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Résumé
Dans cette thèse, je présente différentes approches pour quantifier et expliquer les variations dans le

processus de diversification au sein de l’arbre du vivant. Toutes les approches présentées s’appuient sur des
modèles probabilistes. Le premier chapitre s’intéresse à la forme générale des phylogénies, et propose une
nouvelle mesure de la relation entre la richesse spécifique et la profondeur des clades au sein d’une phylogénie.
Nous montrons que, dans les phylogénies empiriques, cette mesure s’écarte de la valeur attendue pour un
processus de diversification homogène entre les lignées, possiblement à cause de la présence de variations
du taux de diversification au sein des groupes étudiés. Dans le deuxième chapitre, je m’intéresse à une
description à plus fine échelle de ces variations de taux, et présente une nouvelle méthode pour estimer des
vitesses de diversification lignée-spécifiques dans les phylogénies empiriques. Contrairement aux méthodes
existantes, qui considère que les taux de diversifications varient par des sauts rares et de grande amplitude,
la nôtre propose une vision plus graduelle de l’évolution de la vitesse de diversification. Nous appliquons
notre méthode à un jeu de données empirique et montrons que la variabilité du taux de diversification est
aussi forte au sein des clades qu’entre les clades, ce qui s’accorde bien avec cette vision d’une évolution
progressive des taux de diversification. Enfin, le troisième chapitre se concentre sur une des explications
possibles à la présence de variabilité dans les vitesses d’accumulation d’espèces, en présentant un modèle
individu-centré permettant d’étudier l’effet de différent types d’interactions écologiques sur le processus de
diversification. Nous étudions les prédictions de ce modèle pour la diversité obtenue, ainsi que sur plusieurs
mesures caractérisant la structure des réseaux d’interactions. Notre modèle génère des réseaux d’interactions
écologiques réalistes, avec des réseaux plus modulaires et moins emboités dans les communautés antagonistes
que dans les communautés mutualistes. La présence d’interactions antagonistes favorise la diversification de
la communauté, du point de vue de la variabilité en traits comme de celui du nombre d’espèces, tandis que
les interactions mutualistes entravent la création de diversité, du fait d’une forte sélection stabilisante.

Abstract
In this PhD thesis, I present different approaches based on probabilistic models for quantifying and

explaining heterogeneity in the diversification process across the tree of life, all in the probabilistic modeling
framework. In the first chapter, we focus on the general shape of phylogenetic trees, and propose a new metric
for the quantification of the age-richness relationship of the subclades within a tree. The study of this metric
in a dataset of empirical phylogenies shows that they diverge from the expectation under an homogeneous
speciation model, possibly because of within-clade speciation rates variations. In the second chapter of the
thesis, I focus on a finer scale description of diversification rates variations, and introduce a new method to
estimate lineage-specific diversification rates within a phylogeny. Compared to previously existing methods
that aim at identifying a few diversification rate shifts with large effect, ours propose a more gradual view of
diversification rate evolution. We apply our approach to a dataset of empirical phylogenies, and show that
Intra-clade variations accounts a large part of the rate variations in the whole dataset, suggesting suggest
that models with many gradual changes may be more appropriate than models with few punctuated shifts
for describing the evolution of diversification rates. Finally, the last chapter considers more directly one
of the possible cause of variation in diversification rates, which is the presence of inter-species ecological
interaction. We build an eco-evolutionary model for the emergence of mutualistic, antagonistic and neutral
bipartite interaction communities, and study it prediction on species and trait diversity, as well as on several
key network structure metrics. Our model generates realistic network structures, antagonistic communities
being more modular and less nested than mutualistic ones. We find that antagonistic interactions foster
both species and trait diversity, while mutualistic interactions generate strong stabilizing selection, with a
negative impact on both diversity measures.
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Introduction
A striking pattern of present biodiversity is how unevenly it is distributed across space, the tree

of life and ecological communities. Why are there so many species in the tropics? Why are some
groups, like passerine birds or beetles, so much more diverse than their close relatives?

Explaining these variations in species richness is one of the key challenges for the study of
macroevolution. Past differences in species diversification rates – the balance between speciation
and extinction – are one of the major forces that shape today’s biodiversity distribution. This
thesis focus on different approaches, based on probabilistic models, that can be used to study past
heterogeneity in diversification rates with the use of present day data.

I begin this introduction by presenting the general methods used to study diversification pat-
terns, including phylogenetic tree shape characterization, statistical inference methods to estimate
diversification rates from phylogenies, and models of cladogenesis below the species level. I then
present extensions of the birth-death model that aim at incorporating heterogeneity in diversifica-
tion rates, both through time and across lineages. Finally, I focus on one possible cause of rates
variations, the presence of biotic interactions between species, and on how to describe their structure
in a community.

1 Tools for studying diversification from reconstructed phylogenies.

1.1 Phylogenies of extant species.
All the work presented in this PhD thesis uses dated species phylogenies to learn about the

diversification patterns. This approach complements the one using information from the fossil
record, and enables to gain knowledge on the many clades for which the fossil record is too scarce
to be used in diversification studies. With the rapidly increasing number of large scale dated
phylogenies available, phylogenetic comparative methods have known a great development over the
last decades.

Phylogenies represent the evolutionary relationships between lineages, with tips representing
species and nodes representing speciation events. On a dated phylogeny, nodes depths are propor-
tional to the amount of evolutionary time spent since the splitting event. The complete phylogeny
contains information about all species in the clade, including those that are extinct at present. Yet
the data one has to deal with is the reconstructed phylogeny, that contains only sampled extant
species (Fig. 1). It is the data one usually has to deal with when working on phylogenetic com-
parative methods, as most phyogenies are reconstructed from molecular data obtained from extant
species.

1.2 Phylogenetic tree shape. Phylogenies contain important information on the processes
that contributed to shape them. The shape of a tree is composed of its topology – the particular
branching pattern of the tree – and its branch lengths. The labelled topology refers to the topology
with species identity at tips, while the unlabelled topology has no species at tips and refers only to
the abstract tree shape.

Numbers aiming at summarizing information from the phylogenies are called summary statistics.
They are useful to describe phylogenetic tree shapes without referring to a model, allowing to
characterize empirical patterns without any prior expectation of what the underling mechanism
would be. They can also be used to check the deviation of a tree from a model’s expectations, as is
done when performing posterior predictive checks to assess the goodness of fit of a particular model.
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Figure 1: A dated species phylogeny. From Fig.1 in (Stadler, 2011). Left : The complete phylogeny, including all
extinct species, with five sampled extant species (black dots). Rigth : The corresponding reconstructed phylogeny.

Examples of summary statistics of phylogenetic tree shape include simple descriptive numbers such
as tip number, root age, number of cherries (nodes subtending two tips) within the tree. Others
aim at summarizing complex information – e.g. tree imbalance – and necessitate more complex
constructions.

Imbalance. The imbalance of a phylogeny is a measure of how evenly the species are distributed
beween clades. In a balanced phylogeny, sister-clades tend to be of similar sizes (Fig. 2c), while
they have very different size in an imbalanced tree (Fig. 2b). Imbalance in phylogenetic tree shape
is of particular importance when looking for heterogeneity in diversification tempo across a tree,
and does not require to have knowledge about the branch lengths. It can be quantified with the
β statistic, as introduced by Aldous (1996). It is based on a statistical model in which a n-tipped
tree is built by first assigning the n species independent positions on the [0, 1] interval, according to
a uniform distribution. The interval is then split according to a beta distribution with parameter
(β + 1, β + 1), with β ∈] − 1,+∞[. The probability of i species being in the left subinterval,
conditioned to the fact that there is at least one species per subinterval, is

p(i|n) =
1

an(β)

Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i+ 1)Γ(n− i+ 1)
(1)

where 1 ≤ i ≤ n − 1, an(i) is a normalizing constant and Γ is the gamma function, defined for
x ∈ R as Γ(x) =

∫ +∞
0 tx−1e−tdt. The species are distributed accordingly within the two subclades of

the phylogeny, and this is repeated within each subclade until subintervals contain only one species
(Fig 2a). Even though the beta distribution is only defined for β ∈]−1,+∞[, p(i|n) in equation (1)
can be computed for β ∈ [−2,+∞[, and the model can thus be extended to accommodate β values
in ] − 2,−1]. For small β values, the intervals are split close to the edges and the resulting tree
shapes tend to be very imbalanced. In particular, β = −2 always produces a comb (or caterpillar)
tree (Fig. 2b). For β = 0, the position of the splits are uniformly distributed, and for large β
values, splits happen close to the middle of the interval and we get a balanced, bush tree (Fig. 2c).
Using equation (1), it is easy to compute the likelihood of this model for a given tree topology as
the product of the probability of each split. β is computed as the Maximum Likelihood Estimate
for this model.
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Figure 2: The β statistic. (a): The β-splitting model. Labels are uniformly distributed in the interval [0, 1], which
is then recursively split until all labels are in separate subintervals (see text). From Fig. 6 in Aldous (2001). (b, c):
20-tipped tree shapes generated with the β-splitting model, with parameter β = −1.99 (which generates a caterpillar
tree, b), and with parameter β = 20 (which generates an almost perfectly balanced tree, c). (d): Maximum likelihood
estimate of the β parameter for a data set of bird family level phylogenies (see Chapter 1 of this thesis). Values below
0 (dotted line) indicates that the phylogenies are more imbalanced than what is expected under a birth-death model.
We can see that, even though the variance is very high for small phylogenies, the values cluster a common value of
−1 for trees that are large enough.

Numbers of other statistics have also been used to measure tree imbalance (reviewed in Shao
and Sokal, 1990; Agapow and Purvis, 2002), such as the Sackin index (Sackin, 1972) – defined as∑n

i=1Ni, where n is the number of tips in the tree and Ni is the number of internal nodes between
the root of the phylogeny and tip i – and the Coless index (Colless, 1982; Heard, 1992) – defined
as 2

(n−1)(n−2)

∑n−1
i=1 |ri − si|, where ri and si are the number of tips on the right and left sides of

bifurcation i.
Compared to other imbalance indices, computing β requires the tree to be fully resolved, with-

out polytomies. Yet, it has the advantage not to depend on the number of species included in
the analysis, allowing direct comparison between phylogenies of different sizes. Additionally, the
generating model encompasses well-known distributions, enabling to compare the tree imbalance to
classical models’ expectations. For the constant rate birth-death model (see Section 1.3) – and, as
a matter of fact, for all cladogenetic models considering homogeneous diversification rates across
lineages –, the expected value of β is 0 (Aldous, 1996, 2001; Lambert and Stadler, 2013). β = 0 also
corresponds to the case in which all unlabelled topologies are equaly likelly. The case in which all
labelled topologies are equally likely gives more weight to unbalanced unlabelled topologies, because
many labels permutation lead to the same labelled topology if the tree is well balanced, while this is
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not the case for an unbalanced tree. This case, generally referred to as the proportional to different
arrangements model, corresponds to an expected β value of −1.5. Yet in empirical data, β values
fall between the two, generally clustering around −1 (Aldous, 2001; Blum and François, 2006, Fig
2d). This finding that empirical trees are less balanced than expected under a birth-death model is
also found using other metrics (e.g. Heard, 1992).

Branch lengths. The imbalance of a tree do not take its branch lengths into account. The
γ statistic was first introduced by Pybus and Harvey (2000) to measure how close the nodes of a
phylogeny are to the root. This statistic aims at determine wether nodes tend to accumulate early
or late in a clade’s history. It is defined by the formula

γ =

1
n−2

∑n−1
i=2

(∑i
k=2 kgk

)
− T

2

T
√

1
12(n−2)

, T =
n∑
j=2

jgj , (2)

where n is the number of tips in the phylogeny, and the gi are the internodes distances (see Fig.
3a). This complicated formula was chosen because the quantity is distributed as a standard normal
law for phylogenies generated with the pure birth model, and can thus be used to assess whether
the node depths distribution deviates from the one expected from this model. γ < 0 means that the
nodes are closer to the root than under the pure birth model, which is the case when diversification
rates decreased through time during the history of the clade (Fig. 3b). On the contrary, γ > 0
means that nodes are closest to the tips of the tree than under the pure-birth model, which happens
as soon as extinction is non-zero (Fig. 3d). Trees with this characteristic are often referred to as
tippy trees. Negative γ values are also found when not all species are sampled in a pure birth tree.
Pybus and Harvey (2000) suggested to use a Monte Carlo procedure in order to account for the fact
that species undersampling can lead to inappropriately low γ values.

This statistic has been used in many studies on empirical data (Phillimore and Price, 2008;
McPeek, 2008; Rabosky and Lovette, 2008a; Moen and Morlon, 2014), leading to the conclusion

(a)

γ = −3.22

(b)

γ = −0.50

(c)

γ = 5.23

(d)

Figure 3: The γ statistic. (a): Definition of the gi as internode distances. The subscript refers to the number of
lineages in the reconstructed phylogeny for each internode interval. From Fig. 1 in Pybus and Harvey (2000). (b -
d): 20-tipped trees with increasing γ statistic values. The phylogeny in c was simulated with a pure birth model.
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that empirical γ is almost always below 0, a pattern that has often been interpreted as a proof
that diversification rates tend to decrease through time. Yet other factors might lead to negative
γ values, are more sophisticated, likelihood based approaches (see the time-dependent models in
Section 2.1) are a more reliable tool to test for time variability in diversification rates.

Age-richness correlation. The relation between clade age and richness in a group has often been
evaluated through the computation of age-richness correlation (e.g. Magallón and Sanderson, 2001;
Rabosky, 2009b). Under a constant-rate birth-death model, this is expected to be a positive value
(at least when crown age are used to evaluate clade age Rabosky et al. 2012 ; if stem age is used
the positive relationship is lost Stadler et al. 2014; Sánchez-Reyes et al. 2016). In empirical data,
a positive relationship is seldom found (Rabosky 2009b; Rabosky et al. 2012 ; but see McPeek and
Brown 2007). A weak age-richness relationship may be caused by a bias in the definition of higher
taxa, by diversification rates varying among clades, or by diversity dependent speciation (Rabosky,
2009b; Stadler et al., 2014).

While the age-richness correlation is useful to evaluate whether a group deviate from the constant
rate birth-death model expectation, it is computed for multiple phylogenetic trees, that are either
independently estimated or pruned from a bigger tree (Magallón and Sanderson, 2001; Ricklefs,
2007b; Rabosky et al., 2012). This can be problematic, as the computed values are sensitive to
the definition of higher taxa (Stadler et al., 2014; Sánchez-Reyes et al., 2016). In chapter 1 of this
thesis, I present an extension of Aldous β-splitting model (Aldous, 1996, 2001) with an additional
parameter controlling for nodes order within the phylogeny, which I began to develop during my
master and finished during my PhD. The estimation of this parameter gives a tree-wise measure of
the age-richness correlation.

1.3 Estimating diversification rates from phylogenies.

The birth-death model. Most of the methods used to analyze different diversification scenarios
from empirical phylogenies (for a review, see Morlon, 2014), are based on the birth-death model of
cladogenesis (Nee et al., 1992). It is a lineage-based model (meaning that the model takes lineage as
the basal evolutionary units) in which the only possible events are speciation and extinction, which
happen independently for each lineage with common per-lineage rates λ and µ that are constant
through time. When there is no extinction (µ = 0), this model is also known as the pure-birth
model or the Yule model. It has since been extended to include many different hypotheses, some of
which are of relevance to this PhD thesis and are described in Part 2 of this introduction.

The method of moments. Under such a simple diversification model as the one described above,
the expected number of species at present time in a clade is entirely determined by the age of the
clade, t, and the net diversification rate, λ − µ, and equals e(λ−µ)t. The logarithm of the extant
species number divided by the time for speciation thus gives an estimate of the diversification rate.
Estimates of diversification rates with this method are biased towards high values because extinct
clades are never sampled. Magallón and Sanderson (2001) proposed a correction for this using the
method of moments approach, which necessitates to assume the relative extinction rate.

This method has been widely used in past literature (Alfaro et al., 2007; Adams et al., 2009).
Yet it does not allow the estimation of speciation and extinction separately. It has been argued that
it may be less prone to error than more recent, complex methods (Meyer and Wiens, 2018), but
this later study is subject to caution and its results are misleading because different methods were
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fed with different amount of information (Rabosky, 2017). Even though this method can give an
estimate of the net diversification rate under a birth-death model, it uses a very small fraction of
the information contained in a phylogeny – discarding all the information about the topology and
the branch lengths. It is thus not well suited to study more complex diversification patterns and
does not allow extensions to account for heterogeneity in the diversification process.

Lineage Through Time plots. Under a constant-rate pure-birth process, the logarithm of
the number of lineages is expected to increase linearly with time, and the speciation rate can
be obtained directly from the slope of the Lineages Through Time (LTT) plot – the plot of the
logarithm of the number of extant lineages through time. If the extinction rate is non-zero, there is
an apparent increase in lineage accumulation towards the present, known as the ’pull of the present’
effect (Harvey et al., 1994). This is due to the fact that lineages that originated close to the present
have had less time to go extinct than more ancient lineages (Nee et al., 1994a). The slope of the
curve near the present is the speciation rate λ, while the slope at the root age of the phylogeny
reflects the diversification rate λ− µ. This has led to argue that extinction rates can be estimated
from molecular phylogenies, even without fossil information (Nee et al., 1994a; Kubo and Iwasa,
1995). Approaches using the LTT plot have been used in several empirical studies (e.g. Baldwin
and Sanderson, 1998; Ribera et al., 2001; Kozak et al., 2006).

Likelihood approaches. The likelihood of a parameter θ – possibly a vector of parameters –
knowing the data x is defined as the probability to obtain the data in a given model knowing the
parameter value θ:

Lx(θ) = p(x|θ) (3)

In the traditional statistical approach, also known as the frequentist approach, probabilities are
interpreted as the frequency the data would be obtained, should the experiment be repeated a large
number of times. The likelihood of θ is a measure of how much of the data can be explained by the
model parameter value. The Maximum Likelihood Estimate (MLE), θMLE = argmaxθ(Lx(θ)), is
the parameter value that best explains the data.

This approach has been widely used to estimate diversification rates, and has the advantage
to allow for complexification of the model in order to accommodate more realistic scenarios (see
Section 2.1 of this introduction).

Bayesian approaches. The classical likelihood maximization approach considers that there is a
true fixed value for each model parameter, and that we can approach it if we are given a sufficient
amount of data. The goal is thus not to try and give a probability to a parameter value, but to
approach the real one. Yet, probabilities can also be interpreted as a measure of how reasonable we
think an hypothesis may be, considering what we know about the data. This is the point of view
of Bayesian statistics, that heavily rely on the Bayes theorem:

p(θ|x) =
p(x|θ)p(θ)
p(x)

(4)

In that formula, p(θ|x) is called the posterior distribution of the model parameters. It is the
information we have about the model parameters θ after accounting for the data x. p(x|θ) is the
likelihood of the model, and p(θ) is the knowledge we had on the model before accounting for the
data, known as the prior distribution. p(x) =

∫
Θ p(x|θ)p(θ) is a normalisation constant.
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One could, as in the frequentist approach, try to maximize the posterior distribution so as to then
obtain the more likely parameter set. But this is not very informative about the actual shape of the
distribution. An extreme case would be one in which the data are uninformative about our model
parameter, so that any value would maximize the model posterior for those data. It is thus more
appropriate to try and get better insight about the distribution, which is usually done by sampling
from it. An efficient and common way to do so is to use Markov Chain Monte Carlo (MCMC). The
chain begins at an arbitrary position of the parameter space. At each iteration, a new parameter
θprop is drawn in the neighborhood of the current position θcurrent. If p(θprop|x) > p(θcurrent|x),
θprop becomes the new current position. Else, there is a probability p(θprop|x)/p(θcurrent|x) that θprop
becomes the new current position. This procedure is iterated until a stopping criteria is reached.
The equilibrium distribution of this Markov chain is equal to the posterior parameter density.

Bayesian approaches allow to get good estimates for the uncertainty about the model’s pa-
rameters values. They have been used to fit diversification models to data, as for example in the
widely used Bayesian Analysis of Macroevolutionary Mixtures (BAMM) method (Rabosky, 2014)
and SSE methods (for State Speciation and Extinction, Maddison et al., 2007), see Section 2.2 of
this introduction.

Model selection. In order to gain insight in the processes that best explain our data, one may
be interested in comparing how well a set of model fits the data, rather than finding the parameter
set that best fits the data for a given model. This is done differently in the frequentist and in the
bayesain frameworks.

Frequentist approach.—The goodness of fit of a model is given by the maximum of the likelihood
function maxθLx(θ) = Lx(θMLE). An intuitive way to compare models is to compare their maximal
likelihood. Yet, this quantity increases with the dimensionality of the model parameters, leading
to the preferential selection of the more complex model, an issue known as over-fitting. If the two
models are nested (which means that the simplest model is a special case of the more complex
one), it is possible to correct for this effect by using a Likelihood Ratio Test. If they are not, it
is common practice to compare them using their Akaike Information Criterion (AIC), defined as
AIC = −2log(Lx(θMLE)) + 2log(n), where n is the number of parameters. The model with the
lowest AIC is selected.

Bayesian approach.— In a Bayesian framework, the value of the parameter θ is not fixed, and
the goodness of fit of a model is defined as

∫
θ∈Θ p(x|θ)p(θ)dθ. The support for a model over another

can be quantified using Bayes factor, which is the ratio of the goodness of fit for the two model. An
interpretation of the Bayes factor value can be found in Kass and Raftery (1995). Model selection
can also be performed at the same time than the inference of the parameter of the model using
rejection jump MCMC (rjMCMC, Green, 1995), allowing to automatically assess the probability
of a model being favored over the set of models included in the analysis. This is for example the
approach followed in the BAMM method to infer the number of diversification rate shifts on a
phylogeny (Rabosky, 2014, see also Section 2.2).
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1.4 Models of cladogenesis below the species level. Unlike lineage-based model, which con-
sider lineages to be the basal evolutionary units, some models focus at lower level of organization,
from populations to gene level. A direct advantage of those models is that it is often straightforward
to include complex rules and individual variation relevant to the question being addressed. Indi-
vidual variations may for example be included as spatial variability, local interactions, phenotypic
or genetic variability, plasticity, and resulting fitnesses (a measure of the individuals’ reproductive
success). These kind of models also allow to study the effect of the speciation mode on the obtained
macroevolutionary patterns (Davies et al., 2011; Missa et al., 2016). A downside is that finding an
analytical solution for the behavior of the models is very rarely possible (even though exceptions
do exist; see Hubbell, 2001; Manceau et al., 2015), and likelihood approaches are thus generally
not applicable for those models. One generally needs to study them through simulations, which,
for complex models, can be costly in terms of computation time. The realism of the obtained
phylogenies can be assessed by comparing the summary statistic’s distribution to those observed
for empirical trees. Examples of models of cladogenesis below the species level include the famous
Neutral Theory of Biodiversity (NTB Hubbell, 2001) and its variations – for example with different
speciation modes (Davies et al., 2011; Missa et al., 2016) –, the ecological differentiation model of
McPeek (2008) – in which the carrying capacity of a species depends on how far its optimal envi-
ronmental conditions are from the local environment –, and the geographical speciation model of
Pigot et al. (2010) – that model species range size dynamics, with geographical barriers that appear
at random and result in the creation of new species.

Individual-based models simulate populations or species as a collection of individuals, each having
their own set of traits. Population levels properties – such as population size, mean trait value,
immigration rates – emerge from individuals properties and behavior. The definition of species from
the obtained genealogies can be a tricky part. The often used point-mutation – each mutation gives
instantly rise to a new species (Hubbell, 2001) – or random-fission – at speciation, the individuals
are dispatched randomly between the two resulting new species (Davies et al., 2011) – speciation
modes create non-monophyletic species, which is problematic when we want to look at the resulting
phylogenies (Manceau and Lambert, 2017). A way to obtain monophyletic species, and thus be able
to unambiguously construct the phylogeny from the individuals genealogy, has been proposed in
Manceau et al. (2015). In this paper, species are defined from individual genealogies with mutations
as the smallest monophyletic group of extant individuals such that any two individuals of same
genetic type always belong to the same group (see also Section 2.1).

In Chapter 3, I present an individual-based model of of two interacting guilds that we developped
during my PhD to study the evolution of bipartite interaction networks and the effect of different
interaction types on species diversification, in which we use the mode of speciation proposed by
Manceau et al. (2015).
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2 Incorporating heterogeneity in diversification models.
The discovery that phylogenetic tree shapes generally deviate from those obtained with a birth-

death model – as for example in terms of γ and β statistics – fostered the development of an
ever-increasing body of more complex diversification models. Those models contribute to get an
insight in what is impacting the tempo of diversification, and thus in the processes that shaped
today’s patterns. This section is an attempt to review representative examples.

2.1 Heterogeneity through time.
A constant rate birth-death model should theoretically generate LTT plots which display an in-

crease in lineage accumulation speed toward present time, the so called pull of the present (Harvey
et al., 1994; Nee et al., 1994a). Empirical LTT plots, however, more often show the reverse pattern
(Kubo and Iwasa, 1995; Zink and Slowinski, 1995; Lovette and Bermingham, 1999). This obser-
vation, coupled to the related observation that empirical phylogenies generally display negative γ
statistic values (Phillimore and Price, 2008; McPeek, 2008; Rabosky and Lovette, 2008a; Moen and
Morlon, 2014), led to the hypothesis that speciation decreases with time within clades. Additionally,
diversification rates may be impacted by changes in the biotic or abiotic environment of a clade.

Time dependency. A common way to incorporate this time signature in cladogenesis diver-
sification models is to assume a continuous functional dependency of diversification rates to time
(Rabosky and Lovette, 2008b; Morlon et al., 2011; Hallinan, 2012). A likelihood expression is avail-
able for those models, allowing to fit them to empirical phylogenies. Although the likelihood can
theoretically accommodate any functional time dependency shape for the speciation and the extinc-
tion rate, they are generally assumed to vary as linear or exponential functions to limit the number
of parameters needed.

Alternatively, models with discrete forms of time variation have also been developed (Stadler,
2011; Hallinan, 2012). Methods based on those models offer the advantage of not requiring to specify
a predefined form for how diversification rates changed through time, and rely on likelihood ratio
tests to define the number of rate shifts that occurred along a clade’s evolutionary history.

Those two approaches allow to assess whether the diversification tempo changed through time –
e.g. if there was an increase or a decrease in rates, or a waxing and waning pattern (diversity going
up and down) – without making assumptions on the factors that may have driven those changes.
Those may be extrinsic factors, linked to change in the abiotic or biotic environment of the clade,
or intrinsic to the diversification process, as could be the case if speciation is a protracted process.

Environmental dependency. Diversification rate changes in the time dependent models may
show what the tendencies are, but they are not giving any clues about what have driven them.
Further test are needed to get an insight in the processes that are acting. Some of them may be
changes in the abiotic (e.g. temperature, sea level...) or biotic (e.g. predation pressure) environment.
If information is known about how those varied through time, it can be incorporated within the
birth-death model framework by assuming a functional dependency of diversification rates to the
environmental variable (Condamine et al., 2013). As for the time dependent model, a linear or
exponential functional dependency is generally assumed. Simulation studies showed that the model
is well-behaved and allows recovering the right environmental driver of diversification as long as
the dependency is strong enough (Lewitus and Morlon, 2017). The approach has been applied on
empirical data, highlighting for example a negative dependence of speciation and extinction rates to
temperature in birds (Claramunt and Cracraft, 2015), a positive correlation between sea level and
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extinction rates in birdwings butterfly (Condamine et al., 2015), and a positive association between
speciation rate and temperature in Cetaceans (Lewitus and Morlon, 2017).

Mass extinction. Past mass extinctions leave a signature in today’s biodiversity, showing as a
plateau in the LTT plots (Crisp and Cook, 2009). Mass extinction events have been incorporated
in the discrete time dependent model (Stadler, 2011), as well as in the continuous one (Höhna,
2015), by setting probability ρi to survive at time ti. The discrete time version was subsequently
integrated within a bayesian framework, using reversible jump MCMC to detect the number and
positions of rate shifts and mass extinction events (May et al., 2016).

Diversity dependence. In all the models described in the previous paragraphs, species are
assumed to be independent from each other. Yet competitive interaction among species is thought to
have major impact of species diversity. The fact that diversification rates are often found to decrease
with time, and the fact that, for many groups, no relationship is found between clade age and species
richness, is often interpreted as an evidence for diversity-dependent speciation (Ricklefs, 2007a;
Phillimore and Price, 2008; McPeek, 2008; Rabosky, 2009a), with diversification becoming less and
less likely as ecological niches are being filled. This process was first implicitly incorporated in
diversification models through decreasing speciation rates with time (Rabosky and Lovette, 2008b),
but models with explicit diversity dependent diversification are now available (Rabosky and Lovette,
2008a; Etienne et al., 2011). Etienne et al. (2011) developed a model in which the speciation rate
is a function of the number of species in the clade, as well as an inference procedure to fit it on
empirical phylogenies. The dependency of the speciation rate to species number is included as a
logistic function, with λ(n) = max

(
0, λ0 − (λ0 − µ) nK

)
, where K is the equilibrium species richness,

which is reminiscent of the ‘carrying capacity’ used in ecological models.
The negative diversity dependent diversification process is thought to be due to the filling of niche

space by competitors that impedes diversification. Occasionally, a lineage may escape competition,
because of dispersal to a new area or appearance of a key innovation that allows it to enter a

(a) (b) (c)

Figure 4: The protracted speciation model. (a, b): A phylogeny simulated with the protracted speciation model.
From Fig. 1 in Etienne and Rosindell (2012). (a): The complete phylogeny, showing extinct and incipient species
(doted lineages). (b): The corresponding reconstructed phylogeny. (c): LTT plots obtained for different values of the
speciation completion rate λ2. Low λ2 allows to generate LTT curves that are close to those obtained in empirical
data. Other parameters are λ1 = 0.5, µ1 = µ2 = 0. From Fig.2 in Etienne and Rosindell (2012).
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novel adaptive zone. This can be added to the diversity-dependent diversification model framework
as a decoupling of the diversity-dependent dynamics of a subclade from the main clade’s diversity-
dependent dynamics (Etienne and Haegeman, 2012), allowing to model the whole adaptive radiation
diversification, from the first high speciation phase to the slowing in diversification rate phase.

Protracted speciation. Mechanisms other than a dependency to time – or to factors that
correlate with it – can lead to a signature of decreasing speciation through time. This is the case
if speciation is protracted. In the classical lineage-based models of diversification, speciation is
modeled as an instantaneous process. Yet, the mechanisms leading to the formation of distinct
species is a complex one that necessitates the completion of several steps, and it may take a non-
negligible time to go from initial lineage splitting to the actual completion of speciation (Avise
et al., 1998; Gavrilets et al., 2000; Benton and Pearson, 2001; Norris and Hull, 2012). This idea that
speciation takes time to complete, referred to as protracted speciation, has been incorporated within
the birth-death framework by Etienne and Rosindell (2012). In their model, species give birth to
new, incipient species at rate λ1 (which is the rate of speciation initiation), which can subsequently
become good species at rate λ2 (which is the rate of speciation completion), or give birth to another
incipient species at rate λ3 (Fig. 4a). Each stage has its own extinction rate µi. The authors
show that protracted speciation provides an explanation for the shape of empirical LTT plots (Fig.
4c). Additionally, taking λ1 < λ3 generated reconstructed phylogenies with β values below 0, as is
generally seen in empirical data.

In Etienne and Rosindell (2012), the likelihood of the model was only available for the pure

Figure 5: Species definition in the United Theory of Ecology and Macroevolution model. From Fig.
1 in Rosindell et al. (2015). Top-left: population genealogy. A color change indicates the presence of a mutation.
Top-right: Species phylogeny for n = 1 (where n is the minimal number of mutations needed between two populations
for them to be part of different species, see text). In that case the speciation mode is equivalent to a point mutation
mode of speciation. Down row: Species phylogeny for n > 1, leading to a protracted mode of speciation. For n = 3,
all lineages merge into one good species.
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birth case (with µ1 = µ2 = 0). An approximate likelihood expression was latter derived for the
model with non-zero extinction (Lambert et al., 2015), allowing to estimate the mean time needed
to complete speciation in the model from empirical data (Etienne et al., 2014).

Etienne and Rosindell (2012) model defines protracted speciation at the lineage level, but it can
also arise from the way species are defined from individuals genealogies. In Rosindell et al. (2010),
the authors studied the effect of adding a protracted mode of speciation to the neutral theory
of biodiversity. In their model, species are formed through a point mutation mode of speciation,
but they are considered incipient species until τ generations occurred, assuming a fixed time for
the completion of speciation. They showed that it added realism to the prediction of the neutral
theory, especially when it comes to species lifetime, speciation rate and the number of rare species.
Other models allow the mutation process to build up until individuals are considered as being part
of different species, using lower level (individual or population level) genealogy with mutation to
define species (Rosindell et al., 2015; Manceau et al., 2015). In the United Theory of Ecology and
Macroevolution (UTEM Rosindell et al., 2015), two populations are part of the same species if there
are less than n mutations along the genealogical path between them, or if other extant individuals
bridge the gap between them (Fig. 5). As soon as n > 1, speciation takes time to happen and
happens as a protracted process. Note that species defined this way are very rarely monophyletic,
even for n = 1 (Fig. 5). In the Speciation by Genetic Differenciation model (SDG Manceau et al.,
2015), individuals follow a birth-death process, with occasional mutation events arising at a constant
rate. Species are defined from individual genealogies with mutations as the smallest monophyletic
group of extant individuals such that any two individuals of same genetic type always belong to
the same group (Fig. 6). This approach was used to define species in Chapter 3 of this thesis.
Although neither the UTEM nor the SDG model incorporate evolutionary rate slowdown in their
specification, they both generate phylogenies with more realistic species accumulation curves than
the constant rate birth-death model.

Figure 6: Species definition in the Speciation by Genetic Differentiation model. From Fig 1. in Manceau
et al. (2015). Species are defined from the genealogy of extant individuals with mutations (left tree, with red dots
denoting mutation events) as the smaller monophyletic group of extant individuals such that any two individuals of
same genetic type (indicated with different color on the left tree) always belong to the same group. The right tree
shows the obtained phylogeny. Even though only one mutation is needed to define a species, the monophyly condition
makes the speciation mode to be protracted.
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2.2 Heterogeneity across lineages.
In the models described in Section 2.1, diversification rates are hypothesized to be homogeneous

within the clade. While this seems a reasonable assumption when considering only a limited set
of taxa, large scale phylogenies encompass very different species, with different characteristics and
evolutionary histories. There are many reasons for species not to diversify at the same speed. As
an example, key innovations may happen at the basis from given clades, giving them an advantage
by allowing them to temporally escape predation or competition pressure, or by allowing them to
colonize a new environment, thus enhancing their diversification rates. Also, groups of species living
in different biogeographical areas, or varying in essential traits such as those affecting reproductive
isolation – e.g. reproduction mode (Goldberg et al., 2010), or pollination and dispersal syndromes
(Onstein et al., 2017) – are likely to diversify at different paces.

All diversification models for which diversification rates are constant within the clade generate
trees with topologies identical to those generated with the Yule model, with an expected β statistic
equal to 0 (Lambert and Stadler, 2013). This differs much from topology observed in empirical data
(Aldous, 2001; Blum and François, 2006), comforting us in the idea that the diversification process is
far from being homogeneous in nature. Being able to position those changes on phylogenies, quantify
them and link them to changes in species characteristic is of particular interest to evolutionary
biology. Another important, but more technical aspect is the fact that not accounting for the
possibility that rates may have varied across a clade’s lineages leads to bias in diversification rates
estimates. It especially leads to extinction rates estimates close to 0, opening a debate about whether
extinction rates should be estimated from molecular phylogenies only (Rabosky, 2010; Beaulieu and
O’Meara, 2015; Rabosky, 2016a). Yet including even a few rate shifts within the phylogeny can
bring back extinction rates estimations close to those obtained from the fossil record (Morlon et al.,
2011).

Rate shift detection. Two systematic methods have been proposed to position diversification
rate shifts on phylogenies, both building on a lineage-based model in which diversification happens as
an homogeneous process, with occasional shift events happening on a lineage. Once a shift happens,
the clade descending from this lineage diversifies with its own diversification rate (Fig. 7a). The
first of those methods, MEDUSA (Alfaro et al., 2009), uses a stepwise AIC (Akaike Information
Criterion) procedure to detect how many shifts occurred during the history of a clade as well as
their position and magnitude. A simple constant rate birth-death model is first fitted to the tree.
Then a model in which there is one shift at a node is fitted for every possible position of the shift.
The AIC of these models are computed, and the model with one shift is selected if the difference
in AIC between the constant rate model and the best model with one shift is more than AICcrit
(in the first implementation, AICcrit was set to 4, but the more recent version has a AICcrit that
depends on the number of tips in the tree). If the one shift model is selected, support for a two
shifts model is tested using the same procedure, and so on until no more shifts are selected. A
backward elimination procedure is then performed.

BAMM (for Bayesian Analysis of Macroevolutionary Mixtures, Rabosky, 2014, Fig. 7) is an-
other, more recent method that has been developed for detecting diversification rate shifts on a
reconstructed phylogeny. This approach uses reversible jump Monte Carlo Markov Chain (rjM-
CMC). Compared to MEDUSA, it has the advantage of allowing speciation and extinction rates
to vary through time between rate shifts, an important feature since a decrease in diversification
is commonly observed on empirical phylogenies (McPeek, 2008; Phillimore and Price, 2008; Moen
and Morlon, 2014). In addition, the rjMCMC framework allows to simultaneously select the most
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Figure 7: The rate shift model for the inference of heterogeneous diversification rates. (a): A tree
generated with the rate shift model used in MEDUSA and BAMM. Rate shift positions are indicated with a red dot,
and different branch coloring indicates different diversification regimes. (b): Figure 1A from Rabosky (2016b). An
example of an application of BAMM to an empirical phylogeny of birds from Jetz et al. (2012), with branch colors
corresponding to the inferred instantaneous speciation rate of speciation at each point in the tree. Speciation rates
vary by approximately 3000% over the clade history.

probable model (the number of shifts) and the model parameters (the position and the amplitude of
the shifts), thus allowing to explore (unlike MEDUSA) uncertainty around the number and location
of shifts.

These two methods are very similar in the way they envision diversification rate shifts. They both
rely on the hypothesis that rate changes are large and uncommon (Fig. 7a), both implement a model
selection procedure, and are both based on the same likelihood expression (with additional trend
parameters in the case of BAMM). The major differences are on the way this selection procedure
is performed (stepwise AIC for MEDUSA, rjMCMC for BAMM), and the possibility for BAMM to
account for time variable rates. The ability of both method to accurately recover the number of
shifts and their position on the phylogenies has recently been put into question. In MEDUSA, it
come from the fact that the use of the AIC to determine the number of shifts is somewhat arbitrary.
In BAMM, a problem is that the number of inferred shifts is higly dependent on the prior used
(Moore et al. 2016; but see (Rabosky, 2017)). Additionally, the likelihood used for the inference of
both methods use the assumption that no diversification shift occurred within unobserved lineages,
and this recently fueled a controversy about their statistical performances (May and Moore, 2016;
Moore et al., 2016; Rabosky et al., 2017; Rabosky, 2017; Mitchell and Rabosky, 2017; Meyer and
Wiens, 2018).

In Chapter 2 of this PhD thesis, I propose an alternative method, built from a model in which
diversification rates vary in a more gradual way across the phylogeny.

Character dependent diversification. The above described methods give an insight on how
and where diversification rates varied in the history of a clade, but without making any assumption
on why they would actually vary. One question of particular interest to biologists is whether they
depend on species characters, and on which of them (Jablonski, 1987; Slowinski and Guyer, 1993;
Barraclough et al., 1998). This has traditionally been answered through sister clade analyses, which
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consist in comparing the species diversity in to clades descending from a single common ancestor,
in which species have different character states (Mitter et al., 1988; Barraclough et al., 1998; Barra-
clough, 1998). Yet this approach has several caveats, in that it cannot distinguish between increased
speciation or decreased extinction – being based on the principle of the method of moments, cf sub-
section 1.3 of the present introduction –, nor differentiate between increased diversification for one
of the character states or asymmetrical transition rates (i.e. when the transition from one character
state to the other is more likely in one direction than in the other one Maddison, 2006), and prevent
using clades with mixed character states for the analysis.

To counter those caveats, a likelihood based approach, the binary-state speciation and extinction
model (BiSSE, Fig. 8), has been proposed in Maddison et al. (2007). In their model, lineages are
either in state 0 or 1 of the parameter of interest. The possible events for a lineage in state i are
speciation (with rate λi), extinction (with rate µi), or transition to state i 6= j with rate qij . They
derive the likelihood of a phylogeny with observed character state at tips under this model and
use it to test whether the character had an impact on diversification (by model selection against a
birth-death process) and estimate the six model parameters.

This model has then been subject to many extensions, all known as the SSE methods (for state
speciation and extinction). They now allow to include the possibility to account for unsampled
lineages or unknown present character state (FitzJohn et al., 2009), multiple states characters or
interaction between several characters (FitzJohn, 2012, MuSSE), quantitative traits (FitzJohn, 2010,
QuaSSE), geographic characters (Goldberg et al., 2011, GeoSSE), cladogenetic character evolution
(the changes in character state happen in conjunction with a speciation event; Goldberg and Igić,
2012, ClaSSE).
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Figure 8: The binary-state speciation and extinction model (BiSSE). (a): Figure 1(a) from Goldberg et al.
(2011). States and transitions in the BiSSE model. (b): A tree generated with the BiSSE model, with the R-
package diversitree (FitzJohn, 2012). Grey is state 0, yellow is state 1. The parameter used are λ0 = 0.1, λ1 = 0.4,
µ0 = µ1 = 0, q01 = 0.05, q10 = 0.2. (c): Marginal distributions of λ0 (grey) and λ1 (yellow) estimated by MCMC for
the tree in (b). The vertical lines show the parameter values used to simulate the tree.
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It has recently been shown that these approaches suffer from a high Type I error rate – traits
that have evolved neutrally along the branches of a phylogeny are very often shown to have had
an impact on diversification (Rabosky and Goldberg, 2015). This likely comes from the fact that
the null model against which the state dependent model is compared, a birth-death model, is too
simplistic. Empirical phylogenies generally display evidence for diversification rate variation – as
shown by the β statistic – and that leads to rejection of the birth-death model by the method,
rather than to acceptation of the character effect. New approaches have been proposed to correct
for this bias. The HiSSE model (Hidden State Speciation and Extinction; Beaulieu and O’Meara,
2016) is an extension of BiSSE that adds the possibility that a hidden character – whose state at
present is unknown – also had an effect on diversification. Another method uses lineage specific
diversification rates estimate (obtained from BAMM, Rabosky, 2014) and a permutation procedure
on the trait present states to assess whether independence between diversification rates and trait
values can be rejected (Rabosky and Huang, 2015). Both those methods allow to get reasonable
Type I error rates. Yet BAMM provides subclade specific rather than lineage specific rate estimates.
The approach we propose in Chapter 2 of this thesis offers a way to get to lineage specific estimates,
which could be useful to use in this context.

Age dependent diversification rates. Another reason for why diversification rates could differ
between lineages at a given point in time is the possibility to have age-dependent speciation or
extinction rates. In those models, speciation (or extinction) rates are assumed to change with the
age a species (Venditti et al., 2010; Hagen et al., 2015; Alexander et al., 2015). This may arise for
example from speciation being the result of many small events (Venditti et al., 2010), or as the
result of varying ecological pressure or population size throughout a species age (Hagen et al., 2015;
Alexander et al., 2015), resulting in non-exponentially distributed branch lengths. Those processes
can either be symmetrical – both daughter species have their age reset to 0 at a speciation event
– or asymmetrical – one species inherits the age of the ancestor, the other daughter species age is
reset to 0. Age-dependent speciation can lead to tree shapes that are more imbalanced than for
trees generated with a Yule model, but this seems not to be the case for age-dependent extinction
(Hagen et al., 2015).

3 Effects of species interspecific interactions on diversification.

3.1 Biotic drivers of species diversity.

The red queen hypothesis. The court jester hypothesis postulates that extinction, speciation
and evolution happen in response to random and unpredictable environment changes (Barnosky,
2001). The competing interpretation, the red queen hypothesis, postulates that biotic interactions are
sufficent for evolutionary changes to happen, even in the absence of abiotic environmental changes,
because of the ever changing biotic environment that requires constant adaptation (Van Valen,
1973). According to this hypothesis, an evolutionary change that gives an advantage to one species
gives a disadvantage to others, which result in a continuous evolutionary race between species in the
community. Although it can reasonably be assumed that both biotic and abiotic factors have a part
to play, the relative weight of biotic and abiotic factors on species evolution and diversification is
still a much debated issue (Barnosky, 2001; Benton, 2009; Voje et al., 2015). One common prevalent
view is that, even though biotic forces act at small spatial and temporal scales, macroevolutionary
processes are dominated by abiotic transitions (Barnosky, 2001; Benton, 2009).
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The zero-sum assumption of the red queen hypothesis – that the gain in fitness of one species
should be balanced by losses of fitness of others – has been heavily criticized (Maynard Smith, 1976;
Stenseth and Maynard Smith, 1984). But other evolutionary models, not relying on this assumption,
allow for continuous evolution and diversification even in the absence of abiotic changes (reviewed
in Voje et al., 2015). Models of food web evolution show that antagonistic interactions may lead to
unceasing trait evolution and species turnover, with occasional collapse in species number (Loeuille
and Loreau, 2005; Guill and Drossel, 2008; Takahashi et al., 2013; Allhoff et al., 2015).

Coevolutionary diversification. Since Ehrlich and Raven (1964) study on the diversification
of butterflies and plants, the idea that species coevolution can lead to codiversification has received
great interest. In their verbal model, they hypothesized that antagonistic interactions between the
plants and the butterfly larvae that feed on them could promote species diversity through an escape
and radiate mechanism, with new defenses strategies appearing in the resource guild, allowing them
to escape their enemies and diversify quickly as long as those did not develop another key innovation
that enable them to colonize the new resource clade and radiate in turn.

Subsequent work on coevolutionary diversification has shown stronger evidence for diversification
driven by antagonistic interactions than mutualistic ones, in both theoretical and empirical studies
(for a review of the effect of different interaction types on diversification, see Hembry et al., 2014).
Several theoretical models showed that antagonistic interaction can lead to increased trait diversity
among populations (Gandon, 2002; Yoder and Nuismer, 2010). Antagonism driven speciation has
been demonstrated in several empirical systems. In North American milkweeds for instance, invest-
ment in defense traits resulted in higher diversification rates (Agrawal et al., 2009). In butterflies,
major host shifts resulted in bursts of diversification, in concordance with the escape and radiate
hypothesis (Ehrlich and Raven, 1964; Fordyce, 2010).

In mutualistic communities, modeling works usually predict a reduction of trait diversity (Kopp
and Gavrilets, 2006; Yoder and Nuismer, 2010). Empirical evidences for increased species diversity
through mutualistic interactions are limited and mainly restricted to two kinds of interactions
(Hembry et al., 2014). One of them is resource symbiose, that can facilitate the invasion of new
adaptive zones. In gall inducing midges for example, those that have evolved symbiotic associations
with fungi are able to use a broader range of host-plant taxa, promoting their diversification by
making host-shifts more probable (Joy, 2013). Another case of mutualism inducing diversification
is that of pollinator-plant interaction, that acts on reproductive isolation (Ramsey et al., 2003;
Kay, 2006; Cruaud et al., 2012). But in Yucca, no association between specialized pollination and
elevated diversification rate was found (Smith et al., 2008).

Testing the effect of interactions on the diversification process. While the environment-
dependent diversification models (see Section 2.1) offer a tool to test for the effect of abiotic factors
on diversification, only few methods are available to test for the effect of biotic interactions on an
empirical phylogeny, probably because of the difficulty to account for non-independence between
lineages in the birth-death framework. To my knowledge, the only method allowing to account
for lineage non-independence within a clade in this framework is the diversity-dependent model
(Rabosky and Lovette, 2008a; Etienne et al., 2011, see also Section 2.1). In Etienne et al. (2011),
the approach was applied to five empirical phylogenies, that all favored the diversity-dependent
model over a constant rate birth-death model. This suggests that negative diversity dependence is
common in empirical data. Results obtained with this method have yet to be taken with care, as
parameter estimates tend to be strongly biased, and model selection against a diversity independent
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birth-death model is subject to a high Type I error (Etienne et al., 2016).
To test for inter-clades interactions effects on diversification, one possibility is to use the en-

vironmental dependent model and use the diversity-through-time of one group as an explanatory
variable for the diversification of the second group (Lewitus and Morlon, 2017). The method re-
vealed a positive effect of ostracod diversity on the diversification of Cetaceans, possibly due to
their role as a food source. Yet this approach does not allow to test for both clade impacting the
diversification of the other, as would be expected for example from the escape and radiate scenario.

If we are interested in diversification in trait space, a few other tools are available. The general
comparative phylogenetic methods framework can be used to incorporate diversity-dependent trait
evolution (Mahler et al., 2010; Weir and Mursleen, 2013), or to test for the reciprocal effect of
species similarity in trait value, either within a clade or between the species of two different inter-
acting clades (Drury et al., 2016; Manceau et al., 2016). Applied to the Greater Antillean Anolis
lizards radiation enabled Drury et al. (2016) to highlight the impact of species competition on trait
evolution. Applying this type of method to two interacting clades require to have an idea about
what species interacted with whom during the clades history, and thus to have knowledge about
how ecological communities assemble and evolve. In the following, I focus on the description of
ecological communities structure through the use of ecological networks.

3.2 Bipartite interactions.

Bipartite networks. A common and useful way to describe an interacting community is through
the use of interaction networks, that can be represented using the formalism of graph theory. A
graph is a pair (V,E) composed of a set of nodes (also known as vertices) V and a set of edges
(often referred to as links in the ecological literature) E ⊂ V 2. The graph can either be undirected
– meaning that links have no orientation, the edge (x, y) and (y, x) are identical – or directed – in
which case edges have orientations, (x, y) is directed from x to y and is different from (y, x) that is
directed from y to x. A weighted network is a network in which a weight is assigned to each edge
(Fig. 10a).

In the case of ecological networks, V is the set of species in the community. A species pair (x, y)
belongs to E if x and y interact together. The links can be ordered – e.g. for a food-web, (x, y) ∈ E
means that x feeds on y – or unordered – e.g. in the case of symmetrical competition –, and may
or may not be weighted by interaction strength.

If there exist two species subsets A and B such as A∩B = ∅, A∪B = V and ∀(x, y) ∈ E, (x, y) ∈
A× B or (x, y) ∈ B × A (i.e. all interaction links are between a species from A and one from B),
the network is said to be bipartite (Fig. 10a). Those networks are useful to describe ecological
communities in which there are two distinct sets of organisms, such as plant and pollinators, host
and parasites, or plants and herbivores.

Bipartite networks may also be equivalently described with their adjacency matrix, M , which
has |A| rows and |B| columns (where |X| refers to the number of element in the set X). For
unweighted networks, Mi,j = 1 if the ith species from A interacts with the jth species from B and
Mi,j = 0 otherwise. For weighted networks, Mi,j is set to the interaction strength between species
i and species j (Fig. 9a,b, 10c,d).
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(a) (b)

(c) (d)

Figure 9: Two well studied binary network structures, shown with the matrix representation (a, b) and with the
network representation (c, d). From Fig. 1 in Fontaine et al. (2011). (a, c): A perfectly nested bipartite interaction
network. Species with few interactions interact with a subset of the interacting partners of the more generalist species.
(b, d): A modular bipartite interaction network, displaying 3 modules.

Describing bipartite network structures. Summary statistics are once again a useful tool to
be able to compare different ecological networks and find what common properties they share with
each other. I will describe here those that are the more often looked at in the literature, how they
are distributed in empirical networks, and how modeling studies have allowed to better understand
why they do so (Fig. 10).

Connectance.— The connectance C of a network is defined as the realized proportion of all
possible links. It is one of the simplest summary statistic that can be extracted for a network. For
a bipartite interaction network, C = |E|

|A||B| . It is closely linked to the link density, which is defined

for a given guild as the mean number of link per species (i.e. |E||A| for guild A).
In empirical networks, the connectance is generally low and decreases as a power of network

size (Briand, 1983; Schoenly et al., 1991; Santamaría and Rodríguez-Gironés, 2007; Fortuna et al.,
2010; Canard et al., 2012). For a given network size, it is generally higher for mutualistic than for
antagonistic networks (Fig. 11a ; Thébault and Fontaine, 2010).
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Node degree distribution.— The number of links connected to a node is called the degree of
this node. In complex networks of various nature, such as scientific collaboration networks, social
networks, and chemical-reaction networks, the distribution of node degree (Fig. 10b) is often scale-
free (meaning that it decays as a power law, i.e P (k) ∼ k−γ , where P (k) is the probability that
a node has at least degree k, and γ is a positive constant; Barabási and Albert, 1999). Amaral
et al. (2000) showed that it could also fall into one of the two other following categories: broad-scale
(i.e. decaying as a truncated power law) or single-scale (i.e. with a fast decaying tail, such as the
exponential or gaussian distributions).

The pervasiveness of the scale-free distribution across network types suggests that there is some-
thing in common in the way large networks assemble. It can be obtained from the preferential
attachment random graph model. In this model, networks are constructed by starting with a small
number of nodes m0 and sequentially adding new nodes, that are connected to m ≤ m0 existing
ones. The nodes to which the new one is attached are selected with a probability that is proportional
to the current nodes degrees (Barabási and Albert, 1999).

Most bipartite ecological networks have broad-scale – or truncated power law – node degree
distributions (Jordano et al., 2003; Montoya et al., 2006). Incompatible biological attributes of
species result in forbidden links, and those constraints on the attribution of new links may be the
reason for the departure from the scale-free topology, preventing the ‘rich gets richer’ dynamics
in this context (Montoya et al., 2006). In their data, Jordano et al. (2003), found that 80% of
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Figure 10: Different representations of a quantitative bipartite interaction network, obtained by sim-
ulation from the interaction model in chapter 3. (a): Graph representation of the network. A link is drawn
between two species if they interact together. The link’s shade of gray indicates the interaction strength, with light
gray for weak interactions and dark gray for strong interaction. (b): Log-log plot of the cumulative node degree
distribution for each of the two guilds. (c): Matrix representation of the network in (a), with species ordered to
highlight the network’s nested structure. (d): Matrix representation of the same network, with species ordered to
highlight the network’s modular structure.
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the unobserved interaction could indeed be explained by uncoupling in either species phenology,
size restriction or structural constraints. Alternative explanations for the presence of a cutoff in
ecological networks node degree distribution involve asymmetrical species interaction frequencies
(Vázquez, 2005) or finite size artifacts (Jordano et al., 2003; Keitt and Stanley, 1998).

Nestedness.— A network is said to be nested when species with few partners are interacting
with a subset of the partners of the more generalist species. It also means that specialist species
from one guild tend to interact more with generalist species from the other guild (Fig. 9a,c, 10c).

Many measure of nestedness have been proposed in the literature (for a review of existing metrics,
see Ulrich et al., 2009). Among the most commonly used are the temperature metric (Atmar and
Patterson, 1993), that measures the number of unexpected presence or absence of links around an
isocline of perfect nestedness, and the NODF metrics (for Nestedness metric based on Overlap and
Decreasing Fill, Almeida-Neto et al., 2008), based on the interaction overlap between pairs of species
with decreasing interaction number. This last measure was extended to be applied to quantitative
networks (the wNODF metric, Almeida-Neto and Ulrich, 2011).

Whatever metric is being used, the absolute value of the nestedness is dependent on the number
of species in the network as well as on its connectance. To be able to compare nestedness for
networks with different size and fill, it is thus recommended to standardize the rough value by
using a null model of network organization. This is often summarized with the Z-value, defined as
Z = Nobs−E(Nnull)√

var(Nnull)
which would be distributed as a standard normal distribution were the interaction

matrix generated with the null model, and thus gives a measure of how much (and in which direction)
the observed value deviates from the null model. The choice of the null model depends on what
is expected to constrain the system (Gotelli and Ulrich, 2012). A common choice is to generate
matrices of the same size as the empirical one, with an interaction probability that is equal to the
matrix connectance C for all species pairs (conditioned to the fact that each species have at least
one interaction Bascompte et al., 2003). Another choice is to take the probability of two species
interacting to be proportional to the product of the interaction degree of the two species, with or
without also controlling for the network connectance (Vázquez, 2005; Thébault and Fontaine, 2010).
Finally, the observation that empirical network connectance may be due to the high asymmetry in
species abundance distribution led to propose a null model in which the probability of two species
interacting together is proportional to the product of their abundances (Moore and Swihart, 2007;
Blüthgen et al., 2008; Nuismer et al., 2013).

Empirical bipartite mutualistic networks are generally nested (Fig. 11b ; Bascompte et al.,
2003; Thébault and Fontaine, 2010). They usually display higher nestedness values than antagonistic
networks, even though these also occasionally display significant nestedness (Bascompte et al., 2003;
Vázquez et al., 2005). Multiple explanations have been proposed for this pattern, which fall in three
categories. For the first family of explanations, the high nestedness values in empirical network
reflects the fact that communities that are assembled at random generally beget unstable ecological
dynamics (May, 1972). In randomly assembled mutualistic networks, preferential extinction leads to
increased nestedness values (Thébault and Fontaine, 2010). Similarly, nested mutualistic networks
are stable – in the sense that they allow the coexistence of all species – for a larger range of
ecological parameters – interaction and competition strength, growth and death rate – than their
non nested counterparts (Rohr et al., 2014; Saavedra et al., 2016). The second family of explanations
considers that this high level network structure stems from species level interaction rules, that are
mediated by individual traits. Because not all species are able to interact together, the presence
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(a) (b)

Figure 11: Network metrics patterns in empirical bipartite networks. Adapted from Fig. 3 in Thébault and
Fontaine (2010). Data for antagonistic networks are shown in black, while those for mutualistic networks are shown
in red. (a): Network connectance as a function of network size, displayed on a log-log scale. For both interaction
types, connectance decreases as a power of network size. For a given network size, the connectance is lower in
mutualistic communities (red dots and line) than in antagonistic communities (black dots and line). (b): Modularity
and nestedness values in empirical communities. Antagonistic communities (in red) are more modular and less nested
than mutualistic communities (in black).

of forbidden links determines the structure of the network (Jordano et al., 2003). Species level
interaction rules can lead to a nested network structure whether interactions are controlled by trait
matching (e.g. phenology, color preferences) or trait differences (e.g. insect proboscis / flower
corolla lengths) mechanisms, especially if there is a phylogenetic signal in those traits (Santamaría
and Rodríguez-Gironés, 2007; Rezende et al., 2007). The last family of hypotheses supports the idea
that nested network structures come from the highly asymmetric species abundance distributions
observed in natural communities. If individuals interact at random with one another, following
a neutral scenario, it is unlikely to observe interactions between two rare species (suggesting the
concept of neutral forbidden links Canard et al., 2012). Individuals from rare specialist species are
more likely to meet and interact with individuals from abundant generalist species (Vázquez, 2005;
Santamaría and Rodríguez-Gironés, 2007; Krishna et al., 2008; Vázquez et al., 2009; Coelho and
Rangel, 2018). This idea is supported by the fact that, although binary interaction networks are
nested, the signal is not as strong when interaction strengths are corrected by abundances to get
information about species preferences (Staniczenko et al., 2013). Yet the fact that generalist species
are also the most abundant does not necessarily imply that generalism is explained by abundance
(although there is some empirical evidence for the relationship going this way, see Fort et al., 2016),
and the reverse may be true (Santamaría and Rodríguez-Gironés, 2007; Fontaine, 2013).
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Modularity.— Complementary to nestedness, the modularity structure of ecological networks
has been well studied in empirical data. A module is a group of species that are more strongly
connected with each other than with other species in the network (Fig. 9b). The propensity of the
network to display modules is called its modularity (Fig. 10d). A common metric used to measure
it in ecological communities was introduced by Barber (2007) for binary networks, and extended to
weighted networks by Newman (2004). It is defined as

Q =
1

2m

∑
i,j

(Aij −Kij)δ(ci, cj) (5)

where A is the interaction matrix, m =
∑

i,j Aij, δ(ci, cj) = 1 if species i and j belong to the
same networks and δ(ci, cj) = 0 if they do not, and K is the matrix of expected interaction weights
under a given null model – which equals the interaction probabilities for binary networks. The
modularity of the network is the maximum value of Q over all possible modules decompositions.
Several algorithms exist to perform the maximization (Barber, 2007; Dormann and Strauss, 2014).

Modularity has been found in a great variety of ecological interaction networks, like food webs
(Krause et al., 2003) or pollination networks (Olesen et al., 2007). When looking at bipartite
interactions, antagonistic networks generally show a clearer modularity signature than mutualistic
ones (Fig. 11b ; Thébault and Fontaine, 2010; Fontaine et al., 2011).

Combining phylogenetical and network information : phylogenetic signal in interaction
partners. For interactions that are mediated by traits, closely related species are expected to
interact with similar interaction partners if those traits display phylogenetic signal – the fact that
closely related species tend to display similar trait values. A phylogenetic signal in interaction
partners identity has been proposed as an explanatory factor for the nested structure of bipartite
networks (Rezende et al., 2007), and can be measured through different techniques. Ives and
Godfray (2006) modeled the interaction probability between a consumer and a prey species as being
proportional to the product of a consumer traitX and a prey trait Y , and measured the phylogenetic
signal in X and Y . Yet because increasing the trait value for one species increases its interaction
probability with all species from the other guild indifferently, their metric is more a measure of
phylogenetic signal in number of partners than in partner identity. For modular networks, another
way is to first assign species to modules and assess whether the phylogeny explains module affiliation
(Gómez et al., 2010), for instance using the metric from Maddison and Slatkin (1991). Finally,
phylogenetic signal in interaction partners can also be assessed by using a Mantel test (Mantel,
1967). This test, that has been used in many empirical studies (see for instance Bersier and Kehrli,
2008; Elias et al., 2013; Fontaine and Thébault, 2015), relies on the comparison of two matrices
of distances between species, one of them being the phylogenetic distance matrix and the second
one a measure of distance of interaction partner sets. The correlation between those two distances
is compared to those obtained from permutations of one of those matrix rows and columns, which
allows to assess its significance.

In empirical data, ecological interactions have been shown to be generally conserved across the
tree of life (Gilbert and Webb, 2007; Bersier and Kehrli, 2008; Gómez et al., 2010). For bipartite
communities, the signal depends on the interaction type and is stronger in antagonistic communities
than in mutualistic ones (Fontaine and Thébault, 2015). Within antagonistic networks, conservatism
is stronger for resource species than for consumer species (Cagnolo et al., 2011; Elias et al., 2013;
Fontaine and Thébault, 2015). This is also the case for food webs (Bersier and Kehrli, 2008), and
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could be explained by a strong selection for related consumers to shift resource because of com-
petition. Within plant pollinator networks, animal species tend to display a stronger phylogenetic
signal in interaction partners than plant, although the difference is much lower than between con-
sumer and resource species in antagonistic networks (Fontaine and Thébault, 2015). Those results
generally show that ecological interactions are constrained by evolutionary processes and call for the
integration of both ecological and evolutionary processes when studying interacting communities.

Very few modeling studies are looking at the simultaneous emergence of phylogenies and net-
work structures. An exception is Poisot and Stouffer (2016). They proposed a lineage-based model
in which new species inherits the interactions of its parent species, but may lose some of them.
Yet, even though they assume an effect of phylogenetic relationships on the ecological interactions’
structure, speciation rates are taken to be homogeneous in each group and independent of the num-
ber or identity of the species interactors. In Chapter 3, we propose an individual-based model with
two interacting guilds, that generates both ecological (e.g. network structures, species abundance
distributions) and evolutionary (e.g. phylogenies, trait distributions) patterns, with the possibility
of reciprocal interactions of ecological and evolutionary processes on each other.

4 Thesis outline.
In this PhD thesis, I focus on three different approaches to the study of diversification patterns,

each based on a stochastic model. In Chapter 1, I present a new metric for the description of
phylogenetic tree shape, and more precisely the age-richness relationship within a single tree (see
subsection 1.2). While this approach is not explicitly referring to the diversification process, the
expected value of our new metric under an homogeneous speciation model is well known, and
inferring its value on an empirical dataset of family level bird phylogenies highlights how they differ
in their shape from diversification models expectations.

Chapter 2 handles more directly the issue of within clade diversification rate variations, by
proposing a new method to infer heterogeneous diversification rates on a phylogeny. The underling
model is a lineage-centered model based on the birth-death model, but in which newborn lineages
are attributed their own speciation rates, sampled from a distribution that depends on the rates of
their parent lineage. We develop a procedure to infer the model’s parameter, enabling to quantify
rate heritability on a phylogeny and measure branch specific speciation rates. Applying it to bird
family-level phylogenies brings out the fact that within-clade rate variations are the same order of
magnitude that between-clades variations, justifying the use of this type of model for this dataset.

Finally, Chapter 3 examines one of the possible causes for diversification rates variations through
the incorporation of ecological interactions in the evolutionary process. We consider an individual-
based model of two interacting guilds, and study how the variations in the interaction type and
strength impact the final diversity of the system, as well as the final community structure. We
show that simple evolutionary mechanisms suffice to obtain differences in network structure between
antagonistic and mutualistic communities that qualitatively match those observed in empirical data.
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Chapter 1 : A new index for the clade age-richness relationship
Characterizing the shape of empirical phylogenies allows to highlight the ways in which they

differ from models expectations, without needing to have previous expectation on the processes that
may have led to this divergence. This is for example the case with imbalance, that is higher in data
than expected under homogeneous speciation models. Another expectation of homogeneous rates
diversification models is that clade size is positively related to clade age. This relationship have
been looked for in empirical studies, and a positive correlation was rarely found. However, classical
approaches imply computing the correlation between age and size for a set of clades, which may
be obtained by pruning them for a larger scale tree. This necessitates to define which subclades
are to be included in the analysis, and the results are sensible to this choice as well as to whether
clade age is computed as the stem or the root age. In this chapter, we present a new metric for
the clade age-richness relationship that can be computed at the level of one phylogeny by looking
at its relative node order. This metric is based on an extension of Aldous’s one parameter β-
splitting model. We added a novel parameter, α, that controls for the order in which the splits
happen. The pair (β, α) characterize the ranked tree shape – tree shape with ordered node depth
–, with (β, α) = (0, 1) generating the same distribution on ranked tree shape than the birth-death
model. We also consider an additional third parameter, η, quantifying the relation between relative
abundance – or any other tip data summing to 1 for the whole tree – and richness of subclades, here
taken as a proxi for extinction risks. We study the effect of our model’s parameter on the loss of
Phylogenetic Diversity (PD, the sum of the branch lengths of a clade) during an extinction crisis.
This enables to highlight a parameter zone for which PD loss is more rapid than species loss, that
we term the ‘danger zone’. We develop an inference procedure for our model parameter and apply
it to a data set of 120 family level bird phylogenies, with range sizes as tip data. Consistently with
previous studies, we find that β values cluster around −1, highlighting the higher than expected
imbalance in tree shapes. The inferred α values show that small subclades tend to be deeper in
the tree than in a birth-death model in bird family phylogenies, which ca reflect past variations
in diversification rates during the evolutionary history of birds. The inferred η values show that
species with small range size tend to cluster in small subclades, possibly due to resource limitation
affecting both the density of individuals and the species number. The combination of parameters
found in the birds dataset show that bird phylogenies fall very close to the danger zone, making
they prone to important losses of PD.

This chapter is a work that was initiated during my master thesis with Amaury Lambert and
Fanny Gascuel, and was subsequently developed and finished during this PhD. It is now published
in Systematic Biology (Maliet et al., 2018).
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Abstract.—Phylogenetic diversity (PD) is a measure of the evolutionary legacy of a group of species, which can be used to
define conservation priorities. It has been shown that an important loss of species diversity can sometimes lead to a much less
important loss of PD, depending on the topology of the species tree and on the distribution of its branch lengths. However,
the rate of decrease of PD strongly depends on the relative depths of the nodes in the tree and on the order in which species
become extinct. We introduce a new, sampling-consistent, three-parameter model generating random trees with covarying
topology, clades relative depths, and clades relative extinction risks. This model can be seen as an extension to Aldous’
one parameter splitting model (�, which controls for tree balance) with two additional parameters: a new parameter �
quantifying the relation between age and richness of subclades, and a parameter � quantifying the relation between relative
abundance and richness of subclades, taken herein as a proxy for overall extinction risk. We show on simulated phylogenies
that loss of PD depends on the combined effect of all three parameters, �, �, and �. In particular, PD may decrease as fast
as species diversity when high extinction risks are clustered within small, old clades, corresponding to a parameter range
that we term the “danger zone” (�<−1 or �<0; �>1). Besides, when high extinction risks are clustered within large clades,
the loss of PD can be higher in trees that are more balanced (�>0), in contrast to the predictions of earlier studies based on
simpler models. We propose a Monte-Carlo algorithm, tested on simulated data, to infer all three parameters. Applying it to
a real data set comprising 120 bird clades (class Aves) with known range sizes, we show that parameter estimates precisely
fall close to the danger zone: the combination of their ranking tree shape and nonrandom extinctions risks makes them
prone to a sudden collapse of PD. [Beta-splitting model; biodiversity; broken stick; field of bullets model; macroevolution;
phylogenetic tree; rarefaction; sampling distribution; self-similar fragmentation]

As it becomes increasingly clear that human activities
are causing a major extinction crisis (Leakey and
Lewin, 1995; Glavin, 2007; Wake and Vredenburg, 2008;
Barnosky et al., 2011), several theoretical studies have
aimed at characterizing how the evolutionary legacy
of parts of the tree-of-life, and hence also the genetic
diversity able to drive future evolution, will decrease in
the face of forthcoming extinctions. This evolutionary
component of biodiversity can be measured by the
phylogenetic diversity (PD), defined as the sum of the
branch lengths of the phylogeny spanned by a given
set of taxa (Faith, 1992). This metric is increasingly
being used to measure biodiversity and to identify
conservation strategies (Veron et al., 2015).

Nee and May (1997) were the first to formally
investigate the expected loss of PD in the face of
species extinctions, by simulating species trees using the
Kingman coalescent. They found that 80% of the PD
can be conserved even when 95% of species are lost.
Further studies showed that the loss of PD is in fact
much higher when trees are generated through other
models of species diversification, such as the Yule or
the birth–death models (Morlon et al., 2011b; Mooers et
al., 2012; Lambert and Steel, 2013). These models indeed
generate longer pendant edges (i.e., branches that lead to
the tips), hence lower phylogenetic redundancy, than in
the standard Kingman coalescent (used by Nee and May,
1997). However, Nee and May (1997) also showed that

PD is very sensitive to the shape of the species tree (also
called its “topology”), with extremely unbalanced trees
(“caterpilar trees”) losing much more PD than balanced
trees (“bush trees”), due to a lack of phylogenetic
redundancy (i.e., the presence of recently diverged sister
species). Overall, these results highlighted the sensitivity
of the loss of PD in response to species extinctions to both
edge lengths and tree shape.

In this line, we also expect the correlation between
the species richness of clades and their relative ages
to have a significant impact on the loss of PD (“clade”
standing here for any subtree within the full phylogeny).
Here the age of a clade, also called “stem age,” denotes
the depth (measured from the present) of its root node
(i.e., the node where this clade is tied to the rest of the
tree). Under random extinction, since smaller clades are
more likely to become extinct first, the consequence of
their total extinction on PD will depend on the lengths
of pendant edges in these clades compared to those in
larger clades. Under models with diversification rates
that are constant through time and homogeneous across
lineages, the time for speciation hypothesis states that
the size of clades is correlated to their age (Magallon and
Sanderson, 2001), yet several empirical studies found no
correlation between the two (Ricklefs 2007; Rabosky et
al. 2012; Sánchez-Reyes et al. 2016; but see McPeek and
Brown 2007). The effect of such correlation on the loss of
PD has not yet been explored, but should be particularly
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important in unbalanced phylogenetic trees (exhibiting
large variation in the species richness of clades), which
dominate empirical data (e.g., Guyer and Slowinski,
1991; Heard, 1992; Guyer and Slowinski, 1993; Slowinski
and Guyer, 1993; Mooers, 1995; Purvis, 1996; Mooers and
Heard, 1997; Blum and François, 2006).

Besides, the loss of PD was shown to be influenced
by the distribution of extinction risks within species
trees. Several studies showed that accounting for realistic
scenarios of species extinctions (considering that species
with higher extinction risk as per the International Union
for Conservation of Nature (IUCN) Red List status are
more likely to go extinct first) predicts proportionately
higher losses in PD than scenarios with random
extinction risks (e.g., and review, Purvis et al., 2000a; von
Euler, 2001; Purvis, 2008; Veron et al., 2015). Extinctions
may for example be clustered within certain clades
(Bennett and Owens, 1997; McKinney, 1997; Russell et
al., 1998; Purvis et al., 2000a; Baillie et al., 2004; Bielby et
al., 2006; Fritz and Purvis, 2010), correlated to the age of
clades (von Euler, 2001; Johnson et al., 2002; Redding and
Mooers, 2006), to the species richness of clades (Russell
et al., 1998; Hughes, 1999; Purvis et al., 2000a; Schwartz
and Simberloff, 2001; von Euler, 2001; Johnson et al.,
2002; Lozano and Schwartz, 2005; Vamosi and Wilson,
2008, assuming in some studies a correlation between
rarity and extinction risks), or to speciation rates (Heard
and Mooers, 2000). In contrast, most of the theoretical
analyses of predictions based on model trees (Nee and
May, 1997; Mooers et al., 2012; Lambert and Steel,
2013) have all been based so far on the field of bullets
model, which considers equal extinction probabilities
across species (Raup et al., 1973; Van Valen, 1976; Nee
and May, 1997; Vazquez and Gittleman, 1998; but see
Heard and Mooers 2000). One can assume extinction
events are independent but not identically distributed
across species, as considered in the generalized field of
bullets model (Faller et al., 2008). In an exchangeable
phylogenetic model in which extinction probabilities
are themselves random and independent with the same
distribution, this would not affect the overall loss of PD
(as both models are stochastically equivalent, Lambert
and Steel, 2013). However, as stated by Faller et al. (2008),
it is essential to explore models that weaken the strong
assumption in the (generalized) field of bullets models
that extinction events are randomly and independently
distributed among the tips of phylogenetic trees.

Here, we hence investigate how the loss of PD is
influenced by the two abovementioned factors: (i) the
ranked shape of the species tree, characterized by the
relation between the richness of clades and their age
or depth in the tree and (ii) nonrandom extinctions,
characterized by the relation between the richness of
clades and the extinction risks within them. Here,
“ranked shape” refers to the shape of the tree combined
with the additional knowledge of relative depths—the
order in which nodes appear in the tree, but to the
exclusion of the actual divergence times (e.g., Lambert
et al., 2017).

We introduce a three-parameter model generating
random ranked tree shapes endowed with random
numbers summing to one at the tips, interpreted
as relative abundances (or geographic ranges) of
contemporary species. This model can be seen as an
extension to Aldous’ �-splitting model (Aldous, 1996,
2001) with two additional parameters: a parameter �
quantifying the relation between the richness of a clade
and its relative age (i.e., the rank of appearance of its
root node) termed “age-richness index” hereafter, and
another parameter � quantifying the relation between
the richness of a clade and its relative abundance or
frequency (i.e., the sum of abundances of the species it
encompasses divided by the sum of abundances of all
extant species in the phylogeny), termed “abundance-
richness index” hereafter. When �=0 and �=1, the
ranked shape of the tree is the same as the ranked
shape of a standard coalescent tree or of a Yule
tree stopped at a fixed time (see Proposition 1 in
Supplementary Appendix S1 available on Dryad). We
further assume that extinctions of contemporary species
occur sequentially in the order of their abundances,
starting with the least abundant species, which roughly
reduces to the field of bullets model when �=1 (see
Proposition 2 in Supplementary Appendix S1 available
on Dryad).

The parameters of the model are not supposed to
map onto biological processes. Our aim is to produce
and describe a broad range of ranked tree shapes and
extinction risk distributions. The model nevertheless
reflects relevant biological patterns. The imbalance
and node order of phylogenies may be affected by
diversification rates varying with time (Rabosky and
Lovette, 2008b; Moen and Morlon, 2014), with species
age (Doran et al., 2006; Hagen et al., 2015; Alexander
et al., 2015), or among lineages (Cardillo et al., 2005;
Maddison et al., 2007; Alfaro et al., 2009; Morlon et al.,
2011a). Extinction risk may cluster within the phylogeny
if it is correlated with some species characteristic, such
as body size (Gaston and Blackburn, 1995; Johnson et al.,
2002) or habitat use (Johnson et al., 2002). Finally, tree
imbalance, node order and extinction risk clustering are
likely to interact if differences in diversification rates and
extinction risks are driven by the same trait, or are the
result of a common process (e.g., geographic speciation,
Pigot et al. 2010).

We explore the rate of decrease of PD as species
sequentially become extinct, based on simulated data
under variation in all three parameters over a significant
range of their possible values. Interestingly, the joint
variation of the parameter � with the ranked shape
of species trees (set by parameters � and �) affects
the clustering of extinction risks and the relationship
between extinction risks and clade age (determined
by the similarity or dissimilarity of the direction of
deviations of � and � from 1). Therefore, considering
simultaneous variation in �, �, and � allows us to
explore the effects on the loss of PD of the different
patterns of nonrandom extinctions observed in empirical
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FIGURE 1. Illustration of the model generating ranked tree shapes. Construction of the ranked shape of a tree containing N =5 species. (1)
Five random marks (Ui)i∈{1,...,5} are drawn uniformly in the interval [0,1] (the marks on the bottom line). (2) At each time step (time flowing
downwards), we randomly select one interval X, with each interval Xj having a weight |Xj|� (in black). Then, we draw a random variable R
in a beta distribution with parameters (�+1, �+1), and split the selected interval X into two subintervals, Xleft of size R|X| and Xright of size
(1−R)|X| (dark red mark). (3) Repeating this process over time until all intervals Xj contain only one mark leads a tree with a ranked shape.
Dotted branches correspond to unsampled subtrees (i.e., there is no mark in the corresponding interval).

data. We therefore provide general predictions on
the sensitivity of the evolutionary legacy of clades
to extinction, as a function of three simple statistics
summarizing tree balance, ranked tree shape and the
distribution of extinction risks across clades.

Following this exploration, we then propose a Monte-
Carlo inference algorithm enabling maximum likelihood
estimation of the parameters �, �, and � from real
data sets. When tested against simulated data, this
algorithm performs reasonably well over a wide range of
parameter values for phylogenies with 50 tips or more.
The estimates of parameters (beta, alpha, eta) on a real
data set of bird family phylogenies and their range size
distributions finally reveal empirical patterns clustered
within a given parameter zone which make these clades
particularly prone to strong loss of PD.

MATERIALS AND METHODS

Modeling Ranked Tree Shapes
The first version of the model we present allows one to

generate random ranked tree shapes, that is tree shapes
endowed with the additional knowledge of node ranks.
Usually, one can generate random ranked tree shapes by
time-continuous branching processes stopped at some
fixed or random time, where particles are endowed with
a heritable trait influencing birth and death rates. In
these models, it is generally not possible to characterize
the distribution of the tree shape (for an exception,
see Sainudiin and Véber, 2016) or to relate it to known
distributions whenever it does not have the shape of the
Yule tree (i.e., the tree generated by a pure-birth process).
Also, since the same trait is usually responsible for both
the tree shape and the order of nodes, it is impossible
to disentangle the roles of either of these characteristics
on the behavior of the tree in the face of current
extinctions. Last, these models do not fulfill a very

important property called sampling consistency (usually
considered in combination with exchangeability,
i.e., ecological equivalence between species). This
property ensures that one can equivalently draw a
random tree with n tips from the distribution or draw a
tree with n+1 tips and then remove one tip at random.

The model we propose here has two parameters: �∈
(−2,+∞) (tree balance index) determines the balance
of the tree, similarly as in Aldous’ �-splitting model
(Aldous, 1996, 2001), and �∈ (−∞,+∞) (age-richness
index) sets the relation between the species richness of a
clade and its relative age (Fig. 2).

The construction of a tree according to this model
is done by following the steps indicated hereunder
(illustrated on Fig. 1). We start with n uniform,
independent random variables (Ui)i∈{1,...,n} in the
interval [0,1]. For each i, the mark Ui is associated to
the tip species labeled i in the phylogeny. The procedure
consists in sequentially partitioning [0,1] into a finite
subdivision thanks to random variables independent of
the marks (Ui)i∈{1,...,n}, until all marks are in distinct
components of the partition. At each step, the new point
added to the subdivision corresponds to a split event in
the tree. In the beginning, there is only one component
in the partition (the interval [0,1] itself).

1. Each interval X of the partition containing at least
two marks among the (Ui)i∈{1,...,n} is given a weight
equal to |X|�, where |X| denotes the width of the
interval X. One of these intervals is selected with
a probability proportional to its weight.

2. Draw a random variable R in a Beta distribution
with parameters (�+1,�+1). The selected interval
X of width |X| is then split into two disjoint
subintervals, Xleft and Xright, with widths |Xleft|=
R|X| and |Xright|= (1−R)|X|. Each subinterval
contains a distinct subset of the marks. The
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FIGURE 2. Phylogenetic trees simulated for different values of � (tree
balance) and � (age-richness index). Node depths are set as in a Yule
pure-birth process. Parameter values: �=−1.5 (bottom) or 10 (top),
�=−10 (left) or 10 (right), number of species N =30, approximation
parameter (see Supplementary Appendix S1 available on Dryad) ε=
0.001.

marks in the subinterval Xleft determine the tips
in the left subtree of the phylogeny, and the
marks in the subinterval Xright determine the
tips in the right subtree. This step is performed
even if one subinterval contains no mark among
the (Ui)i∈{1,...,n}, which corresponds to a subtree
with no sampled species (i.e., species which are
seen in the phylogeny). The order in which the
splitting subintervals are selected sets the order of
branching events (i.e., nodes) in the tree.

3. If no interval contains more than one mark, the
process is stopped. Otherwise, go to Step 1.

We can relate the tree shape in this model to well-
known distributions. Because � has no impact on the way
we refine the subdivision, the tree shape generated with
our model coincides exactly with the tree shape obtained
in Aldous’ �-splitting model (Aldous, 1996, 2001) with
the same parameter �. For small values of �, the intervals
are often split close to one of their extremities, and the
resulting tree is unbalanced, converging to the perfectly
unbalanced “caterpilar” tree as �→−2. On the contrary,
for large values of �, the intervals are often split close to
their middle, and the resulting tree is balanced. We stress
that unlike most models, � can be tuned independently
of �, allowing node ranks to vary while keeping the same
tree shape. For small values of � (in particular �<0),
the smallest subintervals have a higher probability of
being selected, so smaller clades tend to be older. On the
contrary, for large values of �, the largest subintervals
have a higher probability of being selected, so smaller
clades tend to be younger. We notice that as � gets close
to −2 the effect of � vanishes, since most of the time
there is only one subinterval containing more than one
mark, so only one subinterval to split. In maximally
unbalanced tree shape (�=−2), there is only one ranked

tree shape and the order of nodes is fixed, so � plays no
role.

As is well-known, the tree obtained with �=0 has the
same shape has the tree generated with the Yule process
(Yule, 1925) or the Kingman coalescent (Kingman, 1982)
after ignoring node ranks (Nee, 2006; Lambert and
Stadler, 2013). When �=1 in addition to �=0, we show
in Supplementary Appendix S1 (Proposition 1) available
on Dryad at http://dx.doi.org/10.5061/dryad.mv980,
that our model generates the same tree shape with node
ranks as Yule trees, which is actually known to be the
same as the ranked tree shape of the Kingman coalescent
tree.

The version of the model we present here only allows
simulation of trees with �>−1, as the beta distribution
is only defined for positive parameter values. Actually,
our model coincides with the ranked tree in a self-similar,
binary fragmentation with self-similarity index � (which
is the very age-richness index �) and with fragmentation
measure

∫ 1
0 �(x,1−x,0,0,...)x�+1(1−x)�+1dx (as defined in

Bertoin, 2002, 2006), which makes sense as soon as
�>−2. In Supplementary Appendix S1 (Proposition 3)
available on Dryad, we present an algorithm based on
fragmentation processes equivalent to that presented
above (using one additional approximation parameter
ε, the maximal frequency of unsampled clades with
insignificant richness, consistently set to 0.001). Albeit
less intuitive, this method allows us to simulate trees for
all �>−2.

Last, it is important to notice that our model
is both exchangeable and sampling consistent. It is
exchangeable because labels can be swapped without
changing the distribution of the tree, since marks all
have the same distribution. It is sampling consistent
because removing tip labeled n+1 (or any other tip,
by exchangeability) amounts to removing mark Un+1,
which does not modify the ranked tree shape obtained
from marks (Ui)i∈{1,...,n}.

Incorporating Nonrandom Extinctions
In order to parametrize the relation between the

richness of a clade and its relative abundance, we
now add to the model a new parameter �≥0 called
“abundance-richness index.” Each time an interval X is
split into two subintervals, Xleft and Xright with widths
|Xleft|=R|X| and |Xright|= (1−R)|X|, each of the two
subtrees is granted a part of the relative abundance AX
of the parental clade equal to

AXleft =
|Xleft|�

|Xleft|�+|Xright|� AX = R�

R�+(1−R)�
AX

AXright =
|Xright|�

|Xleft|�+|Xright|� AX = (1−R)�

R�+(1−R)�
AX .

This way of allocating frequencies to taxa is reminiscent
of the “broken stick model” (MacArthur, 1957;
MacArthur and Wilson, 1967; Colwell and Lees, 2000),
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FIGURE 3. Distribution of species frequencies across the tips of phylogenetic trees for different values of abundance-richness index �. Dot
sizes sort species according to their frequency (larger dots for more abundant species). Parameter values: �=0.2, 1, or 3 (from left to right),
�=0, �=0, number of species N =30, approximation parameter ε=0.001. Results with �=−1.9 are shown in the Supplementary Appendix S1
available on Dryad.

where the unit interval is broken into subintervals
each representing the frequency or resource share of
each species or clade in the community, even though
in our case the allocation of relative abundances has
no mechanistic interpretation. This is usually done by
throwing uniform points independently in the interval
or by throwing the points sequentially, always to the
right of the last one, leading to the Poisson–Dirichlet
distribution appearing in mathematical population
genetics (Feng, 2010; Ewens, 2012) as well as in the neutral
theory of biodiversity (Hubbell, 2001).

The model remains sampling-consistent insofar as
each AX is interpreted as the relative abundance of an
entire clade, that is the sum of relative abundances of all
species, sampled or not (seen or not in the phylogeny),
belonging to this clade. Sampling consistency now
means that generating a ranked tree shape with relative
abundances on n tips is equivalent to the following
process: generate a ranked tree shape with relative
abundances on n+1 tips, remove one tip at random and
sum the abundance of the removed tip to that of its sister
clade (i.e., the clade descending from the interior node
connected to the removed tip by a pendant edge).

In the extinction numerical experiment, we determine
the order of species extinctions deterministically based
on their abundance: rarest species become extinct first,
whereas most abundant species become extinct last.
The distribution of relative abundances across species
is captured in the abundance-richness index � (Fig. 3
and in the Supplementary Appendix S1 available on
Dryad): when �=1, all tip species have the same relative
abundance in expectation ( 1

n ), such that the correlation
between the relative abundance of a clade and its
richness would also be close to 1.0. When we simulate
extinction with �=1, all species have an approximately
equal chance of being removed, and we approach a field
of bullets model (see Proposition 2 in Supplementary

Appendix S1 available on Dryad; in the case �=−1, the
equivalence is exact). For �>1, species in larger clades
have larger abundances on average (and thus lower
extinction risks), and for �<1, species in larger clades
have smaller abundances (and thus higher extinction
risks) on average. This modeling approach allows us
to tune the sign and strength of the relation between
the richness of a clade and the extinction risk of its tip
species.

Testing the Effect of �, �, and � on PD Loss
The effect of all three model parameters on the

relationship between species loss and PD loss is studied
in a systematic way by simulation. We considered values
of � in (−2,10], values of � in [−3,3] and � in [0.1,3].
Because our model specifies how interior nodes are
ranked in time but not their actual timing, we use a pure-
birth process to generate node depths, adding the latter
on top of ranked tree shapes. The use of another model
for generating node depths leads to qualitatively similar
results, albeit quantitatively different (as an illustration,
we show results with edge lengths set as in the Kingman
coalescent in Supplementary Appendices S4 and S6
available on Dryad).

For each set of parameter values, we generated 100
trees with 100 tips (N =100). We sequentially removed
extinct species from these trees (in the order of increasing
species abundances, as explained earlier), and computed
the remaining PD (sum of all branch lengths; Faith, 1992)
for increasing fractions of extinct species.

Parameter Inference
We inferred the parameters �, �, and/or � from

simulated or empirical data sets by maximum
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likelihood. As is already well-known (Aldous, 1996;
Blum and François, 2006; Lambert et al., 2017), the
likelihood of a labeled tree shape under Aldous’ �-
splitting model is explicit. Since the likelihood of the tree
shape under our model is the same as in Aldous’ model
(and in particular independent of � and �), we can use
it to estimate �. In contrast, computing the likelihood of
the ranked tree shape requires to follow through time
the lengths of all intervals of the partition containing
marks, which may decrease without separating marks
(unsampled species). Given that the likelihood of the
ranked tree (with or without tip abundances) with the
additional knowledge of interval lengths is explicit, we
use a Monte-Carlo data augmentation procedure, in
which the augmentation data are the numbers and sizes
of unsampled splits on each branch (which allow us
to reconstruct the interval lengths through time). The
likelihood of the ranked tree with tip abundances is
then computed by averaging over augmentations and is
optimized over possible values of (�,�).

We first tested our ability to infer the model parameters
on simulated trees. To do so we simulated trees with
20, 50 and 100 tips for all possible combinations of � in
{−1,0,1,2}, � in {−1,0,1} and � in {0.2,0.5,1,1.5,2}. For
each tree size and parameter combination, we simulated
20 trees with tip abundances, for a total number of 3600
trees.

We then inferred the model parameters on these
trees and compared them to the values used in the
simulations. The inference of the parameter � was
straightforward, being computed as the maximum
likelihood estimate on the interval [−2,10] with the
function maxlik.betasplit from the R-package
apTreeshape (Bortolussi et al., 2006). The parameters
� and � were estimated with the method introduced
hereabove, with values respectively constrained
in the intervals [−4,4] and [0.1,10]. The value of
ε (approximation parameter, see Supplementary
Appendix S1 available on Dryad) was here again fixed
to 0.001.

After validating the estimation procedure, we applied
it to real bird family trees. We used the Maximum
Clade Credibility (MCC) tree from Jetz et al. (2012), and
pruned it to keep family level phylogenies. We kept only
the phylogenies that included at least 50 species, and
used range sizes from Map of Life (https://mol.org/) as
proxies for relative abundances. The value of ε and the
constraints on parameter ranges were here the same as
in the test on simulated phylogenies.

The model was coded—and the analyses of
phylogenetic trees were performed—using R (R
Development Core Team, 2012) and the R packages
cubature (Johnson and Narasimhan, 2013), ape
(Paradis et al., 2004), sads (Prado et al., 2015),
apTreeshape (Bortolussi et al., 2006), and picante
(Kembel et al., 2014). The code is available in the
R-package apTreeshape (Bortolussi et al., 2006). The
list of available functions is given in Supplementary
Appendix S10 available on Dryad.
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FIGURE 4. Influence of the ranked tree shape (tree balance � and
age-richness index �) on PD loss, for increasing fractions of species
extinctions. Tree balance � changes from 10 (top row, “bush trees”) to
−1.9 (bottom row, “caterpilar trees”). Results are shown either as a
function of the extinction fraction p (left column; for different � values)
or as a function of � (right column; for different extinction fractions p).
Extinction fraction p increases from 0.01 to 0.98 (from left to right in a,
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show the bisector. Results are based on 100 simulation replicates: plain
lines give median values and light areas give 95% confidence intervals.
Other parameter values: number of species N =100, approximation
parameter ε=0.001.

RESULTS

Influence of Ranked Tree Shape on PD Loss
Here we only address the influence of � on PD

loss, assuming a field of bullets model for species
extinctions (�=1). The expected PD loss is then a convex
function of the fraction p of extinct species (as proved
mathematically for any binary tree under the field of
bullets model, see Eq (34) in Lambert and Steel, 2013),
always lying below p (Fig. 4A,C,E,G).
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Consistently with previous studies (Nee and May,
1997; von Euler, 2001) we find that when the relation
between age and richness of clades is similar as that in
Yule trees (�=1), very unbalanced trees (caterpilar-like
trees) lose more PD in the face of species extinctions than
Yule or more balanced trees (Fig. 4G,H vs. A–D, with
�=1). The effect is nonlinear in �: the tree shape has little
influence on the loss of PD when �≥−1, but increases
sharply as � decreases from −1 to −1.9 (results as a
function of� in Supplementary Appendix S2 available on
Dryad). Unbalanced tree shapes are associated with the
presence of long edges leading to evolutionary distinct
species (Fig. 2). These edges constitute an important
fraction of the PD in unbalanced species trees, so that
their extinction generates a significant drop in PD. As
� gets closer to −2 (case of the “caterpilar tree”), the
expected PD loss approaches the fraction of extinct
species (Fig. 4G).

Considering ranked tree shapes shows, however, that
the order of nodes has a significant influence on the loss
of PD, and on the effect of � on this loss. If the age
and richness of clades are positively correlated (�>0),
the loss of PD is reduced, especially at intermediate
extinction fractions (Fig. 4A–F). This is because the
smallest subtrees, more prone to early extinction, are
younger and hence contain a lower fraction of the PD
(Fig. 2). If the age and richness of clades are negatively
correlated (�<0), the loss of PD rises, especially at
intermediate extinction fractions. The smallest subtrees,
prone to extinction, are older and hence contain more
evolutionary distinct species (Fig. 2). This generates
losses of PD similar to those observed when the tree
shapes are very unbalanced (PD loss equal to the fraction
of extinct species).

As expected, the effect of � is evened out in very
unbalanced trees (� close to −2; Fig. 4G,H), for which the
loss of PD remains close to its highest value whatever the
value of �. In the case of the maximally unbalanced tree
shape, there is only one ranked tree shape and the order
of nodes is fixed.

All these effects of ranked tree shapes on the loss
of PD are qualitatively conserved if node depths are
distributed as in the Kingman coalescent (instead of
the Yule process). In the case of Yule trees, PD loss
slightly increases with the initial size of the tree, an
effect which is due to more efficient sampling of large
values in the common (exponential) distribution of node
depths. Yet the results presented above are qualitatively
conserved if the size of phylogenetic trees changes
(analyses performed with number of species N =50 and
N =200; see the Supplementary Appendices 3 and 4
available on Dryad).

Influence of Nonrandom Extinction Risks on PD Loss
The strength of the relation parameterized by �,

between the richness of a clade and its relative
abundance (here directly influencing the extinction risk
of its species) may have a paramount influence on the
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FIGURE 5. Effect of abundance-richness index � on PD loss in
Yule trees, for increasing fractions of species extinctions p. Results
are shown either a) as a function of the extinction fraction p (for
different � values, with dotted lines showing the bisector) or b) as
a function of � (for extinction fractions p increasing from 0.01 to 0.98
from light to dark color). Results are based on 100 simulation replicates:
plain lines give median values and light areas give 95% confidence
intervals. Parameter values: �=0, �=0, number of species N =100,
approximation parameter ε=0.001.

loss of PD in the face of extinctions (Fig. 6). In trees with
ranked tree shapes similar to Yule trees (�=0, �=1), the
concentration of high extinction risks in small clades (�>
1) increases the loss of PD, by promoting the extinction
of entire clades (Fig. 5). In contrast, when extinction risks
are higher in species-richer clades (�<1), phylogenetic
redundancy (and hence the likelihood of conserving at
least one species per subtree) limits the loss of PD until
high extinction levels.

The effect of � is modified by the ranked shape of
species trees. The strength of the age-richness relation
(set by �) modulates the additional loss of PD induced
by �>1 (i.e., lower abundances in smaller clades;
Fig. 6A–F). When �<0, smaller clades are not only more
prone to extinction but also have deeper nodes, hence
more evolutionary distinct species, which increases even
further the loss of PD. Unlike in the field of bullets model,
the expected PD loss as a function of the fraction p of
extinct species can even change from convex to concave,
and so take values larger than p (Fig. 6C,E). When �>0,
smaller clades are more prone to extinction but have
shallower nodes, which counteracts the increase of PD
loss due to �>1. To summarize, PD loss is increased
when �>1 compared to �=1, with a maximal effect
for negative values of �, progressively flattening as �
grows.

We call the “danger zone” the region of parameters
corresponding to the theoretical phylogenies that suffer
a maximal rate of PD loss straight from the first few
extinction events, that is, close to 1% of PD lost for the
first 1% of species lost. In the plane (�,�), the “danger
zone” corresponds to {�<0,�>1}. As testified by Fig. 6,
phylogenies in this zone can even suffer a rate of PD
loss which is larger than 1:1 from the first extinction and
sustains itself above 1:1 throughout the extinction crisis.

In contrast, � has little effect on the decrease in PD
loss induced by �<1 (i.e., higher abundances in small
clades). Indeed, when �<1, the deepest nodes are always
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FIGURE 6. Effect of abundance-richness index � on PD loss, for different ranked tree shapes and increasing fractions of species extinctions.
Tree balance � ranges from 10 (top row, “bush trees”) to −1.9 (bottom row, “caterpilar trees”), and age-richness index � ranges from −2 (A, C,
E, G) to 2 (B, D, F, H). Results are shown either as a function of the extinction fraction p (left side; for different � values, and with dotted lines
showing the bisector) or as a function of � (right side; for extinction fractions p increasing from 0.01 to 0.98 from light to dark color). Results
are based on 100 simulation replicates: plain lines give median values and light areas give 95% confidence intervals. Other parameter values:
number of species N =100, approximation parameter ε=0.001.

protected regardless of the value of �: when �<0 the
deepest nodes are in small clades which are protected
from extinctions by the high relative abundances of its
species (due to �<1); when �>0, the deepest nodes
are in large clades which are protected by phylogenetic
redundancy.

The influence of � on PD loss is amplified by
unbalanced tree shapes (�<0; Fig. 6E–H) and buffered
by balanced tree shapes (�>0; Fig. 6A,B), because lower
values of � enhance richness inequalities between clades
and raise in turn the influence of � on PD loss. This
interaction between parameters � and � overwhelms the
influence of � (Fig. 6). In the plane (�,�), the “danger
zone” is {�<−1,�>1} and the previous remark thus
implies that in the 3D parameter space, the danger zone
is {�<0 or �<−1;�>1}.

Interestingly, the effect of � is highly dependent
on how extinction risks are distributed within the
phylogeny (Fig. 7, and results with other � values in
Supplementary Appendix S7 available on Dryad). For
�=1, we recover the well-known pattern of decreased
PD loss as the tree gets more balanced. However, for
�<1 we see the reverse pattern, that is PD loss increases
with the balance of the tree. Recall that �<1 buffers PD
loss, because extinction risks are clustered in the species-
richer clades which also display higher phylogenetic
redundancy (smaller pendant edges). When the tree is
maximally unbalanced, �<1 causes the longest pendant
edge to subtend the tip with the largest abundance (and
hence to be the last to become extinct). Therefore, the
order of extinctions coincides exactly with the increasing
order of pendant edge lengths, which results in minimal
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PD loss for any given level of extinction. In a more
balanced phylogeny, the distribution of clade sizes is
more even and the buffering effect of the clustered
extinction on PD loss is reduced.

For �>1, we again recover the well-known pattern
of decreased PD loss with increasing �. However, when
we also have �<0, the relationship between PD loss
and � is not monotonic, that is for any particular
level of extinction, the maximal PD loss is reached
for trees with intermediate balance. Recall that �<0
causes small clades to be relatively older and so to
contribute more to PD. The maximal loss of PD thus
occurs when extinction risks cluster in small clades.
And indeed, when �>1, at each splitting event the
species-richer subtree gets a bigger abundance than the
species-poorer subtree. However, within a given clade,
the abundance of a species should decrease with the
number of nodes (splitting events) on its lineage. This
latter effect is stronger in unbalanced trees; in balanced
trees, extinction risks cannot cluster in small clades, due

to the absence of small clades. Trees with intermediate
balance do display small clades, and these small clades
are large enough to share their low abundance (�>1) into
a few species with very low abundance. These species go
extinct first, resulting in maximal PD loss.

Effect of Species Extinctions on Tree Shape
We study the effect of species extinctions on tree shape,

seeking in particular to check if the influence of � on
the patterns of PD loss can be explained by changes in
tree shape as species become extinct. Figure 8 shows
the balance (defined here as the maximum likelihood
estimate �̂ of the parameter �) of the species tree
estimated after a fraction p of its species have become
extinct. When �=1, tree balance is very little altered by
extinctions except in very balanced trees, as predicted by
the sampling consistency of the model (�=1 amounts
to removing species at random except when ��1, see
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Supplementary Appendix S1 available on Dryad). When
�<1, trees tend to become more and more balanced as p
increases (�̂ increases with p), whereas when �>1 trees
tend to become more and more similar to Yule trees
(�̂→0 as p→1). The effect of � on PD loss cannot be
reduced to its effect on changes in tree shape due to
extinctions. On the one hand, � mostly affects the shape
of trees with �>−1 (Fig. 8), whereas tree shape has
most effect on PD loss when � varies between −2 and
−1 (Fig. 4A,C,E with �=0). In addition, if the effect of
� on tree shape had a significant influence on PD loss,
�>1 should increase this loss when �>0 (by decreasing
the balance of trees; Fig. 8D) and decrease it when �<0
(by increasing the balance of trees). Yet, the changes we
observe in the effect of �>1 on PD loss for different
� values are the reverse of this prediction. Therefore,
the indirect effects of � (through changes in tree shape)
are negligible compared to its direct effects (through
nonrandom distribution of extinction risks).

As reported above results on the effects of nonrandom
extinctions on the loss of PD are conserved when node
depths are distributed as in the Kingman coalescent, or
when the size of phylogenetic trees changes (analyses
performed with N =50 and N =200; see Supplementary
Appendices S5 and S6 available on Dryad).

Parameter Inference
When tested against simulated data, the Monte-Carlo

inference algorithm by data augmentation performs
reasonably well on phylogenies with more than 50 tips
for a wide range of parameters (see Supplementary
Appendix S8 available on Dryad). As expected, the
estimation of � on trees with at least 50 tips is accurate,
since the likelihood formula of the unranked tree is
explicit, and this accuracy increases as � decreases. The
inference algorithm also returns overall good estimates
of � and � whenever �>0.3.

The inference of � is unbiased except in the cases
where �<0 and �<0.3. This corresponds to cases where
the unsampled clades are numerous because � is small,
and they have a strong impact on the reconstruction
of intervals because � is small. The inferred � is
overestimated for trees with only 50 tips. For�<0 and�≥
0, � is slightly overestimated whatever the tip number.
For �>0 and �≤0, inferences are good for trees with at
least 100 tips.

Empirical Values
Estimates of parameter values on real data shows

consistent patterns across all bird family trees.
Unsurprisingly, we find negative � values, mostly
comprised between 0 and −1, corresponding to
unbalanced trees (see Supplementary Appendix S9
available on Dryad). Since the estimation of � is quite
accurate for low true values of � and is biased towards
larger estimates than the true value otherwise, these
estimates can be taken with confidence. The estimates
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FIGURE 9. Inferred model parameters on bird family trees of 50 tips
or more. Maximum posterior estimate of age-richness index � (x-axis),
maximum posterior estimate of abundance-richness index � (y-axis)
and maximum likelihood estimate of tree balance � (point color). Point
sizes are proportional to the number of tips in trees, N. The dashed
vertical line shows the value of � for trees generated by a birth–death
model, and the dashed horizontal line shows the value of � for which
extinction probabilities are distributed within the tree as in a field of
bullets model. For all inferences, approximation parameter ε was set to
0.001.

of � vary between 1 and 1.5. This indicates that, within
bird families, species in small clades tend to have smaller
range sizes than species in larger clades. The above study
showed that low � values can be difficult to detect in
unbalanced trees. Yet when this is the case, � is found to
be close to the maximal value allowed in the inference
(here 10), which is not the case here. We can therefore
be confident that these values do not reflect a bias in the
inference, but reflect a true pattern in the distribution of
range sizes within the phylogenies. Finally, the estimates
of � are clustered around 0, indicating that there is
no correlation between clade sizes and clade depths
within each bird phylogeny. This in contrast with what
is expected in most explicit models of diversification,
where larger clades take more time to diversify, resulting
in a strong positive correlation between the depth and
the size of clades.

When jointly inferring � and � the choice to use range
size to infer � is likely to have an impact on the inferred
� (because the values of the intervals are reconstructed
using tip values, inappropriate tip values would lead to
incorrect �). Therefore, we also ran the inference of �: we
find fairly similar results between values obtained with
the inference of � only compared to the full inference (the
median of the inferred � for trees with at least 50 tips is
0.19 when � is inferred alone and 0.05 when both � and �
are inferred), indicating that tree shape is indeed driving
the result (Supplementary Appendix S9 available on
Dryad equivalent as Fig. 9 with the � inferred without
knowledge of the tip range sizes).
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DISCUSSION

A New Integrative Measure of the Age-Richness
Relation, �

We introduced here a new model for random ranked
tree shapes with a fixed, arbitrary number of tips.
This model features two parameters, � and � tuning
respectively the balance of the tree and the relative
depths or ages of its nodes. Trees with �≤0 are
unbalanced and trees with �>0 are balanced. Whatever
the value of �, the shape of the tree is the same as in
Aldous’ �-splitting model (Aldous, 1996, 2001). Large
clades coalesce deep in the tree when �>0 and are
shallower than smaller clades when �<0. When �=
0 and �=1, the tree has the same ranked shape as
the Kingman coalescent and the Yule tree. Our model
does not explicitly incorporate biological processes but
enables to generate a broad range of tree shapes by
decoupling tree balance and the relation between age
and size of clades. In addition, this model is the first
model (except the two aforementioned models and the
trivial case of the “caterpilar tree”) for ranked tree shapes
satisfying sampling-consistency, in the sense that a tree
with n tips has the same distribution as a tree with n+1
tips with one tip removed at random. This property is
essential to ensure the robustness of the model with
respect to incomplete taxon sampling (Heath et al., 2008;
Cusimano et al., 2012; Stadler, 2013).

Predictions from this model highlight the importance
of accounting for node ranks to understand forthcoming
changes in macroevolutionary patterns of PD. They
show in particular that the relationship between the
species richness of a clade and its relative depth in
the tree, set by parameter � in the model, can have
profound impacts on the rate of PD loss (Fig. 4). This
parameter � constitutes a new index quantifying the
age-richness relation of subclades within a phylogeny.
A large number of studies have already considered the
age-size correlation, assessing its existence (significance,
sign, and pattern) across multiple phylogenetic trees,
based on one value of species richness and crown or
stem age per phylogeny (e.g., Magallon and Sanderson,
2001; Bokma, 2003; Ricklefs, 2006; McPeek and Brown,
2007; Rabosky et al., 2012; Sánchez-Reyes et al., 2016).
These studies notably aimed at testing the hypothesis
of time-limited diversity patterns, versus hypotheses
of diversity set by diversification rates or by limits
to diversity (McPeek and Brown, 2007; Ricklefs, 2007;
Rabosky, 2009; Barraclough, 2010; Sánchez-Reyes et al.,
2016). Our new index � is different in that it can be
measured by maximizing the likelihood on a single
phylogeny, implicitly integrating over all subclades of
this phylogeny. An interesting consequence is that one
does not have to choose which clades to include in
the analysis. For example, � is not sensitive to the
definition of higher taxa (Stadler et al., 2014; Sánchez-
Reyes et al., 2016). Moreover, similarly to what can be
done with the index � (compared to other measures
of tree balance; Kirkpatrick and Slatkin, 1993; Aldous,

1996, 2001), a measure of the age-richness relation in a
given phylogeny is provided by the maximum likelihood
estimate of the model-based parameter �. Last, we
stress that our model does not require the precise
knowledge of node datings in the phylogeny but only
the relative positions of nodes in time, which preserves
� estimates from the inaccuracies of time calibrations
(Kumar, 2005; Welch and Bromham, 2005; Pulquério
and Nichols, 2007; Forest, 2009; Schwartz and Mueller,
2010).

Ranked Tree Shapes and the Loss of PD
Our results confirm that in the field of bullets model

very unbalanced trees undergo stronger loss of PD
than balanced trees, under equal fraction of species
extinctions. This property was already well known
(Nee and May, 1997) but is important to recall given
the predominance of unbalanced phylogenetic trees in
nature (� values being often close to −1; e.g., Guyer
and Slowinski, 1991; Heard, 1992; Guyer and Slowinski,
1993; Slowinski and Guyer, 1993; Mooers, 1995; Purvis,
1996; Mooers and Heard, 1997; Blum and François,
2006). However, our results also show that the temporal
order of nodes among subtrees (set by the parameter
�) may have even stronger effects than tree balance
(set by parameter �; compare the effect of the latter
in Supplementary Appendix S8 available on Dryad to
that of � on Fig. 4). Besides, � values below 0 cause
drops of PD almost as abrupt as those observed with
“caterpilar” shapes (� close to −2, with �=1; Fig. 4D,H).
It is therefore essential to consider the ranked shapes of
species trees to understand the expected patterns of loss
of PD.

Values of�deviating from 1 may arise from differences
in stages of diversification among subtrees, resulting
from heterogeneity in biotic or abiotic factors acting on
diversification processes in different parts of the species
tree. This could be due to bursts of diversification in
certain subtrees (e.g., following from key innovations
or from migration to empty spatial or ecological space),
either recently (resulting in �<0) or early in the history
of clades (resulting in �>0). Alternatively, � values
deviating from 1 could be linked to changes in extinction
rates in distinct parts of the tree (e.g., due to changes
in the biotic or abiotic environment of phylogenetically
related species sharing similar ecological niches). Age-
dependent speciation (Venditti et al., 2010; Hagen et al.,
2015) and extinction (Pearson, 1992; Alexander et al.,
2015) are also likely to make node ranking deviate from
what is expected in a homogeneous birth–death model.
Heterogeneity in diversification rates across the species
tree associated with asymmetric competition among
species (e.g., evolutionary advantage to previously
established species) could limit diversification in
younger subtrees, hence leading to �>0. Last, � can be
found negative due to the presence of relictual lineages,
that is, old clades harboring few species surviving to the
present.
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Modeling Nonrandom Extinctions: � and the Loss of PD
The incorporation of the abundance-richness index �

within the framework provided by Aldous’ �-splitting
model allowed us to go beyond the field of bullets
assumption. The model allows one to simulate a
trait covarying with the shape of the phylogeny. We
have so far interpreted this trait as species relative
abundance or relative range size, but it could be
any species trait with values summing to 1 at the
level of the phylogeny. In particular, the trait value
of a species can be interpreted as a probability of
sampling this species, which is consistent with the initial
interpretation of the trait as a relative abundance. In
passing, we devised a model of abundance distributions
(equivalently interpreted as range size distributions)
covarying with the phylogeny, in the broken-stick
tradition (MacArthur, 1957; MacArthur and Wilson,
1967). When �>1, the most abundant species are
in species-rich clades whereas when �<1 the most
abundant species are in species-poor clades. When �=1
all species have the same abundance on average. Here,
extinctions are assumed to occur sequentially in the
order of increasing abundances. By doing this, we only
consider the part of extinction risks that is due to the
rarity of a species. In nature, relative extinction risk
indeed depends on species abundance, but also on many
other features (e.g., dynamics of population growth or
decline, fragmentation into subpopulations, biotic or
abiotic changes; IUCN, 2012), and may have a significant
stochastic component. The simple framework we use to
determine extinctions allows us to focus on the direct
impact of the distribution of ranked abundances within
trees on the loss of PD. This framework can easily be
modified to include extrinsic causes of extinctions by
taking extinction risk to be a function of abundance and
additional known factors.

Previous studies concluded that PD loss is increased
if extinction risks are clustered in the phylogeny (Davies
and Yessoufou, 2013), but that this effect is not substantial
(Parhar and Mooers, 2011). Our model shows that the
effect on PD loss depends on the way these extinction
risks are distributed among clades: PD loss is increased
by �>1 (i.e., higher extinction risks in small clades;
Fig. 6). Such a distribution of extinction risks may arise
from subtrees having low species richness because of
higher extinction rates, either due to intrinsic factors
(species features that would make them more susceptible
to extinction; e.g., long generation time, or low variance
or phenotypic plasticity of key ecological traits providing
resistance to perturbations or evolutionary advantages
in relation to biotic interactions; Purvis et al., 2000c;
Johnson et al., 2002) or to extrinsic factors (threats
affecting the spatial or ecological space shared by species
of the subtree; e.g., Russell et al., 1998; Hughes, 1999;
Purvis et al., 2000c; von Euler, 2001; Johnson et al., 2002).
Higher extinction risks in small subtrees could also
be due to resource limitation affecting simultaneously
the density of individuals and the diversity of species,
and hence demographic stochasticity (the island effect,

Mooers et al., 2009); or to stabilizing selection (e.g., due
to competition or to the absence of available spatial
or ecological space in the surrounding environment),
limiting adaptation and increasing species vulnerability
in the face of perturbations (Purvis et al., 2000c; Purvis,
2008).

In contrast, �<1 buffers the loss of PD. Higher
extinction risks in larger subtrees could result from a
trade-off between species richness and average species
abundance, provided constrained metacommunity size
(with variation along this trade-off following for
instance from landscape structure and dynamics, such
as geographical isolation affecting the occurrence of
allopatric speciation events), from recent speciation
events associated with a decrease in average species
abundance, geographical range or niche width, or
from recent extinction events that removed the most
extinction-prone species from certain clades (leaving the
latter smaller and with less extinction-prone species;
Schwartz and Simberloff, 2001; Lozano and Schwartz,
2005).

Hence, � is expected to vary across clades according
to the metacommunity structure and the underpinning
diversification dynamics. Given its striking effects on
PD loss, this factor should also be accounted for to
understand potential future losses of PD.

Combined Effects of �, �, and �: Reversing Some Expected
Patterns of PD Loss

The influence of � on the loss of PD is enhanced
by �<0 (small clades containing evolutionary distinct
species) and �<0 (more variability in clades richness)
(Fig. 6). However, a stronger clustering of extinction risks
does not necessarily lead to higher loss of PD (e.g., if
extinctions occur first in species-richer subtrees—which
contain more phylogenetic redundancy—as in the case
when �>0 and �<1).

These interactions between the effects of �, �, and �
may reverse two well-known patterns of variation in
the loss of PD (Nee and May, 1997). First, the increase
in PD loss with tree imbalance can be hampered by �
values deviating from one (Fig. 7 and Supplementary
Appendix S7 available on Dryad). In particular when �<
1, this pattern results from the preferential extinction of
phylogenetically redundant species in more unbalanced
trees when extinction risks are clustered in large
clades. Second, when �>1 and �<0 the loss of PD
proceeds faster than that of species diversity (turning
their relationship from convex to concave, except in
very balanced or very unbalanced trees; Fig. 6C,E).
This pattern (also highlighted in Heard and Mooers,
2000) is caused by the preferential extinction in small
subtrees containing evolutionary distinct species. The
only other cases where such high loss of PD is reached
is when �<−1 and �>1. This parameter zone is
a macroevolutionary danger zone, where particular
phylogenetic shapes combine with clustered patterns of
extinction probabilities to produce large and rapid losses

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy030/4972608
by ENS_ULM user
on 02 July 2018



[13:34 16/5/2018 Sysbio-OP-SYSB180030.tex] Page: 13 1–20

2018 MALIET ET AL.—NONRANDOM EXTINCTIONS AND PHYLOGENETIC DIVERSITY 13

of evolutionary history, much like ice and wind bringing
down thick branches of trees in winter. In this region of
the parameter space (�<−1 or �<0; �>1), phylogenies
are prone to a sudden collapse of PD.

Loss of PD in Bird Family Phylogenies
Our inference study shows that the phylogeny of bird

families tend to exhibit � values comprised between
−1 and 0. A similar result was found in many
macroevolutionary studies, commonly observing values
of � clustering around −1 in real phylogenies (e.g., Guyer
and Slowinski, 1991; Heard, 1992; Guyer and Slowinski,
1993; Slowinski and Guyer, 1993; Mooers, 1995; Purvis,
1996; Mooers and Heard, 1997; Blum and François, 2006).
With these topologies, we expect both � and � to play
a major role in determining the potential losses of PD
(Fig. 6E,F).

We observed � values clustering around zero,
consistently with several empirical studies that found
no positive relation between clade age and clade size
(Ricklefs, 2007, 2009; Rabosky et al., 2012). These values
contrast with the value of 1 expected in Yule trees, and
make phylogenies very sensitive to PD loss.

Our estimates of � values, based on the distribution of
range sizes in bird family phylogenies, all fall between 1
and 1.5. This indicates that species in small clades tend
to have smaller ranges than species in bigger clades.
Range size has been shown to be one of the most
important correlates of extinction risks and is one of
the IUCN red list criteria (Purvis et al., 2000b; Cardillo
et al., 2006; Lee and Jetz, 2011; IUCN, 2012; Arbetman
et al., 2017). Expectedly, range sizes in our data set are
significantly different among IUCN status classes (see
Supplementary Appendix S9 available on Dryad). This
pattern of extinction risks clustering in species-poor
clades, highlighted in our data by � values above 1, has
also been shown in plants (Vamosi and Wilson, 2008),
and in birds and mammals for past extinctions (Russell
et al., 1998; Mooers et al., 2009).

Considering the three parameters together, we find
that bird family trees are situated close to the region of
the parameter space termed “danger zone,” for which
we find the loss of PD to be at least as fast as the loss
of species diversity. In particular, the combination of
negative � values with �>1 leads to higher extinction
risks for evolutionary distinct species. We can expect
such a pattern as a result from evolutionary mechanisms
acting simultaneously on different features of trees.
For example, subtree-specific susceptibility to extinction,
or stabilizing selection generating relictual lineages,
are both expected to beget small subtrees with high
divergence times also endowed with high species
extinction risks. This pattern has been already found for
past extinctions in birds using a species level measure
of evolutionary distinctiveness; authors observed in that
case a similar loss of species and PD (von Euler, 2001;
Szabo et al., 2012). Evolutionary distinct bird lineages
were also shown to be more threatened by agricultural

expansion and intensification than more recent lineages
in Costa Rica (Frishkoff et al., 2014). This was also found
in other taxa, such as marsupial mammals (Johnson
et al., 2002) and Sebastes (Magnuson-Ford et al., 2009)
(but see Davies et al. 2011, who show that in South
African plants, extinction risks cluster in younger, fast-
diversifying genera).

A striking result of our inference study relates to the
narrow range of � values obtained as soon as the trees
are large enough for the inference to be accurate (see
Supplementary Appendix S9 available on Dryad for
inferred parameter values as a function of the tip number
in the phylogenies). This value, which differs from what
is found in birth–death models, adds a new conundrum
concerning the shape of empirical trees.

Branch Lengths in Empirical Phylogenies
The parameter � of the model shapes the order in

which speciations take place, but does not instantiate the
actual times between two consecutive speciation events,
that is, edge lengths. In the numerical investigations of
PD loss, we considered two models for edge lengths:
the pure-birth process (Yule, 1925) and the Kingman
coalescent (Kingman, 1982). Using either of these models
did not affect our results qualitatively, but affected
them quantitatively (compare Figs. 4 and 6 to figures
provided in Supplementary Appendices S4 and S6
available on Dryad). Our modeling framework allows
easy exploration of predictions under different models
of edge lengths. This is interesting as many empirical
phylogenies are not time-calibrated, or imprecisely.
Besides, empirical phylogenetic trees were shown to
often exhibit a decrease in branching tempo, that is, in the
rate of lineage accumulation through time (characterized
in particular by estimates of the statistic �<0; e.g.,
Nee et al., 1992; Zink and Slowinski, 1995; Lovette and
Bermingham, 1999; Pybus and Harvey, 2000; Rüber
and Zardoya, 2005; Kozak et al., 2006; Seehausen, 2006;
Weir, 2006; McPeek, 2008; Phillimore and Price, 2008;
Rabosky and Lovette, 2008a; Jønsson et al., 2012; Moen
and Morlon, 2014). Hence, quantitative predictions on
the loss of phylogenetic diversity in the face of species
extinctions could be further increased by accounting
for real branch lengths. Moreover, several theoretical
studies suggested that the branching tempo of species
trees may change with clade age, decreasing in particular
in younger clades (the “out of equilibrium” hypothesis,
proposed to explain the negative values of � often
observed in real phylogenies; Liow et al., 2010; Gascuel et
al., 2015; Manceau et al., 2015; Missa et al., 2016; Bonnet-
Lebrun et al., 2017). Taking into account such correlations
between the age of clades and their branching tempo
would also affect the expected loss of PD.

The EDGE program (“Evolutionary Distinct and
Globally Endangered”; Isaac et al., 2007) encourages
conservation priorities aiming at preserving most
evolutionary history within the tree of life, by
proposing a ranking of species based on combined
criteria of evolutionary distinctiveness and extinction
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risk. Although our approach is not species-based
but clade-based, it also investigates the preservation
of evolutionary history based on principles linked
to species evolutionary distinctiveness (related to
the depths of subtrees, which depend on �) and
to the distribution of extinction risks in the tree
(which depends on �). Accordingly, to conserve most
evolutionary history and evolutionary potential for
further diversification and/or survival, priority could be
given to clades that would undergo higher loss of PD in
the face of species extinctions, that is, clades in the danger
zone (�>1 and either �<−1 or �<0), and although not
shown but only discussed herein, with �<0 (decreasing
branching tempo; Pybus and Harvey, 2000).

Beyond Losses of PD
As we have seen earlier, the trait value of a species

initially interpreted as its relative abundance can also be
seen as a probability of sampling it. So an additional tool
provided by the parameter � is a sampling distribution
where sampling is not independent of the phylogeny.
In particular, our results could be interpreted in the
light of rarefaction experiments (Nipperess and Matsen,
2013), which study the way phylogenetic patterns
in a metacommunity change as sampling decreases.
Previous studies already pointed out strong impacts of
nonrandom taxon sampling on the macroevolutionary
patterns that we observe (e.g., Cusimano and Renner,
2010). Our results provide insights on the effects of
nonrandom sampling on PD and phylogenetic tree
topology. They reveal how, when the rarest species
are not sampled, the discrepancy between observed
and real PD depends on tree balance and abundance-
richness relation (this discrepancy being larger in
particular in the danger zone; Fig. 6E); and how the
discrepancy between observed and real tree shape
depends on � (real trees being more unbalanced if
�<1, and diverging from Yule trees towards more
balance or more unbalance if �>1; Fig. 8). These
effects of incomplete sampling on macroevolutionary
patterns should be particularly important to understand
biodiversity patterns in bacterial and archeal phyla,
which remain poorly known in particular because they
likely harbor rare species having high chances to remain
unnoticed.

CONCLUSION

This new stochastic model of phylogenetic trees
spans a large range of binary trees endowed with
node rankings and species abundances/range
sizes/extinction risks, based on three parameters only
and interpolating other well-known models. We showed
that ranked tree shapes, nonrandom extinctions and the
interactions thereof, may have a strong impact on the
loss of PD in the face of species extinctions, potentially
reversing some expected patterns of variation in PD.
The simplicity of the model allows one to infer the

parameters on empirical phylogenies. Applying our
inference procedure on bird family phylogenies we
found that, in this data set, the parameters fall within
a narrow range of the parameter space; and that the
inferred values make the PD of these trees very sensitive
to species extinctions.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.mv980.
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Supplementary material for Chapter 1

Appendix 1. Mathematical details about the model.

Trees with β = 0 and α = 1 are uniform labelled ranked tree shapes.
Here we want to show the following proposition.

Proposition 1.1. The law of the ranked tree shape under our model with β = 0 and α = 1 is the
uniform distribution on binary trees with ranked nodes and n labelled leaves.

The distribution mentioned in the proposition is called URT in (Lambert and Stadler, 2013),
for ‘uniform ranked tree’. To be more concise, we will call uniform tree, a random ultrametric tree
which follows URT.

Note that the distribution mentioned in the proposition is the reference model used in phyloge-
netics and population genetics. Indeed, it is known (e.g., Lambert et al., 2017) that the standard
Kingman coalescent tree (backward time) started from n labelled tips follows URT, and that the
Yule tree (forward time) stopped when it has n leaves which are then uniformly labelled, also follows
URT. In the proof, we will use a third characterization of this distribution using oriented trees.

Proof. Recall that in our model, we start with n uniform, independent random variables Ui∈{1,...,n}
in the unit interval [0, 1] and sequentially partition the unit interval thanks to random variables
independent of Ui∈{1,...,n} by iterating the following procedure until all variables Ui∈{1,...,n} are in
distinct components of the partition: 1) select one interval of the current partition proportionately
to its length to the power α, and 2) throw in this interval, say (a, b) a variable V = a+(b−a)R, where
R is an independent random variable following the Beta distribution with parameters (β+1, β+1),
so that V splits the interval into two new components of the partition. Now assume that α = 1
and β = 0. In this case R is uniform so it is clear that the two steps of the procedure boil down to
throwing one point V which is uniformly distributed in the unit interval, to split the partition. Let
us call sequentially these independent, uniform variables V1, V2, . . . and let (U ′i)i∈{1,...,n} denote the
order statistics of the (Ui)i∈{1,...,n}. Now set J0 := 0 and define inductively on k ≥ 1

Jk := min{j > Jk−1 : Vj ∈ (U ′i , U
′
i+1) for some i ∈ {1, . . . , n− 1} \ {I1, . . . , Ik−1}},

and Ik the unique integer i ∈ {1, . . . , n − 1} \ {I1, . . . , Ik−1} such that VJk ∈ (U ′i , U
′
i+1). Then the

tree can be built by following sequentially the splits induced by VI1 , . . . , VIn−1 in this order.

An oriented tree is a ranked tree embedded in the plane where tips are arranged on a line from
left to right as in Figure 2a in (Lambert and Stadler, 2013) and edges do not cross. In particular
it has n − 1 pairwise distinct node depths also arranged from left to right, that can be put in this
order into a vector. A uniform oriented tree is an oriented tree where the order of node depths is
given by a uniform permutation. Now we will use the following fact (Lambert and Stadler, 2013).
Fact: The tree obtained from a uniform oriented tree after labeling uniformly the tips and forget-
ting the orientation follows URT. Then to show that the ranked labelled tree constructed in the
previous paragraph follows URT, it is sufficient to show that the vector (I1, . . . , In−1) is a uniform
permutation of {1, . . . , n−1}. Indeed if this is the case then the oriented tree whose tip i is marked
by U ′i is a uniform oriented tree. And since the vector (Ui) is a uniform permutation of the vector
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(U ′i), our initial tree is obtained from the uniform oriented tree by relabeling uniformly its tips (and
forgetting the orientation as implicitly done in the definition).

So it only remains to prove that (I1, . . . , In−1) is a uniform permutation of {1, . . . , n − 1}.
To do that, it is sufficient to show that for any k ∈ {1, . . . , n − 1} conditional on (I1, . . . , Ik−1),
Ik is uniformly distributed in {1, . . . , n − 1} \ {I1, . . . , Ik−1}. Now conditional on Jk = j, the
vector S := (Wi)i∈{1,...,n+j−1} defined as the uniform relabeling of {U1, . . . , Un} ∪ {V1, . . . , Vj−1}
has the same law as n+ j − 1 independent uniforms, so that each interval between two consecutive
points of S has the same probability to be the one welcoming a new independent uniform. Now
it can be proved that conditional on Jk and conditional on (I1, . . . , Ik−1), the labels i such that
Wi ∈ {U ′i , i 6= I1, . . . , Ik−1} are independent of the order statistics of S, which shows that Ik is
uniformly distributed conditional on Jk, and so that it is uniformly distributed.

The field of bullets model of extinction and the η = 1 case.
In our model involving η, recall that each tip is endowed with a non-negative real number

interpreted as the frequency of the corresponding species in the phylogeny (relative abundance
or range size). Since these frequencies sum up to 1, they can also be interpreted as a sampling
distribution over the tips of the tree, that is each species can be drawn with a probability equal to
its frequency. For example, a species is drawn to survive the contemporary mass extinction with a
probability equal to its frequency. This is not exactly how we proceed in the main text to model
the extinction experiment, where we rather keep the species with the largest frequencies.

In the field of bullets model of extinction, each species is drawn uniformly, independently of the
phylogeny. In our model, as soon as all species have the same expected frequency (equal to 1/n)
conditional on the phylogeny, this is also what happens, regardless of whether we draw the species
with the largest frequencies or whether we draw them proportionately to their frequency. Thanks
to the recursive construction of the tree, this is also equivalent to saying that at the basal split, if
X denotes the size of the left subclade and K denotes the number of tip species in it, then

E

(
Xη

Xη + (1−X)η

∣∣∣∣K = k

)
=
k

n
. (6)

We do the calculation in the case when η = 1.

Proposition 1.2. For any β > −2,

E(X|K = k) =
k + β + 1

n+ 2(β + 1)
. (7)

Proof. Write B(x, y) =
∫ 1

0 t
x−1(1− t)y−1 for the beta function, so that (when β > −1)

P (X ∈ dx,K = k) = B(β + 1, β + 1)−1xβ(1− x)β
(
n

k

)
xk(1− x)n−kdx.

As a consequence (and this is is true even if β ∈ (−2,−1]),

P (X ∈ dx|K = k) =
xβ+k(1− x)β+n−k∫ 1

0 y
β+k(1− y)β+n−k dy

dx.
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In particular,

E(X|K = k) =

∫ 1
0 x

β+k+1(1− x)β+n−kdx∫ 1
0 y

β+k(1− y)β+n−k dy

=
B(β + k + 2, β + n− k + 1)

B(β + k + 1, β + n− k + 1)

=
Γ(β + k + 2) Γ(β + n− k + 1)

Γ(2β + n+ 3)

Γ(2β + n+ 2)

Γ(β + k + 1) Γ(β + n− k + 1)

=
Γ(β + k + 2)

Γ(β + k + 1)

Γ(2β + n+ 2)

Γ(2β + n+ 3)
,

where Γ(x) =
∫∞

0 tx−1e−xdt denotes the gamma function. The result follows from the well-known
fact that Γ(x+ 1) = xΓ(x).

Except when β = −1, Equations (6) (with η = 1) and (7) are not equivalent but for all practical
purposes β only takes values between −2 and 2, so the approximation of (7) E(X|K = k) ≈ k/n
holds whenever k � 1. This means that when η = 1 the extinction experiment is roughly equivalent
to the field of bullets model. To be more precise, observe that when β = −1, the r.h.s. exactly
equals k/n, which yields the rigorous equivalence in this case with the field of bullets model. In the
other cases, it is easy to check that for any k,

k <
n

2
⇐⇒ E(X|K = k) >

k

n

if β > −1 and

k <
n

2
⇐⇒ E(X|K = k) <

k

n

if β < −1. So if we compare the case η = 1 to the field of bullets model, smaller clades in our model
have a slight demographic advantage over larger clades when β > −1 and conversely when β < −1.

Simulating trees with β ≤ −1.
Let ν be a measure on (0,1) such that

∫
(0,1) x(1 − x) ν(dx) < ∞. We are interested in the

binary self-similar fragmentation (Bertoin, 2002, 2006) with index α, zero erosion and fragmentation
measure ν (or more rigorously the push-forward of ν by the mapping which maps s ∈ (0, 1) to the
infinite sequence (max(s, 1− s),min(s, 1− s), 0, 0 . . .)), as mentioned in the main text.

We will assume that ν is symmetric, in the sense that for any non-negative function f ,
∫

(0,1) f(x) ν(dx) =∫
(0,1) f(1 − x) ν(dx), and further that ν has a density denoted g. In the application given in the
paper, we will only be interested by the case g(x) = xβ(1− x)β for β > −2.

We start at time 0 with a fragment of size x containing the n uniformly distributed marks
Ui∈{1,...,n}. We apply the fragmentation process to this fragment, until the first time τ when the n
marks are not in the same fragment. For any 0 ≤ t < τ , we can define Xt the size at time t of the
fragment containing the n marks. By definition, at time τ the fragment is split into two fragments
with sizes say RXτ− and (1 − R)Xτ− containing respectively K and n − K marks. We seek to
characterize the joint distribution of (τ,Xτ−, R,K). We write Px,α to emphasize the dependence
on the initial size x of the fragment and on the index α of self-similarity.
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Proposition 1.3. The pair (R,K) is independent of (τ,Xτ−) and has law given by

P (R ∈ dr,K = k) = a−1
n

(
n

k

)
rk(1− r)n−k g(r) dr,

where we have set
an :=

∫
(0,1)

(1− rn − (1− r)n) g(r) dr. (8)

Under the law P0,1 of the homogeneous fragmentation (α = 0) started with a fragment of size 1, the
process (Xs; 0 ≤ s < τ) has the same law as

(
e−ξ̂s ; 0 ≤ s < σ

)
, where

• ξ̂ is the subordinator with Lévy measure Λ̂, where Λ̂(dx) = 2e−(n+1)xg (e−x) dx.

• σ is an independent exponential time with parameter an given by (8).

Thanks to (9), the law of (τ,Xτ−) under Px,α is the same as
(
x−α

∫ σ
0 eαξ̂sds, xe−ξ̂σ

)
.

Proof. The first part of the proposition is due to an elementary application of the compensation
formula.

Now we will use the fact that self-similar fragmentations can be obtained by time-changing
homogeneous fragmentations (case α = 0). More specifically, if , then for any non-negative or
bounded, bivariate function f

Ex,α [f(τ,Xτ−)] = E1,0

[
f

(∫ τ

0
(xXs)

−αds, xXτ−

)]
. (9)

So now we seek to compute E1,0[F (Xs; 0 ≤ s < τ)], where F is any non-negative or bounded mea-
surable functional of the trajectory (Xs; 0 ≤ s < τ), in particular F can of course be of the form
f
(∫ τ

0 (xXs)
−αds, xXτ−

)
.

We will take advantage of the fact that the law of a fragment tagged by one single mark is
already known, see Section 3.2.2 in (Bertoin, 2006). We denote by M the size of the fragment
tagged by one mark and set ξ := − ln(M). Then we can use Theorem 3.2 in (Bertoin, 2006), which
states that ξ is a subordinator with Laplace exponent Φ given by

Φ(q) =

∫
(0,1)

(
1− sq+1 − (1− s)q+1

)
ν(ds) q ≥ 0.

Recall this means that E(exp(−qξt)) = e−tΦ(q). By symmetry of ν, we have

Φ(q) =

∫
(0,1)

(
s− sq+1 + (1− s)− (1− s)q+1

)
ν(ds) = 2

∫
(0,1)

s (1− sq) ν(ds).

Writing s = e−x, it can readily be seen that the Lévy measure Λ of ξ can be written as 2e−x µ(dx),
where µ is the push-forward of ν by the mapping s 7→ − ln(s). If ν(ds) = g(s) ds, this yields

Φ(q) = 2

∫ 1

0
s (1− sq) g(s) ds = 2

∫ ∞
0

e−2x
(
1− e−qx

)
g
(
e−x
)
dx, (10)
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that is Λ(dx) = 2e−2xg (e−x) dx.

Now X can be seen as M with n− 1 additional marks, so τ is the unique jump time t of ξ such
that these n− 1 additional marks are all in Mt− but not all in Mt. By the compensation formula,
letting U1, . . . , Un−1 denote independent uniform (0, 1) random variables,

E1,0(F ) = E
∑

t:∆ξt>0

F (Ms; 0 ≤ s < t) 1∀i,Ui≤Mt− 1∃i,Ui>Mt

= E
∑

t:∆ξt>0

F (Ms; 0 ≤ s < t)
(
1∀i,Ui≤Mt− − 1∀i,Ui≤Mt

)
= E

∑
t:∆ξt>0

F (Ms; 0 ≤ s < t) Mn−1
t−

(
1− (Mt/Mt−)n−1

)
= E

∫ ∞
0

dt F (Ms; 0 ≤ s < t) Mn−1
t−

∫ ∞
0

Λ(dx)
(

1− e−(n−1)x
)

Note that the last integral equals Φ(n − 1) which was denoted earlier an, see (8). Also recall that
the Lebesgue measure of jump times of a subordinator is a.s. 0, so that

E1,0(F ) = anE

∫ ∞
0

dt F (Ms; 0 ≤ s < t) Mn−1
t = anE

∫ ∞
0

dt F
(
e−ξs ; 0 ≤ s < t

)
e−(n−1)ξt .

In particular, since E(exp(−qξt)) = e−tΦ(q) and Φ(n− 1) = an,

E1,0(F ) = anE

∫ ∞
0

dt F
(
e−ξs ; 0 ≤ s < t

)
e−(n−1)ξt

=

∫ ∞
0

dt ane
−antE F

(
e−ξs ; 0 ≤ s < t

)
e−(n−1)ξt+tan

=

∫ ∞
0

dt ane
−antE F

(
e−ξ̂s ; 0 ≤ s < t

)
,

where ξ̂ is the Markov process obtained by h-transform from ξ via the positive martingale
(
e−(n−1)ξt+tan ; t ≥ 0

)
.

It is then straightforward to prove that ξ̂ is the subordinator with Laplace exponent

Φ̂(q) = Φ(q + n− 1)− Φ(n− 1),

which can be written either in the form

Φ̂(q) =

∫
(0,1)

(
1− sq+n − (1− s)q+n

)
ν(ds)− an,

or in the form
Φ̂(q) =

∫ ∞
0

e−(n−1)x
(
1− e−qx

)
Λ(dx),

that is, ξ̂ is the subordinator with (zero drift and) Lévy measure Λ̂ given by

Λ̂(dx) = e−(n−1)x Λ(dx), (11)

which can be expressed as in the statement Λ̂(dx) = 2e−(n+1)xg (e−x) dx.

52



Let us try to apply this to random, ranked binary tree shapes. Let g be defined by g(r) =
rβ(1− r)β . Here

an =

∫
(0,1)

(1− rn − (1− r)n) rβ(1− r)β dr.

To simulate the subordinator ξ̂, we need to fix a cutoff parameter ε. Let (Nε(s); s ≥ 0) be a
homogeneous Poisson process with parameter

λε :=

∫ ∞
ε

Λ̂(dx) = 2

∫ ∞
ε

e−(β+n+1)x
(
1− e−x

)β
dx.

Let (Yi) be independent random variables with density

2

λε
e−(β+n+1)x

(
1− e−x

)β (12)

and set

Zε(s) :=

Nε(s)∑
i=1

Yi.

Then as ε ↓ 0, the process Zε converges to ξ̂. Since one has to stop at the time σ which is
exponentially distributed with parameter an, one can first simulate σ and then conditional on
σ = t, draw a Poisson number Nε(t) with parameter λεt of jump times, which are then uniformly
distributed in [0, t].

So when ε is sufficiently small, we should have a good approximation of (τ,Xτ−) by(
x−α

∫ t

0
eαZε(s)ds, xe−Zε(t)

)
.

The small trick is that the smaller β the smaller ε has to be chosen.
This approach generates identical results as the one presented in the main text (Fig. A1).
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Figure A1: Comparison of results with both meth-
ods used to simulate ranked tree shapes. The
(more intuitive) method for β > −1 is explained in the
main text, whereas the method for β > −2 is explained
hereabove. Results are based on 100 simulation repli-
cates: lines give median values and light areas give 95%
confidence intervals. Parameter values: β = 0, α = 0, η
= 1, number of species N = 100, ε = 0.001.
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Species abundance distributions.
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Figure A2: Preston plots of the species abundance distributions generated by the model, for different
clades abundance-richness indices η. Absolute values of species frequencies are not used in the analyses, but
relative values set the order of species extinctions (starting from rarer species). Parameter values: η = 0.2, 1 or 3
(from left to right), β = 0, α = 0, number of species N = 100, ε = 0.001.
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Relative species abundances in ‘comb trees’.

η = 0.2 η = 1 η = 3

.......

.....
.

.

.

..

...

........

..

.......
.
........
........
......

........

.......

........

......

.

Figure A3: Distribution of species frequencies across the tips of phylogenetic trees under variation
in the clades abundance-richness index η, when topologies are very unbalanced. Dot sizes rank species
according to their abundance (larger dots for more abundant species). Parameter values: η = 0.2, 1 or 3 (from left
to right), β = −1.9, α = 0, number of species N = 30, ε = 0.001.
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Appendix 2. Effect of the ranked tree shape (β, α) on PD loss viewed
as a function of β.

Fig. A4 shows the well known effect of decreasing PD loss for increasing β for different α values.
This effect is dampened for low α values.

α
 =

 2
P

D
lo

ss
α

 =
 0

P
D

lo
ss

α
 =

 −
2

P
D

lo
ss

●●●●

●

●
●●

●

●
●●●

●
●●

●

●●●

●●●●

A)

0
0

.2
0

.4
0

.6
0

.8
1

●

●

●

●

●

β
−1.9
−1
0
5

●●●●

●

●
●●

●

●
●●

●

●
●●

●
●●●

●●●●

C)

0
0

.2
0

.4
0

.6
0

.8
1

●●●●

●
●
●●

●
●●●

●
●●●

●●●●

●●●●

E)

0
0

.2
0

.4
0

.6
0

.8
1

0 0.2 0.4 0.6 0.8 1

Fraction of extinct species, p

B) ●

●

●

●

●

●

●

p
0.98
0.8
0.6
0.4
0.2
0.01

D)

F)

−2 −1 0 1 2 3 4 5

Tree balance, β

Figure A4: Influence of the
ranked tree shape (tree bal-
ance β and clades age-richness
index α) on PD loss, for in-
creasing fractions of species
extinctions p. The clades age-
richness index α changes from 2
(top row, larger clades being older)
to −2 (bottom row, smaller clades
being older). Results are shown ei-
ther as a function of the extinction
fraction p (left column; for differ-
ent β values) or as a function of β
(right column; for different extinc-
tion fractions p). Extinction frac-
tion p increases from 0.01 to 0.98
(from left to right in A, C, E; from
blue to red in B, D, F). The dotted
lines in A, C, E show the bisector.
Results are based on 100 simulation
replicates: plain lines give median
values and light areas give 95% con-
fidence intervals. Other parameter
values: number of species N = 100,
ε = 0.001.
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Appendix 3. Sensitivity of the effect of the ranked tree shape (β, α)
on PD loss to tree size N .

Fig. A5 shows that tree size has little effect on the predictions of the model.
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Figure A5: Influence of tree
size on the effect of the ranked
tree shape (tree balance β and
clades age-richness index α) on
PD loss, for increasing frac-
tions of species extinctions p.
Tree balance β changes from 5 (top
row, ‘bush trees’) to −1.9 (bottom
row, ‘comb trees’). Tree size varies
from N = 50 (short dashes) to
N = 200 (long dashes); results with
N = 100 (plain lines) are those
shown on Figure 4. Results are
shown either as a function of the
extinction fraction p (left column;
for different α values) or as a func-
tion of α (right column; for differ-
ent extinction fractions p). Extinc-
tion fraction p increases from 0.01
to 0.96 (from left to right in A, C,
E, G; from blue to red in B, D, F,
H). The dotted lines in A, C, E,
G show the bisector. Results are
based on 100 simulation replicates:
plain lines give median values and
light areas give 95% confidence in-
tervals. Other parameter values:
ε = 0.001.

57



Appendix 4. Sensitivity of the effect of the ranked tree shape (β, α)
on PD loss to the model of node depths.

We tested for the influence of the model of node depths used to obtain ultrametric trees from
ranked tree shapes. In our default model, node depths are set as in the Yule (birth) process
(Yule, 1925). Here, similarly to Nee and May (1997), we modelled node depths as in the Kingman
coalescent (Kingman, 1982). Figure A6 provides example of the resulting ultrametric trees.

β 
>

 0
β 

<
 0

α < 0 α > 0

Figure A6: Phylogenetic trees
simulated for different val-
ues of β (tree balance) and
α (clades age-richness index),
with node depths set as in the
Kingman coalescent. Parame-
ter values: β = −1.5 (bottom) or
10 (top), α = −10 (left) or 10
(right), number of species N = 30,
ε = 0.001. Figure to be compared
with Figure 2.

Comparing Figure A7 to Figure 4 shows, as already found by previous studies (Mooers et al.,
2011; Lambert and Steel, 2013), that PD loss is increased when node depths follow the Kingman
coalescent model, compared to the Yule process. However, this comparison also shows that the
effects of the ranked tree shape (β, α) on PD loss are qualitatively similar with both models of node
depths.
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Figure A7: Influence of the
ranked tree shape (tree bal-
ance β and clades age-richness
index α) on PD loss, for
increasing fractions of species
extinctions p, with node
depths set as in the Kingman
coalescent. Tree balance β
changes from 5 (top row, ‘bush
trees’) to −1.9 (bottom row, ‘comb
trees’). Results are shown either as
a function of the extinction frac-
tion p (left column; for different α
values) or as a function of α (right
column; for different extinction
fractions p). Extinction fraction p
increases from 0.01 to 0.98 (from
left to right in A, C, E, G; from
blue to red in B, D, F, H). The
dotted lines in A, C, E, G show the
bisector. Results are based on 100
simulation replicates: plain lines
give median values and light areas
give 95% confidence intervals.
Other parameter values: number
of species N = 100, ε = 0.001.
Figure to be compared with Figure
4.
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Appendix 5. Sensitivity of the effect of η on PD loss and on tree
balance after species extinctions to tree size N .

We performed sensitivity analyses to test for the effect of tree size, simulating trees with N=50
and N=200 species. Fig. A8 and Fig. A9 show that tree size has little effect on the predictions of
the model.
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Figure A8: Influence of tree size on the effect of η (clades abundance-richness index) on PD loss, for
different ranked tree shapes and increasing fractions of species extinctions p. Tree balance β ranges from
10 (top row, ‘bush trees’) to −1.9 (bottom row, ‘comb trees’), and clades age-richness index α ranges from −2 (A,
C, E, G) to 2 (B, D, F, H). Tree size varies from N = 50 (short dashes) to N=200 (long dashes). Results with N =
100 (plain lines) are those shown on Figure 5. Results are shown either as a function of the extinction fraction p (left
side; for different η values, and with dotted lines showing the bisector) or as a function of η (right side; for extinction
fractions p increasing from 0.01 to 0.98 from blue to red). Results are based on 100 simulation replicates: plain lines
give median values and light areas give 95% confidence intervals. Other parameter value: ε = 0.001.

60



T
re

e
 b

a
la

n
ce

, β

η = 0.2

●

●

●

●

A)

−
2

0
2

4
6

8
1

0

0 0.2 0.4 0.6 0.8 1

Fraction of extinct species, p

η = 1

●

●

●

●

B)

0 0.2 0.4 0.6 0.8 1

Fraction of extinct species, p

η = 3

●

●

●

●

C)

N=200
N=100
N=50

0 0.2 0.4 0.6 0.8 1

Fraction of extinct species, p
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Appendix 6. Sensitivity of the effect of η on PD loss to the model of
node depths.

Considering node depths as in the Kingman coalescent (similarly to Appendix 4) has quantitative
effects on PD loss (reducing the latter as a result of shorter pendant edges), but no qualitative effects
on the influence of η and its interactions with the ranked shape of species trees (Fig. A10).
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Figure A10: Effect of η (clades abundance-richness index) on PD loss, for different ranked tree shapes
and increasing fractions of species extinctions p, with node depths set as in the Kingman coalescent.
Tree balance β ranges from 10 (top row, ‘bush trees’) to −1.9 (bottom row, ‘comb trees’), and clades age-richness
index α ranges from −2 (A, C, E, G) to 2 (B, D, F, H). Results are shown either as a function of the extinction
fraction p (left side; for different η values, and with dotted lines showing the bisector) or as a function of η (right
side; for extinction fractions p increasing from 0.01 to 0.98 from blue to red). Results are based on 100 simulation
replicates: plain lines give median values and light areas give 95% confidence intervals. Other parameter values:
number of species N = 100, ε = 0.001.
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Appendix 7. Effect of the ranked tree shape (β, α) on PD loss, for
different values of η.
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Figure A11: Effect of tree balance β on PD loss, for different clades age-richness index α and clade
abundance-richness index η, and increasing fractions of species extinctions p. The clades abundance-
richness index η ranges from 3 (top row) to 0.2 (bottom row), and the clades age-richness index α ranges from -2 (left
column) to 2 (right column). Extinction fraction p increases from 0.01 to 0.98 (from blue to red). Results are based
on 100 simulation replicates: plain lines give median values and light areas give 95% confidence intervals. Other
parameter values: number of species N = 100, ε = 0.001.

63



β 
=

 1
0

P
D

lo
s
s

β 
=

 0

P
D

lo
s
s

β 
=

 −
1

P
D

lo
s
s

β 
=

 −
1

.9

P
D

lo
s
s

η = 0.2

A)

0
0

.2
0

.4
0

.6
0

.8
1

E)

0
0

.2
0

.4
0

.6
0

.8
1

I)

0
0

.2
0

.4
0

.6
0

.8
1

M)

0
0

.2
0

.4
0

.6
0

.8
1

−3 −2 −1 0 1 2 3

Correlation species richness
and relative depth, α

η = 0.5

B)

F)

J)

N)

−3 −2 −1 0 1 2 3

Correlation species richness
and relative depth, α

η = 1

C)

G)

K)

O)

−3 −2 −1 0 1 2 3

Correlation species richness
and relative depth, α

η = 3

D) ●

●

●

●

●

●

●

p
0.98
0.8
0.6
0.4
0.2
0.01

H)

L)

P)

−3 −2 −1 0 1 2 3

Correlation species richness
and relative depth, α

Figure A12: Effect of the clades age-richness index α on PD loss, for different levels of tree balance β
and clades abundance-richness index η, and increasing fractions of species extinctions p. Tree balance
β ranges from 10 (top row) to −1.9 (bottom row), and the clades abundance-richness index η ranges from 0.2 (left
column) to 3 (right column). Extinction fraction p increases from 0.01 to 0.98 (from blue to red). Results are based
on 100 simulation replicates: plain lines give median values and light areas give 95% confidence intervals. Other
parameter values: number of species N = 100, ε = 0.001.
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Appendix 8. Parameter inference on simulated trees.
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Figure A13: Inference of the β parameter on simulated trees with tip abundances. Simulations were
run for all possible combinations of tree balance β in {−1, 0, 1}, cclades age-richness index α in {−1, 0, 1, 2}, clades
abundance-richness index η in {0.2, 0.5, 1, 1.5, 2}, and tip number N in {50, 100, 200}. Results are based on 20
simulation replicates per parameter set. The inferred β is the maximum likelihood estimates of Aldous beta-splitting
model (Aldous, 1996), which does not depend on α nor η, thus all trees with similar β values and tip number in
the simulations are put together. The red bar indicates the true value used in simulations, the bloxes bars are the
interquartile of the infered values, and whisquers show the most distant infered values that are less than (1.5×box size)
away from the box. In all simulations ε was set to 0.001.
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Figure A14: Inference of the α parameter on simulated trees with tip abundances. Simulations were run for
all possible combinations of tree balance β in {−1, 0, 1}, clades age-richness index α in {−1, 0, 1, 2}, clades abundance-
richness index η in {0.2, 0.5, 1, 1.5, 2} and tip number N in {50, 100, 200}. Results are based on 20 simulation replicates
per parameter set. The red bar indicates the true value used in simulations, the bloxes bars are the interquartile of
the infered values, and whisquers show the most distant infered values that are less than (1.5× box size) away from
the box. In all simulations and inferences, ε was set to 0.001.
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Figure A15: Inference of the η parameter on simulated trees with tip abundances. Simulations were run for
all possible combinations of tree balance β in {−1, 0, 1}, clades age-richness index α in {−1, 0, 1, 2}, clades abundance-
richness index η in {0.2, 0.5, 1, 1.5, 2} and tip number N in {50, 100, 200}. Results are based on 20 simulation replicates
per parameter set. The red bar indicates the true value used in simulations, the bloxes bars are the interquartile of
the infered values, and whisquers show the most distant infered values that are less than (1.5× box size) away from
the box. In all simulations and inferences, ε was set to 0.001.
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Appendix 9. Parameter inference on bird family trees.
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Figure A16: Range sizes of bird species with respect to IUCN status. The boxes show the quartiles of the
range size distribution, and whisquers show the most distant points that are less than (1.5× box size) away from the
box. Nearly all means are significatly different from one another (p-value of the ANOVA test 2e−16, p-values of the
Tukey SHD test all are bellow 1e−10, except between EN and CR for which it is 0.054). The tests where performed
using the functions aov and TukeySHD for the R package stats (R Development Core Team, 2012). Species for
which we have no information about their IUCN status are not shown on this figure.
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Figure A17: Inference of the model parameters on bird family trees according to number of tips in
trees, N . Panels show the maximum likelihood estimates of β A), the posterior maximum of α when α is inferred
alone B), the posterior maximum of α when α is inferred together with η C), and the posterior maximum of η D).
The trees shown in Fig. 9 in the main text are the one within the grey zone (trees with at least N = 50 tips). The
red bar indicates the true value used in simulations, and the black bars are the interquartile of the infered values. In
all inferences, ε was set to 0.001.
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Appendix 10. List of R functions.
The following R functions are available in the R package apTreeshape (Bortolussi et al., 2006)

to simulate our model and infer its parameter on phylogenies. More details are given in the
apTreeshape documentation.

simulate_tree Simulates a tree topology for a given β, α and η.

simulate_kingman Simulates a tree with topology drawn for a given β, α and η and node depths
Kingman’s coalescent.

simulate_yule Simulates a tree with topology drawn for a given β, α and η and node depths
from a birth-death process.

get_PD_sample Computes the proportion of conserved phylogenetic diversity as a function of the
proportion of conserved species, in trees simulated by the model.

get_tree_beta Computes the maximum likelihood estimate of the parameter β in trees simulated
by the model, as a function of the proportion of conserved species.

mcmc_alpha Inference function for the α parameter.

mcmc_eta Inference function for the α and η parameters.
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Chapter 2 : Quantifying diversification rate heterogeneity in
empirical phylogenies

Empirical phylogenies are typically much more imbalanced that what is expected from homo-
geneous speciation models. While the hypothesis of common diversification rates along lineages
makes sense when the studied clade is small enough, it more difficult to believe for large groups
within which species are likely to have very different life history traits and evolutionary histories.
Previous phylogenetic approaches for detecting changes in diversification rates across a phylogenetic
tree have focused on ‘major’ rate shifts, with the underlying idea that few rare events, such as key
innovations, facilitate the invasion of new adaptive zones, a drastic impact on diversification rates.
Another view of evolution is that speciation and extinction rates may vary gradually across lineages
as a response to the particular biotic and abiotic environment experienced by each lineage. Such
changes in diversification rates likely occur far more frequently than key innovations, resulting in
heterogeneous diversification rates at much finer taxonomic scales. In this paper, we develop a new
Bayesian approach for estimating lineage specific diversification rates. Our approach is based on a
birth-death diversification process where diversification rates are inherited at speciation, but with a
shift. We test it on a large simulated dataset of simulated phylogenies to assess its statistical perfor-
mances, and show that it is able to accurately infer both the way shift happen at speciation events
– how constrained they are by their parental value, and whether there is a trend in rates evolution
– and the lineage specific diversification rates. The latter is a critical step to our understanding
of the processes that lead some species groups to diversify faster than others. We then apply our
method to time-calibrated phylogenies for 42 birds clades. This analysis reveals a pervasive pattern
of declines in speciation rates over time congruent with previous studies, together with a remarkable
heterogeneity in speciation rates. We show that the variability is comparable within and between
clades, suggesting that rate variation may be much more gradual than currently thought and imple-
mented in existing models. Our results emphasize the need to consider diversification models that
embrace the pervasive heterogeneity of the evolutionary process.

This Chapter corresponds to a work done with during this PhD together with Hélène Morlon
and Florian Hartig. The manuscript is in the final preparation stage and will be submited very
soon.
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Many gradual versus few punctual shifts in
diversification during evolution

Odile Maliet, Florian Hartig, Hélène Morlon

Abstract

Understanding how and why diversification rates vary through time, space, and across species groups is
key to understanding the emergence of today’s biodiversity. Phylogenetic approaches aimed at identifying
variations in diversification rates during the evolutionary history of clades have focused on exceptional shifts
subtending evolutionary radiations. While such shifts have undoubtedly affected the history of life (Alfaro
et al., 2009), they may hinder the importance of smaller but more frequent changes. We develop ClaDS, a
new Bayesian approach for estimating branch-specific diversification rates on a phylogeny, that relies on a
model with continuous changes in diversification rates at each speciation event. We show using Monte-Carlo
simulations that the approach performs well at inferring both gradual and abrupt changes in diversification.
Applying our approach to bird phylogenies covering the entire avian radiation, we find that diversification
rates are remarkably heterogeneous within evolutionary restricted species groups. Some groups such as
Accipitridae (hawks and allies) cover almost the full range of speciation rates found across the entire bird
radiation. As much as 76% of the variation in branch-specific rates across this radiation is due to intra-
clade variation, suggesting that the evolution of life proceeds with many gradual changes rather than few
punctuated ones.

Manuscript

Understanding if, how and why speciation and extinction rates vary through the tree of life is
key to our understanding of the diverse processes that shaped today’s biodiversity. These ques-
tions have fostered the development of several phylogenetic approaches for detecting when and on
which lineages diversification rates have changed during the evolutionary history of clades (Chan
and Moore, 2004; Alfaro et al., 2009; Morlon et al., 2011; Rabosky, 2014). Previous phylogenetic
approaches for detecting changes in diversification rates across a phylogenetic tree have focused on
‘major’ rate shifts, with the underlying idea that few rare events, such as key innovations, facilitate
the invasion of new adaptive zones, with a drastic impact on diversification rates (Miller, 1949;
Hunter, 1998). In these models, outside of few remarkable events, diversification rates are assumed
to be homogeneous. However, while major rate shifts linked to key innovations have undoubtedly
affected the history of life (Alfaro et al., 2009), they are not the only – nor necessarily the most
important – source of variation in diversification rates.

Another view of evolution is that shifts in diversification rates are widespread. Speciation
and extinction rates may vary gradually across lineages as a response to the particular biotic and
abiotic environment experienced by each lineage (Benton, 2009); they may also vary as a response
to traits that affect reproductive isolation such as reproduction mode Goldberg et al. (2010) or
pollination and dispersal syndromes Onstein et al. (2017). Such changes in diversification rates
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likely occur far more frequently than key innovations, resulting in heterogeneous diversification rates
at much finer taxonomic scales (Jetz et al., 2012). Accounting for such finer scale heterogeneity is
crucial if we want to obtain refined estimates of lineage-specific diversification rates and to better
understand the processes subtending heterogeneity in the diversification of life. Here, we develop a
new Bayesian approach (ClaDS) for estimating lineage-specific diversification rates on a phylogeny
that better accounts for the diverse sources of variation in diversification rates that occur during
the evolutionary history of clades. Using Monte Carlo simulations, we quantify the ability of ClaDS
to faithfully recover both gradual and abrupt changes in diversification rates. Finally, we apply the
method to time-calibrated phylogenies for 42 bird clades to evaluate the extent to which differences
in the pace of diversification across the entire avian radiation result from few punctual versus many
gradual events.
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Figure 1: Illustration of the cladogenetic di-
versification rate shift model (ClaDS). Up-
per panel: cartoon phylogeny simulated un-
der ClaDS, with branches colored according to
their speciation rate (red: high rate, blue: low
rate). Speciation rates are inherited at specia-
tion with a shift determined by the probability
distribution νλ (here taken to be a lognormal
distribution, insert). Red arrows indicate spe-
ciation events (and associated diversification
rate shifts) that are hidden in the reconstructed
phylogeny as a result of extinction.

A gradual model of diversification rate variation.
We consider a birth-death diversification process, the

cladogenetic diversification rate shift (ClaDS) model,
where diversification rates are inherited at speciation, but
with a shift (Fig. 1). At the beginning of the process, the
clade is composed of one lineage with speciation rate λ0

and extinction rate µ0. At each speciation event, the two
daughter lineages inherit new diversification rates (λi1,
λi2) and (µi1, µi2) sampled from a joint probability distri-
bution ν parameterized by the parental rates λi and µi. If
the change in speciation and extinction rates are assumed
to be independent, the λi are sampled from a distribu-
tion νλ, the µi are sampled from a distribution νµ, and
ν = νλ × νµ. Moreover, we allow for the possibility that
some extant species are missing by assuming that each
extant species is observed with probability f ≤ 1. We de-
rive the probability density of a reconstructed phylogeny
under this general model (Materials and Methods & SI
Appendix).

We then consider several scenarios in ClaDS where: i)
νλ is a lognormal distribution with parameters log(α ∗ λ)
and σ; the latter ensures that the relative change in rate
at speciation λi/λ is independent from the parental rate
with a mean m given by α exp(σ2/2); σ controls how
constrained daughter rates are (highly constrained for
small σ values) and α controls the trend at speciation
(i.e. whether daughter rates tend to be higher or lower
than parental rates) ii) extinction rates are either negligi-
ble (µi = 0 for all lineages, ClaDS0), homogeneous across
all lineages in the clade (µi = µ0 for all lineages, ClaDS1)
or vary across lineages, but with a constant turnover ε
(i.e. µi/λi = ε for all lineages, ClaDS2). We use Monte
Carlo simulations under ClaDS1 and ClaDS2 (Materials
and Methods) to verify that our likelihood expression is

75



correct (SI Appendix, Fig. S3 & S4). Finally, we implement a Monte Carlo Markov Chain (MCMC)
sampler that, given a reconstructed phylogeny, simultaneously estimates both the parameters of
ClaDS (λ0, α, σ, and either µ0 or ε) and the speciation rates λi for each branch i of the phylogeny
(Materials and Methods). Branch-specific extinction rates µi are given by µ0 for ClaDS1 and by
ε ∗ λi for ClaDS2.

Under these scenarios of the ClaDS process, heterogeneity in speciation rates across lineages is
determined on the one hand by a stochastic component (controlled by σ), and on the other hand
by a trend component (controlled by m). When the expected daughter rate is equal to the parental
rate (m = 1), the resulting trees are relatively imbalanced and tippy (SI Appendix, Fig. S1 & S2):
lineages that by chance have high speciation rates early in clade’s history spread, leading to rates
that are heterogeneous across lineages and average rates that increase through time. This sorting
effect is exacerbated when the expected daughter rate is higher than the parental rate (m > 1,
Fig. S1 & S2), corresponding to a ‘niche-piling’ scenario where diversity begets diversity (Emerson
and Kolm, 2005). To the contrary, when the expected daughter rate is lower than the parental
rate (m < 1), corresponding to a ‘niche-filling’ scenario where diversification gets harder as new
species arise (Rabosky and Lovette, 2008b; Phillimore and Price, 2008; Moen and Morlon, 2014), the
heterogeneity in speciation rates across lineages is reduced, and with a low enough m, the average
rate is constant or even decreasing through time (Fig. S1 & S2). Importantly, ClaDS is able to
produce the combination of stemmy and imbalanced tree shapes observed in nature, and under a
wider set of parameter values for the scenario with constant turnover (ClaDS2) than the scenario
with constant extinction rate (ClaDS1, Fig. S1 & S2).
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Figure 2: Recovery of ClaDS parameters. Estimated λ0 (A), α (B), and σ (C) inferred with ClaDS, and (D) resulting
estimation of m = α ∗ exp(σ2/2). Violin plots: distribution of estimated parameters; yellow cross: median; thick
black line: quartiles; red lines: values used in the simulations. Different shades of brown correspond to: in A and
C, the values of α used in the simulations (1.2 (light), 1, 0.9, 0.7 (dark)) ; in B and D, the values of σ used in the
simulations (0 (light), 0.1, 0.26, 0.41 (dark)). Results corresponding to simulated trees of size 200; results for other
tree sizes are shown in Fig. S5 to S8.
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Performance of ClaDS.
We begin by testing the performance of ClaDS under gradual rate changes and in the absence

of extinction (ClaDS0) (Materials and Methods). We find that the approach provides unbiased
estimates of all model’s parameters for large enough trees (size 200, Fig. 2); the relative change
in rate at speciation m is also well estimated (Fig. 2 D). As expected, bias and variability around
parameter estimates increase for smaller trees (Fig. S5 to S8).

ClaDS provides reliable estimates of branch specific speciation rates on average: while low rates
tend to be slightly overestimated and large rates slightly underestimated, ClaDS can detect regions
of the tree with relatively high or low rates (Fig. 3 & Fig. S9-S10).

When considering also extinctions, focusing on the scenario with constant turnover (ClaDS2)
as it generally produced tree shapes closer to those observed in nature, we found that estimates
remain accurate at low levels of extinction (ε = 0.1) for both model parameters (Fig. S14) and
branch-specific speciation rates (Fig. S15). At high levels of extinction (ε = 0.9), σ and, when
the mean change in rate at speciation m approaches 1, branch-specific speciation rates, remain well
estimated. It is not the case, however, of the turnover rate ε, α, and branch-specific speciation
rates when m < 1, although accounting for extinction does improve inferences over ignoring it (Fig.
S14 & S15). When extinction is not accounted for, estimated branch-specific speciation rates are
generally lower than realized ones, but higher than realized net diversification rates (Fig. S15C &
D).

Finally, if there are a small number of major rate shifts during the evolution of clades, rather
than gradual changes (tested here with a single rate shift, Materials and Methods), ClaDS is still

A B

0.1 0.2 0.5

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

λsimulated

λ e
st

im
at

ed

slope   0.7 (0.044)

cor   0.82 (0.011)

rel error   1 (0.0058)

C

Figure 3: ClaDS performs well in recover-
ing branch-specific speciation rates A) tree
simulated under the ClaDS model (λ0 =
0.1, σ = 0.18 , α = 1, ε = 0, size N = 200),
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able to provide reliable estimates of branch-specific rates (Fig. S12). The model is also able to
detect when two branches in the tree belong to distinct speciation regimes as soon as the difference
in rates between the two regimes is large enough (a two-fold increase or decrease in our simulations)
and both regimes are represented by a large enough number of branches in the phylogeny (Fig.
S13A). The false detection rate associated to this test is low (Fig. S13B).

Diversification across the avian radiation. When applying ClaDS to major bird clades
(Materials and Methods), we found that lineage-specific speciation rates can vary by as much as
2 orders of magnitude within clades (Fig. 4E). In Accipitridae (hawks and allies) for example,
speciation rates range from 0.013 to 1.2 Mya−1, which almost covers the range found across the
entire avian radiation (0.013 − 5 Mya−1). Comparable within-clade heterogeneities occur in other
clades, such as Muscicapidae & Turdidae, Tyrannidae and Parulidae (Fig. 4E, in orange). A
variance partitioning of speciation rates across the bird radiation (Material and Methods) reveals
that intra-clade variance accounts for 76% of the total variance. Yet there are also some clades that
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are quite homogeneous, such as Ramphastides, Alcedinidae, Charadrii and Phasianidae (Fig. 4E,
in blue). We did not find any significant relationship between the variance in rate values within a
clade and the size (p = 0.49) or age (p = 0.93) of the clade, indicating that rate heterogeneity is not
a mere result of time or species richness; rather, rates are pretty constrained in some old and rich
clades (e.g. Phasianidae) as well as in some younger or less species-rich clades (e.g. Alcedinidae),
while they can take very different values for distinct species of both old or young clades (e.g.
Parulidae, Tyrannidae). The wide range of σ estimates found across bird clades (Fig. 4A), in
comparison with rather tight α and m estimates (Fig. 4B & C), suggests that differences in rate
heterogeneity across clades are due to the stochastic component of the model, rather than its trend
component. Indeed, α ranges between 0.38 and 1.02 (with a mean of 0.71, Fig. 4B), which indicates
a universal tendency for daughter rates to be smaller than ancestral ones, with a decline that is
comparable in magnitude across clades. There is only one case when m is clearly above 1 (1.12 in
Campephagidae); this corresponds to a case when most shifts correspond to rate declines, but the
few shifts that correspond to rate increases are much bigger in magnitude.

Discussion. Models of diversification applied to phylogenies of extant taxa are increasingly used
to understand the long-term evolution of biodiversity. These approaches have highlighted how much
variable diversification rates can be across the tree of life, and the importance of these variations for
explaining current patterns of diversity (the so-called ‘diversification rate hypothesis’, Rosenzweig,
1992). Yet, despite recent advances in phylogenetic approaches for understanding diversification,
detecting diversification rate variations and the processes underlying these variations remain a
challenge spurring a heated debate (Rabosky and Goldberg, 2015; May and Moore, 2016; Moore
et al., 2016; Rabosky et al., 2017; Rabosky, 2017). In this paper, we have developed ClaDS, a
new model with gradual variations in diversification rates together with a method to infer branch-
specific diversification rates on a phylogeny. We have shown using simulations that ClaDS accurately
estimates branch-specific rates. Finally, applying ClaDS to the bird phylogeny, we have shown that
gradual changes have been instrumental in shaping global rate variation during the avian radiation.

One of the major advances of our model is to rely on an explicit and exact computation of the
likelihood in the presence of extinction. Previous likelihood expressions under diversification mod-
els with variable rates were computed with the underlying assumption that shifts do not occur in
extinct lineages (Alfaro et al., 2009; Morlon et al., 2011; Rabosky, 2014); this is biologically implau-
sible and can introduce an important bias depending on the intensity of extinction (Moore et al.,
2016; Rabosky et al., 2017). In ClaDS we relax this inconvenient assumption by integrating appro-
priate Ordinary Differential Equations (ODEs, SI Appendix). This allows computing likelihoods
accounting for rate shifts on extinct lineages, which has so far only been done through intense and
impractical Monte Carlo simulations (Moore et al., 2016). The ODE integration is computationally
intensive, but not as much as to prevent running ClaDS on reasonably sized trees, as we illustrated
on the bird phylogenies. Despite this significant improvement, our simulations show that estimat-
ing extinction remains difficult, in line with the well-known difficulty of estimating extinction from
phylogenies of only extant taxa (Rabosky, 2010). This is true even when simulations and inferences
are performed under simple models with constant extinction or turnover rate. Hence, even though
our ODEs are general, with extinction rates that can shift at each branching event similarly to spe-
ciation rates, we considered only the simple models with constant rates in our implementation; this
has the advantage of reducing computation time. Despite difficulties in estimation extinction rates,
properly accounting for extinctions in the likelihood computation is satisfying on a biological and
theoretical standpoint, and, as we have shown, improves the estimation of both model parameters
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and branch specific speciation rates.
Another advantage of ClaDS is to avoid using model selection to select the number and loca-

tion of rate shifts, by assuming that shifts happen at each speciation event. In the frequently-used
MEDUSA method (Alfaro et al., 2009), stepwise AIC is used to perform this selection, with associ-
ated statistical limitations (May and Moore, 2016). In the approach of Morlon et al. Morlon et al.
(2011), likelihood ratio tests are performed to select the number of shifts, but the location of these
shifts needs to be fixed a priori. Finally, in the popular Bayesian analysis of macroevolutionary
mixtures (BAMM, Rabosky, 2014), reversible jump mcmc is used, with a prior on the number and
location of shifts that may influence the results (Moore et al., 2016; Mitchell and Rabosky, 2017).
ClaDS avoids these limitations, while still performing well in the presence of rare rate shifts with
large effects.

Maybe more importantly than these technical aspects, ClaDS represents a view of evolution
distinct from that of previous models: existing models focus on a small number of discrete diversifi-
cation shift events spread across the tree, an idea that fits well with the concept of key innovations
driving major diversification shifts (Morlon et al., 2011; Alfaro et al., 2009; Rabosky, 2014); to the
contrary, ClaDS allows for more gradual variations linked, for example, to changes in environmental
conditions or associations with continuously evolving heritable traits. Accordingly, ClaDS does not
aim at identifying specific nodes in a phylogeny subtending major diversification rate shifts. Rather,
it assumes that rate shifts happen at each speciation event and focuses on estimating branch-specific
diversification rates. In nature, both many shifts with small effects and few shifts with large effects
are likely to occur, and so it is reassuring to see that ClaDS can properly estimate branch specific
rates under these two evolutionary processes.

Accurately estimating branch specific diversification rates is a critical step for understanding the
processes that lead some species groups to diversify faster than others. For example, species’ traits
can modulate their propensity to diversify, and tests based on assessing the correlation between trait
values at a phylogenies’ tips and metrics capturing the diversification rate of the corresponding lin-
eages (‘tip-rate correlations’ tests) have been developed to detect such effects (Freckleton et al.,
2008). These types of tests have regained interest lately (see e.g. STRAPP Rabosky and Gold-
berg (2015), FiSSE (Rabosky and Goldberg, 2017), ES-sim (Harvey and Rabosky, 2017), pNoTO
(Bromham et al., 2015; Hua and Bromham, 2016)), as an alternative or complement to state-
dependent speciation-extinction (SSE) methods that jointly model diversification dynamics and
trait evolution (Maddison et al., 2007; FitzJohn, 2012). However, current metrics of species-level
diversification rates have limitations. Some of them are derived from BAMM (Rabosky, 2014) and
thus reflect a limited set of diversification rate regimes rather than lineage-specific rates per se.
Others are summary statistics describing phylogenetic branching patterns, such as the “node den-
sity” (Freckleton et al., 2008), the “equal split” (Redding and Mooers, 2006), or the “diversification
rate” (Jetz et al., 2012) statistics, and are not rigorously derived from speciation-extinction models.
ClaDS provides tip level estimates of diversification rates that should help identifying the specific
features of a species that make it more or less prone to diversify. In the future, we could imagine
a hybrid between SSE and ClaDS that would account for both trait-dependent diversification and
residual rate variation not accounted for by the trait, in the spirit of hidden states models (HiSSE,
Beaulieu and O’Meara, 2016). This could for example be done by imputing in ClaDS specific trend
parameters α corresponding to trait shifts.

Changes in biotic and abiotic conditions can also modulate the tempo of diversification, leading
diversification to be faster during some time periods than others. ClaDS accommodates temporal
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trends in rate variation, without the need to specify a specific form for this variation a priori as
in time-dependent diversification models (Nee et al., 1994b; Rabosky and Lovette, 2008b; Morlon
et al., 2011), and with more flexibility than models where a discrete rate shift at a given time point
affects the whole clade (Stadler, 2011). In the future, the trend parameter α could depend on mea-
sured environmental variables; this would allow directly testing for an effect of these environmental
variables on diversification, as in environment-dependent diversification models (Condamine et al.,
2013; Lewitus and Morlon, 2017), while accounting for residual rate variation.

Our ClaDS analysis of the avian radiation reveals a series of compelling results. First, and even
though these estimates need to be taken with caution, we find significant (non-zero) turnover rates.
Second, we find a pervasive pattern of declines in speciation rates over time congruent with previous
studies (Rabosky and Lovette, 2008b; Phillimore and Price, 2008; Moen and Morlon, 2014). Third,
we find a remarkable heterogeneity in speciation rates, with per-lineage rates that vary by two
orders of magnitude (0.01−5 Mya−1), peaking around 0.15 Mya−1. Fourth, we find that variability
in speciation rates can be as high within than between clades, suggesting that rate variation may
be much more gradual than currently thought and implemented in existing models. Finally, we
highlight a remarkable difference across clades in terms of how constrained their diversification
rates are, with plovers and allies on one extreme, and hawks and allies on the other extreme of
a continuum between rates that vary less than 2 fold to more than 80 folds (Fig. 4E, F). These
differences in how constrained diversification rates are striking and remain to be explained: these
could be linked to differences in genetic architecture, developmental constraints, or biogeographies,
for example.

Together, our results refute the idea that speciation may be clock-like (Hedges et al., 2015) and
emphasize the need to consider diversification models that embrace the pervasive heterogeneity of
the evolutionary process. Further, they promise a bright future for approaches, such as ours, that
relax the speciation clock similarly to the way the molecular clock has been relaxed (Thorne et al.,
1998; Huelsenbeck et al., 2000; Lartillot et al., 2016): quite alike molecular rates, diversification
rates vary according to many gradual shifts.

Material and Methods

Likelihood, simulation and Bayesian implementation of ClaDS.

Likelihood.— We derived the probability density of observing a reconstructed phylogeny with
branches delimited by the times (ti, si)i∈J1,NK and with branch specific speciation and extinction
rates λi and µi under the cladogenetic diversification rate shift model (SI Appendix). We note Θ
the parameters of the new rate distribution ν. The probability density can be derived from three
main probability functions: ΦΘ,λ,µ(t), the probability that a lineage alive at time t has speciation
and extinction rates λ and µ and no descendant in the reconstructed phylogeny; χΘ,λ,µ(t), the
probability that a lineage alive at time t has speciation and extinction rates λ and µ and exactly
one descendant species sampled in the reconstructed phylogeny; and ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2), the
probability that a lineage alive at time t has speciation and extinction rates λ and µ and gives birth
at time s to two daughter lineages that respectively have speciation rates λ1 and λ2 and extinction
rates µ1 and µ2. We obtained ordinary differential equations (ODEs) to solve for Φ, χ and ξ by
considering the different events that can happen during a short time interval ∆t and making ∆t

81



tend to 0 (SI Appendix). Under a pure birth model and for a completely sampled phylogeny, the
ODEs can be solved analytically (SI Appendix). In the presence of extinction and/or if there are
missing taxa in the phylogeny, Φ, χ and ξ are computed by integrating the ODEs numerically, which
is more computationally intensive (SI Appendix).

Simulation.— We implemented a simulation algorithm of ClaDS in the R-package RPANDA
(Morlon et al., 2016, function sim_ClaDS) (SI Appendix). In this implementation, the speciation
rates of daughter lineage are drawn independently from a distribution νλ. Their extinction rates
are either drawn from a distribution νµ, given by µ0 (constant extinction rate scenario, ClaDS1),
or given by ε ∗ λsi,1 and ε ∗ λsi,2 (constant turnover scenario, ClaDS2). νλ and νµ can be normal,
log-normal, or uniform distributions. The simulations are continued until a stopping criterion is
met, either a fixed time or a fixed number of species. In addition, sim_ ClaDS takes as one of its
arguments a parameter p controlling the probability that a shift happens at each speciation event
(the default value p = 1 corresponds to the model investigated here), and a parameter n, controlling
a maximum number of shifts (the default value n = INF corresponds to the model investigated here;
if n takes a finite value, then p switches to 0 as soon as n switches have occurred).

Bayesian implementation.—We implemented a Bayesian inference approach for fitting ClaDS to
reconstructed phylogenies in the R-package RPANDA (Morlon et al., 2016, function fit_ClaDS)(SI
Appendix). In order to fit ClaDS0 (no extinction), we use a Metropolis within Gibbs MCMC (Monte
Carlo Markov Chain) sampler with a Bactrian proposal (Yang and Rodríguez, 2013), and conver-
gence is monitored by running three MCMC chains in parallel and computing Gelman statistics
(Gelman et al., 2014). In order to fit ClaDS1 and ClaDS2 (i.e. in the presence of extinction),
and/or if there are missing taxa in the phylogeny, we use the faster blocked Differential Evolution
(DE) MCMC sampler, with sampling from the past of the chains (?). We also ran three chains.Each
estimate was computed as the mean over the iterations and the three chains.

Testing the performance of ClaDS.
We performed intensive simulations to test the performance of ClaDS. We tested both the

performance of ClaDS under data generated by this model, and its performance for data generated
with a discrete speciation rate shift. In order to assess the performance of ClaDS under a large
parameter set and for a variety of tree sizes, we considered primarily the pure birth model with
completely sampled phylogenies. We also considered the model with extinction and/or missing taxa,
but only in a limited, computationally tractable, set of simulations.

Gradual rate variation (ClaDS model).— For each combination of the following parameter
values, we simulated 20 pure birth trees, stopping the simulation when a target tip number of 50,
100 and 200 was reached. λ0 was fixed at 0.1, σ was taken in {0, 0.1, 0.18, 0.26, 0.34, 0.41}, and
α in {1.2, 1.1, 1, 0.95, 0.9, 0.7}. We recorded the realized speciation rate on each branch in each of
these simulations. We then ran ClaDS on each simulated tree using our fit_ClaDS function. Lastly,
we compared the retrieved estimates of λ0, σ and α to their simulated values; we also compared
the retrieved estimates of branch-specific speciation rates for each tree to their realized values by
performing linear regressions and computing relative errors (ratio of estimated versus realized rates).

In order to explore the model accounting for extinction, we simulated 5 trees of size 100 under 4
scenarios with constant turnover rate (ClaDS2), and for each condition either low (ε = 0.1) or high
(ε = 0.9) turnover (8 scenarios in total). We focused on the scenario with constant turnover, because
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this scenario produced tree shapes similar to those of empirical trees under a wider set of parameter
values than the alternative scenario with constant extinction rate (Fig. S1 versus S2). Maintaining
a balance where extinction is neither negligible nor driving clades to extinction is also easier under
ClaDS2. The four scenarios were as follows: i) high heterogeneity and decreasing rates : λ0 = 0.1,
σ = 0.7, α = 0.7 (mean relative changem = 0.9), ii) no heterogeneity and constant rates (equivalent
to constant rate birth-death trees) : λ0 = 0.1, σ = 0, α = 1 (m = 1) iii) Low heterogeneity and no
average change in rate at speciation : λ0 = 0.1, σ = 0.2, α = 0.98 (m = 1) iv) Low heterogeneity and
decreasing rates : λ0 = 0.1, σ = 0.2, α = 0.88 (m = 0.9). We recorded the realized speciation rate
on each branch in each of these simulations. We then ran ClaDS on each simulated tree using our
fit_ClaDS function, both accounting and not accounting for extinction, the latter to evaluate the
bias resulting from not accounting for extinction when it occurs. Lastly, we compared the retrieved
estimates of σ, α, m and ε for each tree to their simulated values. We did not compare the retrieved
estimates of λ0 to the simulated values, because the estimates correspond to the speciation rate at
the crown while the simulated values correspond to the speciation rate at the stem. These two rates
can be very different in the presence of extinction. We also compared the retrieved estimates of
branch-specific speciation rates and net diversification rates (speciation minus extinction) for each
tree to their realized values by performing linear regressions and computing relative errors.

Discrete rate shift.— We also tested the behavior of ClaDS under a ‘key innovation’ scenario
with only a single large rate shift during the history of the clade. In order to simulate this scenario,
we used our sim_ClaDS function with λ0 (the background rate in this case) fixed at 0.1, p (the
probability that a rate shift happens at each speciation event) fixed at 0.02, and n (the maximum
number of shifts) fixed at 1. The new speciation rate took a series of values from lower (uniformly
drawn in [0.025, 0.03], [0.03, 0.05], [0.05, 0.1]) to higher (uniformly drawn in [0.1, 0.15], [0.15, 0.2],
[0.2, 0.3], [0.3, 0.4], [0.4, 1]) than the background rate. For each of these rate values, we simulated
phylogenies of size 200 until we had a good coverage of subclade new rate/size combination (from 300
to 500 phylogenies per parameter set). In such simulations, there are only two distinct rates across
the tree: the background rate and the new rate. We then ran ClaDS on each simulated tree using
our fit_ClaDS function and compared the retrieved estimates of branch-specific speciation rates for
each tree to their simulated values by performing linear regressions and computing relative errors.
Finally, we tested whether the model is able to detect if two branches in the tree belong to the same
or distinct speciation regime(s): two branches were considered to have significantly different rates
(distinct regime) if the difference in the estimated speciation rates between the two branches was of
constant sign on at least 95% of the MCMC chains. We assessed the significance of speciation rate
differences (and the corresponding sign) for all pairs of branches in the simulated trees. Finally, we
quantified the ‘proper detection’ rate as the proportion of pairs for which a significant difference
was inferred when the two branches indeed belonged to distinct speciation regimes (i.e. one had
the background speciation rate and the other one had the new rate), and the ‘false detection’ rate
as the proportion of pairs for which a significant difference was inferred, while the two branches
actually belonged to the same speciation regime (i.e. both had either the background speciation
rate or the new rate).
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Diversification of the avian radiation. We applied ClaDS, accounting for extinction (ClaDS2,
model with constant turnover) and incomplete sampling, to bird phylogenies. We used the MCC
trees from Jetz et al. (Jetz et al., 2012) with only the species for which there was molecular data,
along with the associated sampling fractions provided by the authors. Most of these are family
level phylogenies, with some spawning two or a few more families. We ran the model on the 42
bird phylogenies with more than 50 species. We report the distribution of branch-specific speciation
rates across the 42 clades, as well as individual distributions for each clade. We partitioned the

total variance of the logarithm of the branch specific speciation rates (
∑

i

(
ln(λi)− ln(λ)

)2
, where

ln(λ) is the mean of the log of the speciation rates for all branches in all clades) between the

intra-clade (
∑

i

(
ln(λi)− ln(λci)

)2
, where ci is the clade to which branch i belongs and ln(λc) is

the mean of the log of the speciation rates for all branches in clade c) and inter-clade variance

(
∑

i

(
ln(λci)− ln(λ)

)2
). We also tested for a potential correlation between the variance in rates

and the size (number of tips) and age (crown age) of clades using PGLS (Grafen, 1989) on the
Hacket backbone phylogeny provided in Jetz et al. (2012).
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Supplementary material for Chapter 2

Appendix 1: Supplementary Methods.

1.1 Simulation of phylogenies under ClaDS.
We initialize each simulation by defining a root lineage with speciation rate λ0 and death rate

µ0. At any iteration of the simulation, the time for the next event is drawn from an exponential
distribution with mean 1/r, where the rate r is given by the sum of the speciation and extinction
rates of all lineages alive at this stage. Next, the nature of the event (speciation or extinction
of a given lineage) is drawn according to their respective probabilities µi/r (extinction) and λi/r
(speciation). When a speciation occurs in lineage i, we draw the speciation rate of each daughter
lineage independently from νλ. Their extinction rates are either drawn from a distribution νµ, given
by µ0 (constant extinction rate scenario), or given by ε∗λi1 and ε∗λi2 (constant turnover scenario).
The process is continued until a stopping criterion is met, either a fixed time or a fixed number of
species. Our simulation algorithm, implemented in the R-package RPANDA (Morlon et al., 2016,
function sim_ClaDS), can take νλ and νµ to be a normal, log-normal, or uniform distribution.
In addition, sim_ ClaDS takes as one of its arguments a parameter p controlling the probability
that a shift happens at each speciation event (the default value p = 1 corresponds to the model
investigated here), and a parameter n, controlling a maximum number of shifts (the default value
n = INF corresponds to the model investigated here; if n takes a finite value, then p switches to 0
as soon as n switches have occurred).

In order to explore the shape of phylogenetic trees arising from ClaDS, we simulated 100 trees un-
der each of the following parameter combinations: λ0 = 0.1, σ = 0.8,m ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3},
µ0 ∈ {0.01, 0.09} (for constant extinction) or ε ∈ {0.1, 0.9} (for constant turnover), and λ0 = 0.1,
σ ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1}, m = 0.9, µ0 ∈ {0.01, 0.09} or ε ∈ {0.1, 0.9}. Next, we summa-
rized tree shape by the classical gamma statistic that measures the root to tip distributions of nodes
in a phylogeny (Pybus and Harvey, 2000), and the beta statistic that measures the imbalance of a
phylogeny (Aldous, 1996, 2001). Empirical phylogenies are often characterized by negative gamma
and beta values (Mooers and Heard, 1997; Blum and François, 2006; Phillimore and Price, 2008;
McPeek, 2008).

1.2 Derivation of the likelihood and posterior distribution.
In the following text, we denote by λ0 the initial speciation rate, µ0 the initial extinction rate,

Θ the parameters of the distribution determining how rates are inherited between lineages, f the
probability to sample a species alive in the present, νΘ(λ, µ, .) the distribution of new speciation
and extinction rates for a lineage whose parent has speciation rate λ and extinction rate µ, Λ the
diversification rates space, λi the branch specific speciation rate of branch i at ti, µi the branch
specific extinction rate of branch i at ti, and i1 and i2 the two daugther lineages of i. The time goes
from the present to the past and equals 0 at present, and we note ti the birth time of branch i in
the reconstructed phylogeny, si the end time of branch i in the reconstructed phylogeny (which is
the branching time for internal branches, and 0 for terminal branches).

The likelihood of the model is defined as

L(Θ, λ0, µ0) = p((ti), (si)|Θ, λ0, µ0)

=

∫
(λi)i>0∈Λn,(µi)i>0∈Λn

p((ti), (si), (λi)i>0, (µi)i>0|Θ, λ0, µ0)dλ1...dλndµ1...dµn
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The term inside the integral can be computed (see the following sections), but the high dimen-
sionality of the space over which we have to integrate it makes the evaluation of the likelihood very
difficult, making the estimation of Θ and λ0 in a maximum likelihood framework impractical.

Numerically, this problem is easier to evaluate through MCMC sampling in a Bayesian frame-
work. We thus aim to sample from the posterior distribution

p(Θ, λ0, (λi)i>0, (µi)i>0|(ti), (si)) ∝ p((ti), (si), (λi)i>0, (µi)i>0|Θ, λ0, µ0)p(Θ, λ0, µ0)

where p(Θ, λ0, µ0) is the prior distribution of our model parameters. The computation of
p((ti), (si), (λi)i>0, (µi)i>0|Θ, λ0, µ0) is detailed in Section 1.3 for the general case with extinction
and potentially missing species and in Section 1.4 for the case with no extinction and complete
sampling.

1.3 Model with extinction and incomplete sampling.
As in the case of the model without extinction and complete sampling, for the model with

extinction and incomplete sampling p((ti), (si), (λi)i>0, (µi)i>0|Θ, λ0, µ0) is given by the product of
the probability density of each branch of the tree and rate changes at speciation event. To compute
these densities, we first need to be able to compute the probability that a lineage has no descendants
in the sample. We can then compute the probability density of internal and external branches.

Probability to have no extant descendants.
We call ΦΘ,λ,µ(t) the probability that a species with speciation rate λ and extinction rate µ at

time t has no sampled extant descendants. For t = 0, ΦΘ,λ,µ(0) is the probability that the species
was not sampled, which equals 1− f .

We have

ΦΘ,λ,µ(t) = P

a lineage has no descendant
in the sample

∣∣∣∣∣∣∣
the lineage is alive and
has speciation rate λ
and extinction rate µ at
time t



ΦΘ,λ,µ(t+ ∆t) =P

(
the lineage goes extinct in (t, t +
∆t)

)

+ P


the lineage does not go extinct, but speci-
ates and neither of the resulting lineages
(which each have new speciation and ex-
tinction rates) has descendants in the sam-
ple


+ P

(
no extinction nor speciation but the lin-
eage has no descendants in the sample

)
+ o(∆t)

=µ∆t

+ (1− µ∆t)λ∆t

(∫
Λ
νΘ(λ, µ, λ1, µ1)ΦΘ,λ1,µ1(t)dλ1dµ1

)2

+ (1− µ∆t)(1− λ∆t)ΦΘ,λ,µ(t) + o(∆t)
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By subtracting ΦΘ,λ,µ(t), dividing by ∆t and taking ∆t→ 0 we get

∂ΦΘ,λ,µ

∂t
(t) = µ(1− ΦΘ,λ,µ(t)) + λ

((∫
Λ
νΘ(λ, µ, λ1, µ1)ΦΘ,λ1,µ1(t)dλ1dµ1

)2

− ΦΘ,λ,µ(t)

)

which is then integrated numerically (see section 4: Implementation in R for details).

Probability density of internal branches.
For t > s we define

ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2) = P


a lineage has exactly one descendant
in the reconstructed phylogeny at
time s and speciate at time s to give
birth to two lineages with diversifi-
cation rates λ1, µ1 and λ2, µ2

∣∣∣∣∣∣∣∣∣
the lineage is alive
at time t and has
speciation rate λ and
extinction rate µ at
time t


For t = s we get

ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2) = P


a lineage speciates at time s to give
birth to two lineages with diversifi-
cation rates λ1, µ1 and λ2, µ2

∣∣∣∣∣∣∣∣∣
the lineage is alive
at time s and has
speciation rate λ and
extinction rate µ at
time s


= λνΘ(λ, µ, λ1, µ1)νΘ(λ, µ, λ2, µ2)

We have

ξΘ,λ,µ(t+ ∆t, s, λ1, λ2, µ1, µ2) =P


no extinction nor speciation in (t,∆t), and the
lineage has exactly one descendant in the recon-
structed phylogeny at time s, which speciate at time
s to give birth to two lineages with diversification
rates λ1, µ1 and λ2, µ2



+ P



the lineage does not go extinct, but speciates
and one of the resulting lineage is not present in
the sample, while the other lineage has exactly
one descendant in the reconstructed phylogeny
at time s and speciates at time s to give birth
to two lineages with diversification rates λ1, µ1

and λ2, µ2


+ o(∆t)

=(1− µ∆t)(1− λ∆t)ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2)

+ 2(1− µ∆t)λ∆t

∫
Λ
νΘ(λ, µ, λ3, µ3)ΦΘ,λ3,µ3(t)dλ3dµ3

×
∫

Λ
νΘ(λ, µ, λ3, µ3)ξΘ,λ3,µ3(t, s, λ1, λ2, µ1, µ2)dλ3dµ3

+ o(∆t)
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By subtracting ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2), dividing by ∆t and taking ∆t→ 0 we get

∂ξΘ,λ,µ

∂t
(t, s, λ1, λ2, µ1, µ2) =− (λ+ µ)ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2)

+ 2λ

∫
Λ
νΘ(λ, µ, λ3, µ3)ΦΘ,λ3,µ3(t)dλ3dµ3

×
∫

Λ
νΘ(λ, µ, λ3, µ3)ξΘ,λ3,µ3(t, s, λ1, λ2, µ1, µ2)dλ3dµ3

Probability density of terminal branches.
We define

χΘ,λ,µ(t) = P

a lineage has exactly one
descendant in the sam-
ple

∣∣∣∣∣∣
the lineage is alive at time t
and has speciation rate λ and
extinction rate µ at time t


For t = 0, χΘ,λ,µ(0) is the probability that the species was sampled, which equals f .
We have

χΘ,λ,µ(t+ ∆t) =P

(
no extinction nor speciation in (t,∆t), and the lin-
eage has exactly one descendant in the sample

)

+ P


the lineage does not go extinct but speciates,
and one of the resulting lineages is not present
in the sample while the other has exactly one
descendant lineage in the sample


+ o(∆t)

=(1− µ∆t)(1− λ∆t)χΘ,λ,µ(t)

+ 2(1− µ∆t)λ∆t

∫
Λ
νΘ(λ, µ, λ1, µ1)ΦΘ,λ1,µ1(t)dλ1dµ1

×
∫

Λ
νΘ(λ, µ, λ1, µ1)χΘ,λ1,µ1(t)dλ1dµ1 + o(∆t)

By substracting χΘ,λ,µ(t), dividing by ∆t and taking ∆t→ 0 we get

∂χΘ,λ,µ

∂t
(t) = −(λ+ µ)χΘ,λ,µ(t) + 2λ

∫
Λ
νΘ(λ, µ, λ1, µ1)ΦΘ,λ1,µ1(t)dλ1dµ1

×
∫

Λ
νΘ(λ, µ, λ1, µ1)χΘ,λ1,µ1(t)dλ1dµ1

Remark that ξΘ,λ,µ(t, s, λ1, λ2, µ1, µ2) and χΘ,λ,µ(t) are solution of the same diferential equation
in t, only the inital condition changes.
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Likelihood expression.
The joint likelihood is expressed as the product of the probability density of each branch of the

tree. We define ti the time of birth of branch i, si its end time , Eint the set of internal branches of
the tree, Eterm the set of terminal branches.

To calculate the likelihood for a tree conditional on its root age:

p((ti, λi,µi)i∈J1,NK, (si)i∈J0,NK|Θ, λ0, µ0, t0) =∏
i∈0∪Eint ξΘ,λi,µi(ti, si, λi1 , λi2 , µi1 , µi2)

∏
i∈Eterm χΘ,λi,µi(ti)

1− ΦΘ,λ0,µ0(t0)

To calculate the likelihood for a tree conditional on its its crown age:

p((ti, si, λi, µi)i∈J1,NK|Θ, λ0, µ0, s0) =

νΘ(λ0, µ0, λ01 , µ01)νΘ(λ0, µ0, λ02 , µ02)

(1− ΦΘ,λ01 ,µ01
(s0))(1− ΦΘ,λ02 ,µ02

(s0))

×
∏

i∈Eint

ξΘ,λi,µi(ti, si, λi1 , λi2 , µi1 , µi2)
∏

i∈Eterm

χΘ,λi,µi(ti)

1.4 Model without extinction and with complete sampling.
In this section we consider the case with (µi)0≤i≤n fixed to 0 and f fixed to 1. In this case,

Φθ,λ,0(t) = 0∀t so the differential equations for the 2 other functions reduce to:

∂ξΘ,λ,0

∂t
(t, s, λ1, λ2, 0, 0) =− λξΘ,λ,µ(t, s, λ1, λ2, 0, 0)

∂χΘ,λ,0

∂t
(t) =− λχΘ,λ,0(t)

with the initial conditions

ξΘ,λ,0(s, s, λ1, λ2, 0, 0) = λνΘ(λ, λ1)νΘ(λ, λ2)∀s ∈ R+

χΘ,λ,0(0) = 1

This can be solved as

ξΘ,λ,0(t, s, λ1, λ2, 0, 0) = e−λ(t−s)νΘ(λ, λ1)νΘ(λ, λ2)

χΘ,λ,0(t) = e−λt

If we note Eint the set of internal edges of the tree, the likelihood is then:
For a tree conditioned by its stem age:

p((ti,λi)i∈J1,NK, (si)i∈J0,NK|Θ, λ0, t0) =(
n∏
i=0

e−λi(ti−si)

) ∏
i∈0∪Eint

λiνΘ(λi, λi1)νΘ(λi, λi2)


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For a tree conditioned by its crown age:

p((ti, si,λi)i∈J1,NK|Θ, λ0, s0) =

νΘ(λ0, λ01)νΘ(λ0, λ02)

(
n∏
i=1

e−λi(ti−si)

) ∏
i∈Eint

λiνΘ(λi, λi1)νΘ(λi, λi2)


1.5 Implementation of the likelihood computation in R.

The implementing of the numerical integration of the differential equations derived in the pre-
ceeding part was done in R. We consider the case for which the death rate is uniform for the clade
(µi = µ0∀i). In what follows, we consider Λ = [mλ,Mλ], Θ = σ, α and νΘ(λ, λ1) a lognormal
centered on α× λ and restricted to Λ.

We begin by integrating the equation for ΦΘ,λ. To do so we approximate the integral on Λ by
a sum:∫

Λ

1

λ1σ
√

2Π
exp

(
−(ln(λ1)− ln(λ)− ln(α))2

σ2

)
ΦΘ,λ1(t)dλ1

=

∫ ln(Mλ)

ln(mλ)

1

σ
√

2Π
exp

(
−(λ2 − ln(λ)− ln(α))2

σ2

)
ΦΘ,exp(λ2)(t)dλ2

'
b ln(Mλ)−ln(mλ)

∆λ
c∑

i=0

∆λ exp

(
−(ln(mλ) + i∆λ− ln(λ)− ln(α))2

σ2

)
ΦΘ,mλei∆λ

(t)

We define the matrix

M =

[
∆λ exp

(
−((i− j)∆λ− ln(α))2

σ2

)]
i,j=0..b ln(Mλ)−ln(mλ)

∆λ
c

and the vector ΦΘ(t) =
(
ΦΘ,mλei∆λ

)
i=0..b ln(Mλ)−ln(mλ)

∆λ
c

We have:
∂ΦΘ

∂t
(t) ' ελ(1− ΦΘ(t)) + λ(MΦΘ(t) ∗MΦΘ,λ(t)− ΦΘ,λ(t))

where ∗ is the scalar product

This equation is then integrated using the ode function in R (package ..., ref). We use the fact
that M is a Toeplitz matrix multiplied by a column vector, and use the Fast Fourier Transform
method to compute the product of this matrix with a column vector, which allows us to speed the
computation.

To evaluate the other two functions, we use the evaluation of ΦΘ,λ. By replacing integrals by
sums, as we did before, we get:

∂χΘ

∂t
(t) ' −(λ+ µ)χΘ(t) + 2λMΦΘ ∗MχΘ(t)

' BtχΘ(t)
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With the notations

Bt = −λ(1 + ε)Ib ln(Mλ)−ln(mλ)

∆λ
c + 2λ diag(MΦΘ(t))M

we then use Magnus expansion to compute χΘ(t).

1.6 Testing the accuracy of our likelihood computation.
We use Monte Carlo simulations to test that our analytical solutions of the key probabilities

Φθ,λ,µ(t) and ξθ,λ,µ(t) are correct and computed with a low numerical error, for both the scenario
with constant extinction rate (ClaDS1) and the scenario with constant turnover rate (ClaDS2).
We first randomly draw 500 sets of parameter values uniformly: t is drawn from an exponential
distribution with parameter 0.1, λ is uniformly drawn in [0, 0.5], µ in [0, 1.5 ∗ λ] for the constant
rate scenario and ε in [0, 1.5] for the constant turnover scenario, α in [0.5, 1.5], σ in [0, 1] and f in
[0, 1].

Next, for each parameter set, we compute Φθ,λ,µ(t) and ξθ,λ,µ(t), both by integrating the ODEs
(as described above) and by using Monte Carlo simulations: we simulate N realizations of ClaDS
(N = 10, 000) for a duration t, starting with one lineage characterized by speciation rate lambda.
Φθ,λ,µ(t) is then computed as the average over the N realizations of 1 when the process has gone
extinct and (1 − f)n when the process has led to n living descendants (i.e., the probability that
none of the n descendants has been sampled). ξθ,λ,µ(t) is computed as the average over the N
realizations of 0 when the process has gone extinct and nf(1 − f)n−1 when the process has led to
n living descendants (i.e., the probability that exactly one of the n descendants has been sampled).
Finally, we compare the values found by integrating the ODEs and by Monte Carlo simulations.
Our results indicate a good match between simulated and computed values (Fig S3 & S4). Using
the same procedure to test for the computation of χθ,λ,µ(t) is tricky, but this function is obtained
using the same ODE as ξθ,λ,µ(t) – only with different initial conditions–, so we are confident that it
is properly computed.

1.7 Implementation of the Bayesian approach.
We use a Metropolis within Gibbs MCMC (Monte Carlo Markov Chain) sampler with a Bactrian

proposal (Yang and Rodríguez, 2013) to simultaneously infer the hyperparameters (λ0, α, σ, and
either µ0 or ε) and the branch specific speciation rates λi of the model. When considering also
extinctions, resulting in hidden speciation events and thus also hidden rate shifts in the reconstructed
phylogeny (Fig. 1), λi is chosen by convention to be the rate at the beginning of branch i. We use
an inverse gamma prior with shape parameter 1 and rate parameter 0.1 for σ and a flat prior for
all other parameters. To improve MCMC convergence, we partly ran the MCMC on transformed
parameters. Under a pure birth model and for a completely sampled phylogeny, we ran the MCMC
on the logarithm of the relative rates (log(rate/parent rate)) to reduce correlations between the
inferred rates. To monitor convergence, we ran three MCMC chains in parallel and computed
Gelman statistics (Gelman et al., 2014). We started the MCMC with an adaptation phase of
10, 000, during which the proposal width was adjusted every 1000 iterations with a goal acceptance
rate of 0.3 (Yang and Rodríguez, 2013). This initial phase is not recorded. The following first
200, 000 iterations were considered a burn-in phase and also discarded for the analysis. After the
burn-in, we recoded another 2, 000, 000 MCMC iterations, that we thinned every 200, 000 iterations.
We then computed the gelman statistic, and added another 2, 000, 000 iterations until the potential
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scale reduction factor was smaller than 1.05 for all the parameters. Those iterations were used to
calculate posterior densities. The time and number of iterations needed for the convergence of the
chains (in the sense of the gelman statistic) was very variable. For a tree of size 200, convergence
was typically achieved after a few tens of millions of iterations and within a few hours; however in
some (rare) instances convergence could take up to several hundreds of millions of iterations and
several days. Parameter estimates, including estimates of the branch specific speciation rates, were
computed as the mean over the iterations and the three chains of each parameter.

In the presence of extinction and/or if there are missing taxa in the phylogeny, the computation
of the likelihood takes much longer. The initial adaptation phase in particular can be very long. We
therefore used a blocked Diferential Evolution (DE) MCMC sampler, with sampling from the past
of the chains (Ter Braak, 2006; ?). This sampler is self-adaptive because proposals are generated
from the past of the chains. In this sampler, three chains are run simultaneously for each tree.
Block updates were implemented by first drawing the number of parameters to be updated from a
truncated geometric distribution with mean 3, then drawing uniformly which parameter to update,
and then following the normal DE algorithm. To save computation time, we ran the MCMC
directly on the logarithm of the rates instead of the logarithm of the relative rates, which allows
us to update only the contribution of the branches for which the rate has changed in the likelihood
when we propose a new parameter set. We run the chains for at least 500000 iterations (1500000
likelihood computations). Parameter estimates are computed as the posterior maxima over the
second half of the iterations. The computation of the likelihood of the model takes time in the
presence of extinction, which is the reason why we were not able to reach MCMC convergence for
the full model with as stringent a criterion as the one used for the pure birth model. However,
because we tested it on several trees per parameter set and results are similar for all trees within
a parameter set, we think it unlikely that chains are stuck on a local optimum. Our inference
approach is implemented in the R-package RPANDA (Morlon et al., 2016, functions fit_ClaDS).
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Appendix 2: Supplementary Figures and Results.

2.1 Tree shapes.
The general results described in the main text mostly apply whether extinction rate is constant

(Fig. S1) or proportional to the speciation rate (Fig. S2). There is only one notable exception:
with a high turnover rate, trees become more stemmy with higher σ, indicating that the average
per-lineage speciation rate decreases through time (Fig. S2): in this case lineages which happen to
have exceptionally high speciation rates are also highly volatile and fail to spread, while those with
exceptionally low speciation rates rarely go extinct and are maintained throughout history.
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Figure S1: Shape of trees simulated with ClaDS with constant extinction rate. Tippiness index γ (A &
B) and imbalance index β (C & D) of phylogenies simulated with a common σ = 0.8 and varying m (A & C) or with
a common m = 0.9 and varying σ (B & D), for two extinction rate values (µ0 = 0.01, orange boxes; µ0 = 0.09, blue
boxes). For all simulations, λ0 = 0.1. In empirical phylogenies, we generally have γ < 0 and β < 0 (gray areas).
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Figure S2: Shape of trees simulated with ClaDS with constant turnover rates. Tippiness index γ (A & B)
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2.2 Testing the accuracy of our likelihood computation.
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Figure S3: Comparison between simulated and computed values of the extinction probability of the
process, Φ and the probability to get a terminal edge, χ, for the model with constant extinction. The
simulation procedure is explained in section 5. We find good agreement between simulated and computed values for
those functions, except for a few parameter sets for which the ode function did not converge.
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Figure S4: Comparison between simulated and computed values of the extinction probability of the
process, Φ and the probability to get a terminal edge, χ,for the model with constant turnover. The
simulation procedure is explained in section 5. We find good agreement between simulated and computed values for
those functions, except for a few parameter sets for which the ode function did not converge.
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2.3 Statistical performance of ClaDS _ Pure birth model.

Model’s parameters.

The model’s parameters are overall well estimated when the tree size is large enough (Fig. S5-
S8). We find that a tree of 100 suffices to produce reliable estimates of λ0 and m (and also α
when σ is large enough), while trees of size 200 are required to reliably estimate σ, and also α
when σ is small. For small trees (size 50), λ0 tends to be slightly overestimated (Fig. S5), while α
is slightly underestimated (Fig. S6), and small σ values are over-estimated while large values are
underestimated (Fig. S7); overall, this results in a slight underestimation of m across parameter
space (Fig. S8). Note that these small-sample biases could be due to a small-sample bias in the
MLE, but are more likely the result of the increasing prior weight with decreasing data size, which
naturally biases estimates towards the prior. The trend parameter α is the only parameter for which
bias depend on other parameters values. The bias of the estimation is highest for small σ values,
and its variability is highest for large σ values (Fig. S6). When σ is high the across-lineage variation
in speciation rates is less predictable, which explains this result.
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Figure S5: Inference of λ0 for different tree sizes. Violin plots show the distribution of the inferred values for
20 replicates. Yellow crosses show the median values, red bars show the values used for simulating the phylogenies.
Different violin colors indicate the tip number (blue for 50 tips, yellow for 100 tips, orange for 200 tips), different
color shades indicate different α values used to simulate the phylogenies (from light (0.7) to dark (1.2)).
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Figure S6: Inference of α for different tree sizes. Violin plots show the distribution of the inferred values for
20 replicates. Yellow crosses show the median values, red bars show the values used for simulating the phylogenies.
Different violin colors indicate the tip number (blue for 50 tips, yellow for 100 tips, orange for 200 tips), different
color shades indicate different σ values used to simulate the phylogenies (from light (0) to dark (0.4)).
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Figure S7: Inference of σ for different tree sizes. Violin plots show the distribution of the inferred values for
20 replicates. Yellow crosses show the median values, red bars show the values used for simulating the phylogenies.
Different violin colors indicate the tip number (blue for 50 tips, yellow for 100 tips, orange for 200 tips), different
color shades indicate different α values used to simulate the phylogenies (from light (0.7) to dark (1.2)).
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Figure S8: Mean new rate m infered for different tree sizes. Violin plots show the distribution of the inferred
values for 20 replicates. Yellow crosses show the median values, red bars show the values used for simulating the
phylogenies. Different violin colors indicate the tip number (blue for 50 tips, yellow for 100 tips, orange for 200 tips),
different color shades indicate diferent σ values used to simulate the phylogenies (from light (0) to dark (0.4)).
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Branch specific rates.

ClaDS provides reliable estimates of branch specific speciation rates on average: while low rates
tend to be slightly overestimated and large rates slightly underestimated, ClaDS can detect regions
of the tree with relatively high or low rates (Fig. S9 & S10). This conservative bias, which is
expected from the statistical interpretation of σ as a shrinkage parameter that controls how much
freedom is given to change diversification rates at each time step, decreases with increasing tree size
(Fig. S9 D-F & Fig. S10 B). The quality of the estimation depends on the amount and source of
rate heterogeneity in the tree (Fig. S9). It is best when there is substantial heterogeneity (slight
rate variations are difficult to detect) and when this heterogeneity is due to a trend (α 6= 1, σ small),
and worst when rates are rather homogeneous (α close to 1, σ small). In the presence of a strong
trend (α far from 1), the quality of the estimation decreases when the amount of heterogeneity due
to stochasticity increases (i.e. with increasing σ). On the contrary, when there is no trend (α close
to 1), the quality of the estimation increases with increasing stochastically-driven heterogeneity.
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Figure S9: Different measures of the goodness of fit of branch specific speciation rates for different
tree sizes. Violin plots show the distribution of the metrics for 20 replicates. Yellow crosses show the median values,
red bars show the values used for simulating the phylogenies. Different violin colors indicate the tip number (blue
for 50 tips (panels A, D & G), yellow for 100 tips (B, E & H), orange for 200 tips (C, F & I)), different color shades
indicate different σ values used to simulate the phylogenies (from light (0) to dark (0.4)). We show the correlations
between the log of simulated and inferred speciation rates (panels A, B & C), the regression slopes between the log
of simulated and inferred speciation rates (panels D, E & F), and the mean relative error on each phylogeny (inferred
rate/simulated rate, panels G, H & I))
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Figure S10: Different measures of the goodness of fit of branch specific speciation rates for different
tree sizes. Histograms show the distribution of the metrics for all our simulated phylogenies. Different histogram
colors indicate the tip number (blue for 50 tips , yellow for 100 tips and red for 200 tips). We show the distributions
of the correlations between the log of simulated and inferred speciation rates (panel A), the regression slopes between
the log of simulated and inferred speciation rates (B), and the mean relative error (inferred rate/simulated rate, C))
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Discrete rate shifts.

0.1 0.2 0.4

A B

Figure S11: Result of the inference of our model on an example tree with one discrete rate shift. The
branch colors show the speciation rates as used to simulate the tree (A) and as inferred using ClaDS (B). In the
simulation, the background speciation rate is 0.1 (in blue, A), and the new rate is 0.32 (in red, A).

103



correlation

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

min(clade size)

>20
<= 20

A

relative error

D
en

si
ty

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
1

2
3

4
5

6

B

Figure S12: Result of the test of our inference procedure on trees simulated with one rate shift.
Histograms show the distribution of the goodness of fit metrics for all our simulated phylogenies. Different histogram
colors indicate the tip number in the smaller subclade (red if it is lower than 20 tips , blue if it is higher). We show
the distributions of the correlations between the log of simulated and inferred speciation rates (panel A) and the
mean relative error (inferred rate/simulated rate, B)).
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Figure S13: Result of the test of our inference procedure on trees simulated with one rate shift. In all
the simulations the background rate was 0.1 and trees had 200 tips. The y-axis gives the value of the new speciation
rate, and the x-axis indicates the number of tips in the subtree with the new rate. The left panel shows the mean
proportion of branch pairs with different speciation rates for which a significant difference in speciation rate was
found in the posterior (proper detection). The right panel shows the mean proportion of branch pairs with identical
speciation rates for which a significant difference in speciation rate was found in the posterior (false detection). The
white cells in the bottom right corner of each panels correspond to situations that are very unlikely (a subtree with
a low speciation rate but a large number of tips) and were not obtained in our simulations.
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2.4 Statistical performance of ClaDS _ Birth death model.

Model’s parameters.
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Figure S14: Inference of the model’s parameters for different simulation scenarios. The boxplots show
the distribution of the inferred values of σ (panel A), α (B), m (C) and ε (D) for 5 replicates, the red dotted line
show the values used in the simulations. White boxes show the values inferred with the pure birth model, gray boxes
those inferred with the birth death model. The scenarios are:1) high heterogeneity and decreasing rates: λ0 = 0.1,
σ = 0.7, α = 0.7 (mean relative change m = 0.9), 2) no heterogeneity and constant rates (equivalent to constant rate
birth-death trees): λ0 = 0.1, σ = 0, α = 1 (mean relative change m = 1) 3) Low heterogeneity and no average change
in rate at speciation: λ0 = 0.1, σ = 0.2, α = 0.98 (mean relative change m = 1) 4) Low heterogeneity and decreasing
rates: λ0 = 0.1, σ = 0.2, α = 0.88 (mean relative change m = 0.8).

106



Branch specific rates.
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Figure S15: Different measures of the goodness of fit of branch specific speciation rates for different
scenarios. The boxplots show the distribution of the regression slopes between the log of simulated and inferred
speciation rates (panel A), the correlation between the log of simulated and inferred speciation rates (B), the mean
relative error (inferred rate/simulated rate) on speciation rates (C) and the mean relative error on diversification
rates (speciation - extinction, D) for 5 replicates, the red dotted line show the target values. White boxes show
the values inferred with the pure birth model, gray boxes those inferred with the birth death model. The scenarios
are:1) high heterogeneity and decreasing rates: λ0 = 0.1, σ = 0.7, α = 0.7 (mean relative change m = 0.9), 2) no
heterogeneity and constant rates (equivalent to constant rate birth-death trees): λ0 = 0.1, σ = 0, α = 1 (mean
relative change m = 1) 3) Low heterogeneity and no average change in rate at speciation: λ0 = 0.1, σ = 0.2, α = 0.98
(mean relative change m = 1) 4) Low heterogeneity and decreasing rates: λ0 = 0.1, σ = 0.2, α = 0.88 (mean relative
change m = 0.8).
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Chapter 3 : On bipartite ecological interactions and their impact
on species richness

Ecological interactions are a major source of selection pressure, and are thus likely to have
played an important part in past diversification. Yet, very few modeling studies have looked at
the simultaneous emergence of communities composition and their interactions structures. In this
chapter, I present a mechanistic individual-based model, in which individuals from two interacting
guilds die, reproduce and accumulate mutations, eventually leading to the formation of new species.
The reproductive success of an individual depends on its interaction with the individuals from the
other guild. Our model allows the simultaneous emergence of the community composition – in terms
of number of species with their trait distributions and abundances–, and community structure –
in terms of network shapes, thus accounting for potential eco-evolutionary feedbacks. It provides
the additional advantages to put neutral, antagonistic and mutualistic interactions within a same
framework, enabling for direct comparison of the resulting patterns. We studied the behavior of
the model through simulation for a large parameter set, in the case of antagonistic, mutualistic and
neutral communities, for different niche widths. Consistently with previous modeling works, we find
that, compared to neutral interactions, antagonistic interactions promotes diversity, both in terms
of trait and species richness, while mutualistic interactions decrease both diversity measures. This
result can be explained by the strong stabilizing selection existing for mutualistic communities in
our model, while there is an advantage for resource species with rare trait values in antagonistic
communities. The obtained network structure patterns are consistent with what is observed in em-
pirical data. All networks tend to display nested structure because of the skewed species abundance
distribution, but while trait-matching association rules create a modular structure in antagonistic
communities, this does not happen for mutualistic ones, in which trait values are fairly constrained.
This overall results in antagonistic communities being more modular and less nested than mutual-
istic ones. Our results thus globally shows that present communities structures are well explain by
simple evolutionary mechanisms that are rarely accounted for when studying ecological networks.

This Chapter corresponds to a work done during this PhD together with Nicolas Loeuille and
Hélène Morlon. The manuscript is in preparation and will soon be ready for submission.
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An individual based model for the emergence of bipartite
ecological networks

Odile Maliet, Hélène Morlon, Nicolas Loeuille

Abstract

Previous theoretical and empirical studies have shown that the structures of ecological interaction net-
works allowing to maintain a stable and diverse community depend on the nature of the interaction at play.
Yet how such structures emerge and are affected by species coevolution at evolutionary time scales remains
unclear. Here we build an individual-based eco-evolutionary model for the emergence of mutualistic, antag-
onistic and neutral bipartite interaction networks. We explore how the type of interaction influences the
diversity and structure of the network, as well as the evolutionary conservatism of interaction partners. We
find that antagonistic interactions foster species and trait diversity, while mutualistic interactions do not.
In antagonistic scenarios, the resulting networks are more modular and less nested than neutral ones, likely
due to a higher specialization in both guilds; resource species in these networks often display a phyloge-
netic signal in interaction partner. In mutualistic scenarios, stabilizing selection leads to networks that are
less modular and more nested, with low phylogenetic signal in interaction partners. We discuss how these
network properties compare to empirical observations.

Manuscript

In ecological communities, species are generally not isolated but interact with many others,
through competition, antagonistic (such as prey predator, host parasite. . . ) and mutualistic inter-
actions (such as plant pollinator, seed dispersal . . . ). Empirical studies have repeatedly shown that
the structure of networks representing bipartite interactions is highly non-random, and depends on
the interaction at play. Antagonistic networks often display a modular structure, with subsets of
species interacting more strongly among each other than with the rest of the community (May,
1972; Krause et al., 2003). In contrast, mutualistic communities more often display a nested struc-
ture, characterized by the fact that specialist species preferentially interact with generalist ones
(Thébault and Fontaine, 2010; Lewinsohn et al., 2006; Bascompte et al., 2003; Jordano et al., 2003;
Rohr et al., 2014).

Many studies have sought to explain the non-random structure of species interaction networks,
a large number of them showing that it increases stability. In a community where species interact
at random, diversity is known to have a negative impact on stability (May, 1972; Krause et al.,
2003; Jordano et al., 2003; Montoya et al., 2006) but nonrandom network structures are known to
counteract this effect. Theoretical studies have shown that the structure allowing the maintenance
of a diverse community is dependent on the nature of interactions at play (Fontaine et al., 2011).
In a randomly assembled network, community dynamics lead to nonrandom local extinctions that
increase modularity in antagonistic communities and nestedness in mutualistic ones (Thébault and
Fontaine, 2010). The persistence of species is increased in nested mutualistic networks, especially
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when adaptive foraging is allowed (Valdovinos et al., 2016). Similarly, nested mutualistic networks
broaden range of ecological parameters (interaction and competition strength, population growth
rates) for which species can coexist (Rohr et al., 2014; Saavedra et al., 2016; Grilli et al., 2017).

A second family hypothesis to explain nonrandom, interaction dependent structures, relies on
variations in species traits. In simulating studies, traits were either assigned to species at random
(Santamaría and Rodríguez-Gironés, 2007) or evolved on empirical phylogenies with a brownian
model (Rezende et al., 2007). The authors showed that both phenotypic difference and pheno-
typic complementarity interaction rules can lead to network that are more nested than random
assemblages, especially if several traits are involved.

Finally, the neutrality hypothesis emphasizes the importance of species abundance distributions.
If individuals interact at random with one another, asymmetrical species abundances distributions
result in nested networks, because individuals from rare specialist species are more likely to meet
and interact with individuals from abundant generalist species (Vázquez, 2005; Vázquez et al., 2009;
Santamaría and Rodríguez-Gironés, 2007; Krishna et al., 2008; Staniczenko et al., 2013; Coelho and
Rangel, 2018). A consequence of this observation is that the nestedness that is commonly observed in
mutualistic networks do not need to rely on interaction-specific component, while the often observed
modularity of antagonistic networks cannot be explained by neutral processes alone.

Studies seeking to explain the non-random structure of species interaction networks have rarely
focused on the emergence of such structures over evolutionary time scales. Rather, they have fixed
the ecological context, assuming a given network structure (Thébault and Fontaine, 2010), species
number, species abundance distribution (Nuismer et al., 2013) or trait distribution (Santamaría
and Rodríguez-Gironés, 2007), disregarding eco-evolutionary feedback loops that may affect such
structures through changes in species trait or density. A few recent modeling studies have looked
at the emergence of the community and network structure, but they consider neutral dynamics
and thus do not allow to study the differences between mutualistic and antagonistic communities
(Poisot and Stouffer, 2016; Coelho and Rangel, 2018). How different community structures emerge
and are affected by species coevolution remains unclear. Species coevolution affects the feasibility
and strength of interactions, which creates opportunities for eco-evolutionary feedback loops. For
instance, evolution of specialization degree (Egas et al., 2004; Rueffler et al., 2006) based on adap-
tive foraging constraints (eg, Kondoh, 2003; Valdovinos et al., 2016) directly affects the distribution
degree within the network thereby changing its nestedness. Thus, we may expect different evolu-
tionary signatures for different interaction types, as observed in present day data (Krasnov et al.,
2012; Fontaine and Thébault, 2015).

Coevolution is also expected to impact species diversity, which might in turn influence the
interaction structure of the community. Different hypotheses imply an effect of species interactions
on diversity (Ehrlich and Raven, 1964; Van Valen, 1973; Hembry et al., 2014). A previous modeling
study for instance suggests that eco-evolutionary dynamics under antagonistic interactions leads to
higher diversity while mutualistic ones are more likely to impede diversity (Yoder and Nuismer,
2010). This study however focuses on trait diversity and the effect of different interaction types
on species diversity remains to be explored. An empirical test of the role of interaction type on
diversification is very difficult to perform, but many empirical observations suggest that antagonistic
communities are indeed very diverse (e.g. the high diversity of plant defense strategies, Futuyma
and Agrawal, 2009), while only a few such observations exist for mutualistic communities (Hembry
et al., 2014).

Here we present an individual based eco-evolutionary model allowing the emergence of mutu-
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alistic, antagonistic and neutral bipartite interaction networks. The model consists of two guilds
interacting on a grid, with individual fitness determined by the difference between its trait and that
of the individual it interacts with. Starting from a single monomorphic species in each guild, the
model allows the network structure to emerge. We characterize how different key components of
community structure, such as diversity and network modularity and nestedness, vary depending on
the interaction type and strength we assume, and how the signature of coevolution can be seen in
the phylogenetic signal in interaction partners in the different scenarios. Our model is complemen-
tary to previous works as it (1) allows the simultaneous emergence of network structures and trait
distributions through eco-evolutionary dynamics; (2) allows to consider alternatively antagonistic
or mutualistic interactions within a single framework, thus allowing a direct comparison; (3) defines
explicitly species, so that it is possible to link emergent network properties and phylogenetic signals.

Methods.

An individual-based model for the eco-evolutionary emergence of interaction networks.
We consider a grid of size nx×ny , in which there are individuals from two different guilds (guild

A and B). Each cell is occupied by one individual of each guild. Each Individual is characterized
by a three-dimensional trait value x that determines the effect on its fitness of the interaction with
the co-occurring individual from the other guild. The three dimensions were chosen because of
a previous study showing that ecological networks are best described by traits with several yet
few dimensions (Eklöf et al., 2013), and multidimensional traits are likely to have evolutionary
dynamics qualitatively different from one-dimensional ones (Gilman et al., 2012; Ispolatov et al.,
2016). Interactions constrained by trait matching are widely observed, as for instance proboscis and
floral tube length, color preferences, matching organism sizes or phenology in mutualistic interactions
such as plant-pollinator networks and presence of metabolic compounds and the ability to metabolize
those in antagonistic interactions such as plant-herbivore networks. We thus use a classical trait
matching expression for individual fitness whereby the effect of the interaction is maximal when the
traits of the two interacting individuals are identical. For mutualistic interactions, the fitnesses of
the individual of both guilds are increased for close trait values (equation (13)) ; for antagonistic
interactions, the fitnesses of ndividuals from the consumer clade are increased for close trait values
while those of the resource guild are decreased (equation (14)). The interaction change in individual
fitness is given by a Gaussian function with standard deviation 1/α. α thus measures the degree
of specialization, with higher α values reflecting more specialized species. The fitness function is
further parametrized by a parameter r that measures the ratio between the maximum and minimum
fitness. Higher r values thus reflect larger effects of trait values on fitness.

This gives the following expressions:
- In the mutualistic case:

WA(xA, xB) =
1

rA − 1
+ e−‖xA−xB‖

2×(α2
A/2)

WB(xA, xB) =
1

rB − 1
+ e−‖xA−xB‖

2×(α2
B/2)

(13)

- In the antagonistic case (A being the resource guild and B the consumer guild):
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WA(xA, xB) =
1

rA − 1
+ 1− e−‖xA−xB‖2×(α2

A/2)

WB(xA, xB) =
1

rB − 1
+ e−‖xA−xB‖

2×(α2
B/2)

(14)

The neutral case is obtained by tacking α = 0 in the mutualistic fitness (tacking α = 0 in the
antagonistic version would yield to identical simulations since only the relative fitness (individual
fitness/ maximal individual fitness) has an effect in our model).

At each time step we update the grid as follows:

• We select one individual from guild A at random and kill this individual. We record the trait
value xB of the individual of guild B present on this cell.

• We compute the fitness of all individuals of guild A present in the grid, should it interact with
an individual of trait xB .

• We select an individual from guild A to replace the killed one with probabilities proportional
to the individual fitnesses. To make the model spatially explicit (which is not the case in this
study), it would here be possible to select the individual with a probability proportional to
the individual fitness time a dispersion kernel.

• The new individual from guild A has a probability µA to mutate, in which case its new trait
is drawn in a (multivariate) normal distribution centered on the parent trait with standard
deviation 1 (All trait values are thus scaled to the mutation size, which is the same for both
guilds. Replacing it by a parameter sigma would be equivalent to dividing αA and αB by
sigma). If no mutation occurs, the new individual inherits the trait value from its parent.

• We repeat the previous steps for guild B.

• We record the genealogy obtained in each of the two guilds, as well as the mutations that
occurred on this genealogy.

Based on the resulting genealogies with mutations, we define species following the model of
Speciation by Genetic Differentiation (Manceau et al., 2015), except that we allow the number of
mutations s needed to belong to the same species to vary (in a way that is reminiscent of (Rosindell
et al., 2015). Species are thus the smallest monophyletic group of individuals from the genealogy
such that two individuals separated by less than s mutations belong to the same species. With this
species definition, we obtain the resulting species-level phylogenies as well as an explicit partitioning
of intraspecific and interspecific trait variations.

The interaction network is defined at the scale of the entire grid and is based on individuals’
co-occurrence: we consider that two individuals interact if they co-occur in the same cell. Next,
at the species level, we consider both a quantitative and a binary network. For the quantitative
network, we take the strength of the interaction between two species to be the number of pairs
of individuals of these species interacting together. For the binary network, we consider that two
species interact if at least one pair of individuals of these species interact (that is if their interaction
strength in the quantitative network is nonzero). An interaction network in our model thus results
from the cumulative effects of smaller scale interaction events (as in for example in Pillai et al.,
2011).
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Figure 1: Example of a model run for one mutualistic (panel A) and antagonistic case (panel B). In
each panel the upper row shows the evolution of trait distribution (in a three-dimensional trait space, point color
representing the third trait dimension). The lower row shows the corresponding interaction networks, with darker
links corresponding to interactions of higher strength, and associated phylogenies, with branches colored according
to the value of the trait’s third dimension.
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Analyzing emerging patterns.
In order to explore how the type of interaction influences the diversity and structure of the

network, as well as the evolutionary conservatism of interaction partners, we run the model for 4e6
death events for the following parameters:

• 4000 individuals

• µA = µB = 0.05

• rA = 10

• rB = +∞

• αA and αB in 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

At the end of each simulation, we build the resulting phylogenies and interaction networks using
6 different species definition thresholds s (s = 1, 2, 5, 10, 20 and 50). Next, we compute diversity
both in terms of species richness and trait diversity, measured as the variance in trait values on each
trait dimension. We compute network nestedness using the weighted (for quantitative networks,
method = “weighted NODF” in the nested function of the R-package bipartite (Almeida-Neto and
Ulrich, 2011; Dormann et al., 2008)) and unweighted (for binary networks, method = “NODF2”
in the nested function of the R-package bipartite) NODF metric (Almeida-Neto et al., 2008). We
compute modularity on quantitative and binary networks with the function computeModules from
the bipartite package (quanBiMo algorithme, (Dormann and Strauss, 2014)). We compare the
resulting binary nestedness and modularity values to the distribution of values obtained for a null
model in which the network connectance is kept constant (method “shuffle.web” in the function
nullModel from the bipartite R package, that only works for binary networks, called NM1 in the
following text). Both the binary and quantitative nestedness and modularity were compared to
those obtained under a null model in which row and column sums of the interaction matrix are kept
constant, using the method “r2d” in the function nullModel from the bipartite R package (NM2
in the following text). Finally, we compute the phylogenetic signal of interaction partners using a
Mantel test that assesses the significance of the correlation between the phylogenetic distance of two
species (the length of the path between these species in the phylogeny) and the dissimilarity of their
interaction partners, measured as the (weighted) fraction of unshared phylogenetic branch length
between the two sets of interaction partners (computed using quantitative uniFrac (Lozupone et al.,
2007), “d_1” in the function GUniFrac from the R package GUniFrac (Chen, 2012)). We used a
phylogenetic metric for the dissimilarity of interaction partners to limit the effect of the threshold
used for species definition on our results. Results with a non-phylogenetic metric were qualitatively
similar, although significance was obtained for fewer networks (Supplementary Figures).
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Results.
Figure 1 shows two typical simulations (one mutualistic, the other antagonistic), illustrating

simultaneously the variations in time of trait values and of network structures and outlining the
main results.

Trait diversity. In mutualistic scenarios, trait values stay fairly constant throughout the simu-
lation (Fig. 1A) and trait diversity is always lower than trait diversity in the neutral case in our
simulations (Fig. 2A). This is due to the stabilizing selection that maintains species trait from one
guild close to the traits of species from the other guild in those scenarios. Trait variance within a
guild only depends on that guild niche width (Fig. 2A & Fig. S1A). The correlation between the
traits of interacting individuals is slightly positive but stays very low (Fig. 2B). On this figure, we
show the results obtained for the first trait dimension. The behavior of the model is identical in
each dimension, so results were similar for the other two trait dimensions (results not shown).

For antagonistic scenarios, clusters of traits progressively emerge from the co-evolutionary dy-
namics (Fig. 1B). A broad parameter range leads to a trait diversity higher than in the neutral
case in both guilds (Fig. 2A), and trait diversity is consistently higher than the one observed in
mutualistic scenarios. The diversity is very similar between the two guilds, increases with both niche
widths but collapses when consumers have a larger niche than resources (Fig. 2A & Fig. S1A). The
traits of interacting individuals are positively correlated (Fig. 2B).
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Figure 2: Measures of diversity. A : Log-
arithm of the variance of the first dimension of
the species trait in 6 example scenarios. The blue
area shows the values taken in the neutral case
(range of values, quartiles and median). Yellow
boxplots show the result for the guild A, green
boxplots show the result for guild B. Antagonis-
tic scenarios commonly lead to more trait vari-
ability than in the neutral case, while mutualistic
scenarios always display a lower variability than
in the neutral case. B : Correlation of the first
dimension of the traits of the interacting indi-
viduals. Traits are consistently positively corre-
lated in antagonistic scenarios, and correlation
values stay pretty low in mutualistic ones. C :
Species number in each guild for a species def-
inition threshold s = 1. Diversity is higher in
antagonistic scenarios than in mutualistic ones
but always stays bellow that obtained for neu-
tral scenarios. D : Species number in each guild
for a species definition threshold s = 50. Di-
versity is higher in antagonistic scenarios than
in mutualistic ones, and a few antagonistic sce-
narios display a diversity that is higher than in
neutral simulations.
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Species diversity. Globally, patterns of species diversity are largely consistent with observed
variations in trait distributions described above. The emergence of network structure shows a lower
species diversification in mutualistic networks (Fig. 1A) compared to antagonistic networks (Fig.
1B). For species richness, global comparison of mutualistic vs antagonistic scenarios shows that
diversity is systematically larger in antagonistic scenarios, regardless of the species definition (Fig.
2C, 2D).

In mutualistic scenarios, the species number is always lower than that in the neutral case,
whatever the niches width 1/α, and the results are qualitatively identical for all or species definition
threshold s (Fig. 2C, D). As for trait diversity, the number of species within a guild mostly depends
on its own niche width (Fig. 2C,D & Fig. S1C,D). When the niche of the clade under consideration
becomes large, individuals have approximately the same fitness regardless of who they are interacting
with. As trait matching becomes less influential, the behavior gets close to the one of the neutral
case. But when their niche is narrow the strong stabilizing selection inhibits speciation.

In antagonistic scenarios, results depend on the species definition threshold s. For a low s,
species number is always lower than that in the neutral case (Fig. 2C). Only the niche width of
the consumer affects the level of diversity, with species number increasing with the consumer niche
width, as in the mutualistic scenarios. Resource species number is identical in all scenarios, and
similar to what we get in the neutral case. The niche width of resource species has no impact of
the species number of both clades (Fig. S1C).

For a higher s (around 50, Fig. 2D), there are parameter values for which species diversity is
higher than in the neutral scenario. This happens in cases where the width of the resource fitness
equals or fall below that of the resource fitness, and resource fitness width has an intermediate value
(Fig. 2D, S1D). For such a high species definition threshold, both guild display very similar species
number, with a few more species for the resource guild.
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Figure 3: Networks metrics for a species
definition threshold s = 1. A : Weighted
modularity and nestedness values for all simu-
lations. A point shows the values for one sim-
ulation, the point color indicate the interaction
type (blue : neutral ; red : antagonistic ; green :
mutualistic). The networks that have high nest-
edness values are mostly mutualistic ones, while
those with high modularity values are mostly
antagonistic ones. B : Z-values for the binary
NODF corrected by null model NM1 (see meth-
ods) for 6 example scenarios. The blue area
shows the values taken in the neutral case (range
of values, quartiles and median). All networks
are significantly nested. C : Z-values for the
weighted NODF corrected by null model NM2.
In this case almost no networks are significantly
nested, and a large proportion of antagonistic
networks are significantly anti-nested. D : Z-
values for the quantitative modularity corrected
by null model NM2. Most of the antagonistic
networks are significantly modular, while mutu-
alistic networks have modularity values close to
those of the null model.
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Network structure. Typical dynamics (as shown on figure 1) lead to a modular network for
antagonistic scenarios (Fig. 1B) while eco-evolutionary dynamics under mutualistic interactions
typically lead to highly nested structures (Fig. 1A). When we look at network metrics without any
comparison to a null model, most networks have higher nestedness values than those in the neutral
case were generated in mutualistic scenarios, while most of those that have higher modularity values
than those in the neutral case were generated in antagonistic scenarios (Fig. 3A).

For all scenarios (including the neutral one), networks are significantly nested when compared
to the null model that only conserve connectance (NM1). Z-values are very high (Fig. 3B) and
mostly depend on the diversity of the community, with more diverse communities getting higher
Z-values.

In the neutral case, we never get significantly modular networks (compared to the values ob-
tained with the neutral model that corrects for abundance, NM2). For antagonistic scenarios, most
networks are significantly modular. For mutualistic ones, networks are significantly modular only
when the obligate mutualist fitness width is less than a tenth of the facultative mutualist fitness
width, all the other scenarios leading to non-significantly modular networks (Fig. 3D, Fig. S2D).

When nestedness is compared to that of the neutral model that corrects for species abundances
(NM2), the pattern is opposite to what we see for modularity (Fig. 3C vs Fig. 3D). Networks that
are significantly modular are significantly anti-nested (ie their NODF values are significantly lower
than those obtained with the null model), and network that have non-significant modularity values
also have non-significant nestedness values. Thus, when compared to the neutral case, evolved
antagonistic networks most often exhibit a modular, anti-nested structure, while the reverse is most
often observed for mutualistic networks (Fig. 3C, Fig. S2C).

Phylogenetic signal. In the two example dynamics shown on figure 1, note that the emergent
network structure is highly linked to the emergent phylogenies. Compartment in the antagonistic
network structures are strongly determined by phylogenies (Fig. 1B). Conversely, in the mutualistic
case, interactions are less systematically linked to phylogenies (Fig. 1A). Such observations hold
more generally (Fig4A). In mutualistic communities, the phylogenetic signal in interaction partner
is weak for all scenarios and species definition threshold for both guilds (Fig. 4B). In antagonistic
communities, a signal in interaction partner is more commonly observed (Fig. 4A,B). It is stronger
for resource species than for consumer species (Fig. 4B). For both guilds, phylogenetic signal is
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Figure 4: Phylogenetic signal in interaction partners. A : Mantel correlation for all simulations. A point shows
the values for one simulation, the point color indicate the interaction type (blue : neutral ; red : antagonistic ; green
: mutualistic). B : Mantel p-value for 6 example scenarios. The blue area shows the values taken in the neutral case
(range of values, quartiles and median). Yellow boxplots show the result for the guild A, green boxplots show the
result for guild B.
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higher for an intermediate consumer guild fitness width, and increases with the resource guild
fitness width (Fig. 4B, Fig. S3B).

Discussion.
Among the metrics we look at, many show a clear difference between values obtained for the dif-

ferent interaction types. Modulating the niche widths of both guilds leads to quantitative differences
but the qualitative patterns hold for a large range of the parameter space and general conclusions
could be drawn.

In antagonistic simulations, trait diversity was larger than in neutral simulations, as well as
species richness in many cases, consistent with previous empirical and theoretical studies (Ehrlich
and Raven, 1964; Yoder and Nuismer, 2010; Janz, 2011). In North American milkweeds for ex-
ample, investment in defense traits resulted in higher diversification rates (Agrawal et al., 2009).
On the contrary, both diversity measures (trait diversity and species richness) were decreased by
the presence of mutualistic interactions when compared to the neutral scenario. Even though an
empirical test that mutualism decreases diversity is hard to come up with, in particular because
all natural systems include many different interactions, those results are consistent with theoretical
studies (Yoder and Nuismer, 2010) and several empirical examples (for a review, see Hembry et al.,
2014). In Yucca-moth interaction for instance, it has been shown that specialized pollination does
not increase Yucca diversification (Smith et al., 2008). In another paper, Armbruster and Muchhala
(2009) showed that, in several groups of angiosperms, it is diversity that promotes floral special-
ization – through character displacement – rather than the reverse. Yet other empirical systems
support a positive impact of mutualistic interaction on diversification, such as is the case for fig-wasp
interactions (Cruaud et al., 2012). Our model makes the strong hypothesis of fixed population sizes.
Mutualistic interaction may heighten the density a community can sustain through more efficient
feeding and reproduction, or open new adaptive zones, leading to a diversity begets diversity kind of
mechanism (Emerson and Kolm, 2005; Joy, 2013). In the case of pollination, mutualistic interaction
can also facilitate reproductive isolation (van der Niet and Johnson, 2012). Finally, we considered
a non-spatial model, but communities are integrated in a geographical context and it may also be
that geographical isolation is necessary for mutualism to promote speciation (Thompson and Cun-
ningham, 2002; Kay and Sargent, 2009). Our results suggest that it is unlikely for diversity to be
increased by mutualistic interactions without the help of this kind of mechanisms.

The choice of the null model has a dramatic impact on the conclusions that can be drawn for
network structure patterns. When compared to the null model in which only the total connectance
was constrained (NM1), all our binary bipartite networks showed a strong nestedness signature. Yet
when they are compared to the null model in which species abundances are kept constant (NM2), the
nestedness values are either unsignificant or below those obtained for the null model. It is important
to remark that NM2 is equivalent to randomly reassigning a position on the grid for all individuals
without looking at their trait values, which is also how networks are built in our neutral simulations.
Using this null model is a way to correct for species abundances. All the nestedness signal we see
in our simulations thus comes from the uneven species abundances distribution, in agreement to
the neutral hypothesis (Vázquez, 2005; Vázquez et al., 2009; Santamaría and Rodríguez-Gironés,
2007; Krishna et al., 2008; Staniczenko et al., 2013; Coelho and Rangel, 2018). Most empirical or
theoretical studies that found significant netstedness in bipartite networks did not use a null model
correcting for species abundances (Thébault and Fontaine, 2010; Lewinsohn et al., 2006; Bascompte
et al., 2003). But studies that do correct for it do not find a clear nested pattern (Vázquez, 2005;
Staniczenko et al., 2013; Canard et al., 2014).
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The differences in network structure we get between antagonistic and mutualistic communities
are consistent with empirical observations. In our antagonistic simulations, reciprocal specialization
is common between interaction partners, leading to a positive correlation between the interaction
partner traits. The identity of the partner thus depends on the traits values as well as on chance,
decreasing the nestedness values (compared to those in NM2) and leading to positive modularity
Z-values (compared to NM2).

In mutualistic simulations, because trait diversity stays low compared to the fitness width, the
interaction partner identity is mostly due to chance (which we can see in the low correlation values
between interaction partners’ traits in mutualistic simulations), and networks structure stay close
to that of neutral interaction networks (and to that of networks from NM2), both for nestedness
and modularity. It is remarkable that most of the neutral bipartite interaction model were built to
explain the structure of mutualistic rather than antagonistic networks (Vázquez 2005, Santamaría
and Rodríguez-Gironés 2007, Krishna et al. 2008, Coelho and Rangel 2018, but see Canard et al.
2012, in which they find nestedness values in their neutral model that are in the upper range of their
empirical values). Here we show that evolutionary dynamics leads to nested interaction structure in
mutualistic communities that are close to those obtained in neutral communities, even though the
evolutionary outcomes (species number, trait diversity. . . ) are much different between mutualistic
and neutral communities. That being said, we do find raw nestedness values that are higher in
mutualistic scenarios than in neutral (and antagonistic) ones, in a similar way that what can be
seen for empirical bipartite networks (Thébault and Fontaine, 2010; Fontaine et al., 2011).

We get different phylogenetic signals in interaction partners for different interaction types. Be-
cause traits values are only of marginal importance for the choice of the interaction partner in
mutualistic scenarios, given the restricted evolved trait range, the phylogenetic signal in interaction
partner stays low compared to what we see in antagonistic scenarios. In those scenarios, resource
species generally show a strong signal in interaction partners, while the signal is positive but have
lower significance for consumer species. This is once again in accordance to what has been found
in empirical communities (Krasnov et al., 2012; Fontaine and Thébault, 2015). In plant herbivore
systems, the stronger conservatism seen in plants has sometimes be interpreted as a consequence
of the fact that chemical defenses are difficult to evolve and thus much constrained (Fontaine and
Thébault, 2015), but in our model we get to a similar pattern without making the assumption
of different evolutionary rates among guilds. One of the possible explanation is that for resource
species it is always beneficial to change trait to avoid consumption. Only the few directions in trait
space in which there are consumers must be avoided, but these represent a very small proportion
of the possibilities (this would not be the case in a one-dimensional trait space). But for consumer
species, there is a selection pressure to go toward existing resource species, so it is not uncommon to
see convergence in traits, even between rather phylogenetically distant species (host shifts), which
weakens the phylogenetic signal.
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Supplementary figures for Chapter 3
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Figure S1: Measures of diversity. A : Logarithm of the variance of the first dimension of the species trait in
6 example scenarios. The blue area shows the values taken in the neutral case (range of values, quartiles and
median). Yellow boxplots show the result for the guild A, green boxplots show the result for guild B. Antagonistic
scenarios commonly lead to more trait variability than in the neutral case, while mutualistic scenarios always display
a lower variability than in the neutral case. B : Correlation of the first dimension of the traits of the interacting
individuals. Traits are consistently positively correlated in antagonistic scenarios, and correlation values stay pretty
low in mutualistic ones. C : Species number in each guild for a species definition threshold s = 1. Diversity is higher
in antagonistic scenarios than in mutualistic ones but always stays bellow that obtained for neutral scenarios. D :
Species number in each guild for a species definition threshold s = 50. Diversity is higher in antagonistic scenarios
than in mutualistic ones, and a few antagonistic scenarios display a diversity that is higher than in neutral simulations.
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Figure S2: Networks metrics for a species definition threshold s = 1. A : Weighted modularity and nestedness
values for all simulations. A point shows the values for one simulation, the point color indicate the interaction type
(blue : neutral ; red : antagonistic ; green : mutualistic). The networks that have high nestedness values are mostly
mutualistic ones, while those with high modularity values are mostly antagonistic ones. B : Z-values for the binary
NODF corrected by null model NM1 (see methods) for 6 example scenarios. The blue area shows the values taken
in the neutral case (range of values, quartiles and median). All networks are significantly nested. C : Z-values for
the weighted NODF corrected by null model NM2. In this case almost no networks are significantly nested, and a
large proportion of antagonistic networks are significantly anti-nested. D : Z-values for the quantitative modularity
corrected by null model NM2. Most of the antagonistic networks are significantly modular, while mutualistic networks
have modularity values close to those of the null model.
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Figure S3: Phylogenetic signal in interaction partners. A : Mantel correlation for all simulations. A point
shows the values for one simulation, the point color indicate the interaction type (blue : neutral ; red : antagonistic ;
green : mutualistic). B : Mantel p-value for 6 example scenarios. The blue area shows the values taken in the neutral
case (range of values, quartiles and median). Yellow boxplots show the result for the guild A, green boxplots show
the result for guild B.
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General discussion

1 Various modeling approaches to study biodiversity evolution.
In the previous chapters, I have presented my work on diversification. Each of them propose a

different approach, all model-based, but the model types are very different in nature.
In Chapter 1, we propose a model that generates ranked tree shapes endorsed with relative

abundances at their tips. The model has three parameters – β, controlling for tree balance, α,
controlling for node order within the tree, and η, controlling for the relation between clades age
and richness – but does not propose a biological process for generating those shapes. We study
the effect of the different parameters on the relation between species extinction and phylogenetic
diversity loss – the phylogenetic diversity (PD) of a group of species is the sum of the branch lengths
of the phylogeny that encompass those species. We propose a method to infer our model parameters
on empirical phylogenies, test it on a simulated data set and eventually apply it to a data set of
family level bird phylogenies.

In Chapter 2, we propose a lineage-based diversification model with non-homogeneous diver-
sification rates. Lineages are characterized by their own speciation and extinction rates, and at
each speciation events, the two daughter lineages get new diversification rates sampled in a law
that depends on the rates of their parent lineage. We here again propose an inference procedure to
determine the more likely model parameters that could have generated a given phylogeny, among
which the mean change in speciation rate and the variability of the new rates distribution. This also
enables to ‘paint’ the branches of phylogenies with their most likely speciation rates, highlighting re-
gions in the tree that diversified at different tempos than the rest of the clade. Applying the method
to bird phylogenies, we show that the within-clade variability in speciation rates is comparable to
the between-clades variability in speciation rates in this data set.

Finally, Chapter 3 presents an individual-based model with two interacting guilds, aiming at
studying the effect of distinct bipartite interactions on the diversification process. In this model,
individuals are characterized by trait values, and their fitness depends on the difference between
their own trait and that of the individual of the other guild they are interacting with. The inter-
action type is determined by whether having a trait close to that of the interactor is advantageous
or disadvantageous. Individuals die at random, and reproduce to replace dead individuals with
probability depending on their fitness value. Mutation in the trait value may occur at a reproduc-
tion event, and accumulating mutations eventually results in speciation. We studied the effect of
our model parameters, and especially interaction type and the width of the interaction niche, on
different summary statistics of the system at stable state. Those include species and trait diversity,
interaction network nestedness and connectance, and phylogenetic signal in interaction partners.
Antagonistic communities are more diverse – both in terms of species and trait diversity –, more
modular and less nested in our simulations than mutualistic ones, in agreement with what can be
observed from empirical data.

The three models present a gradation in how finely processes are being described and imple-
mented, and on the level of organization that it focuses on. The first two models aim at describing
patterns at different levels. The ranked tree shape model (in Chapter 1) is looking at the general
shape of the phylogeny, and offers a way to describe it. Although those kinds of non-mechanistic
models do not attempt to discriminate between diverse biological processes, they allow to quantify
patterns in the data – here the clades age-richness relationship – and to highlight mismatches be-
tween the data and what would be expected under given hypothesis – as is the case here in our bird
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data set, in which α values cluster around 0, that should be compared to the value of 1 expected
from an homogeneous speciation process. One of the possible explanations for this deviation from
the Yule model expectation would be the presence of rate heterogeneity between the lineages in
the phylogenies (this can be illustrated by the fact that in our model from Chapter 2, adding rate
stochasticity make α estimates go from 1 to 0, Fig. 1b).
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Figure 1: Age-richness index α from Chapter 1 of trees simulated with the ClaDS model of Chapter
2. Simulations are performed for with a common σ = 0.8 and varying m (a) or with a common m = 0.9 and varying
σ (b), and two turnover rate values (ε = 0.1, orange boxes; ε = 0.9, blue boxes). For all simulations, λ0 = 0.1, and
phylogenies are conditioned by their final tip number N = 100. In empirical phylogenies, we found α values clustering
around 0 (gray lines). A similar value can be obtained with the ClaDS model when rates are increasing at speciation
events (high m a) or when the speciation rates are highly variable (high σ values, 1b).

In the heterogeneous speciation model (Chapter 2), the focus level is that of lineages. Contrary
to the first model, it refers to biologically meaningfull events – speciation, extinction, rate changes,
and can thus been viewed as a mechanistic model. However no hypothesis is formulated about the
finer scale processes that can result in events happening to lineages, and no biological explanations
are proposed. As is the case in the first model, the aim is rather to describe and quantify the patterns
observed in empirical phylogenies, even though the ultimate motivation would be to understand the
underling biological reason for these changes in rates. The method also provides a characterization
of tree-level properties, through the estimation of the rate stochasticity σ and trend in rate changes
α. The model is able to generate phylogenies with very different shapes. Importantly, it is able to
generate tree shapes close to those observed in nature, in terms of imbalance, tippiness (quantified
with β and γ, see Fig. S1 and S2 in the Supplementary Material for Chapter 2), and clades’
age-richness correlation (Fig. 1).

While the first two model are introducing ways to describe and characterized heterogeneity in
diversification rates, the last model (Chapter 3) aims at proposing a mechanism to explain the
patterns observed in empirical data. The focus level of organisation is that of individuals, which
makes it straightforward to include more complex, ecological mechanisms that what is allowed from
the modeling choices made in Chapters 1 and 2. The model enables to simulate data, which can
then be compared to our empirical knowledge of the system. The comparison to empirical patterns
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is done here in a qualitative way – we observe general tendencies for the studied metrics that
are in accordance with the differences observed between mutualistic and antagonistic interaction
networks in nature. Because we do not have a likelihood function in this case, a more quantitative
analysis would have to be performed through the use of approximate methods like Approximate
Bayesian Computation (ABC), but the time needed to simulate the model would prevent to use
this approach in our case. Furthermore, being able to find the best parameter set that fits a
dataset would doubtfully be of little use here: we certainly do not believe our model to reproduce
mechanisms in a realistic way, but we want to evaluate whether simple evolutionary mechanisms
suffice to explain general tendencies observed in ecological communities.

2 Limitations and perspectives.

2.1 Goodness of fit.
Fitting a single model to data does not guarantee that it is indeed a good model for those data.

This is also true when selecting model among a set of candidates, which gives the best model of the
set, with no guarantee that it is a good one. If the model is well suited to our data, we would expect
it to be able to generate data that are similar to ours. A standard approach is to compare the
divergence from model predictions by generating simulated data with the model and quantifying
how they differ from the actual data regarding key summary statistics. The significance of the
deviation between the data and model prediction can be assessed using p-values – computed as the
proportion of the simulations in which the summary statistic was higher than the observed value –,
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Figure 2: Posterior predictive distributions of 6 summary statistics for the model in Chapter 2 applied
on the phylogeny of Alcedinidae (kingfishers). The histograms show values obtained from 1000 simulations
from the posterior predictive distributions. Simulated trees are conditionned on their crown age. The statistics
shown are the γ statistic (tree tippiness), the β statistic (tree imbalance), the α statistic from our model in Chapter
1 (age-richness index), the logarithm of the number of tips in the tree, and the phylogenetic diversity (PD, sum of
all branch lengths in the tree). The red vertical line shows the value for the empirical phylogeny.
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but it is often more informative to plot the observed value against the reference distribution. In the
frequentist framework, data are simulated with the model using the Maximum Likelihood Estimates
for the parameter values. In the Bayesian framework, this approach is known as posterior predictive
checks (Gelman et al., 1996), and data are simulated with the generating model with parameters
sampled from the posterior distribution.

In figure 2, we provide an illustration of this approach for the method in Chapter 2 and one of
the bird trees that were used to illustrate the method in this chapter, the phylogeny of Alcedinidae
(kingfishers). The models parameters (rate stochasticity σ, trend in rate changes α, species turnover
rate ε, initial speciation rate λ0) are sampled from the MCMC chains, a phylogeny is simulated with
our model using this parameter set whose tips are sampled with probability f = 0.56 (the empirical
sampling fraction used for the inference), and summary statistics are computed for the simulated
and empirical data. None of the computed summary statistics for the empirical tree deviates
substantially from the posterior predictive distribution, showing a good match between the model
and the data in this example.

2.2 Incomplete sampling.

In diversification analysis.

Non-uniform species sampling.— A nice property of our ranked tree shape model (Chapter
1) is that it is sampling consistent – meaning that, for a given parameter set, we get the same
probability distribution on ranked tree shapes either by generating a n-tipped tree with the model
or by sampling n tips from a N -tipped tree generated with the model (n < N). In a similar way, the
heterogeneous speciation model allows to account for incomplete species sampling, as long as the
the probability of being sampled is the same for all living species. Those properties are important
when inferring the parameters of both models on empirical data, because empirical phylogenies are
very rarely complete. Not taking this into account may lead to bias in parameter inferences and to
an apparent decrease in speciation rate (Pybus and Harvey, 2000).

However both these properties rely on the assumption that the sampling is performed uniformly
among species. This is often not the case, as phylogenies are generally built so as to be as char-
acteristic of the group as possible, by including early-diverging species or species representative of
previous intrataxon classification. Because closely-related species are less likely to be included, this
typically results in a more thorough sampling of deep nodes, which can be mistaken for a slowdown
in diversification rates through time (Cusimano and Renner, 2010; Brock et al., 2011). Non uniform
taxa sampling can also affect the reconstructed phylogeny topology (see for example Fig. 8 from
Chapter 1 ; here the deviation from random sampling is measured with the η metrics from our
model). Methods have been proposed to correct for the bias in the context of the detection of a
slowdown in diversification (Brock et al., 2011; Cusimano et al., 2012), and in that of diversification
rates inference (Höhna et al., 2011). Also, even when sampling is done uniformly within subgroups,
the sampling fraction may vary among them. For the method we proposed in Chapter 2, this could
bias rates estimates towards lower values in subclades in which the sampling fraction is lower than
the global fraction. While our method does not yet include such an option, it would be theoreti-
cally possible to add it by putting different sampling fractions for different parts of the tree in the
likelihood. The sampling fraction for branches that are ancestral to parts of the tree with different
sampling intensity would then be set as the average of the sampling fractions, weighted by the
number of descending species in each subclade.
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Selection for clade size.— A sampling bias can also come at play at the level of the clade. As
already mentioned in the introduction, previous clade age-richness relationship measures necessi-
tated to choose how to cut a big tree to select which clade to include in the analysis. This led to
different results obtained for different such choices (Stadler et al., 2014; Sánchez-Reyes et al., 2016).
Our ranked tree shape model in Chapter 1 offers a way to deal with this problem by looking at the
relative order of all the nodes within a given phylogeny. In diversification analysis, a first source of
bias is the fact that extinct clades are never included in studies, because they cannot be observed in
the present (Magallón and Sanderson, 2001). This is generally corrected for when fitting diversifi-
cation models to data by conditioning the likelihood on the non-extinction of the process, as we did
in our method in Chapter 2. Failing to do so leads to biases in estimated diversification rates. A
similar source of bias comes from the fact that species-poor clades are not included in diversification
analysis either (especially in adaptive radiation studies, in which speciose groups are more likely to
be selected Pennell et al., 2012). Even when adaptive radiation is not the focus of the study, fitting
a model to a small tree will not lead to easily interpretable biological results because estimators
are much variable for small datasets, and those will thus not appear in studies. When trees are
simulated with a birth-death process conditioned on the age of the crown, the largest phylogenies
are those that by chance diversified a lot in the beginning of the simulation. Large phylogenies are
thus very likely to show a signature of early burst – with the γ statistic or by comparing constant
rates and time-dependent diversification models–, even though the rates were constant in time in
the simulations (Phillimore and Price, 2008; Pennell et al., 2012). In our empirical study in Chapter
2, we only kept the bird phylogenies with at least 50 tips, because applying the method to smaller
phylogenies does not lead to reliable parameter estimates; it is thus possible that selection for clade
size biased our results, especially regarding the estimates of the trend parameter α. However, we
found no significant correlation between this parameter values and the size of analyzed trees (p-
value=0.48). This bias is thus likely not to be very strong, and we do not think it can explain the
pervasive pattern of decrease in speciation rates found in this dataset.

In network studies. Ecological networks are of course also subject to the problem of incom-
plete sampling. The number of possible interactions increases as a power of two of the number of
species, making it very difficult and costly to record all the interactions occurring in a community.
Incomplete interaction sampling has been shown in a simulation study to have an effect on different
measured network metrics, especially if there is a skew in the number of observations per species,
and patterns such as the decrease of connectance with network size might be partly explained by
those sampling effects (Blüthgen et al., 2008). The way interactions are sampled in empirical com-
munities may also bias measures of network structure. Whether sampling effort is allocated equally
among plant species or proportionally to their abundance has a significant effect on the obtained
network structure for a given sampling effort, in particular in terms of connectance (Gibson et al.,
2011). Other network metrics, however, are more robust to incomplete sampling and show devi-
ation to the true network values for very low sampling effort only (Nielsen and Bascompte, 2007;
Rivera-Hutinel et al., 2012). This is the case of the metrics we considered in our study – nestedness,
measured as NODF (Almeida-Neto et al., 2008), and modularity.
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2.3 Molecular phylogenies as empirical data.

Phylogenetic uncertainty. In both Chapter 1 and Chapter 2, we assumed that phylogenies where
perfectly known. In practice, they are reconstructed from molecular data, and are subject to errors
and uncertainty, both in terms of topology and branch lengths. When the reconstruction is done
through bayesian methods, which is commonly the case, it provides a sample from the posterior
distribution of phylogenies rather than ‘a best’ tree. A possibility to deal with this consists in
summarizing this information into one representative single tree topology. Several methods allow
to do this (see Heled and Bouckaert, 2013, for a review). One family of methods rely on consensus
rules. A strict consensus tree contains only the splits that are present in all the trees from the
posterior sample ; a majority rule tree contains only the splits that are present in at least half of the
trees from the posterior samples. Consensus trees are often unresolved, with polytomies. The Clade
Credibility of tree is equal to the product of the posterior density of all the clades in the tree (the
posterior density of a clade is the frequency at which it appears in the posterior sample). The tree
with the highest clade credibility in the posterior sample is called the Maximum Clade Credibility
(MCC) tree. Node depths can then be assigned as the mean or the median of the clade age in the
posterior sample. Contrarily to consensus methods, this produces a fully bifurcating tree. This is a
necessary condition to apply the methods developed in Chapters 1 and 2, so we used MCC trees in
our empirical applications in these chapters.

Summarizing the information in one single representative topology can however be misleading.
The summary tree is an average of the posterior distribution and is not itself guaranteed to have a
high posterior density, and the result of the inference on this tree is not necessarily representative of
the rest of the posterior distribution. A good practice is to assess the sensitivity of the method to
phylogenetic uncertainty by applying it to many trees from the posterior distribution. In a bayesian
framework, one possibility is to sample trees from the posterior distribution at the same time as we
sample for the model parameters, thus integrating the inference over the phylogenetic space. In our
case however, the inferences of our models parameters are already costly in terms of computation
time, preventing us to account for phylogenetic uncertainty in our empirical applications in both
Chapter 1 and Chapter 2.

Bias in reconstruction methods. Even when accounting for phylogenetic uncertainty, the
phylogeny reconstruction may be biased towards certain topologies (Huelsenbeck and Kirkpatrick,
1996; Holton et al., 2014) or branch length distributions. By simulating trees according to the Yule
model together with DNA sequences evolving along their branches, and subsequently reconstructing
the phylogenies using those sequences, Huelsenbeck and Kirkpatrick (1996) and Holton et al. (2014)
showed that the reconstructed trees tend to be biased towards more imbalanced topologies than the
true simulated topologies, especially when evolutionary rates are high. For our method in Chapter
2, the would lead to inappropriately high σ estimate (the rate stochasticity parameter). According
to the author, this bias towards unbalanced topologies comes from the fact that, if the phylogenetic
signal in the sequences is low, the inferred distribution of phylogenies will get closer to a uniform
distribution on labeled tree shapes (tree topologies with species identity at tips), which puts a
stronger weight on imbalanced tree (expected β value −1.5) than the distribution generated by the
Yule model (expected β value 0; see Section 1.2 in the Introdution). However, it has been argued
by Aldous (2001) that tree reconstructed ‘by hand’ also tend to be more unbalanced than Yule
trees, while it is reasonable to assume that people would more likely be biased towards constructing
too-balanced trees for the sake of classification. Also, if the bias towards unbalanced topology
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reflects the lack of signal in the molecular data, providing posterior distributions that look like
the prior distribution, one would expect reconstructed trees to become more and more balanced as
reconstruction methods are improving and larger sequences are being used. To my knowledge, no
such effect has been reported, comforting us in the belief that reconstructed phylogeny imbalance
indeed reflects characteristics of the diversification process rather than methodological artifacts.

A bias is also possible in the estimation of branching times. Underparametrization of models of
sequence evolution, for example by ignoring the possibility to have asymmetric nucleotide substi-
tution rates, or ignoring that rates may vary in time or across the phylogeny, can lead to inferred
phylogenies with nodes closer to the root than they should be in reality (resulting in strong negative
bias in the γ statistic ; Revell et al., 2005; Ho et al., 2005). The topology of the tree may also affect
the estimate of diversification times. Tree imbalance can lead to underestimations of deep nodes
ages (Duchêne et al., 2015). This is linked to the node density effect (Sanderson, 1990; Hugall
and Lee, 2007), an expression referring to the fact that the amount of sequence changes may be
underestimated along long branches – that are more common in imbalanced trees –, leading to an
apparent increase in sequence evolution in the more diverse region of the tree. All those biases could
lead to inappropriately low estimates of the trend parameter α in our model in Chapter 2.

2.4 From patterns to processes.
The first two chapters aims at describing and quantifying patterns present in empirical data.

On the contrary, goal of the last chapter is to propose a mechanism for the emergence of empir-
ical patterns, principally in interaction network structures, that are already well known from the
literature on empirical networks. Many processes can lead to the same pattern. Nestedness as an
example has been obtained from many models, involving community dynamics, neutral processes,
or species phenotypes. Yet it is likely that a mechanism proposed to describe a pattern cannot
account for all the other. It is thus important to look at many patterns if we are to tell apart the
relative importance of different mechanisms (McGill, 2003).

In our model, we focused on the differences between mutualistic and antagonistic communities,
and thus at metrics that have been reported to vary between the two of them. We have thus looked at
descriptors of the community diversity, both in trait and species diversity, at well described networks
measures, nestedness and modularity, as well as at phylogenetic signal in interaction partners. Our
results are in good accordance with the tendencies observed in empirical communities, showing that
they are well explained by the evolutionary process we considered. However, a good number of
different patterns can be obtained from our model, both for ecological and phylogenetic metrics.
Studying them would give further insights into the model’s behavior and on what aspect it might
depart from empirical data. I will present a few patterns which may be of interest to look at.

Tree shape patterns. We get the phylogenies of species from both guilds as a model output.
Phylogenetic shape contains information about the diversification process, and, as mentioned in the
introduction, is well described in the literature for empirical phylogenies. However, in Chapter 3,
we focused on differences between antagonistic and mutualistic communities. Not such systematic
differences have been reported for phylogenetic shape, and we do not expect to find any, because
in empirical communities all kinds of interactions are present. No phylogeny can be said to be the
product of only antagonistic or only mutualistic interactions, contrary to what is the case in our
model.

Figure 3 shows the β and γ statistics obtained at the end of our simulations. For low species
definition ratchets (s = 1, Fig. 3a,b), both β and γ values are too high compared to what is seen in
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Figure 3: Tree shape metrics obtained for simulations from the model in Chapter 3. The metrics are
shown for 6 examples scenarios, for two different species definition ratchets, s = 1 (a, b) and s = 10 (c, d). In each
panel, the blue area shows the values taken in the neutral case (range of values, quartiles and median). (a) : Tree
imbalance, measured with the β statistic for s = 1. (b) : Tree tippiness, measured with the γ statistic for s = 1. (c)
: β statistic for s = 10. (d) : γ statistic for s = 10.

empirical phylogenies for the 6 scenarios shown, indicating that the phylogenies generated by our
model are too balanced and tippy. γ, however, is much dependent on the species definition ratchet
s, as this parameter controls for the number of mutations needed to belong to different species and
thus the time to speciation, making speciation more and more protracted as s gets higher (see the
paragraph ‘Protracted speciation’ in the section 2.1 from the Introduction). For s = 10, γ values
are closer to empirical values (Fig. 3d). β is less sensitive to this parameter, although its variance
increases as the number of species in the guild gets lower. What value of s would be a ‘good’ value
is a tricky issue. The γ values suggest that a fairly high on would be needed, but species number
then becomes rather low for the community size we used in our simulations, thus the results on
other metrics display high variations among simulations with the same parameter set, making it
difficult to reach conclusions.

Differences can be seen on Figure 3 between antagonistic and mutualistic communities, even
though the patterns are far from being as clear as those obtained for network or diversity metrics
(see Chapter 3). Clades in antagonistic communities show a tendency to be more balanced and tippy
than those in mutualistic ones, but further work would be required to understand whether those
differences are significant and if they hold for other parameter values. It would also be interesting
to see whether a similar trend can be observed in empirical communities, between groups in which
the diversification is thought to have primarily driven by mutualistic interactions (e.g. fig-wasp
systems, Cruaud et al., 2012), ad groups in which it is thought to have been driven by antagonistic
interactions (e.g. plant-herbivore systems, Ehrlich and Raven, 1964; Futuyma and Agrawal, 2009).
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Node degree distribution. Network-wise metrics such as nestedness are much impacted by the
node degree distributions. In empirical data, node degree distributions are well fitted by a truncated
power law. A first glance at the node degree distributions from two example simulations in our model
outputs suggests that we do get this type of distribution (Fig. 4). It would be interesting to see if
this holds true for all scenarios, and how the parameters of the fitted distributions vary with our
model parameters.
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Figure 4: Example node degree distributions obtained for simulations from the model in Chapter 3. The
species definition ratchet s is set to 5 in both examples. (a): Log-log plot of the cumulative node degree distribution
for each of the two guilds in a mutualistic scenario (αA = −0.02, αB = 0.1). (b): Log-log plot of the cumulative node
degree distribution for each of the two guilds in an antagonistic scenario (αA = −0.1, αB = 0.5).

Temporal dynamics. In our study, we looked at the patterns obtained with our model at
stationary state. This allows our results to be independent from the starting point and to be able to
compare different scenarios at the same state of evolution. But whether ecological communities are
at equilibrium or not is a controversial issue. For tree shapes in particular, it has been shown that
looking at out-of-equilibrium dynamics generates phylogenies that are closer to empirical ones, in
terms of β and γ statistics (Liow et al., 2010; Gascuel et al., 2015; Missa et al., 2016). A preliminary
look at our simulations shows that they also present a initial phase with low γ values (Fig. 5), but
because we were interested in the stationary phase, we did not record the system state at a fine
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Figure 5: Temporal dynamics of the γ statistic (tree tippiness) obtained for simulations from the model
in Chapter 3. All antagonistic scenarios are pulled together, for guild A (a) and guild B (b). In the beginning of the
simulations, γ values are rather low, but a finer time resolution would be needed to see whether they pass through
negative values in the initial phase. The black lines shows the median, the dark gray area the middle quartiles, and
the light gray area the [0.05, 0.95] quantiles. The species definition ratchet s is set to 5.
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enough time resolution to be able to study this phase. Simulation studies also report that tree shapes
take longer to reach equilibrium than species diversity (Missa et al., 2016). It would be interesting
to see whether this is also the case for network structure, or if the nestedness or modularity of the
community predates the diversity equilibrium.

2.5 Extensions of the bipartite speciation model.

Sensitivity to model’s assumptions. In Chapter 3, we studied how the model behavior’s
changed with the niche width of both guilds. To do so, we had to fix other parameters. Because
of the time needed to run the model, we did not carry out a systematic study of their impact on
the metrics we looked at, but it would be of interest to assess the sensitivity of our results to their
effect.

Other fitness parameters.— The individual fitness in our model depends on two parameters; its
width α (which is the one we varied in Chapter 3), and the gain in fitness r (which is the fitness
maximum divided by its minimum). Varying the r parameter would allow to modulate how much a
guild is dependent on the other, and what it implies for the community structure. For mutualism for
example, it would allow to study if we expect to attain different structure if species are facultative
or obligate mutualists, and when there is an asymmetry in the dependencies.

Population sizes.— The model was run for a fixed population size of 4000 individuals per guild.
This choice was made for computational reasons. While we do expect some of the metrics to depend
on population size – principally the diversity measure metrics – the other should be less sensitive
to this parameter. Yet the tree metrics mentioned in the previous part suggest that a high species
definition ratchet s gives more realistic tree shapes, but the other metrics cannot be studied for a
high s because the number of species get very low. Being able to run the model for more individuals
would allow to study those metrics for higher species definition ratchet which may be more realistic.

Trait space dimensionality.— The whole study of the model’s behavior was performed for a 3-
dimensional trait. We chose to use a multi-dimensional trait because the one-dimensional behavior
is expected to be very specific. It has been shown indeed that multidimensional traits are likely to
have evolutionary dynamics qualitatively different from one-dimensional ones (Gilman et al., 2012;
Ispolatov et al., 2016). It is quite intuitive in the case of our model that resource species are likely
to be stuck between two consumer species in a one-dimensional trait space, while escape is more
likely when the interaction is driven by several traits or a multi-dimensional one. Another reason
for this choice is a previous study showing that ecological networks are best described by traits with
several yet few dimensions (Eklöf et al., 2013). Yet the dimension choice is a rather arbitrary one
and we could try to assess how sensitive our results are to this assumption.

Abiotic selection. In our model the trait space is unbounded, with fitness depending only on the
individual’s trait and that of its interactor. This assumption makes it straightforward to compare
our results to the neutral case. However, it would be reasonable to assume that this is not the
case, as most traits can be costly to maintain at extreme values. This could easily be included in
the model by multiplying the individual fitness by a gaussian function centered on an abiotic trait
optimum, whose standard deviation would be a parameter of the model. We may expect this to
impact especially antagonisic scenarios, in which individual spread in trait space – the abiotic niche
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would have to be pretty narrow to have an effect for mutualistic communities, in which trait values
are already much constrained by stabilizing selection. In antagonistic scenarios, the restriction of
niche space should result in rapid niche filling, and subsequently decreased γ statistics. The effect
on other tree shape metrics, such as β, is more difficult to forecast, but we can imagine that species
stuck at the border of the abiotic niche would be less successful and less likely to speciate than those
at its center, which would make phylogenies more imbalanced than what we have for now (Fig. 3).
Altogether adding this mechanism in our model could make phylogenetic shapes more realistic. The
effect on network metrics are uneasy to forecast and should be evaluated through simulations.

Including space. The model was initially written to include a spatial dimension, which was
subsequently abandoned because of the already complex behavior of the non-spatial model. In
reality we may expect the spatially explicit version to differ in several ways from the spatially
implicit one that we presented. Empirical communities evolve in a complex spatial environment,
and spatial dynamics shape the local species assemblages, with a potentially important impact
on the resulting diversity and interaction patterns. The Geographic Mosaic Theory of Coevolution
(GMTC, Thompson, 1997) highlights the relevance of local species interactions on the coevolutionary
process, and suggests that its study necessitate a spatially explicit model. In our model, mutualistic
interactions generate stabilizing selection that impedes species and trait diversity. The outcomes
may be different if there were opportunities for local coadaptations (similarly to what was obtained
in Jabot and Bascompte, 2012). In our model framework, space could be included by multiplying
the fitness (which in our case is proportional to the probability to invade a cell) by a dispersion
kernel, whose extent will be a parameter of the model. We might expect limited dispersal abilities to
have an effect on the interaction network structure, as interaction probabilities between two species
would now depend on their local coexistence as much as their trait values. This might contribute
to the creation of modularity in our communities. A first step would be to study the effect of the
extent of the dispersal kernel on neutral communities, to see what kind of network structures can
be generated in this context, and then add non neutral interactions.

2.6 Extensions of the heterogeneous speciation model.
The method presented in Chapter 2 allows to estimate branch specific diversification rates with-

out any prior idea of why they varied. If the ultimate goal is to know whether a given species trait
(or environmental condition) is responsible for changes in diversification rates, a possible option is
to use a permutation procedure on the trait present states to assess whether independence between
diversification rates and trait values can be rejected, in a similar way to what is done in Rabosky
and Huang (2015). However, if we have reasons to believe that a particular factor impacted diver-
sification, it might be better to include it in the model. Different possible ways to do this in our
model framework are envisioned in the following.

Incorporating environment-dependency. The effect of the abiotic and biotic conditions on
diversification tempo of the clade cane be tested using environment-dependent models (Condamine
et al., 2013; Lewitus and Morlon, 2017). Yet, these models generate trees that are more balanced
than the empirical ones, – as do all homogeneous rate diversification models (Lambert and Stadler,
2013) –, showing that not all changes in diversification tempo are well explained by those model.
Including an environment-dependency in our model could allow to add residual variations in diver-
sification rates in environment-dependent models. One of the way to do so would be to take the
branch-specific speciation rates Λi = Λ(T ) +λi, where Λ(T ) is a function of the environmental con-
ditions T , and λi are the ones obtained from the model presented in Chapter 2, accounting for for
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the residual rate variations. The likelihood of this model should be possible to compute numerically
using the same approach as in Chapter 2.

Incorporating trait-dependency. The State Speciation and Extinction methods (SSE models,
Maddison et al., 2007) allow to check for the effect of a trait on the diversification process, but
have been shown to suffer from a high type I error, possibly because they compare the null model
they use is to simplistic and do not allow for rate variations due to another factor than the trait
considered in the analysis (Rabosky and Goldberg, 2015). One of the proposed solutions to this
problem implies the addition of an hidden character, with unknown states at present, that also
impacted diversification rates (HiSSE model, for Hidden State Speciation and Extinction; Beaulieu
and O’Meara, 2016). We could envision to use our model in a similar way to account both for
the effect of a binary trait and of unknown, heritable factors on diversification rates. In this new
model, lineages are characterized by their speciation rate and their character state (0 or 1). As in
the model in Chapter 2, a shift in speciation rates happens each time there is a speciation event,
and is sampled in a lognormal distribution with parameters log(α) and σ2. Transitions between
character states occur at rate rij (from state i to state j; (i, j) ∈ {(0, 1), (1, 0)}). Each time there is a
transition in character state, a shift in speciation rates happen, sampled in a lognormal distribution
with parameters log(αij) and σ2. As in the previous paragraph, the likelihood of the model should
be possible to compute numerically with the approach used in Chapter 2. αij > 1 means that
speciation rates tend to increase when there is a transition from state i to state j, and that this
transition is advantageous for the lineage in which it occurs. Estimating the αij parameters of this
model would thus by a way to assess the effect of a binary trait on diversification, while accounting
for residual variations due to the effect of other, unknown factors.

2.7 A few concluding words.
The work presented in this thesis introduces complementary ways to study heterogeneity in

the diversification process. A first step consists in describing the diversity patterns that need to
be explained. This may be performed by looking at the general shape of phylogenetic trees. The
first chapter falls in this category, together with a rich literature on how to describe phylogenies
topologies and branch lengths distributions (Sackin, 1972; Aldous, 1996; Pybus and Harvey, 2000).
The method proposed in the second chapter also offer a tool to characterize tree-level properties
though the estimation of the model’s parameter, that allow to quantify how heritable diversification
rates are in a clade and the global temporal trend in rates changes. This method also allows to
assess finer scale patterns, by estimating the diversification rates of specific lineages. Being able
to do so is a first step to the understanding of the reasons that drove some groups to diversify
more than others. Previous approaches allow to automatically assess the presence of shifts in
diversification rates on a phylogeny (Alfaro et al., 2009; Rabosky, 2014), yet ours differs in its
approach, in that it is based on the idea that rates changes might occur gradually, as a response
to changing environment or species traits. Finally, in the third chapter, we more directly focused
on one of the possible explanations for changes in diversification rates, which is the presence of
ecological interactions between species. In that aim, we proposed an individual-based model for the
emergence of bipartite ecological communities, allowing the simultaneous emergence of community
composition and interaction structure. In accordance with a previous study on trait diversity (Yoder
and Nuismer, 2010), we find a different effect on species diversity for different types of interactions.
In particular, antagonistic interactions are promoting trait and species diversity, while mutualistic
interactions impede it. We also show that our model is able to generate realistic network structures
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from simple evolutionary rules. Other reasons might be invocated to explain diversification rates
variations. These include changes in the abiotic environmental conditions experienced by species
(Benton, 2009), or variations in key species traits, such as generation time (Baker et al., 2014).
Several methods exist to test for the effects of environmental (Condamine et al., 2013; Lewitus and
Morlon, 2017) or trait dependency (Maddison et al., 2007; Beaulieu and O’Meara, 2015; Rabosky
and Huang, 2015) in diversification rates on an empirical phylogeny. Yet, even though it is possible
to fit the environment-dependent model with a biotic factor as an explanatory variable (such as the
diversity of competitors, Lewitus and Morlon, 2017), no approach currently exists to test for the
reciprocal effect of two interacting clades on each other’s diversification. Being able to develop such
a tool, using for example a similar framework to that of the diversity dependent model (Rabosky and
Lovette, 2008a; Etienne et al., 2011), would allow a better integration of ecological and evolutionary
processes, and enable to test our model prediction on the efect of bipartite interaction on species
diversity on empirical data.
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