A. Alzheimer, Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin, vol.64, pp.146-148, 1907.

, World Health Organization, 2019.

F. Alzheimer, La maladie d'Alzheimer en chiffres, 2019.

S. Alzheimer and . Canada, Une stratégie nationale sur la démence pour le Canada, 2019.

, Alzheimer's disease facts and figures, vol.15, pp.321-387, 2019.

H. M. Arrighi, Lethality of Alzheimer disease and its impact on nursing home placement, vol.24, pp.90-95, 2010.

, Treatment of Alzheimer's disease, 2018.

W. W. Barker, Relative frequencies of Alzheimer disease, Lewy Body, Vascular and Frontotemporal Dementia, and Hippocampal Sclerosis in the State of Florida Brain Bank, vol.16, pp.203-212, 2002.

L. M. Bekris, Review article: genetics of Alzheimer disease, Journal of Geriatric Psychiatry and Neurology, vol.23, issue.4, pp.213-227, 2010.

D. G. Harwood, The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer's disease, International Journal of Geriatric Psychiatry, vol.25, issue.5, pp.511-518, 2010.

K. P. Kepp, Ten challenges of the amyloid hypothesis of Alzheimer's disease, J Alzheimers Dis, vol.55, issue.2, pp.447-457, 2017.

R. F. Itzhaki, Microbes and Alzheimer's disease, Journal of Alzheimer's disease : JAD, vol.51, issue.4, pp.979-984, 2016.

M. Sochocka, K. Zwoli?ska, and J. Leszek, The infectious etiology of Alzheimer's disease. Current neuropharmacology, vol.15, pp.996-1009, 2017.

K. C. Meyer, Lung infections and aging, Ageing Research Reviews, vol.3, issue.1, pp.55-67, 2004.

G. Forloni, Alzheimer's disease, oligomers, and inflammation, Journal of Alzheimer's Disease, vol.62, issue.3, pp.1261-1276, 2018.

K. Simons and W. L. Vaz, Model systems, lipid rafts, and cell membranes, Annual Review of Biophysics and Biomolecular Structure, vol.33, issue.1, pp.269-295, 2004.

K. Simons and D. Toomre, Lipid rafts and signal transduction, Nature Reviews Molecular Cell Biology, vol.1, issue.1, pp.31-39, 2000.

K. Simons and M. J. Gerl, Revitalizing membrane rafts: new tools and insights, Nature Reviews Molecular Cell Biology, vol.11, issue.10, pp.688-699, 2010.

J. Colin, Membrane raft domains and remodeling in aging brain, vol.130, pp.178-187, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602012

K. Simons and R. Ehehalt, Cholesterol, lipid rafts, and disease. The Journal of Clinical Investigation, vol.110, pp.597-603, 2002.

R. Ehehalt, Amyloidogenic processing of the Alzheimer ?-amyloid precursor protein depends on lipid rafts, The Journal of Cell Biology, vol.160, issue.1, pp.113-123, 2003.

J. A. Op-den-kamp, Chapter 3 The asymmetric architecture of membranes, in New Comprehensive Biochemistry, pp.83-126, 1981.

B. Alberts, J. A. Lewis, and J. , The Lipid Bilayer, Molecular biology of the cell, 2002.

P. L. Yeagle, Chapter 2 -The lipids of biological membranes, The Membranes of Cells, pp.27-56, 2016.

J. C. Holthuis, The organizing potential of sphingolipids in intracellular membrane transport, Physiological Reviews, vol.81, issue.4, pp.1689-1723, 2001.

I. Basu and C. Mukhopadhyay, Insights into binding of Cholera toxin to GM1 Containing Membrane, Langmuir, vol.30, issue.50, pp.15244-15252, 2014.

D. A. Brown and E. London, Structure and sunction of sphingolipid-and cholesterolrich membrane rafts, Journal of Biological Chemistry, vol.275, issue.23, pp.17221-17224, 2000.

A. Filippov, G. Orädd, and G. Lindblom, The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers, Biophysical journal, vol.84, issue.5, pp.3079-3086, 2003.

P. L. Yeagle, Chapter 9 -cholesterol and related sterols: roles in membrane structure and function, The Membranes of Cells, pp.189-218, 2016.

H. I. Ingólfsson, Computational lipidomics of the neuronal plasma membrane, Biophysical Journal, vol.113, issue.10, pp.2271-2280, 2017.

J. M. Dietschy and S. D. Turley, Cholesterol metabolism in the brain, Current Opinion in Lipidology, vol.12, issue.2, pp.105-112, 2001.

A. Tannert, The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet, Eur Biophys J, vol.36, issue.4-5, pp.461-75, 2007.

A. Therrien, P. Manjunath, and M. Lafleur, Chemical and physical requirements for lipid extraction by bovine binder of sperm BSP1, Biochim Biophys Acta, vol.1828, issue.2, pp.543-51, 2013.

W. A. Boisvert, A. S. Black, and L. K. Curtiss, ApoA1 reduces free cholesterol accumulation in atherosclerotic lesions of ApoE-deficient mice transplanted with ApoEexpressing macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, vol.19, pp.525-530, 1999.

A. T. Remaley, Apolipoprotein Specificity for Lipid Efflux by the Human ABCAI Transporter. Biochemical and Biophysical Research Communications, vol.280, issue.3, pp.818-823, 2001.

A. A. Sethi, Apolipoprotein AI mimetic peptides: possible new agents for the treatment of atherosclerosis, Current opinion in investigational drugs, vol.8, issue.3, pp.201-212, 2000.

M. N. Jones, Surfactants in membrane solubilisation, International Journal of Pharmaceutics, vol.177, issue.2, pp.137-159, 1999.

J. I. Gurtubay, Triton X-100 solubilization of mitochondrial inner and outer membranes, Journal of Bioenergetics and Biomembranes, vol.12, issue.1, pp.47-70, 1980.

F. H. Kirkpatrick, S. E. Gordesky, and G. V. Marinetti, Differential solubilization of proteins, phospholipids, and cholesterol of erythrocyte membranes by detergents, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.345, issue.2, pp.154-161, 1974.

P. M. Rodi, Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane, Biochim Biophys Acta, vol.1838, issue.3, pp.859-66, 2014.

T. Bayerl, Interaction of nonionic detergents with phospholipids in hepatic microsomes at subsolubilizing concentrations as studied by 31P-NMR, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.858, issue.2, pp.285-293, 1986.

J. L. Delaunay, Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100, Biochim Biophys Acta, vol.1778, issue.1, pp.105-117, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00418165

H. Heerklotz, Interactions of surfactants with lipid membranes, Q Rev Biophys, vol.41, issue.3-4, pp.205-64, 2008.

D. Lichtenberg, Detergent solubilization of lipid bilayers: a balance of driving forces, Trends Biochem Sci, vol.38, issue.2, pp.85-93, 2013.

J. N. Israelachvili, 20 -Soft and Biological Structures, Intermolecular and Surface Forces, pp.535-576, 2011.

D. Lichtenberg, H. Ahyayauch, and F. M. Goni, The mechanism of detergent solubilization of lipid bilayers, Biophys J, vol.105, issue.2, pp.289-99, 2013.

H. Heerklotz and J. Seelig, Titration calorimetry of surfactant-membrane partitioning and membrane solubilization, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1508, issue.1, pp.69-85, 2000.

D. Lichtenberg, E. Opatowski, and M. M. Kozlov, Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1508, issue.1, pp.1-19, 2000.

D. Lichtenberg, Characterization of the solubilization of lipid bilayers by surfactants, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.821, issue.3, pp.470-478, 1985.

M. T. Paternostre, M. Roux, and J. L. Rigaud, Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes

D. J. Selkoe, Alzheimer's disease: genes, proteins, and therapy, Physiological Reviews, vol.81, issue.2, pp.741-766, 2001.

D. J. Selkoe and J. Hardy, The amyloid hypothesis of Alzheimer's disease at 25 years, EMBO Molecular Medicine, vol.8, issue.6, pp.595-608, 2016.

T. Iwatsubo, Visualization of Ab42(43) and Ab40 in senile plaques with endspecific Ab; monoclonals: evidence that an initially deposited species is Ab42(43), Neuron, vol.13, issue.1, pp.45-53, 1994.

H. Vignaud, A structure-toxicity study of Ass42 reveals a new anti-parallel aggregation pathway, PLoS One, vol.8, issue.11, p.80262, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00940301

S. Henry, Interaction of A?1-42 amyloids with lipids promotes "off-pathway" oligomerization and membrane damage, Biomacromolecules, vol.16, issue.3, pp.944-950, 2015.

R. Kayed, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science, vol.300, issue.5618, pp.486-495, 2003.

C. Haass and D. J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid ?-peptide, Nature Reviews Molecular Cell Biology, vol.8, p.101, 2007.

T. L. Williams and L. C. Serpell, Membrane and surface interactions of Alzheimer's A? peptide-insights into the mechanism of cytotoxicity, FEBS Journal, pp.3905-3922, 1920.

J. V. Rushworth and N. M. Hooper, Lipid rafts: linking Alzheimer's Amyloid-? production, aggregation, and toxicity at neuronal membranes, International Journal of Alzheimer's Disease, p.603052, 2010.

B. Morel, Dynamic micellar oligomers of amyloid ? peptides play a crucial role in their aggregation mechanisms, Phys Chem Chem Phys, vol.20, issue.31, pp.20597-20614, 2018.

S. M. Butterfield and H. A. Lashuel, Amyloidogenic protein-membrane interactions: mechanistic insight from model systems, Angewandte Chemie International Edition, vol.49, issue.33, pp.5628-54, 2010.

E. E. Ambroggio, Surface behavior and lipid interaction of Alzheimer ?-amyloid peptide 1-42: a membrane-disrupting peptide, Biophysical Journal, vol.88, issue.4, pp.2706-2719, 2005.

C. M. Yip, A. A. Darabie, and J. Mclaurin, A?42-peptide assembly on lipid bilayers, Journal of Molecular Biology, vol.318, issue.1, pp.97-107, 2002.

C. M. Yip and J. Mclaurin, Amyloid-? Peptide Assembly: A Critical Step in Fibrillogenesis and Membrane Disruption, Biophysical Journal, vol.80, issue.3, pp.1359-1371, 2001.

D. R. Taylor and N. M. Hooper, Role of lipid rafts in the processing of the pathogenic prion and Alzheimer's amyloid-beta proteins, Seminars in Cell & Developmental Biology, vol.18, issue.5, pp.638-686, 2007.

H. I. Ingolfsson, Computational lipidomics of the neuronal plasma membrane, Biophysical Journal, vol.113, issue.10, pp.2271-2280, 2017.

A. Choucair, Preferential accumulation of A?(1?42) on gel phase domains of lipid bilayers: An AFM and fluorescence study, Biochimica et Biophysica Acta, vol.1768, issue.1, pp.146-154, 2007.

K. Sheikh, Differing modes of interaction between monomeric A? (1-40) peptides and model lipid membranes: an AFM study, Chemistry and Physics of Lipids, vol.165, pp.142-50, 2012.

E. Drolle, R. M. Gaikwad, and Z. Leonenko, Nanoscale electrostatic domains in cholesterol-laden lipid membranes create a target for amyloid binding, Biophysical Journal, vol.103, issue.4, pp.27-36, 2012.

C. M. Yip, Cholesterol, a modulator of membrane-associated a?-fibrillogenesis and neurotoxicity1 1Edited by A. Klug, Journal of Molecular Biology, vol.311, issue.4, pp.723-734, 2001.

E. Drolle, Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease, PLoS One, vol.12, issue.8, p.182194, 2017.

A. Quist, Amyloid ion channels: a common structural link for protein-misfolding disease, Proceedings of the National Academy of Sciences, vol.102, pp.10427-10459, 2005.

D. Scala and C. , Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer ?-amyloid peptide, Journal of Neurochemistry, vol.128, issue.1, pp.186-95, 2014.

E. Sezgin, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nature Reviews Molecular Cell Biology, vol.18, issue.6, pp.361-374, 2017.

K. Matsuzaki, Formation of toxic amyloid fibrils by Amyloid ?-protein on ganglioside clusters, International Journal of Alzheimer's Disease, p.956104, 2011.

K. Matsuzaki, How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid beta-protein on ganglioside clusters, Accounts of Chemical Research, vol.47, issue.8, pp.2397-404, 2014.

K. Matsuzaki, K. Kato, and K. Yanagisawa, A? polymerization through interaction with membrane gangliosides, Biochimica et Biophysica Acta, issue.8, pp.868-77, 2010.

M. Cebecauer, M. Hof, and M. Amaro,

, Aggregation/Oligomerization of ?-Amyloid: Unifying View, Biophysical Journal, vol.113, issue.6, pp.1194-1199, 2017.

E. Y. Chi, S. L. Frey, and K. Y. Lee, Ganglioside GM1-Mediated Amyloid-? Fibrillogenesis and Membrane Disruption, vol.46, pp.1913-1924, 2007.

M. Vahed, Analysis of physicochemical interaction of A?40 with a GM1 ganglioside-containing lipid membrane, Journal of Physical Chemistry B, vol.122, issue.14, pp.3771-3781, 2018.

K. Yanagisawa, Role of gangliosides in Alzheimer's disease, Biochimica et Biophysica Acta, vol.1768, issue.8, pp.1943-51, 2007.

C. C. Curtain, Metal ions, pH, and cholesterol regulate the interactions of Alzheimer's disease amyloid-? peptide with membrane lipid, Journal of Biological Chemistry, vol.278, issue.5, pp.2977-82, 2003.

P. T. Wong, Amyloid-? Membrane Binding and Permeabilization are Distinct Processes Influenced Separately by Membrane Charge and Fluidity, Journal of Molecular Biology, vol.386, issue.1, pp.81-96, 2009.

S. Dante, T. Hauss, and N. A. Dencher, Cholesterol inhibits the insertion of the Alzheimer's peptide A? (25-35) in lipid bilayers, European Biophysics Journal, vol.35, issue.6, pp.523-554, 2006.

A. J. Beel, Direct binding of cholesterol to the amyloid precursor protein: An important interaction in lipid-Alzheimer's disease relationships?, Biochimica et Biophysica Acta, issue.8, pp.975-82, 2010.

D. Scala and C. , Interaction of Alzheimer's ?-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation, Biochemistry, vol.53, issue.28, pp.4489-502, 2014.

S. Henry, Interaction of A?1-42 peptide or their variant with model membrane of different composition probed by infrared nanospectroscopy, Nanoscale, vol.10, issue.3, pp.936-940, 2018.

C. Bobo, Synthetic toxic A?1-42 oligomers can assemble in different morphologies, Biochimica et Biophysica Acta, issue.5, pp.1168-1176, 1861.

R. Sarroukh, ATR-FTIR: a "rejuvenated" tool to investigate amyloid proteins, Biochimica et Biophysica Acta, vol.1828, issue.10, pp.2328-2366, 2013.

F. D'angelo, A yeast model for amyloid-? aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity, Disease Models & Mechanisms, vol.6, issue.1, pp.206-222, 2013.

I. Reviakine and A. Brisson, Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy, Langmuir, vol.16, issue.4, pp.1806-1815, 2000.

J. Mclaurin and A. Chakrabartty, Membrane disruption by Alzheimer ?-Amyloid peptides mediated through specific binding to either phospholipids or gangliosides: implication for neurotoxicity, Journal of Biological Chemistry, vol.271, issue.43, pp.26482-26489, 1996.

K. Matsuzaki and C. Horikiri, Interactions of Amyloid ?-Peptide (1?40) with Ganglioside-Containing Membranes, Biochemistry, vol.38, issue.13, pp.4137-4142, 1999.

R. Mateo, C. , A. U. Acuña, and J. C. Brochon, Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid, Biophysical Journal, vol.68, issue.3, pp.978-987, 1995.

J. Shi, GM1 clustering inhibits cholera toxin binding in Supported Phospholipid Membranes, Journal of the American Chemical Society, vol.129, issue.18, pp.5954-5961, 2007.

D. Marsh, Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams, Biochimica et Biophysica Acta, vol.1788, issue.10, pp.2114-2137, 2009.

D. A. Hicks, N. N. Nalivaeva, and A. J. Turner, Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling, Frontiers in Physiology, vol.3, p.189, 2012.

S. L. Veatch and S. L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophysical Journal, vol.85, issue.5, pp.3074-3083, 2003.

S. L. Veatch and S. L. Keller, Seeing spots: complex phase behavior in simple membranes, Biochimica et Biophysica Acta, vol.1746, issue.3, pp.172-85, 2005.

D. S. Patel, Influence of ganglioside GM1 concentration on lipid clustering and membrane properties and curvature, Biophysical Journal, vol.111, issue.9, pp.1987-1999, 2016.

L. B. Sagle, Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids, J Am Chem Soc, vol.134, issue.38, pp.15832-15841, 2012.

D. Marushchak, Self-aggregation-an intrinsic property of GM1 in lipid bilayers, Mol Membr Biol, vol.24, issue.2, pp.102-114, 2007.

R. Sachl, On multivalent receptor activity of GM1 in cholesterol containing membranes, Biochimica et Biophysica Acta, vol.1853, issue.4, pp.850-857, 2015.

S. Subasinghe, Cholesterol is necessary both for the toxic effect of A? peptides on vascular smooth muscle cells and for A? binding to vascular smooth muscle cell membranes, Journal of Neurochemistry, vol.84, issue.3, pp.471-479, 2003.

T. Matsubara, Density of GM1 in nanoclusters is a critical factor in the formation of a spherical assembly of amyloid ?-protein on synaptic plasma membranes, Langmuir, vol.29, issue.7, pp.2258-64, 2013.

M. Ogawa, Ganglioside-mediated aggregation of amyloid beta-proteins (Abeta): comparison between Abeta-(1-42) and Abeta-(1-40), J Neurochem, vol.116, issue.5, pp.851-858, 2011.

T. Hoshino, Binding and aggregation mechanism of amyloid beta-peptides onto the GM1 ganglioside-containing lipid membrane, Journal of Physical Chemistry B, vol.117, issue.27, pp.8085-94, 2013.

K. Ikeda and K. Matsuzaki, Driving force of binding of amyloid beta-protein to lipid bilayers. Biochemical and Biophysical Research Communications, vol.370, pp.525-534, 2008.

V. Rangachari, Cause and consequence of Abeta -Lipid interactions in Alzheimer disease pathogenesis, Biochim Biophys Acta Biomembr, 2018.

Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by ?-helical antimicrobial and cell non-selective membrane-lytic peptides, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1462, issue.1, pp.55-70, 1999.

M. F. Sciacca, Two-step mechanism of membrane disruption by Abeta through membrane fragmentation and pore formation, Biophys J, vol.103, issue.4, pp.702-712, 2012.

T. Okada, Formation of toxic A?(1-40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: polymorphisms in A?(1-40) fibrils, Journal of Molecular Biology, vol.382, issue.4, pp.1066-1074, 2008.

L. I. Choo-smith, Acceleration of amyloid fibril formation by specific binding of A?-(1-40) peptide to ganglioside-containing membrane vesicles, Journal of Biological Chemistry, vol.272, issue.37, pp.22987-22990, 1997.

A. Kakio, Interactions of Amyloid ?-protein with various gangliosides in raftlike membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid, Biochemistry, vol.41, issue.23, pp.7385-7390, 2002.

T. Okada, Formation of toxic fibrils of Alzheimer's amyloid beta-protein-(1-40) by monosialoganglioside GM1, a neuronal membrane component, J Mol Biol, vol.371, issue.2, pp.481-490, 2007.

Y. Okada, Toxic amyloid tape: a novel mixed antiparallel/parallel beta-sheet structure formed by Amyloid beta-protein on GM1 clusters, ACS Chem Neurosci, vol.10, issue.1, pp.563-572, 2019.

D. G. Drubin and M. W. Kirschner, Tau protein function in living cells, The Journal of cell biology, issue.103, pp.2739-2746, 1986.

J. Avila, Role of Tau Protein in Both Physiological and Pathological Conditions, Physiological Reviews, vol.84, issue.2, pp.361-384, 2004.

V. M. Lee and J. Q. Trojanowski, Neurodegenerative tauopathies: human disease and transgenic mouse models, Neuron, vol.24, issue.3, pp.507-510, 1999.

V. M. Lee, M. Goedert, and J. Q. Trojanowski, Neurodegenerative tauopathies. Annual Review of Neuroscience, vol.24, issue.1, pp.1121-1159, 2001.

A. Delacourte and A. Defossez, Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments, Journal of the Neurological Sciences, vol.76, issue.2, pp.173-186, 1986.

E. Mandelkow and E. Mandelkow, Biochemistry and cell biology of Tau protein in neurofibrillary degeneration. Cold Spring Harbor perspectives in medicine, vol.2, pp.6247-006247, 2012.

N. Gustke, Domains of Tau protein and interactions with microtubules, Biochemistry, vol.33, issue.32, pp.9511-9522, 1994.

E. S. Matsuo, Biopsy-derived adult human brain Tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament Tau, Neuron, vol.13, issue.4, pp.989-1002, 1994.

A. Tiiman, In vitro fibrillization of Alzheimer's amyloid-? peptide (1-42), vol.5, p.92401, 2015.

P. Friedhoff, Structure of Tau protein and assembly into paired helical filaments, Biochimica et Biophysica Acta, vol.1502, issue.1, pp.122-132, 2000.

Y. Fichou, Cofactors are essential constituents of stable and seeding-active Tau fibrils, Proceedings of the National Academy of Sciences, vol.115, issue.52, pp.13234-13239, 2018.

C. Bancher, Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer's and Parkinson's disease patients, Neuroscience Letters, vol.162, issue.1, pp.179-182, 1993.

K. P. Kepp, Ten challenges of the amyloid hypothesis of Alzheimer's Disease, J Alzheimers Dis, vol.55, issue.2, pp.447-457, 2017.

P. Giannakopoulos, Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease, Neurology, vol.60, issue.9, pp.1495-1500, 2003.

O. Schweers, Structural studies of Tau protein and Alzheimer paired helical filaments show no evidence for beta-structure, Journal of Biological Chemistry, vol.269, issue.39, pp.24290-24297, 1994.

S. Jeganathan, The natively unfolded character of Tau and its aggregation to Alzheimer-like Paired Helical Filaments, Biochemistry, vol.47, issue.40, pp.10526-10539, 2008.

R. A. Santarella, Surface-decoration of microtubules by human Tau, Journal of Molecular Biology, vol.339, issue.3, pp.539-553, 2004.

R. Nelson, Structure of the cross-beta spine of amyloid-like fibrils, Nature, vol.435, issue.7043, pp.773-778, 2005.

T. Kampers, RNA stimulates aggregation of microtubule-associated protein Tau into Alzheimer-like paired helical filaments, FEBS Letters, vol.399, issue.3, pp.344-349, 1996.

M. Goedert, Assembly of microtubule-associated protein Tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, Nature, vol.383, issue.6600, pp.550-553, 1996.

Y. Fichou, Heparin-induced Tau filaments are structurally heterogeneous and differ from Alzheimer's disease filaments, Chemical Communications, vol.54, issue.36, pp.4573-4576, 2018.

C. M. Wischik, Isolation of a fragment of Tau derived from the core of the paired helical filament of Alzheimer disease, Proceedings of the National Academy of Sciences of the United States of America, vol.85, issue.12, pp.4506-4510, 1988.

M. Novak, J. Kabat, and C. M. Wischik, Molecular characterization of the minimal protease resistant Tau unit of the Alzheimer's disease paired helical filament. The EMBO journal, vol.12, pp.365-370, 1993.

M. D. Mukrasch, Sites of Tau important for aggregation populate ?-structure and bind to microtubules and polyanions, Journal of Biological Chemistry, vol.280, issue.26, pp.24978-24986, 2005.

M. Inoue, Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubule-binding domain of human Tau, Bioorganic & Medicinal Chemistry, vol.22, issue.22, pp.6471-6480, 2014.

X. Yu, Cross-seeding and conformational selection between three-and fourrepeat human Tau proteins. The Journal of biological chemistry, vol.287, pp.14950-14959, 2012.

S. Elbaum-garfinkle, T. Ramlall, and E. Rhoades, The role of the lipid bilayer in Tau aggregation, Biophysical journal, vol.98, issue.11, pp.2722-2730, 2010.

S. Ambadipudi, Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau, Nature Communications, vol.8, issue.1, p.275, 2017.

G. Lee, R. L. Neve, and K. S. Kosik, The microtubule binding domain of Tau protein, Neuron, vol.2, issue.6, pp.1615-1624, 1989.

B. L. Goode, Structural and functional differences between 3-repeat and 4-repeat Tau isoforms: implications for normal Tau function and the onset of neurodegenerative disease, Journal of Biological Chemistry, vol.275, issue.49, pp.38182-38189, 2000.

T. Maas, J. Eidenmüller, and R. Brandt, Interaction of Tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in Paired Helical Filaments, Journal of Biological Chemistry, vol.275, issue.21, pp.15733-15740, 2000.

K. I. Lira-de-león, D. A. , .. M. Campos-peña, V. Meraz-ríos, and M. , Plasma membrane-associated PHF-core could be the trigger for Tau aggregation in Alzheimer's disease. Current Hypotheses and Research Milestones in Alzheimer's Disease, 2009.

R. Brandt, J. Léger, and G. Lee, Interaction of Tau with the neural plasma membrane mediated by Tau's amino-terminal projection domain, The Journal of cell biology, vol.131, issue.5, pp.1327-1340, 1995.

N. Ait-bouziad, Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes, Nature Communications, vol.8, issue.1, p.1678, 2017.

C. N. Chirita, M. Necula, and J. Kuret, Anionic micelles and vesicles induce Tau fibrillization in vitro, Journal of Biological Chemistry, vol.278, issue.28, pp.25644-25650, 2003.

S. A. Mari, Reversible cation-selective attachment and self-assembly of human Tau on supported brain lipid membranes, Nano Letters, vol.18, issue.5, pp.3271-3281, 2018.

D. Talaga, PIP2 phospholipid-induced aggregation of Tau filaments probed by Tip-Enhanced Raman Spectroscopy, Angew Chem Int Ed Engl, vol.57, issue.48, pp.15738-15742, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02381006

G. Gerald and P. , Paired Helical Filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids, in Biological Chemistry, p.1267, 2006.

J. Kuret, Evaluating triggers and enhancers of Tau fibrillization. Microscopy Research and Technique, vol.67, pp.141-155, 2005.

Y. F. Dufrêne and G. U. Lee, Advances in the characterization of supported lipid films with the atomic force microscope, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1509, issue.1, pp.14-41, 2000.

M. Giocondi, Surface topography of membrane domains, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1798, issue.4, pp.703-718, 2010.

C. M. Wischik, Subunit structure of paired helical filaments in Alzheimer's disease. The Journal of cell biology, vol.100, pp.1905-1912, 1985.

H. I. Ingólfsson, Computational lipidomics of the neuronal plasma membrane, Biophysical Journal, vol.113, issue.10, pp.2271-2280, 2017.

P. L. Yeagle, Chapter 9 -cholesterol and related sterols: roles in membrane structure and function, The Membranes of Cells, pp.189-218, 2016.

M. Azouz, Membrane domains modulate A?1-42 oligomer interactions with Supported Lipid Bilayers: an Atomic Force Microscopy investigation, Nanoscale, 2019.

R. P. Richter, R. Bérat, and A. R. Brisson, Formation of solid-supported lipid bilayers: an integrated view, Langmuir, vol.22, issue.8, pp.3497-3505, 2006.

D. R. Slochower, Counterion-mediated pattern formation in membranes containing anionic lipids, Advances in Colloid and Interface Science, vol.208, pp.177-188, 2014.

M. Menke, V. Gerke, and C. Steinem, Phosphatidylserine membrane domain clustering induced by Annexin A2/S100A10 heterotetramer, Biochemistry, vol.44, issue.46, pp.15296-15303, 2005.

S. Faiß, Formation of irreversibly bound annexin A1 protein domains on POPC/POPS solid supported membranes, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1778, issue.7, pp.1601-1610, 2008.

D. Paolo, G. , and P. De-camilli, Phosphoinositides in cell regulation and membrane dynamics, Nature, vol.443, issue.7112, pp.651-657, 2006.

A. Bertin, Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization, Journal of molecular biology, vol.404, issue.4, pp.711-731, 2010.

J. A. Braunger, Solid supported membranes doped with PIP2: influence of ionic strength and pH on bilayer formation and membrane organization, Langmuir, vol.29, issue.46, pp.14204-14213, 2013.

Y. Wen, V. M. Vogt, and G. W. Feigenson, Multivalent cation-bridged PI(4,5)P2 clusters form at very low concentrations, Biophysical Journal, vol.114, issue.11, pp.2630-2639, 2018.

D. A. Brown, PIP2 clustering: from model membranes to cells, Chemistry and Physics of Lipids, vol.192, pp.33-40, 2015.

P. Milhiet, Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts, EMBO reports, vol.3, issue.5, pp.485-490, 2002.

M. Ewald, High speed atomic force microscopy to investigate the interactions between toxic A?1-42 peptides and model membranes in real time: impact of the membrane composition, Nanoscale, vol.11, issue.15, pp.7229-7238, 2019.

K. L. Lam, Mechanism of supported membrane disruption by antimicrobial peptide Protegrin-1, The Journal of Physical Chemistry B, vol.110, issue.42, pp.21282-21286, 2006.

S. M. Rigby-singleton, Visualizing the solubilization of supported lipid bilayers by an amphiphilic peptide, Langmuir, vol.22, issue.14, pp.6273-6279, 2006.

J. M. Henderson, Antimicrobial peptides share a common interaction driven by membrane line tension reduction, Biophysical Journal, vol.111, issue.10, pp.2176-2189, 2016.

K. Berthelot, C. Cullin, and S. Lecomte, What does make an amyloid toxic: morphology, structure or interaction with membrane?, Biochimie, vol.95, issue.1, pp.12-21, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00735317

B. L. Goode and S. C. Feinstein, Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of Tau, The Journal of cell biology, vol.124, issue.5, pp.769-782, 1994.

A. W. Fitzpatrick, Cryo-EM structures of Tau filaments from Alzheimer's disease, Nature, vol.547, issue.7662, pp.185-190, 2017.

, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) (PIP 2 , purified from porcine brain) were purchased from Avanti Polar Lipids (Alabaster, AL) and were received as organic solutions (chloroform and chloroform/methanol/water for PIP 2, vol.20

, Preparation of SMA, vol.3, p.1

, SMA (3:1) in by UV-vis spectroscopy (Jasco V630 spectrophotometer) by measurement of the absorbance at 260 nm and using a molar extinction coefficient ? 260 = 6989, XIRAN® SL25010 P20) was a kind gift from Polyscope, vol.3

, Organic solvents were then evaporated under a gentle stream of nitrogen to form lipid films. In case of mixtures, evaporation was carried out at 50 °C to ensure lipids miscibility. To remove residual solvent traces, the lipid films were further dried in vacuum at room temperature for at least 16 h. The films were then dissolved into a buffer (Hepes 20 mM, NaCl 140 mM, pH 7.4, or 50 mM pH 7.0) to a concentration of 1 mg/mL and were thoroughly agitated at 50 °C for 30 minutes. The resulting multilamellar vesicle suspensions (MLVs) were then submitted to three freeze and thaw cycles (from liquid nitrogen to 50 °C), the case of POPC/POPE (9:1) and DMPC/DMPE, vol.9

, Finally, lipid concentrations were determined by phosphate quantification, vol.47

, Mandelkow) was used to transform Escherichia coli C41(DE3) (F-ompT hsdSB (rB-mB-) gal dcm (DE3)). Several transformants were grown on 120 mL LB + 1% dextrose, 100 mg/L ampicillin. When the culture reached an optical density OD 650 = 0.52, 10 mL was added to 990 mL of ZYM 5052 medium (1% N-Z-amine, 0.5% yeast extract, 25 mM Na 2 HPO 4 , 25 mM KH 2 PO 4 , 50 mM NH 4 Cl, Production and purification of K18 peptide pNG2 K18, vol.5

, After centrifugation, cell pellets were suspended in 50 mL of 2-(N-morpholino)ethanesulfonic acid (MES) pH 6.8 (20 mM), NaCl (500 mM), ethylenediaminetetraacetic acid (EDTA, 1 mM) phenylmethylsulfonyl fluoride (PMSF, 1mM), benzamidine (2 mM) and dithiothreitol, p.5

, After centrifugation (30 min at 15 000 g), the supernatant was then dialyzed for at least 16 h at 4 °C against cation exchange buffer A (20 mM MES pH 6.8, EDTA 1 mM, NaCl 50 mM, DTT (1 mM) with a Spectra/Por Dialysis Membrane (MWCO 3.5 kDa). The dialysate was then cleared (30 min, 15 000g), filtered through a 0.22 µm membrane and apply onto an HiTrap SP (GE Healthcare) equilibrated with the cation exchange buffer A. After washing with 25 mL of the same buffer, the protein was eluted with 25 mL of Buffer B (MES 20 mM pH 6.8, EDTA 1 mM, NaCl 150 mM) and the 5 mL fractions containing most of K18 were pooled and concentrated by ultrafiltration devices (e.g., Ultrafree, Millipore 5 kDa MWCO) to a final volume of 0.5 to 1 mL. Finally, the peptide concentrate was applied onto a gel filtration column (Superdex-75), sonicated four times (1 min cycles on ice; output 5, 50 % duty cycle) and then heated at 80 °C for 20 min

, Negative staining for transmission electron microscopy For EM grid preparations, the sample suspension diluted at 50 µg/mL for LUVs or 2

, Images were recorded under low-dose conditions on transmission electron microscope (Tecnai F20 or CM120, ThermoFischer) using a ThermoFisher Eagle 4k_4k or a GATAN UltraScan

Z. Cournia, Membrane protein structure, function, and dynamics: a perspective from experiments and theory, The Journal of Membrane Biology, vol.248, issue.4, pp.611-640, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01498031

R. Phillips, Emerging roles for lipids in shaping membrane-protein function, Nature, vol.459, p.379, 2009.

D. J. Scott, Stabilizing membrane proteins through protein engineering, Current Opinion in Chemical Biology, vol.17, issue.3, pp.427-435, 2013.

P. Champeil, A robust method to screen detergents for membrane protein stabilization, revisited, Analytical Biochemistry, vol.511, pp.31-35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356014

A. Sadaf, Chapter four -amphipathic agents for membrane protein study, pp.57-94, 2015.

U. H. Dürr, R. Soong, and A. Ramamoorthy, When detergent meets bilayer: Birth and coming of age of lipid bicelles, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.69, pp.1-22, 2013.

I. Marcotte and M. Auger, Bicelles as model membranes for solid-and solution-state NMR studies of membrane peptides and proteins. Concepts in Magnetic Resonance Part A, vol.24, pp.17-37, 2005.

T. K. Ritchie, Chapter eleven -reconstitution of membrane proteins in phospholipid bilayer nanodiscs, pp.211-231, 2009.

J. Kern and A. Guskov, Lipids in photosystem II: Multifunctional cofactors, Journal of Photochemistry and Photobiology B: Biology, vol.104, issue.1, pp.19-34, 2011.

M. Overduin and B. Klumperman, Advancing membrane biology with poly(styrene-comaleic acid)-based native nanodiscs, European Polymer Journal, p.110, 2018.

T. J. Knowles, Membrane Proteins Solubilized Intact in Lipid Containing Nanoparticles Bounded by Styrene Maleic Acid Copolymer, Journal of the American Chemical Society, vol.131, issue.22, pp.7484-7485, 2009.

S. Rajesh, T. Knowles, and M. Overduin, Production of membrane proteins without cells or detergents, New Biotechnology, vol.28, issue.3, pp.250-254, 2011.

T. H. Bayburt and S. G. Sligar, Membrane protein assembly into Nanodiscs. FEBS letters, vol.584, pp.1721-1727, 2010.

A. C. Teo, Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein, Scientific Reports, vol.9, issue.1, p.1813, 2019.

V. Schmidt, The lipid environment of Escherichia coli Aquaporin Z, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1861, issue.2, pp.431-440, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02397628

M. G. Karlova, Detergent-free solubilization of human Kv channels expressed in mammalian cells, Chemistry and Physics of Lipids, vol.219, pp.50-57, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02109357

D. J. Swainsbury, The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMAresistant membranes, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1859, issue.10, pp.2133-2143, 2017.

S. Scheidelaar, Molecular model for the solubilization of membranes into nanodisks by styrene maleic Acid copolymers, Biophysical journal, vol.108, issue.2, pp.279-290, 2015.

J. M. Dörr, The styrene-maleic acid copolymer: a versatile tool in membrane research, European Biophysics Journal, vol.45, issue.1, pp.3-21, 2016.

C. Sun, Structure of the alternative complex III in a supercomplex with cytochrome oxidase, Nature, vol.557, issue.7703, pp.123-126, 2018.

S. Scheidelaar, Effect of polymer composition and pH on membrane solubilization by Styrene-Maleic Acid copolymers, Biophysical Journal, vol.111, issue.9, pp.1974-1986, 2016.

A. O. Oluwole, Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a Diisobutylene/Maleic Acid copolymer, Angewandte Chemie International Edition, vol.56, issue.7, pp.1919-1924, 2017.

K. Yasuhara, Spontaneous lipid nanodisc fomation by amphiphilic polymethacrylate copolymers, Journal of the American Chemical Society, vol.139, issue.51, pp.18657-18663, 2017.

T. Ravula, Formation of pH-resistant monodispersed polymer-lipid nanodiscs

, Angewandte Chemie International Edition, vol.57, issue.5, pp.1342-1345, 2018.

S. Lindhoud, SMA-SH: modified Styrene-Maleic Acid copolymer for functionalization of lipid nanodiscs, Biomacromolecules, vol.17, issue.4, pp.1516-1522, 2016.

P. S. Orekhov, Styrene/Maleic Acid copolymers form SMALPs by pulling lipid patches out of the lipid bilayer, Langmuir, vol.35, issue.10, pp.3748-3758, 2019.

M. Xue, Molecular mechanism of lipid nanodisc formation by Styrene-Maleic Acid copolymers, Biophysical Journal, vol.115, issue.3, pp.494-502, 2018.

D. Lichtenberg, H. Ahyayauch, and F. M. Goñi, The mechanism of detergent solubilization of lipid bilayers, Biophysical journal, vol.105, issue.2, pp.289-299, 2013.

D. Lichtenberg, Detergent solubilization of lipid bilayers: a balance of driving forces, Trends in Biochemical Sciences, vol.38, issue.2, pp.85-93, 2013.

A. Helenius and K. Simons, Solubilization of membranes by detergents, Biochimica et Biophysica Acta (BBA) -Reviews on Biomembranes, vol.415, issue.1, pp.29-79, 1975.

C. Vargas, Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants, Nanoscale, vol.7, issue.48, pp.20685-20696, 2015.

M. L. Jackson, Solubilization of phosphatidylcholine bilayers by octyl glucoside, Biochemistry, vol.21, pp.4576-4582, 1982.

A. Walter, The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1508, issue.1, pp.20-33, 2000.

M. Ollivon, Micelle-vesicle transition of egg phosphatidylcholine and octylglucoside, Biochemistry, vol.27, issue.5, pp.1695-1703, 1988.

P. K. Vinson, Y. Talmon, and A. Walter, Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy, Biophysical Journal, vol.56, issue.4, pp.669-681, 1989.

M. Johnsson and K. Edwards, Interactions between nonionic surfactants and sterically stabilized phophatidylcholine liposomes, vol.16, pp.8632-8642, 2000.

A. E. Garner, D. A. Smith, and N. M. Hooper, Visualization of detergent solubilization of membranes: implications for the isolation of rafts, Biophysical Journal, vol.94, issue.4, pp.1326-1340, 2008.

S. Morandat and K. E. Kirat, Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy, Colloids and Surfaces B: Biointerfaces, vol.55, issue.2, pp.179-184, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172762

S. Keller, H. Heerklotz, and A. Blume, Monitoring lipid membrane translocation of Sodium Dodecyl Sulfate by Isothermal Titration Calorimetry, Journal of the American Chemical Society, vol.128, issue.4, pp.1279-1286, 2006.

H. Heerklotz, The microcalorimetry of lipid membranes, Journal of Physics: Condensed Matter, vol.16, issue.15, pp.441-467, 2004.

H. Heerklotz, Application of isothermal titration calorimetry for detecting lipid membrane solubilization, Chemical Physics Letters, vol.235, issue.5, pp.517-520, 1995.

E. V. Yates, Microfluidic diffusion platform for characterizing the sizes of lipid vesicles and the thermodynamics of protein-lipid interactions, Analytical Chemistry, vol.7, issue.5, pp.3284-3290, 2015.

Y. Zhang, Protein aggregate-ligand binding assays based on microfluidic diffusional separation, ChemBioChem, vol.17, pp.1920-1924, 1920.

T. W. Herling, A microfluidic platform for real-time detection and quantification of protein-ligand interactions, Biophysical journal, vol.110, issue.9, pp.1957-1966, 2016.

R. Cuevas-arenas, Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers, Nanoscale, vol.8, issue.32, pp.15016-15026, 2016.

G. Rouser, S. Fleischer, and A. Yamamoto, Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots, Lipids, vol.5, issue.5, pp.494-496, 1970.

M. Jamshad, Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins, Nano Research, vol.8, issue.3, pp.774-789, 2015.

A. Grethen, Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer. Scientific Reports, vol.7, p.11517, 2017.

M. Virginia, M. Lee, J. Q. Goedert, and . Trojanowski, Neurodegenerative tauopathies, Annual Review of Neuroscience, vol.24, issue.1, pp.1121-1159, 2001.

S. A. Mari, Reversible cation-selective attachment and self-assembly of human Tau on supported brain ipid membranes, Nano Letters, vol.18, issue.5, pp.3271-3281, 2018.

N. Ait-bouziad, Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes, Nature Communications, vol.8, issue.1, pp.2722-2730, 2010.

C. N. Chirita, M. Necula, and J. Kuret, Anionic micelles and vesicles induce Tau fibrillization in vitro, Journal of Biological Chemistry, vol.278, issue.28, pp.25644-25650, 2003.

T. Crowther, M. Goedert, and C. M. Wischik, The repeat region of microtubuleassociated protein Tau forms part of the core of the Paired Helical Filament of Alzheimer's disease, Annals of Medicine, vol.21, issue.2, pp.127-132, 1989.

D. Talaga, PIP2 phospholipid-induced aggregation of Tau filaments probed by Tip-Enhanced Raman Spectroscopy, Angewandte Chemie International Edition, vol.57, issue.48, pp.15738-15742, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02381006

M. Von-bergen, Mutations of Tau Protein in Frontotemporal Dementia Promote Aggregation of Paired Helical Filaments by Enhancing Local ?-Structure, Journal of Biological Chemistry, vol.276, issue.51, pp.48165-48174, 2001.

, L'utilisation de pointes de cantilevier fonctionnalisées avec A? 1-42 ou K18 en AFM pourrait également permettre d'élucider très localement les interactions préférentielles avec certains lipides et certaines régions spécifiques, comme les interfaces de domaines. L'analyse microfluidique de taille a également permis de mettre en évidence ces interactions à travers l'observation de phénomènes d'agrégation. La technique pourrait être employée sur une gamme plus large de compositions membranaires afin d

D. Huang, Antiparallel ?-sheet structure within the C-terminal region of 42-residue Alzheimer's Amyloid-? peptides when they form 150-kDa oligomers, Journal of molecular biology, vol.427, issue.13, pp.2319-2328, 2015.

L. Breydo and V. N. Uversky, Structural, morphological, and functional diversity of amyloid oligomers, FEBS Letters, vol.589, issue.19, pp.2640-2648, 2015.

E. N. Cline, The Amyloid-? oligomer hypothesis: beginning of the third decade, Journal of Alzheimer's disease : JAD, vol.64, issue.s1, pp.567-610, 2018.

N. Ait-bouziad, Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes, Nature Communications, vol.8, issue.1, p.1678, 2017.

S. A. Mari, Reversible cation-selective attachment and self-assembly of human Tau on supported brain lipid membranes, Nano Letters, vol.18, issue.5, pp.3271-3281, 2018.

H. Vignaud, A structure-toxicity study of Aß42 reveals a new anti-parallel aggregation pathway, vol.8, pp.80262-80262, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00940301

J. M. Henderson, Antimicrobial peptides share a common interaction driven by membrane line tension reduction, Biophysical Journal, vol.111, issue.10, pp.2176-2189, 2016.

K. L. Lam, Mechanism of structural transformations induced by antimicrobial peptides in lipid membranes, Biochimica et Biophysica Acta (BBA) -Biomembranes, vol.1818, issue.2, pp.194-204, 2012.

M. Hasan, The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes, Biophysical reviews, vol.11, issue.3, pp.431-448, 2019.

S. J. Soscia, The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide, PloS one, vol.5, issue.3, pp.9505-9505, 2010.

T. Fulop, Can an infection hypothesis explain the beta Amyloid hypothesis of Alzheimer's disease? Frontiers in aging neuroscience, vol.10, pp.224-224, 2018.

D. K. Kumar, Amyloid-? peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Science translational medicine, vol.8, pp.340-72, 2016.

S. Crunkhorn, Antimicrobial role of amyloid-?, Nature Reviews Drug Discovery, vol.15, issue.7, pp.456-456, 2016.

R. D. Moir, R. Lathe, and R. E. Tanzi, Alzheimer's & Dementia: The Journal of the Alzheimer's Association, vol.14, pp.1602-1614, 2018.

M. A. Wozniak, Herpes simplex virus infection causes cellular ?-amyloid accumulation and secretase upregulation, Neuroscience Letters, vol.429, issue.2, pp.95-100, 2007.

W. A. Eimer, Alzheimer's disease-associated ?-Amyloid is rapidly seeded by Herpesviridae to protect against brain infection, Neuron, vol.99, issue.1, pp.56-63, 2018.

M. A. Erickson and W. A. Banks, Age-associated changes in the immune system and blood brain barrier functions. International journal of molecular sciences, vol.20, p.1632, 2019.

N. E. Shepardson, G. M. Shankar, and D. J. Selkoe, Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies, Archives of neurology, vol.68, issue.10, pp.1239-1244, 2011.

B. G. Schultz, D. K. Patten, and D. J. Berlau, The role of statins in both cognitive impairment and protection against dementia: a tale of two mechanisms, Translational neurodegeneration, vol.7, pp.5-5, 2018.

S. Mclaughlin, PIP2 and proteins: interactions, organization, and information flow, Annual Review of Biophysics and Biomolecular Structure, vol.31, issue.1, pp.151-175, 2002.

R. Gu, Ganglioside-lipid and ganglioside-protein interactions revealed by coarse-grained and atomistic molecular dynamics simulations. The journal of physical chemistry, vol.121, pp.3262-3275, 2017.

M. Cebecauer, M. Hof, and M. Amaro, Impact of GM1 on membrane-mediated aggregation/oligomerization of ?-Amyloid: unifying view, Biophysical Journal, vol.113, issue.6, pp.1194-1199, 2017.

A. Dazzi and C. B. Prater, AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging, Chemical Reviews, vol.117, issue.7, pp.5146-5173, 2017.

M. D. Sonntag, Single-molecule tip-enhanced Raman spectroscopy, The Journal of Physical Chemistry C, vol.116, issue.1, pp.478-483, 2012.

F. S. Ruggeri, Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation, Nature communications, vol.6, pp.7831-7831, 2015.

F. S. Ruggeri, Influence of the ?-sheet content on the mechanical properties of aggregates during amyloid fibrillization, Angewandte Chemie International Edition, vol.54, issue.8, pp.2462-2466, 2015.

D. Talaga, PIP2 phospholipid-induced aggregation of Tau filaments probed by Tip-Enhanced Raman Spectroscopy, Angew Chem Int Ed Engl, vol.57, issue.48, pp.15738-15742, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02381006