, Changements climatiques 2014 -Rapport de synthèse, 2015.

, Loi de transition énergétique pour la croissance verte, p.20, 2019.

, Ministère de la Transition écologique et solidaire, p.20, 2019.

, Annual Report 2018 -IEA-ECES TCP, IEA -ECES TCP, 2019.

A. Ademe and A. Enea, Étude de valorisation du stockage thermique et du power-to-heat, 2016.

, Energie fatale : de la récupération à la revalorisation, EDF France, vol.12, 2018.

K. Attonaty, P. Stouffs, J. Pouvreau, J. Oriol, and A. Deydier, Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage, Energy, vol.172, pp.1132-1143, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02153245

H. Mehling and L. F. Cabeza, Heat and cold storage with PCM: an up to date introduction into basics and applications, 2008.

A. Gil, State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization, Renewable and Sustainable Energy Reviews, vol.14, issue.1, pp.31-55, 2010.

. Le-réseau-vapeur and . Condensats, , 2010.

A. Biglia, L. Comba, E. Fabrizio, P. Gay, and D. Ricauda-aimonino, Steam batch thermal processes in unsteady state conditions: Modelling and application to a case study in the food industry, Applied Thermal Engineering, vol.118, pp.638-651, 2017.

J. H. Carr, P. J. Hurley, and P. J. Martin, Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry, 1978.

V. D. Stevanovic, B. Maslovaric, and S. Prica, Dynamics of steam accumulation, Applied Thermal Engineering, vol.37, pp.73-79, 2012.

D. A. Shnaider, P. N. Divnich, and I. E. Vakhromeev, Modeling the dynamic mode of steam accumulator, Autom Remote Control, vol.71, issue.9, 1994.

, Applications of Thermal Energy Storage in the Energy Transition: Benchmarks and Developments, IEA-ECES Annex, vol.30, 2018.

, Etude des potentiels de production et de valorisation de chaleur fatale en Ile-de-France, ADEME, 2017.

M. Medrano, A. Gil, I. Martorell, X. Potau, and L. F. Cabeza, State of the art on hightemperature thermal energy storage for power generation. Part 2-Case studies, Renewable and Sustainable Energy Reviews, vol.14, issue.1, pp.56-72, 2010.

A. Fernández-garcía, E. Zarza, L. Valenzuela, and M. Pérez, Parabolic-trough solar collectors and their applications, Renewable and Sustainable Energy Reviews, vol.14, issue.7, pp.1695-1721, 2010.

P. Garcia, V. Vuillerme, M. Olcese, and N. E. Mourchid, Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants, AIP Conference Proceedings, vol.1734, p.50015, 2016.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -220

A. Caron-soupart, J. Fourmigué, P. Marty, and R. Couturier, Performance analysis of thermal energy storage systems using phase change material, Applied Thermal Engineering, vol.98, pp.1286-1296, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332456

M. Johnson, J. Vogel, M. Hempel, B. Hachmann, and A. Dengel, Design of high temperature thermal energy storage for high power levels, Sustainable Cities and Society, vol.35, pp.758-763, 2017.

P. Garcia, M. Olcese, and S. Rougé, Experimental and Numerical Investigation of a Pilot Scale Latent Heat Thermal Energy Storage for CSP Power Plant, Energy Procedia, vol.69, pp.842-849, 2015.

M. Lacroix, Numerical simulation of a shell-and-tube latent heat thermal energy storage unit, Solar Energy, vol.50, issue.4, pp.357-367, 1993.

H. A. Adine and H. E. Qarnia, Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials, Applied Mathematical Modelling, vol.33, issue.4, pp.2132-2144, 2009.

W. Wang, L. Wang, and Y. He, The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit, Applied Energy, vol.138, pp.169-182, 2015.

R. Waser, Fast and experimentally validated model of a latent thermal energy storage device for system level simulations, Applied Energy, vol.231, pp.116-126, 2018.

H. A. Zondag, R. Boer, S. F. Smeding, and J. Van-der-kamp, Performance analysis of industrial PCM heat storage lab prototype, Journal of Energy Storage, vol.18, pp.402-413, 2018.

S. S. Mostafavi-tehrani, Y. Shoraka, G. Diarce, and R. A. Taylor, An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems, Renewable Energy, vol.132, pp.694-708, 2019.

K. Yang, N. Zhu, C. Chang, H. Yu, and S. Yang, Numerical analysis of phase-change material melting in triplex tube heat exchanger, Renewable Energy, vol.145, pp.867-877, 2020.

B. Fortunato, S. M. Camporeale, M. Torresi, and M. Albano, Simple Mathematical Model of a Thermal Storage with PCM, AASRI Procedia, vol.2, pp.241-248, 2012.

X. Ju, C. Xu, X. Li, X. Du, and Y. Yang, Numerical analysis of thermal storage performance with high-temperature phase change materials operated by condensing steam, Solar Energy, vol.117, pp.213-223, 2015.

W. Steinmann and M. Eck, Buffer storage for direct steam generation, Solar Energy, vol.80, issue.10, pp.1277-1282, 2006.

J. Buschle, W. Steinmann, and R. Tamme, Latent heat storage for process heat applications, The Tenth International Conference on Thermal Energy Storage, vol.31, 2006.

W. Steinmann, Thermal energy storage systems for concentrating solar power (CSP) technology, Advances in Thermal Energy Storage Systems, pp.511-531, 2015.

R. Osuna, PS10, Construction of a 11MW Solar Thermal Tower Plant, 13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies, 2006.

, Concentrating Solar Power Projects -Khi Solar One | Concentrating Solar Power | NREL, p.19, 2017.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -221

V. Samson-packiaraj-raphael, R. Velraj, and P. , Transient analysis of steam accumulator integrated with solar based MED-TVC system, Desalination, vol.435, pp.3-22, 2018.

M. Berger, M. Meyer-grünefeldt, D. Krüger, K. Hennecke, M. Mokhtar et al., First Year of Operational Experience with a Solar Process Steam system for a Pharmaceutical Company in Jordan, Energy Procedia, vol.91, pp.591-600, 2016.

J. M. Holassian, Khi Solar One project overview and economic analysis, 2015.

D. Laing, C. Bahl, T. Bauer, D. Lehmann, and W. Steinmann, Thermal energy storage for direct steam generation, Solar Energy, vol.85, issue.4, pp.627-633, 2011.

E. González-roubaud, D. Pérez-osorio, and C. Prieto, Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts, Renewable and Sustainable Energy Reviews, vol.80, pp.133-148, 2017.

C. Prieto, A. Rodríguez, D. Patiño, and L. F. Cabeza, Thermal energy storage evaluation in direct steam generation solar plants, Solar Energy, vol.159, pp.501-509, 2018.

, Torresol Energy -Gemasolar thermosolar plant, p.25, 2017.

, Concentrating Solar Power Projects -Andasol-1 | Concentrating Solar Power | NREL, p.25, 2017.

&. Solana, . Energy, and . Gov, , p.2, 2019.

R. Tamme, T. Bauer, J. Buschle, D. Laing, H. Müller-steinhagen et al., Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation, International Journal of Energy Research, vol.32, issue.3, pp.264-271, 2008.

G. Beckmann and P. V. Gilli, Thermal energy storage: basics, design, applications to power generation and heat supply, 1984.

L. Willwerth, Steam drum design for direct steam generation, AIP Conference Proceedings, vol.1850, p.20017, 2017.

R. Rodriguez-arango, E. G. Ramirez, and J. Barragan-jinemez, System and method for accumulating steam in tanks for solar use, Brevet, WO, 2010.

, Appontage et Catapultage, p.24, 2017.

B. Sun, J. Guo, Y. Lei, L. Yang, Y. Li et al., Simulation and verification of a nonequilibrium thermodynamic model for a steam catapult's steam accumulator, International Journal of Heat and Mass Transfer, vol.85, pp.88-97, 2015.

D. Laing, T. Bauer, N. Breidenbach, B. Hachmann, and M. Johnson, Development of high temperature phase-change-material storages, Applied Energy, vol.109, pp.497-504, 2013.

R. Bayón, E. Rojas, L. Valenzuela, E. Zarza, and J. León, Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants, Applied Thermal Engineering, vol.30, issue.17, pp.2643-2651, 2010.

K. Nithyanandam, J. Stekli, and R. Pitchumani, 10 -High-temperature latent heat storage for concentrating solar thermal (CST) systems, Advances in Concentrating Solar Thermal Research and Technology, pp.213-246, 2017.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -222

M. Seitz, P. Cetin, and M. Eck, Thermal Storage Concept for Solar Thermal Power Plants with Direct Steam Generation, Energy Procedia, vol.49, pp.993-1002, 2014.

T. Pirasaci and D. Y. Goswami, Influence of design on performance of a latent heat storage system for a direct steam generation power plant, Applied Energy, vol.162, pp.644-652, 2016.

H. Michels and R. Pitz, Cascaded latent heat storage for parabolic trough solar power plants, Solar Energy, vol.81, issue.6, pp.829-837, 2007.

T. Watanabe, H. Kikuchi, and A. Kanzawa, Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures, Heat Recovery Systems and CHP, vol.13, issue.1, pp.57-66, 1993.

M. Johnson, J. Vogel, M. Hempel, A. Dengel, M. Seitz et al., High Temperature Latent Heat Thermal Energy Storage Integration in a Co-gen Plant, 2015.

M. Johnson, A. Dengel, B. Hachmann, M. Fiß, and D. Bauer, Large-scale high temperature and power latent heat storage unit development, AIP Conference Proceedings, vol.2126, issue.1, 2019.

L. Willwerth, Commissioning and tests of a mini CSP plant, AIP Conference Proceedings, vol.2033, p.180012, 2018.

W. Steinmann and R. Tamme, Latent heat storage for solar steam systems, Journal of Solar Energy Engineering, vol.130, issue.1, p.11004, 2008.

R. Guédez, M. Arnaudo, M. Topel, R. Zanino, Z. Hassar et al., Techno-economic performance evaluation of direct steam generation solar tower plants with thermal energy storage systems based on high-temperature concrete and encapsulated phase change materials, AIP Conference Proceedings, vol.1734, 2016.

M. M. Weislogel and J. N. Chung, Experimental investigation of condensation heat transfer in small arrays of PCM-filled spheres, International Journal of Heat and Mass Transfer, vol.34, issue.1, pp.31-45, 1991.

S. Pincemin, R. Olives, X. Py, and M. Christ, Highly conductive composites made of phase change materials and graphite for thermal storage, Solar Energy Materials and Solar Cells, vol.92, issue.6, pp.603-613, 2008.

T. Bauer, R. Tamme, M. Christ, and O. Ottinger, PCM-graphite composites for high temperature thermal energy storage, Proc. of ECOSTOCK, 10th International Conference on Thermal Energy Storage, 2006.

K. S. Do-couto-aktay, R. Tamme, and H. Müller-steinhagen, Thermal Conductivity of High-Temperature Multicomponent Materials with Phase Change, Int J Thermophys, vol.29, issue.2, pp.678-692, 2008.

R. Adinberg, D. Zvegilsky, and M. Epstein, Heat transfer efficient thermal energy storage for steam generation, Energy Conversion and Management, vol.51, issue.1, pp.9-15, 2010.

V. Zipf, A. Neuhäuser, D. Willert, P. Nitz, S. Gschwander et al., High temperature latent heat storage with a screw heat exchanger: Design of prototype, Applied Energy, vol.109, pp.462-469, 2013.

V. Zipf, A. Neuhäuser, C. Bachelier, R. Leithner, and W. Platzer, Assessment of Different PCM Storage Configurations in a 50 MWel CSP Plant with Screw Heat Exchangers in a Combined Sensible and Latent Storage -Simulation Results, vol.69, pp.1078-1088, 2015.

V. Zipf, D. Willert, and A. Neuhäuser, Active latent heat storage with a screw heat exchanger -Experimental results for heat transfer and concept for high pressure steam, AIP Conference Proceedings, vol.1734, 2016.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -223

H. Pointner, W. Steinmann, and M. Eck, Introduction of the PCM Flux Concept for Latent Heat Storage, Energy Procedia, vol.57, pp.643-652, 2014.

H. Pointner, W. D. Steinmann, M. Eck, and C. Bachelier, Separation of Power and Capacity in Latent Heat Energy Storage, Energy Procedia, vol.69, pp.997-1005, 2015.

H. Pointner and W. Steinmann, Experimental demonstration of an active latent heat storage concept, Applied Energy, vol.168, pp.661-671, 2016.

N. Provatas, N. Goldenfeld, and J. Dantzig, Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures, Journal of Computational Physics, vol.148, issue.1, pp.265-290, 1999.

N. Palle and J. A. Dantzig, An adaptive mesh refinement scheme for solidification problems, MMTA, vol.27, issue.3, pp.707-717, 1996.

S. R. Idelsohn, M. A. Storti, and L. A. Crivelli, Numerical methods in phase-change problems, ARCO, vol.1, issue.1, pp.49-74, 1994.

S. Jana, S. Ray, and F. Durst, A numerical method to compute solidification and melting processes, Applied Mathematical Modelling, vol.31, issue.1, pp.93-119, 2007.

J. A. Mackenzie and M. L. Robertson, The Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method, Journal of Computational Physics, vol.161, issue.2, pp.537-557, 2000.

J. A. Mackenzie and M. L. Robertson, A Moving Mesh Method for the Solution of the One-Dimensional Phase-Field Equations, Journal of Computational Physics, vol.181, issue.2, pp.526-544, 2002.

G. Beckett, J. A. Mackenzie, and M. L. Robertson, A Moving Mesh Finite Element Method for the Solution of Two-Dimensional Stefan Problems, Journal of Computational Physics, vol.168, issue.2, pp.500-518, 2001.

G. Tryggvason, A Front-Tracking Method for the Computations of Multiphase Flow, Journal of Computational Physics, vol.169, issue.2, pp.708-759, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02146147

C. Li, S. V. Garimella, and J. E. Simpson, Fixed-grid front-tracking algorithm for solidification problems, part I: Method and validation, Numerical Heat Transfer, Part B: Fundamentals, vol.43, issue.2, pp.117-141, 2003.

C. Li, S. V. Garimella, and J. E. Simpson, Fixed-grid front-tracking algorithm for solidification problems, part II: directional solidification with melt convection, Numerical Heat Transfer, Part B: Fundamentals, vol.43, issue.2, pp.143-166, 2003.

L. Klime?, T. Mauder, P. Charvát, and J. ?t?tina, Front tracking in modelling of latent heat thermal energy storage: Assessment of accuracy and efficiency, benchmarking and GPU-based acceleration, Energy, vol.155, pp.297-311, 2018.

E. Javierre, C. Vuik, F. J. Vermolen, and S. Van-der-zwaag, A comparison of numerical models for one-dimensional Stefan problems, Journal of Computational and Applied Mathematics, vol.192, issue.2, pp.445-459, 2006.

F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, A Level Set Approach for the Numerical Simulation of Dendritic Growth, Journal of Scientific Computing, vol.19, issue.1-3, pp.183-199, 2003.

L. Tan and N. Zabaras, A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods, Journal of Computational Physics, vol.211, issue.1, pp.36-63, 2006.

S. Chen, B. Merriman, S. Osher, and P. Smereka, A Simple Level Set Method for Solving Stefan Problems, Journal of Computational Physics, vol.135, issue.1, pp.8-29, 1997.

J. López, P. Gómez, and J. Hernández, A volume of fluid approach for crystal growth simulation, Journal of Computational Physics, vol.229, issue.19, pp.6663-6672, 2010.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -224

S. Karagadde, A. Bhattacharya, G. Tomar, and P. Dutta, A coupled VOF-IBM-enthalpy approach for modeling motion and growth of equiaxed dendrites in a solidifying melt, Journal of Computational Physics, vol.231, issue.10, pp.3987-4000, 2012.

M. Fabbri and V. R. Voller, The Phase-Field Method in the Sharp-Interface Limit: A Comparison between Model Potentials, vol.130, pp.256-265, 1997.

J. Ni and C. Beckermann, A volume-averaged two-phase model for transport phenomena during solidification, Metallurgical and Materials Transactions B, vol.22, issue.3, pp.349-361, 1991.

P. Bousquet-melou, B. Goyeau, M. Quintard, F. Fichot, and D. Gobin, Average momentum equation for interdendritic flow in a solidifying columnar mushy zone, International journal of heat and mass transfer, vol.45, issue.17, pp.3651-3665, 2002.

W. D. Bennon and F. P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation, International Journal of Heat and Mass Transfer, vol.30, issue.10, pp.2161-2170, 1987.

Z. Ma and Y. Zhang, Solid velocity correction schemes for a temperature transforming model for convection phase change, International Journal of Numerical Methods for Heat and Fluid Flow, vol.16, issue.2, pp.204-225, 2006.

V. R. Voller, M. Cross, and N. C. Markatos, An enthalpy method for convection/diffusion phase change, Int. J. Numer. Meth. Engng, vol.24, issue.1, pp.271-284, 1987.

D. K. Gartling, Finite element analysis of convective heat transfer problems with change of phase, Laminar and Turbul Flow, pp.489-500, 1978.

V. R. Voller and C. Prakash, A fixed grid numerical modelling methodology for convectiondiffusion mushy region phase-change problems, International Journal of Heat and Mass Transfer, vol.30, issue.8, pp.1709-1719, 1987.

R. Mehrabian, M. Keane, and M. C. Flemings, Interdendritic fluid flow and macrosegregation; influence of gravity, Metall and Materi Trans, vol.1, issue.5, pp.1209-1220, 1970.

L. Clavier, E. Arquis, J. P. Caltagirone, and D. Gobin, A fixed grid method for the numerical solution of phase change problems, Int. J. Numer. Meth. Engng, vol.37, issue.24, pp.4247-4261, 1994.

V. Voller and M. Cross, Accurate solutions of moving boundary problems using the enthalpy method, International Journal of Heat and Mass Transfer, vol.24, issue.3, pp.545-556, 1981.

Z. Gong, S. Devahastin, and A. S. Mujumdar, Enhanced heat transfer in free convectiondominated melting in a rectangular cavity with an isothermal vertical wall, Applied Thermal Engineering, vol.19, issue.12, pp.1237-1251, 1999.

S. Gibout, E. Franquet, J. Bédécarrats, and J. Dumas, Comparison of different modelings of pure substances during melting in a DSC experiment, Thermochimica Acta, vol.528, pp.1-8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02101435

S. Gibout, E. Franquet, W. Maréchal, and J. Dumas, On the use of a reduced model for the simulation of melting of solutions in DSC experiments, Thermochimica Acta, vol.566, pp.118-123, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02096224

A. Bhattacharya, A. Kiran, S. Karagadde, and P. Dutta, An enthalpy method for modeling eutectic solidification, Journal of Computational Physics, vol.262, pp.217-230, 2014.

E. Feulvarch and J. Bergheau, An Implicit Fixed-Grid Method for the Finite-Element Analysis of Heat Transfer Involving Phase Changes, Numerical Heat Transfer, Part B: Fundamentals, vol.51, issue.6, pp.585-610, 2007.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -225

S. L. Lee and R. Y. Tzong, An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface, International Journal of Heat and Mass Transfer, vol.34, issue.6, pp.1491-1502, 1991.

F. Rösler and D. Brüggemann, Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments, Heat and Mass Transfer, vol.47, issue.8, pp.1027-1033, 2011.

T. W. Clyne and W. Kurz, Solute redistribution during solidification with rapid solid state diffusion, MTA, vol.12, issue.6, pp.965-971, 1981.

, ANSYS Fluent Theory Guide Release 17.2, 2016.

V. R. Voller and C. R. Swaminathan, General Source-Based Method for Solidification Phase Change, Numerical Heat Transfer, Part B: Fundamentals, vol.19, issue.2, pp.175-189, 1991.

M. Salcudean and Z. Abdullah, On the numerical modelling of heat transfer during solidification processes, Int. J. Numer. Meth. Engng, vol.25, issue.2, pp.445-473, 1988.

H. Niyas and P. Muthukumar, Novel encapsulation technique to upscale latent heat storage capacity in steam accumulators, Conference Proceedings, pp.1560-1566, 2015.

M. Iten, S. Liu, and A. Shukla, Experimental validation of an air-PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations, Energy, vol.155, pp.495-503, 2018.

C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, Numerical solution of phase-change problems, International Journal of Heat and Mass Transfer, vol.16, issue.10, pp.1825-1832, 1973.

M. Longeon, A. Soupart, J. Fourmigué, A. Bruch, and P. Marty, Experimental and numerical study of annular PCM storage in the presence of natural convection, Applied Energy, vol.112, pp.175-184, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01329239

D. Poirier and M. Salcudean, On Numerical Methods Used in Mathematical Modeling of Phase Change in Liquid Metals, Journal of Heat Transfer, vol.110, issue.3, pp.562-570, 1988.

J. F. Pittman and G. P. Whitham, Enthalpy gradient methods for capturing latent heat in phase change simulations using biquadratic isoparametric finite elements, Int Jnl of Num Meth for HFF, vol.4, issue.1, pp.85-94, 1994.

G. Comini, S. Guidice, R. W. Lewis, and O. C. Zienkiewicz, Finite element solution of nonlinear heat conduction problems with special reference to phase change, Int. J. Numer. Meth. Engng, vol.8, issue.3, pp.613-624, 1974.

S. Del-giudice, G. Comini, and R. W. Lewis, Finite element simulation of freezing processes in soils, Int. J. Numer. Anal. Meth. Geomech, vol.2, issue.3, pp.223-235, 1978.

K. Morgan, R. W. Lewis, and O. C. Zienkiewicz, An improved algrorithm for heat conduction problems with phase change, Int. J. Numer. Meth. Engng, vol.12, issue.7, pp.1191-1195, 1978.

N. Hannoun, V. Alexiades, and T. Z. Mai, Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side, Numerical Heat Transfer: Part B: Fundamentals, vol.44, issue.3, pp.253-276, 2003.

Y. Cao, A. Faghri, and W. Chang, A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model, International Journal of Heat and Mass Transfer, vol.32, issue.7, pp.1289-1298, 1989.

V. R. Voller, C. R. Swaminathan, and B. G. Thomas, Fixed grid techniques for phase change problems: A review, Int. J. Numer. Meth. Engng, vol.30, issue.4, pp.875-898, 1990.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -226

Q. T. Pham, Comparison of general-purpose finite-element methods for the Stefan problem, Numerical Heat Transfer, vol.27, issue.4, pp.417-435, 1995.

J. M. Delhaye, M. Giot, and M. L. Riethmuller, Thermohydraulics of two-phase systems for industrial design and nuclear engineering, 1981.

D. Bestion and C. Morel, Balance equations, Thermal-Hydraulics of Water Cooled Nuclear Reactors, pp.167-244, 2017.

R. Cundapí, S. L. Moya, and L. Valenzuela, Approaches to modelling a solar field for direct generation of industrial steam, Renewable Energy, vol.103, pp.666-681, 2017.

B. Epple, R. Leithner, H. Müller, K. Ponweiser, H. Walter et al., Conversion and Transport of Mass, Energy, Momentum, and Materials," in Numerical Simulation of Power Plants and Firing Systems, pp.17-160, 2017.

Y. Taitel and A. E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J, vol.22, issue.1, pp.47-55, 1976.

L. Wojtan, T. Ursenbacher, and J. R. Thome, Investigation of flow boiling in horizontal tubes: Part I-A new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer, vol.48, issue.14, pp.2955-2969, 2005.

A. Frein, L. Pistocchini, V. Tatay, and M. Motta, Modeling and Sizing of a MW Solar DSG plant, Energy Procedia, vol.91, pp.620-629, 2016.

J. J. Serrano-aguilera, L. Valenzuela, and L. Parras, Thermal 3D model for Direct Solar Steam Generation under superheated conditions, Applied Energy, vol.132, pp.370-382, 2014.

T. Hirsch, W. Steinmann, and M. Eck, Simulation of transient two-phase flow in parabolic trough collectors using Modelica, Proceedings of the 4th International Modelica Conference, 2005.

F. Escanes, C. D. Pérez-segarra, and A. Oliva, Numerical simulation of capillary-tube expansion devices, International Journal of Refrigeration, vol.18, issue.2, pp.113-122, 1995.

O. Garc??a-valladares, C. D. Pérez-segarra, and J. Rigola, Numerical simulation of double-pipe condensers and evaporators, International Journal of Refrigeration, vol.27, issue.6, pp.656-670, 2004.

M. Lin, J. Reinhold, N. Monnerie, and S. Haussener, Modeling and design guidelines for direct steam generation solar receivers, Applied Energy, vol.216, pp.761-776, 2018.

D. Bestion, The physical closure laws in the CATHARE code, Nuclear Engineering and Design, vol.124, issue.3, pp.229-245, 1990.

F. Alobaid, N. Mertens, R. Starkloff, T. Lanz, C. Heinze et al., Progress in dynamic simulation of thermal power plants, Progress in Energy and Combustion Science, vol.59, pp.79-162, 2017.

C. Kim and R. P. Roy, Two-phase flow dynamics by a five-equation drift-flux model, Letters in Heat and Mass Transfer, vol.8, issue.1, pp.57-68, 1981.

T. Hibiki and M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, International Journal of Heat and Mass Transfer, vol.46, issue.25, pp.4935-4948, 2003.

L. Zou, H. Zhao, and H. Zhang, Numerical implementation, verification and validation of twophase flow four-equation drift flux model with Jacobian-free Newton-Krylov method, Annals of Nuclear Energy, vol.87, issue.2, pp.707-719, 2016.

G. Espinosa-paredes, J. Alvarez-ramirez, A. Nuñez-carrera, A. Garcia-gutierrez, E. J. Martinez-mendez et al., Dynamic Comparison of Three-and Four-Equation Reactor Core Models in MODÉLISATION MULTI

, Clément BEUST -2019 Références bibliographiques -227

, Nuclear Technology, vol.145, issue.2, pp.150-162, 2004.

R. Berry, L. Zou, H. Zhao, and D. Andrs, RELAP-7: Demonstrating Seven-Equation, Two-Phase, 2013.

, RELAP-7 -Overview, p.23, 2018.

. Apros--dynamic, Process Simulation Software for Nuclear and Thermal Power Plant Applications, p.23, 2018.

, The Computer Code ATHLET | GRS -Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) gGmbH, p.23, 2018.

N. Zuber and J. A. Findlay, Average Volumetric Concentration in Two-Phase Flow Systems, J. Heat Transfer, vol.87, issue.4, pp.453-468, 1965.

U. Brockmeier, A. Schaffrath, and H. Unger, Verification of the two-phase stratified-flow model in athlet by separate effect tests, Nuclear Engineering and Design, vol.154, issue.1, pp.43-50, 1995.

G. Xia, Y. Yuan, M. Peng, X. Lv, and L. Sun, Numerical studies of a helical coil once-through steam generator, Annals of Nuclear Energy, vol.109, pp.52-60, 2017.

J. M. Jensen and H. Tummescheit, Moving Boundary Models for Dynamic Simulations of Two-Phase Flows, 2002.

J. I. Zapata, J. Pye, and K. Lovegrove, A transient model for the heat exchange in a solar thermal once through cavity receiver, Solar Energy, vol.93, pp.280-293, 2013.

T. L. Mckinley and A. G. Alleyne, An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method, International Journal of Refrigeration, vol.31, issue.7, pp.1253-1264, 2008.

H. Pangborn, A. G. Alleyne, and N. Wu, A comparison between finite volume and switched moving boundary approaches for dynamic vapor compression system modeling, International Journal of Refrigeration, vol.53, pp.101-114, 2015.

J. Bonilla, S. Dormido, and F. E. Cellier, Switching moving boundary models for two-phase flow evaporators and condensers, Communications in Nonlinear Science and Numerical Simulation, vol.20, issue.3, pp.743-768, 2015.

M. A. Abdalla, A four-region, moving-boundary model of a once-through, helical-coil steam generator, Annals of Nuclear Energy, vol.21, issue.9, pp.541-562, 1994.

G. Berry, Model of a once-through steam generator with moving boundaries and a variable number of nodes, Argonne National Lab, 1983.

L. J. Yebra, M. Berenguel, and S. Dormido, Extended moving boundary models for two-phase flows, IFAC Proceedings Volumes, vol.38, pp.368-373, 2005.

A. Crespo, C. Barreneche, M. Ibarra, and W. Platzer, Latent thermal energy storage for solar process heat applications at medium-high temperatures -A review, Solar Energy, 2018.

A. Kaizawa, Thermal and flow behaviors in heat transportation container using phase change material, Energy Conversion and Management, vol.49, issue.4, pp.698-706, 2008.

M. Martinelli, F. Bentivoglio, R. Couturier, J. Fourmigué, and P. Marty, Experimental study of an externally finned tube with internal heat transfer enhancement for phase change thermal energy storage, J. Phys.: Conf. Ser, vol.745, p.32029, 2016.

P. C. Carman, Fluid flow through granular beds, Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, vol.75, pp.32-48, 1997.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -228

S. F. Hosseinizadeh, A. A. Darzi, F. L. Tan, and J. M. Khodadadi, Unconstrained melting inside a sphere, International Journal of Thermal Sciences, vol.63, pp.55-64, 2013.

H. Shmueli, G. Ziskind, and R. Letan, Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments, International Journal of Heat and Mass Transfer, vol.53, pp.4082-4091, 2010.

S. Tiari, S. Qiu, and M. Mahdavi, Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material, Energy Conversion and Management, vol.89, pp.833-842, 2015.

S. Tiari and S. Qiu, Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes, Energy Conversion and Management, vol.105, pp.260-271, 2015.

E. Assis, L. Katsman, G. Ziskind, and R. Letan, Numerical and experimental study of melting in a spherical shell, International Journal of Heat and Mass Transfer, vol.50, issue.9, pp.1790-1804, 2007.

F. Fornarelli, S. M. Camporeale, and B. Fortunato, Simplified theoretical model to predict the melting time of a shell-and-tube LHTES, Applied Thermal Engineering, vol.153, pp.51-57, 2019.

J. Yang, X. Du, L. Yang, and Y. Yang, Numerical analysis on the thermal behavior of high temperature latent heat thermal energy storage system, Solar Energy, vol.98, pp.543-552, 2013.

X. Li, R. Huang, X. Miao, X. Wang, Y. Liu et al., Investigation of the dynamic characteristics of a thermal energy storage unit filled with multiple phase change materials, Thermal Science, vol.22, pp.527-533, 2018.

I. Jmal and M. Baccar, Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection, International Journal of Heat and Mass Transfer, vol.127, pp.714-727, 2018.

A. R. Archibold, M. M. Rahman, D. Y. Goswami, and E. K. Stefanakos, Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage, Applied Thermal Engineering, vol.64, issue.1-2, pp.396-407, 2014.

A. F. Elmozughi, L. Solomon, A. Oztekin, and S. Neti, Encapsulated phase change material for high temperature thermal energy storage -Heat transfer analysis, International Journal of Heat and Mass Transfer, vol.78, pp.1135-1144, 2014.

V. Shatikian, G. Ziskind, and R. Letan, Numerical investigation of a PCM-based heat sink with internal fins, International Journal of Heat and Mass Transfer, vol.48, issue.17, pp.3689-3706, 2005.

X. Yang, T. Xiong, J. L. Dong, W. X. Li, and Y. Wang, Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger, Energies, vol.10, issue.8, p.1129, 2017.

A. M. Sefidan, A. Sojoudi, S. C. Saha, and M. Cholette, Multi-layer PCM solidification in a finned triplex tube considering natural convection, Applied Thermal Engineering, vol.123, pp.901-916, 2017.

M. Augspurger, J. Becker, J. Buchholz, and H. S. Udaykumar, Three-dimensional numerical and experimental investigation of the behavior of solar salts within thermal storage devices during phase change, Applied Thermal Engineering, vol.143, pp.791-811, 2018.

Z. Khan, Z. Khan, and K. Tabeshf, Parametric investigations to enhance thermal performance of paraffin through a novel geometrical configuration of shell and tube latent thermal storage system, Energy Conversion and Management, vol.127, pp.355-365, 2016.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -229

E. Assis, G. Ziskind, and R. Letan, Numerical and experimental study of solidification in a spherical shell, Journal of Heat Transfer, vol.131, issue.2, pp.1-5, 2009.

L. Kumar, Experimental investigations on melting of lead in a cuboid with constant heat flux boundary condition using thermal neutron radiography, International Journal of Thermal Sciences, vol.61, pp.15-27, 2012.

C. Chabot and L. Gosselin, Solid-liquid phase change around a tube with periodic heating and cooling: Scale analysis, numerical simulations and correlations, International Journal of Thermal Sciences, vol.112, pp.345-357, 2017.

O. Ben-david, A. Levy, B. Mikhailovich, and A. Azulay, 3D numerical and experimental study of gallium melting in a rectangular container, International Journal of Heat and Mass Transfer, vol.67, pp.260-271, 2013.

M. Kumar and D. J. Krishna, Influence of Mushy Zone Constant on Thermohydraulics of a PCM, Energy Procedia, vol.109, pp.314-321, 2017.

M. Hameter and H. Walter, Influence of the Mushy Zone Constant on the Numerical Simulation of the Melting and Solidification Process of Phase Change Materials, Computer Aided Chemical Engineering, vol.38, pp.439-444, 2016.

S. Arena, E. Casti, J. Gasia, L. F. Cabeza, and G. Cau, Numerical simulation of a finned-tube LHTES system: influence of the mushy zone constant on the phase change behaviour, Energy Procedia, vol.126, pp.517-524, 2017.

K. Schüller, B. Berkels, and J. Kowalski, Integrated Modeling and Validation for Phase Change with Natural Convection, Recent Advances in Computational Engineering, pp.127-144, 2018.

S. Gibout, E. Franquet, D. Haillot, J. Bédécarrats, and J. Dumas, Challenges of the Usual Graphical Methods Used to Characterize Phase Change Materials by Differential Scanning Calorimetry, Applied Sciences, vol.8, issue.1, p.66, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02086374

C. Castellón, E. Günther, H. Mehling, S. Hiebler, and L. F. Cabeza, Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC-A study of different measurement procedures and their accuracy, International Journal of Energy Research, vol.32, issue.13, pp.1258-1265, 2008.

E. Günther, S. Hiebler, H. Mehling, and R. Redlich, Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods, Int J Thermophys, vol.30, issue.4, pp.1257-1269, 2009.

A. C. Kheirabadi and D. Groulx, The Effect of the Mushy-Zone Constant on Simulated Phase Change Heat Transfer, Proceedings of CHT-15, 2015.

C. Gau and R. Viskanta, Melting and Solidification of a Pure Metal on a Vertical Wall, J. Heat Transf.-Trans. ASME, vol.108, issue.1, pp.174-181, 1986.

G. "rubitherm, , p.21, 2017.

C. Gau and R. Viskanta, Effect of natural convection on solidification from above and melting from below of a pure metal, International Journal of Heat and Mass Transfer, vol.28, issue.3, pp.573-587, 1985.

H. O. Baled, Viscosity of n-hexadecane, n-octadecane and n-eicosane at pressures up to 243MPa and temperatures up to 534K, The Journal of Chemical Thermodynamics, vol.72, pp.108-116, 2014.

C. Vélez, M. Khayet, and J. M. Ortiz-de-zárate, Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and neicosane, Applied Energy, vol.143, pp.383-394, 2015.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -230

S. Himran, A. Suwono, and G. A. Mansoori, Characterization of alkanes and paraffin waxes for application as phase change energy storage medium, Energy Sources, vol.16, issue.1, pp.117-128, 1994.

A. Genovese, G. Amarasinghe, M. Glewis, D. Mainwaring, and R. A. Shanks, Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material, Thermochimica Acta, vol.443, issue.2, pp.235-244, 2006.

J. A. González, M. Zawadzki, and U. Domanska, Thermodynamics of mixtures containing polycyclic aromatic hydrocarbons, Journal of Molecular Liquids, vol.143, issue.2, pp.134-140, 2008.

P. Zhang, Z. W. Ma, and R. Z. Wang, An overview of phase change material slurries: MPCS and CHS, Renewable and Sustainable Energy Reviews, vol.14, issue.2, pp.598-614, 2010.

, WebBook de Chimie NIST, p.21, 2017.

, Fournisseur de Matériaux pour la Recherche et le Développement -Goodfellow

, Online Materials Information Resource -MatWeb, p.21, 2017.

M. Graphclick--graph, . Digitizer, O. Mac, and . Download, , p.30, 2018.

F. Jiang, X. Wang, and D. Wu, Design and synthesis of magnetic microcapsules based on neicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials, Applied Energy, vol.134, pp.456-468, 2014.

J. L. Wright, A Correlation to Quantify Convective Heat Transfer Between Vertical Window Glazings, ASHRAE Transactions, vol.102, pp.940-946, 1996.

S. W. Churchill and H. H. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate, International Journal of Heat and Mass Transfer, vol.18, issue.11, pp.1323-1329, 1975.

T. Hirata and K. Nishida, An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside an isothermally heated horizontal cylinder, International Journal of Heat and Mass Transfer, vol.32, issue.9, pp.1663-1670, 1989.

M. A. Woldesemayat and A. J. Ghajar, Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes, International Journal of Multiphase Flow, vol.33, issue.4, pp.347-370, 2007.

, IAPWS-IF97 Industrial Formulation for Thermodynamic Properties of Water and Steam, p.13, 2012.

K. Jacobson, Thermodynamic properties of water and steam, vol.18, 2018.

T. Bauer, D. Laing, and R. Tamme, Characterization of Sodium Nitrate as Phase Change Material, International Journal of Thermophysics, vol.33, issue.1, pp.91-104, 2012.

A. Lomonaco, D. Haillot, E. Pernot, E. Franquet, and J. Bédécarrats, Sodium nitrate thermal behavior in latent heat thermal energy storage: A study of the impact of sodium nitrite on melting temperature and enthalpy, Solar Energy Materials and Solar Cells, vol.149, pp.81-87, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02089608

V. M. Nunes, C. S. Queirós, M. J. Lourenço, F. J. Santos, and C. A. Nieto-de-castro, Molten salts as engineering fluids -A review: Part I. Molten alkali nitrates, Applied Energy, vol.183, pp.603-611, 2016.

M. Phase,

, Clément BEUST -2019 Références bibliographiques -231

T. Jriri, J. Rogez, C. Bergman, and J. C. Mathieu, Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions, Thermochimica Acta, vol.266, pp.147-161, 1995.

W. Nusselt, Die Oberflächenkondensation des Wasserdampfes. VDI, 1916.

S. S. Kutateladze, Fundamentals of Heat Transfer, 1963.

D. A. Labuntsov, Heat transfer in film condensation of pure steam on vertical surfaces and horizontal tubes, Teploenergetika, vol.4, issue.7, pp.72-80, 1957.

W. H. Mac-adams, Transmission de la chaleur, 1975.

V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng, vol.16, issue.2, pp.359-368, 1976.

G. K. Filonenko, Hydraulic resistance in pipes, Teploenergetika, vol.1, issue.4, pp.40-44, 1954.

J. Bonnin, Techniques de l'ingénieur Stockage et transfert des fluides des machines hydrauliques et thermiques, vol. base documentaire : TIB174DUO., no. ref. article : a738, 1983. ECOLE DOCTORALE : Ecole Doctorale Sciences Exactes et leurs Applications ED 211 LABORATOIRE : Laboratoire de Stockage Thermique