, Cependant, il n'y a pas de données d'observation pour étayer ces résultats et d'autres expériences sont nécessaires, cette fois ci en phase gazeuse

, Les isotopes stables du mercure se sont révélés utiles pour comprendre les mécanismes de réduction du mercure. Le prochain défi consiste à effectuer des analyses isotopiques du mercure similaires sur la photolyse du composé gazeux du Hg

C. &. Adamo and . Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of chemical physics, vol.110, pp.6158-6170, 1999.

U. S. Agency, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, vol.1631, 2002.

B. &. Allard and . Arsenie, ABIOTIC REDUCTION OF MERCURY BY HUMIC SUBSTANCES IN AQUATIC SYSTEM -AN IMPORTANT PROCESS FOR THE MERCURY CYCLE. Water Air and Soil Pollution, vol.56, pp.457-464, 1991.

. Amap/unep, Technical Background Report for the Global Mercury Assessment, 2013.

H. M. Amos, D. J. Jacob, C. Holmes, J. A. Fisher, Q. Wang et al., Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition, Atmospheric Chemistry and Physics, vol.12, pp.591-603, 2012.

H. M. Amos, D. J. Jacob, C. D. Holmes, J. A. Fisher, Q. Wang et al., Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmospheric Chemistry and Physics, vol.12, pp.591-603, 2012.

H. M. Amos, D. J. Jacob, D. G. Streets-&-e, and . Sunderland, Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochemical Cycles, vol.27, pp.410-421, 2013.

M. Amyot, G. A. Gill-&-f, and . Morel, Production and loss of dissolved gaseous mercury in coastal seawater, Environmental Science & Technology, vol.31, pp.3606-3611, 1997.

M. Amyot, D. R. Lean, L. R. Poissant-&-m, and . Doyon, Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario, Canadian Journal of Fisheries and Aquatic Sciences, vol.57, pp.155-163, 2000.

M. Amyot, G. Mierle, D. R. Lean-&-d, ;. Mcqueen, and . Waters, , 1994.

, Environmental Science & Technology, vol.28, pp.2366-2371

M. Amyot, G. Southworth, S. E. Lindberg, H. Hintelmann, J. D. Lalonde et al., Formation and evasion of dissolved gaseous mercury in large enclosures amended with (HgCl2)-Hg-200, Atmospheric Environment, vol.38, pp.4279-4289, 2004.

D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and &. Preuss, Energy-adjustedab initio pseudopotentials for the second and third row transition elements, Theoretical Chemistry Accounts: Theory, Computation, and Modeling, vol.77, pp.123-141, 1990.

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey et al., Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table, Journal of computational chemistry, vol.37, pp.506-541, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409053

P. A. Ariya, M. Amyot, A. Dastoor, D. Deeds, A. Feinberg et al., Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions, Chemical Reviews, vol.115, pp.3760-3802, 2015.

P. A. Ariya, M. Amyot, A. Dastoor, D. Deeds, A. Feinberg et al., Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions, Chem. Rev, vol.115, pp.3760-3802, 2015.

H. &. Baker and . Seddon, Transient absorption processes in a mercury bromide laser discharge, Journal of Physics D: Applied Physics, vol.21, p.1347, 1988.

N. B. Balabanov and . Peterson, Mercury and reactive halogens: the thermochemistry of Hg+{Cl2, Br2, BrCl, ClO, and BrO}, J. Phys. Chem. A, vol.107, pp.7465-7470, 2003.

N. B. Balabanov, B. C. Shepler-&-k, and . Peterson, Accurate global potential energy surface and reaction dynamics for the ground state of HgBr2, J. Phys. Chem. A, vol.109, pp.8765-8773, 2005.

, Accurate global potential energy surface and reaction dynamics for the ground state of HgBr2, The Journal of Physical Chemistry A, vol.109, pp.8765-8773, 2005.

M. Barbatti, A. J. Aquino, and &. Lischka, The UV absorption of nucleobases: semi-classical ab initio spectra simulations, Physical Chemistry Chemical Physics, vol.12, pp.4959-4967, 2010.

M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar et al.,

. Lischka, The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems, Journal of Photochemistry and Photobiology A: Chemistry, vol.190, pp.228-240, 2007.

M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci et al., a surface-hopping program for nonadiabatic molecular dynamics, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.4, pp.26-33, 2014.

J. Bash, A. Carlton, W. Hutzell, and &. Bullock, Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids, Atmosphere, vol.5, p.1, 2014.

J. O. Bash, A. G. Carlton, W. T. Hutzell-&-o, and . Bullock, Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids, Atmosphere, vol.5, pp.1-15, 2014.

B. A. Bergquist and . Blum, Mass-dependent and -independent fractionation of hg isotopes by photoreduction in aquatic systems, Science, vol.318, pp.417-437, 2007.

H. M. Bian and . Prather, Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models, Journal of Atmospheric Chemistry, vol.41, pp.281-296, 2002.

G. V. Buxton, C. L. Greenstock, W. P. Helman-&-a, and . Ross, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (?OH/?O? in Aqueous Solution, Journal of Physical and Chemical Reference Data, vol.17, pp.513-886, 1988.

M. P. Costa and . Liss, Photoreduction of mercury in sea water and its possible implications for Hg(0) air-sea fluxes, Marine Chemistry, vol.68, pp.87-95, 1999.

R. &. Crespo-otero and . Barbatti, Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, 2012.

, Theoretical Chemistry Accounts, vol.131, p.1237

D. A. Deeds, A. Ghoshdastidar, F. Raofie, E. Guerette, A. A. Tessier-&-p et al., Development of a Particle-Trap Preconcentration-Soft Ionization Mass Spectrometric Technique for the Quantification of Mercury Halides in Air, Analytical Chemistry, vol.87, pp.5109-5116, 2015.

D. A. Deeds, A. Ghoshdastidar, F. Raofie, E. .-a.-e.-guérette, A. A. Tessier-&-p et al., Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air, Analytical chemistry, vol.87, pp.5109-5116, 2015.

D. Vecchio and R. N. Blough, Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling, Marine Chemistry, vol.78, pp.231-253, 2002.

T. S. Dibble, M. J. Zelie, and &. Jiao, Quantum Chemistry Guide to PTRMS Studies of As-Yet Undetected Products of the Bromine-Atom Initiated Oxidation of Gaseous Elemental Mercury, J. Phys. Chem. A, vol.118, pp.7847-7854, 2014.

T. S. Dibble, M. J. Zelie, and &. H. Mao, Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals, vol.12, pp.10271-10279, 2012.

T. S. Dibble, M. J. Zelie, and &. H. Mao, Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals, Atmos. Chem. Phys, vol.12, pp.10271-10279, 2012.

D. L. Donohoue, D. Bauer, B. &. Cossairt, and . Hynes, Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: A pulsed laser photolysis-pulsed laser induced fluorescence study, J. Phys. Chem. A, vol.110, pp.6623-6632, 2006.

, Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: A pulsed laser photolysis-pulsed laser induced fluorescence study, The Journal of Physical Chemistry A, vol.110, pp.6623-6632, 2006.

D. L. Donohoue, D. J. Bauer-&-a, and . Hynes, Temperature and Pressure Dependent Rate Coefficients for the Reaction of Hg with Cl and the Reaction of Cl with Cl: A Pulsed Laser Photolysis?Pulsed Laser Induced Fluorescence Study, The Journal of Physical Chemistry A, vol.109, pp.7732-7741, 2005.

S. D. Eastham, D. K. Weisenstein-&-s, and . Barrett, Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem, Atmospheric Environment, vol.89, pp.52-63, 2014.

, ECMWF: European Centre for Medium-Range Weather Forecasts

L. K. Emmons, S. Walters, P. G. Hess, J. Lamarque, G. G. Pfister et al., Description and evaluation of the Model for Ozone and Related chemical Tracers, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00452711

M. Enrico, G. L. Roux, N. Marusczak, L. E. Heimburger, A. Claustres et al., Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition, Environmental Science & Technology, vol.50, pp.2405-2412, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435364

M. Enrico, G. L. Roux, N. Marusczak, L. Heimb?-rger, A. Claustres et al.,

. Sonke, Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environmental science & technology, vol.50, pp.2405-2412, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435364

A. C. Erlandson and . Cool, On the regeneration mechanism of HgBr/2 in HgBr/HgBr2 dissociation lasers, Chemical Physics Letters, vol.96, pp.685-689, 1983.

C. T. Ernest, D. Donohoue, D. Bauer, A. T. Schure-&-a, and . Hynes, Programmable thermal dissociation of reactive gaseous mercury, a potential approach to chemical speciation: Results from a field study, Atmosphere, vol.5, pp.575-596, 2014.

C. T. Ernest, D. Donohoue, D. Bauer, A. Schure, and &. A. Hynes, Programmable Thermal Dissociation of Reactive Gaseous Mercury, a Potential Approach to Chemical Speciation: Results from a Field Study, Atmosphere, vol.5, pp.575-596, 2014.

X. &. Feng and . Qiu, Mercury pollution in Guizhou, southwestern China -an overview, Sci Total Environ, vol.400, pp.227-264, 2008.

R. P. Fernandez, R. J. Salawitch, D. E. Kinnison, J. F. Lamarque, and &. Saiz-lopez, Bromine partitioning in the tropical tropopause layer: implications for stratospheric injection, Atmos. Chem. Phys, vol.14, pp.13391-13410, 2014.

J. Finley, P. Malmqvist, B. O. Roos, and &. Serrano-andrés, The multi-state CASPT2 method, Chemical physics letters, vol.288, pp.299-306, 1998.

G. Frantom, P. Bletzinger, and &. Garscadden, Measurement of the ultraviolet absorption cross-section of mercuric bromide, Bull. Am. Phys. Soc, vol.25, p.461, 1980.

M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb et al.,

B. Barone, &. Mennucci, and . Petersson, Gaussian 09, revision D. 01, 2009.

X. Fu, N. Marusczak, L. Heimbuerger, B. Sauvage, F. Gheusi et al., Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France, Atmospheric Chemistry and Physics, vol.16, pp.5623-5639, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02163095

X. W. Fu, N. Marusczak, L. E. Heimburger, B. Sauvage, F. Gheusi et al., Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France, Atmospheric Chemistry and Physics, vol.16, pp.5623-5639, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02163095

G. Futsaeter and &. S. Wilson, The UNEP Global Mercury Assessment: Sources, Emissions and Transport, Proceedings of the 16th International Conference on Heavy Metals in the Environment, 2013.

E. Garcia, A. J. Poulain, M. &. Amyot, and . Ariya, Diel variations in photoinduced oxidation of Hg0 in freshwater, Chemosphere, vol.59, pp.977-981, 2005.

K. &. Gårdfeldt and . Jonsson, Is Bimolecular Reduction of Hg(II) Complexes Possible in Aqueous Systems of Environmental Importance, The Journal of Physical Chemistry A, vol.107, pp.4478-4482, 2003.

K. Gårdfeldt, J. Sommar, R. Ferrara, C. Ceccarini, E. Lanzillotta et al., Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea, Atmospheric Environ, vol.37, pp.73-84, 2003.

K. Gardfeldt, J. Sommar, R. Ferrara, C. Ceccarini, E. Lanzillotta et al., Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea, Atmospheric Environment, vol.37, pp.73-84, 2003.

K. Gårdfeldt, J. Sommar, D. Strömberg, and &. Feng, Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase, Atmospheric Environment, vol.35, pp.3039-3047, 2001.

K. Gardfeldt, J. Sommar, D. &. Stromberg, and . Feng, Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase, Atmospheric Environment, vol.35, pp.3039-3047, 2001.

P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke et al.,

R. B. Lawrence, P. J. Neale, &. Rasch, and . Vertenstein, The community climate system model version 4, Journal of Climate, vol.24, pp.4973-4991, 2011.

M. E. Goodsite, J. Plane, and &. Skov, A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere, Environ. Sci. Technol, vol.38, pp.1772-1776, 2004.

J. P. Gustafsson, Modeling the Acid-Base Properties and Metal Complexation of Humic Substances with the Stockholm Humic Model, Journal of Colloid and Interface Science, vol.244, pp.102-112, 2001.

M. Haitzer, G. R. Aiken, and &. N. Ryan, Binding of Mercury(II) to Dissolved Organic Matter: The Role of the Mercury-to-DOM Concentration Ratio, Environmental Science & Technology, vol.36, pp.3564-3570, 2002.

M. Haitzer, G. R. Aiken, and &. N. Ryan, Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration ratio, Environmental Science & Technology, vol.36, pp.3564-3570, 2002.

C. D. Holmes, D. J. Jacob, and &. X. Yang, Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere, Geophys. Res. Lett, p.33, 2006.

C. D. Holmes, D. J. Jacob, and &. X. Yang, Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere, Geophysical Research Letters, p.33, 2006.

H. M. Horowitz, D. J. Jacob, Y. Zhang, T. S. Dibble, F. Slemr et al., A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget, Atmos. Chem. Phys, vol.17, pp.6353-6371, 2017.

H. M. Horowitz, D. J. Jacob, Y. X. Zhang, T. S. Dibble, F. Slemr et al., A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmospheric Chemistry and Physics, vol.17, pp.6353-6371, 2017.

O. &. Horvath and . Vogler, Photoredox chemistry of chloromercurate(II) complexes in acetonitrile, Inorganic Chemistry, vol.32, pp.5485-5489, 1993.

T. Jiang, U. Skyllberg, S. Wei, D. Wang, S. Lu et al., Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement, Geochimica Et Cosmochimica Acta, vol.154, pp.151-167, 2015.

Y. T. Jiao and . Dibble, Quality Structures, Vibrational Frequencies, and Thermochemistry of the Products of Reaction of BrHg? with NO2, HO2, ClO, BrO, and IO, J. Phys. Chem. A, vol.119, pp.10502-10510, 2015.

, First kinetic study of the atmospherically important reactions BrHg?+ NO 2 and BrHg?+ HOO, Phys. Chem. Chem. Phys, vol.19, pp.1826-1838, 2017.

, First kinetic study of the atmospherically important reactions BrHg?+ NO 2 and BrHg?+ HOO, Physical Chemistry Chemical Physics, vol.19, pp.1826-1838, 2017.

M. Jiskra, J. E. Sonke, D. Obrist, J. Bieser, R. Ebinghaus et al., A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nat. Geosci, vol.1, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01882793

M. Jiskra, J. E. Sonke, D. Obrist, J. Bieser, R. Ebinghaus et al.,

O. Ramonet, &. Magand, and . Dommergue, A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nature Geoscience, vol.11, p.244, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806784

R. Kessler, The Minamata Convention on Mercury: A First Step toward Protecting Future Generations, vol.121, pp.304-309, 2013.

J. D. Lalonde, M. Amyot, J. Orvoine, F. M. Morel, J. C. Auclair-&-p et al., Photoinduced oxidation of Hg-0 (aq) in the waters from the St. Lawrence estuary, Environmental Science & Technology, vol.38, pp.508-514, 2004.

C. O. Lin and . Pehkonen, Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol, Atmospheric Environment, vol.31, pp.4125-4137, 1997.

, Two-phase model of mercury chemistry in the atmosphere, Atmospheric Environment, vol.32, pp.2543-2558, 1998.

C. O. Lin and . Pehkonen, The chemistry of atmospheric mercury: a review, Atmospheric Environment, vol.33, pp.2067-2079, 1999.

C. J. Lin and . Pehkonen, The chemistry of atmospheric mercury: a review, Atmospheric Environment, vol.33, pp.2067-2079, 1999.

O. Lindqvist, K. Johansson, L. Bringmark, B. Timm, M. Aastrup et al., Mercury in the Swedish environment-recent research on causes, consequences and corrective methods, Water Air Soil Pollut, vol.55, p.261, 1991.

G. Liu and Y. Cai-&-n.-o'driscoll, Environmental chemistry and toxicology of mercury, 2012.

A. C. Maizel, Molecular Composition and Photochemical Reactivity of Size-Fractionated Dissolved Organic Matter, Environ Sci Technol, vol.51, pp.2113-2123, 2017.

N. Marusczak, J. E. Sonke, X. W. Fu, and &. Jiskra, Tropospheric GOM at the Pic du Midi Observatory-Correcting Bias in Denuder Based Observations, Environmental Science & Technology, vol.51, pp.863-869, 2017.

R. P. Mason, A. L. Choi, W. F. Fitzgerald, C. R. Hammerschmidt, C. H. Lamborg et al., Mercury biogeochemical cycling in the ocean and policy implications, Environmental Research, vol.119, pp.101-117, 2012.

R. P. Mason, F. M. Morel-&-h, and . Hemond, THE ROLE OF MICROORGANISMS IN ELEMENTAL MERCURY FORMATION IN NATURAL-WATERS. Water Air and Soil Pollution, vol.80, pp.775-787, 1995.

J. Maya, Ultraviolet absorption cross sections of HgI2, HgBr2, and tin (II) halide vapors, The Journal of Chemical Physics, vol.67, pp.4976-4980, 1977.

M. Monperrus, E. Tessier, D. Amouroux, A. Leynaert, P. &. Huonnic et al., Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea, Marine Chemistry, vol.107, pp.49-63, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01590330

J. Munthe, The aqueous oxidation of elemental mercury by ozone, Atmospheric Environ, vol.26, pp.1461-1468, 1992.

, The aqueous oxidation of elemental mercury by ozone, Atmospheric Environment. Part A. General Topics, vol.26, pp.1461-1468, 1992.

J. Munthe, Z. F. Xiao, and &. Lindqvist, The aqueous reduction of divalent mercury by sulfite Water Air and Soil Pollution, vol.56, pp.621-630, 1991.

, The aqueous reduction of divalent mercury by sulfite, Water Air & Soil Pollution, vol.56, pp.621-630, 1991.

N. J. O'driscoll, S. D. Siciliano, D. R. Lean, and &. Amyot, Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: Application to a general model of DGM dynamics, Environmental Science & Technology, vol.40, pp.837-843, 2006.

D. Obrist, J. L. Kirk, L. Zhang, E. M. Sunderland, M. &. Jiskra et al., A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use, Ambio, vol.47, pp.116-140, 2018.

C. Ordóñez, J. F. Lamarque, S. Tilmes, D. E. Kinnison, E. L. Atlas et al., Bromine and iodine chemistry in a global chemistryclimate model: description and evaluation of very short-lived oceanic sources, Atmos. Chem. Phys, vol.12, pp.1423-1447, 2012.

J. Parrella, D. J. Jacob, Q. Liang, Y. Zhang, L. J. Mickley et al., Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury, Atmospheric Chemistry and Physics, vol.12, pp.6723-6740, 2012.

S. O. Pehkonen and &. Lin, Aqueous photochemistry of mercury with organic acids, Journal of the Air & Waste Management Association, vol.48, pp.144-150, 1998.

, Aqueous photochemistry of mercury with organic acids, J. Air. Waste. Manag. Assoc, vol.48, pp.144-150, 1998.

M. Peleg, E. Tas, D. Obrist, V. Matveev, C. Moore et al., Observational Evidence for Involvement of Nitrate Radicals in Nighttime Oxidation of Mercury, Environmental Science & Technology, vol.49, pp.14008-14018, 2015.

K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and &. Dolg, Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements, The Journal of chemical physics, vol.119, pp.11113-11123, 2003.

C. Prados-roman, C. A. Cuevas, R. P. Fernandez, D. E. Kinnison, J. F. Lamarque et al., A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine, Atmos. Chem. Phys, vol.15, pp.2215-2224, 2015.

A. Qureshi, M. Macleod, E. Sunderland, and &. Hungerbühler, Exchange of Elemental Mercury between the Oceans and the Atmosphere, Environmental Chemistry and Toxicology of Mercury, pp.389-421, 2011.

A. Qureshi, M. Macleod, E. M. Sunderland, and &. H. Konrad, Exchange of Elemental Mercury between the Oceans and the Atmosphere, In In Environmental Chemistry and Toxicology of Mercury, 2011.

G. Liu, Y. Cai, and N. J. O'driscoll, , pp.389-421

M. Ravichandran, Interactions between mercury and dissolved organic matter--a review, Chemosphere, vol.55, pp.319-350, 2004.

J. H. Richard, C. Bischoff, and &. Biester, Comparing Modeled and Measured Mercury Speciation in Contaminated Groundwater: Importance of Dissolved Organic Matter Composition, Environmental Science & Technology, vol.50, pp.7508-7516, 2016.

K. R. Rolfhus and . Fitzgerald, Mechanisms and temporal variability of dissolved gaseous mercury production in coastal seawater, Marine Chemistry, vol.90, pp.125-136, 2004.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and &. Widmark, Main group atoms and dimers studied with a new relativistic ANO basis set, The Journal of Physical Chemistry A, vol.108, pp.2851-2858, 2004.

C. &. Roxlo and . Mandl, Vacuum ultraviolet absorption cross sections for halogen containing molecules, Journal of Applied Physics, vol.51, pp.2969-2972, 1980.

A. Saiz-lopez, S. Baidar, C. A. Cuevas, T. K. Koenig, R. P. Fernandez et al., Injection of iodine to the stratosphere, Geophys. Res. Lett, vol.42, pp.6852-6859, 2015.

A. Saiz-lopez, R. P. Fernandez, C. Ordóñez, D. E. Kinnison, J. C. Gómez-martín et al., Iodine chemistry in the troposphere and its effect on ozone, Atmos. Chem. Phys, vol.14, pp.13119-13143, 2014.

A. Saiz-lopez, S. P. Sitkiewicz, D. Roca-sanjuan, J. M. Oliva-enrich, J. Z. Davalos et al.,

A. U. Cuevas, D. Acuna, J. M. Rivero, D. E. Plane, &. E. Kinnison et al., Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition, Nature Communications, p.9, 2018.

A. M. Schilowitz and . Wiesenfeld, Time-resolved study of mercury atom production and removal following the photolysis of HgBr2 at 193 nm, Chemical Physics Letters, vol.89, pp.438-442, 1982.

E. Schimitschek, J. &. Celto, and . Trias, Mercuric bromide photodissociation laser, Applied Physics Letters, vol.31, pp.608-610, 1977.

J. A. Schmidt, D. Jacob, H. M. Horowitz, L. Hu, T. Sherwen et al., Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury, Journal of Geophysical Research, p.121, 2016.

W. H. Schroeder and . Munthe, Atmospheric mercury -An overview, Atmospheric Environment, vol.32, pp.809-822, 1998.

P. F. Schuster, K. M. Schaefer, G. R. Aiken, R. C. Antweiler, J. F. Dewild et al., Permafrost stores a globally significant amount of mercury, Geophys. Res. Lett, vol.45, pp.1463-1471, 2018.

C. Seigneur, K. Vijayaraghavan, and &. Lohman, Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions, Journal of Geophysical Research-Atmospheres, vol.111, p.22306, 2006.

N. E. Selin, Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, vol.34, pp.43-63, 2009.

N. E. Selin, D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode et al., Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, Journal of Geophysical Research-Atmospheres, vol.112, 2007.

N. E. Selin, D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode et al., Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, Journal of Geophysical Research: Atmospheres, vol.112, p.112, 2007.

B. C. Shepler, N. B. Balabanov-&-k, and . Peterson, Hg+ Br? Hg Br recombination and collision-induced dissociation dynamics, J. Chem. Phys, vol.127, p.164304, 2007.

R. L. Shia, C. Seigneur, P. Pai, M. D. Ko-&-n, and . Sze, Global simulation of atmospheric mercury concentrations and deposition fluxes, Journal of Geophysical Research-Atmospheres, vol.104, pp.23747-23760, 1999.

R. L. Shia, C. Seigneur, P. Pai, M. D. Ko-&-n, and . Sze, Global simulation of atmospheric mercury concentrations and deposition fluxes, J. Geophys. Res. Atmos, vol.104, pp.23747-23760, 1999.

L. &. Si and . Ariya, Recent Advances in Atmospheric Chemistry of Mercury, Atmosphere, vol.9, p.76, 2018.

L. P. Si and . Ariya, Reduction of Oxidized Mercury Species by Dicarboxylic Acids (C2?C4): Kinetic and Product Studies, Environmental Science & Technology, vol.42, pp.5150-5155, 2008.

L. P. Si and . Ariya, Reduction of oxidized mercury species by dicarboxylic acids, 2008.

, Kinetic and product studies, Environmental Science & Technology, vol.42, issue.4, pp.5150-5155

S. D. Siciliano, N. J. O'driscoll, and &. D. Lean, Microbial reduction and oxidation of mercury in freshwater lakes, Environmental Science & Technology, vol.36, pp.3064-3068, 2002.

S. P. Sitkiewicz, J. M. Oliva, J. Z. Dávalos, R. Notario, A. Saiz-lopez et al., Ab initio quantum-chemical computations of the electronic states in HgBr2 and IBr: Molecules of interest on the Earth's atmosphere, The Journal of chemical physics, vol.145, p.244304, 2016.

W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker et al., A description of the advanced research WRF version 2, 2005.

N. V. Smith-downey, E. M. Sunderland-&-d, and . Jacob, Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model, Journal of Geophysical Research-Biogeosciences, vol.115, 2010.

A. L. Soerensen, E. M. Sunderland, C. D. Holmes, D. J. Jacob, R. M. Yantosca et al., An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic. Environmental science & technology, vol.44, pp.8574-8580, 2010.

J. E. Sonke, A global model of mass independent mercury stable isotope fractionation, Geochimica et Cosmochimica Acta, vol.75, pp.4577-4590, 2011.

F. Sprovieri, N. Pirrone, M. Bencardino, F. D'amore, H. Angot et al., Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres, Atmospheric Chemistry and Physics, vol.17, pp.2689-2708, 2017.

D. G. Streets, H. M. Horowitz, D. Jacob, Z. Lu, L. Levin et al., Total Mercury Released to the Environment by Human Activities, Environmental Science & Technology, vol.51, pp.5969-5977, 2017.

D. Strömberg, A. Strömberg, and &. Wahlgren, Relativistic quantum calculations on some mercury sulfide molecules, Water Air Soil Pollut, vol.56, pp.681-695, 1991.

E. Suess, F. Aemisegger, J. E. Sonke, M. Sprenger, H. &. Wernli et al., Marine versus Continental Sources of Iodine and Selenium in Rainfall at Two European High-Altitude Locations, Environmental Science & Technology, vol.53, pp.1905-1917, 2019.

E. Tipping, Modelling the interactions of Hg(II) and methylmercury with humic substances using WHAM/Model VI, Applied Geochemistry, vol.22, pp.1624-1635, 2007.

O. Travnikov, Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere, Atmospheric Environment, vol.39, pp.7541-7548, 2005.

O. Travnikov, H. Angot, P. Artaxo, M. Bencardino, J. Bieser et al., Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation, Atmospheric Chem. Phys, vol.17, p.5271, 2017.

O. &. Travnikov and . Ilyin, The EMEP/MSC-E mercury modeling system, Mercury Fate and Transport in the Global Atmosphere, pp.571-587, 2009.

O. &. Travnikov and . Ryaboshapko, Modelling of mercury hemispheric transport and deposition, 2002.

G. S. Tyndall and . Ravishankara, Atmospheric oxidation of reduced sulfur species, International Journal of Chemical Kinetics, vol.23, pp.483-527, 1991.

, Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, UNEP, 2013.

L. Van-loon, E. L. Mader-&-s, and . Scott, Reduction of the Aqueous Mercuric Ion by Sulfite: UV Spectrum of HgSO3 and Its Intramolecular Redox Reaction, The Journal of Physical Chemistry A, vol.104, pp.1621-1626, 2000.

L. Van-loon, E. L. Mader-&-s, and . Scott, Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reaction, Journal of Physical Chemistry A, vol.104, pp.1621-1626, 2000.

W. R. Wadt, The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation, The Journal of Chemical Physics, vol.72, pp.2469-2478, 1980.

F. Wang, A. Saiz-lopez, A. S. Mahajan, J. C. Gómez-martín, D. Armstrong et al., Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway, Atmos. Chem. Phys, vol.14, pp.1323-1335, 2014.

F. Wang, A. Saiz-lopez, A. S. Mahajan, J. C. Martin, D. Armstrong et al., Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway, Atmospheric Chemistry and Physics, vol.14, pp.1323-1335, 2014.

Z. S. Wang and . Pehkonen, Oxidation of elemental mercury by aqueous bromine: atmospheric implications, Atmospheric Environment, vol.38, pp.3675-3688, 2004.

F. &. Weigend and . Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics, vol.7, pp.3297-3305, 2005.

C. Whitehurst and &. T. King, Emission spectroscopy of mixed photodissociated mercury halides, Journal of Physics D: Applied Physics, vol.20, p.1577, 1987.

B. Wilcomb, R. Burnham, and &. Djeu, UV absorption cross section and fluorescence efficiency of HgBr2, Chemical Physics Letters, vol.75, pp.239-242, 1980.

J. Wilcox, A Kinetic Investigation of High-Temperature Mercury Oxidation by Chlorine, The Journal of Physical Chemistry A, vol.113, pp.6633-6639, 2009.

M. F. Wolfe, S. A. Schwarzbach-&-r, and . Sulaiman, Effects of mercury on wildlife: A comprehensive review, Environmental Toxicology and Chemistry, vol.17, pp.146-160, 1998.

Z. Xiao, J. Munthe, D. Strömberg, and &. Lindqvist, Photochemical behaviour of inorganic mercury compounds in aqueous solution. Mercury Pollution; Integration and Synthesis, pp.581-592, 1994.

Z. F. Xiao, D. Stromberg, and &. Lindqvist, Influence of humic substances on photolysis of divalent mercury in aqueous solution, Water Air and Soil Pollution, vol.80, pp.789-798, 1995.

H. Zhang, Photochemical redox reactions of mercury, Recent Developments in Mercury Science, pp.37-79, 2006.

H. S. Zhang and . Lindberg, Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater, Environmental Science & Technology, vol.35, pp.928-935, 2001.

W. &. Zheng and . Hintelmann, Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio, Geochimica et Cosmochimica Acta, vol.73, pp.6704-6715, 2009.

, France Résumé: La photoréduction atmosphérique du Hg pourrait avoir lieu à la fois en phase gazeuse et aqueuse. Les taux de photoréduction du Hg(II) que nous observons dans l'eau de pluie, en condition d'ensoleillement total, sont d'un ordre de grandeur inférieur au taux optimisé de photoréduction dans les nuages >1.0 h -1 dans les modèles globaux de mercure. La photoréduction aqueuse de mercure dans l'atmosphère est trop lente pour constituer une voie de réduction dominante, Les formes HgBr2, HgCl2, HgBrNO2, HgBrHO2 gazeuses atmosphériques, balayées par les aérosols aqueux et les gouttelettes de nuages, sont converties en formes de Hg(II)-DOC dans les précipitations en raison de l'abondance de carbone organique dans les aérosols et de l'eau de nuages. Des calculs théoriques montrent que les taux de photolyse en phase gazeuse de composés de mercure

, Mots clés: Mercure, eau de pluie, taux de photoréduction, phase gazeuse, phase aqueuse, modèle atmosphérique Abstract: Atmospheric Hg photoreduction could take place in both gas-and aqueous phase. Rainwater Hg(II) photoreduction rates

, Atmospheric gaseous HgBr2, HgCl2, HgBrNO2, HgBrHO2 forms, scavenged by aqueous aerosols and cloud droplets, are converted to Hg(II)-DOC forms in rainfall due to abundant organic carbon in aerosols and cloud water, Computation of gas phase photolysis rates of Hg(II) compounds can be fast, and is fast enough to rebalance the modeled atmospheric Hg cycle between Hg(0) oxidation and Hg

, Keywords: Mercury, rain water, photoreduction rate, gas phase, aqueous phase, atmospheric model