R. Yahiaoui, T. Beeharry, S. N. Burokur, P. Grassin, and H. H. Ouslimani, Metasurfaces with positive reflection phase gradients for broadband directive emission, Riad, Habiba Hafdallah Ouslimani, and Thtreswar Beeharry, 2016.

A. Serdukov, . Semchenko, . Igor, and S. Tertyakov, Electromagnetics of bianisotropic materials-Theory and Application. Gordon and Breach science publishers, 2001.

V. K. Varadan, V. V. Varadan, Y. Ma, and W. F. Hall, Design of ferriteimpregnated plastics (PVC) as microwave absorbers, IEEE transactions on microwave theory and techniques, vol.34, pp.251-258, 1986.

W. W. Salisbury, , vol.599, p.944, 1952.

R. L. Fante and M. T. Mccormack, Reflection properties of the Salisbury screen, IEEE transactions on antennas and propagation, vol.36, issue.10, pp.1443-1454, 1988.

B. Chambers, Optimum design of a Salisbury screen radar absorber. Electronics Letters, vol.30, pp.1353-1354, 1994.

B. A. Munk, P. Munk, and J. Pryor, On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence, IEEE Transactions on Antennas and Propagation, vol.55, issue.1, pp.186-193, 2007.

L. J. Du-toit, The design of Jauman absorbers, IEEE Antennas and Propagation Magazine, vol.36, pp.17-25, 1994.

B. A. Munk, P. Munk, and J. Pryor, On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence, IEEE Transactions on Antennas and Propagation, vol.55, issue.1, pp.186-193, 2007.

A. Grbic, . Eleftheriades, and V. George, Experimental verification of backwardwave radiation from a negative refractive index metamaterial, Journal of Applied Physics, vol.92, pp.5930-5935, 2002.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Metamaterials and negative refractive index, Science, issue.5685, pp.788-792, 2004.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Lowloss negative-index metamaterial at telecommunication wavelengths, Optics letters, issue.12, pp.1800-1802, 2006.

J. Valentine, . Zhang, . Shuang, . Zentgraf, and . Thomas, Three-dimensional optical metamaterial with a negative refractive index, nature, vol.455, p.376, 2008.

J. Hao, . Yuan, . Yu, . Ran, and . Lixin, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Physical review letters, vol.99, p.63908, 2007.

A. V. Kabishin, P. Evans, and S. Pastkovsky, Plasmonic nanorod metamaterials for biosensing, Nature materials, vol.8, issue.11, p.867, 2009.

C. M. Soukoulis and M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nature Photonics, vol.5, p.523, 2011.

A. Poddubny, . Iorish, . Ivan, and P. Belov, Hyperbolic metamaterials, Nature Photonics, vol.7, p.948, 2013.

L. H. Nicholls, F. J. Rodriguez-fortuno, and M. E. Nasir, Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials, Nature Photonics, vol.11, p.628, 2017.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang et al., Negative refractive index in chiral metamaterials, Physical review letters, vol.102, issue.2, p.23901, 2009.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny et al., Metamaterial with negative index due to chirality, Physical Review B, vol.79, issue.3, p.35407, 2009.

E. Plum, Chirality and metamaterials (Doctoral dissertation, 2010.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li et al., Chirality detection of enantiomers using twisted optical metamaterials, Nature communications, vol.8, p.14180, 2017.

W. Li, Z. J. Coppens, and L. V. Besteiro, Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials, Nature communications, vol.6, p.8379, 2015.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry et al., Metamaterial electromagnetic cloak at microwave frequencies, Science, vol.314, issue.5801, pp.977-980, 2006.

A. Sihvola, Metamaterials in electromagnetics. Metamaterials, vol.1, issue.1, pp.2-11, 2007.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma et al., , 2012.

, Active control of electromagnetically induced transparency analogue in terahertz metamaterials, Nature communications, vol.3, p.1151

K. L. Young, M. B. Ross, M. G. Blaber, M. Rycenga, M. R. Jones et al.,

C. A. Mirkin, Using DNA to design plasmonic metamaterials with tunable optical properties, Advanced Materials, vol.26, issue.4, pp.653-659, 2014.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt et al., Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano letters, vol.12, issue.7, pp.3749-3755, 2012.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk'yanchuk, Magnetic light. Scientific reports, vol.2, p.492, 2012.

F. Monticone and A. Alù, The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters, Journal of Materials Chemistry C, vol.2, issue.43, pp.9059-9072, 2014.

R. Verre, Z. J. Yang, T. Shegai, and M. Kall, Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers, Nano letters, vol.15, issue.3, pp.1952-1958, 2015.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong et al., Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Physical review letters, vol.99, issue.6, p.63908, 2007.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten et al., Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science, p.1235399, 2013.

H. Chen and C. T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Applied physics letters, vol.91, issue.18, p.183518, 2007.

C. Pfeiffer and A. Grbic, Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets, Physical review letters, vol.110, issue.19, 2013.

C. Metz, U.S. Patent, vol.958, issue.6, 2005.

S. A. Tretyakov and M. Ermutlu, Modeling of patch antennas partially loaded with dispersive backward-wave materials, IEEE Antennas and Wireless Propagation Letters, vol.4, issue.1, pp.266-269, 2005.

C. M. Tran, H. Hafdallah-ouslimani, L. Zhou, A. C. Priou, H. Teillet et al., High impedance surfaces based antennas for high data rate communications at 40 GHz, Progress In Electromagnetics Research, vol.13, pp.217-229, 2010.

A. Ourir and H. H. Ouslimani, Negative refractive index in symmetric cut-wire pair metamaterial, Applied Physics Letters, vol.98, issue.11, p.113505, 2011.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, Sidelobe canceling for reconfigurable holographic metamaterial antenna, IEEE Transactions on Antennas and Propagation, vol.63, issue.4, pp.1881-1886, 2015.

E. Brookner, Metamaterial advances for radar and communications, 2017.

S. A. Tretyakov and S. I. Maslovski, Thin absorbing structure for all incidence angles based on the use of a high-impedance surface, Microwave and Optical Technology Letters, vol.38, issue.3, pp.175-178, 2003.

C. M. Watts, X. Liu, and W. J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced materials, vol.24, issue.23, pp.98-120, 2012.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Perfect metamaterial absorber, Physical review letters, vol.100, issue.20, p.207402, 2008.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer et al., Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization, physical review B, vol.78, issue.24, p.241103, 2008.

T. Beeharry, R. Yahiaoui, K. Selemani, and H. H. Ouslimani, A dual layer broadband radar absorber to minimize electromagnetic interference in radomes, Scientific reports, vol.8, issue.1, p.382, 2018.

T. Beeharry, R. Yahiaoui, K. Selemani, and H. H. Ouslimani, A Co-Polarization Broadband Radar Absorber for RCS Reduction, Materials, vol.2018, issue.9, p.11

N. Fang and X. Zhang, Imaging properties of a metamaterial superlens, Proceedings of the 2002 2nd IEEE Conference on, pp.225-228, 2002.

X. Zhang and Z. Liu, Superlenses to overcome the diffraction limit, Nature materials, vol.7, issue.6, p.435, 2008.

Z. J. Wong, Y. Wang, K. O'brien, J. Rho, X. Yin et al., , 2017.

, Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak, Journal of Optics, vol.19, issue.8, p.84007

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Broadband electromagnetic cloaking of long cylindrical objects, Physical review letters, vol.103, issue.10, p.103905, 2009.

A. Monti, J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, Anisotropic mantle cloaks for TM and TE scattering reduction, IEEE Transactions on Antennas and Propagation, vol.63, issue.4, pp.1775-1788, 2015.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, An ultrathin invisibility skin cloak for visible light, Science, vol.349, issue.6254, pp.1310-1314, 2015.

D. L. Sounas, R. Fleury, and A. Alù, Unidirectional cloaking based on metasurfaces with balanced loss and gain, Physical Review Applied, vol.4, issue.1, p.14005, 2015.

D. H. Werner and D. H. Kwon, Transformation electromagnetics and metamaterials, 2015.

J. Pendry, D. Smith, and D. Schurig, , vol.677, 2017.

B. A. Munk, Frequency selective surfaces: theory and design, 2005.

D. F. Sievenpiper, , vol.339, 2012.

P. A. Ade, G. Pisano, C. Tucker, and S. Weaver, A review of metal mesh filters, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, vol.6275, 2006.

A. Monorchio, G. Manara, U. Serra, G. Marola, and E. Pagana, Design of waveguide filters by using genetically optimized frequency selective surfaces, IEEE Microwave and Wireless Components Letters, vol.15, issue.6, pp.407-409, 2005.

K. Sarabandi and N. Behdad, A frequency selective surface with miniaturized elements, IEEE Transactions on Antennas and Propagation, vol.55, issue.5, pp.1239-1245, 2007.

S. N. Zabri, R. Cahill, and A. Schuchinsky, Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement, Electronics Letters, vol.51, issue.2, pp.162-164, 2015.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu et al., , 2016.

, Broadband tunability of polarization-insensitive absorber based on frequency selective surface, Scientific reports, vol.6, p.23081

S. Ghosh and K. V. Srivastava, An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters, vol.14, pp.511-514, 2015.

M. Wang, C. Huang, M. Pu, and X. Luo, Reducing side lobe level of antenna using frequency selective surface superstrate, Microwave and Optical Technology Letters, vol.57, issue.8, pp.1971-1975, 2015.

R. Stefanelli and D. Trinchero, Reduction of electromagnetic interference by means of frequency selective devices, IEEE 17th International Conference on, pp.239-243, 2010.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, Low-cost metamaterial absorbers for sub-GHz wireless systems, IEEE Antennas and Wireless Propagation Letters, vol.13, pp.27-30, 2014.

X. C. Wang, A. Díaz-rubio, A. Sneck, A. Alastalo, T. Mäkelä et al., Systematic design of printable metasurfaces: Validation through reverse-offset printed millimeter-wave absorbers, IEEE Transactions on Antennas and Propagation, vol.66, issue.3, pp.1340-1351, 2018.

N. Wang, J. Tong, W. Zhou, W. Jiang, J. Li et al., Novel quadruple-band microwave metamaterial absorber, IEEE Photonics Journal, vol.7, issue.1, pp.1-6, 2015.

H. Xiong, J. S. Hong, C. M. Luo, and L. L. Zhong, An ultrathin and broadband metamaterial absorber using multi-layer structures, Journal of Applied Physics, vol.114, issue.6, p.64109, 2013.

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber, Opt.letters, vol.36, pp.3476-3478, 2011.

D. Sood and C. C. Tripathi, Broadband ultrathin low-profile metamaterial microwave absorber, Appl. Phys. A, vol.122, p.332, 2016.

R. J. Langley and E. A. Parker, Double-square frequency-selective surfaces and their equivalent circuit, Electron. Lett, vol.19, pp.675-677, 1983.

L. Jing, Chiral metamirrors for broadband spin-selective absorption, Appl. Phys. Lett, vol.110, p.231103, 2017.

S. Chakravarty, R. Mittra, and N. R. Williams, Application of a microgenetic algorithm (mga) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics, IEEE Transactions on Antennas Propag, vol.50, pp.284-296, 2002.

K. Park, S. Lee, C. Kim, and J. Han, Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures, Compos. science technology, vol.66, pp.576-584, 2006.

S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber. IET Microwaves, Antennas and Propag, vol.10, pp.850-855, 2016.

A. V. Osipov and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, 2017.

K. N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE Transactions on Antennas Propag, vol.48, pp.1230-1234, 2000.

F. Costa, A. Monorchio, and G. Manara, An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces, Appl. Comput. Electromagn. Soc. J, vol.29, issue.12, pp.960-976, 2014.

D. J. Kern and D. H. Werner, A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers. Microwave and Optical Technology Letters, vol.38, pp.61-64, 2003.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating, ACS nano, vol.5, issue.6, pp.4641-4647, 2011.

S. Jafar-zanjani, S. Inampudi, and H. Mosallaei, Adaptive Genetic Algorithm for, Optical Metasurfaces Design. Scientific reports, vol.8, issue.1, p.11040, 2018.

T. Beeharry, K. Selemani, and H. H. Ouslimani, Theoretical Analysis for Systematic Design of Flexible Broadband Radar Absorbers Using the Least-Square Method, Progress In Electromagnetics Research, vol.87, pp.175-186, 2018.

D. Lee, Optimal parameter retrieval for metamaterial absorbers using the least-square method for wide incidence angle insensitivity, Applied optics, vol.56, pp.4670-4674, 2017.

D. Singh, A. Kumar, S. Meena, and V. Agarwala, Analysis of frequency selective surfaces for radar absorbing materials, Prog. In Electromagn. Res, vol.38, pp.297-314, 2012.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, A circuit-based model for the interpretation of perfect metamaterial absorbers, IEEE Transactions on Antennas Propag, vol.61, pp.1201-1209, 2013.

R. J. Langley and E. A. Parker, Equivalent circuit model for arrays of square loops, Electron. Lett, vol.18, pp.294-296, 1982.

X. Chen, T. M. Grzegorczyk, B. Wu, J. Pacheco, and J. A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E, vol.70, p.16608, 2004.

W. Jiang, Y. Xue, and S. Gong, Polarization conversion metasurface for broadband radar cross section reduction, Progress In Electromagnetics Research, vol.62, pp.9-15, 2016.

N. Hakla, S. Ghosh, and K. V. Srivastava, Design of low-profile broadband capacitive circuit absorber, Electronics Letters, vol.52, pp.1825-1826, 2016.

M. A. Ramkumar and C. Sudhendra, Novel Ultra Wide Band Polarisation Independent Capacitive Jaumann Radar Absorber, Defence Science Journal, vol.68, p.1, 2018.

Y. Han and W. Che, Low-profile broadband absorbers based on capacitive surfaces, IEEE Antennas and Wireless Propagation Letters, vol.16, pp.74-78, 2017.

Y. J. Kim, J. S. Hwang, B. X. Khuyen, B. S. Tung, K. W. Kim et al., Flexible ultrathin metamaterial absorber for wide frequency band, Science and Technology of Advanced Materials, 2018.

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber, Optics letters, vol.36, issue.17, pp.3476-3478, 2011.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu et al., Chiral metamirrors for broadband spin-selective absorption, Applied Physics Letters, vol.110, issue.23, p.231103, 2017.

S. Chakravarty, R. Mittra, and N. R. Williams, Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics, IEEE Transactions on antennas and propagation, vol.50, pp.284-296, 2002.

S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber, IET Microwaves, Antennas & Propagation, vol.10, issue.8, pp.850-855, 2016.

L. L. Cong, X. Y. Cao, T. Song, J. Gao, and J. X. Lan, Angular-and Polarization-insensitive Ultrathin Double-layered Metamaterial Absorber for Ultrawideband Application, Scientific reports, vol.8, issue.1, p.9627, 2018.

H. Chen, Z. Wang, R. Zhang, H. Wang, S. Lin et al., , 2014.

, A meta-substrate to enhance the bandwidth of metamaterials

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry et al., Metamaterial electromagnetic cloak at microwave frequencies, Science, vol.314, issue.5801, pp.977-980, 2006.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, An optical cloak made of dielectrics, Nature materials, vol.8, issue.7, p.568, 2009.

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Physical Review Letters, vol.99, issue.6, p.63903, 2007.

P. Alitalo and S. Tretyakov, Electromagnetic cloaking with metamaterials, Materials today, vol.12, issue.3, pp.22-29, 2009.

P. Alitalo and S. A. Tretyakov, Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures, Proceedings of the IEEE, vol.99, issue.10, pp.1646-1659, 2011.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Broadband electromagnetic cloaking of long cylindrical objects, Physical review letters, vol.103, issue.10, p.103905, 2009.

F. Monticone and A. Alù, Invisibility exposed: physical bounds on passive cloaking, Optica, vol.3, pp.718-724, 2016.

D. L. Sounas, R. Fleury, and A. Alù, Unidirectional cloaking based on metasurfaces with balanced loss and gain, Physical Review Applied, vol.4, issue.1, p.14005, 2015.

M. Selvanayagam and G. V. Eleftheriades, Experimental demonstration of active electromagnetic cloaking, Physical review X, vol.3, issue.4, p.41011, 2013.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu et al., Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode, Scientific reports, vol.6, p.21431, 2016.

D. Sood and C. C. Tripathi, A wideband ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, vol.57, pp.2723-2728, 2015.

D. Sood and C. C. Tripathi, A wideband wide-angle ultra-thin metamaterial microwave absorber, Progress In Electromagnetics Research, vol.44, pp.39-46, 2015.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, Ultra-broadband metamaterial absorber based on the structure of resistive films, Journal of ElEctromagnEtic WavEs and applications, vol.30, issue.17, pp.2325-2333, 2016.

Z. Yang, F. Luo, W. Zhou, H. Jia, and D. Zhu, Design of a thin and broadband microwave absorber using double layer frequency selective surface, Journal of Alloys and Compounds, vol.699, pp.534-539, 2017.