 1 and
defining set SC = {i1, ..., in−k}. Suppose there are δ − 1 consecutive number in SC , say
{m0 + i, 0 ≤ i ≤ δ − 2} ⊂ SC . Then d ≥ δ.

Definition 7.4.5. If C is the [n, k, d]q cyclic code, with defining set S = {m0 + i, 0 ≤ i ≤
δ − 2, m0 ≥ 0, m0 + δ − 2 ≤ n− 1}, then C is a BCH code of designed distance δ.
A BCH code is narrow sense if m0 = 1 and primitive if n = qm − 1.
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There are several methods in order to decode a BCH code. For example, we can use the
extended Euclid algorithm.
We consider a BCH code of length n over Fq , with error correction capability t and designed
distance δ = 2t+ 1 and we denote by a a primitive n-th root of unity in Fqm .
We take a word c(x) = c0 + ...+ cn−1x

n−1 and we denote by v(x) = v0 + ...+ vn−1x
n−1 the

received word.
We can represent the error vector as the error polynomial

e(x) = e0 + ...+ en−1x
n−1.

If µ ≤ t is the weight of the error, let L = {l|el 6= 0, 0 ≤ l ≤ n − 1} be the set of the error
positions and {al|l ∈ L} the set of error locators. We call error values the values el, l ∈ L. The
classical error locator polynomial is

σ(x) =
∏
l∈L

(1− xal),

but we can recover the error locations also using the plain error locator polynomial, i.e.

Le(x) =
∏
l∈L

(x− al).

The error evaluator polynomial is

ω(x) =
∑
l∈L

ela
l
∏

i∈L\{l}

(1− xai).

In order to correct the errors, we find σ(x) and ω(x):

an error is in position l if and only if σ(a−l) = 0 and in this case the value of
the error is

el = −a−l ω(a−l)

σ′(a−l)
,

where σ′(x) is the first derivative of σ(x).

Lemma 7.4.6. The polynomials σ(x), ω(x) defined above are coprime.

In order to decode the given BCH code, we first compute the syndrome of the received
vector v(x):

Htv =


1 a a2 · · · an−1

1 a2 a4 · · · a2(n−1)

...
...

... · · ·
...

1 aδ−1 a2(δ−1) · · · a(δ−1)(n−1)




e0

e1

...
en−1

 =


e(a)

e(a2)
...

e(aδ−1)

 =


S1

S2

...
S2t

 .

The syndrome polynomial is S(x) =
∑2t
i=1 Six

i−1, with Si =
∑
l∈L ela

il.
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Theorem 7.4.7 (Key equation, [77]). For the polynomials σ(x), ω(x) the key equation holds

σ(x)S(x) ∼= ω(x) mod x2t.

If there are polynomials σ′(x), ω′(x) with deg(ω′(x)) < deg(σ′(x)) ≤ t, satisfying the key
equation, then there is a polynomial λ(x) such that σ′(x) = λ(x)σ(x) and ω′(x) = λ(x)ω(x)

The decoding algorithm consists essentially of finding σ(x) and ω(x), availing of the key
equation and the extended Euclid algorithm and Bézout identity [77].
Once noticed that deg(σ(x)) ≤ t and deg(ω(x)) ≤ t−1, we divide the polynomial f(x) := x2t

and g(x) = S(x) using the extended Euclid algorithm, denoting the reminder at each step
h by dh(x). We stop when we find a dk−1(x) and dk(x) such that deg(dk−1(x)) ≥ t and
deg(dk(x)) ≤ t− 1. Then, applying the procedure for Bézout identity, we get

dk(x) = x2tuk(x) + S(x)vk(x),

with deg(vk(x)) = deg(x2t)− deg(dk−1(x)) ≤ 2t− t = t.

Theorem 7.4.8. With the above notation, it holds σ(x) = λvk(x) and ω(x) = λdk(x) for some
λ ∈ Fq .

We have λ = vk(0)−1, so that σ(x) = vk(x)
vk(0) and ω(x) = dk(x)

vk(0) .
Finally, if one wants to compute the error values, he can simply use the relations

el = −al ω(a−l)

σ′(a−l)
, i = 1, ..., µ.

We point out that we can also decode a BCH code using Berlekamp-Massey algorithm [6]
or the so called Cooper’s philosophy, explained in next section.

7.5 Cooper’s philosophy and further improvements.

In his papers [28, 29], Cooper suggested to employ Groebner basis theory in order to decode
cyclic codes.
More precisely, he considers a primitive binary BCH code of length n = 2m − 1.
Let a ∈ F2m a primitive n-th root of unity and C our primitive BCH code over F2, with
defining set SC′ = {2i+ 1, i = 0, ..., t− 1}.

The related complete defining set is the union SC =
⋃t−1
i=0 C2i+1, so it contains all the

odd numbers from 1 to 2t− 1. Each even number 1 < α < 2t− 1 is in the set, since α = 2lh
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for some odd number h < 2t− 1 and so α ∈ Ch. This means that all the numbers from 1 to
2t− 1 are in SC . Moreover 2t ∈ Ct ⊂ SC and so we have at least 2t consecutive elements in
SC and the designed distance is δ ≥ 2t+ 1.
By the BCH bound (7.4.4), the distance is d ≥ 2t+ 1 and the error correction capability turns
out to be t ≥ b (δ−1)

2 c.
Once received v ∈ (F2)n, the decoder computes the syndrome (7.3.13) s = (s0, ..., s2t−1) ∈
(F2m)2t, in order to find the error location aj .
We define new variables z1, ..., zt, standing for the t error locations ali , li ∈ L. Then,
the error locations are a solution (ξ1, ..., ξt) ∈ (F2m)t of a system of t polynomials over
F2m [z1, ..., zt], i.e.

FC = {fi :

t∑
j=1

z2i−1
j − s2i−1, i = 1, ..., t}.

The problem for this nonlinear system is that sometimes is ineffective to compute its so-
lutions, so Cooper proposes to find another simpler system, with the same solutions. Let
then I = (FC) / F2m [z1, ..., zt], V (I) the defined variety, G the reduced Groebner basis of
I , w.r.t. the lexicographical ordering, induced by z1 < ... < zt and g ∈ F2m [z1] the unique
polynomial such that G ∩ F2m [z1] = {g}. We state here Cooper’s theorem

Theorem 7.5.1 ([29]). If E = {ξ1, ..., ξµ} is the set of error locations and

Z = {ξ|(ξ, b2, ..., bt) ∈ V (I)}

contains the components of all solutions of FC , then

• E = Z = {ξ|g(ξ) = 0};

• |E| = µ = deg(g) ≤ t;

• g is the polynomial whose roots are the error locators;

• σ(z) = zµg(z−1)

In [24], Chen et al. generalize Cooper’s idea to use Groebner techniques to binary cyclic
codes.

They consider a binary cyclic code C with length n and defining set S. We denote by µ
the number of occurred errors and v an integer such that 0 < v ≤ t and µ ≤ v. Then, using
the zj ’s variables for the error locations2, we can consider the following system where each

2They are n-th root of unity
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syndrome si ∈ F2m represents a value:

FCRHT2
:= {

v∑
j=1

zij − si, i ∈ S} ∪ {zn+1
j − zj , 1 ≤ j ≤ v} ⊂ F2m [z1, ..., zv].

Such a system defines an ideal I = (FCRHT2) / F2m [z1, ..., zv], whose zero set gives the error
locations and the error vector, occurred in the transmission. We look for it using Groebner
bases .

Proposition 7.5.2. With the above notation

• E ⊂ Z = {ξ|g(ξ) = 0};

• |E| = µ ≤ v = deg(g).

Theorem 7.5.3 ([24]). It holds:

1. If v = µ, V (I) consists of all coordinate permutations of (ξ1, ..., ξµ), E = Z, Le(z) =

g(z), σ(z) = zµg(z−1)

2. If v = µ+ 1, (0, ξ1, ..., ξµ) ∈ V (I), E = Z ∪ {0} and g(z) = z(zµσ(z−1)) = zLe(z).

3. If v ≥ µ+ 2 then (ζ, ζ, ξ1, ..., ξµ, 0, ..., 0) ∈ V (I), ∀ζ ∈ F2m , E = F2m g(z) = zn+1 − z

4. If v < µ G = {1}.

In [23] Chen et al. generalize Cooper’s philosophy to q-adic codes proposing a solution
for decoding an error whose weight is assumed known.
Moreover, they give an alternative approach via Newton’s identities in the binary case, but,
since it goes beyond our interest, we do not treat it. For details, one can see [77]. For the
improvements by Augot-Bardet-Faugere, one can see [3, 4].
In the context defined so far, for any word to be decoded, we need to compute a Groebner
basis and the syndromes are considered as parameters, computed expressively from the
received word and substituted into the system. Moreover, different Groebner basis compu-
tations must be performed for different potential error weights, until the true weight of the
actual error is obtained.
In [25], Chen et al. proposed a new method which consists of considering the syndromes as
variables xi and computing the Groebner basis as a preprocessing. The growth of the num-
ber of variables is a problem of this method. On the other hand, the Groebner basis is
computed only once.
Following [77], we denote by x,y, z the multivariables representing, respectively, the syn-
dromes, the locations and the error values, i.e. the variables for the polynomial ring
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Fq[x1, ..., xn−k, zt, ..., z1, y1, ..., yt] = Fq[x,y, z].
Then, we consider

FCRHT := {
t∑

j=1

yjz
i
j−xi, i ∈ S}∪{zn+1

j −zj , 1 ≤ j ≤ t}∪{y2m−1
j −1, 1 ≤ j ≤ t} ⊂ Fq[x,y, z],

I = I(FCRHT ) / F2m [x,y, z], V (I) ⊂ (Fqm)2µ and G the lexicographical reduced Groebner
basis with x1 < ... < xn−k < zt, ..., z1 < y1 < ... < yt.

Definition 7.5.4. The zerodimensional ideal I is the syndrome ideal and its variety V (I) the
syndrome variety.

Loustaunau and York, in [66], improved the approach introduced by Chen. They sug-
gested to use the FGLM algorithm to make the Groebner computation.
Caboara and Mora, in [13], gave a corrected and optimized version of Chen’s algorithm,
basing on the studies on the structure of Groebner bases for zerodimensional ideals by Gi-
anni [44] and Kalkbrener [59], who stated Gianni-Kalkbrener theorem (see 3.5.3).

We sketch now the improvements due to M.Sala and E.Orsini.
Consider the syndrome variety V (I) defined by Caboara-Mora in [13] and a correctable
syndrome s ∈ (Fmq )n−k; there are some points in the variety that uniquely determine the
potential error locations and error values, but, unfortunately, there are also points, called
spurious solutions (see theorem 7.5.3) from now on, not corresponding directly to some error
vector.
Essentially, as explained in [93], the spurious solutions are the points containing zero in
correspondence to some error value (the error value cannot be zero) and the ones containing
repeated locations (indeed, they must correspond to different positions for the error values).
Moreover, they are also the solutions outside the base field.
M.Sala and E.Orsini propose a new syndrome variety eliminating these points.
They consider an [n, k, d]q cyclic code with GCD(q, n) = 1 and give the following

Definition 7.5.5. Let n ∈ N be an integer. We denote pll′ ∈ Fq[z1, ..., zt] as

pll′ :=
znl − znl′
zl − zl′

, 1 ≤ l < l′ ≤ t.

The syndrome ideal is I = (FOS) with

FOS = {fi, h− j, χi, λj , p′ll′ , 1 ≤ l < l′ ≤ t, 1 ≤ i ≤ n− j, j ∈ S} ⊂ Fq[x,y, z]

with
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• fi :=
∑t
l=1 ylz

j
l − xi

• hj := zn+1
j − zj ;

• λj := yq−1
j − 1;

• χi := xq
m

i − xi;

• p′ll′ = zl′zlpll′

If Q := Fq[x1, ..., xn−k], G is the usual reduced Groebner basis and for each ι = 1, ..., t, for
each l, Gι := G ∩ Q[zt, ..., zι], Gιl = {g ∈ Gι \ Gι+1, degι(g) = l} and the polynomials are
ordered such that their leading terms are ordered w.r.t. lex, then

Theorem 7.5.6. It holds

1. G ∩ Q[z1, ..., zt] =
⋃t
i=1 Gi;

2. Gi =
⋃i
δ=1 Giδ , Giδ 6= ∅, 1 ≤ i ≤ t, 1 ≤ δ ≤ i;

3. Gii = {gii1}, 1 ≤ i ≤ t;

4. T(gii1) = zii , Lp(gii1) = 1;

5. if 1 ≤ i ≤ t, 1 ≤ δ ≤ i− 1, then ∀g ∈ Giδ , and the trailing polynomial is equal to 0.

Let gtt1 the unique polynomial in Gt with degzt(gtt1) = t:

gtt1 = ztt +

t∑
l=1

bt−lz
t−l
t .

T.F.A.E.:

1. there are exactly µ errors;

2. bt−l(s) = 0 for l > µ and bt−µ(s) 6= 0;

3. gtt1(s, zt) = zt−µ(Le(z)).

This means σ(z) = zµgtt1(s, z−1), i.e. gtt1 ∈ Q[z] is a monic polynomial such that

given a syndrome vector s ∈ (Fqm)n−k, corresponding to an error of weight µ ≤ t, its
t roots are the µ location plus zero, counted with multiplicity t− µ.

It is called general error locator polynomial of C.
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Theorem 7.5.7 ([82]). Every cyclic code possesses a general error locator polynomial.

Once we get a general error locator polynomial for C, the decoding algorithm only con-
sists on evaluating it in the syndromes, so its efficiency depends on the sparsity of the in-
volved general error locator polynomial.

Theorem 7.5.8. Let C be a code with error correction capability t = 1 and s a correctable
syndrome, then the general error locator polynomial is LC(X, z) = z + a, a ∈ F2[X]. More-
over, there is one error if and only if a(s) 6= 0, being a(s) itself the error location.
Let C be a code with t = 2, s a correctable syndrome and z1, z2 the error locations. Then
LC(X, z) = z2 + az + b, a, b ∈ F2[X] and b(s) = z1z2, a(s) = z1 + z2.
Moreover, there are two errors if and only if b(s) 6= 0, and there is an error if and only if
b(s) = 0 and a(s) 6= 0.

We recall here the main theorems stated in [78].

Theorem 7.5.9. LetC a binary [n, k, d] code, with n ≤ 61 and d = 3, 4, t = 1. If S is a defining
set for C and LC ∈ Fq[x1, .., xn−k][z] a general error locator polynomial, four possibilities
can occur:

1. if S = {m} with GCD(n,m) = 1, there exists an integer k mod n such that LC =

z + xk1 ;

2. if S = {m,h} with GCD(h,m) = 1, there exist two integers m′, h′ mod n such
that LC = z + xm

′

1 xh
′

2 ;

3. C is a sub-code of C ′, of type 1 or 2 and LC = LC′ ;

4. C is equivalent to a code C ′ of type 1, 2 or 3 and we can trivially obtain LC from LC′

Theorem 7.5.10. Let C be a code with length n ∈ {3, ..., 125}, n 6= 105 and distance d = 5, 6.
Then C is equivalent to another code D with 1 ∈ SD.

Theorem 7.5.11. Let C be a binary [n, k, d] code with n ∈ {7, ..., 62}, n odd, d = 5, 6 and
t = 2.
Seven possibilities can occur:

1. n is such that C has SC = {0, 1} and d ≤ 5;

2. C is a BCH code (SC = {1, 3}) and b = xn−1
1 (x3

1 + x2);
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3. SC = {1, n− 1, l}, l = 0, n3 and

b =

 x1x
−1
2 (1 + x3), l = 0
x3

3+1

x
n/3
1 x

2/3n
2 x3+1

, l = n
3 ;

4. SC = {1, n/l} for some l ≤ 3;

5. C is one of the following:

n = 31, SC = {1, 15}; n = 31, SC = {1, 5}; n = 45, SC = {1, 21};

n = 51, SC = {1, 9}; n = 51, SC = {0, 1, 5};

6. C is a sub-code of one of those presented above;

7. C is equivalent to one of those presented above.

Even if at present there is no known theoretical proof of the sparsity of general error
locator polynomials, there are some experimental evidence, at least in the binary case. Some
improvements to the algorithm have been given in [78].
In [83] is stated that

Actually3 the number of monomials of L apparently grows linearly, since |L| ≤ n.
We give some theoretical explanations for the sparsity of our polynomials, in all cases
except two.
A complete proof for all cases (any and any) seems far beyond our means, at present, but
we plan to investigate more and more particular cases, hoping sooner or later to get the
profound reason behind the sparsity, whose experimental evidence is apparent (at least
in the binary case).

3In the paper [83], L is the general error locator polynomials





CHAPTER 8

Some experiments on locator
polynomials.

8.1 Introduction.

In this chapter we treat some partial results of a joint work with Massimiliano Sala and Teo
Mora, connecting the Axis of Evil Theorem to error correcting codes.
In our context, we consider a binary BCH code C of length n = 2m− 1 with error correction
capability t = 2, correcting simultaneously 1 and 2 errors studying the general error locator
polynomial and the related syndrome variety V (FOS) from a different point of view.
Up till now, we have computed lexicographical reduced Groebner bases of polynomial ideals. Due
to the huge number of variables, such a computation is rather inefficient, so we try to reverse
our point of view, approaching the problem à la Moeller, rather than à la Buchberger.
Instead of considering a system of equations, we consider directly the syndrome variety by
Orsini and Sala, trying to derive the general error locator polynomial via interpolation.
As explained in the previous chapter, it would be important to prove the sparsity of the gen-
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eral error locator polynomial.
We will show that Cerlienco-Mureddu Correspondence and the Axis of Evil theorem, with
the related algorithm, can be helpful for our purpose.
Indeed, thanks to Cerlienco-Mureddu Correspondence, we can give a precise description
of the Groebner escalier associated to V (FOS). Such a description and the properties of the
Axis of Evil factorization permit us to reduce appreciably the number of points to deal with.
Moreover, we will see that in some special cases, we can find a structure underlying some
sparse general locator polynomials, which involve the cycle structure of the base field and
Frobenius automorphism.
Our aim is to prove that the number of terms in the general error locator polynomial grows
linearly with the cardinality of the base field.
Since this is still a work in progress, we cannot give here complete results. Anyway, the
half-time results we will give in the following sections are rather encouraging.
These partial results have been computed implementing timely procedures, using the pro-
gramming language provided by Singular [30] and exploiting, as usual, the library pointid.lib
by S. Steidel [103] for the Axis of Evil factorization.
Section 8.2 explains out problem in details and gives a precise description of the structure of
the Groebner escaliers we have to deal with. Sections 8.3, 8.4 give the first partial results we
got in the case of F8,F16. Since these results are not optimal, we continued our investiga-
tion on F8, obtaining the results of section 8.5. Finally, in section 8.6, we explain our future
projects of generalization for the encouraging results in F8.

8.2 Our problem.

In this section, we start giving more details about our problem. Precise data for the specific
examined cases will be given in the following sections.

Let us consider a binary BCH code C of length n = 2m − 1 for some m ≥ 3, with error
correction capability t = 2 and defining set SC′ = {1, 3}.
The complete defining set is SC = C1 ∪ C3 and we denote by δ the designed distance. We
set d = δ and we have k = n− |SC |. [77].
We deal with the points in the syndrome variety by Sala and Orsini, deciding to correct 1

and 2 errors simultaneously.
More precisely, we start considering all the points of the form

(x1, x2, z1, z2) = (a + b, a3 + b3, a, b),
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where are the variables x1, x2 represent the syndromes and z1, z2 the locations (x1 < x2 <

z1 < z2), letting a, b vary in Fq := F2m in all possible ways. The forms assumed by the syn-
dromes come from the ones of polynomials fi ∈ FOS : fi :=

∑t
l=1 ylz

j
l − xi, where the error

values are yl = 1, since we are dealing with a binary code. The related syndromes are there-
fore a + b, a3 + b3 (see section 7.5 for more details).
There are q2 such points, but we have to exclude the spurious solutions, not corresponding
univocally to an error vector.
We start excluding the point (0, 0, 0, 0), since it corresponds to the absence of errors. More-
over, we exclude the 4-uples of the form (0, 0, a, a), a ∈ Fq \ {0}: for x1 = x2 = 0 we
authomatically have the couples of error locations (a, a).
Consequently, the points we have to examine are only the ones of the form (a+b, a3+b3, a, b),

with a, b ∈ Fq , a 6= b.
Being a + b, a3 + b3 univocally determined once one knows a, b ∈ Fq , sometimes, we will
identify the 4-tuple (a + b, a3 + b3, a, b) with the couple (a, b) and we will write them indif-
ferently.
After the exclusion of spurious solutions, we get q2 − q distinct points, forming a set we de-
note by X and, as usual, we write I := I(X) for the corresponding zerodimensional radical
ideal.
We give now a characterization for the lexicographical Groebner escalier (x1 < x2 < z1 <

z2) associated to I . In order to describe it, we state the following

Notation 8.2.1. If τ ∈ T is a term and H ⊂ T ,

τH := {τσ, σ ∈ H}.

Proposition 8.2.2. With the above notation, set H = {1, x1, ..., x
q−2
1 }, where q is the cardi-

nality of the base field.
The lexicographical Groebner escalier (x1 < x2 < z1 < z2) of the ideal I = I(X) described
as the ideal associated to X = {(a + b, a3 + b3, a, b), a, b ∈ F2m , a, 6= b} has the form

N(I) = N′ ∪ z1N
′,

where
N′ = H ∪ x2H ∪ ... ∪ x

q
2−1
2 H.

Proof: Consider the set X. If we fix a, b ∈ F2m and we consider the associated points

P1 := (a + b, a3 + b3, a, b), P2 := (a + b, a3 + b3, b, a),

clearlyP1, P2 share the same first two coordinates so, by Cerlienco-Mureddu Correspondence
we can partition X as X = X1tX2, such that if, for some a, b ∈ F2m (a +b, a3+b3, a, b) ∈ X1,
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necessarily (a + b, a3 + b3, b, a) ∈ X2 and if N1 = N(I(X1)) then N = N(I(X1))∪ z1N(I(X1)).

We restrict then to X1.
By hypothesis, a 6= b ∈ F2m hence, clearly, a + b 6= 0; on the other hand, ∀c ∈ F∗q , ∀a ∈ F∗q ,
a 6= c, let b = c − a. We have b 6= a, b 6= 0 and c = a + b. Clearly it also holds c = c + 0.
The above relations imply that the points in X1 have (q − 1) different first coordinates, so
1, x1, ..., x

q−2
1 ∈ N.

Moreover, by the partition formulas of [80], the couples (a, b) such that a + b = c ∈ F∗2m are
exactly 2m−2

2 if we impose a, b 6= 0. Since also c + 0 = 0, we add the couple (c, 0), obtaining
that there are 2m−1 distinct points for each first coordinate.
The assertion is proved by Cerlienco-Mureddu Correspondence if we can show that, among
the points having the first coordinate, it is impossible that two points share also the second
coordinate.
What I meant so far, is that if for some a, b, c, d ∈ F∗2m we have{

a + b = c + d 6= 0

a3 + b3 = c3 + d 3

then {a, b} = {c, d }.
Indeed, by a3 + b3 = c3 + d 3 we have

(a + b)(a2 + b2 + ab) = (c + d )(c2 + d 2 + cd )⇒ (a + b)2 + ab = (c + d )2 + cd ⇒ ab = cd .

The elements a, b, c, d are then the roots in F2m of x2 + (a + b)x + ab. Being them only two
[65] and since a, b are obviously roots of the trinomial, we necessarily have {a, b} = {c, d }
and we can conclude. �

Since the Groebner escalier has always this shape, we know that z2
1 , z2 always belongs to

the monomial basis G(I).
Moreover, we know that z2 = z1 + x1 ∈ I , since for each couple of elements a, b ∈ Fq ,
(a + b) + a = b (actually it even belongs to the lexicographical reduced Groebner basis of
I , being x1, z1 ∈ N(I)), so, once one has determined a, b can be simply computed via that
linear (and very sparse) relation.
This implies that, among the polynomials in a minimal lexicographical Groebner basis of
I , we only have to deal with the one whose leading term is z2

1 , which allows to compute the
values for the first error.
By the evident symmetry of N(I), applying the Axis of Evil algorithm to the points (x1, x2, z1, z2),
for the factorization of the required polynomial, we get two factors Fa := z1 +fa(x1, x2) and
Fb := z1 + fb(x1, x2).
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Moreover X is partitioned in two subsets Za ,Zb ⊂ X, with |Za | = |Zb | = 1
2 |X| =

(
q
2

)
1 such

that:

• Fa vanishes on the points of Za

• Fb vanishes on the points of Zb

• (x1, x2, z1, z2) ∈ Za ⇔ (x1, x2, z2, z1) ∈ Zb .

Then, we can restrict to one of the subsets, say Za and compute Fa : the other points come
from z2 = z1 + x1.
Therefore, we arrange the points in couples of the form

[(a + b, a3 + b3, a, b), (a + b, a3 + b3, b, a)],

according to their first three coordinates, since we do not need any computation involving
z2.
Then, we choose one point for each couple2. The choice of the points influences the sparsity
of the locator polynomial Fa. Our aim is to determine locator polynomials linearly growing
with the cardinality of the base field, characterizing them, if possible, with a pattern, in
order to generalize the construction to larger cases.
We start reporting here the partial results obtained for F8,F16,F32.

8.3 The case of F8: cyclic configurations.

The simplest base field for our study is the one corresponding to m = 3, namely

F8 = {0, 1, a, a+ 1, a2, a2 + 1, a2 + a, a2 + a+ 1},

with primitive element a: a3 = a+ 1.

For brevity’s sake, from now on, we will set F8 = {0, 1, a, a2, a3, a4, a5, a6}.
Our code is a binary [n, k, d] BCH code with n = 23 − 1 = 7, d = δ = 7, k = 1. Its error
correction capability is t = 2 and we suppose to correct 1 and 2 errors simultaneously.
As explained in section 8.2, the points we first take in to account are 64 = 82, and they have
the form

(a + b, a3 + b3, a, b), a, b ∈ F8,

1They mirror the simmetry of the Groebner escalier.
2 This fact represents a further proof of 1

2
|X| =

(q
2

)
, since the idea is that we are taking the couples (a, b) ∈

(Fq)2, a 6= b disregarding the entries’ order.
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where x1 = a + b, x2 = a3 + b3 are the syndromes and z1 = a, z2 = b the error locations.
We discard now the spurious solutions, namely the points of the form (0, 0, a, a): if x1 =

x2 = 0 we have the 8 couples of locations (a, a).
Applying the Axis of Evil algorithm on the remaining 56 points (x1, x2, z1, z2), we get two
polynomials Fa := z1 + fa(x1, x2) e Fb := z1 + fb(x1, x2) and a partition of the 56 points in
two subsets Za ,Zb of cardinality 28, satisfying the properties stated in the previous section.
We arrange then the 56 points in 28 couples, according to their first three coordinates, i.e.
each couple will be of the form

[(a + b, a3 + b3, a, b), (a + b, a3 + b3, b, a)].

More precisely, we get a list P containing the following 28 couples:

[(a, a3, 0, a), (a, a3, a, 0)],

[(a2, a6, 0, a2), (a2, a6, a2, 0)],

[(a3, a2, 0, a3), (a3, a2, a3, 0)],

[(a4, a5, 0, a4), (a4, a5, a4, 0)],

[(a5, a, 0, a5), (a5, a, a5, 0)],

[(a6, a4, 0, a6), (a6, a4, a6, 0)],

[(1, 1, 0, 1), (1, 1, 1, 0)],

[(a4, a4, a, a2), (a4, a4, a2, a)],

[(1, a5, a, a3), (1, a5, a3, a)],

[(a2, a2, a, a4), (a2, a2, a4, a)],

[(a6, 1, a, a5), (a6, 1, a5, a)],

[(a5, a6, a, a6), (a5, a6, a6, a)],

[(a3, a, a, 1), (a3, a, 1, a)],

[(a5, 1, a2, a3), (a5, 1, a3, a2)],

[(a, a, a2, a4), (a, a, a4, a2)],

[(a3, a5, a2, a5), (a3, a5, a5, a2)],

[(1, a3, a2, a6), (1, a3, a6, a2)],
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[(a6, a2, a2, 1), (a6, a2, 1, a2)],

[(a6, a3, a3, a4), (a6, a3, a4, a3)],

[(a2, a4, a3, a5), (a2, a4, a5, a3)],

[(a4, a, a3, a6), (a4, a, a6, a3)],

[(a, a6, a3, 1), (a, a6, 1, a3)],

[(1, a6, a4, a5), (1, a6, a5, a4)],

[(a3, 1, a4, a6), (a3, 1, a6, a4)],

[(a5, a4, a4, 1), (a5, a4, 1, a4)],

[(a, a2, a5, a6), (a, a2, a6, a5)],

[(a4, a3, a5, 1), (a4, a3, 1, a5)],

[(a2, a5, a6, 1), (a2, a5, 1, a6)].

Thanks to proposition 8.2.2, the tower structure of the Groebner escalier we have to work
with is

1 x1 x2
1 x3

1 x4
1 x5

1 x6
1

x2 x1x2 x2
1x2 x3

1x2 x4
1x2 x5

1x2 x6
1x2

x2
2 x1x

2
2 x2

1x
2
2 x3

1x
2
2 x4

1x
2
2 x5

1x
2
2 x6

1x
2
2

x3
2 x1x

3
2 x2

1x
3
2 x3

1x
3
2 x4

1x
3
2 x5

1x
3
2 x6

1x
3
2

In order to deal with this problem, we employ the original Axis of Evil algorithm. In-
deed, as explained in chapter 3 even if the minimal Groebner basis we get is not reduced, the
linear factors produced are. Moreover, the interpolation step in algorithm 5, line 19 ensures
that the maximal number of terms composing each linear factor is |X|+ 1 = |N(I(X))|+ 1.
We compute the polynomials using Singular. More precisely, we run on the points the facG-
BIdeal procedure from the library pointid.lib [30, 103].
For example, for the following choice of the points3

listQ1 = P [1][1], P [2][2], P [3][2], P [4][2], P [5][1], P [6][1], P [7][1], P [15][2], P [10][2],

P [13][1], P [8][1], P [12][1], P [11][1], P [9][2], P [22][1], P [20][1], P [16][1], P [21][2],

P [14][2], P [18][2], P [17][1], P [26][1], P [28][2], P [24][2], P [27][2], P [25][2], P [19][1], P [23][2];

3The configuration list is
[1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2].
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we get

list U1 = facGBIdeal(Q1);

poly tcontrollo1 = U1[2][3][1];

ncols(coef(controllo1, x1x2z1));

⇒ z1 + x6
1x

3
2 + ax5

1x
3
2 + a2x4

1x
3
2 + a3x3

1x
3
2 + a4x2

1x
3
2 + a5x1x

3
2 + a6x3

2 + ax6
1x

2
2 + x5

1x
2
2+

ax4
1x

2
2 + a5x3

1x
2
2 + a2x2

1x
2
2 + a4x1x

2
2 + a5x2

2 + x6
1x2 + a4x5

1x2 + a3x4
1x2 + a4x3

1x2+

a5x2
1x2 + a6x1x2 + a2x2 + a2x6

1 + a3x4
1 + a6x3

1 + x2
1 + ax1 + a4

As a first result, we found 7 configurations presenting an easy structure, leading to poly-
nomials made up of 18 terms.
It is possible to describe such a structure in a very precise way.
The 7 configurations are connected to cyclic permutations of powers of the primitive element a in
the sense described below4.
We choose the first points configuration so that we get:

• 7 points whose third coordinate is ai1 , i1 ∈ {1, ..., 7};

• 6 points whose third coordinate is ai2 , i2 ∈ {1, ..., 7} \ {i1};

• ...

• 1 point points whose third coordinate is ai7 , i7 ∈ {1, ..., 7} \ {i1, ...., 16};

• no points whose third coordinate is 0.

We summarize such a choice in a table

Number of points Third coordinate

7 i1

6 i2

5 i3

4 i4

3 i5

2 i6

1 i7

Then, for the same values of i1, ..., i7, which are pairwise different by construction, we
choose another point configuration such that

4They are exactly 7 since the powers of a are 7 and the cyclic permutations of a cycle of length h are h.
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• 7 points whose third coordinate is ai7 ;

• 6 points whose third coordinate is ai1 ;

• ...

• 1 point points whose third coordinate is ai6 ;

• no points points whose third coordinate is 0.

This choice can be summarized in an analogous table and we can proceed this way for each
cyclic permutation of i1, ..., i7, obtaining another configuration in correspondence.
We point out that each cyclic permutation corresponds to only one point configuration, by
the structure of the couples in P .
Indeed, let us consider, for example the cyclic permutation associated to the table above.
Among the 56 non spurious points, only 7 of them have i1 as third coordinate: they are the
ones of the form (i1 + b, i31 + b3, i1, b), with b 6= i1 ∈ F8: since |F8| = 8 and since we exclude
the case (0, 0, i1, i1), there are exactly 7 possible values for b. Thus, we have no choice and
we have to take exactly that points.
Then we consider the second row of the table: we need to choose 6 points with i2 6= i1 as
third coordinate. Again there are 7 points of this shape.
Nevertheless, among these 7 points, there is also (i2 +i1, i

3
2 +i31, i2, i1). Since for our configu-

ration we have choosen all the 7 points with third coordinate equal to i1, (i1+i2, i
3
1+i32, i1, i2)

belongs to our configuration.
On the other hand, for each couple of the form

[(a + b, a3 + b3, a, b), (a + b, a3 + b3, b, a)], a, b ∈ F8, a 6= b,

we want to choose only one point, so we cannot choose (i2 + i1, i
3
2 + i31, i2, i1) and this implies

that we have only 6 points with i2 as third coordinate to take into account and again we
have no choice while picking them. Following the same line for i3, ..., i7 we get the unique
point configuration associated to the table above.
Considering a cyclic permutation of i1, .., i7 in the sense explained before we get another
(unique) point configuration.
Every polynomial we obtain by applying algorithm 5 to the unique point configuration as-
sociated to one of the 7 cyclic permutation of i1, ..., i7 is composed by the same number of
terms, i.e. 18.
Let us examine two of them. The precise data for all the 7 points configurations are con-
tained in appendix B, B.1.1.
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Configuration 1
This configuration corresponds to the permutation represented in following table:

Number of points Third coordinate

7 a2

6 a3

5 a4

4 a5

3 a6

2 1

1 a

The unique point configuration associated to that table is:

[(a, a3, a, 0)],

[(a2, a6, a2, 0)],

[(a3, a2, a3, 0)],

[(a4, a5, a4, 0)],

[(a5, a, a5, 0)],

[(a6, a4, a6, 0)],

[(1, 1, 1, 0)],

[(a4, a4, a2, a)],

[(1, a5, a3, a)],

[(a2, a2, a4, a)],

[(a6, 1, a5, a)],
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[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a2, a4)],

[(a3, a5, a2, a5)],

[(1, a3, a2, a6)],

[(a6, a2, a2, 1)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a3, a6)],

[(a, a6, a3, 1)],

[(1, a6, a4, a5)],

[(a3, 1, a4, a6)],

[(a5, a4, a4, 1)],

[(a, a2, a5, a6)],

[(a4, a3, a5, 1)],

[(a2, a5, a6, 1)].

If we draw the tower structure of these points, disregarding the fourth coordinate as a con-
sequence of proposition 8.2.2, we get

a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a4 a3,a,1 a4,a4,a2a5,a6,a6 a6,1,a5 1,a5,a3

a,a6,a3 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,a2 1,a3,a2

a,a2,a5 a2,a5,a6 a3,1,a4 a4,a3,a5a5,a4,a4a6,a3,a3 1,a6,a4

while the configuration list is

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

and the associated locator polynomial turns out to be

z1 + a6x5
1x

3
2 + a5x4

1x
3
2 + a5x3

1x
3
2 + a3x2

1x
3
2 + a6x1x

3
2 + a3x3

2 + a5x6
1x

2
2 +

a3x5
1x

2
2 + a6x4

1x
2
2 + a3x3

1x
2
2 + a6x2

1x
2
2 + a4x5

1x2 + a5x3
1x2 + a3x1x2 +

a3x4
1 + ax1 + a6
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and it is made up of 18 terms.
Configuration 2
This configuration corresponds to the cyclic permutation summarized in the table below:

Number of points Third coordinate

7 a3

6 a4

5 a5

4 a6

3 1

2 a

1 a2

whose associated configuration list is

[2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Again it leads to a polynomial made up of 18 terms (see appendix B).

Remark 8.3.1. We remark that the cyclic permutations are fundamental for getting 18 terms.
If we break the pattern even by one only point, we get a remarkably denser polynomial.
For example, if we modify a little configuration 1, changing only the last point, we get
Configuration 7.2

Number of points Third coordinate

7 a2

6 a3

5 a4

4 a5

3 a6

2 1

1 0

and we obtain a general error locator polynomial made up of 25 terms (see appendix B,
B.1.1 for further details).

We notice that the “cyclic permutations” we are considering arise from the multiplica-
tion by the primitive element a. For example, in configuration 1 we have 7 points whose
third coordinate is a2, while in configuration 2 we have 7 points whose third coordinate is
a3.
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It is easy to verify that this happens for all the entries in the tables associated to configu-
rations 1, 2 and that it happens also for configurations 3, ..., 7, whose data are displayed in
appendix B,B.1.2.
In order to study the similarities among the polynomials we got, we first consider the 7× 4

matrix

M =



x6
1 x6

1x2 x6
1x

2
2 x6

1x
3
2

x5
1 x5

1x2 x5
1x

2
2 x5

1x
3
2

x4
1 x4

1x2 x4
1x

2
2 x4

1x
3
2

x3
1 x3

1x2 x3
1x

2
2 x3

1x
3
2

x2
1 x2

1x2 x2
1x

2
2 x2

1x
3
2

x1 x1x2 x1x
2
2 x1x

3
2

1 x2 x2
2 x3

2


(8.1)

Then, we describe the coefficients of the polynomial pi associated to configuration i, i =

1, ..., 7 with a 7 × 4 matrix A[i] = (a
[i]
l,m), such that a[i]

l,m is the coefficient of the term ml,m in
pi.
We list here only the matrices A[1], A[2], associated to configurations 1, 2. The reader can
find the other ones in appendix B, B.1.2.
Configuration 1:
corresponds to

A[1] =



0 0 a5 0

0 a4 a3 a6

a3 0 a6 a5

0 a5 a3 a5

0 0 a6 a3

a a3 0 a6

a6 0 0 a3


Configuration 2

corresponds to

A[2] =



0 0 a 0

0 a4 1 1

1 0 a4 1

0 1 a2 a

0 0 a6 1

a 1 0 a4

1 0 0 a2


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The coefficients summarized above present some common properties.
In general, the matrices A[1], ..., A[7] have a very precise shape, hightlighted in the following
“general” matrix:

A[gen] =



0 0 C 0

0 a4 D A

D 0 E B

0 B F C

0 0 a6 D

a D 0 E

A 0 0 F


; A,B,C,D,E, F ∈ F8.

The existence of an A[gen], whose entries summarize the coefficients of the polynomials
p1, .., p7 of the 7 configurations obtained by the cyclic permutations, tells us that the mul-
tiplication by a we perform to swich from a configuration to another one “preserves the
supports of polynomials”, in the sense that

Supp(p1) = Supp(p2) = ... = Supp(p7).

Moreover, as we can see in the above A[gen], some values are stable among A[1], ..., A[7],
namely a[gen]

2,2 = a4, a[gen]
5,3 = a6, a[gen]

6,1 = a.

Notice that the capital letters appearing in the table (i.e. the different non-stable values
for the coefficients) are 6, i.e. |F∗8| − 1.
We can get general formulas for the values A,B,C,D,E, F ∈ F8.
Each configuration is identified by the number of points (a + b, a3 + b3, a, b) for each appear-
ing third coordinate , i.e. the number of occurrences of some a as third coordinate.
For each configuration, we denote by M the value of the third coordinate a appearing once5

5For example, for configuration 1, we have M = a and for configuration 2, M = a2.
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and we get

A = a5M (8.2)

B = a3M2

C = a2M3

D = a6M4

E = aM5

F = a4M6

If, instead, we denote by M the value of the third coordinate a appearing twice, we get the
set of formulas:

A = a6M (8.3)

B = a5M2

C = a5M3

D = a3M4

E = a6M5

F = a3M6

For 8.2 we have a sort of “symmetry”, since we have a5M → aM5, a3M2 → a2M3,
a6M4 → a4M6, which is not mirrored in 8.3.
Choosing M as the value of the third coordinate appearing 7 times, 6 times and so on, we
get different formulas. More precisely the powers of M do not change, but the multiplica-
tive coefficients vary. The entire set of formulas is displayed in appendix B.
The set of formulas 8.2 is connected to the structure of cycles in F8 and the same happens
for the all the other ones (appendix B, B.1.2).
This means that the multiplication by a, i.e. the transformation among the 7 points configu-
rations we have, preserves the cycles in F8.
We recall that the cycles of F8 are:
α) a→ a2 → a4 → a;

β) a3 → a6 → a5 → a3;

γ) a7 = 1.

δ) 0.

We consider the elements having the minimal exponent of a in each cycle as preferential
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representatives of the corresponding cycle6.
Consider the set of formulas 8.2. The powers (1, 2, 4) of M (which are exactly the exponents
of the cycle α), are multiplied to powers of a corresponding to cycle β. The powers (3, 6, 5)

of M are multiplied to powers of a corresponding to cycle α, so we can summarize the ob-
tained relations as (powers of M,powers of a), namely: (α, β), (β, α).
We have similar relations for the other sets of formulas. For example, for 8.3 we have
(α, β), (β, β).

8.4 The case of F16: cyclic configurations.

Drove by the simple structure of the configurations described in the previous section, we
try to generalize them, enlarging the base field.
Consider then

F16 = {0, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, 1},

with minimal polynomial a4 + a+ 17.
Suppose to have again a binary [n, k, d] BCH code C of length n = 15, with error correction
capability t = 2, designed distance δ = 5, distance d = δ = 5. We have k = 7 and we
suppose again to correct 1 and 2 errors simultaneously.
At the beginning we have 162 = 256 points but, excluding as for F8 the spurious ones, cor-
responding to couples of the form (z1, z2) = (a, a), we get 240 points we arrange into a list
P of 120 couples.
By the structure of the Groebner escalier 8.2.2, we take again one point for each couple, con-
veniently chosen w.r.t. the third coordinate.
The cyclic configurations of 8.3 can be easily generalized to the case of F16, and we have
concretely produced them. They are 15, namely as many as the number of cyclic permuta-
tions of the elements in F∗16.
We show again some of them, referring to appendix B, B.2.1, for details.
The first configuration we could find is
Configuration 1:

6They are the elements in boldface font.
7We follow again the representation of the elements in the field as powers of the primitive element.
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Number of points Third coordinate

15 a

14 a2

13 a3

12 a4

11 a5

10 a6

9 a7

8 a8

7 a9

6 a10

5 a11

4 a12

3 a13

2 a14

1 1

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

and the associated locator polynomial is made up of 85 terms

z1 + a14x14
1 x

7
2 + ax13

1 x
7
2 + a7x12

1 x
7
2 + a11x11

1 x
7
2 + x10

1 x
7
2 + a12x9

1x
7
2 + a9x8

1x
7
2 + a4x7

1x
7
2+

a3x6
1x

7
2 + a10x5

1x
7
2 + a8x4

1x
7
2 + a13x3

1x
7
2 + a6x2

1x
7
2 + a2x1x

7
2 + a5x7

2 + a11x14
1 x

6
2+

a5x13
1 x

6
2 + a4x10

1 x
6
2 + a3x9

1x
6
2 + a10x8

1x
6
2 + a8x7

1x
6
2 + a13x6

1x
6
2 + a6x5

1x
6
2 + a2x4

1x
6
2+

a5x3
1x

6
2 + a14x2

1x
6
2 + ax1x

6
2 + a7x6

2 + a4x13
1 x

5
2 + a10x11

1 x
5
2 + a8x10

1 x
5
2 + a13x9

1x
5
2 + a6x8

1x
5
2+

a2x7
1x

5
2 + a5x6

1x
5
2 + a14x5

1x
5
2 + ax4

1x
5
2 + a7x3

1x
5
2 + a11x2

1x
5
2 + a10x1x

5
2 + a12x5

2 + a13x12
1 x

4
2+

a6x11
1 x

4
2 + a2x10

1 x
4
2 + a5x9

1x
4
2 + a14x8

1x
4
2 + ax7

1x
4
2 + a7x6

1x
4
2 + a11x5

1x
4
2 + a9x4

1x
4
2+

a9x2
1x

4
2 + a3x4

2 + a6x14
1 x

3
2 + a10x7

1x
3
2 + a3x3

1x
3
2 + a2x10

1 x
2
2 + a3x6

1x
2
2 + a10x5

1x
2
2+

a8x4
1x

2
2 + a6x2

1x
2
2 + a2x1x

2
2 + a5x2

2 + a11x14
1 x2 + a12x13

1 x2 + a12x12
1 x2 + a9x11

1 x2+

a4x10
1 x2 + a10x8

1x2 + a13x6
1x2 + a6x5

1x2 + a2x4
1x2 + a14x2

1x2 + a7x2 + a9x14
1 + a3x12

1 + a10x11
1 +

a13x9
1 + a6x8

1 + a5x6
1 + a14x5

1 + a7x3
1 + a11x2

1 + a10x1 + a12

If, in analogy with 8.3, we “cyclically permute” the configuration, i.e. we multiply by the
primitive element a, we get fourteen other configurations, leading to fourteen locator poly-
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nomials, each one made up of 85 terms. Let us see another configuration.
Configuration 2:

Number of points Third coordinate

15 a2

14 a3

13 a4

12 a5

11 a6

10 a7

9 a8

8 a9

7 a10

6 a11

5 a12

4 a13

3 a14

2 1

1 a

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

and the locator is again made up of 85 terms (see appendix B, section B.2).
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As for the cyclic configurations in F8 we consider the 15× 8 matrix

M =



x14
1 x14

1 x2 x14
1 x

2
2 x14

1 x
3
2 x14

1 x
4
2 x14

1 x
5
2 x14

1 x
6
2 x14

1 x
8
2

x13
1 x13

1 x2 x13
1 x

2
2 x13

1 x
3
2 x13

1 x
4
2 x13

1 x
5
2 x13

1 x
6
2 x13

1 x
8
2

x12
1 x12

1 x2 x12
1 x

2
2 x12

1 x
3
2 x12

1 x
4
2 x12

1 x
5
2 x12

1 x
6
2 x12

1 x
8
2

x11
1 x11

1 x2 x11
1 x

2
2 x11

1 x
3
2 x11

1 x
4
2 x11

1 x
5
2 x11

1 x
6
2 x11

1 x
8
2

x10
1 x10

1 x2 x10
1 x

2
2 x10

1 x
3
2 x10

1 x
4
2 x10

1 x
5
2 x10

1 x
6
2 x10

1 x
8
2

x9
1 x9

1x2 x9
1x

2
2 x9

1x
3
2 x9

1x
4
2 x9

1x
5
2 x9

1x
6
2 x9

1x
8
2

x8
1 x8

1x2 x8
1x

2
2 x8

1x
3
2 x8

1x
4
2 x8

1x
5
2 x8

1x
6
2 x8

1x
8
2

x7
1 x7

1x2 x7
1x

2
2 x7

1x
3
2 x7

1x
4
2 x7

1x
5
2 x7

1x
6
2 x7

1x
8
2

x6
1 x6

1x2 x6
1x

2
2 x6

1x
3
2 x6

1x
4
2 x6

1x
5
2 x6

1x
6
2 x6

1x
8
2

x5
1 x5

1x2 x5
1x

2
2 x5

1x
3
2 x5

1x
4
2 x5

1x
5
2 x5

1x
6
2 x5

1x
8
2

x4
1 x4

1x2 x4
1x

2
2 x4

1x
3
2 x4

1x
4
2 x4

1x
5
2 x4

1x
6
2 x4

1x
8
2

x3
1 x3

1x2 x3
1x

2
2 x3

1x
3
2 x3

1x
4
2 x3

1x
5
2 x3

1x
6
2 x3

1x
8
2

x2
1 x2

1x2 x2
1x

2
2 x2

1x
3
2 x2

1x
4
2 x2

1x
5
2 x2

1x
6
2 x2

1x
8
2

x1 x1x2 x1x
2
2 x1x

3
2 x1x

4
2 x1x

5
2 x1x

6
2 x1x

8
2

1 x2 x2
2 x3

2 x4
2 x5

2 x6
2 x8

2



(8.4)

and we use similar matrices in order to summarize the coefficients of the polynomials asso-
ciated to our configurations (the whole list is in B.2.2).
Configuration 1

A[1] =



a9 a11 0 a6 0 0 a11 a14

0 a12 0 0 0 a4 a5 a

a3 a12 0 0 a13 0 0 a7

a10 a9 0 0 a6 a10 0 a11

0 a4 a2 0 a2 a8 a4 1

a13 0 0 0 a5 a13 a3 a12

a6 a10 0 0 a14 a6 a10 a9

0 0 0 a10 a a2 a8 a4

a5 a13 a3 0 a7 a5 a13 a3

a14 a6 a10 0 a11 a14 a6 a10

0 a2 a8 0 a9 a a2 a8

a7 0 0 a3 0 a7 a5 a13

a11 a14 a6 0 a9 a11 a14 a6

a10 0 a2 0 0 a10 a a2

a12 a7 a5 0 a3 a12 a7 a5


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Configuration 2

A[2] =



a11 a10 0 a14 0 0 a10 a10

0 a12 0 0 0 a7 a5 a13

a7 a13 0 0 a5 0 0 a5

1 a11 0 0 a14 1 0 a10

0 a7 a2 0 a11 a14 a7 1

a5 0 0 0 1 a5 a7 a13

a14 1 0 0 a10 a14 1 a11

0 0 0 a10 a13 a11 a14 a7

1 a5 a7 0 a5 1 a5 a7

a10 a14 1 0 a10 a10 a14 1

0 a11 a14 0 a9 a13 a11 a14

a5 0 0 a7 0 a5 1 a5

a10 a10 a14 0 a11 a10 a10 a14

a10 0 a11 0 0 a10 a13 a11

a13 a5 1 0 a7 a13 a5 1


As in the case of F8, one can find a general matrix, summarizing the reciprocal relations
among the coefficients of each locator polynomial:

A[gen] =



B A 0 C 0 0 A D

0 a12 0 0 0 E a5 F

G H 0 0 I 0 0 L

M B 0 0 C M 0 A

0 E a2 0 N O E 1

I 0 0 0 P I G H

C M 0 0 D C M B

0 0 0 a10 F N O E

P I G 0 L P I G

D C M 0 A D C M

0 N O 0 a9 F N O

L 0 0 G 0 L P I

A D C 0 B A D C

a10 0 N 0 0 a10 F N

H L P 0 G H L P



;A,B,C, ..., P ∈ F16.

Multiplication by a again preserves the support of the locator polynomials and, again, some
values are stable among A[1], ..., A[15].
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Notice that the capital letters appearing in the table (the different non-stable values for the
coefficients) are 14, i.e. again one less than the number of configurations.
We can find formulas for the letters A− P , depending on a value Q. If Q is the value of the
first coordinate appearing once, one gets

A = a12Q14

B = a7Q2

C = a13Q8

D = a3Q11

E = aQ3

F = a4Q12

G = a14Q4

H = a11Q

I = a6Q7

L = a9Q13

M = a5Q5

N = a8Q9

O = a2Q6

P = a10Q10

If, instead, Q is the value of the first coordinate appearing twice, one gets

A = a11Q14

B = a9Q2

C = a6Q8

D = a14Q11

E = a4Q3

F = aQ12

G = a3Q4
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H = a12Q

I = a13Q7

L = a7Q13

M = a10Q5

N = a2Q9

O = a8Q6

P = a5Q10

As for F8, if we choose differently Q, the formulas change only on the multiplicative coeffi-
cient of Q, not in the power.
The cycles in F16 are

α′) a→ a2 → a4 → a8 → a;

β′) a3 → a6 → a12 → a9 → a3;

γ′) a5 → a10 → a5;

δ′) a7 → a14 → a13 → a11 → a7;

ε′) a15 = 1;

ζ ′) 0.

If we define the couples (powers of Q,powers of a), the first set of formulas corresponds to
(α′, δ′), (β′, α′), (γ′, γ′), (δ′, β′).
The second set of formulas gives (α′, β′), (β′, α′), (γ′, ε′), (δ′, δ′).

8.5 The case of F8 (2): optimal Frobenius configurations.

The cyclic configurations found in section 8.3, i.e. the ones leading to polynomials consti-
tuted by 18 terms present a very simple structure and lots of connections with the cycle
structure of the base field. Unfortunately, the locator polynomials associated to them are
not sparse enough.
Indeed, our aim is to prove linearity on the growth of the polynomial and the patterns ob-
served in sections 8.3, 8.4 seem to be quadratic: starting from q2 points we reduce to ∼ q2

2

and the terms in the locator polynomials are ∼ q2

4 , for q = 8, 16.
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Moreover, from a sparsity point of view, the polynomials we get can be defined “inter-
mediate”, but they are not optimal.
Indeed, in the case of F8, we had the chance to hit a configuration leading to a polynomial
made up of 9 terms, by which we deduced a configuration leading to a polynomial made
up of 8 terms.
If Za is the set of points leading to the polynomial made up of 9 terms, observing that
Fa + Fb = x1, with the above notation, we can deduce that, if x1 ∈ Supp(Fa), then Zb leads
to a polynomial made up of 8 terms, i.e. as many terms as the cardinality of the base field. The
configuration8

Number of points Third coordinate

7 0

6 a

3 a2

3 a3

3 a5

2 a4

2 a6

2 1

whose configuration list is

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1]

gives the locator polynomial z1+x6
1x

3
2+a3x6

1x
2
2+a5x4

1x
2
2+a6x6

1x2+a3x2
1x2+a5x3

1+a6x2
1+x1,

made up of 9 terms (see appendix B, B.3.1 for more details on the configuration).

The locator polynomial contains x1, so we get the 8 terms configuration, from the set
described above. Such a set, corresponds to the configuration list

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2],

whose data are described in appendix B.3.4

8 Notice that, for the cyclical configurations described in the previous section, the choices for the points were
univocal. We had to choose 7 points with some third coordinate a, but among the points under consideration,
there were only 7 such points. Then, we chose 6 points with some third coordinate b, but among the points under
consideration, there were only 6 such points and so on. Thus, all the choices were univocal.
In the case of 9 terms, the choice for the points is not univocal as it was before. Moreover, for some of these choices,
we got denser polynomials and so was also for the cyclical permutations of the 9 terms configuration (see for
example appendix B, B.3.1 for a permutation giving a denser polynomial).
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Definition 8.5.1. An optimal configuration in F2m is a configuration leading to a polynomial
made up of 2m terms.

The optimal configuration we deduced by the one made up of 9 terms is analogous to
the cyclical configurations of the previous section.
Indeed, via some investigations, we could find out that it is invariant for cyclical permuta-
tions in the usual sense.
Moreover it presents an interesting structure, somehow connected to the cycles in F8.
We implemented then a researching algorithm, looking for optimal configurations with an
analogous structure and we found out three of them.
We study now the obtained configurations, arranging them in types A,B,C,D and showing
the common features of the configurations belonging to the same type.

Type A:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a2 a 1 a6 a5 a4 a3

4 a3 a2 a 1 a6 a5 a4

4 a5 a4 a3 a2 a 1 a6

5 a4 a3 a2 a 1 a6 a5

5 a6 a5 a4 a3 a2 a 1

5 1 a6 a5 a4 a3 a2 a

Table 8.1: Type A configurations in F8.

Each column in the table above represents a possible choice and the different choices are
cyclically permuted as in the intermediate case.
We will explain afterwards why we hightighted in bold the second column.
We use for example type A configurations in order to explain the structure.
The first column is associated to the following configuration list:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2.
The associated polynomial is
z1 + a3x6

1x
2
2 + a6x3

1x
2
2 + x2

1x
2
2 + a6x6

1x2 + a5x2 + a3x5
1 + a5x3

1
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and the matrix of coefficients (completely analogous to table 8.1) turns out to be:

A[1] =



0 a6 a3 0

a3 0 0 0

0 0 0 0

a5 0 a6 0

0 0 1 0

0 0 0 0

0 a5 0 0


The second column corresponds to the list below:
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1

and to the locator polynomial
z1 + x6

1x
2
2 + x3

1x
2
2 + x2

1x
2
2 + x6

1x2 + x2 + x5
1 + x3

1

The coefficient table is

A[2] =



0 1 1 0

1 0 0 0

0 0 0 0

1 0 1 0

0 0 1 0

0 0 0 0

0 1 0 0


The general coefficient matrix for type A configuration is

A[gen] =



0 A B 0

B 0 0 0

0 0 0 0

C 0 A 0

0 0 1 0

0 0 0 0

0 C 0 0


and we can find formulas for A,B,C. We take as M the value of the third coordinate ap-
pearing once, getting

A = M6 (8.5)

B = M3

C = M5
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so, in analogy with the intermediate configurations, we have the couple of cycles (β, γ).
All the data for Type A configurations are contained in B.3.2.

Let us now focus on the boldface column.
As one can easily see by the configuration list, the couples (z1, z2) we have chosen are

(a, 0) (a2, 0) (a4, 0)

(a, a2) (a2, a4) (a4, a)

(a, a5) (a2, a3) (a4, a6)

(a, 1) (a2, 1) (a4, 1)

(a3, 0) (a6, 0) (a5, 0)

(a3, a) (a6, a2) (a5, a4)

(a3, a4) (a6, a) (a5, a2)

(a3, a6) (a6, a5) (a5, a3)

(a3, 1) (a6, 1) (a5, 1)

(1, 0)

Table 8.2: An optimal Frobenius configuration.

We describe now the properties of the configuration summarized in the above table.
By table 8.1, we impose the third coordinate of all our points to be nonzero. Since for our
problem, taken b ∈ F∗8 we have to choose between two couples of the form (z1, z2)9, namely
(b, 0) and (0, b) and 0 cannot be picked as third coordinate, we have to choose (b, 0) for each
b ∈ F∗8.
On the other hand, we notice that table 8.1 imposes the third coordinate of one and only one
point to be equal to 1. Since, by the above comment, we picked the couple (1, 0), each other
couple containing the value 1 has to be of the form (b, 1) with b ∈ F8 \ {1, 0}.
From the table above, we notice that for the boldface configuration

if b ∈ F∗8 is the preferential representative for a cycle in F8 and we pick the couple
(b, c), c ∈ F∗8, also the couples (b2, c2), (b4, c4) have been chosen.

Look at the cycle α, i.e. a→ a2 → a4 → a.

The preferential representative of α is a. The choices for (a2, ∗), (a4, ∗) (i.e. for the four

9We recall that z1, z2 are respectively the third and the fourth coordinates for our points.
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occurrences of a2, a4 as third coordinate, required by table 8.1) depend on the four choices
made for the couples (a, b), b ∈ F8, in the sense we will explain below.
Look for example to the second row of the table, i.e.

(a, a2), (a2, a4), (a4, a).

We have
(a2, a4) = ((a)2, (a2)2)

and
(a4, a) = ((a2)2, (a4)2) = (((a)2)2, ((a2)2)2).
The same holds also for cycle β, i.e. a3 → a6 → a5 → a3, whose preferential element is a3.
We have only made some choices for a3: the occurrences of a6, a5 come "by squarings". For
example the row

(a3, a), (a6, a2), (a5, a4)

can be viewed as made of one independent choice and a couple of squarings, as shown below:
(a6, a2) = ((a3)2, (a)2)

(a5, a4) = ((a6)2, (a2)2) = (((a3)2)2, ((a)2)2).
The above comments hold also for γ and δ in an obvious way, since 12 = 1, 02 = 0.
Let us recall the following

Definition 8.5.2. Let Fq be a finite field of characteristic p, so that q = pn. The Frobenius
automorphism is defined as

σ : Fq → Fq

a 7→ ap.

The Frobenius automorphism preserves the cycles:

∀b ∈ F8, σ(b) = c,

and b, c belong to the same cycle.
Moreover, since in a field of characteristic p, (a + b)p = ap + bp and in our case p = 2, we
can deduce that Frobenius homomorphism preserves syndromes and then it preserves the
points’ structure.
The Frobenius automorphism is the generator of the cyclic group of the automorphisms in
F8. All these authomorphisms, namely id, σ, σ2 preserve both the cycles and the syndromes.
In our case, i.e. q = 8 and p = 2, the squaring is simply the application of Frobenius
mapping.
Another property of our configuration is
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If b ∈ F∗8 is the preferential representative for a cycle in F8, only one couple (b, c)

with c in the same cycle of b has been chosen.

Let us consider for example the quest for couples of the form (a, b), b ∈ F8.
In view of the fact that our initial list P contains the couples of points

[(a4, a4, a, a2), (a4, a4, a2, a)],

[(a2, a2, a, a4), (a2, a2, a4, a)],

[(a, a, a2, a4), (a, a, a4, a2)],

we need to pair off a with some elements of cycle α, so, a priori, we can choose without
restriction between

(a, a2), (8.6)

(a, a4) (8.7)

and we have chosen (a, a2).
On the other hand, we cannot make both choices in the same configuration, since we would
simultaneously have

(a, a2), (a2, a4), (a4, a)

and

(a, a4), (a2, a), (a4, a2).

This contradicts the requirement to choose only one element for each couple in P , which is
the first requirement on our configurations, descending from the structure of N and from
the Axis of Evil.
For the couples of form (a, b), b 6= a, b in the cycle α, we have made one and only one choice.
By table 8.1, there are four couples of form (a, b), b ∈ F8 and we have examined three of
them, namely 0, 1 and a2. We have to examine the last occurrence of a as third coordinate
i.e. the last couple.
Moreover, we know that we cannot choose any other value of b neither in α, nor in γ, nor in
δ: γ, δ only contain one element and for α we have one and only one available choice.
Then, in order to get the last couple we must pick the last b in the cycle β, by elimination.
Actually, we have chosen (a, a5). Another property of our optimal configuration is the
following

Consider two distinct cycles θ, θ′, such that b ∈ F∗8 is the preferential element of
θ and c ∈ F∗8 is the preferential element of θ′. Suppose we have made all the
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choices for the couples (b, f ), f ∈ F8 and to look for the couples (c, d ), where
d ∈ θ. The possible values for d depend on the couples of the form (b, e), where
e is an element of the cycle θ′, as we explain below.

Let us examine then the couples of the form (a3, b), b ∈ F8, in our configuration, which are
5 (see table 8.1). As explained before, we pick (a3, 0) and (a3, 1) by table 8.1. Moreover, for
(a3, b), b ∈ F8, we have to choose one and only one element of cycle β (different from a3),
exactly as explained for cycle α. The remaining couples, i.e. (a3, b) with b element of α, turn
out to be fixed, depending on the choice made for (a, c), with c element of cycle β.
Indeed, if we choose the couple (a3, a2), we have both (a2, a3) (coming by the application
of the Frobenius mapping to (a, a5)) and (a3, a2) (chosen for a3) in the same configuration,
thing we have excluded.
Then we choose (a3, a), (a3, a4) and we apply Frobenius, getting

(a3, a), (a6, a2), (a5, a4)

(a3, a4), (a6, a), (a5, a2).

Driven by this examination, we give the following

Definition 8.5.3. A Frobenius configuration for F8 is a configuration in F8 such that

• for each b ∈ F∗8, all the couples (b, 0) are in the configuration;

• (1, 0) belongs to the configuration;

• if b ∈ F∗8 is the preferential representative for a cycle in F8 and the couple (b, c), c ∈ F∗8,
is in the configuration, also the couples (b2, c2), (b4, c4) do;

• if b ∈ F∗8 is the preferential representative for a cycle in F8, only one couple (b, c) with
c in the same cycle of b is in the configuration;

• taken two distinct cycles θ, θ′, such that b ∈ F∗8 is the preferential element of θ and
c ∈ F∗8 is the preferential element of θ′, suppose we have made all the choices for the
couples (b, f ), f ∈ F8 and to look for the couples (c, d ), where d ∈ θ. The possible
values for d are the ones not appearing in the couples (b, e), where e is an element of
the cycle θ′.

Definition 8.5.4. A semi-Frobenius configuration is a configuration arising from a Frobenius
configuration by a cyclical permutation.
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For the optimal Frobenius configuration described above, the independent choices we
have made are really a few. Most of the couples come by the application of Frobenius
mapping and, as explained before, there are some restrictions on the choices.
The couples marked in red in the table above represent these independent choices we have
made.
In our investigation, we looked for optimal Frobenius configurations among the Frobenius
ones and then for their associated semi-Frobenius configurations. We found three optimal
Frobenius configurations.
The boldface columns of type B,C,D are optimal Frobenius configurations while the other
ones in the tables are semi-Frobenius configurations. the

Type B:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a2 a 1 a6 a5 a4 a3

4 a3 a2 a 1 a6 a5 a4

4 a5 a4 a3 a2 a 1 a6

5 a4 a3 a2 a 1 a6 a5

5 a6 a5 a4 a3 a2 a 1

5 1 a6 a5 a4 a3 a2 a

Type C:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a2 a 1 a6 a5 a4 a3

4 a3 a2 a 1 a6 a5 a4

4 a5 a4 a3 a2 a 1 a6

5 a4 a3 a2 a 1 a6 a5

5 a6 a5 a4 a3 a2 a 1

5 1 a6 a5 a4 a3 a2 a

Type D:
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Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a4 a3 a2 a 1 a6 a5

4 a6 a5 a4 a3 a2 a 1

4 1 a6 a5 a4 a3 a2 a

5 a2 a 1 a6 a5 a4 a3

5 a3 a2 a 1 a6 a5 a4

5 a5 a4 a3 a2 1 1 a6

All the data for type B,C,D are in the appendix (see B.3.3,B.3.4,B.3.5).

Remark 8.5.5. As seen above, the formulas for the coefficients of type A configurations are

A = M6

B = M3

C = M5.

The value M is the coordinate appearing only once. Since for the boldface column, i.e. the
optimal Frobenius configuration, it holds M = 1, we obtain a locator polynomial whose
coefficients are all equal to 1

Moreover, every polynomial different from it, has as coefficients 1 and the elements of only
one of the other cycles, i.e. α or β.

The configurations type B,C,D behave in the same way of type A configurations. More
precisely, there is for each type, one and only one optimal Frobenius configuration satisfying
the restrictions above, while the others come by cyclical permutations.

8.6 Optimal Frobenius configurations: what can be general-

ized?

In this section, we give some partial results on the generalization of the optimal Frobenius
and semi-Frobenius configurations to fields larger than F8.
For this purpose, we first recall that the cycles in F8 are

α) a→ a2 → a4 → a;

β) a3 → a6 → a5 → a3;
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γ) a7 = 1;

δ) 0.

In this case, the order of the Frobenius mapping is 3.
The cycles in F16 are:

α′) a→ a2 → a4 → a8 → a;

β′) a3 → a6 → a12 → a9 → a3;

γ′) a5 → a10 → a5;

δ′) a7 → a14 → a13 → a11 → a7;

ε′) a15 = 1;

ζ ′) 0.

and the order of the Frobenius mapping is 4, so we have id, σ, σ2, σ3. Notice that Frobenius
mapping preserves both cycles and syndromes, so it preserves the structure of the points.
The cycle structure of F16 is rather different than the one of F8 and it influences our pos-
sibilities in constructing points configurations with analogous restrictions as the optimal
Frobenius configurations of the previous section.
First of all, we notice that the length of cycles in Fpm divides m. In the case of F8, m = 3 and
the cycles have length 1 (the trivial ones) and 3. In the case of F16, m = 4 and the lengths of
the cycles are 1, 2, 4.
Consider first cycle γ′. Clearly, we have to pair off two elements of γ′. More precisely, we
must have either (a5, a10) or (a10, a5). But if we choose (a5, a10) and we apply as for F8 the
Frobenius mapping we get the couple (a10, a5). But, in our problem, we have escluded the
occurrence of both these couples. So this "degenerate short cycle" is not compatible with
the application of Frobenius mapping as in F8 and it makes necessary to change the way to
generate a configuration.

But there is something more. Consider for example the couples of the form (a, b). We have
to deal with those for which b is an element in cycle α′. If we choose for example the couple
(a, a2), by the application of Frobenius mapping, we get

(a, a2), (a2, a4), (a4, a8), (a8, a)

and, similarly, for (a, a8)

(a, a8), (a2, a), (a4, a2), (a8, a4).
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Clearly we cannot choose both these couples10, but we notice that, if we pick only one of
them, we do not deal respectively with (a, a4), (a4, a) and (a2, a8), (a8, a2), so we do not
treat all the couples of elements in α′. Anyway, if we pick the couple (a, a4) and we apply
as usual the Frobenius mapping we get

(a, a4), (a2, a8), (a4, a), (a8, a2),

which is incompatible with our usual requirement on the couples: we only want to choose
one and only one between (a, b) and (b, a).
This problem clearly occurs also for β′ and δ′.
We can relate the problem to the theory of permutations. Consider cycle α′ and suppose to
make the following choice for (a, b), with b in α′, applying Frobenius as usual:

(a, a2), (a2, a4), (a4, a8), (a8, a).

Such a choice can be seen as a cyclical permutation of α′, i.e.(
a a2 a4 a8

a2 a4 a8 a

)
= (a, a2, a4, a8) = λ.

Making another such choice for a (i.e. pairing a with another element of cycle α) and ap-
plying Frobenius means taking a power of λ.
Now, the i-th power of a cycle of length m is a cycle⇔ GCD(i,m) = 1.
If such a permutation is not a cycle, is a product of disjoint cycles of the same length.
If the permutation is a cycle (as λ), then we cannot find in the application of Frobenius both
the couples of the form (a, b) and (b, a): if it was so, the permutation would be the product
of disjoint transpositions, so it would not be cyclic.
So the cases presenting some problems w.r.t. Frobenius applications are the ones corre-
sponding to powers of permutations which are products of disjoint transpositions.
This cannot happen for F8, since m is a prime number, whereas it is exactly what happens
for F16.
We can overcome the problem of finding both the couples of the form (a, b) and (b, a) while
pairing off elements of the same cycle, by admitting two distinct kinds of application of the
Frobenius mapping for F16: short and long applications.
A long application is the analogous of what done in F8, i.e., given a couple (b, c) we com-
pute (σ(b), σ(c)), ..., (σ4(b), σ4(c)).
A short application admits only the couples (b, c) and (σ(b), σ(c)) ((σ2(b), σ2(c)) = (c, b)): it

10It is similar to what done with F8: we would contradict the requirement to have only one couple between (a, b)
and (b, a).
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means that, when the permutation is not a cycle, we consider the couples corresponding to
the distinct cycles in which it is decomposed11.
For α′, for example, we can take the long application

(a, a2), (a2, a4), (a4, a8), (a8, a),(
a a2 a4 a8

a2 a4 a8 a

)
= (a, a2, a4, a8) = λ.

jointed with the short application
(a, a4), (a2, a8).(

a a2 a4 a8

a4 a8 a a4

)
= (a, a4), (a2, a8) = λ2.

This way, we can pair a with all the other elements in α, without getting both the couples of
the form (a, b) and (b, a), situation we have excluded.
Clearly, the problem can only arise for couples (b, c), b, c in the same cycle.
Consequently, the kind of search we are developing now (still in progress) is to check the
configurations obtained by choosing the couples and applying long and short applications
in a consistent way, in order to get the analogous of a Frobenius configuration for F16.
There are many types of such configurations, we will start with the type related to the fol-
lowing table, only because, in analogy with the tables for type A,B,C,D in F8, it involves
only 2 consecutive numbers and 1 (see the “total” column). In this table, we have counted
the couples arising from short applications, long applications and no applications of Frobe-
nius (as explained above for γ′). The total m displayed in the table for a certain power ai

means that there are m couples of the form (ai, b). The number displayed in the "long" cell
is the number of such couples arising by a long Frobenius application on an independent
choice and the one displayed in the "short" cell is the number of couples arising by a short
Frobenius application12.
The line of a15 = 1 and the one relative to an element in γ′ are particular since there can be
“no Frobenius applications”.
We remark that the short applications of the Frobenious mapping are related only to cou-
ples (ai, aj) such that ai, aj belong to the same cycle.
Finally, consider the cycle structure in F32:

α′′) a→ a2 → a4 → a8 → a16 → a;

11For finite fields F2m , m not a prime number, we need to study the cyclic structure of permutations, in order to
find the corresponding configurations.

12Clearly they represent the choice we make if we are looking at the row of a preferential representative!
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a? Long Short No Total

a 8 1 0 9

a2 8 1 0 9

a3 8 1 0 9

a4 8 0 0 8

a5 8 0 1 9

a6 8 1 0 9

a7 8 1 0 9

a8 8 0 0 8

a9 8 0 0 8

a10 8 0 0 8

a11 8 0 0 8

a12 8 0 0 8

a13 8 0 0 8

a14 8 1 0 9

a15 = 1 0 0 1 1

Table 8.3: Generalization to F16.

β′′) a3 → a6 → a12 → a24 → a17 → a3;

γ′′) a5 → a10 → a20 → a9 → a18 → a5;

δ′′) a7 → a14 → a28 → a25 → a19 → a7;

ε′′) a11 → a22 → a13 → a26 → a21 → a11;

ζ ′′) a15 → a30 → a29 → a27 → a23 → a15;

η′′) a31 = 1;

θ′′) 0.

Here, the cycles have the same structure as F8. All the cycles (excluded the cycles of 0 and
1) have the same length. Moreover, in this case m = 5 is a prime number, so all the powers
of a cycle are cycles: we do not need short and long applications.
Now, we are verifying the behaviour of generalized configurations to F16 and F32.
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More precisely, again in analogy with F8, we are dealing with this table for F32:

a? Number of points

a 19

a2 19

a3 18

a4 19

a5 17

a6 18

a7 16

a8 19

a9 17

a10 17

a11 15

a12 18

a13 15

a14 16

a15 14

a16 19

a17 18

a18 17

a19 16

a20 17

a21 15

a22 15

a23 14

a24 18

a25 16

a26 15

a27 14

a28 16

a29 14

a30 14

a31 = 1 1

We believe we will be able to find optimal Frobenius configurations among the configu-
rations described in the tables above.
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APPENDIX A

Singular code of the libraries.

We display in this section the source code of the Singular libraries presented in section 6.2
of chapter 6.
The libraries available with Singular 3-1-6:
http://www.singular.uni-kl.de/index.php/singular-download.html

Their documentation can be found at:
http://www.singular.uni-kl.de/Manual/latest/sing_2017.htm#SEC2093 and
http://www.singular.uni-kl.de/Manual/latest/sing_2022.htm#SEC2098

All the source code presented here is also available online at
http://www.singular.uni-kl.de/svn/trunk/Singular/LIB/JMBTest.lib and
http://www.singular.uni-kl.de/svn/trunk/Singular/LIB/JMSConst.lib

A.1 JMBTest.lib: a test for J-marked bases.

1 ////////////////////////////////////////////////////////////////////
2 /∗ version="$Id:$";
3 category="Algebraic Geometry";
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4 // summary description of the library
5 info="
6 LIBRARY: JMBTest.lib A library for Singular which performs JM basis test.
7 AUTHOR: Michela Ceria, email: michela.ceria@unito.it
8

9 SEE ALSO: JMSConst_lib
10 KEYWORDS: J−marked schemes
11

12 OVERVIEW:
13 The library performs the J−marked basis test, as described in [CR], [BCLR].
14 Such a test is performed via the criterion explained in [BCLR],
15 concerning Eliahou−Kervaire polynomials (EK from now on).
16 We point out that all the polynomials are homogeneous
17 and they must be arranged by degree.
18 The fundamental steps are the following:@∗
19 −construct the Vm polynomials, via the algorithm VConstructor
20 explained in [CR];@∗
21 −construct the Eliahou−Kervaire polynomials defined in [BCLR];@∗
22 −reduce the Eliahou−Kervaire polynomials using the Vm’s;@∗
23 −if it exist an Eliahou−Kervaire polynomial such that its reduction
24 mod Vm is different from zero, the given one is not a J−Marked basis.
25

26 The algorithm terminates only if the ordering is rp.
27 Anyway, the number of reduction steps is bounded.
28

29 REFERENCES:
30 [CR] Francesca Cioffi, Margherita Roggero,Flat Families by Strongly
31 Stable Ideals and a Generalization of Groebner Bases,
32 J. Symbolic Comput. 46, 1070−1084, (2011).@∗
33 [BCLR] Cristina Bertone, Francesca Cioffi, Paolo Lella,
34 Margherita Roggero, Upgraded methods for the effective
35 computation of marked schemes on a strongly stable ideal,
36 Journal of Symbolic Computation
37 (2012), http://dx.doi.org/10.1016/j.jsc.2012.07.006 @∗ ∗/
38 /∗PROCEDURES:
39 Minimus(ideal) minimal variable in an ideal
40 Maximus(ideal) maximal variable in an ideal
41 StartOrderingV(list,list) ordering of polynomials as in [BCLR]
42 TestJMark(list) tests whether we have a J−marked basis
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43 "; ∗/
44 LIB "qhmoduli.lib";
45 LIB "monomialideal.lib";
46 LIB "ring.lib";
47 ////////////////////////////////////////////////////////////////////
48 proc mod_init()
49 /∗"USAGE: mod_init();
50 RETURN: struct: jmp
51 EXAMPLE: example mod_init; shows an example"∗/
52 {
53 newstruct("jmp", "poly h, poly t");
54 }
55 example
56 { "EXAMPLE:"; echo = 2;
57 mod_init();
58 }
59 ////////////////////////////////////////////////////////////////////
60 proc Terns(list G, int c)
61 /∗"USAGE: Terns(G,c); G list, c int
62 RETURN: list: T
63 NOTE: Input is a list of J−marked polynomials
64 (arranged by degree) and an integer.
65 EXAMPLE: example Terns; shows an example"∗/
66 {
67 list T=list();
68 int z;
69 for(int k=1; k<=size(G[c]);k=k+1)
70 {
71 //Loop on G[c] making positions of polynomials in G[c]
72 z=size(T);
73 T=insert(T,list(1,c,k) ,size(T));
74 }
75 return(T);
76 }
77 //example
78 { "EXAMPLE:"; echo = 2;
79 ring r=0, (x,y,z), rp;
80 jmp r1;
81 r1.h=z^3;
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82 r1.t=poly(0);
83 jmp r2;
84 r2.h=z^2∗y;
85 r2.t=poly(0);
86 jmp r3;
87 r3.h=z∗y^2 ;
88 r3.t=−x^2∗y;
89 jmp r4;
90 r4.h=y^5;
91 r4.t=poly(0);
92 list G2F=list(list(r1,r2,r3),list(r4));
93 Terns(G2F, 1);
94 Terns(G2F, 2);
95 }
96 ////////////////////////////////////////////////////////////////////
97 proc VConst(list G, int c)
98 /∗"USAGE: VConst(G, c); G list, c int
99 RETURN: list: V

100 NOTES: this procedure computes the Vm polynomials following the
101 algorithm in [CR],but it only keeps in memory the monomials by
102 which the G’s must be multplied and their positions.
103 EXAMPLE: example VConst; shows an example"∗/
104 {
105 jmp f=G[1][1];
106 int aJ=deg(f.h);
107 // minimal degree of polynomials in G
108 //print(aJ);
109 list V=list();
110 V[1]=Terns(G,1);
111 // V[1]=G[1] (keeping in memory only [head, position])
112 //print(c−aJ+1);
113 int i;
114 int j;
115 int m;
116 list OO;
117 jmp p;
118 for(m=2; m<=c−aJ+1; m=m+1)
119 {
120 //print("entro nel form");
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121 if(m>size(G))
122 {V[m]=list();
123 //If we have not G[m] we insert a list()
124 //print("vuota prima");
125 }
126 else
127 {V[m]=Terns(G,m);
128 //print("piena prima");
129 }
130 for(i=1; i<nvars(basering)+1; i=i+1)
131 {
132 //print("entrata fori");
133 //print(i);
134 for(j=1; j<=size(V[m−1]); j=j+1)
135 {
136 p=G[V[m−1][j][2]][V[m−1][j][3]];
137 //print(p.h);
138 //print(p.t);
139 //print(var(i));
140 //print(Minimus(V[m−1][j][1]∗p.h));
141 if(var(i)<=Minimus(variables(V[m−1][j][1]∗p.h)))
142 {
143 //Can I multiply by the current variable?
144 //print("minoremin");
145 //print("fin qui ci sono");
146 //print(V[m−1][j][1]);
147 OO=list(var(i)∗V[m−1][j][1],V[m−1][j][2],V[m−1][j][3]);
148 V[m]=insert(V[m], OO ,size(V[m]));
149 }
150 }
151 }
152 }
153 return (V);}
154 //example
155 { "EXAMPLE:"; echo = 2;
156 ring r=0, (x,y,z), rp;
157 jmp r1;
158 r1.h=z^3;
159 r1.t=poly(0);
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160 jmp r2;
161 r2.h=z^2∗y;
162 r2.t=poly(0);
163 jmp r3;
164 r3.h=z∗y^2 ;
165 r3.t=−x^2∗y;
166 jmp r4;
167 r4.h=y^5;
168 r4.t=poly(0);
169 list G2F=list(list(r1,r2,r3),list(r4));
170 VConst(G2F,4,basering);}
171 ////////////////////////////////////////////////////////////////////
172 proc Minimus(ideal L)
173 /∗"USAGE: Minimus(L); G list, c int
174 RETURN: list: V
175 NOTES: it returns the minimal variable generating the ideal L.@∗
176 The input must be an ideal generated by variables.
177 EXAMPLE: example Minimus; shows an example"∗/
178 {
179 poly min=L[1];
180 int i;
181 for(i=2;i<=size(L); i++)
182 {
183 if(L[i]<min){min=L[i];}
184 }
185 return(min);
186 }
187 //example
188 { "EXAMPLE:"; echo = 2;
189 ring r=0, (x,y,z), rp;
190 ideal I=y,x,z;
191 Minimus(I);
192 }
193 ////////////////////////////////////////////////////////////////////
194 proc Maximus(ideal L)
195 /∗"USAGE: Maximus(L); G list, c int
196 RETURN: list: V
197 NOTES: it returns the maximal variable generating the ideal L.@∗
198 The input must be an ideal generated by variables.
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199 EXAMPLE: example Maximus; shows an example"∗/
200 {
201 poly max=L[1];
202 int i;
203 for(i=2;i<=size(L); i++)
204 {
205 if(L[i]>max){max=L[i];}
206 }
207 return(max);
208 }
209 //example
210 { "EXAMPLE:"; echo = 2;
211 ring r=0, (x,y,z), rp;
212 ideal I=y,x,z;
213 Maximus(I);
214 }
215 ////////////////////////////////////////////////////////////////////
216 proc GJmpMins(jmp P, jmp Q)
217 /∗"USAGE: GJmpMins(P,Q); P jmp, Q jmp
218 RETURN: int: d
219 EXAMPLE: example GJmpMins; shows an example"∗/
220 {
221 int d=1;
222 //−1=lower, 0=equal, 1=higher
223 //At the beginning suppose Q is higher
224 if(deg(P.h)<deg(Q.h))
225 {
226 //Compare degrees;
227 d=−1;
228 //print("Per Grado");
229 }
230 if(deg(P.h)==deg(Q.h))
231 {
232 if(P.h==Q.h)
233 {
234 if(P.t==Q.t)
235 {
236 //head=tail
237 d=0;
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238 //print("Uguali");
239 }
240 }
241 else
242 {
243 //print(Minimus(variables(P.h/gcdMon(P.h,Q.h))));
244 //print(Minimus(variables(Q.h/gcdMon(P.h,Q.h))));
245

246 if(Minimus(variables(P.h/gcdMon(P.h,Q.h)))<Minimus(variables(Q.h/gcdMon(P.h,
247 Q.h))))
248 {
249 d=−1;
250 //print("Per Indice");
251 }
252 }
253 }
254 return(d);
255 }
256 //example
257 { "EXAMPLE:"; echo = 2;
258 ring r=0, (x,y,z), rp;
259 jmp p1;
260 p1.h=poly(1);
261 p1.t=poly(1);
262 jmp p2;
263 p2.h=x^2;
264 p2.t=poly(0);
265 jmp p3;
266 p3.h=x;
267 p3.t=poly(0);
268 GJmpMins(p1, p2);
269 GJmpMins(p2, p3);
270 GJmpMins(p1,p1);
271 }
272 ////////////////////////////////////////////////////////////////////
273 proc TernCompare(list A, list B, list G)
274 /∗"USAGE: TernCompare(A,B,C); A list, B list, G list
275 RETURN: int: d
276 NOTE: A and B are terns, while G is the given list of
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277 J−marked polynomials.
278 EXAMPLE: example TernCompare; shows an example"∗/
279 {
280 int d=−1;
281 //Start: A<B
282 if(A[1]==B[1])
283 {
284 if(A[2]==B[2]&& A[3]==B[3])
285 {
286 //print("Uguali");
287 d=0;
288 }
289 else
290 {
291 jmp g1=G[A[2]][A[3]];
292 jmp g2=G[B[2]][B[3]];
293 if(GJmpMins(g1, g2)==1)
294 {
295 //print("Maggiore per il G");
296 d=1;
297 }
298 }
299 }
300 else
301 {
302 if(A[1]>B[1])
303 {
304 //the ordering MUST be rp
305 //print("Maggiore per Lex");
306 d=1;
307 }
308 }
309 return(d);
310 }
311 //example
312 { "EXAMPLE:"; echo = 2;
313 ring r=0, (x,y,z), rp;
314 jmp r1;
315 r1.h=z^3;

347



316 r1.t=poly(0);
317 jmp r2;
318 r2.h=z^2∗y;
319 r2.t=poly(0);
320 jmp r3;
321 r3.h=z∗y^2 ;
322 r3.t=−x^2∗y;
323 jmp r4;
324 r4.h=y^5;
325 r4.t=poly(0);
326 list G2F=list(list(r1,r2,r3),list(r4));
327 TernCompare([1,1,1],[x,1,1],G2F);
328 }
329

330 ////////////////////////////////////////////////////////////////////
331 proc MinOfV(list V, list G)
332 /∗"USAGE: Minimal(V,G); V list, G list
333 RETURN: int: R
334 NOTE: Input=lista(terne), G.
335 EXAMPLE: example Minimal; shows an example"∗/
336 {
337 //Minimal element for a given degree
338 list R=list();
339 list MIN=V[1];
340 int h=1;
341 int i;
342 for(i=2; i<=size(V); i++)
343 {
344 //I consider the first as minimum
345 //If I find something smaller I change minimum
346 if(TernCompare(V[i],MIN,G)<=0)
347 {
348 MIN=V[i];
349 h=i;
350 }
351 }
352 //Return: [minimum,position of the minimum]
353 R=MIN,h;
354 return(R);
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355 }
356 //example
357 { "EXAMPLE:"; echo = 2;
358 ring r=0, (x,y,z), rp;
359 jmp r1;
360 r1.h=z^3;
361 r1.t=poly(0);
362 jmp r2;
363 r2.h=z^2∗y;
364 r2.t=poly(0);
365 jmp r3;
366 r3.h=z∗y^2 ;
367 r3.t=−x^2∗y;
368 jmp r4;
369 r4.h=y^5;
370 r4.t=poly(0);
371 list G2F=list(list(r1,r2,r3),list(r4));
372 MinOfV(VConst(G2F,4,basering)[1],G2F);
373 }
374 ////////////////////////////////////////////////////////////////////
375 proc OrderingV(list V,list G,list R)
376 /∗"USAGE: OrderingV(V,G,R); V list, G list, R list
377 RETURN: list: R
378 NOTE: Input: Vm,G,emptylist
379 EXAMPLE: example OrderingV; shows an example"∗/
380 {
381 //Order V[m]
382 //R will contain results but at the beginning it is empty
383 list M=list();
384 if(size(V)==1)
385 {
386 R=insert(R,V[1],size(R));
387 }
388 else
389 {
390 M=MinOfV(V,G);
391 R=insert(R,M[1],size(R));
392 V=delete(V,M[2]);
393 //recursive call
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394 R=OrderingV(V,G,R);
395 }
396 return(R);
397 }
398 example
399 { "EXAMPLE:"; echo = 2;
400 ring r=0, (x,y,z), rp;
401 jmp r1;
402 r1.h=z^3;
403 r1.t=poly(0);
404 jmp r2;
405 r2.h=z^2∗y;
406 r2.t=poly(0);
407 jmp r3;
408 r3.h=z∗y^2;
409 r3.t=−x^2∗y;
410 jmp r4;
411 r4.h=y^5;
412 r4.t=poly(0);
413 list G2F=list(list(r1,r2,r3),list(r4));
414 OrderingV(VConst(G2F,4,basering)[1],G2F,list());
415 }
416 ////////////////////////////////////////////////////////////////////
417 proc StartOrderingV(list V,list G)
418 /∗"USAGE: StartOrdina(V,G); V list, G list
419 RETURN: list: R
420 NOTE: Input Vm,G. This procedure uses OrderingV to get
421 the ordered polynomials as in [BCLR].
422 EXAMPLE: example StartOrderingV; shows an example"∗/
423 {
424 return(OrderingV(V,G, list()));
425 }
426 //example
427 { "EXAMPLE:"; echo = 2;
428 ring r=0, (x,y,z), rp;
429 jmp r1;
430 r1.h=z^3;
431 r1.t=poly(0);
432 jmp r2;
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433 r2.h=z^2∗y;
434 r2.t=poly(0);
435 jmp r3;
436 r3.h=z∗y^2;
437 r3.t=−x^2∗y;
438 jmp r4;
439 r4.h=y^5;
440 r4.t=poly(0);
441 list G2F=list(list(r1,r2,r3),list(r4));
442 StartOrderingV(VConst(G2F,4,basering)[1],G2F);
443 }
444 ////////////////////////////////////////////////////////////////////
445 proc Multiply(list L, list G)
446 /∗"USAGE: moltiplica(L,G); L list, G list
447 RETURN: jmp: K
448 NOTE: Input: a 3−ple,G. It performs the product associated
449 to the 3−uple.
450 EXAMPLE: example Multiply; shows an example"∗/
451 {
452 jmp g=G[L[2]][L[3]];
453 jmp K;
454 K.h=L[1]∗g.h;
455 K.t=L[1]∗g.t;
456 return(K);
457 }
458 //example
459 { "EXAMPLE:"; echo = 2;
460 ring r=0, (x,y,z), rp;
461 list P=x^2,1,1;
462 jmp r1;
463 r1.h=z^3;
464 r1.t=poly(0);
465 jmp r2;
466 r2.h=z^2∗y;
467 r2.t=poly(0);
468 jmp r3;
469 r3.h=z∗y^2 ;
470 r3.t=−x^2∗y;
471 jmp r4;
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472 r4.h=y^5;
473 r4.t=poly(0);
474 list G2F=list(list(r1,r2,r3),list(r4));
475 Multiply(P,G2F);
476 }
477 ////////////////////////////////////////////////////////////////////
478 proc IdealOfV(list V)
479 /∗"USAGE: IdealOfV(V); V list
480 RETURN: ideal: I
481 NOTES: this procedure takes a list of Vm’s of a certain degree
482 and construct their ideal, multiplying the head by the weighted
483 variable t.
484 EXAMPLE: example IdealOfV; shows an example"∗/
485 {
486 ideal I=0;
487 int i;
488 if (size(V)!=0)
489 {
490 list M=list();
491 jmp g;
492 for(i=1; i<= size(V); i++)
493 {
494 g=V[i];
495 g.h=t∗g.h;
496 M[i]=g.h+g.t;
497 }
498 I=M[1..size(M)];
499 //print("IdealOfV");
500 //I=std(I);
501 }
502 return(I);
503 }
504 //example
505 { "EXAMPLE:"; echo = 2;
506 ring r=0, (x,y,z,t), rp;
507 jmp r1;
508 r1.h=z^3;
509 r1.t=poly(0);
510 jmp r2;
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511 r2.h=z^2∗y;
512 r2.t=poly(0);
513 jmp r3;
514 r3.h=z∗y^2 ;
515 r3.t=−x^2∗y;
516 jmp r4;
517 r4.h=y^5;
518 r4.t=poly(0);
519 list G2F=list(list(r1,r2,r3),list(r4));
520 IdealOfV(G2F[1]);
521 }
522 ////////////////////////////////////////////////////////////////////
523 proc NewWeight(int n)
524 /∗"USAGE: NewWeight(n); n int
525 RETURN: intvec: u
526 EXAMPLE: example NewWeight; shows an example"∗/
527 {
528 intvec u=0;
529 u[n]=1;
530 return(u);
531 }
532 //example
533 { "EXAMPLE:"; echo = 2;
534 NewWeight(3);
535 }
536 ////////////////////////////////////////////////////////////////////
537 proc FinalVm(list V1 , list G1 , r)
538 /∗"USAGE: FinalVm(V1, G1, r); V1 list, G1 list , r
539 RETURN: intvec: u
540 EXAMPLE: example NewWeight; shows an example"∗/
541 {
542 //multiply and reduce, degree by degree
543 intvec u=NewWeight(nvars(r)+1);
544 list L=ringlist(r);
545 L[2]=insert(L[2],"t",size(L[2]));
546 //print(L[2]);
547 list ordlist="a",u;
548 L[3]=insert(L[3],ordlist,0);
549 def H=ring(L);
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550 //print(V1);
551 //print(G1);
552 list M=list();
553 jmp p;
554 list N;
555 poly q;
556 poly s;
557 int i;
558 int j;
559 for(i=1; i<=size(G1); i++)
560 {
561 N=list();
562 for(j=1; j<=size(G1[i]); j++)
563 {
564 p=G1[i][j];
565 q=p.h;
566 s=p.t;
567 N[j]=list(q,s);
568 }
569 M[i]=N;
570 }
571 p.h=poly(0);
572 p.t=poly(0);
573 setring H;
574 list R=list();
575 list S=list();
576 //print("anello definito");
577 def V=imap(r,V1);
578 //def G=imap(r,G1);
579 //print(V);
580 def MM=imap(r,M);
581 list G=list();
582 list N=list();
583 for(i=1; i<=size(MM); i++)
584 {
585 for(j=1; j<=size(MM[i]); j++)
586 {
587 p.h=MM[i][j][1];
588 p.t=MM[i][j][2];
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589 N[j]=p;
590 }
591 G[i]=N;
592 }
593 ideal I=0;
594 jmp LL;
595 jmp UU;
596 for(i=1; i<=size(V);i++)
597 {
598 R[i]=list();
599 S[i]=list();
600 I=0;
601 for(j=1;j<=size(V[i]); j++)
602 {
603 LL=Multiply(V[i][j],G);
604 LL.t=reduce(t∗LL.t,I);
605 //I only reduce the tail
606 LL.t=subst(LL.t,t,1);
607 S[i]=insert(S[i],LL,size(S[i]));
608 LL.h=t∗LL.h;
609 R[i]=insert(R[i],LL,size(R[i]));
610 UU=R[i][j];
611 I=I+ideal(UU.h+UU.t);
612 attrib(I,"isSB",1);
613 }
614 }
615 list M=list();
616 poly q;
617 poly s;
618 for(i=1; i<=size(S); i++)
619 {
620 N=list();
621 for(j=1; j<=size(S[i]); j++)
622 {
623 p=S[i][j];
624 q=p.h;
625 s=p.t;
626 N[j]=list(q,s);
627 }
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628 M[i]=N;
629 }
630 p.h=poly(0);
631 p.t=poly(0);
632 setring r;
633 def MM=imap(H,M);
634 list MMM=list();
635 for(i=1; i<=size(MM); i++)
636 {
637 N=list();
638 for(j=1; j<=size(MM[i]); j++)
639 {
640 p.h=MM[i][j][1];
641 p.t=MM[i][j][2];
642 N[j]=p;
643 }
644 MMM[i]=N;
645 }
646 return(MMM);
647 }
648 example
649 { "EXAMPLE:"; echo = 2;
650 ring r=0, (x,y,z), rp;
651 jmp r1;
652 r1.h=z^3;
653 r1.t=poly(0);
654 jmp r2;
655 r2.h=z^2∗y;
656 r2.t=poly(0);
657 jmp r3;
658 r3.h=z∗y^2 ;
659 r3.t=−x^2∗y;
660 jmp r4;
661 r4.h=y^5;
662 r4.t=poly(0);
663 list G2F=list(list(r1,r2,r3),list(r4));
664 FinalVm(VConst(G2F,6,r) , G2F, r);
665 }
666 ////////////////////////////////////////////////////////////////////

356



667 proc ConstructorMain(list G, int c,r)
668 /∗"USAGE: Costruttore(G,c); G list, c int
669 RETURN: list: R
670 NOTE: At the end separated by degree.
671 EXAMPLE: example Costruttore; shows an example"∗/
672 {
673 list V=list();
674 V= VConst(G,c);
675 //print("VConst");
676 //V non ordered
677 list L=list();
678 list R=list();
679 int i;
680 // head, position
681 //order the different degrees
682 for(i=1; i<=size(V); i++)
683 {
684 L[i]=StartOrderingV(V[i], G);
685 }
686 //multiply and reduce
687 //print("Ordinare");
688 R=FinalVm(L, G, r);
689 //print("FinalVm");
690 return(R);
691 }
692 //example
693 { "EXAMPLE:"; echo = 2;
694 ring r=0, (x,y,z), rp;
695 jmp r1;
696 r1.h=z^3;
697 r1.t=poly(0);
698 jmp r2;
699 r2.h=z^2∗y;
700 r2.t=poly(0);
701 jmp r3;
702 r3.h=z∗y^2 ;
703 r3.t=−x^2∗y;
704 jmp r4;
705 r4.h=y^5;
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706 r4.t=poly(0);
707 list G2F=list(list(r1,r2,r3),list(r4));
708 ConstructorMain(G2F,6,r);
709 }
710 ////////////////////////////////////////////////////////////////////
711 proc EKCouples(jmp A, jmp B)
712 /∗"USAGE: CoppiaEK(A,B); A list, B list
713 RETURN: list: L
714 NOTE: At the end the monomials involved by EK.
715 EXAMPLE: example EKCouples; shows an example"∗/
716 {
717 poly E;
718 list L=0,0;
719 string s=varstr(basering);
720 list VVV=varstr(basering);
721 //L will contain results
722 poly h=Minimus(variables(A.h));
723 //print(h);
724 int l=findvars(h,1)[2][1];
725 if(l!=nvars(basering))
726 {
727 //print("vero");
728 //print(l);
729 for(int j=l+1;j<=nvars(basering); j++)
730 {
731 //print("entrata");
732 //print(var(j));
733 E=var(j)∗A.h/B.h;
734 //Candidate for ∗ product
735 //print(E);
736 if(E!=0)
737 {
738 //print("primo if passato");
739 if(Minimus(variables(B.h))>=Maximus(variables(E)))
740 {
741 //Does it work with ∗ ?
742 //print("secondo if passato");
743 L[1]=j;
744 L[2]=E;
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745 break;
746 }
747 }
748 }
749 }
750 return (L);
751 }
752 //example
753 { "EXAMPLE:"; echo = 2;
754 ring r=0, (x,y,z), rp;
755 jmp A;
756 A.h=y∗z^2;
757 A.t=poly(0);
758 jmp B;
759 B.h=y^2∗z;
760 B.t=poly(0);
761 EKCouples(A,B);
762 EKCouples(B,A);
763 }
764 ////////////////////////////////////////////////////////////////////
765 proc EKPolys(list G)
766 /∗"USAGE: PolysEK(G); G list
767 RETURN: list: EK, list: D
768 NOTE: At the end EK polynomials and their degrees
769 EXAMPLE: example PolysEK; shows an example"∗/
770 {
771 list D=list();
772 list C=list();
773 list N=0,0;
774 list EK=list();
775 int i;
776 int j;
777 int k;
778 int l;
779 jmp p;
780 for(i=1; i<=size(G); i++)
781 {
782 for(j=1; j<=size(G[i]); j++)
783 {
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784 for(k=1; k<=size(G); k++)
785 {
786 for(l=1; l<=size(G[k]); l++)
787 {
788 if(i!=k||j!=l)
789 {
790 //Loop on polynomials
791 C=EKCouples(G[i][j], G[k][l]);
792 //print("coppia");
793 if(C[2]!=0)
794 {
795 C=insert(C,list(i,j,k,l),size(C));
796 EK=insert(EK,C,size(EK));
797 p=G[k][l];
798 D=insert(D,deg(C[2]∗p.h),size(D));
799 }
800 }
801 }
802 }
803 }
804 }
805 //Double Return
806 return(EK, D);
807 }
808 //example
809 { "EXAMPLE:"; echo = 2;
810 ring r=0, (x,y,z), rp;
811 jmp r1;
812 r1.h=z^3;
813 r1.t=poly(0);
814 jmp r2;
815 r2.h=z^2∗y;
816 r2.t=poly(0);
817 jmp r3;
818 r3.h=z∗y^2;
819 r3.t=−x^2∗y;
820 jmp r4;
821 r4.h=y^5;
822 r4.t=poly(0);
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823 list G2F=list(list(r1,r2,r3),list(r4));
824 EKPolys(G2F);
825 }
826 ////////////////////////////////////////////////////////////////////
827 proc EKPolynomials(list EK, list G)
828 /∗"USAGE: EKPolynomials(EK,G); EK list, G list
829 RETURN: list: p
830 NOTE: At the end I obtain the EK polynomials and
831 their degrees.
832 EXAMPLE: example SpolyEK; shows an example"∗/
833 {
834 jmp u=G[EK[3][1]][EK[3][2]];
835 jmp q=G[EK[3][3]][EK[3][4]];
836 return(var(EK[1])∗(u.h+u.t)−EK[2]∗(q.h+q.t));
837 }
838 example
839 { "EXAMPLE:"; echo = 2;
840 ring r=0, (x,y,z), rp;
841 jmp r1;
842 r1.h=z^3;
843 r1.t=poly(0);
844 jmp r2;
845 r2.h=z^2∗y;
846 r2.t=poly(0);
847 jmp r3;
848 r3.h=z∗y^2;
849 r3.t=−x^2∗y;
850 jmp r4;
851 r4.h=y^5;
852 r4.t=poly(0);
853 list G2F=list(list(r1,r2,r3),list(r4));
854 list EK,D=EKPolys(G2F);
855 EKPolynomials(EK[1],G2F);
856 }
857 ////////////////////////////////////////////////////////////////////
858 proc TestJMark(list G1,r)
859 /∗"USAGE: TestJMark(G); G list
860 RETURN: int: i
861 NOTE:
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862 This procedure performs J−marked basis test.@∗
863 The input is a list of J−marked polynomials (jmp) arranged
864 by degree, so G1 is a list of list.@∗
865 The output is a boolean evaluation:
866 True=1/False=0
867 EXAMPLE: example TestJMark; shows an example"∗/
868 {int flag=1;
869 if(size(G1)==1 && size(G1[1])==1)
870 {
871 //Hypersurface
872 print("Only One Polynomial");
873 flag=1;
874 }
875 else
876 {
877 int d=0;
878 list EK,D=EKPolys(G1);
879 //print("PolysEK");
880 //I found EK couples
881 int massimo=Max(D);
882 list V1=ConstructorMain(G1,massimo,r);
883 //print("Costruttore");
884 //print(V1);
885 jmp mi=V1[1][1];
886 int minimo=Min(deg(mi.h));
887 intvec u=NewWeight(nvars(r)+1);
888 list L=ringlist(r);
889 L[2]=insert(L[2],"t",size(L[2]));
890 //print(L[2]);
891 list ordlist="a",u;
892 L[3]=insert(L[3],ordlist,0);
893 def H=ring(L);
894 list JJ=list();
895 jmp pp;
896 jmp qq;
897 int i;
898 int j;
899 list NN;
900 for(i=size(V1);i>0;i−−)
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901 {
902 NN=list();
903 for(j=size(V1[i]);j>0;j−−)
904 {
905 //print(j);
906 pp=V1[i][j];
907 NN[j]=list(pp.h,pp.t);
908 }
909 //print(NN);
910 JJ[i]=NN;
911 //print(JJ[i]);
912 //print(i);
913 }
914 //print(JJ);
915 list KK=list();
916 list UU=list();
917 //jmp qq;
918 for(i=size(G1);i>0;i−−)
919 {
920 for(j=size(G1[i]);j>0;j−−)
921 {
922 //print(j);
923 qq=G1[i][j];
924 UU[j]=list(qq.h,qq.t);
925 }
926 //print(UU);
927 KK[i]=UU;
928 }
929 setring H;
930 //I defined the new ring with the weighted
931 //variable t
932 poly p;
933 //print("anello definito");
934 def JJJ=imap(r,JJ);
935 def EK=imap(r,EK);
936 //print(flag);
937 //imap(r,D);
938 list V=list();
939 jmp fp;
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940 //int i;
941 //int j;
942 list N;
943 for(i=size(JJJ); i>0; i−−)
944 {
945 N=list();
946 for(j=size(JJJ[i]); j>0; j−−)
947 {
948 fp.h=JJJ[i][j][1];
949 fp.t=JJJ[i][j][2];
950 N[j]=fp;
951 }
952 V[i]=N;
953 }
954 //print(V);
955 def KKJ=imap(r,KK);
956 list G=list();
957 list U=list();
958 for(i=1; i<=size(KKJ); i++)
959 {
960 for(j=1; j<=size(KKJ[i]); j++)
961 {
962 fp.h=KKJ[i][j][1];
963 fp.t=KKJ[i][j][2];
964 U[j]=fp;
965 }
966 G[i]=U;
967 }
968 // print(V);
969 //print(G);
970 //I imported in H everithing I need
971 poly q;
972 ideal I;
973 for(j=1; j<=size(EK);j++)
974 {
975 d=D[j];
976 p=EKPolynomials(EK[j],G);
977 //print("arrivo");
978 I=IdealOfV(V[d−minimo+1]);
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979 attrib(I,"isSB",1);
980 //print(I);
981 q=reduce(t∗p,I);
982 //print(I[1]);
983 //print(t∗p);
984 q=subst(q,t,1);
985 //I reduce all the EK polynomials
986 // q=RiduzPoly(V[d−minimo+1], p);
987 if(q!=0)
988 {
989 //check whether reduction is 0
990 print("NOT A BASIS");
991 flag=0;
992 break;
993 }
994 }
995 }
996 //print(flag);
997 setring r;
998 //typeof(flag);
999 return(flag);

1000 }
1001 //example
1002 { "EXAMPLE:"; echo = 2;
1003 ring r=0, (x,y,z), rp;
1004 jmp r1;
1005 r1.h=z^3;
1006 r1.t=poly(0);
1007 jmp r2;
1008 r2.h=z^2∗y;
1009 r2.t=poly(0);
1010 jmp r3;
1011 r3.h=z∗y^2 ;
1012 r3.t=−x^2∗y;
1013 jmp r4;
1014 r4.h=y^5;
1015 r4.t=poly(0);
1016 list G2F=list(list(r1,r2,r3),list(r4));
1017 TestJMark(G2F,r);
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1018 }

A.2 JMBConst.lib: a J-marked schemes constructor.

1 /∗ ////////////////////////////////////////////////////////////////////
2 version="$Id:$";
3 category="Algebraic Geometry";
4 // summary description of the library
5 info="
6 LIBRARY: JMSConst.lib A library for Singular which constructs J−Marked
7 Schemes.
8 AUTHOR: Michela Ceria, email: michela.ceria@unito.it
9

10 SEE ALSO: JMBTest_lib
11

12 KEYWORDS: J−marked schemes, Borel ideals
13

14 OVERVIEW:
15 The library performs the J−marked computation, as described in [BCLR].
16 As in JMBTest.lib we construct the V polynomials and we reduce the EK
17 polynomials w.r.t. them, putting the coefficients as results.
18

19

20 The algorithm terminates only if the ordering is rp.
21 Anyway, the number of reduction steps is bounded.
22

23 REFERENCES:
24 [CR] Francesca Cioffi, Margherita Roggero,Flat Families by Strongly
25 Stable Ideals and a Generalization of Groebner Bases,
26 J. Symbolic Comput. 46, 1070−1084, (2011).@∗
27 [BCLR] Cristina Bertone, Francesca Cioffi, Paolo Lella,
28 Margherita Roggero, Upgraded methods for the effective
29 computation of marked schemes on a strongly stable ideal,
30 Journal of Symbolic Computation
31 (2012), http://dx.doi.org/10.1016/j.jsc.2012.07.006 @∗
32

33

34

35 SEE ALSO: JMSConst_lib
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36 PROCEDURES:
37 BorelCheck(ideal,r) checks whether the given ideal is Borel
38 JMarkedScheme(list, list, list, int) computes authomatically all the J−marked
39 scheme
40 ";∗/
41 LIB "all.lib";
42 ////////////////////////////////////////////////////////////////////
43 proc BorelCheck(ideal Borid,r)
44 /∗"USAGE: BorelCheck(Borid,r); Borid ideal, r ring
45 RETURN: int: d
46 NOTE: Input must be a monomial ideal.
47 The procedure checks whether the Borel moves produce elements belonging to
48 Borid.
49 EXAMPLE: example QuanteC; shows an example"∗/
50 {
51 int n= nvars(r);
52 int b=1;
53 int i=1;
54 int k;
55 intvec v;
56 int j;
57 int u;
58 //b =bool. b=1 true; b=0 false
59 //we suppose true!
60 //i=counter on the elements of Borid
61 int s= size(Borid);
62 while(b && i<=s)
63 {
64 v=leadexp(Borid[i]);
65 j=1;
66 u=size(v);
67 while(b && j<=u)
68 {
69 if(v[j]!=0)
70 {
71 k=j+1;
72 while(b && k<=n)
73 {
74 b=(reduce(Borid[i]∗var(k)/var(j),std(Borid))==0);
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75 k++;
76 }
77 }
78 j++;
79 }
80 i++;
81 }
82 return(b);
83 }
84 //example
85 { "EXAMPLE:"; echo = 2;
86 ring r=0, (x,y,z),rp;
87 ideal Borid=y^2∗z,y∗z^2,z^3,y^5;
88 BorelCheck(Borid,r);
89 }
90 ////////////////////////////////////////////////////////////////////
91 proc ArrangeBorel(ideal Borid)
92 /∗"USAGE: ArrangeBorel(Borid); Borid ideal
93 RETURN: list: Input
94 NOTE: Input must be a monomial ideal, increasingly ordered by degree.
95 The procedure groups the monomials in a list of lists as needed to compute
96 J−marked scheme.
97 // It also returns a list containing the size of every sublist generated.
98 EXAMPLE: example ArrangeBorel; shows an example"∗/
99 {

100 list Input;
101 int j=1;
102 //list numero=1;
103 Input[1]=list(Borid[1]);
104 for(int i=2; i<=size(Borid); i++)
105 {
106 if(deg(Borid[i])!=deg(Borid[i−1]))
107 {
108 j++;
109 Input[j]=list();
110 // numero[j]=0;
111 }
112 Input[j]=insert(Input[j],Borid[i],size(Input[j]));
113 //numero[j]=numero[j]+1;
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114 }
115 return(Input);
116 }
117 //example
118 { "EXAMPLE:"; echo = 2;
119 ring r=0, (x,y,z),rp;
120 ideal Borid=y^2∗z,y∗z^2,z^3,y^5;
121 ArrangeBorel(Borid);
122 }
123 ////////////////////////////////////////////////////////////////////
124 proc NumNewVar(list B, list NumN)
125 /∗"USAGE: NumNewVar(B,NumN); B list, NumN list
126 RETURN: int: d
127 NOTE: B is the grouped Borel, while NumN is a list containing the cardinalities
128 of the obtained groups.
129 EXAMPLE: example NumNewVar; shows an example"∗/
130 {
131 int d;
132 int j;
133 int i;
134 for(i=1; i<=size(B); i++)
135 {
136 d=d+size(B[i])∗NumN[i];
137 }
138 return(d);
139 }
140 //example
141 { "EXAMPLE:"; echo = 2;
142 ring r=0, (x,y,z),rp;
143 ideal Borid=y^2∗z,y∗z^2,z^3,y^5;
144 list B= ArrangeBorel(Borid);
145 list NumN=7,8;
146 NumNewVar(B,NumN);
147 }
148 ////////////////////////////////////////////////////////////////////
149 proc NewTails(ideal NI, int s)
150 /∗"USAGE: NewTails(NI,s); NI ideal, s int
151 RETURN: list: M
152 NOTE: The procedure construct the tails of the required unknown J−marked
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153 polynomials.
154 EXAMPLE: example NewTails; shows an example"∗/
155 {
156 poly p=0;
157 for(int i=1; i<=size(NI); i++)//Loop on the Groebner escalier
158 {
159 p=p+NI[i]∗c(i+s); //multiply by c’s
160 }
161 int u=size(NI);
162 list M=p,u;
163 return(M);
164 }
165 //example
166 { "EXAMPLE:"; echo = 2;
167 ring r=(0,c(1..7)), (x,y,z),rp;
168 ideal NI=x^2,x∗y,y^2,z^2;
169 NewTails(NI,3);
170 }
171 ////////////////////////////////////////////////////////////////////
172 proc ArrangeTails(list Q)
173 /∗"USAGE: ArrangeTails(Q); Q list
174 RETURN: list: Q
175 NOTE: Constructs the final list of J−marked polynomials.
176 EXAMPLE: example FormaInput; shows an example"∗/
177 {
178 jmp m=Q[1][1];
179 jmp M=Q[size(Q)][1];
180 int minimo=deg(m.h);
181 int massimo=deg(M.h);
182 //print(minimo);
183 //print(massimo);
184 int i=2;
185 jmp qi;
186 while(i<=size(Q))
187 {
188 //print("entro nel ciclo");
189 //print(i);
190 qi=Q[i][1];
191 if(deg(qi.h)!=minimo+1)
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192 {
193 //print("qui riempire");
194 //print(i);
195 Q=insert(Q,list(),i−1);//Insert empty list for all intermediate degree
196 between the minimum and the maximum, not having polynomials.
197 //print(Q);
198 }
199 minimo=minimo+1;
200 i=i+1;
201 //print("ora ho");
202 //print(minimo);
203 //print(i);
204 }
205 return(Q);
206 }
207 //example
208 { "EXAMPLE:"; echo = 2;
209 ring r=0, (x,y,z),rp;
210 ideal Borid=y^2∗z,y∗z^2,z^3,y^5;
211 attrib(Borid,"isSB",1);
212 list B=ArrangeBorel(Borid);
213 list NumN;
214 list N;
215 int i;
216 int d;
217 for(i=1;i<=size(B);i++)
218 {
219 d=deg(B[i][1]);
220 N[i]=kbase(Borid,d);
221 NumN[i]=size(N[i]);
222 }
223 int qc=NumNewVar(B, NumN);
224 //Now I must define the NEW RING, putting the c parameters inside.
225 list L=ringlist(r);
226 list L2;
227 L2[1]=L[1];
228 L2[2]=list();
229 for(i=qc;i>=1;i−−)
230 {
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231 L2[2][i]="c("+string(i)+")";
232 }
233 L2[3]=list(list("rp",qc));
234 L2[4]=L[4];
235 L[1]=L2;
236 def K=ring(L);
237 setring(K);
238 def Borid=imap(r,Borid);
239 def N=imap(r,N);
240 def B=imap(r,B);
241 //NumN contains only scalars so I do not imap it
242 int j;
243 list Q;
244 int s;
245 list M;
246 jmp pp;
247 for(i=1;i<=size(B);i++)
248 {
249 Q[i]=list();
250 for(j=1;j<=size(B[i]);j++)
251 {
252 M=NewTails(N[i],s);
253 pp.h=B[i][j];
254 pp.t=M[1];
255 Q[i][j]=pp;
256 s=s+M[2];
257 //print(s);
258 }
259 }
260 list P=ArrangeTails(Q);
261 int ll;
262 int uu;
263 jmp Pp;
264 for(ll=1; ll<=size(P);ll++)
265 {
266 for(uu=1;uu<=size(P[ll]);uu++)
267 {Pp=P[ll][uu]; Pp.h; Pp.t;}
268 }
269 }
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270 ////////////////////////////////////////////////////////////////////
271 proc mod_init()
272 /∗"USAGE: mod_init();
273 RETURN: struct: jmp
274 EXAMPLE: example mod_init; shows an example"∗/
275 {
276 newstruct("jmp", "poly h, poly t");
277 }
278 //example
279 { "EXAMPLE:"; echo = 2;
280 mod_init();
281 }
282 ////////////////////////////////////////////////////////////////////
283 proc Terns(list G, int c)
284 /∗"USAGE: Terns(G,c); G list, c int
285 RETURN: list: T
286 NOTE: Input is a list of J−marked polynomials
287 (arranged by degree) and an integer.
288 EXAMPLE: example Terns; shows an example"∗/
289 {
290 list T=list();
291 int z;
292 for(int k=1; k<=size(G[c]);k=k+1)
293 {
294 //Loop on G[c] making positions of polynomials in G[c]
295 z=size(T);
296 T=insert(T,list(1,c,k) ,size(T));
297 }
298 return(T);
299 }
300 //example
301 { "EXAMPLE:"; echo = 2;
302 ring r=0, (x,y,z), rp;
303 jmp r1;
304 r1.h=z^3;
305 r1.t=poly(0);
306 jmp r2;
307 r2.h=z^2∗y;
308 r2.t=poly(0);
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309 jmp r3;
310 r3.h=z∗y^2 ;
311 r3.t=−x^2∗y;
312 jmp r4;
313 r4.h=y^5;
314 r4.t=poly(0);
315 list G2F=list(list(r1,r2,r3),list(r4));
316 Terns(G2F, 1);
317 Terns(G2F, 2);
318 }
319 ////////////////////////////////////////////////////////////////////
320 proc VConst(list G, int c)
321 /∗"USAGE: VConst(G, c); G list, c int
322 RETURN: list: V
323 NOTES: this procedure computes the Vm polynomials following the
324 algorithm in [CR],but it only keeps in memory the monomials by
325 which the G’s must be multplied and their positions.
326 EXAMPLE: example VConst; shows an example"∗/
327 {
328 jmp f=G[1][1];
329 int aJ=deg(f.h);
330 // minimal degree of polynomials in G
331 //print(aJ);
332 list V=list();
333 V[1]=Terns(G,1);
334 // V[1]=G[1] (keeping in memory only [head, position])
335 //print(c−aJ+1);
336 int i;
337 int j;
338 int m;
339 list OO;
340 jmp p;
341 for(m=2; m<=c−aJ+1; m=m+1)
342 {
343 //print("entro nel form");
344 if(m>size(G))
345 {V[m]=list();
346 //If we have not G[m] we insert a list()
347 //print("vuota prima");
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348 }
349 else
350 {V[m]=Terns(G,m);
351 //print("piena prima");
352 }
353 for(i=1; i<nvars(basering)+1; i=i+1)
354 {
355 //print("entrata fori");
356 //print(i);
357 for(j=1; j<=size(V[m−1]); j=j+1)
358 {
359 p=G[V[m−1][j][2]][V[m−1][j][3]];
360 //print(p.h);
361 //print(p.t);
362 //print(var(i));
363 //print(Minimus(V[m−1][j][1]∗p.h));
364 if(var(i)<=Minimus(variables(V[m−1][j][1]∗p.h)))
365 {
366 //Can I multiply by the current variable?
367 //print("minoremin");
368 //print("fin qui ci sono");
369 //print(V[m−1][j][1]);
370 OO=list(var(i)∗V[m−1][j][1],V[m−1][j][2],V[m−1][j][3]);
371 V[m]=insert(V[m], OO ,size(V[m]));
372 }
373 }
374 }
375 }
376 return (V);}
377 //example
378 { "EXAMPLE:"; echo = 2;
379 ring r=0, (x,y,z), rp;
380 jmp r1;
381 r1.h=z^3;
382 r1.t=poly(0);
383 jmp r2;
384 r2.h=z^2∗y;
385 r2.t=poly(0);
386 jmp r3;
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387 r3.h=z∗y^2 ;
388 r3.t=−x^2∗y;
389 jmp r4;
390 r4.h=y^5;
391 r4.t=poly(0);
392 list G2F=list(list(r1,r2,r3),list(r4));
393 VConst(G2F,4,basering);}
394 ////////////////////////////////////////////////////////////////////
395 proc Minimus(ideal L)
396 /∗"USAGE: Minimus(L); G list, c int
397 RETURN: list: V
398 NOTES: it returns the minimal variable generating the ideal L;
399 input must be an ideal generated by variables.
400 EXAMPLE: example Minimus; shows an example"∗/
401 {
402 poly min=L[1];
403 int i;
404 for(i=2;i<=size(L); i++)
405 {
406 if(L[i]<min){min=L[i];}
407 }
408 return(min);
409 }
410 //example
411 { "EXAMPLE:"; echo = 2;
412 ring r=0, (x,y,z), rp;
413 ideal I=y,x,z;
414 Minimus(I);
415 }
416 ////////////////////////////////////////////////////////////////////
417 proc Maximus(ideal L)
418 /∗"USAGE: Maximus(L); G list, c int
419 RETURN: list: V
420 NOTES: it returns the maximal variable generating the ideal L
421 input must be an ideal generated by variables.
422 EXAMPLE: example Maximus; shows an example"∗/
423 {
424 poly max=L[1];
425 int i;
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426 for(i=2;i<=size(L); i++)
427 {
428 if(L[i]>max){max=L[i];}
429 }
430 return(max);
431 }
432 example
433 { "EXAMPLE:"; echo = 2;
434 ring r=0, (x,y,z), rp;
435 ideal I=y,x,z;
436 Maximus(I);
437 }
438 ////////////////////////////////////////////////////////////////////
439 proc GPolyMin(jmp P, jmp Q)
440 /∗"USAGE: GPolyMin(P,Q); P jmp, Q jmp
441 RETURN: int: d
442 EXAMPLE: example GPolyMin; shows an example"∗/
443 {
444 int d=1;
445 //−1=lower, 0=equal, 1=higher
446 //At the beginning suppose Q is higher
447 if(deg(P.h)<deg(Q.h))
448 {
449 //Compare degrees;
450 d=−1;
451 //print("Per Grado");
452 }
453 if(deg(P.h)==deg(Q.h))
454 {
455 if(P.h==Q.h)
456 {
457 if(P.t==Q.t)
458 {
459 //head=tail
460 d=0;
461 //print("Uguali");
462 }
463 }
464 else
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465 {
466 //print(Minimus(variables(P.h/gcdMon(P.h,Q.h))));
467 //print(Minimus(variables(Q.h/gcdMon(P.h,Q.h))));
468

469 if(Minimus(variables(P.h/gcdMon(P.h,Q.h)))<Minimus(variables(Q.h/gcdMon(P.h,
470 Q.h))))
471 {
472 d=−1;
473 //print("Per Indice");
474 }
475 }
476 }
477 return(d);
478 }
479 //example
480 { "EXAMPLE:"; echo = 2;
481 ring r=0, (x,y,z), rp;
482 jmp p1;
483 p1.h=poly(1);
484 p1.t=poly(1);
485 jmp p2;
486 p2.h=x^2;
487 p2.t=poly(0);
488 jmp p3;
489 p3.h=x;
490 p3.t=poly(0);
491 GPolyMin(p1,p2);
492 GPolyMin(p2, p3);
493 GPolyMin(p2,p2);
494 }
495 ////////////////////////////////////////////////////////////////////
496 proc TernComparer(list A, list B, list G)
497 /∗"USAGE: TernComparer(A,B,C); A list, B list, G list
498 RETURN: int: d
499 NOTE: A and B are terns, while G is the given list of
500 J−marked polynomials.
501 EXAMPLE: example TernComparer; shows an example"∗/
502 {
503 int d=−1;
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504 //Start: A<B
505 if(A[1]==B[1])
506 {
507 if(A[2]==B[2]&& A[3]==B[3])
508 {
509 //print("Uguali");
510 d=0;
511 }
512 else
513 {
514 jmp g1=G[A[2]][A[3]];
515 jmp g2=G[B[2]][B[3]];
516 if(GPolyMin(g1, g2)==1)
517 {
518 //print("Maggiore per il G");
519 d=1;
520 }
521 }
522 }
523 else
524 {
525 if(A[1]>B[1])
526 {
527 //the ordering MUST be rp
528 //print("Maggiore per Lex");
529 d=1;
530 }
531 }
532 return(d);
533 }
534 //example
535 { "EXAMPLE:"; echo = 2;
536 ring r=0, (x,y,z), rp;
537 jmp r1;
538 r1.h=z^3;
539 r1.t=poly(0);
540 jmp r2;
541 r2.h=z^2∗y;
542 r2.t=poly(0);
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543 jmp r3;
544 r3.h=z∗y^2 ;
545 r3.t=−x^2∗y;
546 jmp r4;
547 r4.h=y^5;
548 r4.t=poly(0);
549 list G2F=list(list(r1,r2,r3),list(r4));
550 TernComparer([1,1,1],[x,1,1],G2F);
551 }
552 ////////////////////////////////////////////////////////////////////
553 proc MinimalV(list V, list G)
554 /∗"USAGE: Minimal(V,G); V list, G list
555 RETURN: int: R
556 NOTE: Input=list(terns), G.
557 EXAMPLE: example MinimalV; shows an example"∗/
558 {
559 //Minimal element for a given degree
560 list R=list();
561 list MIN=V[1];
562 int h=1;
563 int i;
564 for(i=2; i<=size(V); i++)
565 {
566 //I consider the first as minimum
567 //If I find something smaller I change minimum
568 if(TernComparer(V[i],MIN,G)<=0)
569 {
570 MIN=V[i];
571 h=i;
572 }
573 }
574 //Return: [minimum,position of the minimum]
575 R=MIN,h;
576 return(R);
577 }
578 //example
579 { "EXAMPLE:"; echo = 2;
580 ring r=0, (x,y,z), rp;
581 jmp r1;

380



582 r1.h=z^3;
583 r1.t=poly(0);
584 jmp r2;
585 r2.h=z^2∗y;
586 r2.t=poly(0);
587 jmp r3;
588 r3.h=z∗y^2 ;
589 r3.t=−x^2∗y;
590 jmp r4;
591 r4.h=y^5;
592 r4.t=poly(0);
593 list G2F=list(list(r1,r2,r3),list(r4));
594 MinimalV(VConst(G2F,4,basering)[1],G2F);
595 }
596 ////////////////////////////////////////////////////////////////////
597 proc OrderV(list V,list G,list R)
598 /∗"USAGE: Ordinare(V,G,R); V list, G list, R list
599 RETURN: list: R
600 NOTE: Input: Vm,G,emptylist
601 EXAMPLE: example Ordinare; shows an example"∗/
602 {
603 //Order V[m]
604 //R will contain results but at the beginning it is empty
605 list M=list();
606 if(size(V)==1)
607 {
608 R=insert(R,V[1],size(R));
609 }
610 else
611 {
612 M=MinimalV(V,G);
613 R=insert(R,M[1],size(R));
614 V=delete(V,M[2]);
615 //recursive call
616 R=OrderV(V,G,R);
617 }
618 return(R);
619 }
620 //example
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621 { "EXAMPLE:"; echo = 2;
622 ring r=0, (x,y,z), rp;
623 jmp r1;
624 r1.h=z^3;
625 r1.t=poly(0);
626 jmp r2;
627 r2.h=z^2∗y;
628 r2.t=poly(0);
629 jmp r3;
630 r3.h=z∗y^2;
631 r3.t=−x^2∗y;
632 jmp r4;
633 r4.h=y^5;
634 r4.t=poly(0);
635 list G2F=list(list(r1,r2,r3),list(r4));
636 OrderV(VConst(G2F,4,r)[1],G2F,list());
637 }
638 ////////////////////////////////////////////////////////////////////
639 proc StartOrderingV(list V,list G)
640 /∗"USAGE: StartOrderingV(V,G); V list, G list
641 RETURN: list: R
642 NOTE: Input Vm,G. This procedure uses OrderV to get
643 the ordered polynomials as in [BCLR].
644 EXAMPLE: example StartOrderingV; shows an example"∗/
645 {
646 return(OrderV(V,G, list()));
647 }
648 //example
649 { "EXAMPLE:"; echo = 2;
650 ring r=0, (x,y,z), rp;
651 jmp r1;
652 r1.h=z^3;
653 r1.t=poly(0);
654 jmp r2;
655 r2.h=z^2∗y;
656 r2.t=poly(0);
657 jmp r3;
658 r3.h=z∗y^2;
659 r3.t=−x^2∗y;
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660 jmp r4;
661 r4.h=y^5;
662 r4.t=poly(0);
663 list G2F=list(list(r1,r2,r3),list(r4));
664 StartOrderingV(VConst(G2F,4,basering)[1],G2F);
665 }
666 ////////////////////////////////////////////////////////////////////
667 proc MultiplyJmP(list L, list G)
668 /∗"USAGE: MultiplyJmP(L,G); L list, G list
669 RETURN: jmp: K
670 NOTE: Input: a 3−ple,G. It performs the product associated
671 to the 3−uple.
672 EXAMPLE: example MultiplyJmP; shows an example"∗/
673 {
674 jmp g=G[L[2]][L[3]];
675 jmp K;
676 K.h=L[1]∗g.h;
677 K.t=L[1]∗g.t;
678 return(K);
679 }
680 //example
681 { "EXAMPLE:"; echo = 2;
682 ring r=0, (x,y,z), rp;
683 list P=x^2,1,1;
684 jmp r1;
685 r1.h=z^3;
686 r1.t=poly(0);
687 jmp r2;
688 r2.h=z^2∗y;
689 r2.t=poly(0);
690 jmp r3;
691 r3.h=z∗y^2 ;
692 r3.t=−x^2∗y;
693 jmp r4;
694 r4.h=y^5;
695 r4.t=poly(0);
696 list G2F=list(list(r1,r2,r3),list(r4));
697 MultiplyJmP(P,G2F);
698 }
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699 ////////////////////////////////////////////////////////////////////
700 //proc JmpIdeal(list V,r)
701 //"USAGE: JmpIdeal(V); V list
702 //RETURN: ideal: I
703 //NOTES: this procedure takes a list of Vm’s of a certain degree
704 //and construct their ideal, multiplying the head by the weighted
705 //variable t.
706 //EXAMPLE: example JmpIdeal; shows an example"
707 //{
708 //ideal I=0;
709 //int i;
710 //if (size(V)!=0)
711 // {
712 // list M=list();
713 //jmp g;
714 // for(i=1; i<= size(V); i++)
715 // {
716 // g=V[i];
717 // g.h=(g.h)∗t;
718 // M[i]=g.h+g.t;
719 // }
720 // I=M[1..size(M)];
721 //attrib(I,"isSB",1);
722 // }
723 //return(I);
724 //}
725 //example
726 //{ "EXAMPLE:"; echo = 2;
727 // ring r=0, (x,y,z,t), rp;
728 //jmp r1;
729 //r1.h=z^3;
730 //r1.t=poly(0);
731 //jmp r2;
732 //r2.h=z^2∗y;
733 //r2.t=poly(0);
734 //jmp r3;
735 //r3.h=z∗y^2 ;
736 //r3.t=−x^2∗y;
737 //jmp r4;
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738 //r4.h=y^5;
739 //r4.t=poly(0);
740 //list G2F=list(list(r1,r2,r3),list(r4));
741 //JmpIdeal(VConst(G2F,6,r)[1],r);
742 //}
743 ////////////////////////////////////////////////////////////////////
744 proc NewWeight(int n)
745 /∗"USAGE: NewWeight(n); n int
746 RETURN: intvec: u
747 EXAMPLE: example NewWeight; shows an example"∗/
748 {
749 intvec u=0;
750 u[n]=1;
751 return(u);
752 }
753 //example
754 { "EXAMPLE:"; echo = 2;
755 NewWeight(3);
756 }
757 ////////////////////////////////////////////////////////////////////
758 proc FinalVm(list V1 , list G1 , r)
759 /∗"USAGE: FinalVm(V1, G1, r); V1 list, G1 list , r
760 RETURN: intvec: u
761 EXAMPLE: example FinalVm; shows an example"∗/
762 {
763 //multiply and reduce, degree by degree
764 intvec u=NewWeight(nvars(r)+1);
765 list L=ringlist(r);
766 L[2]=insert(L[2],"t",size(L[2]));
767 //print(L[2]);
768 list ordlist="a",u;
769 L[3]=insert(L[3],ordlist,0);
770 def H=ring(L);
771 //print(V1);
772 //print(G1);
773 list M=list();
774 jmp p;
775 list N;
776 poly q;
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777 poly s;
778 int i;
779 int j;
780 for(i=1; i<=size(G1); i++)
781 {
782 N=list();
783 for(j=1; j<=size(G1[i]); j++)
784 {
785 p=G1[i][j];
786 q=p.h;
787 s=p.t;
788 N[j]=list(q,s);
789 }
790 M[i]=N;
791 }
792 //print("M is");
793 //print(M);
794 p.h=poly(0);
795 p.t=poly(0);
796 setring H;
797 list R=list();
798 list S=list();
799 //print("anello definito");
800 def V=imap(r,V1);
801 //def G=imap(r,G1);
802 //print(V);
803 def MM=imap(r,M);
804 list G=list();
805 list N=list();
806 for(i=1; i<=size(MM); i++)
807 {
808 for(j=1; j<=size(MM[i]); j++)
809 {
810 p.h=MM[i][j][1];
811 p.t=MM[i][j][2];
812 N[j]=p;
813 }
814 G[i]=N;
815 }
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816 ideal I=0;
817 jmp LL;
818 jmp UU;
819 //print("pronta x ridurre");
820 for(i=1; i<=size(V);i++)
821 {
822 //print("sono a V di");
823 //print(i);
824 R[i]=list();
825 S[i]=list();
826 I=0;
827 attrib(I,"isSB",1);
828 for(j=1;j<=size(V[i]); j++)
829 {
830 //print(j);
831 //print("esimo elem");
832 LL=MultiplyJmP(V[i][j],G);
833 LL.t=reduce(t∗LL.t,I);
834 //I only reduce the tail
835 //print(LL.t);
836 LL.t=subst(LL.t,t,1);
837 S[i]=insert(S[i],LL,size(S[i]));
838 LL.h=t∗LL.h;
839 R[i]=insert(R[i],LL,size(R[i]));
840 UU=R[i][j];
841 I=I+ideal(UU.h+UU.t);
842 attrib(I,"isSB",1);
843 }
844 }
845 //print("ho ridotto");
846 list M=list();
847 poly q;
848 poly s;
849 for(i=1; i<=size(S); i++)
850 {
851 N=list();
852 for(j=1; j<=size(S[i]); j++)
853 {
854 p=S[i][j];
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855 q=p.h;
856 s=p.t;
857 N[j]=list(q,s);
858 }
859 M[i]=N;
860 }
861 p.h=poly(0);
862 p.t=poly(0);
863 setring r;
864 def MM=imap(H,M);
865 list MMM=list();
866 for(i=1; i<=size(MM); i++)
867 {
868 N=list();
869 for(j=1; j<=size(MM[i]); j++)
870 {
871 p.h=MM[i][j][1];
872 p.t=MM[i][j][2];
873 N[j]=p;
874 }
875 MMM[i]=N;
876 }
877 return(MMM);
878 }
879 //example
880 { "EXAMPLE:"; echo = 2;
881 ring r=0, (x,y,z), rp;
882 jmp r1;
883 r1.h=z^3;
884 r1.t=poly(0);
885 jmp r2;
886 r2.h=z^2∗y;
887 r2.t=poly(0);
888 jmp r3;
889 r3.h=z∗y^2 ;
890 r3.t=−x^2∗y;
891 jmp r4;
892 r4.h=y^5;
893 r4.t=poly(0);
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894 list G2F=list(list(r1,r2,r3),list(r4));
895 FinalVm(VConst(G2F,6,r) , G2F, r);
896 }
897 ////////////////////////////////////////////////////////////////////
898 proc VmConstructor(list G, int c,r)
899 /∗"USAGE: VmConstructor(G,c); G list, c int
900 RETURN: list: R
901 NOTE: At the end separated by degree.
902 EXAMPLE: example VmConstructor; shows an example"∗/
903 {
904 list V=list();
905 V= VConst(G,c);
906 //print("VConst");
907 //V non ordered
908 list L=list();
909 list R=list();
910 int i;
911 // head, position
912 //order the different degrees
913 for(i=1; i<=size(V); i++)
914 {
915 L[i]=StartOrderingV(V[i], G);
916 }
917 //print("finito ordine");
918 //multiply and reduce
919 //print("Ordinare");
920 //R=FinalVm(L, G, r);
921 //print("FinalVm");
922 return(L);
923 }
924 //example
925 { "EXAMPLE:"; echo = 2;
926 ring r=0, (x,y,z), rp;
927 jmp r1;
928 r1.h=z^3;
929 r1.t=poly(0);
930 jmp r2;
931 r2.h=z^2∗y;
932 r2.t=poly(0);
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933 jmp r3;
934 r3.h=z∗y^2 ;
935 r3.t=−x^2∗y;
936 jmp r4;
937 r4.h=y^5;
938 r4.t=poly(0);
939 list G2F=list(list(r1,r2,r3),list(r4));
940 VmConstructor(G2F,6,r);
941 }
942 ////////////////////////////////////////////////////////////////////
943 proc EKCouples(jmp A, jmp B)
944 /∗"USAGE: CoppiaEK(A,B); A list, B list
945 RETURN: list: L
946 NOTE: At the end the monomials involved by EK.
947 EXAMPLE: example EKCouples; shows an example"∗/
948 {
949 poly E;
950 list L=0,0;
951 string s=varstr(basering);
952 list VVV=varstr(basering);
953 //L will contain results
954 poly h=Minimus(variables(A.h));
955 //print(h);
956 int l=findvars(h,1)[2][1];
957 if(l!=nvars(basering))
958 {
959 //print("vero");
960 //print(l);
961 for(int j=l+1;j<=nvars(basering); j++)
962 {
963 //print("entrata");
964 //print(var(j));
965 E=var(j)∗A.h/B.h;
966 //Candidate for ∗ product
967 //print(E);
968 if(E!=0)
969 {
970 //print("primo if passato");
971 if(Minimus(variables(B.h))>=Maximus(variables(E)))
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972 {
973 //Does it work with ∗ ?
974 //print("secondo if passato");
975 L[1]=j;
976 L[2]=E;
977 break;
978 }
979 }
980 }
981 }
982 return (L);
983 }
984 //example
985 { "EXAMPLE:"; echo = 2;
986 ring r=0, (x,y,z), rp;
987 jmp A;
988 A.h=y∗z^2;
989 A.t=poly(0);
990 jmp B;
991 B.h=y^2∗z;
992 B.t=poly(0);
993 EKCouples(A,B);
994 EKCouples(B,A);
995 }
996 ////////////////////////////////////////////////////////////////////
997 proc EKPolynomials(list G)
998 /∗"USAGE: EKPolynomials(G); G list
999 RETURN: list: EK, list: D

1000 NOTE: At the end EK polynomials and their degrees
1001

1002 EXAMPLE: example EKPolynomials; shows an example"∗/
1003 {
1004 list D=list();
1005 list C=list();
1006 list N=0,0;
1007 list EK=list();
1008 int i;
1009 int j;
1010 int k;
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1011 int l;
1012 jmp p;
1013 for(i=1; i<=size(G); i++)
1014 {
1015 for(j=1; j<=size(G[i]); j++)
1016 {
1017 for(k=1; k<=size(G); k++)
1018 {
1019 for(l=1; l<=size(G[k]); l++)
1020 {
1021 if(i!=k||j!=l)
1022 {
1023 //Loop on polynomials
1024 C=EKCouples(G[i][j], G[k][l]);
1025 //print("coppia");
1026 if(C[2]!=0)
1027 {
1028 C=insert(C,list(i,j,k,l),size(C));
1029 EK=insert(EK,C,size(EK));
1030 p=G[k][l];
1031 D=insert(D,deg(C[2]∗p.h),size(D));
1032 }
1033 }
1034 }
1035 }
1036 }
1037 }
1038 //Double Return
1039 return(EK, D);
1040 }
1041 //example
1042 { "EXAMPLE:"; echo = 2;
1043 ring r=0, (x,y,z), rp;
1044 jmp r1;
1045 r1.h=z^3;
1046 r1.t=poly(0);
1047 jmp r2;
1048 r2.h=z^2∗y;
1049 r2.t=poly(0);
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1050 jmp r3;
1051 r3.h=z∗y^2;
1052 r3.t=−x^2∗y;
1053 jmp r4;
1054 r4.h=y^5;
1055 r4.t=poly(0);
1056 list G2F=list(list(r1,r2,r3),list(r4));
1057 EKPolynomials(G2F);
1058 }
1059 ////////////////////////////////////////////////////////////////////
1060 proc MultEKPolys(list EK, list G)
1061 /∗"USAGE: MultEKPolys(G); G list
1062 RETURN: list: p
1063 NOTE: At the end I obtain the EK polynomials and
1064 their degrees.
1065 EXAMPLE: example MultEKPolys; shows an example"∗/
1066 {
1067 jmp u;
1068 u=G[EK[3][1]][EK[3][2]];
1069 //print("u");
1070 jmp q;
1071 q=G[EK[3][3]][EK[3][4]];
1072 return(var(EK[1])∗(u.h+u.t)−EK[2]∗(q.h+q.t));
1073 }
1074 //example
1075 { "EXAMPLE:"; echo = 2;
1076 ring r=0, (x,y,z), rp;
1077 jmp r1;
1078 r1.h=z^3;
1079 r1.t=poly(0);
1080 jmp r2;
1081 r2.h=z^2∗y;
1082 r2.t=poly(0);
1083 jmp r3;
1084 r3.h=z∗y^2;
1085 r3.t=−x^2∗y;
1086 jmp r4;
1087 r4.h=y^5;
1088 r4.t=poly(0);
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1089 list G2F=list(list(r1,r2,r3),list(r4));
1090 list EK,D=EKPolynomials(G2F);
1091 MultEKPolys(EK[2],G2F);
1092 }
1093 ////////////////////////////////////////////////////////////////////
1094 proc SchemeEq(list W, list EK,list D,list Q,r)
1095 /∗"USAGE: SchemeEq(W,EK,D,Q,r); W list, EK list, D list, Q list, r ring
1096 RETURN: int: i
1097 NOTE:
1098 This procedure performs the reduction of EK−polynomials, obtaining
1099 the J−marked scheme.
1100 EXAMPLE: example SchemeEq; shows an example"∗/
1101 {
1102 list Jms=list();
1103 //ideal I;
1104 list M=list();
1105 jmp mini;
1106 mini=W[1][1];
1107 int minimo=deg(mini.h);
1108 //multiply variables
1109 poly pd=poly(1);
1110 for(int i=1;i<=nvars(r);i++)
1111 {pd=pd∗var(i);}
1112 //CHANGE RING
1113 intvec u=NewWeight(nvars(r)+1);
1114 list L=ringlist(r);
1115 L[2]=insert(L[2],"t",size(L[2]));
1116 //print(L[2]);
1117 list ordlist="a",u;
1118 L[3]=insert(L[3],ordlist,0);
1119 def H=ring(L);
1120 //list
1121 M=list();
1122 jmp pu;
1123 list N;
1124 poly q;
1125 poly s;
1126 i=0;
1127 int j;

394



1128 for(i=1; i<=size(Q); i++)
1129 {
1130 N=list();
1131 for(j=1; j<=size(Q[i]); j++)
1132 {
1133 pu=Q[i][j];
1134 q=pu.h;
1135 s=pu.t;
1136 N[j]=list(q,s);
1137 }
1138 M[i]=N;
1139 }
1140 list O;
1141 pu.h=poly(0);
1142 pu.t=poly(0);
1143 for(i=1; i<=size(W); i++)
1144 {
1145 N=list();
1146 for(j=1; j<=size(W[i]); j++)
1147 {
1148 pu=W[i][j];
1149 q=pu.h;
1150 s=pu.t;
1151 N[j]=list(q,s);
1152 }
1153 O[i]=N;
1154 }
1155 pu.h=poly(0);
1156 pu.t=poly(0);
1157 setring H;
1158 list R=list();
1159 list S=list();
1160 //print("anello definito");
1161 def EK=imap(r,EK);
1162 def MM=imap(r,M);
1163 def OO=imap(r,O);
1164 def pd=imap(r,pd);
1165 list G=list();
1166 list N=list();
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1167 for(i=1; i<=size(MM); i++)
1168 {
1169 for(j=1; j<=size(MM[i]); j++)
1170 {
1171 pu.h=MM[i][j][1];
1172 pu.t=MM[i][j][2];
1173 N[j]=pu;
1174 }
1175 G[i]=N;
1176 }
1177 list V;
1178 for(i=1; i<=size(OO); i++)
1179 {
1180 for(j=1; j<=size(OO[i]); j++)
1181 {
1182 pu.h=OO[i][j][1];
1183 pu.t=OO[i][j][2];
1184 N[j]=pu;
1185 }
1186 V[i]=N;
1187 }
1188 //print(V);
1189 //print(G);
1190 matrix C;
1191 list COEFF;
1192 poly p=0;
1193 poly q=0;
1194 ideal I;
1195 list M;
1196 i=0;
1197 jmp g;
1198 int k;
1199 for(j=1; j<=size(EK);j++)
1200 {
1201 //print("arrivo");
1202 //print(j);
1203 p=MultEKPolys(EK[j],G);
1204 //ideal
1205 I=0;
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1206 if (size(V[D[j]−minimo+1])!=0)
1207 {
1208 M=list();
1209 // jmp g;
1210 for(i=1; i<= size(V[D[j]−minimo+1]); i++)
1211 {
1212 g=V[D[j]−minimo+1][i];
1213 g.h=(g.h)∗t;
1214 M[i]=g.h+g.t;
1215 }
1216 I=M[1..size(M)];
1217 attrib(I,"isSB",1);
1218 //print(I);
1219 }
1220 //print(I);
1221 q=reduce(t∗p,I);
1222 q=subst(q,t,1);
1223 C=coef(q,pd);
1224 COEFF=C[2,1..ncols(C)];
1225 for(k=1;k<=size(COEFF);k++)
1226 {
1227 if(COEFF[k]!=0)
1228 { Jms=insert(Jms,COEFF[k],size(Jms));}
1229 }
1230 }
1231 setring r;
1232 def Jms=imap(H,Jms);
1233 return(Jms);
1234 }
1235 //example
1236 { "EXAMPLE:"; echo = 2;
1237 ring r=0, (x,y,z),rp;
1238 ideal Borid=y^2∗z,y∗z^2,z^3,y^5;
1239 attrib(Borid,"isSB",1);
1240 list B=ArrangeBorel(Borid);
1241 list NumN;
1242 list N;
1243 int i;
1244 int d;
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1245 for(i=1;i<=size(B);i++)
1246 {
1247 d=deg(B[i][1]);
1248 N[i]=kbase(Borid,d);
1249 NumN[i]=size(N[i]);
1250 }
1251 int qc=NumNewVar(B, NumN);
1252 //Now I must define the NEW RING,
1253 //putting the c parameters inside.
1254 list L=ringlist(r);
1255 list L2;
1256 L2[1]=L[1];
1257 L2[2]=list();
1258 for(i=qc;i>=1;i−−)
1259 {
1260 L2[2][i]="c("+string(i)+")";
1261 }
1262 L2[3]=list(list("rp",qc));
1263 L2[4]=L[4];
1264 L[1]=L2;
1265 if(defined(K)){kill K;}
1266 def K=ring(L);
1267 export K;
1268 setring(K);
1269 def Borid=imap(r,Borid);
1270 def N=imap(r,N);
1271 def B=imap(r,B);
1272 //NumN contains only scalars so I do not imap it
1273 int j;
1274 list Q;
1275 int s;
1276 list M;
1277 jmp pp;
1278 for(i=1;i<=size(B);i++)
1279 {
1280 Q[i]=list();
1281 for(j=1;j<=size(B[i]);j++)
1282 {
1283 M=NewTails(N[i],s);
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1284 pp.h=B[i][j];
1285 pp.t=M[1];
1286 Q[i][j]=pp;
1287 s=s+M[2];
1288 //print(s);
1289 }
1290 }
1291 list P=ArrangeTails(Q);
1292 list EK,D= EKPolynomials(P);
1293 int massimo=Max(D);
1294 //list V=VConst(P, massimo);
1295 //pause();
1296 list V=VmConstructor(P,massimo,r);
1297 list W=FinalVm(V,P,K);
1298 //print("I V ridotti in ordine sono");
1299 //print(W);
1300 list Jms=SchemeEq(W,EK,D,P,K);
1301 Jms;}
1302

1303 //////////////////////////////////////////////////////////////////////
1304 proc JMarkedScheme(ideal Borid,r)
1305 /∗"USAGE: JMarkedScheme(Borid, r); Borid ideal, r ring
1306 RETURN: list: Jms
1307 NOTE:
1308 This procedure performs automatically the whole construction
1309 of the J−marked scheme.
1310 EXAMPLE: example JMarkedScheme; shows an example"∗/
1311 {
1312 list Jms;
1313 if(BorelCheck(Borid,r))
1314 {
1315 if(size(Borid)==1)
1316 { Jms=list();}
1317 else{
1318 //print("Input is OK");
1319 attrib(Borid,"isSB",1);
1320 list B=ArrangeBorel(Borid);
1321 list NumN;
1322 list N;
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1323 int i;
1324 int d;
1325 for(i=1;i<=size(B);i++)
1326 {
1327 d=deg(B[i][1]);
1328 N[i]=kbase(Borid,d);
1329 NumN[i]=size(N[i]);
1330 }
1331 int qc=NumNewVar(B, NumN);
1332 if(qc==0)
1333 {Jms=list(0);}
1334 else
1335 {
1336 //Now I must define the NEW RING,
1337 //putting the c parameters inside.
1338 list L=ringlist(r);
1339 list L2;
1340 L2[1]=L[1];
1341 L2[2]=list();
1342 for(i=qc;i>=1;i−−)
1343 {
1344 L2[2][i]="c("+string(i)+")";
1345 }
1346 L2[3]=list(list("rp",qc));
1347 L2[4]=L[4];
1348 L[1]=L2;
1349 if(defined(K)){kill K;}
1350 def K=ring(L);
1351 export K;
1352 setring(K);
1353 def Borid=imap(r,Borid);
1354 def N=imap(r,N);
1355 def B=imap(r,B);
1356 //NumN contains only scalars so I do not imap it
1357 int j;
1358 list Q;
1359 int s;
1360 list M;
1361 jmp pp;
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1362 for(i=1;i<=size(B);i++)
1363 {
1364 Q[i]=list();
1365 for(j=1;j<=size(B[i]);j++)
1366 {
1367 M=NewTails(N[i],s);
1368 pp.h=B[i][j];
1369 pp.t=M[1];
1370 Q[i][j]=pp;
1371 s=s+M[2];
1372 //print(s);
1373 }
1374 }
1375 list P=ArrangeTails(Q);
1376 list EK,D= EKPolynomials(P);
1377 int massimo=Max(D);
1378 //list V=VConst(P, massimo);
1379 //pause();
1380 list V=VmConstructor(P,massimo,r);
1381 list W=FinalVm(V,P,K);
1382 //print("I V ridotti in ordine sono");
1383 //print(W);
1384 //list
1385 Jms=SchemeEq(W,EK,D,P,K);
1386 keepring K;}
1387 }
1388 }
1389 else
1390 {
1391 print("WRONG IDEAL IN INPUT");
1392 print("It is NOT BOREL");
1393 }
1394 return(Jms);
1395 }
1396 //example
1397 { "EXAMPLE:"; echo = 2;
1398 ring r=0, (x,y,z),rp;
1399 ideal Borid=y^2∗z,y∗z^2,z^3,y^5;
1400 JMarkedScheme(Borid,r);}

401





APPENDIX B

Locator polynomials and points
structures for F8,F16

B.1 Cyclical configurations in F8.

B.1.1 The seven cyclical configurations.

We display here all the data concerning the seven cyclical configurations defined in section
8.3.
All the polynomials have been computed using Singular.
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Configuration 1

Number of points Third coordinate

7 a2

6 a3

5 a4

4 a5

3 a6

2 1

1 a

The points are:

[(a, a3, a, 0)],

[(a2, a6, a2, 0)],

[(a3, a2, a3, 0)],

[(a4, a5, a4, 0)],

[(a5, a, a5, 0)],

[(a6, a4, a6, 0)],

[(1, 1, 1, 0)],

[(a4, a4, a2, a)],

[(1, a5, a3, a)],

[(a2, a2, a4, a)],

[(a6, 1, a5, a)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a2, a4)],

[(a3, a5, a2, a5)],
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[(1, a3, a2, a6)],

[(a6, a2, a2, 1)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a3, a6)],

[(a, a6, a3, 1)],

[(1, a6, a4, a5)],

[(a3, 1, a4, a6)],

[(a5, a4, a4, 1)],

[(a, a2, a5, a6)],

[(a4, a3, a5, 1)],

[(a2, a5, a6, 1)].

The tower structure is

a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a4 a3,a,1 a4,a4,a2a5,a6,a6 a6,1,a5 1,a5,a3

a,a6,a3 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,a2 1,a3,a2

a,a2,a5 a2,a5,a6 a3,1,a4 a4,a3,a5a5,a4,a4a6,a3,a3 1,a6,a4

while the configuration list is

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

and the associated polynomial is

z1 + a6x5
1x

3
2 + a5x4

1x
3
2 + a5x3

1x
3
2 + a3x2

1x
3
2 +

a6x1x
3
2 + a3x3

2 + a5x6
1x

2
2 + a3x5

1x
2
2 + a6x4

1x
2
2 +

a3x3
1x

2
2 + a6x2

1x
2
2 + a4x5

1x2 + a5x3
1x2 + a3x1x2

+a3x4
1 + ax1 + a6.

Configuration 2
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Number of points Third coordinate

7 a3

6 a4

5 a5

4 a6

3 1

2 a

1 a2

The points are:

[(a, a3, a, 0)],

[(a2, a6, a2, 0)],

[(a3, a2, a3, 0)],

[(a4, a5, a4, 0)],

[(a5, a, a5, 0)],

[(a6, a4, a6, 0)],

[(1, 1, 1, 0)],

[(a4, a4, a, a2)],

[(1, a5, a3, a)],

[(a2, a2, a4, a)],

[(a6, 1, a5, a)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a3, a2)],

[(a, a, a4, a2)],

[(a3, a5, a5, a2)],

[(1, a3, a6, a2)],
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[(a6, a2, 1, a2)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a3, a6)],

[(a, a6, a3, 1)],

[(1, a6, a4, a5)],

[(a3, 1, a4, a6)],

[(a5, a4, a4, 1)],

[(a, a2, a5, a6)],

[(a4, a3, a5, 1)],

[(a2, a5, a6, 1)].

The tower structure is

a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a4 a2,a2,a4 a3,a,1 a4,a4,aa5,a6,a6 a6,1,a5 1,a5,a3

a,a6,a3 a2,a4,a3a3,a5,a5 a4,a,a3 a5,1,a3 a6,a2,1 1,a3,a6

a,a2,a5 a2,a5,a6 a3,1,a4 a4,a3,a5a5,a4,a4a6,a3,a3 1,a6,a4

corresponding to

[2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

and to

z1 + x5
1x

3
2 + x4

1x
3
2 + ax3

1x
3
2 + x2

1x
3
2 + a4x1x

3
2 +

a2x3
2 + ax6

1x
2
2 + x5

1x
2
2 + a4x4

1x
2
2 + a2x3

1x
2
2 +

a6x2
1x

2
2 + a4x5

1x2 + x3
1x2 + x1x2 + x4

1 + ax1 + 1

Configuration 3

Number of points Third coordinate

7 a4

6 a5

5 a6

4 1

3 a

2 a2

1 a3
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The points are:

[(a, a3, a, 0)],

[(a2, a6, a2, 0)],

[(a3, a2, a3, 0)],

[(a4, a5, a4, 0)],

[(a5, a, a5, 0)],

[(a6, a4, a6, 0)],

[(1, 1, 1, 0)],

[(a4, a4, a, a2)],

[(1, a5, a, a3)],

[(a2, a2, a4, a)],

[(a6, 1, a5, a)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a4, a2)],

[(a3, a5, a5, a2)],

[(1, a3, a6, a2)],

[(a6, a2, 1, a2)],

[a6, a3, a4, a3)],

[(a2, a4, a5, a3)],

[(a4, a, a6, a3)],

[(a, a6, 1, a3)],

[(1, a6, a4, a5)],

[(a3, 1, a4, a6)],

[(a5, a4, a4, 1)],

[(a, a2, a5, a6)],

[(a4, a3, a5, 1)],

[(a2, a5, a6, 1)].
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The point configuration is

a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a4 a2,a2,a4 a3,a,1 a4,a4,aa5,a6,a6 a6,1,a5 1,a5,a

a,a6,1 a2,a4,a5a3,a5,a5 a4,a,a6 a5,1,a2 a6,a2,1 1,a3,a6

a,a2,a5 a2,a5,a6 a3,1,a4 a4,a3,a5a5,a4,a4a6,a3,a431,a6,a45

and the corresponding list is

[2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1].

We get

z1 + ax5
1x

3
2 + a2x4

1x
3
2 + a4x3

1x
3
2 + a4x2

1x
3
2 + a2x1x

3
2

+ax3
2 + a4x6

1x
2
2 + a4x5

1x
2
2 + a2x4

1x
2
2 + ax3

1x
2
2 +

a6x2
1x

2
2 + a4x5

1x2 + a2x3
1x2 + a4x1x2 + a4x4

1 + ax1 + a

Configuration 4

Number of points Third coordinate

7 a5

6 a6

5 1

4 a

3 a2

2 a3

1 a4
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The points are:

[(a, a3, a, 0)],

[(a2, a6, a2, 0)],

[(a3, a2, a3, 0)],

[(a4, a5, a4, 0)],

[(a5, a, a5, 0)],

[(a6, a4, a6, 0)],

[(1, 1, 1, 0)],

[(a4, a4, a, a2)],

[(1, a5, a, a3)],

[(a2, a2, a, a4)],

[(a6, 1, a5, a)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a2, a4)],

[(a3, a5, a5, a2)],

[(1, a3, a6, a2)],

[(a6, a2, 1, a2)],

[(a6, a3, a3, a4)],

[(a2, a4, a5, a3)],

[(a4, a, a6, a3)],

[(a, a6, 1, a3)],

[(1, a6, a5, a4)],

[(a3, 1, a6, a4)],

[(a5, a4, 1, a4)],

[(a, a2, a5, a6)],

[(a4, a3, a5, 1)],

[(a2, a5, a6, 1)].

and their configuration is
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a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a a3,a,1 a4,a4,aa5,a6,a6 a6,1,a5 1,a5,a

a,a6,1 a2,a4,a5a3,a5,a5 a4,a,a6 a5,1,a2 a6,a2,1 1,a3,a6

a,a2,a5 a2,a5,a6 a3,1,a6 a4,a3,a5 a5,a4,1a6,a3,a3 1,a6,a5

The configuration list is

[2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1],

corresponding to the polynomial

z1 + a2x5
1x

3
2 + a4x4

1x
3
2 + x3

1x
3
2 + ax2

1x
3
2 + x1x

3
2 +

x3
2 + x6

1x
2
2 + ax5

1x
2
2 + x4

1x
2
2 + x3

1x
2
2 + a6x2

1x
2
2 +

a4x5
1x2 + a4x3

1x2 + ax1x2 + ax4
1 + ax1 + a2

Configuration 5

Number of points Third coordinate

7 a6

6 1

5 a

4 a2

3 a3

2 a4

1 a5
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The points are:

[(a, a3, a, 0)],

[(a2, a6, a2, 0)],

[(a3, a2, a3, 0)],

[(a4, a5, a4, 0)],

[(a5, a, a5, 0)],

[(a6, a4, a6, 0)],

[(1, 1, 1, 0)],

[(a4, a4, a, a2)],

[(1, a5, a, a3)],

[(a2, a2, a, a4)],

[(a6, 1, a, a5)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a2, a4)],

[(a3, a5, a2, a5)],

[(1, a3, a6, a2)],

[(a6, a2, 1, a2)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a6, a3)],

[(a, a6, 1, a3)],

[(1, a6, a4, a5)],

[(a3, 1, a6, a4)],

[(a5, a4, 1, a4)],

[(a, a2, a6, a5)],

[(a4, a3, 1, a5)],

[(a2, a5, a6, 1)].

and the tower structure is
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a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a a3,a,1 a4,a4,aa5,a6,a6 a6,1,a 1,a5,a

a,a6,1 a2,a4,a3a3,a5,a2 a4,a,a6 a5,1,a2 a6,a2,1 1,a3,a6

a,a2,a6 a2,a5,a6 a3,1,a6 a4,a3,1 a5,a4,1a6,a3,a3 1,a6,a4

Therefore, the configuration list is

[2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1]

and the polynomial we get is

z1 + a3x5
1x

3
2 + a6x4

1x
3
2 + a3x3

1x
3
2 + a5x2

1x
3
2 + a5x1x

3
2 +

a6x3
2 + a3x6

1x
2
2 + a5x5

1x
2
2 + a5x4

1x
2
2 + a6x3

1x
2
2 +

a6x2
1x

2
2 + a4x5

1x2 + a6x3
1x2 + a5x1x2 + a5x4

1 + ax1 + a3. (B.1)

Configuration 6

Number of points Third coordinate

7 1

6 a

5 a2

4 a3

3 a4

2 a5

1 a6
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The points are:

[(a, a3, a, 0)], (B.2)

[(a2, a6, a2, 0)], (B.3)

[(a3, a2, a3, 0)], (B.4)

[(a4, a5, a4, 0)], (B.5)

[(a5, a, a5, 0)], (B.6)

[(a6, a4, a6, 0)], (B.7)

[(1, 1, 1, 0)], (B.8)

[(a4, a4, a, a2)], (B.9)

[(1, a5, a, a3)], (B.10)

[(a2, a2, a, a4)], (B.11)

[(a6, 1, a, a5)], (B.12)

[(a5, a6, a, a6)], (B.13)

[(a3, a, 1, a)], (B.14)

[(a5, 1, a2, a3)], (B.15)

[(a, a, a2, a4)], (B.16)

[(a3, a5, a2, a5)], (B.17)

[(1, a3, a2, a6)], (B.18)

[(a6, a2, a2, 1)], (B.19)

[(a6, a3, a3, a4)], (B.20)

[(a2, a4, a3, a5)], (B.21)

[(a4, a, a3, a6)], (B.22)

[(a, a6, 1, a3)], (B.23)

[(1, a6, a4, a5)], (B.24)

[(a3, 1, a4, a6)], (B.25)

[(a5, a4, 1, a4)], (B.26)

[(a, a2, a5, a6)], (B.27)

[(a4, a3, 1, a5)], (B.28)

[(a2, a5, 1, a6)]. (B.29)

and the tower structure is
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a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a a3,a,1 a4,a4,a a5,a6,a a6,1,a 1,a5,a

a,a6,1 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,a2 1,a3,a2

a,a2,a5 a2,a5,1 a3,1,a4 a4,a3,1 a5,a4,1a6,a3,a3 1,a6,a4

corresponding to the configuration list

[2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2].

The polynomial we get is

z1 + a4x5
1x

3
2 + ax4

1x
3
2 + a6x3

1x
3
2 + a2x2

1x
3
2 + a3x1x

3
2 +

a5x3
2 + a6x6

1x
2
2 + a2x5

1x
2
2 + a3x4

1x
2
2 + a5x3

1x
2
2 +

a6x2
1x

2
2 + a4x5

1x2 + ax3
1x2 + a2x1x2 + a2x4

1 + ax1 + a4 (B.30)

Configuration 7

Number of points Third coordinate

7 a

6 a2

5 a3

4 a4

3 a5

2 a6

1 1
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The points are:

[(a, a3, a, 0)], (B.31)

[(a2, a6, a2, 0)], (B.32)

[(a3, a2, a3, 0)], (B.33)

[(a4, a5, a4, 0)], (B.34)

[(a5, a, a5, 0)], (B.35)

[(a6, a4, a6, 0)], (B.36)

[(1, 1, 1, 0)], (B.37)

[(a4, a4, a, a2)], (B.38)

[(1, a5, a, a3)], (B.39)

[(a2, a2, a, a4)], (B.40)

[(a6, 1, a, a5)], (B.41)

[(a5, a6, a, a6)], (B.42)

[(a3, a, a, 1)], (B.43)

[(a5, 1, a2, a3)], (B.44)

[(a, a, a2, a4)], (B.45)

[(a3, a5, a2, a5)], (B.46)

[(1, a3, a2, a6)], (B.47)

[(a6, a2, a2, 1)], (B.48)

[(a6, a3, a3, a4)], (B.49)

[(a2, a4, a3, a5)], (B.50)

[(a4, a, a3, a6)], (B.51)

[(a, a6, a3, 1)], (B.52)

[(1, a6, a4, a5)], (B.53)

[(a3, 1, a4, a6)], (B.54)

[(a5, a4, a4, 1)], (B.55)

[(a, a2, a5, a6)], (B.56)

[(a4, a3, a5, 1)], (B.57)

[(a2, a5, a6, 1)]. (B.58)
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and their configuration list is

[2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

The tower structure is

a,a3,a a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a a3,a,a a4,a4,a a5,a6,a a6,1,a 1,a5,a

a,a6,a3 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,a2 1,a3,a2

a,a2,a5 a2,a5,a6 a3,1,a4 a4,a3,a5a5,a4,a4a6,a3,a3 1,a6,a4

and the corresponding polynomial is

z1 + a5x5
1x

3
2 + a3x4

1x
3
2 + a2x3

1x
3
2 + a6x2

1x
3
2+

ax1x
3
2 + a4x3

2 + a2x6
1x

2
2 + a6x5

1x
2
2 + ax4

1x
2
2 + a4x3

1x
2
2

+a6x2
1x

2
2 + a4x5

1x2 + a3x3
1x2 + a6x1x2 + a6x4

1 + ax1 + a5 (B.59)

Here we give all the data for configuration 7.2 (8.3). It shows how the general error locator
polynomial can change remarkably, even if we change only one point (the one marked in
red).
Configuration 7.2

Number of points Third coordinate

7 a2

6 a3

5 a4

4 a5

3 a6

2 1

1 0
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we get

[(a, a3, 0, a)], (B.60)

[(a2, a6, a2, 0)], (B.61)

[(a3, a2, a3, 0)], (B.62)

[(a4, a5, a4, 0)], (B.63)

[(a5, a, a5, 0)], (B.64)

[(a6, a4, a6, 0)], (B.65)

[(1, 1, 1, 0)], (B.66)

[(a4, a4, a2, a)], (B.67)

[(1, a5, a3, a)], (B.68)

[(a2, a2, a4, a)], (B.69)

[(a6, 1, a5, a)], (B.70)

[(a5, a6, a6, a)], (B.71)

[(a3, a, 1, a)], (B.72)

[(a5, 1, a2, a3)], (B.73)

[(a, a, a2, a4)], (B.74)

[(a3, a5, a2, a5)], (B.75)

[(1, a3, a2, a6)], (B.76)

[(a6, a2, a2, 1)], (B.77)

[(a6, a3, a3, a4)], (B.78)

[(a2, a4, a3, a5)], (B.79)

[(a4, a, a3, a6)], (B.80)

[(a, a6, a3, 1)], (B.81)

[(1, a6, a4, a5)], (B.82)

[(a3, 1, a4, a6)], (B.83)

[(a5, a4, a4, 1)], (B.84)

[(a, a2, a5, a6)], (B.85)

[(a4, a3, a5, 1)], (B.86)

[(a2, a5, a6, 1)]. (B.87)

The tower structure is
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a,a3,0 a2,a6,a2a3,a2,a3a4,a5,a4 a5,a,a5 a6,a4,a6 1,1,1

a,a,a2 a2,a2,a4 a3,a,1 a4,a4,a2a5,a6,a6 a6,1,a5 1,a5,a3

a,a6,a3 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,a2 1,a3,a2

a,a2,a5 a2,a5,a6 a3,1,a4 a4,a3,a5a5,a4,a4a6,a3,a3 1,a6,a4

and the configuration list is

[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

The polynomial we get, namely

z1 + x6
1x

3
2 + a5x5

1x
3
2 + a3x4

1x
3
2 + a2x3

1x
3
2 +

a6x2
1x

3
2 + ax1x

3
2 + a4x3

2 + a2x6
1x

2
2 + a6x5

1x
2
2 +

ax4
1x

2
2 + a4x3

1x
2
2 + a2x2

1x
2
2 + ax1x

2
2 + a2x2

2 +

a4x5
1x2 + a5x3

1x2 + a3x1x2 + a2x6
1 + a3x5

1 + a6x4
1 +

a5x3
1 + a6x2

1 + a3x1 + a5 (B.88)

is made up of 25 terms.

B.1.2 Seven matrices, seven sets of formulas.

We list here the seven coefficient matrices for the cyclical configurations in F8 (8.3).
Configuration 1:

A[1] =



0 0 a5 0

0 a4 a3 a6

a3 0 a6 a5

0 a5 a3 a5

0 0 a6 a3

a a3 0 a6

a6 0 0 a3


Configuration 2:

A[2] =



0 0 a 0

0 a4 1 1

1 0 a4 1

0 1 a2 a

0 0 a6 1

a 1 0 a4

1 0 0 a2


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Configuration 3:

A[3] =



0 0 a4 0

0 a4 a4 a

a4 0 a2 a2

0 a2 a a4

0 0 a6 a4

a a4 0 a2

a 0 0 a


Configuration 4:

A[4] =



0 0 1 0

0 a4 a a2

a 0 1 a4

0 a4 1 1

0 0 a6 a

a a 0 1

a2 0 0 1


Configuration 5:

A[5] =



0 0 a3 0

0 a4 a3 a3

a5 0 a5 a6

0 a6 a6 a3

0 0 a6 a5

a a5 0 a5

a3 0 0 a6


Configuration 6:

A[6] =



0 0 a6 0

0 a4 a2 a4

a2 0 a3 a

0 a a5 a6

0 0 a6 a2

a a2 0 a3

a4 0 0 a5


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Configuration 7: 

0 0 a2 0

0 a4 a6 a5

a6 0 a a3

0 a3 a4 a2

0 0 a6 a6

a a6 0 a

a5 0 0 a4


The “general” matrix of the coefficients is

A[gen] =



0 0 C 0

0 a4 D A

D 0 E B

0 B F C

0 0 a6 D

a D 0 E

A 0 0 F


; A,B,C,D,E, F ∈ F8.

As explained in chapter 8, choosing differently the value M , we have different sets of for-
mulas, summarized in the table below.

A-F M? 1 2 3 4 5 6 7

A M 5 6 7 1 2 3 4

B M2 3 5 7 2 4 6 1

C M3 2 5 1 4 7 3 6

D M4 6 3 7 4 1 5 2

E M5 1 6 4 3 7 5 3

F M6 4 3 2 1 7 6 5

Table B.1: Configurations in F8.

As explained in 8.3, the formulas in the table above are linked with the cycles in F8. We list
here the couples of cycles connected to each set of formulas.

1: (α, β), (β, α);

2: (α, β), (β, β);

3: (α, γ), (β, α);
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4: (α, α), (β, α);

5: (α, α), (β, γ);

6: (α, β), (β, β);

7: (α, α), (β, β).

B.2 Cyclical configurations in F16.

B.2.1 The cyclical configurations.

Here we list the 15 cyclical configurations in F16 (8.4).
Configuration 1:

Number of points Third coordinate

15 a

14 a2

13 a3

12 a4

11 a5

10 a6

9 a7

8 a8

7 a9

6 a10

5 a11

4 a12

3 a13

2 a14

1 1

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the associated locator polinomial is made up of 85 terms

z1 + a14x14
1 x

7
2 + ax13

1 x
7
2 + a7x12

1 x
7
2 + a11x11

1 x
7
2 + x10

1 x
7
2 + a12x9

1x
7
2 + a9x8

1x
7
2 + a4x7

1x
7
2+

a3x6
1x

7
2 + a10x5

1x
7
2 + a8x4

1x
7
2 + a13x3

1x
7
2 + a6x2

1x
7
2 + a2x1x

7
2 + a5x7

2 + a11x14
1 x

6
2+

a5x13
1 x

6
2 + a4x10

1 x
6
2 + a3x9

1x
6
2 + a10x8

1x
6
2 + a8x7

1x
6
2 + a13x6

1x
6
2 + a6x5

1x
6
2 + a2x4

1x
6
2+

a5x3
1x

6
2 + a14x2

1x
6
2 + ax1x

6
2 + a7x6

2 + a4x13
1 x

5
2 + a10x11

1 x
5
2 + a8x10

1 x
5
2 + a13x9

1x
5
2 + a6x8

1x
5
2+

a2x7
1x

5
2 + a5x6

1x
5
2 + a14x5

1x
5
2 + ax4

1x
5
2 + a7x3

1x
5
2 + a11x2

1x
5
2 + a10x1x

5
2 + a12x5

2 + a13x12
1 x

4
2+

a6x11
1 x

4
2 + a2x10

1 x
4
2 + a5x9

1x
4
2 + a14x8

1x
4
2 + ax7

1x
4
2 + a7x6

1x
4
2 + a11x5

1x
4
2 + a9x4

1x
4
2+

a9x2
1x

4
2 + a3x4

2 + a6x14
1 x

3
2 + a10x7

1x
3
2 + a3x3

1x
3
2 + a2x10

1 x
2
2 + a3x6

1x
2
2 + a10x5

1x
2
2+

a8x4
1x

2
2 + a6x2

1x
2
2 + a2x1x

2
2 + a5x2

2 + a11x14
1 x2 + a12x13

1 x2 + a12x12
1 x2 + a9x11

1 x2+

a4x10
1 x2 + a10x8

1x2 + a13x6
1x2 + a6x5

1x2 + a2x4
1x2 + a14x2

1x2 + a7x2 + a9x14
1 + a3x12

1 +

a10x11
1 + a13x9

1 + a6x8
1 + a5x6

1 + a14x5
1 + a7x3

1 + a11x2
1 + a10x1 + a12

Configuration 2:

Number of points Third coordinate

15 1

14 a

13 a2

12 a3

11 a4

10 a5

9 a6

8 a7

7 a8

6 a9

5 a10

4 a11

3 a12

2 a13

1 a14

The configuration’s list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1,

1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2.
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The corresponding locator polynomial is

z1 + a3x14
1 x

7
2 + a4x13

1 x
7
2 + a9x12

1 x
7
2 + a12x11

1 x
7
2 + x10

1 x
7
2 + a11x9

1x
7
2 + a7x8

1x
7
2 + ax7

1x
7
2+

a14x6
1x

7
2 + a5x5

1x
7
2 + a2x4

1x
7
2 + a6x3

1x
7
2 + a13x2

1x
7
2 + a8x1x

7
2 + a10x7

2+

a12x14
1 x

6
2 + a5x13

1 x
6
2 + ax10

1 x
6
2 + a14x9

1x
6
2 + a5x8

1x
6
2 + a2x7

1x
6
2 + a6x6

1x
6
2+

a13x5
1x

6
2 + a8x4

1x
6
2 + a10x3

1x
6
2 + a3x2

1x
6
2 + a4x1x

6
2 + a9x6

2 + ax13
1 x

5
2 + a5x11

1 x
5
2+

a2x10
1 x

5
2 + a6x9

1x
5
2 + a13x8

1x
5
2 + a8x7

1x
5
2 + a10x6

1x
5
2 + a3x5

1x
5
2 + a4x4

1x
5
2+

a9x3
1x

5
2 + a12x2

1x
5
2 + a10x1x

5
2 + a11x5

2 + a6x12
1 x

4
2 + a13x11

1 x
4
2 + a8x10

1 x
4
2 + a10x9

1x
4
2+

a3x8
1x

4
2 + a4x7

1x
4
2 + a9x6

1x
4
2 + a12x5

1x
4
2 + a9x4

1x
4
2 + a7x2

1x
4
2+

a14x4
2 + a13x14

1 x
3
2 + a10x7

1x
3
2 + a14x3

1x
3
2 + a2x10

1 x
2
2 + a14x6

1x
2
2 + a5x5

1x
2
2+

a2x4
1x

2
2 + a13x2

1x
2
2 + a8x1x

2
2 + a10x2

2 + a12x14
1 x2 + a12x13

1 x2 + a11x12
1 x2+

a7x11
1 x2 + ax10

1 x2 + a5x8
1x2 + a6x6

1x2 + a13x5
1x2 + a8x4

1x2 + a3x2
1x2 + a9x2+

a7x14
1 + a14x12

1 + a5x11
1 + a6x9

1 + a13x8
1 + a10x6

1 + a3x5
1 + a9x3

1 + a12x2
1 + a10x1 + a11

Configuration 3:

Number of points Third coordinate

15 a14

14 1

13 a

12 a2

11 a3

10 a4

9 a5

8 a6

7 a7

6 a8

5 a9

4 a10

3 a11

2 a12

1 a13

The configuration’s list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1,

1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1
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and the locator polynomial is

z1 + a7x14
1 x

7
2 + a7x13

1 x
7
2 + a11x12

1 x
7
2 + a13x11

1 x
7
2 + x10

1 x
7
2 + a10x9

1x
7
2 + a5x8

1x
7
2+

a13x7
1x

7
2 + a10x6

1x
7
2 + x5

1x
7
2 + a11x4

1x
7
2 + a14x3

1x
7
2 + a5x2

1x
7
2 + a14x1x

7
2 + x7

2+

a13x14
1 x

6
2 + a5x13

1 x
6
2 + a13x10

1 x
6
2 + a10x9

1x
6
2 + x8

1x
6
2 + a11x7

1x
6
2 + a14x6

1x
6
2 + a5x5

1x
6
2+

a14x4
1x

6
2 + x3

1x
6
2 + a7x2

1x
6
2 + a7x1x

6
2 + a11x6

2 + a13x13
1 x

5
2 + x11

1 x
5
2 + a11x10

1 x
5
2+

a14x9
1x

5
2 + a5x8

1x
5
2 + a14x7

1x
5
2 + x6

1x
5
2 + a7x5

1x
5
2 + a7x4

1x
5
2 + a11x3

1x
5
2 + a13x2

1x
5
2+

a10x1x
5
2 + a10x5

2 + a14x12
1 x

4
2 + a5x11

1 x
4
2 + a14x10

1 x
4
2 + x9

1x
4
2 + a7x8

1x
4
2 + a7x7

1x
4
2+

a11x6
1x

4
2 + a13x5

1x
4
2 + a9x4

1x
4
2 + a5x2

1x
4
2 + a10x4

2 + a5x14
1 x

3
2 + a10x7

1x
3
2 + a10x3

1x
3
2+

a2x10
1 x

2
2 + a10x6

1x
2
2 + x5

1x
2
2 + a11x4

1x
2
2 + a5x2

1x
2
2 + a14x1x

2
2 + x2

2 + a13x14
1 x2+

a12x13
1 x2 + a10x12

1 x2 + a5x11
1 x2 + a13x10

1 x2 + x8
1x2 + a14x6

1x2 + a5x5
1x2 + a14x4

1x2+

a7x2
1x2 + a11x2 + a5x14

1 + a10x12
1 + x11

1 + a14x9
1 + a5x8

1 + x6
1 + a7x5

1 + a11x3
1+

a13x2
1 + a10x1 + a10

Configuration 4:

Number of points Third coordinate

15 a13

14 a14

13 1

12 a

11 a2

10 a3

9 a4

8 a5

7 a6

6 a7

5 a8

4 a9

3 a10

2 a11

1 a12

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1,

1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2,

1, 1, 1
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The locator polynomial is

z1 + a11x14
1 x

7
2 + a10x13

1 x
7
2 + a13x12

1 x
7
2 + a14x11

1 x
7
2 + x10

1 x
7
2 + a9x9

1x
7
2 + a3x8

1x
7
2+

a10x7
1x

7
2 + a6x6

1x
7
2 + a10x5

1x
7
2 + a5x4

1x
7
2 + a7x3

1x
7
2 + a12x2

1x
7
2 + a5x1x

7
2 + a5x7

2+

a14x14
1 x

6
2 + a5x13

1 x
6
2 + a10x10

1 x
6
2 + a6x9

1x
6
2 + a10x8

1x
6
2 + a5x7

1x
6
2 + a7x6

1x
6
2+

a12x5
1x

6
2 + a5x4

1x
6
2 + a5x3

1x
6
2 + a11x2

1x
6
2 + a10x1x

6
2 + a13x6

2 + a10x13
1 x

5
2+

a10x11
1 x

5
2 + a5x10

1 x
5
2 + a7x9

1x
5
2 + a12x8

1x
5
2 + a5x7

1x
5
2 + a5x6

1x
5
2 + a11x5

1x
5
2+

a10x4
1x

5
2 + a13x3

1x
5
2 + a14x2

1x
5
2 + a10x1x

5
2 + a9x5

2 + a7x12
1 x

4
2 + a12x11

1 x
4
2+

a5x10
1 x

4
2 + a5x9

1x
4
2 + a11x8

1x
4
2 + a10x7

1x
4
2 + a13x6

1x
4
2 + a14x5

1x
4
2 + a9x4

1x
4
2+

a3x2
1x

4
2 + a6x4

2 + a12x14
1 x

3
2 + a10x7

1x
3
2 + a6x3

1x
3
2 + a2x10

1 x
2
2 + a6x6

1x
2
2+

a10x5
1x

2
2 + a5x4

1x
2
2 + a12x2

1x
2
2 + a5x1x

2
2 + a5x2

2 + a14x14
1 x2 + a12x13

1 x2+

a9x12
1 x2 + a3x11

1 x2 + a10x10
1 x2 + a10x8

1x2 + a7x6
1x2 + a12x5

1x2 + a5x4
1x2+

a11x2
1x2 + a13x2 + a3x14

1 + a6x12
1 + a10x11

1 + a7x9
1 + a12x8

1 + a5x6
1 + a11x5

1+

a13x3
1 + a14x2

1 + a10x1 + a9

Configuration 5:

Number of points Third coordinate

15 a12

14 a13

13 a14

12 1

11 a

10 a2

9 a3

8 a4

7 a5

6 a6

5 a7

4 a8

3 a9

2 a10

1 a11

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,

2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1,

2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1
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and the locator polynomial is

z1 + x14
1 x

7
2 + a13x13

1 x
7
2 + x12

1 x
7
2 + x11

1 x
7
2 + x10

1 x
7
2 + a8x9

1x
7
2 + ax8

1x
7
2 + a7x7

1x
7
2+

a2x6
1x

7
2 + a5x5

1x
7
2 + a14x4

1x
7
2 + x3

1x
7
2 + a4x2

1x
7
2 + a11x1x

7
2 + a10x7

2 + x14
1 x

6
2+

a5x13
1 x

6
2 + a7x10

1 x
6
2 + a2x9

1x
6
2 + a5x8

1x
6
2 + a14x7

1x
6
2 + x6

1x
6
2 + a4x5

1x
6
2 + a11x4

1x
6
2+

a10x3
1x

6
2 + x2

1x
6
2 + a13x1x

6
2 + x6

2 + a7x13
1 x

5
2 + a5x11

1 x
5
2 + a14x10

1 x
5
2 + x9

1x
5
2+

a4x8
1x

5
2 + a11x7

1x
5
2 + a10x6

1x
5
2 + x5

1x
5
2 + a13x4

1x
5
2 + x3

1x
5
2 + x2

1x
5
2 + a10x1x

5
2+

a8x5
2 + x12

1 x
4
2 + a4x11

1 x
4
2 + a11x10

1 x
4
2 + a10x9

1x
4
2 + x8

1x
4
2 + a13x7

1x
4
2 + x6

1x
4
2+

x5
1x

4
2 + a9x4

1x
4
2 + ax2

1x
4
2 + a2x4

2 + a4x14
1 x

3
2 + a10x7

1x
3
2 + a2x3

1x
3
2 + a2x10

1 x
2
2+

a2x6
1x

2
2 + a5x5

1x
2
2 + a14x4

1x
2
2 + a4x2

1x
2
2 + a11x1x

2
2 + a10x2

2 + x14
1 x2 + a12x13

1 x2+

a8x12
1 x2 + ax11

1 x2 + a7x10
1 x2 + a5x8

1x2 + x6
1x2 + a4x5

1x2 + a11x4
1x2 + x2

1x2+

x2 + ax14
1 + a2x12

1 + a5x11
1 + x9

1 + a4x8
1 + a10x6

1 + x5
1 + x3

1 + x2
1 + a10x1 + a8

Configuration 6:

Number of points Third coordinate

15 a11

14 a12

13 a13

12 a14

11 1

10 a

9 a2

8 a3

7 a4

6 a5

5 a6

4 a7

3 a8

2 a9

1 a10

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2

2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2,

2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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The locator polynomial is

z1 + a4x14
1 x

7
2 + ax13

1 x
7
2 + a2x12

1 x
7
2 + ax11

1 x
7
2 + x10

1 x
7
2 + a7x9

1x
7
2 + a14x8

1x
7
2+

a4x7
1x

7
2 + a13x6

1x
7
2 + x5

1x
7
2 + a8x4

1x
7
2 + a8x3

1x
7
2 + a11x2

1x
7
2 + a2x1x

7
2 + x7

2+

ax14
1 x

6
2 + a5x13

1 x
6
2 + a4x10

1 x
6
2 + a13x9

1x
6
2 + x8

1x
6
2 + a8x7

1x
6
2 + a8x6

1x
6
2+

a11x5
1x

6
2 + a2x4

1x
6
2 + x3

1x
6
2 + a4x2

1x
6
2 + ax1x

6
2 + a2x6

2 + a4x13
1 x

5
2 + x11

1 x
5
2+

a8x10
1 x

5
2 + a8x9

1x
5
2 + a11x8

1x
5
2 + a2x7

1x
5
2 + x6

1x
5
2 + a4x5

1x
5
2 + ax4

1x
5
2 + a2x3

1x
5
2+

ax2
1x

5
2 + a10x1x

5
2 + a7x5

2 + a8x12
1 x

4
2 + a11x11

1 x
4
2 + a2x10

1 x
4
2 + x9

1x
4
2 + a4x8

1x
4
2+

ax7
1x

4
2 + a2x6

1x
4
2 + ax5

1x
4
2 + a9x4

1x
4
2 + a14x2

1x
4
2 + a13x4

2 + a11x14
1 x

3
2 + a10x7

1x
3
2+

a13x3
1x

3
2 + a2x10

1 x
2
2 + a13x6

1x
2
2 + x5

1x
2
2 + a8x4

1x
2
2 + a11x2

1x
2
2 + a2x1x

2
2 + x2

2+

ax14
1 x2 + a12x13

1 x2 + a7x12
1 x2 + a14x11

1 x2 + a4x10
1 x2 + x8

1x2 + a8x6
1x2+

a11x5
1x2 + a2x4

1x2 + a4x2
1x2 + a2x2 + a14x14

1 + a13x12
1 + x11

1 + a8x9
1+

a11x8
1 + x6

1 + a4x5
1 + a2x3

1 + ax2
1 + a10x1 + a7

Configuration 7:

Number of points Third coordinate

15 a10

14 a11

13 a12

12 a13

11 a14

10 1

9 a

8 a2

7 a3

6 a4

5 a5

4 a6

3 a7

2 a8

1 a9

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,

2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2,

2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator polynomial is

z1 + a8x14
1 x

7
2 + a4x13

1 x
7
2 + a4x12

1 x
7
2 + a2x11

1 x
7
2 + x10

1 x
7
2 + a6x9

1x
7
2 + a12x8

1x
7
2 + ax7

1x
7
2+

a9x6
1x

7
2 + a10x5

1x
7
2 + a2x4

1x
7
2 + ax3

1x
7
2 + a3x2

1x
7
2 + a8x1x

7
2 + a5x7

2 + a2x14
1 x

6
2 + a5x13

1 x
6
2+

ax10
1 x

6
2 + a9x9

1x
6
2 + a10x8

1x
6
2 + a2x7

1x
6
2 + ax6

1x
6
2 + a3x5

1x
6
2 + a8x4

1x
6
2 + a5x3

1x
6
2 + a8x2

1x
6
2+

a4x1x
6
2 + a4x6

2 + ax13
1 x

5
2 + a10x11

1 x
5
2 + a2x10

1 x
5
2 + ax9

1x
5
2 + a3x8

1x
5
2 + a8x7

1x
5
2 + a5x6

1x
5
2+

a8x5
1x

5
2 + a4x4

1x
5
2 + a4x3

1x
5
2 + a2x2

1x
5
2 + a10x1x

5
2 + a6x5

2 + ax12
1 x

4
2 + a3x11

1 x
4
2 + a8x10

1 x
4
2+

a5x9
1x

4
2 + a8x8

1x
4
2 + a4x7

1x
4
2 + a4x6

1x
4
2 + a2x5

1x
4
2 + a9x4

1x
4
2 + a12x2

1x
4
2 + a9x4

2 + a3x14
1 x

3
2+

a10x7
1x

3
2 + a9x3

1x
3
2 + a2x10

1 x
2
2 + a9x6

1x
2
2 + a10x5

1x
2
2 + a2x4

1x
2
2 + a3x2

1x
2
2 + a8x1x

2
2 + a5x2

2+

a2x14
1 x2 + a12x13

1 x2 + a6x12
1 x2 + a12x11

1 x2 + ax10
1 x2 + a10x8

1x2 + ax6
1x2 + a3x5

1x2

+a8x4
1x2 + a8x2

1x2 + a4x2 + a12x14
1 + a9x12

1 + a10x11
1 + ax9

1 + a3x8
1+

a5x6
1 + a8x5

1 + a4x3
1 + a2x2

1 + a10x1 + a6

Configuration 8:

Number of points Third coordinate

15 a9

14 a10

13 a11

12 a12

11 a13

10 a14

9 1

8 a

7 a2

6 a3

5 a4

4 a5

3 a6

2 a7

1 a8

The coefficients’ list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,

2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2,

2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a12x14
1 x

7
2 + a7x13

1 x
7
2 + a6x12

1 x
7
2 + a3x11

1 x
7
2 + x10

1 x
7
2 + a5x9

1x
7
2 + a10x8

1x
7
2+

a13x7
1x

7
2 + a5x6

1x
7
2 + a5x5

1x
7
2 + a11x4

1x
7
2 + a9x3

1x
7
2 + a10x2

1x
7
2 + a14x1x

7
2 + a10x7

2+

a3x14
1 x

6
2 + a5x13

1 x
6
2 + a13x10

1 x
6
2 + a5x9

1x
6
2 + a5x8

1x
6
2 + a11x7

1x
6
2 + a9x6

1x
6
2 + a10x5

1x
6
2+

a14x4
1x

6
2 + a10x3

1x
6
2 + a12x2

1x
6
2 + a7x1x

6
2 + a6x6

2 + a13x13
1 x

5
2 + a5x11

1 x
5
2 + a11x10

1 x
5
2+

a9x9
1x

5
2 + a10x8

1x
5
2 + a14x7

1x
5
2 + a10x6

1x
5
2 + a12x5

1x
5
2 + a7x4

1x
5
2 + a6x3

1x
5
2 + a3x2

1x
5
2+

a10x1x
5
2 + a5x5

2 + a9x12
1 x

4
2 + a10x11

1 x
4
2 + a14x10

1 x
4
2 + a10x9

1x
4
2 + a12x8

1x
4
2 + a7x7

1x
4
2+

a6x6
1x

4
2 + a3x5

1x
4
2 + a9x4

1x
4
2 + a10x2

1x
4
2 + a5x4

2 + a10x14
1 x

3
2 + a10x7

1x
3
2 + a5x3

1x
3
2+

a2x10
1 x

2
2 + a5x6

1x
2
2 + a5x5

1x
2
2 + a11x4

1x
2
2 + a10x2

1x
2
2 + a14x1x

2
2 + a10x2

2 + a3x14
1 x2+

a12x13
1 x2 + a5x12

1 x2 + a10x11
1 x2 + a13x10

1 x2 + a5x8
1x2 + a9x6

1x2 + a10x5
1x2 + a14x4

1x2+

a12x2
1x2 + a6x2 + a10x14

1 + a5x12
1 + a5x11

1 + a9x9
1 + a10x8

1 + a10x6
1 + a12x5

1 + a6x3
1+

a3x2
1 + a10x1 + a5

Configuration 9:

Number of points Third coordinate

15 a8

14 a9

13 a10

12 a11

11 a12

10 a13

9 a14

8 1

7 a

6 a2

5 a3

4 a4

3 a5

2 a6

1 a7

The configuration’s list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,

2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + ax14
1 x

7
2 + a10x13

1 x
7
2 + a8x12

1 x
7
2 + a4x11

1 x
7
2 + x10

1 x
7
2 + a4x9

1x
7
2 + a8x8

1x
7
2 + a10x7

1x
7
2+

ax6
1x

7
2 + x5

1x
7
2 + a5x4

1x
7
2 + a2x3

1x
7
2 + a2x2

1x
7
2 + a5x1x

7
2 + x7

2 + a4x14
1 x

6
2 + a5x13

1 x
6
2+

a10x10
1 x

6
2 + ax9

1x
6
2 + x8

1x
6
2 + a5x7

1x
6
2 + a2x6

1x
6
2 + a2x5

1x
6
2 + a5x4

1x
6
2 + x3

1x
6
2 + ax2

1x
6
2+

a10x1x
6
2 + a8x6

2 + a10x13
1 x

5
2 + x11

1 x
5
2 + a5x10

1 x
5
2 + a2x9

1x
5
2 + a2x8

1x
5
2 + a5x7

1x
5
2+

x6
1x

5
2 + ax5

1x
5
2 + a10x4

1x
5
2 + a8x3

1x
5
2 + a4x2

1x
5
2 + a10x1x

5
2 + a4x5

2 + a2x12
1 x

4
2+

a2x11
1 x

4
2 + a5x10

1 x
4
2 + x9

1x
4
2 + ax8

1x
4
2 + a10x7

1x
4
2 + a8x6

1x
4
2 + a4x5

1x
4
2 + a9x4

1x
4
2+

a8x2
1x

4
2 + ax4

2 + a2x14
1 x

3
2 + a10x7

1x
3
2 + ax3

1x
3
2 + a2x10

1 x
2
2 + ax6

1x
2
2 + x5

1x
2
2 + a5x4

1x
2
2+

a2x2
1x

2
2 + a5x1x

2
2 + x2

2 + a4x14
1 x2 + a12x13

1 x2 + a4x12
1 x2 + a8x11

1 x2 + a10x10
1 x2+

x8
1x2 + a2x6

1x2 + a2x5
1x2 + a5x4

1x2 + ax2
1x2 + a8x2 + a8x14

1 + ax12
1 + x11

1 + a2x9
1+

a2x8
1 + x6

1 + ax5
1 + a8x3

1 + a4x2
1 + a10x1 + a4

Configuration 10:

Number of points Third coordinate

15 a7

14 a8

13 a9

12 a10

11 a11

10 a12

9 a13

8 a14

7 1

6 a

5 a2

4 a3

3 a4

2 a5

1 a6

The configuration’s list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,

2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a5xq114x7
2 + a13x13

1 x
7
2 + a10x12

1 x
7
2 + a5x11

1 x
7
2 + x10

1 x
7
2 + a3x9

1x
7
2 + a6x8

1x
7
2+

a7x7
1x

7
2 + a12x6

1x
7
2 + a10x5

1x
7
2 + a14x4

1x
7
2 + a10x3

1x
7
2 + a9x2

1x
7
2 + a11x1x

7
2 + a5x7

2+

a5x14
1 x

6
2 + a5x13

1 x
6
2 + a7x10

1 x
6
2 + a12x9

1x
6
2 + a10x8

1x
6
2 + a14x7

1x
6
2 + a10x6

1x
6
2+

a9x5
1x

6
2 + a11x4

1x
6
2 + a5x3

1x
6
2 + a5x2

1x
6
2 + a13x1x

6
2 + a10x6

2 + a7x13
1 x

5
2 + a10x11

1 x
5
2+

a14x10
1 x

5
2 + a10x9

1x
5
2 + a9x8

1x
5
2 + a11x7

1x
5
2 + a5x6

1x
5
2 + a5x5

1x
5
2 + a13x4

1x
5
2+

a10x3
1x

5
2 + a5x2

1x
5
2 + a10x1x

5
2 + a3x5

2 + a10x12
1 x

4
2 + a9x11

1 x
4
2 + a11x10

1 x
4
2+

a5x9
1x

4
2 + a5x8

1x
4
2 + a13x7

1x
4
2 + a10x6

1x
4
2 + a5x5

1x
4
2 + a9x4

1x
4
2 + a6x2

1x
4
2 + a12x4

2+

a9x14
1 x

3
2 + a10x7

1x
3
2 + a12x3

1x
3
2 + a2x10

1 x
2
2 + a12x6

1x
2
2 + a10x5

1x
2
2 + a14x4

1x
2
2+

a9x2
1x

2
2 + a11x1x

2
2 + a5x2

2 + a5x14
1 x2 + a12x13

1 x2 + a3x12
1 x2 + a6x11

1 x2 + a7x10
1 x2+

a10x8
1x2 + a10x6

1x2 + a9x5
1x2 + a11x4

1x2 + a5x2
1x2 + a10x2 + a6x14

1 + a12x12
1 +

a10x11
1 + a10x9

1 + a9x8
1 + a5x6

1 + a5x5
1 + a10x3

1 + a5x2
1 + a10x1 + a3

Configuration 11:

Number of points Third coordinate

15 a6

14 a7

13 a8

12 a9

11 a10

10 a11

9 a12

8 a13

7 a14

6 1

5 a

4 a2

3 a3

2 a4

1 a5

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a9x14
1 x

7
2 + ax13

1 x
7
2 + a12x12

1 x
7
2 + a6x11

1 x
7
2 + x10

1 x
7
2 + a2x9

1x
7
2 + a4x8

1x
7
2+

a4x7
1x

7
2 + a8x6

1x
7
2 + a5x5

1x
7
2 + a8x4

1x
7
2 + a3x3

1x
7
2 + ax2

1x
7
2 + a2x1x

7
2 + a10x7

2+

a6x14
1 x

6
2 + a5x13

1 x
6
2 + a4x10

1 x
6
2 + a8x9

1x
6
2 + a5x8

1x
6
2 + a8x7

1x
6
2 + a3x6

1x
6
2+

ax5
1x

6
2 + a2x4

1x
6
2 + a10x3

1x
6
2 + a9x2

1x
6
2 + ax1x

6
2 + a12x6

2 + a4x13
1 x

5
2 + a5x11

1 x
5
2+

a8x10
1 x

5
2 + a3x9

1x
5
2 + ax8

1x
5
2 + a2x7

1x
5
2 + a10x6

1x
5
2 + a9x5

1x
5
2 + ax4

1x
5
2 + a12x3

1x
5
2+

a6x2
1x

5
2 + a10x1x

5
2 + a2x5

2 + a3x12
1 x

4
2 + ax11

1 x
4
2 + a2x10

1 x
4
2 + a10x9

1x
4
2 + a9x8

1x
4
2+

ax7
1x

4
2 + a12x6

1x
4
2 + a6x5

1x
4
2 + a9x4

1x
4
2 + a4x2

1x
4
2 + a8x4

2 + ax14
1 x

3
2 + a10x7

1x
3
2+

a8x3
1x

3
2 + a2x10

1 x
2
2 + a8x6

1x
2
2 + a5x5

1x
2
2 + a8x4

1x
2
2 + ax2

1x
2
2 + a2x1x

2
2 + a10x2

2+

a6x14
1 x2 + a12x13

1 x2 + a2x12
1 x2 + a4x11

1 x2 + a4x10
1 x2 + a5x8

1x2 + a3x6
1x2+

ax5
1x2 + a2x4

1x2 + a9x2
1x2 + a12x2 + a4x14

1 + a8x12
1 + a5x11

1 + a3x9
1 + ax8

1+

a10x6
1 + a9x5

1 + a12x3
1 + a6x2

1 + a10x1 + a2

Configuration 12:

Number of points Third coordinate

15 a5

14 a6

13 a7

12 a8

11 a9

10 a10

9 a11

8 a12

7 a13

6 a14

5 1

4 a

3 a2

2 a3

1 a4

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a13x14
1 x

7
2 + a4x13

1 x
7
2 + a14x12

1 x
7
2 + a7x11

1 x
7
2 + x10

1 x
7
2 + ax9

1x
7
2 + a2x8

1x
7
2+

ax7
1x

7
2 + a4x6

1x
7
2 + x5

1x
7
2 + a2x4

1x
7
2 + a11x3

1x
7
2 + a8x2

1x
7
2 + a8x1x

7
2 + x7

2+

a7x14
1 x

6
2 + a5x13

1 x
6
2 + ax10

1 x
6
2 + a4x9

1x
6
2 + x8

1x
6
2 + a2x7

1x
6
2 + a11x6

1x
6
2 + a8x5

1x
6
2+

a8x4
1x

6
2 + x3

1x
6
2 + a13x2

1x
6
2 + a4x1x

6
2 + a14x6

2 + ax13
1 x

5
2 + x11

1 x
5
2 + a2x10

1 x
5
2 + a11x9

1x
5
2+

a8x8
1x

5
2 + a8x7

1x
5
2 + x6

1x
5
2 + a13x5

1x
5
2 + a4x4

1x
5
2 + a14x3

1x
5
2 + a7x2

1x
5
2 + a10x1x

5
2+

ax5
2 + a11x12

1 x
4
2 + a8x11

1 x
4
2 + a8x10

1 x
4
2 + x9

1x
4
2 + a13x8

1x
4
2 + a4x7

1x
4
2 + a14x6

1x
4
2+

a7x5
1x

4
2 + a9x4

1x
4
2 + a2x2

1x
4
2 + a4x4

2 + a8x14
1 x

3
2 + a10x7

1x
3
2 + a4x3

1x
3
2 + a2x10

1 x
2
2+

a4x6
1x

2
2 + x5

1x
2
2 + a2x4

1x
2
2 + a8x2

1x
2
2 + a8x1x

2
2 + x2

2 + a7x14
1 x2 + a12x13

1 x2 + ax12
1 x2+

a2x11
1 x2 + ax10

1 x2 + x8
1x2 + a11x6

1x2 + a8x5
1x2 + a8x4

1x2 + a13x2
1x2 + a14x2+

a2x14
1 + a4x12

1 + x11
1 + a11x9

1 + a8x8
1 + x6

1 + a13x5
1 + a14x3

1 + a7x2
1 + a10x1 + a

Configuration 13:

Number of points Third coordinate

15 a4

14 a5

13 a6

12 a7

11 a8

10 a9

9 a10

8 a11

7 a12

6 a13

5 a14

4 1

3 a

2 a2

1 a3

The configuration’s list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a2x14
1 x

7
2 + a7x13

1 x
7
2 + ax12

1 x
7
2 + a8x11

1 x
7
2 + x10

1 x
7
2 + x9

1x
7
2 + x8

1x
7
2+

a13x7
1x

7
2 + x6

1x
7
2 + a10x5

1x
7
2 + a11x4

1x
7
2 + a4x3

1x
7
2 + x2

1x
7
2 + a14x1x

7
2+

a5x7
2 + a8x14

1 x
6
2 + a5x13

1 x
6
2 + a13x10

1 x
6
2 + x9

1x
6
2 + a10x8

1x
6
2 + a11x7

1x
6
2+

a4x6
1x

6
2 + x5

1x
6
2 + a14x4

1x
6
2 + a5x3

1x
6
2 + a2x2

1x
6
2 + a7x1x

6
2 + ax6

2 + a13x13
1 x

5
2+

a10x11
1 x

5
2 + a11x10

1 x
5
2 + a4x9

1x
5
2 + x8

1x
5
2 + a14x7

1x
5
2 + a5x6

1x
5
2 + a2x5

1x
5
2+

a7x4
1x

5
2 + ax3

1x
5
2 + a8x2

1x
5
2 + a10x1x

5
2 + x5

2 + a4x12
1 x

4
2 + x11

1 x
4
2 + a14x10

1 x
4
2+

a5x9
1x

4
2 + a2x8

1x
4
2 + a7x7

1x
4
2 + ax6

1x
4
2 + a8x5

1x
4
2 + a9x4

1x
4
2 + x2

1x
4
2 + x4

2+

x14
1 x

3
2 + a10x7

1x
3
2 + x3

1x
3
2 + a2x10

1 x
2
2 + x6

1x
2
2 + a10x5

1x
2
2 + a11x4

1x
2
2 + x2

1x
2
2+

a14x1x
2
2 + a5x2

2 + a8x14
1 x2 + a12x13

1 x2 + x12
1 x2 + x11

1 x2 + a13x10
1 x2+

a10x8
1x2 + a4x6

1x2 + x5
1x2 + a14x4

1x2 + a2x2
1x2 + ax2 + x14

1 + x12
1 + a10x11

1 +

a4x9
1 + x8

1 + a5x6
1 + a2x5

1 + ax3
1 + a8x2

1 + a10x1 + 1

Configuration 14:

Number of points Third coordinate

15 a3

14 a4

13 a5

12 a6

11 a7

10 a8

9 a9

8 a10

7 a11

6 a12

5 a13

4 a14

3 1

2 a

1 a2

The configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a6x14
1 x

7
2 + a10x13

1 x
7
2 + a3x12

1 x
7
2 + a9x11

1 x
7
2 + x10

1 x
7
2 + a14x9

1x
7
2 + a13x8

1x
7
2 + a10x7

1x
7
2+

a11x6
1x

7
2 + a5x5

1x
7
2 + a5x4

1x
7
2 + a12x3

1x
7
2 + a7x2

1x
7
2 + a5x1x

7
2 + a10x7

2 + a9x14
1 x

6
2 + a5x13

1 x
6
2+

a10x10
1 x

6
2 + a11x9

1x
6
2 + a5x8

1x
6
2 + a5x7

1x
6
2 + a12x6

1x
6
2 + a7x5

1x
6
2 + a5x4

1x
6
2 + a10x3

1x
6
2 + a6x2

1x
6
2+

a10x1x
6
2 + a3x6

2 + a10x13
1 x

5
2 + a5x11

1 x
5
2 + a5x10

1 x
5
2 + a12x9

1x
5
2 + a7x8

1x
5
2 + a5x7

1x
5
2 + a10x6

1x
5
2+

a6x5
1x

5
2 + a10x4

1x
5
2 + a3x3

1x
5
2 + a9x2

1x
5
2 + a10x1x

5
2 + a14x5

2 + a12x12
1 x

4
2 + a7x11

1 x
4
2 + a5x10

1 x
4
2+

a10x9
1x

4
2 + a6x8

1x
4
2 + a10x7

1x
4
2 + a3x6

1x
4
2 + a9x5

1x
4
2 + a9x4

1x
4
2 + a13x2

1x
4
2 + a11x4

2 + a7x14
1 x

3
2+

a10x7
1x

3
2 + a11x3

1x
3
2 + a2x10

1 x
2
2 + a11x6

1x
2
2 + a5x5

1x
2
2 + a5x4

1x
2
2 + a7x2

1x
2
2 + a5x1x

2
2 + a10x2

2+

a9x14
1 x2 + a12x13

1 x2 + a14x12
1 x2 + a13x11

1 x2 + a10x10
1 x2 + a5x8

1x2 + a12x6
1x2 + a7x5

1x2+

a5x4
1x2 + a6x2

1x2 + a3x2 + a13x14
1 + a11x12

1 + a5x11
1 + a12x9

1 + a7x8
1 + a10x6

1 + a6x5
1+

a3x3
1 + a9x2

1 + a10x1 + a14

Configuration 15:

Number of points Third coordinate

15 a2

14 a3

13 a4

12 a5

11 a6

10 a7

9 a8

8 a9

7 a10

6 a11

5 a12

4 a13

3 a14

2 1

1 a

The last configuration list is

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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and the locator is

z1 + a10x14
1 x

7
2 + a13x13

1 x
7
2 + a5x12

1 x
7
2 + a10x11

1 x
7
2 + x10

1 x
7
2 + a13x9

1x
7
2 + a11x8

1x
7
2 + a7x7

1x
7
2+

a7x6
1x

7
2 + x5

1x
7
2 + a14x4

1x
7
2 + a5x3

1x
7
2 + a14x2

1x
7
2 + a11x1x

7
2 + x7

2 + a10x14
1 x

6
2 + a5x13

1 x
6
2+

a7x10
1 x

6
2 + a7x9

1x
6
2 + x8

1x
6
2 + a14x7

1x
6
2 + a5x6

1x
6
2 + a14x5

1x
6
2 + a11x4

1x
6
2 + x3

1x
6
2 + a10x2

1x
6
2+

a13x1x
6
2 + a5x6

2 + a7x13
1 x

5
2 + x11

1 x
5
2 + a14x10

1 x
5
2 + a5x9

1x
5
2 + a14x8

1x
5
2 + a11x7

1x
5
2 + x6

1x
5
2+

a10x5
1x

5
2 + a13x4

1x
5
2 + a5x3

1x
5
2 + a10x2

1x
5
2 + a10x1x

5
2 + a13x5

2 + a5x12
1 x

4
2 + a14x11

1 x
4
2+

a11x10
1 x

4
2 + x9

1x
4
2 + a10x8

1x
4
2 + a13x7

1x
4
2 + a5x6

1x
4
2 + a10x5

1x
4
2 + a9x4

1x
4
2 + a11x2

1x
4
2 + a7x4

2+

a14x14
1 x

3
2 + a10x7

1x
3
2 + a7x3

1x
3
2 + a2x10

1 x
2
2 + a7x6

1x
2
2 + x5

1x
2
2 + a14x4

1x
2
2 + a14x2

1x
2
2+

a11x1x
2
2 + x2

2 + a10x14
1 x2 + a12x13

1 x2 + a13x12
1 x2 + a11x11

1 x2 + a7x10
1 x2 + x8

1x2 + a5x6
1x2+

a14x5
1x2 + a11x4

1x2 + a10x2
1x2 + a5x2 + a11x14

1 + a7x12
1 + x11

1 + a5x9
1 + a14x8

1 + x6
1+

a10x5
1 + a5x3

1 + a10x2
1 + a10x1 + a13

B.2.2 Coefficient matrices and formulas.

The matrix whose entries are the terms which possibly can appear in the tail of our general
error locator polynomial (8.4) is

M =



x14
1 x14

1 x2 x14
1 x

2
2 x14

1 x
3
2 x14

1 x
4
2 x14

1 x
5
2 x14

1 x
6
2 x14

1 x
8
2

x13
1 x13

1 x2 x13
1 x

2
2 x13

1 x
3
2 x13

1 x
4
2 x13

1 x
5
2 x13

1 x
6
2 x13

1 x
8
2

x12
1 x12

1 x2 x12
1 x

2
2 x12

1 x
3
2 x12

1 x
4
2 x12

1 x
5
2 x12

1 x
6
2 x12

1 x
8
2

x11
1 x11

1 x2 x11
1 x

2
2 x11

1 x
3
2 x11

1 x
4
2 x11

1 x
5
2 x11

1 x
6
2 x11

1 x
8
2

x10
1 x10

1 x2 x10
1 x

2
2 x10

1 x
3
2 x10

1 x
4
2 x10

1 x
5
2 x10

1 x
6
2 x10

1 x
8
2

x9
1 x9

1x2 x9
1x

2
2 x9

1x
3
2 x9

1x
4
2 x9

1x
5
2 x9

1x
6
2 x9

1x
8
2

x8
1 x8

1x2 x8
1x

2
2 x8

1x
3
2 x8

1x
4
2 x8

1x
5
2 x8

1x
6
2 x8

1x
8
2

x7
1 x7

1x2 x7
1x

2
2 x7

1x
3
2 x7

1x
4
2 x7

1x
5
2 x7

1x
6
2 x7

1x
8
2

x6
1 x6

1x2 x6
1x

2
2 x6

1x
3
2 x6

1x
4
2 x6

1x
5
2 x6

1x
6
2 x6

1x
8
2

x5
1 x5

1x2 x5
1x

2
2 x5

1x
3
2 x5

1x
4
2 x5

1x
5
2 x5

1x
6
2 x5

1x
8
2

x4
1 x4

1x2 x4
1x

2
2 x4

1x
3
2 x4

1x
4
2 x4

1x
5
2 x4

1x
6
2 x4

1x
8
2

x3
1 x3

1x2 x3
1x

2
2 x3

1x
3
2 x3

1x
4
2 x3

1x
5
2 x3

1x
6
2 x3

1x
8
2

x2
1 x2

1x2 x2
1x

2
2 x2

1x
3
2 x2

1x
4
2 x2

1x
5
2 x2

1x
6
2 x2

1x
8
2

x1 x1x2 x1x
2
2 x1x

3
2 x1x

4
2 x1x

5
2 x1x

6
2 x1x

8
2

1 x2 x2
2 x3

2 x4
2 x5

2 x6
2 x8

2



(B.89)
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The matrices of the fifteen cyclical configurations in F16 (8.4) are the following.
Configuration 1

A[1] =



a9 a11 0 a6 0 0 a11 a14

0 a12 0 0 0 a4 a5 a

a3 a12 0 0 a13 0 0 a7

a10 a9 0 0 a6 a10 0 a11

0 a4 a2 0 a2 a8 a4 1

a13 0 0 0 a5 a13 a3 a12

a6 a10 0 0 a14 a6 a10 a9

0 0 0 a10 a a2 a8 a4

a5 a13 a3 0 a7 a5 a13 a3

a14 a6 a10 0 a11 a14 a6 a10

0 a2 a8 0 a9 a a2 a8

a7 0 0 a3 0 a7 a5 a13

a11 a14 a6 0 a9 a11 a14 a6

a10 0 a2 0 0 a10 a a2

a12 a7 a5 0 a3 a12 a7 a5


Configuration 2

A[2] =



a11 a10 0 a14 0 0 a10 a10

0 a12 0 0 0 a7 a5 a13

a7 a13 0 0 a5 0 0 a5

1 a11 0 0 a14 1 0 a10

0 a7 a2 0 a11 a14 a7 1

a5 0 0 0 1 a5 a7 a13

a14 1 0 0 a10 a14 1 a11

0 0 0 a10 a13 a11 a14 a7

1 a5 a7 0 a5 1 a5 a7

a10 a14 1 0 a10 a10 a14 1

0 a11 a14 0 a9 a13 a11 a14

a5 0 0 a7 0 a5 1 a5

a10 a10 a14 0 a11 a10 a10 a14

a10 0 a11 0 0 a10 a13 a11

a13 a5 1 0 a7 a13 a5 1


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Configuration 3

A[3] =



a5 a13 0 a5 0 0 a13 a7

0 a12 0 0 0 a13 a5 a7

a10 a10 0 0 a14 0 0 a11

1 a5 0 0 a5 1 0 a13

0 a13 a2 0 a14 a11 a13 1

a14 0 0 0 1 a14 a10 a10

a5 1 0 0 a7 a5 1 a5

0 0 0 a10 a7 a14 a11 a13

1 a14 a10 0 a11 1 a14 a10

a7 a5 1 0 a13 a7 a5 1

0 a14 a11 0 a9 a7 a14 a11

a11 0 0 a10 0 a11 1 a14

a13 a7 a5 0 a5 a13 a7 a5

a10 0 a14 0 0 a10 a7 a14

a10 a11 1 0 a10 a10 a11 1


Configuration 4

A[4] =



a3 a14 0 a12 0 0 a14 a11

0 a12 0 0 0 a10 a5 a10

a6 a9 0 0 a7 0 0 a13

a10 a3 0 0 a12 a10 0 a14

0 a10 a2 0 a5 a5 a10 1

a7 0 0 0 a5 a7 a6 a9

a12 a10 0 0 a11 a12 a10 a3

0 0 0 a10 a10 a5 a5 a10

a5 a7 a6 0 a13 a5 a7 a6

a11 a12 a10 0 a14 a11 a12 a10

0 a5 a5 0 a9 a10 a5 a5

a13 0 0 a6 0 a13 a5 a7

a14 a11 a12 0 a3 a14 a11 a12

a10 0 a5 0 0 a10 a10 a5

a9 a13 a5 0 a6 a9 a13 a5


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Configuration 5

A[5] =



a 1 0 a4 0 0 1 1

0 a12 0 0 0 a7 a5 a13

a2 a8 0 0 1 0 0 1

a5 a 0 0 a4 a5 0 1

0 a7 a2 0 a11 a14 a7 1

1 0 0 0 a10 1 a2 a8

a4 a5 0 0 1 a4 a5 a

0 0 0 a10 a13 a11 a14 a7

a10 1 a2 0 1 a10 1 a2

1 a4 a5 0 1 1 a4 a5

0 a11 a14 0 a9 a13 a11 a14

1 0 0 a2 0 1 a10 1

1 1 a4 0 a 1 1 a4

a10 0 a11 0 0 a10 a13 a11

a8 1 a10 0 a2 a8 1 a10


Configuration 6

A[6] =



a14 a 0 a11 0 0 a a4

0 a12 0 0 0 a4 a5 a

a13 a7 0 0 a8 0 0 a2

1 a14 0 0 a11 1 0 a

0 a4 a2 0 a2 a8 a4 1

a8 0 0 0 1 a8 a13 a7

a11 1 0 0 a4 a11 1 a14

0 0 0 a10 a a2 a8 a4

1 a8 a13 0 a2 1 a8 a13

a4 a11 1 0 a a4 a11 1

0 a2 a8 0 a9 a a2 a8

a2 0 0 a13 0 a2 1 a8

a a4 a11 0 a14 a a4 a11

a10 0 a2 0 0 a10 a a2

a7 a2 1 0 a13 a7 a2 1


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Configuration 7

A[7] =



a12 a2 0 a3 0 0 a2 a8

0 a12 0 0 0 a a5 a4

a9 a6 0 0 a 0 0 a4

a10 a12 0 0 a3 a10 0 a2

0 a a2 0 a8 a2 a 1

a 0 0 0 a5 a a9 a6

a3 a10 0 0 a8 a3 a10 a12

0 0 0 a10 a4 a8 a2 a

a5 a a9 0 a4 a5 a a9

a8 a3 a10 0 a2 a8 a3 a10

0 a8 a2 0 a9 a4 a8 a2

a4 0 0 a9 0 a4 a5 a

a2 a8 a3 0 a12 a2 a8 a3

a10 0 a8 0 0 a10 a4 a8

a6 a4 a5 0 a9 a6 a4 a5


Configuration 8

A[8] =



a10 a3 0 a10 0 0 a3 a12

0 a12 0 0 0 a13 a5 a7

a5 a5 0 0 a9 0 0 a6

a5 a10 0 0 a10 a5 0 a3

0 a13 a2 0 a14 a11 a13 1

a9 0 0 0 a10 a9 a5 a5

a10 a5 0 0 a12 a10 a5 a10

0 0 0 a10 a7 a14 a11 a13

a10 a9 a5 0 a6 a10 a9 a5

a12 a10 a5 0 a3 a12 a10 a5

0 a14 a11 0 a9 a7 a14 a11

a6 0 0 a5 0 a6 a10 a9

a3 a12 a10 0 a10 a3 a12 a10

a10 0 a14 0 0 a10 a7 a14

a5 a6 a10 0 a5 a5 a6 a10


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Configuration 9

A[9] =



a8 a4 0 a2 0 0 a4 a

0 a12 0 0 0 a10 a5 a10

a a4 0 0 a2 0 0 a8

1 a8 0 0 a2 1 0 a4

0 a10 a2 0 a5 a5 a10 1

a2 0 0 0 1 a2 a a4

a2 1 0 0 a a2 1 a8

0 0 0 a10 a10 a5 a5 a10

1 a2 a 0 a8 1 a2 a

a a2 1 0 a4 a a2 1

0 a5 a5 0 a9 a10 a5 a5

a8 0 0 a 0 a8 1 a2

a4 a a2 0 a8 a4 a a2

a10 0 a5 0 0 a10 a10 a5

a4 a8 1 0 a a4 a8 1



Configuration 10

A[10] =



a6 a5 0 a9 0 0 a5 a5

0 a12 0 0 0 a7 a5 a13

a12 a3 0 0 a10 0 0 a10

a10 a6 0 0 a9 a10 0 a5

0 a7 a2 0 a11 a14 a7 1

a10 0 0 0 a5 a10 a12 a3

a9 a10 0 0 a5 a9 a10 a6

0 0 0 a10 a13 a11 a14 a7

a5 a10 a12 0 a10 a5 a10 a12

a5 a9 a10 0 a5 a5 a9 a10

0 a11 a14 0 a9 a13 a11 a14

a10 0 0 a12 0 a10 a5 a10

a5 a5 a9 0 a6 a5 a5 a9

a10 0 a11 0 0 a10 a13 a11

a3 a10 a5 0 a12 a3 a10 a5


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Configuration 11

A[11] =



a4 a6 0 a 0 0 a6 a9

0 a12 0 0 0 a4 a5 a

a8 a2 0 0 a3 0 0 a12

a5 a4 0 0 a a5 0 a6

0 a4 a2 0 a2 a8 a4 1

a3 0 0 0 a10 a3 a8 a2

a a5 0 0 a9 a a5 a4

0 0 0 a10 a a2 a8 a4

a10 a3 a8 0 a12 a10 a3 a8

a9 a a5 0 a6 a9 a a5

0 a2 a8 0 a9 a a2 a8

a12 0 0 a8 0 a12 a10 a3

a6 a9 a 0 a4 a6 a9 a

a10 0 a2 0 0 a10 a a2

a2 a12 a10 0 a8 a2 a12 a10


Configuration 12

A[12] =



a2 a7 0 a8 0 0 a7 a13

0 a12 0 0 0 a a5 a4

a4 a 0 0 a11 0 0 a14

1 a2 0 0 a8 1 0 a7

0 a a2 0 a8 a2 a 1

a11 0 0 0 1 a11 a4 a

a8 1 0 0 a13 a8 1 a2

0 0 0 a10 a4 a8 a2 a

1 a11 a4 0 a14 1 a11 a4

a13 a8 1 0 a7 a13 a8 1

0 a8 a2 0 a9 a4 a8 a2

a14 0 0 a4 0 a14 1 a11

a7 a13 a8 0 a2 a7 a13 a8

a10 0 a8 0 0 a10 a4 a8

a a14 1 0 a4 a a14 1


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Configuration 13

A[13] =



1 a8 0 1 0 0 a8 a2

0 a12 0 0 0 a13 a5 a7

1 1 0 0 a4 0 0 a

a10 1 0 0 1 a10 0 a8

0 a13 a2 0 a14 a11 a13 1

a4 0 0 0 a5 a4 1 1

1 a10 0 0 a2 1 a10 1

0 0 0 a10 a7 a14 a11 a13

a5 a4 1 0 a a5 a4 1

a2 1 a10 0 a8 a2 1 a10

0 a14 a11 0 a9 a7 a14 a11

a 0 0 1 0 a a5 a4

a8 a2 1 0 1 a8 a2 1

a10 0 a14 0 0 a10 a7 a14

1 a a5 0 1 1 a a5


Configuration 14

A[14] =



a13 a9 0 a7 0 0 a9 a6

0 a12 0 0 0 a10 a5 a10

a11 a14 0 0 a12 0 0 a3

a5 a13 0 0 a7 a5 0 a9

0 a10 a2 0 a5 a5 a10 1

a12 0 0 0 a10 a12 a11 a14

a7 a5 0 0 a6 a7 a5 a13

0 0 0 a10 a10 a5 a5 a10

a10 a12 a11 0 a3 a10 a12 a11

a6 a7 a5 0 a9 a6 a7 a5

0 a5 a5 0 a9 a10 a5 a5

a3 0 0 a11 0 a3 a10 a12

a9 a6 a7 0 a13 a9 a6 a7

a10 0 a5 0 0 a10 a10 a5

a14 a3 a10 0 a11 a14 a3 a10


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Configuration 15

A[15] =



a11 a10 0 a14 0 0 a10 a10

0 a12 0 0 0 a7 a5 a13

a7 a13 0 0 a5 0 0 a5

1 a11 0 0 a14 1 0 a10

0 a7 a2 0 a11 a14 a7 1

a5 0 0 0 1 a5 a7 a13

a14 1 0 0 a10 a14 1 a11

0 0 0 a10 a13 a11 a14 a7

1 a5 a7 0 a5 1 a5 a7

a10 a14 1 0 a10 a10 a14 1

0 a11 a14 0 a9 a13 a11 a14

a5 0 0 a7 0 a5 1 a5

a10 a10 a14 0 a11 a10 a10 a14

a10 0 a11 0 0 a10 a13 a11

a13 a5 1 0 a7 a13 a5 1



As for the intermediate configurations in F8 we can find a general table, summarizing the
reciprocal relations among the coefficients of each locator polynomial:

A[gen]



B A 0 C 0 0 A D

0 a12 0 0 0 E a5 F

G H 0 0 I 0 0 L

M B 0 0 C M 0 A

0 E a2 0 N O E 1

I 0 0 0 P I G H

C M 0 0 D C M B

0 0 0 a10 F N O E

P I G 0 L P I G

D C M 0 A D C M

0 N O 0 a9 F N O

L 0 0 G 0 L P I

A D C 0 B A D C

a10 0 N 0 0 a10 F N

H L P 0 G H L P



.
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The numbers 1, ..., 15 of the first row represent the number of occurrences of the value
we take as Q (B.2.2).

A-P Q? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A Q14 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11

B Q2 7 5 3 1 14 12 10 8 6 4 2 15 13 11 9

C Q8 13 5 12 4 11 3 10 2 9 1 8 15 7 14 6

D Q11 3 7 11 15 4 8 12 1 5 9 13 2 6 10 14

E Q3 1 13 10 7 4 1 13 10 7 4 1 13 10 7 4

F Q12 4 7 10 13 1 4 7 10 13 1 4 7 10 13 1

G Q4 14 10 6 2 13 9 5 1 12 8 4 15 11 7 3

H Q 11 10 9 8 7 6 5 4 3 2 1 15 14 13 12

I Q7 6 14 7 15 8 1 9 2 10 3 11 4 12 5 13

L Q13 9 11 13 15 2 4 6 8 10 12 14 1 3 5 7

Q Q5 5 15 10 5 15 10 5 15 10 5 15 10 5 15 10

N Q9 8 14 5 11 2 8 14 5 11 2 8 14 5 11 2

O Q6 2 11 5 14 8 2 11 5 14 8 2 11 5 14 8

P Q10 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5

Table B.2: Configurations in F16.

The couples of cycles corresponding to the formulas grouped above are:

1: (α′, δ′), (β′, α′), (γ′, γ′), (δ′, β′);

2: (α′, β′), (β′, α′), (γ′, ε′), (δ′, δ′);

3: (α′, β′), (β′, γ′), (γ′, γ′), (δ′, δ′);

4: (α′, α′), (β′, δ′), (γ′, γ′), (δ′, γ′);

5: (α′, δ′), (β′, α′), (γ′, ε′), (δ′, α′);

6: (α′, β′), (β′, α′), (γ′, γ′), (δ′, α′);
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7: (α′, γ′), (β′, δ′), (γ′, γ′), (δ′, β′);

8: (α′, α′), (β′, δ′), (γ′, ε′), (δ′, α′);

9: (α′, β′), (β′, δ′), (γ′, γ′), (δ′, γ′);

10: (α′, α′), (β′, α′), (γ′, γ′), (δ′, β′);

11: (α′, α′), (β′, α′), (γ′, ε′), (δ′, δ′);

12: (α′, ε′), (β′, δ′), (γ′, γ′), (δ′, α′);

13: (α′, δ′), (β′, γ′), (γ′, γ′), (δ′, β′);

14: (α′, δ′), (β′, δ′), (γ′, ε′), (δ′, γ′);

15: (α′, β′), (β′, α′), (γ′, γ′), (δ′, δ′).

B.3 Optimal Frobenius configurations in F8.

In the case of F8 we were able to find some optimal Frobenius configurations and some
optimal semi-Frobenius configurations.
We arranged these configurations in type A,B,C,D.
We display here all the precise data for them.

B.3.1 Nine terms

We give here the data for the nine term polynomial leading to the optimal Frobenius con-
figurations (8.5) and its failing permutations.
Let us start with the nine therm configuration:

Number of points Third coordinate

7 0

6 a

3 a2

3 a3

3 a5

2 a4

2 a6

2 1
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The points are:

[(a, a3, 0, a)],

[(a2, a6, 0, a2)],

[(a3, a2, 0, a3)],

[(a4, a5, 0, a4)],

[(a5, a, 0, a5)],

[(a6, a4, 0, a6)],

[(1, 1, 0, 1)],

[(a4, a4, a, a2)],

[(1, a5, a, a3)],

[(a2, a2, a, a4)],

[(a6, 1, a, a5)],

[(a5, a6, a, a6)],

[(a3, a, a, 1)],

[(a5, 1, a2, a3)],

[(a, a, a4, a2)],

[(a3, a5, a5, a2)],

[(1, a3, a2, a6)],

[(a6, a2, a2, 1)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a3, a6)],

[(a, a6, 1, a3)],

[(1, a6, a5, a4)],

[(a3, 1, a4, a6)],

[(a5, a4, 1, a4)],

[(a, a2, a6, a5)],

[(a4, a3, a5, 1)],

[(a2, a5, a6, 1)].
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The configuration list is

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1]

and the associated tower structure is

a,a3,0 a2,a6,0 a3,a2,0 a4,a5,0 a5,a,0 a6,a4,0 1,1,0

a,a,a4 a2,a2,a a3,a,a a4,a4,a a5,a6,a a6,1,a 1,a5,a

a,a6,1 a2,a4,a3a3,a5,a5 a4,a,a3 a5,1,a2 a6,a2,a2 1,a3,a2

a,a2,a6 a2,a5,a6 a3,1,a4 a4,a3,a5 a5,a4,1a6,a3,a3 1,a6,a5

The locator polynomial we get is:
z1 + x6

1x
3
2 + a3x6

1x
2
2 + a5x4

1x
2
2 + a6x6

1x2 + a3x2
1x2 + a5x3

1 + a6x2
1 + x1

Let us try now to variate it.

Number of points Third coordinate

7 1

6 0

3 a

3 a2

3 a3

2 a5

2 a4

2 a6

The points are:

[(a, a3, 0, a)],

[(a2, a6, 0, a2)],

[(a3, a2, 0, a3)],

[(a4, a5, 0, a4)],

[(a5, a, 0, a5)],

[(a6, a4, 0, a6)],

[(1, 1, 1, 0)],
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[(a4, a4, a, a2)],

[(1, a5, a, a3)],

[(a2, a2, a, a4)],

[(a6, 1, a5, a)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a2, a4)],

[(a3, a5, a2, a5)],

[(1, a3, a6, a2)],

[(a6, a2, 1, a2)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a3, a6)],

[(a, a6, 1, a3)],

[(1, a6, a4, a5)],

[(a3, 1, a4, a6)],

[(a5, a4, 1, a4)],

[(a, a2, a5, a6)],

[(a4, a3, 1, a5)],

[(a2, a5, 1, a6)].

corresponding to

[1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2].

and to

a,a3,0 a2,a6,0 a3,a2,0 a4,a5,0 a5,a,0 a6,a4,0 1,1,1

a,a,a2 a2,a2,a a3,a,1 a4,a4,aa5,a6,a6 a6,1,a5 1,a5,a

a,a6,1 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,1 1,a3,a6

a,a2,a5 a2,a5,1 a3,1,a4 a4,a3,1 a5,a4,1a6,a3,a3 1,a6,a4

The polynomial we get is:
z1 +x6

1x
3
2 +a2x5

1x
3
2 +a4x4

1x
3
2 +x3

1x
3
2 +ax2

1x
3
2 +x1x

3
2 +x3

2 +a3x6
1x

2
2 +a6x5

1x
2
2 +ax4

1x
2
2 +ax3

1x
2
2 +
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ax2
1x

2
2 +a6x1x

2
2 +ax2

2 +a2x6
1x2 +a2x5

1x2 +a3x4
1x2 +x3

1x2 +a6x2
1x2 +a4x1x2 +a6x2 +a2x6

1 +

a4x5
1 + a5x3

1 + a4x2
1 + a4x1 + a3.

In analogy with the intermediate configuration, we try to remove the possibility for zero to
be the third coordinate.

Number of points Third coordinate

7 0

6 1

3 a

3 a2

3 a3

2 a5

2 a4

2 a6

The points are:

[(a, a3, 0, a)],

[(a2, a6, 0, a2)],

[(a3, a2, 0, a3)],

[(a4, a5, 0, a4)],

[(a5, a, 0, a5)],

[(a6, a4, 0, a6)],

[(1, 1, 0, 1)],

[(a4, a4, a, a2)],

[(1, a5, a, a3)],

[(a2, a2, a, a4)],

[(a6, 1, a5, a)],

[(a5, a6, a6, a)],

[(a3, a, 1, a)],

[(a5, 1, a2, a3)],

[(a, a, a2, a4)],
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[(a3, a5, a2, a5)],

[(1, a3, a6, a2)],

[(a6, a2, 1, a2)],

[(a6, a3, a3, a4)],

[(a2, a4, a3, a5)],

[(a4, a, a3, a6)],

[(a, a6, 1, a3)],

[(1, a6, a4, a5)],

[(a3, 1, a4, a6)],

[(a5, a4, 1, a4)],

[(a, a2, a5, a6)],

[(a4, a3, 1, a5)],

[(a2, a5, 1, a6)].

corresponding to

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2]

and to

a,a3,0 a2,a6,0 a3,a2,0 a4,a5,0 a5,a,0 a6,a4,0 1,1,0

a,a,a2 a2,a2,a a3,a,1 a4,a4,aa5,a6,a6 a6,1,a5 1,a5,a

a,a6,1 a2,a4,a3a3,a5,a2 a4,a,a3 a5,1,a2 a6,a2,1 1,a3,a6

a,a2,a5 a2,a5,1 a3,1,a4 a4,a3,1 a5,a4,1a6,a3,a3 1,a6,a4

The obtained polynomial is made up of 28 terms:
z1 + a6x5

1x
3
2 + a5x4

1x
3
2 + x3

1x
3
2 + a3x2

1x
3
2 + x1x

3
2 + x3

2 + ax6
1x

2
2 + a5x5

1x
2
2 + a2x4

1x
2
2 + a5x3

1x
2
2 +

a5x2
1x

2
2 + a2x1x

2
2 + a2x2

2 + a6x6
1x2 + ax5

1x2 + a4x4
1x2 + x3

1x2 + a5x2
1x2 + a6x1x2 + ax2 + ax6

1 +

a2x5
1 + x4

1 + a5x3
1 + a3x2

1 + a6x1 + a5
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B.3.2 Type A.

Here we have all the data for Type A configurations from 8.5.

Type A:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a2 a 1 a6 a5 a4 a3

4 a3 a2 a 1 a6 a5 a4

4 a5 a4 a3 a2 a 1 a6

5 a4 a3 a2 a 1 a6 a5

5 a6 a5 a4 a3 a2 a 1

5 1 a6 a5 a4 a3 a2 a

The first column is associated to the following configuration list:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2.
The associated polynomial is
z1 + a3x6

1x
2
2 + a6x3

1x
2
2 + x2

1x
2
2 + a6x6

1x2 + a5x2 + a3x5
1 + a5x3

1

and the matrix of coefficients (completely analogous to table 8.1) turns out to be:

A[1] =



0 a6 a3 0

a3 0 0 0

0 0 0 0

a5 0 a6 0

0 0 1 0

0 0 0 0

0 a5 0 0



The second column corresponds to the list below:
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1 and to the locator polynomial
z1 + x6

1x
2
2 + x3

1x
2
2 + x2

1x
2
2 + x6

1x2 + x2 + x5
1 + x3

1
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The coefficient table is

A[2] =



0 1 1 0

1 0 0 0

0 0 0 0

1 0 1 0

0 0 1 0

0 0 0 0

0 1 0 0


The third column gives the following list:
2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2 and the locator polynomial is
z1 + a4x6

1x
2
2 + ax3

1x
2
2 + x2

1x
2
2 + ax6

1x2 + a2x2 + a4x5
1 + a2x3

1

while the coefficient table is

A[3] =



0 a a4 0

a4 0 0 0

0 0 0 0

a2 0 a 0

0 0 1 0

0 0 0 0

0 a2 0 0


The fourth column is associated to
2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1

The locator is z1 + ax6
1x

2
2 + a2x3

1x
2
2 + x2

1x
2
2 + a2x6

1x2 + a4x2 + ax5
1 + a4x3

1

and the table

A[4] =



0 a2 a 0

a 0 0 0

0 0 0 0

a4 0 a2 0

0 0 1 0

0 0 0 0

0 a4 0 0


The configuration list associated to the fifth column is
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1 and the locator polynomial is
z1 + a5x6

1x
2
2 + a3x3

1x
2
2 + x2

1x
2
2 + a3x6

1x2 + a6x2 + a5x5
1 + a6x3

1.
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The table grouping the coefficients is

A[5] =



0 a3 a5 0

a5 0 0 0

0 0 0 0

a6 0 a3 0

0 0 1 0

0 0 0 0

0 a6 0 0



The sixth column is connected to
2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1 and to
z1 + a2x6

1x
2
2 + a4x3

1x
2
2 + x2

1x
2
2 + a4x6

1x2 + ax2 + a2x5
1 + ax3

1

The table is then

A[6] =



0 a4 a2 0

a2 0 0 0

0 0 0 0

a 0 a4 0

0 0 1 0

0 0 0 0

0 a 0 0



The last column corresponds to
2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2 and the locator is
z1 + a6x6

1x
2
2 + a5x3

1x
2
2 + x2

1x
2
2 + a5x6

1x2 + a3x2 + a6x5
1 + a3x3

1

while the table is

A[7] =



0 a5 a6 0

a6 0 0 0

0 0 0 0

a3 0 a5 0

0 0 1 0

0 0 0 0

0 a3 0 0


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The general coefficient matrix for type A configuration is

A[gen] =



0 A B 0

B 0 0 0

0 0 0 0

C 0 A 0

0 0 1 0

0 0 0 0

0 C 0 0


We take as M the value of the third coordinate appearing once, getting

A = M6 (B.90)

B = M3

C = M5

B.3.3 Type B.

Here we have all the data for Type B configurations from 8.5.

Type B:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a2 a 1 a6 a5 a4 a3

4 a3 a2 a 1 a6 a5 a4

4 a5 a4 a3 a2 a 1 a6

5 a4 a3 a2 a 1 a6 a5

5 a6 a5 a4 a3 a2 a 1

5 1 a6 a5 a4 a3 a2 a

Table B.3: Type B configurations in F8.

The first column is associated to the list
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1

and to the locator polynomial
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z1 + x6
1x

3
2 + a3x3

1x
3
2 + a5x1x

3
2 + a6x3

2 + a3x6
1x

2
2 + a5x4

1x
2
2 + a6x3

1x
2
2

The coefficients table is 

0 0 a3 1

0 0 0 0

0 0 a5 0

0 0 a6 a3

0 0 0 0

0 0 0 a5

0 0 0 a6


The configuration list obtained by the second column is
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1

while the locator polynomial is
z1 + x6

1x
3
2 + x3

1x
3
2 + x1x

3
2 + x3

2 + x6
1x

2
2 + x4

1x
2
2 + x3

1x
2
2

and the table turns out to be 

0 0 1 1

0 0 0 0

0 0 1 0

0 0 1 1

0 0 0 0

0 0 0 1

0 0 0 1


The third column corresponds to
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2

and the associated locator polynomial is:
z1 + x6

1x
3
2 + a4x3

1x
3
2 + a2x1x

3
2 + ax3

2 + a4x6
1x

2
2 + a2x4

1x
2
2 + ax3

1x
2
2

The coefficients’ table is 

0 0 a4 1

0 0 0 0

0 0 a2 0

0 0 a a4

0 0 0 0

0 0 0 a2

0 0 0 a


The fourth column is associated to
2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1 and to
z1 + x6

1x
3
2 + ax3

1x
3
2 + a4x1x

3
2 + a2x3

2 + ax6
1x

2
2 + a4x4

1x
2
2 + a2x3

1x
2
2,
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while the coefficients are represented in

0 0 a 1

0 0 0 0

0 0 a4 0

0 0 a2 a

0 0 0 0

0 0 0 a4

0 0 0 a2


The following column is linked to the configuration list below
2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2.
The locator polynomial is z1 + x6

1x
3
2 + a5x3

1x
3
2 + a6x1x

3
2 + a3x3

2 + a5x6
1x

2
2 + a6x4

1x
2
2 + a3x3

1x
2
2

and its coefficients are represented in

0 0 a5 1

0 0 0 0

0 0 a6 0

0 0 a3 a5

0 0 0 0

0 0 0 a6

0 0 0 a3


The second from last column corresponds to the list
2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2,

to the polynomial
z1 + x6

1x
3
2 + a2x3

1x
3
2 + ax1x

3
2 + a4x3

2 + a2x6
1x

2
2 + ax4

1x
2
2 + a4x3

1x
2
2

and to the table 

0 0 a2 1

0 0 0 0

0 0 a 0

0 0 a4 a2

0 0 0 0

0 0 0 a

0 0 0 a4


Finally, the last column corresponds to
2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2,

to the polynomial
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z1 + x6
1x

3
2 + a6x3

1x
3
2 + a3x1x

3
2 + a5x3

2 + a6x6
1x

2
2 + a3x4

1x
2
2 + a5x3

1x
2
2

and to



0 0 a6 1

0 0 0 0

0 0 a3 0

0 0 a5 a6

0 0 0 0

0 0 0 a3

0 0 0 a5



We can summarize the coefficients’ tables as



0 0 A 1

0 0 0 0

0 0 B 0

0 0 C A

0 0 0 0

0 0 0 B

0 0 0 C


.

As done for type A, we can choose as a value M the value occurring once as a third coordi-
nate and we get

A = M3 (B.91)

B = M5

C = M6

so, we have again the couple of cycles (β, γ).
Let us now focus on the boldface column i.e. the second one.
As one can easily see by the configuration list, the couples (z1, z2) we choose are
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(a, 0) (a2, 0) (a4, 0)

(a, a2) (a2, a4) (a4, a)

(a, a6) (a2, a5) (a4, a3)

(a, 1) (a2, 1) (a4, 1)

(a3, 0) (a6, 0) (a5, 0)

(a3, a) (a6, a2) (a5, a4)

(a3, a2) (a6, a4) (a5, a)

(a3, a5) (a6, a3) (a5, a6)

(a3, 1) (a6, 1) (a5, 1)

(1, 0)

As in type A configurations, only the choices made for a, a3, 1 are independent, while the
other ones come by applying Frobenius mapping.
For example

(a, a2), (a2, a4), (a4, a)

is such that
(a2, a4) = (σ(a), σ(a2))

(a4, a) = (σ(a2), σ(a4)) = (σ(σ(a)), σ(σ(a2))).
The other type B configurations come from the optimal Frobenius configuration by cyclic
permutations.
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B.3.4 Type C.

Here we have all the data for Type C configurations from 8.5.

Type C:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a2 a 1 a6 a5 a4 a3

4 a3 a2 a 1 a6 a5 a4

4 a5 a4 a3 a2 a 1 a6

5 a4 a3 a2 a 1 a6 a5

5 a6 a5 a4 a3 a2 a 1

5 1 a6 a5 a4 a3 a2 a

Table B.4: Type C configurations in F8.

The configuration list associated to the first column is:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2

and the locator polynomial is
z1 + x6

1x
3
2 + a3x6

1x
2
2 + a5x4

1x
2
2 + a6x6

1x2 + a3x2
1x2 + a5x3

1 + a6x2
1.

The table representing its coefficients is



0 a6 a3 1

0 0 0 0

0 0 a5 0

a5 0 0 0

a6 a3 0 0

0 0 0 0

0 0 0 0


The second column gives a configuration list
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1

and, as locator,
z1 + x6

1x
3
2 + x6

1x
2
2 + x4

1x
2
2 + x6

1x2 + x2
1x2 + x3

1 + x2
1,
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whose corresponding table is 

0 1 1 1

0 0 0 0

0 0 1 0

1 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0


The third column gives
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, the locator
z1 + x6

1x
3
2 + a4x6

1x
2
2 + a2x4

1x
2
2 + ax6

1x2 + a4x2
1x2 + a2x3

1 + ax2
1

and the table 

0 a a4 1

0 0 0 0

0 0 a2 0

a2 0 0 0

a a4 0 0

0 0 0 0

0 0 0 0


For the fourth column we have
2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2

and the locator polynomial
z1 + x6

1x
3
2 + ax6

1x
2
2 + a4x4

1x
2
2 + a2x6

1x2 + ax2
1x2 + a4x3

1 + a2x2
1.

The coefficients’ table is 

0 a2 a 1

0 0 0 0

0 0 a4 0

a4 0 0 0

a2 a 0 0

0 0 0 0

0 0 0 0


The third to last column gives the configuration list
2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2.
The associated locator polynoimal is
z1 + x6

1x
3
2 + a5x6

1x
2
2 + a6x4

1x
2
2 + a3x6

1x2 + a5x2
1x2 + a6x3

1 + a3x2
1
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and the corresponding table is



0 a3 a5 1

0 0 0 0

0 0 a6 0

a6 0 0 0

a3 a5 0 0

0 0 0 0

0 0 0 0



The second to last column gives rise to the list below
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1 and to the following polynomial
z1 + x6

1x
3
2 + a2x6

1x
2
2 + ax4

1x
2
2 + a4x6

1x2 + a2x2
1x2 + ax3

1 + a2x2
1,

whose coefficients are grouped as



0 a4 a2 1

0 0 0 0

0 0 a 0

a 0 0 0

a4 a2 0 0

0 0 0 0

0 0 0 0



Finally, the last column is associated to
2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1

The corresponding locator polynomial is
z1 + x6

1x
3
2 + a6x6

1x
2
2 + a3x4

1x
2
2 + a5x6

1x2 + a6x2
1x2 + a3x3

1 + a5x2
1

and its table is 

0 a5 a6 1

0 0 0 0

0 0 a3 0

a3 0 0 0

a5 a6 0 0

0 0 0 0

0 0 0 0


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We summarize the coefficients’ tables as

0 A B 1

0 0 0 0

0 0 C 0

C 0 0 0

A B 0 0

0 0 0 0

0 0 0 0


.

Taking as M the value for the third coordinate appearing once in the configuration, we get

A = M6 (B.92)

B = M3

C = M5

so we have again the couple (β, γ) of F8 cycles.
The second column, hightlighted as usual in boldface font, is the optimal Frobenius config-
urations, from which the others arise by cyclic permutations.
We display here the table of the couples (z1, z2) in order to lay great stress on the application
of Frobenius mapping:

(a, 0) (a2, 0) (a4, 0)

(a, a3) (a2, a6) (a4, a5)

(a, a4) (a2, a) (a4, a2)

(a, 1) (a2, 1) (a4, 1)

(a3, 0) (a6, 0) (a5, 0)

(a3, a2) (a6, a4) (a5, a)

(a3, a4) (a6, a) (a5, a3)

(a3, a6) (a6, a5) (a5, a3)

(a3, 1) (a6, 1) (a5, 1)

(1, 0)

464



B.3.5 Type D.

Here we have all the data for Type D configurations from 8.5. In the Frobenius configuration
of type D, the the numbers for a and a3 in tableB.5 below are exchanged with respect to type
A,B,C.

Type D:

Number of points Third coordinates

1 a 1 a6 a5 a4 a3 a2

4 a4 a3 a2 a 1 a6 a5

4 a6 a5 a4 a3 a2 a 1

4 1 a6 a5 a4 a3 a2 a

5 a2 a 1 a6 a5 a4 a3

5 a3 a2 a 1 a6 a5 a4

5 a5 a4 a3 a2 1 1 a6

Table B.5: Type D configurations in F8.

The first column of the table above, corresponds to the configuration list
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1

The locator polynomial is
z1 + ax5

1x
3
2 + a2x4

1x
3
2 + a4x2

1x
3
2 + a4 ∗ x5

1x
2
2 + x2

1x
2
2 + ax1x

2
2 + a2x2

2

and the table of its coefficients is 

0 0 0 0

0 0 a4 a

0 0 0 a2

0 0 0 0

0 0 1 a4

0 0 a 0

0 0 a2 0


The second column gives rise to the following configuration list:
2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1 while the locator polynomial is
z1 + x5

1x
3
2 + x4

1x
3
2 + x2

1x
3
2 + x5

1x
2
2 + x2

1x
2
2 + x1x

2
2 + x2

2
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and the coefficients’ table is 

0 0 0 0

0 0 1 1

0 0 0 1

0 0 0 0

0 0 1 1

0 0 1 0

0 0 1 0


For the third column we get

2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2,
the locator
z1 + a6x5

1x
3
2 + a5x4

1x
3
2 + a3x2

1x
3
2 + a3x5

1x
2
2 + x2

1x
2
2 + a6x1x

2
2 + a5x2

2

and the table 

0 0 0 0

0 0 a3 a6

0 0 0 a5

0 0 0 0

0 0 1 a3

0 0 a6 0

0 0 a5 0


The fourth column corresponds to
2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1 The locator is
z1 + a5x5

1x
3
2 + a3x4

1x
3
2 + a6x2

1x
3
2 + a6x5

1x
2
2 + x2

1x
2
2 + a5x1x

2
2 + a3x2

2

and the associated coefficients’ list is

0 0 0 0

0 0 a6 a5

0 0 0 a3

0 0 0 0

0 0 1 a6

0 0 a5 0

0 0 a3 0


For the fifth column
2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2

is the configuration list, while the locator polynomial is
z1 + a4x5

1x
3
2 + ax4

1x
3
2 + a2x2

1x
3
2 + a2x5

1x
2
2 + x2

1x
2
2 + a4x1x

2
2 + ax2

2
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and the associated table is 

0 0 0 0

0 0 a2 a4

0 0 0 a

0 0 0 0

0 0 1 a2

0 0 a4 0

0 0 a 0



The sixth column is associated to
2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2 ,
to the locator
z1 + a3x5

1x
3
2 + a6x4

1x
3
2 + a5x2

1x
3
2 + a5x5

1x
2
2 + x2

1x
2
2 + a3x1x

2
2 + a6x2

2

and to the table 

0 0 0 0

0 0 a5 a3

0 0 0 a6

0 0 0 0

0 0 1 a5

0 0 a3 0

0 0 a6 0



Finally, the last column gives rise to
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1

to
z1 + a2x5

1x
3
2 + a4x4

1x
3
2 + ax2

1x
3
2 + ax5

1x
2
2 + x2

1x
2
2 + a2x1x

2
2 + a4x2

2

and to 

0 0 0 0

0 0 a a2

0 0 0 a4

0 0 0 0

0 0 1 a

0 0 a2 0

0 0 a4 0


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We summarize the tables of coefficients for type D configurations as

0 0 0 0

0 0 A B

0 0 0 C

0 0 0 0

0 0 1 A

0 0 B 0

0 0 C 0


Taking as M the value appearing once in each type D configurationwe get the formulas

A = M4 (B.93)

B = M1

C = M2

so we have the couple (α, γ) of F8 cycles.
The second column represents theunique optimal type D Frobenius configuration, as shown
in the table

(a, 0) (a2, 0) (a4, 0)

(a, a2) (a2, a4) (a4, a)

(a, a3) (a2, a6) (a4, a5)

(a, a6) (a2, a5) (a4, a3)

(a, 1) (a2, 1) (a4, 1)

(a3, 0) (a6, 0) (a5, 0)

(a3, a2) (a6, a4) (a5, a)

(a3, a5) (a6, a3) (a5, a6)

(a3, 1) (a6, 1) (a5, 1)

(1, 0)

Each other type D configuration arises from the optimal Frobenius configuration via cyclic
permutations.
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