Y. Cho, S. Gorina, P. Jeffrey, and N. Pavletich, Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations, Science (80-. ), vol.265, issue.5170, pp.346-355, 1994.

M. Guharoy and P. Chakrabarti, Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in proteinprotein interactions, Bioinformatics, vol.23, issue.15, pp.1909-1918, 2007.

S. Jones and J. M. Thornton, Principles of protein-protein interactions, Proc. Natl. Acad. Sci, vol.93, pp.13-20, 1996.

S. Jones and J. M. Thornton, Protein-protein interactions: A review of protein dimer structures, Prog. Biophys. Mol. Biol, vol.63, issue.1, pp.31-65, 1995.

G. W. Vuister, The Mad1-Sin3B interaction involves a novel helical fold, Nat. Struct. Biol, vol.7, issue.12, pp.1100-1104, 2000.

M. Sattler, Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis, Science (80-. ), vol.275, issue.5302, pp.983-986, 1997.

A. K. Shiau, The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen, Cell, vol.95, issue.7, pp.927-937, 1998.

T. E. Ellenberger, C. J. Brandl, K. Struhl, and S. C. Harrison, The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted ? Helices: Crystal structure of the protein-DNA complex, Cell, vol.71, issue.7, pp.1223-1237, 1992.

P. H. Kussie, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science (80-. ), vol.274, issue.5289, pp.948-953, 1996.

J. L. Battiste, alpha Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex, vol.273, pp.1547-1551, 1996.

L. Pauling, R. B. Corey, and H. R. Branson, The structure of proteins: Two hydrogenbonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci, vol.37, issue.4, pp.205-211, 1951.

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff et al., A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis, Nature, vol.181, issue.4610, pp.662-666, 1958.

S. Lifson and A. Roig, On the Theory of Helix-Coil Transition in Polypeptides, J. Chem. Phys, vol.34, issue.6, pp.1963-1974, 1961.

B. H. Zimm and J. K. Bragg, Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains, J. Chem. Phys, vol.31, issue.2, pp.526-535, 1959.

H. Qian and J. A. Schellman, Helix-coil theories: a comparative study for finite length polypeptides, J. Phys. Chem, vol.96, issue.10, pp.3987-3994, 1992.

K. H. Altmann, J. Wojcik, M. Vasquez, and H. A. Scheraga, Helix-coil stability constants for the naturally occurring amino acids in water. XXIII. Proline parameters from random poly(hydroxybutylglutamine-CO-L-proline), Biopolymers, vol.30, issue.1-2, pp.107-120, 1990.

M. K. Dygert, G. T. Taylor, F. Cardinaux, and H. A. Scheraga, Helix-Coil Stability Constants for the Naturally Occurring Amino Acids in Water. 11. Lysine Parameters from Random Poly(hydroxybutylglutamine-co-l-lysine), Macromolecules, vol.9, issue.5, pp.794-801, 1976.

D. J. Hill, F. Cardinaux, and H. A. Scheraga, Helix-coil stability constants for the naturally occuring amino acids in water. XIV. Methionine parameters from random poly(hydroxypropylglutamine,L-Methionine), Biopolymers, vol.16, issue.11, pp.2447-2467, 1977.

Y. Kobayashi, F. Cardinaux, B. O. Zweifel, and H. A. Scheraga, Aspartic Acid Parameters from Random Poly(hydroxybutylglutamine-co-L-aspartic acid), Macromolecules, vol.16, issue.6, pp.1271-1283, 1977.

Y. Konishi, J. W. Van-nispen, G. Davenport, and H. A. Scheraga, Helix-Coil Stability Constants for the Naturally Occurring Amino Acids in Water. 15. Arginine Parameters from Random Poly(hydroxybutylglutamine-co-L-arginine), Macromolecules, vol.10, issue.6, pp.1264-1271, 1977.

R. R. Matheson, R. A. Nemenoff, F. Cardinaux, and H. A. Scheraga, Helix-coil stability constants for the naturally occurring amino acids in water. XII. Asparagine parameters from random poly(hydroxybutylglutamine-co-L-asparagine), Biopolymers, vol.16, issue.7, pp.1567-1585, 1977.

F. R. Maxfield, J. E. Alter, G. T. Taylor, and H. A. Scheraga, Helix-Coil Stability Constants for the Naturally Occurring Amino Acids in Water. IX. Glutamic Acid Parameters from Random Poly(hydroxybutylglutamine-co-L-glutamic acid), Macromolecules, vol.8, issue.4, pp.479-491, 1975.

J. W. Van-nispen, D. J. Hill, and H. A. Scheraga, Helix-coil stability constants for the naturally occurring amino acids in water. XIII. The presence of by-products in aminoacid analysis of copolymers and their effect on the guest parameters; recomputed values of ? ands forL-serine, Biopolymers, vol.16, issue.7, pp.1587-1592, 1977.

R. K. Scheule, F. Cardinaux, G. T. Taylor, and H. A. Scheraga, Helix-Coil Stability Constants for the Naturally Occuring Amino Acids in Water. X. Tyrosine Parameters from Random Poly(hydroxypropylglutamine-co-L-tyrosine), Macromolecules, vol.9, issue.1, pp.23-33, 1976.

J. Wójcik, K. Altmann, and H. A. Scheraga, Helix-coil stability constants for the naturally occurring amino acids in water. XXIV. Half-cystine parameters from random poly(hydroxybutylglutamine-<scp>CO</scp> -S -methylthio-<scp>L</scp> -cysteine), Biopolymers, vol.30, issue.1-2, pp.121-134, 1990.

H. E. Van-wart, G. T. Taylor, and H. A. Scheraga, Helix-Coil Stability Constants for the Naturally Occurring Amino in Water. VII Phenylalanine Parameters from Random Poly(hydroxypropylglutamine-co-L-L-phenylalanine), Macromolecules, vol.6, issue.2, pp.266-273, 1973.

N. Lotan, A. Yaron, and A. Berger, The stabilization of the ?-helix in aqueous solution by hydrophobic side-chain interaction, Biopolymers, vol.4, issue.3, pp.365-368, 1966.

D. A. Cook, The relation between amino acid sequence and protein conformation, J. Mol. Biol, vol.29, issue.1, pp.167-171, 1967.

A. Guzzo, The Influence of Amino Acid Sequence on Protein Structure, Biophys. J, vol.5, issue.6, pp.809-822, 1965.

J. W. Prothero, Correlation between the distribution of amino acids and alpha helices, Biophys. J, vol.6, issue.3, pp.367-370, 1966.

O. B. Ptitsyn, Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins, J. Mol. Biol, vol.42, issue.3, pp.501-510, 1969.

P. Y. Chou and G. D. Fasman, Conformational parameters for amino acids in helical, ?-sheet, and random coil regions calculated from proteins, Biochemistry, vol.13, issue.2, pp.211-222, 1974.

P. Y. Chou and G. D. Fasman, Prediction of protein conformation, Biochemistry, vol.13, issue.2, pp.222-245, 1974.

P. S. Bierzynski, R. L. Kim, and . Baldwin, A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.2470-2474, 1982.

J. E. Brown and W. A. Klee, Helix-Coil Transition of the Isolated Amino Terminus of Ribonuclease, Biochemistry, vol.10, issue.3, pp.470-476, 1971.

A. Wlodawer, L. A. Svensson, L. Sjoelin, and G. L. Gilliland, Structure of phosphatefree ribonuclease A refined at 1.26 .ANG, Biochemistry, vol.27, issue.8, pp.2705-2717, 1988.

W. Hol, The role of the alpha-helix dipole in protein function and structure, Prog Biophys Mol Biol, vol.45, issue.3, pp.149-95, 1985.

K. R. Shoemaker, P. S. Kim, E. J. York, J. M. Stewart, and R. L. Baldwin, Tests of the helix dipole model for stabilization of ?-helices, Nature, vol.326, issue.6113, pp.563-567, 1987.

K. R. Shoemaker, Side-chain interactions in the C-peptide helix: Phe 8 ? His 12+, Biopolymers, vol.29, issue.1, pp.1-11, 1990.

R. Fairman, K. R. Shoemaker, E. J. York, J. M. Stewart, and R. L. Baldwin, The Glu 2-? Arg 10+ side-chain interaction in the C-peptide helix of ribonuclease A, Biophys. Chem, vol.37, issue.1-3, pp.107-119, 1990.

K. R. Shoemaker, R. Fairman, P. S. Kim, E. J. York, J. M. Stewart et al., The C-peptide Helix from Ribonuclease A Considered as an Autonomous Folding Unit, Cold Spring Harb. Symp. Quant. Biol, vol.52, pp.391-398, 1987.

A. Chakrabartty and R. Baldwin, Stability of ?-Helices, Advances in Protein Chemistry, vol.46, pp.141-176, 1995.

P. Lyu, M. Liff, L. Marky, and N. Kallenbach, Side chain contributions to the stability of alpha-helical structure in peptides, Science (80-. ), vol.250, issue.4981, pp.669-673, 1990.

G. Merutka, W. Lipton, W. Shalongo, S. H. Park, and E. Stellwagen, Effect of centralresidue replacements on the helical stability of a monomeric peptide, Biochemistry, vol.29, issue.32, pp.7511-7515, 1990.

V. Muñoz and L. Serrano, Elucidating the folding problem of helical peptides using empirical parameters, Nat. Struct. Mol. Biol, vol.1, issue.6, pp.399-409, 1994.

V. Muñoz and L. Serrano, Elucidating the Folding Problem of Helical Peptides using Empirical Parameters. II ?. Helix Macrodipole Effects and Rational Modification of the Helical Content of Natural Peptides, J. Mol. Biol, vol.245, issue.3, pp.275-296, 1995.

V. Muñoz and L. Serrano, Elucidating the Folding Problem of Helical Peptides using Empirical Parameters. III>Temperature and pH Dependence, J. Mol. Biol, vol.245, issue.3, pp.297-308, 1995.

K. O&apos;neil and W. Degrado, A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids, vol.250, pp.646-651, 1990.

C. N. Pace and J. M. Scholtz, A helix propensity scale based on experimental studies of peptides and proteins, Biophys. J, vol.75, issue.1, pp.422-427, 1998.

C. A. Rohl and R. L. Baldwin, Deciphering rules of helix stability in peptides, Methods in Enzymology, vol.295, issue.1, pp.1-26, 1998.

C. A. Rohl, W. Fiori, and R. L. Baldwin, Alanine is helix-stabilizing in both templatenucleated and standard peptide helices, Proc. Natl. Acad. Sci, vol.96, issue.7, pp.3682-3687, 1999.

J. M. Scholtz and R. L. Baldwin, The Mechanism of alpha-Helix Formation by Peptides, Annu. Rev. Biophys. Biomol. Struct, vol.21, issue.1, pp.95-118, 1992.

S. Padmanabhan, S. Marqusee, T. Ridgeway, T. M. Laue, and R. L. Baldwin, Relative helix-forming tendencies of nonpolar amino acids, Nature, vol.344, issue.6263, pp.268-270, 1990.

S. Marqusee, V. H. Robbins, and R. L. Baldwin, Unusually stable helix formation in short alanine-based peptides, Proc. Natl. Acad. Sci. U. S. A, vol.86, issue.14, pp.5286-90, 1989.

S. Marqusee and R. L. Baldwin, Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. U. S. A, vol.84, issue.24, pp.8898-8902, 1987.

M. Blaber, X. Zhang, J. D. Lindstrom, S. D. Pepiot, W. Baase et al., Determination of ?-Helix Propensity within the Context of a Folded Protein, J. Mol. Biol, vol.235, issue.2, pp.600-624, 1994.

A. Horovitz, J. M. Matthews, and A. R. Fersht, ?-Helix stability in proteins, J. Mol. Biol, vol.227, issue.2, pp.560-568, 1992.

J. K. Myers, C. N. Pace, and J. M. Scholtz, A direct comparison of helix propensity in proteins and peptides, Proc. Natl. Acad. Sci, vol.94, issue.7, pp.2833-2837, 1997.

J. K. Myers, C. N. Pace, and J. M. Scholtz, Helix Propensities Are Identical in Proteins and Peptides ?, Biochemistry, vol.36, issue.36, pp.10923-10929, 1997.

A. J. Doig, Recent advances in helix-coil theory, Biophys. Chem, pp.281-293, 2001.

A. J. Doig, A. Chakrabartty, T. M. Klingler, and R. L. Baldwin, Determination of Free Energies of N-Capping in .alpha.-Helixes by Modification of the Lifson-Roig Helix-Coil Theory To Include N-and C-Capping, Biochemistry, vol.33, issue.11, pp.3396-3403, 1994.

C. and A. J. Doig, Models for the 3 10 -helix/coil, ?-helix/coil, and ?-helix/3 10 -helix/coil transitions in isolated peptides, Protein Sci, vol.5, issue.8, pp.1687-1696, 1996.

C. A. Rohl, A. Chakrabartty, and R. L. Baldwin, Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol, Protein Sci, vol.5, issue.12, pp.2623-2637, 1996.

B. J. Stapley, C. A. Rohl, and A. J. Doig, Addition of side chain interactions to modified Lifson-Roig helix-coil theory: Application to energetics of Phenylalanine-Methionine interactions, Protein Sci, vol.4, issue.11, pp.2383-2391, 1995.

L. Presta and G. Rose, Helix signals in proteins, Science (80-. ), vol.240, issue.4859, pp.1632-1641, 1988.

J. S. Richardson and D. C. Richardson, Amino acid preferences for specific locations at the ends of alpha helices, Science, vol.240, issue.4859, pp.1648-52, 1988.

D. F. Sticke, L. G. Presta, K. A. Dill, and G. D. Rose, Hydrogen bonding in globular proteins, J. Mol. Biol, vol.226, issue.4, pp.1143-1159, 1992.

R. Aurora, R. Srinivasan, and G. Rose, Rules for alpha-helix termination by glycine, vol.264, pp.1126-1130, 1994.

J. W. Seale, R. Srinivasan, and G. D. Rose, Sequence determinants of the capping box, a stabilizing motif at the N-termini of alpha-helices, Protein Sci, vol.3, issue.10, pp.1741-1745, 1994.

V. Munoz, F. J. Blanco, and S. Luis, The hydrophobic-staple motif and a role for loopresidues in alpha-helix stability and protein folding, Struct. Biol, vol.2, issue.5, pp.380-385, 1995.

E. T. Harper and G. D. Rose, Helix stop signals in proteins and peptides: the capping box, Biochemistry, vol.32, issue.30, pp.7605-7609, 1993.

S. Dasgupta and J. A. Bell, Design of helix ends, Int. J. Pept. Protein Res, vol.41, issue.5, pp.499-511, 2009.

R. Aurora and G. D. Rose, Helix capping, Protein Sci, vol.7, issue.1, pp.21-38, 1998.

R. H. Yun, A. Anderson, and J. Hermans, Proline in alpha-helix: stability and conformation studied by dynamics simulation, Proteins, vol.10, issue.3, pp.219-247, 1991.

S. Schulz, Principles of protein structure, 1979.

J. S. Richardson, The Anatomy and Taxonomy of Protein Structure, pp.167-339, 1981.

R. Fairman, K. R. Shoemaker, E. J. York, J. M. Stewart, and R. L. Baldwin, Further studies of the helix dipole model: Effects of a free ?-NH3+ or ?-COO? group on helix stability, Proteins Struct. Funct. Genet, vol.5, issue.1, pp.1-7, 1989.

M. D. Bruch, M. M. Dhingra, and L. M. Gierasch, Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an ?-helical region of carboxypeptidase A, Proteins Struct. Funct. Genet, vol.10, issue.2, pp.130-139, 1991.

P. C. Lyu, D. E. Wemmer, H. X. Zhou, R. J. Pinker, and N. R. Kallenbach, Capping interactions in isolated .alpha. helixes: position-dependent substitution effects and structure of a serine-capped peptide helix, Biochemistry, vol.32, issue.2, pp.421-425, 1993.

H. X. Zhou, P. C. Lyu, D. E. Wemmer, and N. R. Kallenbach, Alpha-Helix Capping in Synthetic Model Peptides by Reciprocal Side-Chain Main-Chain Interactions -Evidence for an N-Terminal Capping Box, Proteins-Structure Funct. Genet, vol.18, issue.1, pp.1-7, 1994.

Y. Gong, H. X. Zhou, M. Guo, and N. R. Kallenbach, Structural analysis of the N-and C-termini in a peptide with consensus sequence, Protein Sci, vol.4, issue.8, pp.1446-1456, 1995.

B. Forood, E. J. Feliciano, and K. P. Nambiar, Stabilization of alpha-helical structures in short peptides via end capping, Proc. Natl. Acad. Sci, vol.90, pp.838-842, 1993.

A. Chakrabartty, A. J. Doig, and R. L. Baldwin, Helix capping propensities in peptides parallel those in proteins, Proc. Natl. Acad. Sci, vol.90, pp.11332-11336, 1993.

V. Muñoz, L. Serrano, M. A. Jiménez, and M. Rico, Structural analysis of peptides encompassing all ?-helices of three ?/? parallel proteins: Che-Y, flavodoxin and P21-Ras: Implications for ?-Helix stability and the folding of ?/? parallel proteins, J. Mol. Biol, vol.247, issue.4, pp.648-669, 1995.

M. Siedlecka, G. Goch, A. Ejchart, H. Sticht, and A. Bierzynski, Helix nucleation by a calcium-binding peptide loop, Proc. Natl. Acad. Sci, vol.96, issue.3, pp.903-908, 1999.

J. Yang, K. Zhao, Y. Gong, A. Vologodskii, and N. R. Kallenbach, ?-Helix nucleation constant in copolypeptides of alanine and ornithine or lysine, J. Am. Chem. Soc, vol.120, issue.41, pp.10646-10652, 1998.

D. S. Kemp, T. P. Curran, ;. 2s, and . 5s, 11S)-1-Acetyl-1,4-diaza-3-keto-5-carboxy-10-thia-tricyclo-[2.8.04,8]-tridecane, 1 synthesis of prolyl-proline-derived, peptidefunctionalized templates for ?-helix formation, Tetrahedron Lett, vol.29, issue.39, pp.4931-4934, 1988.

D. S. Kemp, T. J. Allen, and S. L. Oslick, The Energetics of Helix Formation by Short Templated Peptides in Aqueous Solution. 1. Characterization of the Reporting Helical Template Ac-Hel1, J. Am. Chem. Soc, vol.117, issue.25, pp.6641-6657, 1995.

D. S. Kemp, T. P. Curran, J. G. Boyd, and T. J. Allen, Studies of N-terminal Templates for a-Helix Formation. Synthesis and Conformational Analysis of Peptide Conjugates of, J. Org. Chem, vol.56, issue.1, pp.6683-6697, 1991.

D. S. Kemp, S. L. Oslick, and T. J. Allen, The Structure and Energetics of Helix Formation by Short Templated Peptides in Aqueous Solution. 3. Calculation of the Helical Propagation Constant s from the Template Stability Constants t/c for Ac-Hel 1 -Ala n -OH, n = 1?6, J. Am. Chem. Soc, vol.118, issue.18, pp.4249-4255, 1996.

R. N. Chapman, G. Dimartino, and P. S. Arora, A Highly Stable Short ?-Helix Constrained by a Main-Chain Hydrogen-Bond Surrogate, J. Am. Chem. Soc, vol.126, issue.39, pp.12252-12253, 2004.

T. M. Trnka and R. H. Grubbs, The Development of L 2 X 2 RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story, Acc. Chem. Res, vol.34, issue.1, pp.18-29, 2001.

H. E. Blackwell and R. H. Grubbs, Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis, Angew. Chemie Int. Ed, vol.37, issue.23, pp.3281-3284, 1998.

E. Cabezas and A. C. Satterthwait, The Hydrogen Bond Mimic Approach: Solid-Phase Synthesis of a Peptide Stabilized as an ?-Helix with a Hydrazone Link, J. Am. Chem. Soc, vol.121, issue.16, pp.3862-3875, 1999.

D. Wang, K. Chen, J. L. Kulp, and P. S. Arora, Evaluation of biologically relevant short ?-helices stabilized by a main-chain hydrogen-bond surrogate, J. Am. Chem. Soc, vol.128, issue.28, pp.9248-9256, 2006.

J. Liu, D. Wang, Q. Zheng, M. Lu, and P. S. Arora, Atomic structure of a short ?-helix stabilized by a main chain hydrogen-bond surrogate, J. Am. Chem. Soc, vol.130, issue.13, pp.4334-4337, 2008.

D. Wang, W. Liao, and P. S. Arora, Enhanced metabolic stability and protein-binding properties of artificial alpha helices derived from a hydrogen-bond surrogate: application to Bcl-xL, Angew. Chem. Int. Ed. Engl, vol.44, issue.40, pp.6525-6534, 2005.

D. Wang, M. Lu, and P. S. Arora, Inhibition of HIV-1 Fusion by Hydrogen-Bond-Surrogate-Based ? Helices, Angew. Chemie Int. Ed, vol.47, issue.10, pp.1879-1882, 2008.

L. K. Henchey, J. R. Porter, I. Ghosh, and P. S. Arora, High specificity in protein recognition by hydrogen-bond-surrogate ?-helices: Selective inhibition of the p53/MDM2 complex, ChemBioChem, vol.11, issue.15, pp.2104-2107, 2010.

A. Patgiri, K. K. Yadav, P. S. Arora, and D. Bar-sagi, An orthosteric inhibitor of the Ras-Sos interaction, Nat. Chem. Biol, vol.7, issue.9, pp.585-587, 2011.

S. , Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling, Proc. Natl. Acad. Sci, vol.110, pp.15602-15607, 2013.

B. N. Bullock, A. L. Jochim, and P. S. Arora, Assessing helical protein interfaces for inhibitor design, J. Am. Chem. Soc, vol.133, issue.36, pp.14220-14223, 2011.

H. N. Hoang, Helix Nucleation by the Smallest Known ?-Helix in Water, Angew. Chemie -Int. Ed, vol.55, issue.29, pp.8275-8279, 2016.

N. E. Shepherd, G. Abbenante, and D. P. Fairlie, Consecutive Cyclic Pentapeptide Modules Form Short?-Helices that are Very Stable to Water and Denaturants, Angew. Chemie Int. Ed, vol.43, issue.20, pp.2687-2690, 2004.

N. E. Shepherd, H. N. Hoang, G. Abbenante, and D. P. Fairlie, Single Turn Peptide Alpha Helices with Exceptional Stability in Water, J. Am. Chem. Soc, vol.127, issue.9, pp.2974-2983, 2005.

R. S. Harrison, Downsizing human, bacterial, and viral proteins to short waterstable alpha helices that maintain biological potency, Proc. Natl. Acad. Sci, vol.107, issue.26, pp.11686-11691, 2010.

T. Cierpicki and J. Otlewski, Amide proton temperature coef cients as hydrogen bond indicators in proteins, J. Biomol. NMR, pp.249-261, 2001.

G. Wagner, W. Braun, T. F. Havel, T. Schaumann, N. G? et al., Protein structures in solution by nuclear magnetic resonance and distance geometry, J. Mol. Biol, vol.196, issue.3, pp.611-639, 1987.

H. N. Hoang, C. Wu, R. L. Beyer, T. A. Hill, and D. P. Fairlie, Alpha Helix Nucleation by a Simple Cyclic Tetrapeptide, Aust. J. Chem, vol.70, issue.2, pp.213-219, 2017.

H. Zhao, Crosslinked Aspartic Acids as Helix-Nucleating Templates, Angew. Chemie Int. Ed, vol.55, issue.39, pp.12088-12093, 2016.

S. H. Gellman, Foldamers: A Manifesto, Acc. Chem. Res, vol.31, issue.4, pp.173-180, 1998.

W. S. Horne and S. H. Gellman, Foldamers with heterogeneous backbones, Acc. Chem. Res, vol.41, issue.10, pp.1399-1408, 2008.

A. Roy, P. Prabhakaran, P. K. Baruah, and G. J. Sanjayan, Diversifying the structural architecture of synthetic oligomers: the hetero foldamer approach, Chem. Commun, vol.47, issue.42, p.11593, 2011.

G. Pasco, M. Dolain, and C. Guichard, Foldamers in Medicinal Chemistry, vol.5, 2017.

S. De-pol, C. Zorn, C. D. Klein, O. Zerbe, and O. Reiser, Surprisingly Stable Helical Conformations in ?/?-Peptides by Incorporation of cis-?-Aminocyclopropane Carboxylic Acids, Angew. Chemie -Int. Ed, vol.43, issue.4, pp.511-514, 2004.

A. Hayen, M. A. Schmitt, F. N. Ngassa, K. A. Thomasson, and S. H. Gellman, Two Helical Conformations from a Single Foldamer Backbone

. Short?/?-peptides, Angew. Chemie Int. Ed, vol.43, issue.4, pp.505-510, 2004.

S. H. Choi, I. A. Guzei, L. C. Spencer, and S. H. Gellman, Crystallographic Characterization of Helical Secondary Structures in ?/?-Peptides with 1:1 Residue Alternation, J. Am. Chem. Soc, vol.130, issue.20, pp.6544-6550, 2008.

P. Harbury, T. Zhang, P. Kim, and T. Alber, A switch between two-, three-, and fourstranded coiled coils in GCN4 leucine zipper mutants, Science (80-. ), vol.262, issue.5138, pp.1401-1407, 1993.

M. A. Schmitt, S. H. Choi, I. A. Guzei, and S. H. Gellman, Residue requirements for helical folding in short ?/?-peptides: Crystallographic characterization of the 11-helix in an optimized sequence, J. Am. Chem. Soc, vol.127, issue.38, pp.13130-13131, 2005.

G. V. Sharma, P. Nagendar, P. Jayaprakash, P. R. Krishna, K. V. Ramakrishna et al., 9/11 Mixed helices in ?/? peptides derived from C-linked carbo?-amino acid and L-Ala repeats, Angew. Chemie -Int. Ed, vol.44, issue.36, pp.5878-5882, 2005.

M. A. Schmitt, S. H. Choi, I. A. Guzei, and S. H. Gellman, New helical foldamers: Heterogeneous backbones with 1:2 and 2:1 ?:?-amino acid residue patterns, J. Am. Chem. Soc, vol.128, issue.14, pp.4538-4539, 2006.

L. M. Johnson and S. H. Gellman, ?-Helix mimicry with ?/?-peptides, vol.523, 2013.

W. S. Horne, J. L. Price, and S. H. Gellman, Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly, Proc. Natl. Acad. Sci. U. S. A, vol.105, issue.27, pp.9151-9156, 2008.

J. L. Price, W. S. Horne, and S. H. Gellman, Structural Consequences of ?-Amino Acid Preorganization in a Self-Assembling ?/?-Peptide: Fundamental Studies of Foldameric Helix Bundles, J. Am. Chem. Soc, vol.132, issue.35, pp.12378-12387, 2010.

W. S. Horne, J. L. Price, J. L. Keck, and S. H. Gellman, Helix Bundle Quaternary Structure from ?/?-Peptide Foldamers, J. Am. Chem. Soc, vol.129, issue.14, pp.4178-4180, 2007.

T. Sawada and S. H. Gellman, Structural Mimicry of the ?-Helix in Aqueous Solution with an Isoatomic ?/?/?-Peptide Backbone, J. Am. Chem. Soc, vol.133, issue.19, pp.7336-7339, 2011.

I. L. Karle, A. Pramanik, A. Banerjee, S. Bhattacharjya, and P. Balaram, ?-Amino Acids in Peptide Design. Crystal Structures and Solution Conformations of Peptide Helices Containing a ?-Alanyl-?-Aminobutyryl Segment, J. Am. Chem. Soc, vol.119, issue.39, pp.9087-9095, 1997.

Y. H. Shin, D. E. Mortenson, K. A. Satyshur, K. T. Forest, and S. H. Gellman, Differential Impact of beta and gamma Residue Preorganization on alpha/beta/gamma-Peptide Helix Stability in Water, J Am Chem Soc, issue.2, pp.1-4, 2013.

A. Bandyopadhyay, S. V. Jadhav, and H. N. Gopi, ?/?4-Hybrid peptide helices: synthesis, crystal conformations and analogy with the ?-helix, Chem. Commun, vol.48, issue.57, p.7170, 2012.

F. Colland, Functional proteomics mapping of a human signaling pathway, Genome Res, vol.14, issue.7, pp.1324-1332, 2004.

J. A. Wells and C. L. Mcclendon, Reaching for high-hanging fruit in drug discovery at protein-protein interfaces, Nature, vol.450, issue.7172, pp.1001-1010, 2007.

D. W. Christianson and W. N. Lipscomb, X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature, Proc. Natl. Acad. Sci. U. S. A, vol.83, issue.20, pp.7568-72, 1986.

S. Fletcher and A. D. Hamilton, Protein surface recognition and proteomimetics: Mimics of protein surface structure and function, Curr. Opin. Chem. Biol, vol.9, issue.6, pp.632-638, 2005.

B. C. Cunningham and J. Wells, High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis, Science, vol.244, issue.4908, pp.1081-1085, 1989.

I. S. Moreira, P. A. Fernandes, and M. J. Ramos, Hot spots-A review of the proteinprotein interface determinant amino-acid residues, Proteins Struct. Funct. Bioinforma, vol.68, issue.4, pp.803-812, 2007.

M. R. Arkin and J. A. Wells, Small-molecule inhibitors of protein-protein interactions: progressing towards the dream, Nat. Rev. Drug Discov, vol.3, issue.4, pp.301-317, 2004.

P. Chène, Drugs Targeting Protein-Protein Interactions, ChemMedChem, vol.1, issue.4, pp.400-411, 2006.

S. Surade and T. L. Blundell, Structural Biology and Drug Discovery of Difficult Targets: The Limits of Ligandability, Chem. Biol, vol.19, issue.1, pp.42-50, 2012.

M. R. Arkin, Y. Tang, and J. A. Wells, Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality, Chem. Biol, vol.21, issue.9, pp.1102-1114, 2014.

M. Bakail and F. Ochsenbein, Targeting protein-protein interactions, a wide open field for drug design, Comptes Rendus Chim, vol.19, issue.1-2, pp.19-27, 2016.

A. A. Kaspar and J. M. Reichert, Future directions for peptide therapeutics development, Drug Discov. Today, vol.18, issue.17, pp.807-817, 2013.

A. L. Jochim and P. S. Arora, Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors, ACS Chem. Biol, vol.5, issue.10, pp.919-923, 2010.

A. M. Watkins, M. G. Wuo, and P. S. Arora, Protein-Protein Interactions Mediated by Helical Tertiary Structure Motifs, J. Am. Chem. Soc, vol.137, issue.36, pp.11622-11630, 2015.

C. Toniolo, M. Crisma, F. Formaggio, and C. Peggion, Control of peptide conformation by the Thorpe-Ingold effect (C?-tetrasubstitution), Biopolymers, vol.60, issue.6, pp.396-419, 2001.

F. Bernal, A. F. Tyler, S. J. Korsmeyer, L. D. Walensky, and G. L. Verdine, Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide, J. Am. Chem. Soc, vol.129, issue.9, pp.2456-2457, 2007.

G. Philippe, Development of cell-penetrating peptide-based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions, Biopolymers, vol.106, issue.6, pp.853-863, 2016.

Y. S. Chang, Stapled ?-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.36, pp.3445-54, 2013.

D. S. Kemp, Peptidomimetics and the template approach to nucleation of ?-sheets and ?-helices in peptides, Trends Biotechnol, vol.8, issue.C, pp.249-255, 1990.

A. B. Mahon and P. S. Arora, End-capped ?-helices as modulators of protein function, Drug Discov. Today Technol, vol.9, issue.1, pp.57-62, 2012.

C. H. Douse, Crystal structures of stapled and hydrogen bond surrogate peptides targeting a fully buried protein-helix interaction, ACS Chem. Biol, vol.9, issue.10, pp.2204-2209, 2014.

C. García-echeverría, P. Chène, M. J. Blommers, and P. Furet, Discovery of Potent Antagonists of the Interaction between Human Double Minute 2 and Tumor Suppressor p53, J. Med. Chem, vol.43, issue.17, pp.3205-3208, 2000.

L. D. Walensky and G. H. Bird, Hydrocarbon-stapled peptides: Principles, practice, and progress, J. Med. Chem, vol.57, issue.15, pp.6275-6288, 2014.

J. Kallen, Crystal structures of human MdmX (HdmX) in complex with p53 peptide analogues reveal surprising conformational changes, J. Biol. Chem, vol.284, issue.13, pp.8812-8821, 2009.

S. Baek, Structure of the stapled p53 peptide bound to Mdm2, J. Am. Chem. Soc, vol.134, issue.1, pp.103-106, 2012.

B. B. Lao, Rational Design of Topographical Helix Mimics as Potent Inhibitors of Protein-Protein Interactions, J. Am. Chem. Soc, vol.136, issue.22, pp.7877-7888, 2014.

P. Juin, O. Geneste, F. Gautier, S. Depil, and M. Campone, Decoding and unlocking the BCL-2 dependency of cancer cells, Nat. Rev. Cancer, vol.13, issue.7, pp.455-465, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02481124

A. R. Delbridge, S. Grabow, A. Strasser, and D. L. Vaux, Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies, Nat. Rev. Cancer, vol.16, issue.2, pp.99-109, 2016.

J. D. Sadowsky, (?/?+?)-peptide antagonists of BH3 domain/Bcl-x L recognition: Toward general strategies for foldamer-based inhibition of proteinprotein interactions, J. Am. Chem. Soc, vol.129, issue.1, pp.139-154, 2007.

E. F. Lee, High-Resolution Structural Characterization of a Helical ?/?-Peptide Foldamer Bound to the Anti-Apoptotic Protein Bcl-x L, Angew. Chemie Int. Ed, vol.48, issue.24, pp.4318-4322, 2009.

W. S. Horne, M. D. Boersma, M. A. Windsor, and S. H. Gellman, Sequence-based design of ?/?-peptide foldamers that mimic BH3 domains, Angew. Chemie -Int. Ed, vol.47, issue.15, pp.2853-2856, 2008.

E. F. Lee, Structural Basis of Bcl-xL Recognition by a BH3-Mimetic ?/?-Peptide Generated by Sequence-Based Design, ChemBioChem, vol.12, issue.13, pp.2025-2032, 2011.

M. D. Boersma, Evaluation of diverse ?/?-backbone patterns for functional ?helix mimicry: Analogues of the Bim BH3 domain, J. Am. Chem. Soc, vol.134, issue.1, pp.315-323, 2012.

M. D. Boersma, Evaluation of Diverse ?/?-Backbone Patterns for Functional ?-Helix Mimicry: Analogues of the Bim BH3 Domain, J. Am. Chem. Soc, vol.134, issue.1, pp.315-323, 2012.

J. W. Checco, ?/?-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells, J. Am. Chem. Soc, vol.137, issue.35, pp.11365-11375, 2015.

D. M. Eckert and P. S. Kim, Mechanisms of Viral Membrane Fusion and Its Inhibition, Annu. Rev. Biochem, vol.70, issue.1, pp.777-810, 2001.

D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim, Core Structure of gp41 from the HIV Envelope Glycoprotein, Cell, vol.89, issue.2, pp.263-273, 1997.

W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley, Atomic structure of the ectodomain from HIV-1 gp41, Nature, vol.387, issue.6631, pp.426-430, 1997.

K. Tan, J. Liu, J. Wang, S. Shen, and M. Lu, Atomic structure of a thermostable subdomain of HIV-1 gp41, Proc. Natl. Acad. Sci. U. S. A, vol.94, issue.23, pp.12303-12308, 1997.

L. Morand-joubert, Place du maraviroc dans la stratégie antirétrovirale: Intérêt et faisabilité des tests génotypiques dans la détermination du tropisme viral, vol.13, pp.159-169, 2009.

D. C. Chan, C. T. Chutkowski, and P. S. Kim, Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target, Proc. Natl. Acad. Sci, vol.95, issue.26, pp.15613-15617, 1998.

V. N. Malashkevich, D. C. Chan, C. T. Chutkowski, and P. S. Kim, Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides, Proc. Natl. Acad. Sci. U. S. A, vol.95, issue.16, pp.9134-9143, 1998.

C. T. Wild, D. C. Shugars, T. K. Greenwell, C. B. Mcdanal, and T. J. Matthews, Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection, Proc. Natl. Acad. Sci, vol.91, issue.21, pp.9770-9774, 1994.

G. H. Bird, Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection, J. Clin. Invest, vol.124, issue.5, pp.2113-2124, 2014.

J. J. Dwyer, Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus, Proc. Natl. Acad. Sci, vol.104, issue.31, pp.12772-12777, 2007.

W. S. Horne, Structural and biological mimicry of protein surface recognition by alpha/beta-peptide foldamers, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.35, pp.14751-14757, 2009.

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Signalling: Seven-transmembrane receptors, Nat. Rev. Mol. Cell Biol, vol.3, issue.9, pp.639-650, 2002.

S. K. Shenoy and R. J. Lefkowitz, Seven-Transmembrane Receptor Signaling Through -Arrestin, Sci. Signal, issue.308, pp.10-10, 2005.

S. M. Dewire, S. Ahn, R. J. Lefkowitz, and S. K. Shenoy, ?-Arrestins and Cell Signaling, Annu. Rev. Physiol, vol.69, issue.1, pp.483-510, 2007.

T. Kenakin, Ligand-selective receptor conformations revisited: The promise and the problem, Trends Pharmacol. Sci, vol.24, issue.7, pp.346-354, 2003.

B. K. Kobilka and X. Deupi, Conformational complexity of G-protein-coupled receptors, Trends Pharmacol. Sci, vol.28, issue.8, pp.397-406, 2007.

T. Kenakin and A. Christopoulos, Signalling bias in new drug discovery: detection, quantification and therapeutic impact, Nat. Rev. Drug Discov, vol.12, issue.3, pp.205-216, 2012.

S. Rajagopal, K. Rajagopal, and R. J. Lefkowitz, Teaching old receptors new tricks: biasing seven-transmembrane receptors, Nat. Rev. Drug Discov, vol.9, issue.5, pp.373-386, 2010.

E. Reiter, S. Ahn, A. K. Shukla, and R. J. Lefkowitz, Molecular Mechanism of ?-Arrestin-Biased Agonism at Seven-Transmembrane Receptors, Annu. Rev. Pharmacol. Toxicol, vol.52, issue.1, pp.179-197, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01129592

L. L. Baggio and D. J. Drucker, Biology of Incretins: GLP-1 and GIP, vol.132, issue.6, pp.2131-2157, 2007.

L. Hansen, C. F. Deacon, C. Ørskov, and J. J. Holst, Glucagon-Like Peptide-1-(7-36)Amide Is Transformed to Glucagon-Like Peptide-1-(9-36)Amide by Dipeptidyl Peptidase IV in the Capillaries Supplying the L Cells of the Porcine Intestine 1, Endocrinology, vol.140, issue.11, pp.5356-5363, 1999.

F. S. Willard and K. W. Sloop, Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor, Exp. Diabetes Res, vol.2012, 2012.

G. I. Robles and D. Singh-franco, A review of exenatide as adjunctive therapy in patients with type 2 diabetes, Drug Des. Devel. Ther, issue.3, pp.219-240, 2009.

L. B. Knudsen, Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration, J. Med. Chem, vol.43, issue.9, pp.1664-1669, 2000.

J. J. Neumiller and R. K. Campbell, Liraglutide: A Once-Daily Incretin Mimetic for the Treatment of Type 2 Diabetes Mellitus, Ann. Pharmacother, vol.43, issue.9, pp.1433-1444, 2009.

C. R. Underwood, Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor, J. Biol. Chem, vol.285, issue.1, pp.723-730, 2010.

K. Adelhorst, B. B. Hedegaard, L. B. Knudsen, and O. Kirk, Structure-activity studies of glucagon-like peptide-1, J. Biol. Chem, vol.269, issue.9, pp.6275-6283, 1994.

C. Sarrauste-de-menthière, Structural requirements of the N-terminal region of GLP-1-[7-37]-NH2 for receptor interaction and cAMP production, Eur. J. Med. Chem, vol.39, issue.6, pp.473-80, 2004.

L. P. Miranda, Design and Synthesis of Conformationally Constrained Glucagon-Like Peptide-1 Derivatives with Increased Plasma Stability and Prolonged in Vivo Activity, J. Med. Chem, vol.51, issue.9, pp.2758-2765, 2008.

E. N. Murage, G. Gao, A. Bisello, and J. Ahn, Development of Potent Glucagonlike Peptide-1 Agonists with High Enzyme Stability via Introduction of Multiple Lactam Bridges, J. Med. Chem, vol.53, issue.17, pp.6412-6420, 2010.

Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Anal. Biochem, vol.58, issue.2, pp.541-548, 1974.

J. L. Price, E. B. Hadley, J. D. Steinkruger, and S. H. Gellman, Detection and Analysis of Chimeric Tertiary Structures by Backbone Thioester Exchange: Packing of an ? Helix against an ?/?-Peptide Helix, Angew. Chemie Int. Ed, vol.49, issue.2, pp.368-371, 2010.

L. Jessen, Suppression of Food Intake by Glucagon-Like Peptide-1 Receptor Agonists: Relative Potencies and Role of Dipeptidyl Peptidase-4, Endocrinology, vol.153, issue.12, pp.5735-5745, 2012.

K. Hupe-sodmann, Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides, Regul. Pept, vol.58, issue.3, pp.149-156, 1995.

C. F. Deacon, L. B. Knudsen, K. Madsen, F. C. Wiberg, O. Jacobsen et al., Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity, Diabetologia, vol.41, issue.3, pp.271-278, 1998.

K. Burgess, H. Shin, and D. S. Linthicum, Solid-Phase Syntheses of Unnatural Biopolymers Containing Repeating Urea Units, Angew. Chemie Int. Ed. English, vol.34, issue.8, pp.907-909, 1995.

K. Burgess, Solid Phase Syntheses of Oligoureas, J. Am. Chem. Soc, vol.119, issue.7, pp.1556-1564, 1997.

W. D. Kumler and G. M. Fohlen, The Dipole Moment and Structure of Urea and Thiourea 1, J. Am. Chem. Soc, vol.64, issue.8, pp.1944-1948, 1942.

V. Semetey, Stable Helical Secondary Structure in Short-Chain N,N?-Linked Oligoureas Bearing Proteinogenic Side Chains Access to both the Bruker ARX 500 facilities of the Service Commun de RMN (Faculté de Chimie, Strasbourg) and the Bruker DRX 600 NMR facilities of t, Angew. Chemie Int. Ed, vol.41, issue.11, p.1893, 2002.

A. Violette, Linked Oligoureas as Foldamers: Chain Length Requirements for Helix Formation in Protic Solvent Investigated by Circular Dichroism, NMR Spectroscopy, and Molecular Dynamics, J. Am. Chem. Soc, vol.127, issue.7, pp.2156-2164, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00433198

A. Violette, Exploring helical folding of oligoureas during chain elongation by high-resolution magic-angle-spinning (HRMAS) NMR spectroscopy, Chem. -A Eur. J, vol.14, issue.13, pp.3874-3882, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00281017

G. Guichard, A. Violette, G. Chassaing, and E. Miclet, Solution structure determination of oligoureas using methylene spin state selective NMR at 13 C natural abundance, Magn. Reson. Chem, vol.46, issue.10, pp.918-924, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00408807

L. Fischer, The Canonical Helix of Urea Oligomers at Atomic Resolution: Insights Into Folding-Induced Axial Organization, Angew. Chemie Int. Ed, vol.49, issue.6, pp.1067-1070, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00475693

J. Fremaux, L. Fischer, T. Arbogast, B. Kauffmann, and G. Guichard, Condensation approach to aliphatic oligourea foldamers: Helices with N-(Pyrrolidin-2-ylmethyl)ureido junctions, Angew. Chemie -Int. Ed, vol.50, issue.48, pp.11382-11385, 2011.

T. Hintermann, K. Gademann, B. Jaun, and D. Seebach, Peptides Forming More Stable Secondary Structures than ?-Peptides: Synthesis and helical NMR-solution structure of the ?-hexapeptide analog of H, vol.81, pp.983-1002, 1998.

Y. Nelli, C. Douat-casassus, P. Claudon, B. Kauffmann, C. Didierjean et al., An activated building block for the introduction of the histidine side chain in aliphatic oligourea foldamers, Tetrahedron, vol.68, issue.23, pp.4492-4500, 2012.

L. Fischer and G. Guichard, Folding and self-assembly of aromatic and aliphatic urea oligomers: Towards connecting structure and function, Org. Biomol. Chem, vol.8, issue.14, p.3101, 2010.

N. Pendem, Helix-Forming Propensity of Aliphatic Urea Oligomers Incorporating Noncanonical Residue Substitution Patterns, J. Am. Chem. Soc, vol.135, issue.12, pp.4884-4892, 2013.

A. Violette, Mimicking Helical Antibacterial Peptides with Nonpeptidic Folding Oligomers, Chem. Biol, vol.13, issue.5, pp.531-538, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130007

P. Claudon, Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: Helical mimics of host-defense peptides based on a heterogeneous amide/urea backbone, Angew. Chemie -Int. Ed, vol.49, issue.2, pp.333-336, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00440427

C. Douat, A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA, Angew. Chem. Int. Ed. Engl, vol.54, issue.38, pp.11133-11140, 2015.

J. D. Sadowsky, Chimeric (?/? + ?)-Peptide Ligands for the BH3-Recognition Cleft of Bcl-x L : Critical Role of the Molecular Scaffold in Protein Surface Recognition, J. Am. Chem. Soc, vol.127, issue.34, pp.11966-11968, 2005.

A. L. Jochim and P. S. Arora, Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors, ACS Chem. Biol, vol.5, issue.10, pp.919-923, 2010.

A. J. Wilson, Inhibition of protein-protein interactions using designed molecules, Nat. Chem, vol.5, pp.161-173, 2013.

K. Estieu-gionnet and G. Guichard, Stabilized helical peptides: overview of the technologies and therapeutic promises, Expert Opin. Drug Discov, vol.6, issue.9, pp.937-963, 2011.

R. M. Liskamp, D. T. Rijkers, J. A. Kruijtzer, and J. Kemmink, Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics, ChemBioChem, vol.12, issue.11, pp.1626-1653, 2011.

J. M. Davis, L. K. Tsou, and A. D. Hamilton, Synthetic non-peptide mimetics of ?helices, Chem. Soc. Rev, vol.36, issue.2, pp.326-334, 2007.

I. L. Karle and P. Balaram, Structural characteristics of alpha-helical peptide molecules containing Aib residues, Biochemistry, vol.29, issue.29, pp.6747-6756, 1990.

C. Toniolo, M. Crisma, F. Formaggio, and C. Peggion, Control of peptide conformation by the Thorpe-Ingold effect (C?-tetrasubstitution), Biopolymers, vol.60, issue.6, pp.396-419, 2001.

J. F. Hernandez, Synthesis and relative potencies of new constrained CRF antagonists, J. Med. Chem, vol.36, issue.20, pp.2860-2867, 1993.

C. García-echeverría, P. Chène, M. J. Blommers, and P. Furet, Discovery of Potent Antagonists of the Interaction between Human Double Minute 2 and Tumor Suppressor p53, J. Med. Chem, vol.43, issue.17, pp.3205-3208, 2000.

C. E. Schafmeister, A. J. Po, G. L. Verdine, and *. , An All-Hydrocarbon Cross-Linking System for Enhancing the Helicity and Metabolic Stability of Peptides, J. Am. Chem. Soc, issue.6, pp.12364-12365, 2000.

E. N. Murage, G. Gao, A. Bisello, and J. Ahn, Development of Potent Glucagonlike Peptide-1 Agonists with High Enzyme Stability via Introduction of Multiple Lactam Bridges, J. Med. Chem, vol.53, issue.17, pp.6412-6420, 2010.

H. Jo, Development of ?-helical calpain probes by mimicking a natural proteinprotein interaction, J. Am. Chem. Soc, vol.134, issue.42, pp.17704-17713, 2012.

A. M. Spokoyny, Y. Zou, J. J. Ling, H. Yu, Y. Lin et al., A Perfluoroaryl-Cysteine S N Ar Chemistry Approach to Unprotected Peptide Stapling, J. Am. Chem. Soc, vol.135, issue.16, pp.5946-5949, 2013.

A. D. De-araujo, Comparative ?-helicity of cyclic pentapeptides in water, Angew. Chemie -Int. Ed, vol.53, issue.27, pp.6965-6969, 2014.

S. Baek, Structure of the stapled p53 peptide bound to Mdm2, J. Am. Chem. Soc, vol.134, issue.1, pp.103-106, 2012.

G. Philippe, Development of cell-penetrating peptide-based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions, Biopolymers, vol.106, issue.6, pp.853-863, 2016.

J. Kallen, Crystal structures of human MdmX (HdmX) in complex with p53 peptide analogues reveal surprising conformational changes, J. Biol. Chem, vol.284, issue.13, pp.8812-8821, 2009.

G. Guichard and I. Huc, Synthetic foldamers, Chem. Commun, vol.47, issue.21, p.5933, 2011.

W. S. Horne and S. H. Gellman, Foldamers with heterogeneous backbones, Acc. Chem. Res, vol.41, issue.10, pp.1399-1408, 2008.

L. M. Johnson, A Potent ?/?-Peptide Analogue of GLP-1 with Prolonged Action in Vivo, J. Am. Chem. Soc, vol.136, issue.37, pp.12848-12851, 2015.

M. D. Boersma, Evaluation of diverse ?/?-backbone patterns for functional ?helix mimicry: Analogues of the Bim BH3 domain, J. Am. Chem. Soc, vol.134, issue.1, pp.315-323, 2012.

L. M. Johnson, Enhancement of ?-helix mimicry by an ?/?-peptide foldamer via incorporation of a dense ionic side-chain array, J. Am. Chem. Soc, vol.134, issue.17, pp.7317-7320, 2012.

N. Pendem, Helix-Forming Propensity of Aliphatic Urea Oligomers Incorporating Noncanonical Residue Substitution Patterns, J. Am. Chem. Soc, vol.135, issue.12, pp.4884-4892, 2013.

J. Fremaux, C. Dolain, B. Kauffmann, J. Clayden, and G. Guichard, Influence of achiral units with gem-dimethyl substituents on the helical character of aliphatic oligourea foldamers, Chem. Commun, vol.49, issue.67, pp.7415-7417, 2013.

J. Fremaux, L. Fischer, T. Arbogast, B. Kauffmann, and G. Guichard, Condensation approach to aliphatic oligourea foldamers: Helices with N-(Pyrrolidin-2-ylmethyl)ureido junctions, Angew. Chemie -Int. Ed, vol.50, issue.48, pp.11382-11385, 2011.

L. Fischer, The Canonical Helix of Urea Oligomers at Atomic Resolution: Insights Into Folding-Induced Axial Organization, Angew. Chemie Int. Ed, vol.49, issue.6, pp.1067-1070, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00475693

J. Fremaux, L. Mauran, K. Pulka-ziach, B. Kauffmann, B. Odaert et al., ?-Peptide-Oligourea Chimeras: Stabilization of Short ?-Helices by Non-Peptide Helical Foldamers, Angew. Chemie Int. Ed, vol.54, issue.34, pp.9816-9820, 2015.

P. Kumar and M. Bansal, HELANAL-Plus: a web server for analysis of helix geometry in protein structures, J. Biomol. Struct. Dyn, vol.30, issue.6, pp.773-83, 2012.

P. Sieber, A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method, Tetrahedron Lett, vol.28, issue.19, pp.2107-2110, 1987.

C. Douat-casassus, K. Pulka, P. Claudon, and G. Guichard, Microwave-Enhanced Solid-Phase Synthesis of N , N? -Linked Aliphatic Oligoureas and Related Hybrids, Org. Lett, vol.14, issue.12, pp.3130-3133, 2012.

P. B. Alper, S. Hung, and C. Wong, Metal catalyzed diazo transfer for the synthesis of azides from amines, Tetrahedron Lett, vol.37, issue.34, pp.6029-6032, 1996.

E. D. Goddard-borger and R. Stick, An Efficient, Inexpensive, and Shelf-Stable Diazotransfer Reagent: Imidazole-1-sulfonyl Azide Hydrochloride, Org. Lett, vol.9, issue.19, pp.3797-3800, 2007.

N. Fischer, E. D. Goddard-borger, R. Greiner, T. M. Klapötke, B. W. Skelton et al., Sensitivities of Some Imidazole-1-sulfonyl Azide Salts, J. Org. Chem, vol.77, issue.4, pp.1760-1764, 2012.

Z. Zhang and E. Fan, Solid-Phase and Solution-Phase Syntheses of Oligomeric Guanidines Bearing Peptide Side Chains, J. Org. Chem, vol.70, issue.22, pp.8801-8810, 2005.

K. Burgess, Solid Phase Syntheses of Oligoureas, J. Am. Chem. Soc, vol.119, issue.7, pp.1556-1564, 1997.

J. C. Sheehan, D. W. Chapman, and R. W. Roth, The Synthesis of Stereochemically Pure Peptide Derivatives by the Phthaloyl Method, J. Am. Chem. Soc, vol.74, issue.15, pp.3822-3825, 1952.

Y. Nelli, C. Douat-casassus, P. Claudon, B. Kauffmann, C. Didierjean et al., An activated building block for the introduction of the histidine side chain in aliphatic oligourea foldamers, Tetrahedron, vol.68, issue.23, pp.4492-4500, 2012.

A. Violette, Mimicking Helical Antibacterial Peptides with Nonpeptidic Folding Oligomers, Chem. Biol, vol.13, issue.5, pp.531-538, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130007

L. Fischer, Succinimidyl carbamate derivatives from N-protected ?-amino acids and dipeptides-synthesis of ureidopeptides and oligourea/peptide hybrids, European J. Org. Chem, issue.15, pp.2511-2525, 2007.

P. Claudon, Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: Helical mimics of host-defense peptides based on a heterogeneous amide/urea backbone, Angew. Chemie -Int. Ed, vol.49, issue.2, pp.333-336, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00440427

A. Chakrabartty and R. Baldwin, Stability of ?-Helices, Advances in Protein Chemistry, vol.46, pp.141-176, 1995.

P. Luo and R. L. Baldwin, Mechanism of helix induction by trifluoroethanol: A framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water, Biochemistry, vol.36, issue.27, pp.8413-8421, 1997.

S. Padmanabhan, S. Marqusee, T. Ridgeway, T. M. Laue, and R. L. Baldwin, Relative helix-forming tendencies of nonpolar amino acids, Nature, vol.344, issue.6263, pp.268-270, 1990.

T. L. Raguse, J. R. Lai, and S. H. Gellman, Evidence that the -Peptide 14-Helix is Stabilized by 3-Residues with Side-Chain Branching Adjacent to the -Carbon Atom, Helv. Chim. Acta, vol.85, issue.12, pp.4154-4164, 2002.

B. Wang, Y. Wang, and D. S. Wishart, A probabilistic approach for validating protein NMR chemical shift assignments, J. Biomol. NMR, vol.47, issue.2, pp.85-99, 2010.

A. Hock and K. H. Vousden, Regulation of the p53 pathway by ubiquitin and related proteins, Int. J. Biochem. Cell Biol, vol.42, issue.10, pp.1618-1621, 2010.

P. Chène, Inhibiting the p53-MDM2 interaction: an important target for cancer therapy, Nat. Rev. Cancer, vol.3, issue.2, pp.102-111, 2003.

P. H. Kussie, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science (80-. ), vol.274, issue.5289, pp.948-953, 1996.

A. Shvarts, MDMX: a novel p53-binding protein with some functional properties of MDM2, EMBO J, vol.15, issue.19, pp.5349-57, 1996.

L. Huang, The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.108, issue.29, pp.12001-12007, 2011.

C. García-echeverría, P. Chène, M. J. Blommers, and P. Furet, Discovery of Potent Antagonists of the Interaction between Human Double Minute 2 and Tumor Suppressor p53, J. Med. Chem, vol.43, issue.17, pp.3205-3208, 2000.

R. Banerjee, G. Basu, P. Chene, and S. Roy, Aib-based peptide backbone as scaffolds for helical peptide mimics, J. Pept. Res, vol.60, pp.88-94, 2002.

J. Kallen, Crystal structures of human MdmX (HdmX) in complex with p53 peptide analogues reveal surprising conformational changes, J. Biol. Chem, vol.284, issue.13, pp.8812-8821, 2009.

J. A. Kritzer, Miniature protein inhibitors of the p53-hDM2 interaction, ChemBioChem, vol.7, issue.1, pp.29-31, 2006.

J. Kritzer, M. E. Hodsdon, and A. Schepartz, Solution structure of a beta-peptide ligand for hDM2, J. Am. Chem. Soc, vol.127, issue.12, pp.4118-4119, 2005.

J. Michel, E. A. Harker, J. Tirado-rives, W. L. Jorgensen, and A. Schepartz, In Silico Improvement of ?3-Peptide inhibitors of p53.hDM2 and p53.hDMX, J. Am. Chem. Soc, vol.131, issue.18, pp.6356-6357, 2009.

C. M. Grison, J. A. Miles, S. Robin, A. J. Wilson, and D. J. Aitken, 13-Helix: Designed ?/?/?-Foldamers as Selective Inhibitors of Protein-Protein Interactions, Angew. Chemie -Int. Ed, vol.12, issue.37, pp.11096-11100, 2016.

V. Azzarito, Probing Protein Surfaces: QSAR Analysis with Helix Mimetics, ChemBioChem, vol.17, issue.8, pp.768-773, 2016.

L. K. Henchey, J. R. Porter, I. Ghosh, and P. S. Arora, High specificity in protein recognition by hydrogen-bond-surrogate ?-helices: Selective inhibition of the p53/MDM2 complex, ChemBioChem, vol.11, issue.15, pp.2104-2107, 2010.

A. Patgiri, S. T. Joy, and P. S. Arora, Nucleation effects in peptide foldamers, J. Am. Chem. Soc, vol.134, issue.28, pp.11495-11502, 2012.

M. Liu, M. Pazgier, C. Li, W. Yuan, C. Li et al., A left-handed solution to peptide inhibition of the p53-MDM2 interaction, Angew. Chemie -Int. Ed, vol.49, issue.21, pp.3649-3652, 2010.

M. Liu, D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.32, pp.14321-14327, 2010.

C. Zhan, An Ultrahigh Affinity <scp>d</scp> -Peptide Antagonist Of MDM2, J. Med. Chem, vol.55, issue.13, pp.6237-6241, 2012.

M. Xie, Structural Basis of Inhibition of ER?-Coactivator Interaction by High-Affinity N-Terminus Isoaspartic Acid Tethered Helical Peptides, J. Med. Chem, vol.60, issue.21, pp.8731-8740, 2017.

G. Philippe, Development of cell-penetrating peptide-based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions, Biopolymers, vol.106, issue.6, pp.853-863, 2016.

Y. S. Chang, Stapled ?-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.36, pp.3445-54, 2013.

F. Bernal, A Stapled p53 Helix Overcomes HDMX-Mediated Suppression of p53, Cancer Cell, vol.18, issue.5, pp.411-422, 2010.

F. Bernal, A. F. Tyler, S. J. Korsmeyer, L. D. Walensky, and G. L. Verdine, Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide, J. Am. Chem. Soc, vol.129, issue.9, pp.2456-2457, 2007.

K. H. Khoo, K. K. Hoe, C. S. Verma, and D. P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy, Nat. Rev. Drug Discov, vol.13, issue.3, pp.217-253, 2014.

M. Pazgier, Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.12, pp.4665-4670, 2009.

C. Li, Systematic Mutational Analysis of Peptide Inhibition of the p53-MDM2/MDMX Interactions, J. Mol. Biol, vol.398, issue.2, pp.200-213, 2010.

E. Teyssières, Proteolytically Stable Foldamer Mimics of Host-Defense Peptides with Protective Activities in a Murine Model of Bacterial Infection, J. Med. Chem, vol.59, issue.18, pp.8221-8232, 2016.

C. Douat, A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA, Angew. Chem. Int. Ed. Engl, vol.54, issue.38, pp.11133-11140, 2015.

G. Guichard, V. Semetey, M. Rodriguez, and J. Briand, Solid phase synthesis of oligoureas using O-succinimidyl-(9H-fluoren-9-ylmethoxycarbonylamino)ethylcarbamate derivatives as activated monomers, Tetrahedron Lett, vol.41, issue.10, pp.1553-1557, 2000.

A. Violette, Mimicking Helical Antibacterial Peptides with Nonpeptidic Folding Oligomers, Chem. Biol, vol.13, issue.5, pp.531-538, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130007

L. Fischer, Succinimidyl carbamate derivatives from N-protected ?-amino acids and dipeptides-synthesis of ureidopeptides and oligourea/peptide hybrids, European J. Org. Chem, issue.15, pp.2511-2525, 2007.

P. Sieber, A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method, Tetrahedron Lett, vol.28, issue.19, pp.2107-2110, 1987.

F. Degorce, A. Card, S. Soh, E. Trinquet, G. P. Knapik et al., HTRF: A technology tailored for drug discovery -a review of theoretical aspects and recent applications, Curr. Chem. Genomics, vol.3, pp.22-32, 2009.

S. Kane, C. Fleener, Y. S. Zhang, L. J. Davis, L. Musselman et al., Development of a binding assay for p53/HDM2 by using homogeneous timeresolved fluorescence, Anal. Biochem, vol.278, issue.1, pp.29-38, 2000.

J. D. Sadowsky, J. K. Murray, Y. Tomita, and S. H. Gellman, Exploration of backbone space in foldamers containing ?-and ?-amino acid residues: Developing proteaseresistant oligomers that bind tightly to the BH3-recognition cleft of Bcl-xL, ChemBioChem, vol.8, issue.8, pp.903-916, 2007.

C. Douat-casassus, K. Pulka, P. Claudon, and G. Guichard, Microwave-Enhanced Solid-Phase Synthesis of N , N? -Linked Aliphatic Oligoureas and Related Hybrids, Org. Lett, vol.14, issue.12, pp.3130-3133, 2012.

N. Pendem, Helix-Forming Propensity of Aliphatic Urea Oligomers Incorporating Noncanonical Residue Substitution Patterns, J. Am. Chem. Soc, vol.135, issue.12, pp.4884-4892, 2013.

J. Kim, Y. Bi, S. J. Paikoff, and P. G. ,

. Schultz, The solid phase synthesis of oligoureas, Tetrahedron Lett, vol.37, issue.30, pp.5305-5308, 1996.

T. R. White, On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds, Nat. Chem. Biol, vol.7, issue.11, pp.810-817, 2011.

A. Bartoszewicz, M. Kalek, J. Nilsson, R. Hiresova, and J. Stawinski, A new reagent system for efficient silylation of alcohols: Silyl chloride-N-methylimidazole-iodine, Synlett, issue.1, pp.37-0040, 2008.

A. Lupas, Coiled coils: new structures and new functions, Trends Biochem. Sci, vol.21, issue.10, pp.375-382, 1996.

A. N. Lupas and M. Gruber, The Structure of ?-Helical Coiled Coils, Adv. Protein. Chem, vol.70, issue.4, pp.37-38, 2005.

L. Pauling and R. B. Corey, Compound Helical Configurations of Polypeptide Chains: Structure of Proteins of the ?-Keratin Type, Nature, vol.171, issue.4341, pp.59-61, 1953.

M. D. Shoulders and R. T. Raines, Collagen Structure and Stability, Annu. Rev. Biochem, vol.78, issue.1, pp.929-958, 2009.

D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim, Core Structure of gp41 from the HIV Envelope Glycoprotein, Cell, vol.89, issue.2, pp.263-273, 1997.

M. Lewis, Crystal structure of the lactose operon repressor and its complexes with DNA and inducer, vol.271, pp.1247-1254, 1996.

I. Pechik, S. Yakovlev, M. W. Mosesson, G. L. Gilliland, and L. Medved, Structural Basis for Sequential Cleavage of Fibrinopeptides upon Fibrin Assembly ? , ?, Biochemistry, vol.45, issue.11, pp.3588-3597, 2006.

K. K. Ng, S. Park-snyder, and W. I. Weis, Ca 2+ -Dependent Structural Changes in C-type Mannose-Binding Proteins ? , ?, Biochemistry, vol.37, issue.51, pp.17965-17976, 1998.

K. Oxenoid and J. J. Chou, The structure of phospholamban pentamer reveals a channel-like architecture in membranes, Proc. Natl. Acad. Sci, vol.102, issue.31, pp.10870-10875, 2005.

M. St, P. E. Maurice, M. P. Mera, F. Taranto, J. C. Sesma et al., Structural Characterization of the Active Site of the PduO-Type ATP:Co(I)rrinoid Adenosyltransferase from Lactobacillus reuteri, J. Biol. Chem, vol.282, issue.4, pp.2596-2605, 2007.

E. Santelli and T. J. Richmond, Crystal structure of MEF2A core bound to DNA at 1.5 Å resolution, J. Mol. Biol, vol.297, issue.2, pp.437-449, 2000.

J. Stetefeld, R. A. Kammerer, M. Jenny, T. Schulthess, R. Landwehr et al., Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer, Nat. Struct. Biol, vol.7, issue.9, pp.772-776, 2000.

E. Moutevelis and D. N. Woolfson, A Periodic Table of Coiled-Coil Protein Structures, J. Mol. Biol, vol.385, issue.3, pp.726-732, 2009.

F. H. Crick, The packing of ?-helices: simple coiled-coils, Acta Crystallogr, vol.6, issue.8, pp.689-697, 1953.

J. Walshaw and D. N. Woolfson, SOCKET: a program for identifying and analysing coiled-coil motifs within protein structures11Edited by J. Thornton, J. Mol. Biol, vol.307, issue.5, pp.1427-1450, 2001.

C. Chothia, M. Levitt, and D. Richardson, Helix to helix packing in proteins, J. Mol. Biol, vol.145, issue.1, pp.215-250, 1981.

D. Walther, F. Eisenhaber, and P. Argos, Principles of Helix-Helix Packing in Proteins: The Helical Lattice Superposition Model, J. Mol. Biol, vol.255, issue.3, pp.536-553, 1996.

D. N. Woolfson, Coiled-Coil Design: Updated and Upgraded, vol.82, pp.35-61, 2017.

D. N. Woolfson, The Design of Coiled-Coil Structures and Assemblies, vol.70, pp.79-112, 2005.

G. Grigoryan and A. Keating, Structural specificity in coiled-coil interactions, Curr. Opin. Struct. Biol, vol.18, issue.4, pp.477-483, 2008.

P. Harbury, T. Zhang, P. Kim, and T. Alber, A switch between two-, three-, and fourstranded coiled coils in GCN4 leucine zipper mutants, Science (80-. ), vol.262, issue.5138, pp.1401-1407, 1993.

J. M. Fletcher, A Basis Set of de Novo Coiled-Coil Peptide Oligomers for Rational Protein Design and Synthetic Biology, ACS Synth. Biol, vol.1, issue.6, pp.240-250, 2012.

N. R. Zaccai, A de novo peptide hexamer with a mutable channel, Nat. Chem. Biol, vol.7, issue.12, pp.935-941, 2011.

D. N. Woolfson, G. J. Bartlett, M. Bruning, and A. R. Thomson, New currency for old rope: from coiled-coil assemblies to ?-helical barrels, Curr. Opin. Struct. Biol, vol.22, issue.4, pp.432-441, 2012.

J. Walshaw and D. N. Woolfson, Open-and-shut cases in coiled-coil assembly: ?-sheets and ?-cylinders, Protein Sci, vol.10, issue.3, pp.668-673, 2001.

A. R. Thomson, Computational design of water-soluble -helical barrels, Science (80-. ), vol.346, issue.6208, pp.485-488, 2014.

A. J. Burton, Accessibility, Reactivity, and Selectivity of Side Chains within a Channel of de Novo Peptide Assembly, J. Am. Chem. Soc, vol.135, issue.34, pp.12524-12527, 2013.

K. J. Lumb and P. S. Kim, A Buried Polar Interaction Imparts Structural Uniqueness in a Designed Heterodimeric Coiled Coil, Biochemistry, vol.34, issue.27, pp.8642-8648, 1995.

J. L. Price, W. S. Horne, and S. H. Gellman, Discrete Heterogeneous Quaternary Structure Formed by ?/?-Peptide Foldamers and ?-Peptides, J. Am. Chem. Soc, vol.129, issue.20, pp.6376-6377, 2007.

R. P. Cheng, S. H. Gellman, and W. F. Degrado, ?-Peptides: From Structure to Function, Chem. Rev, vol.101, issue.10, pp.3219-3232, 2001.

J. X. Qiu, E. J. Petersson, E. E. Matthews, and A. Schepartz, Toward ?-amino acid proteins: A cooperatively folded ?-peptide quaternary structure, J. Am. Chem. Soc, vol.128, issue.35, pp.11338-11339, 2006.

D. S. Daniels, E. J. Petersson, J. X. Qiu, and A. Schepartz, High-Resolution Structure of a ?-Peptide Bundle, J. Am. Chem. Soc, vol.129, issue.6, pp.1532-1533, 2007.

E. J. Petersson and A. Schepartz, Toward ?-Amino Acid Proteins: Design, Synthesis, and Characterization of a Fifteen Kilodalton ?-Peptide Tetramer, J. Am. Chem. Soc, vol.130, issue.3, pp.821-823, 2008.

J. L. Goodman, E. J. Petersson, D. S. Daniels, J. X. Qiu, and A. Schepartz, Biophysical and Structural Characterization of a Robust Octameric ?-Peptide Bundle, J. Am. Chem. Soc, vol.129, issue.47, pp.14746-14751, 2007.

C. J. Craig, J. L. Goodman, and A. Schepartz, Enhancing ?3-Peptide Bundle Stability by Design, ChemBioChem, vol.12, issue.7, pp.1035-1038, 2011.

J. L. Goodman, M. A. Molski, J. Qiu, and A. Schepartz, Tetrameric ? 3 -Peptide Bundles, ChemBioChem, vol.9, issue.10, pp.1576-1578, 2008.

P. S. Wang, C. J. Craig, and A. Schepartz, Relationship between side-chain branching and stoichiometry in ?3-peptide bundles, Tetrahedron, vol.68, issue.23, pp.4342-4345, 2012.

P. S. Wang and A. Schepartz, ?-Peptide bundles: Design. Build. Analyze. Biosynthesize, vol.52, pp.7420-7432, 2016.

M. S. Melicher, J. Chu, A. S. Walker, S. J. Miller, R. H. Baxter et al., A ?-Boronopeptide Bundle of Known Structure As a Vehicle for Polyol Recognition, Org. Lett, vol.15, issue.19, pp.5048-5051, 2013.

M. Mazik, Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions, Chem. Soc. Rev, vol.38, issue.4, p.935, 2009.

T. D. James, K. R. Sandanayake, and S. Shinkai, Saccharide Sensing with Molecular Receptors Based on Boronic Acid, Angew. Chemie Int. Ed. English, vol.35, issue.17, pp.1910-1922, 1996.

S. Striegler, Selective Carbohydrate Recognition by Synthetic Receptors in Aqueous Solution, Curr. Org. Chem, vol.7, issue.1, pp.81-102, 2003.

M. S. Melicher, A. S. Walker, J. Shen, S. J. Miller, and A. Schepartz, Improved Carbohydrate Recognition in Water with an Electrostatically Enhanced ?-Peptide Bundle, Org. Lett, vol.17, issue.19, pp.4718-4721, 2015.

J. P. Miller, M. S. Melicher, and A. Schepartz, Positive Allostery in Metal Ion Binding by a Cooperatively Folded ?-Peptide Bundle, J. Am. Chem. Soc, vol.136, issue.42, pp.14726-14729, 2014.

P. S. Wang, J. B. Nguyen, and A. Schepartz, Design and High-Resolution Structure of a ? 3 -Peptide Bundle Catalyst, J. Am. Chem. Soc, vol.136, issue.19, pp.6810-6813, 2014.

S. Javor, E. Delort, T. Darbre, and J. Reymond, A Peptide Dendrimer Enzyme Model with a Single Catalytic Site at the Core, J. Am. Chem. Soc, vol.129, issue.43, pp.13238-13246, 2007.

G. W. Collie, Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation, Nat. Chem, vol.7, issue.11, pp.871-878, 2015.

J. Fremaux, L. Fischer, T. Arbogast, B. Kauffmann, and G. Guichard, Condensation approach to aliphatic oligourea foldamers: Helices with N-(Pyrrolidin-2-ylmethyl)ureido junctions, Angew. Chemie -Int. Ed, vol.50, issue.48, pp.11382-11385, 2011.

J. Lear, Z. Wasserman, and W. Degrado, Synthetic amphiphilic peptide models for protein ion channels, Science (80-. ), vol.240, issue.4856, pp.1177-1181, 1988.

G. W. Collie, Molecular Recognition within the Cavity of a Foldamer Helix Bundle: Encapsulation of Primary Alcohols in Aqueous Conditions, J. Am. Chem. Soc, vol.139, issue.17, pp.6128-6137, 2017.

G. W. Collie, K. Pulka-ziach, and G. Guichard, In situ iodination and X-ray crystal structure of a foldamer helix bundle, Chem. Commun, vol.52, issue.6, pp.1202-1205, 2016.

L. Gonzalez, D. N. Woolfson, and T. Alber, Buried polar residues and structural specificity in the GCN4 leucine zipper, Nat. Struct. Biol, vol.3, issue.12, pp.1011-1018, 1996.

M. G. Oakley and P. S. Kim, A Buried Polar Interaction Can Direct the Relative Orientation of Helices in a Coiled Coil ?, Biochemistry, vol.37, issue.36, pp.12603-12610, 1998.

D. L. Akey, V. N. Malashkevich, and P. S. Kim, Buried Polar Residues in Coiled-Coil Interfaces ? , ?, Biochemistry, vol.40, issue.21, pp.6352-6360, 2001.

C. M. Lombardo, Anatomy of an Oligourea Six-Helix Bundle, J. Am. Chem. Soc, vol.138, issue.33, pp.10522-10530, 2016.

J. Fremaux, L. Mauran, K. Pulka-ziach, B. Kauffmann, B. Odaert et al., ?-Peptide-Oligourea Chimeras: Stabilization of Short ?-Helices by Non-Peptide Helical Foldamers, Angew. Chemie Int. Ed, vol.54, issue.34, pp.9816-9820, 2015.

Y. Lai, Structure of a designed protein cage that self-assembles into a highly porous cube, Nat. Chem, vol.6, issue.12, pp.1065-1071, 2014.

H. Hernández and C. Robinson, Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry, Nat. Protoc, vol.2, issue.3, pp.715-726, 2007.

J. D. Sadowsky, (?/?+?)-peptide antagonists of BH3 domain/Bcl-x L recognition: Toward general strategies for foldamer-based inhibition of protein-protein interactions, J. Am. Chem. Soc, vol.129, issue.1, pp.139-154, 2007.

A. Chakrabartty and R. Baldwin, Stability of ?-Helices, Advances in Protein Chemistry, vol.46, pp.141-176, 1995.

P. Luo and R. L. Baldwin, Mechanism of helix induction by trifluoroethanol: A framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water, Biochemistry, vol.36, issue.27, pp.8413-8421, 1997.

A. R. Thomson, Computational design of water-soluble -helical barrels, Science (80-. ), vol.346, issue.6208, pp.485-488, 2014.

P. S. Wang, J. B. Nguyen, and A. Schepartz, (S)-(9H-fluoren-9-yl)methyl (1-hydroxy-3-tertbutoxypropan-2-yl)carbamate M11a : Solid, J. Am. Chem. Soc, vol.136, issue.19, pp.6810-6813, 2014.

, Hz, 2H), 7.60 (d, J=7.4 Hz, 2H), 7.40 (t, J=7.1 Hz, 2H), 7.31 (t, J=7.4 Hz, 2H), 5.52 (d, J=7.9 Hz, 1H)

, 9H-fluoren-9-yl)methyl (1-hydroxy-3-tert-butoxybutan-2-yl)carbamate M12a : Solid

, Hz, 2H), 7.60 (d, J=7.4 Hz, 2H), 7.40 (t, J=7.1 Hz, 2H), vol.7

, 9H-fluoren-9-yl)methyl (1-hydroxy-3-phenylpropan-2-yl)carbamate M13a : Solid

, Hz, 2H), 7.54 (d, J=7.4 Hz, 2H), 7.40 (t, J=7.4 Hz, 2H), vol.7

, Hz, 4H), 7.21 (m, 3H), 4.96 (bs, 1H)

, 9H-fluoren-9-yl)methyl (1-hydroxy-4-tert-butoxycarbonyl butan-2-yl)carbamate M14a : Solid ; yield 93% ; 1 H NMR (CDCl3, 300 MHz) ? (ppm) : 7.76 (d, J=7.4 Hz, 2H), 7.59 (d, J=7.4 Hz, 2H), 7.40 (t, J=7.5 Hz, 2H), vol.7

, 9H-fluoren-9-yl)methyl (1-iodo-3-tertbutoxypropan-2-yl)carbamate M11b : Oil ; yield 86% ; 1 H NMR (CDCl3, 300 MHz) ? (ppm) : 7.77 (d, J=7.4 Hz, 2H), 7.60 (d, J=7.4 Hz, 2H), 7.40 (t, J=7.1 Hz, 2H), vol.7

, 9H-fluoren-9-yl)methyl (1-iodo-3-tert-Butoxybutan-2-yl)carbamate M12b : Oil ; yield 82% ; 1 H NMR (CDCl3, 300 MHz) ? (ppm) : 7.77 (d, J=7.4 Hz, 2H), 7.60 (d, J=7.4 Hz, 2H), 7.40 (t, J=7.1 Hz, 2H), vol.7

, 9H-fluoren-9-yl)methyl (1-iodo-3-phenylpropan-2-yl)carbamate M13b : Solid

, Hz, 2H), 7.57 (dd, J=7.4 Hz, J=3.3 Hz, 2H), 7.41 (t, J=7.2 Hz, 2H), 7.31 (m, 6H), 7.24 (m, 1H)

, 9H-fluoren-9-yl)methyl (1-iodo-4-tert-Butoxycarbonylbutan-2-yl)carbamate M14b : Solid

, Hz, 2H), 7.60 (d, J=7.4 Hz, 2H), 7.41 (t, J=7.2 Hz, 2H), vol.7

, 79 (s, 4H), 1.20 (s, 9H) ; 13 C NMR (CDCl3, 75 MHz) ? (ppm) : 169.88, 156.67, 151.94, 144.15, 143.99, 141.45, 127.83, 127.21, 125.35, 125.25, 120.09, 73.96, 67.20, 62.72, 50.23, 47.35, 45.17, 27.47, 25.59 ; HRMS (ESI) : m/z cald for C27H31N3O7Na [M+Na] + : 532.20542 found 532.20511. (S)-(9H-fluoren-9-yl)methyl (1-(2,5-dioxopyrrolidin-1-yl)-3-tert-Butoxybutan-2-yl)-1,2-carbamate M12: Solid ; yield 80%, N-Fmoc protected amino iodine derivate : M11b, M12b, M13b, or M14b, (1eq) was dissolved in DMF, then NaN3 (3eq) was added and the reaction mixture was stirred at room temperature. After 24 hours the reaction was completed. EtOAc was added. The crude was washed five times with H2O, two times with a 1M solution of HCl, one time with brine, dried over sodium sulfate and concentrated under reduced pressure. Silica gel flash chromatography was performed in cyclohexane/EtOAc, vol.1

, found 552.23389. (R)-2,5-dioxopyrrolidin-2-yl (1-azido-3-methylbutyl) carbamate M23 Solid, HRMS (ESI) : m/z cald for C29H34N3O8

, Hz, 1H), 3.53 (m, 3H), vol.2

C. Nmr,

, 5-dioxopyrrolidin-2-yl (1-azido-4-methylpentyl) carbamate M24 Solid

, Hz, 1H), 3.84 (m, 1H), 3.48 (m, 2H), 2.82 (s, 4H), 1.68 (m, 1H), 1.50 (m, 1H), 1.37 (m,1H), p.75

. Mhz, ): m/z cald for C11H17N5O4Na, pp.306-11797

, ACN (0.1% TFA); gradient 30-38%, 15 min; 38-100%, 2 min; 100%, 1 min), flow = 20 ml/min. 18.0 mg was obtained with total yield 27 %. ESI-MS, III.25 was synthetized on 50 µmol scale with the use of monomers M1, M3 and M15 following the general procedure B. The product was purified by prep HPLC : H2O (0.1% TFA)

, ACN (0.1% TFA); gradient 10-100%, HPLC (H2O (0.1% TFA)

, ACN (0.1% TFA); gradient 30-45%, 20 min; 45-100%, 2 min; 100%, 1 min), flow = 20 ml/min. 20.0 mg was obtained with total yield 33 %. ESI-MS, III.42 was synthetized on 50 µmol scale with the use of monomers M18, M1 and M22 following the general procedure B. The product was purified by prep HPLC : H2O (0.1% TFA), p.27

, 1% TFA); gradient 10-100%, 10 min; 100%, 3min) tR= 4.15 min. Figure 281 : RP-HPLC chromatogram of III.42 after purification H-Thr-Ser-Phe-Ala-Glu-Tyr-Trp U -Ala U -Ala INVU -NH2 (III.43) III.43 was synthetized on 50 µmol scale with the use of monomers M18, M1 and M22 following the general procedure B. The product was purified by prep HPLC : H2O (0.1% TFA), ACN (0.1% TFA); gradient 25-35%, 20 min; 35-100%, 2 min; 100%, 1 min), flow = 20 ml/min. 23.0 mg was obtained with total yield 41 %. ESI-MS

, ACN (0.1% TFA); gradient 10-100%, 10 min; 100%, 3min) tR= 4.00 min. Figure 282 : RP-HPLC chromatogram of III.43 after purification, HPLC (H2O (0.1% TFA)

, ACN (0.1% TFA); gradient 30-45%, 20 min; 45-100%, 2 min; 100%, 1 min), flow = 20 ml/min. 21.0 mg was obtained with total yield 37 %. ESI-MS, III.44 was synthetized on 50 µmol scale with the use of monomers M18 and M1 following the general procedure B. The product was purified by prep HPLC : H2O (0.1% TFA)

, ACN (0.1% TFA), HPLC (H2O (0.1% TFA), vol.gradient, pp.10-100

P. Sieber, A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method, Tetrahedron Lett, vol.28, issue.19, pp.2107-2110, 1987.

T. Vojkovsky, Detection of secondary amines on solid phase, Pept. Res, vol.8, issue.4, pp.236-243, 1995.

C. Douat-casassus, K. Pulka, P. Claudon, and G. Guichard, Microwave-Enhanced Solid-Phase Synthesis of N , N? -Linked Aliphatic Oligoureas and Related Hybrids, Org. Lett, vol.14, issue.12, pp.3130-3133, 2012.

Y. Nelli, C. Douat-casassus, P. Claudon, B. Kauffmann, C. Didierjean et al., An activated building block for the introduction of the histidine side chain in aliphatic oligourea foldamers, Tetrahedron, vol.68, issue.23, pp.4492-4500, 2012.

G. W. Collie, Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation, Nat. Chem, vol.7, issue.11, pp.871-878, 2015.

G. Guichard, V. Semetey, M. Rodriguez, and J. Briand, Solid phase synthesis of oligoureas using O-succinimidyl-(9H-fluoren-9-ylmethoxycarbonylamino)ethylcarbamate derivatives as activated monomers, Tetrahedron Lett, vol.41, issue.10, pp.1553-1557, 2000.

A. Violette, Mimicking Helical Antibacterial Peptides with Nonpeptidic Folding Oligomers, Chem. Biol, vol.13, issue.5, pp.531-538, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130007

N. Pendem, Helix-Forming Propensity of Aliphatic Urea Oligomers Incorporating Noncanonical Residue Substitution Patterns, J. Am. Chem. Soc, vol.135, issue.12, pp.4884-4892, 2013.