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Résumé

Les générateurs de vapeur (GV) sont I'un des composants majeurs des réacteurs nucléaires, et
une connaissance approfondie de leur comportement constitue un enjeu industriel important
aussi bien pour le concepteur que pour 'exploitant EDF. Une des problématiques rencontrées
pour le dimensionnement des GV concerne la vibration des tubes induite par 1’écoulement, ce
qui nécessite une évaluation raisonnable de la réponse des tubes a ’excitation provoquée par le
fluide environnant. La zone identifiée comme la plus critique est la région en U (partie haute du
GV) ou I’écoulement est diphasique avec un fort taux de vide et interagit plutot transversalement
avec les tubes. Afin d’évaluer les excitations générées sur les tubes par les fluctuations inhérentes
a I’écoulement, les parameétres physiques pertinents doivent étre identifiés. Pour les écoulements
monophasiques, il semble possible de relier les efforts exercés sur les structures tubulaires au
niveau de turbulence de I’écoulement ; a la fois en utilisant des méthodes de réduction des don-
nées expérimentales mais également en utilisant des méthodes de simulations numériques. Pour
les écoulements diphasiques, les forces induites sur les tubes par ’écoulement ont a priori une
autre origine et seraient plutdt liées aux contributions dynamiques de chaque phase ainsi qu’aux
transferts interfaciaux (fluctuations de pression liées au passage des discontinuités). Néanmoins,
les parametres physiques pertinents qui permettent de prévoir 'amplitude de ces forces restent
largement débattus (taux de vide, régime d’écoulement, etc.) et les mécanismes physiques mal
compris. Pour étudier ces instabilités vibratoires lorsque I’écoulement est diphasique, un certain
nombre d’expériences analytiques ont été et continuent d’étre menées au CEA. Ces expériences
analytiques portent sur un tube isolé ou en faisceau, rigide ou flexible, et sur une large gamme
de régimes d’écoulement (maquettes AMOVI et DIVA du CEA). Leur objectif est de caractériser
ces instabilités vibratoires (mesure des forces exercées sur l'obstacle) en fonction de parametres
globaux de I’écoulement (débit gaz, débit liquide, taux de vide “moyen”, etc.) mais aussi de cer-
tains parametres locaux (taux de vide local, taille des bulles, vitesse gaz, etc.). Ces parameétres
mesurés ou estimés localement sont ceux qui permettent d’obtenir les adimensionnements les
plus pertinents & la fois sur les forces d’excitations aléatoires (spectres d’excitation en diphasique
sur tube rigide) et sur les forces de couplage fluide-élastiques (tube flexible seul puis en faisceau).
Il reste néanmoins une bande de dispersion sur les résultats obtenus, les mécanismes physiques
sont mal compris et ces adimensionnements restent tributaires du choix de la localisation des
mesures. L’objectif de la these est donc de mettre en oeuvre des simulations numériques avec
suivi d’interface dans des configurations proches de celles des expériences analytiques menées au
CEA afin d’approfondir 'analyse des phénomeénes conduisant aux vibrations des tubes de GV.

Mots clés : interaction fluide-structure; écoulements diphasiques; méthodes de frontiéres im-
mergées ; méthodes anti-diffusives ; simulation numérique
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Abstract

Steam generators are a key component of nuclear power reactors, and an in-depth knowledge of
their mechanisms is a major industrial challenge for the designer and the operator EDF. Vibra-
tion of tube bundles induced by cross-flow is one of the problems encountered by the designer,
thus needing to assess the vibration response to the excitation generated by the flow. The crit-
ical region is the U shape of the bundle (upper part of the steam generator), where two-phase
cross-flow occurs with an important void fraction. In order to measure excitation induced by
flow fluctuations on the tube bundle, some physical parameters have to be identified. For single-
phase flows, it seems possible to link load on tubular structure to turbulence intensity of the
flow, thanks to experimental data reduction methods together with numerical simulation meth-
ods. For two-phase flows, it is believed that forces induced on the tubes by the flow have other
origins, and might be connected to dynamic contribution of each phase together with energy
interfacial transfers (pressure fluctuations induced by density discontinuities). Nevertheless, rel-
evant physical parameters which could predict the amplitude of the forces remain a subject of
debate (void fraction, flow regime, etc.) and physical processes not yet fully understood. In order
to study mechanical instabilities in two-phase flows, some analytic experiments a have been and
continue to be conducted at CEA. These analytic experiments focuses on isolated tube or tube
bundles (rigid or flexible), and on a large regime flow range (AMOVI and DIVA mockups at
CEA). They aim to describe these mechanical instabilities (forces measurement on the obstacle)
based upon average parameters of the flow (gas and liquid flow rates, “mean” void fraction, etc.),
but also local parameters (local void fraction, bubble size, gas velocity, etc.). These measured or
locally estimated parameters are used to conduct relevant nondimensionalization, both on the
random excitation forces (two-phase excitation spectrum on a rigid tube) and the fluid-elastic
coupling forces (single flexible tube or flexible bundle). Nonetheless, some dispersion remains on
the results, physical mechanisms are not well understood, and the nondimensionalization process
remains dependent on metrology. The aim of this PhD thesis is to conduct numerical simulations
with interface capture methods in configurations close to the experiments conducted at CEA in
order to expand the knowledge on phenomena leading to vibration of tube bundle in steam gen-

erators.

Keywords: fluid-structure interaction; two-phase flows; immersed boundary methods; anti-
diffusive methods; numerical simulation
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Chapter 1

Introduction

Cette these se décompose en deux parties : premierement le développement de méthodes
numériques pour les écoulements diphasiques, appliqué a la problématique des corps
immergés ; puis la seconde partie qui traite de 'application de ces méthodes a des pro-
bléemes physiques a visée industrielle, & savoir les générateurs de vapeur de centrales
nucléaires. L’attrait principal de cette méthode consiste en un traitement eulérien des
inclusions : le fluide diphasique est traité comme un seul champ de densité transporté de
maniere conservative a ’aide d’un schéma, anti-diffusif. Une méthode de prise en compte
de la tension de surface entre les deux fluides a toutes les échelles résolues est également
proposée. Pour conclure, un exemple de calcul couplé avec fluide et obstacles immergés
dans ’écoulement sera exposé.
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1.1 Computing scale and numerical simulation

1.1.1 Scope

Modelling a nuclear power plant, from the movement of combustible bars, up to the
confinement building at the finest scale is impossible. Even if it was possible, the cost of
computing every heat exchange flux, or mechanical displacement would be quite useless,
considering neighbouring particles to the surrounding continuum. The sufficient amount
of complexity required for modelling is key to engineers. In the end, it is exactly what
is required for one to understand physics in a macroscopic way. Hence the question of
scale, which is essential for modelling. At the coarsest level is the system scale, where
one is able to describe plant level operations. This kind of modelling requires strong
assumptions on sub-scales properties. It also assumes inter physics coupling, and makes
use of correlations to match experimental results to numerical behaviour laws. The
component level follows, when a whole component of a nuclear power plant is modelled,
for example heat transfer in a gas heat-exchanger. This kind of computation focuses
generally on a few physical variables of interest, using governing laws. At this level, one
can use DN S, for which the conservation laws are discretized as fine as the smallest
physical scales. Hybrid approaches on the other hand, use sub-grid modelling in order
to enrich the behaviour of numerical codes, while the coarsest scales are resolved. Under
the continuum scale lies the particle scale, which is of interest in some partial regions
of the nuclear power plant such as neutronics where elementary atomic particle and
collisions are computed. This scale is also of interest in certain fluid numerical methods,
for example Lattice Boltzmann methods or when considering multiphase flows.

The scope of this research work is to model and compute fluid /structure interactions, at
component level (steam generator), targeting experimental regime. The computational
cost is a major challenge when using this approach. Since the number of interfaces and
structure components is usually of high order — several thousand interfaces, e.g. bubbly
flows, evolving around several thousand of tubes —, the cost of computation is currently
prohibitive, and is it unlikely, considering the evolution of Moore’s Law fig. 1.1, that a
full DN S computation of a steam generator will be done in the near future. The scaling
of the numerical computations is necessary for physical interpretation, although being
time consuming and having the drawback of significantly increasing complexity of the
implementation [2]. We thus have to consider the minimal set of experiments in order
to be able to construe and analyse physical behaviour leading up to potential vibration
instabilities in steam generators. The flow regime based on the continuum velocities,
lies around Re = O (10°) and is thus expensive to reach. The need for numerical
methods which scale with the number of interfaces in multiphase flows and the number
of computing units is key to the resolution of these issues. Several approaches have proven
interesting results but are inherently limited to small number of inclusions. We seek a
method whose implementation is cheap, whilst at the same time being able to capture
most of the physical behaviour. Furthermore, the flow regime in steam generators is

i. Direct Numerical Simulation
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Figure 1.1 — Moore’s Law [1].

still an active subject of study, especially for mixtures involving steam and liquid water
instead of water and air.

1.1.2 Upscaling process in CFD codes

Several approaches are available for the resolution of the NSE(s). The Kolmogorov
theory [3] states that the large structures are dependent of the configuration of the flow
while small structures have a universal nature. The Kolmogorov scales are the spatial,
temporal and velocity scales at which the viscous dissipation dominates, as sketched in
fig. 1.2. Energy is transferred from the mean flow, giving rise to larger structures, which

will dissipate after successive divisions in a cascade manner [4].

Thus, one needs up-scaling process to enrich model-based numerical computations. The
up-scaling process on fig. 1.3 depicts information transfer from channel DN S computa-
tions to bundle flow problem, up to the whole steam generator at the component level,
and ending with the power plant where only averaged models can be used. Physical
factors are approached empirically, but suffer from non-linearities in the scaling process,
statistical uncertainties or measurement errors. As a result, one has to build a confidence
index for the results obtained from numerical codes and especially those dependent on
empirical conclusions. These factors greatly affect the quality of the quantitative/quali-

ii. Navier-Stokes Equation(s)
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Figure 1.2 — Spectrum of a homogeneous isotropic turbulence - Energy as a function of
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tative results. Extra caution is thus required when altering the methodology used or the
numerical /experimental chain. An alternative to up-scaling is Reduced Order Model(s),
where mathematical complexity is reduced for example by considering only principal
directions in a basis. The typical length scales encountered in a nuclear power plant
vary by a factor of several orders of magnitude. For example, DN S results are usually
of the order of 1 [mm]| while system results [5] are expressed on a 1 [m] resolution.

At last, results are integrated into a system code. These codes require closure laws [6, 7]
since mathematical and/or physical modelling is either not well understood or technical
difficulties prevent simulation (balance of the computing costs, time to obtain numerical
results, numerical methods drawbacks, ...)

I

Local scale
(partially resolved: averaged,
subscale modeling)

System scale Component scale Resolved scale (DNS)

Figure 1.3 — Up-scaling process in CFD applications [8-11].

1.1.3 Interest of anti-diffusive methods

Numerical diffusion of schemes induces a mixing zone at equilibrium, defining a inter-
mediate state between phases. From the discrete point of view, this zone is unavoidable
(no numerical scheme is able to rigorously preserve the sharp discontinuity), and im-
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plies complications in the modelling scope since arbitrary choices at first glance must be
sustained in order to obtain an interpretable result. The interest of such anti-diffusive
methods for numerical simulation is above all to formulate the problem with the help of
a single eulerian field. Thereby, the scalability of the numerical method is substantially
improved, and consequently the performance of the parallel computing code. Indeed,
this approach does not require to treat dozens if not hundreds of inclusions in DN S in a
separate manner (disperse phase [12]). Massive parallel computation becoming more and
more accessible on low cost parallel units, development of adapted numerical methods
to modern architectures is essential. With the eulerian formulation, computational load
is balanced, because the secondary phase is treated on the whole domain. Therefore, all
processes in a pool work a fixed amount of time without waiting another. Anti-diffusive
methods allow to maintain a fairly reasonable sharp discontinuity over a long period of
simulation time. Numerical diffusion inherent to numerical simulation is problematic
for interface capture, since the length of the spread zone widens over time, so that it is
impossible to distinguish the structures in the surrounding continuous flow in long time.
Anti-diffusive schemes allow to conserve the interface discontinuity whilst surface ten-
sion allows to conserve coherent structures in the flow. The interface discontinuity has
historically been treated in a Lagrangian way, for example in the context of poly-disperse
spray flows for the application of combustion [13, 14]. In order to capture correct physics
in multiphase flows, it is essential to capture in the finest manner the interface but also
the global inclusions structures. In the development of this work, it appeared that the
stiffness of the numerical schemes with the diffusion zone was affecting the stability of
the method under capillary effect (surface tension). We thus propose a new fast and scal-
able regularization method for the correct inclusion of source terms, taking into account
the inclusion topology at all resolved scales, and allowing to overcome these particular
issues.
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1.2 Nuclear applications

1.2.1 Nuclear power plant
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Figure 1.4 — Pressurized Water Reactor [15].

In the context of production of de-carbonated electricity, nuclear power has been ahead
of every other technology in the late fifties. A nuclear reaction uses neutrons in order
provoke nuclear fission of an atomic nucleus into smaller and lighter nuclei, whilst liber-
ating a large amount of energy, exploited in terms of heat. A heat-transfer fluid (water),
acting as a medium for energy transfer through its change of phase, brings power to a
generator connected to the electrical grid.

The fig. 1.4 pictures the layout of a nuclear power plant at the system level. Nuclear
fuel in the form of pellets is stacked into fuel assemblies where a bombardment-driven
process mutates the pellets chemical components whilst releasing a large amount of
thermal energy. Water is driven around the combustible bundle, allowing heat transfer
to occur. Water remains liquid in the primary circuit thanks to the high pressure imposed
by the pressurizer. Heat-exchange strictly speaking is conducted by the steam generator
where the coolant undergoes phase change (water boiling). Steam output drives a turbo-
machine called a turbine, which extracts fluid energy and converts it into mechanical
work. The rotating shaft drives in turn an electrical generator outputting a potential of
around 20 [kV]. Vapour is re-injected in the circuit after condensation in a cooling tower
creating a closed fluid loop.
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In the nuclear industry, there is a strong need to predict physical phenomenons, in order
to take margins for technical design safety. Time and length scale of these plants give
rise to the need of numerical simulation.

1.2.2 Steam generators

Figure 1.5 — Flow paths in a steam generator and close-up on the U-bend (region of
interest for Fluid-Structure Interation study) [16].

Steam generators are key components of a nuclear power plant, allowing the thermal
transfer of the primary fluid to the secondary circuit, along with acting as a safety
barrier. A physical barrier is required since the coolant from the primary circuit is slightly
radioactive being subject to the neutron fluxes or holding chemical reaction residues from
metal corrosion (colloids), as sketched on fig. 1.4. The maximized interfacial exchange
surface of this component is made possible through a bundle of three to six thousand
two centimetres diameter tubes. This bundle is fitted into a vessel up to a dozen meters
high, and around 800 [tons], which can be extracted from a power plant during scheduled
costly maintenance phases, that can last for weeks. The primary fluid enters the steam
generator at a pressure of 155 [bar] and 325 [°C] in the lower part of the bundle and exits
after circulation along the tubes. As opposed to a Boiling Water Reactor, the fluid is
kept in a liquid phase in a Pressurized Water Reactor. The fluid from the secondary
circuit at an initial mono-phase state — under saturated fluid, where traces of vapour
remains — in the lower part of the component begins to flow around the tubes. At
this state, the fluid starts to evaporate, due to conductive dominated thermal transfer
ongoing at the tube walls. The water-steam mixture thermal properties are now close
to 60 [bar] and 275[°C]. The flow then enters the U-bend section, in which the void
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fraction reaches up to 80[%)]. This section is of interest for engineering and design. In
the late 1970’s, tube denting and corrosion was a major concern since chemistry at the
tube walls where thinning the material, leading up to reduced lifetime of the component
or degraded efficiency. However, since the improvement of manufacturing processes,
thermal treatment, and usage of corrosion resistant alloys, other types of damages are
studied in order to improve design margins and maintenance schedules. Mechanical wear,
such as tube fretting caused by Flow Induced Vibrations, or fatigue induced vibrations
is the context of this work. On current generations, the bundle is fixed in the lower
part, while spacer plate between tubes prevent movements in certain directions. Anti-
Vibrations Bars also support the bundle in the upper part, in order to attenuate the
vibration effect on the tubes themselves, enhancing rigidity of the structure and avoiding
micro vibration wear.

Some experimental campaign contribute to the understanding of the coupled physics,
but mock-ups are limited in the fluid regime range explored, the nature of fluids used,
or the scale observed, even if similarity is widely used in CFD applications. Numerical
simulation is thus a valuable asset, allowing to understand the fine scale nature of the
aforementioned phenomena observed.
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1.3 Report outline

La structure du rapport sera la suivante: le premier chapitre est dédié a 1’étude bibli-
ographique des méthodes et approches existantes. La seconde partie regroupe les modeéles
utilisés (aspect formel du probléme, lois de conservation, ...), ainsi que les hypothéses
de travail choisies. Des exemples simples unidimensionnels permettent d’étudier chaque
phénomene de maniére découplée du probléeme couplé fluide-structure initial (conver-
gence du solveur en pression, termes source topologiques, transport conservatif d’ordre
élevé, couplage numérique fluide-structure, régularisation des sauts de pressions induits
par les corps immergés). Il s’en suit la discrétisation du probléme pour plusieurs phases
et de maniere dégénérée pour un fluide monophasique. Nous aborderons également dans
cette partie 'implémentation effectuée sur un code parallele créé a cette fin et développé
pendant cette theése. Quelques exemples proposés a titre de validation permettent de
s’assurer de la pertinence des méthodes choisies, mais aussi de montrer les limites de la
méthodologie proposée.

Le second chapitre sera consacré a 1’étude de cas physiques, avec/sans tension de sur-
face, ou bien avec/sans corps immergés. Ce chapitre ouvre des voies & l'exploitation
industrielle de la méthode, par exemple reproduire de maniere numérique les expéri-
ences menées sur des maquettes du CEA!, notamment pour I’étude des interactions
fluide-structure dans les générateurs de vapeur.

i. Commissariat a ’énergie atomique et aux énergies alternatives
French Alternative Energies and Atomic Energy Commission
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Chapter 2
Bibliographic study

In this chapter, we shall expose the typical flow patterns encountered in hydrodynamics.
We will review the numerical methods available as a state of the art for multiphase flows.
Then, the immersed boundaries approach will be exposed, together with the problematic
of mechanical instabilities.

11
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2.1 Multiphase flows

The ramification of flow regimes encountered in nature, from free surface in a glass of
water to large scale hurricanes has been a vast subject of research. Often, fluids are
considered as single-phased when densities are subject to a large ratio for example with
air and water. In this case the interaction of the gaseous phase is neglected on the
liquid state fluid. However, when the densities are similar, we need to consider a two-
phase or more approach. How does it differ from single-phase flow, and is it possible to
characterize and predict the different flow patterns ? In the area of numerical simulation,
there is also a strong need for validation. Hence, experimental techniques are important
to develop correlations to assess numerical validity range. Often, the measurements are
not eased by the multiphase nature of the flow. As with the sodium boiling case (liquid
metal), observation or recording with the help of high speed cameras is not feasible.
Alternative techniques other than PIV'! or hot film probes are needed, for example
neutron imaging (tomography).

2.1.1 Flow regimes

Multiple flow regimes increases the modelling complexity. On one hand, as seen on
fig. 2.1, a slug flow is best represented using FT% or ALE " methods, since a single
inclusion travels through narrow channel (such as a pipe). On the other hand, dispersed
phase flows with different scales, numerous number of inclusions with small scale such as
spray from an atomizer or injector [18] in combustion engines is usually best represented
using SPH vV methods, where particles with similar dynamical properties are aggregated
into larger computing blobs. Melting applications or icing formation requires precise
interface positioning in order to compute correct phase changes, and wall films. In the
steam generators application, the fluid transitions from bubbly flow at tube boundaries
(steam bubbles in a film of water) to droplet flow in the inter-tubes gap (water droplets
in a surrounding steam environment). The high density of inclusions together with
the obstruction ratio of the tubes make it particularly difficult to achieve numerical
simulations in a portion of steam generators. In order to simplify the problem, we will
not interest ourselves to phase change (evaporation, solidification, melting described on
fig. 2.1) or heat transfers.

A variety of flow regime map exist, based on experimental data. The fig. 2.2 shows the
approximative regions for an horizontal multiphase flow, based on the liquid and gas
superficial velocities. The annular flow (Ad) is close to vertical flows, with non-uniform
film thickness in the vertical direction and sometimes liquid entrainment in the gas
core. The dispersed bubbly (DB) occurs when the bubbles separate from the continuum
at high velocity rates. With slug flows (I) the bubbles have coalesced to make larger

i. Particle Image Velocimetry

ii. Front-Tracking
iii. Arbitrary Lagrangian-Eulerian
iv. Smoothed particle hydrodynamics
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Figure 2.2 — Horizontal flow regime map (Ur ¢ : liquid/gas superficial velocities) [19].

bubbles which are close to the diameter of the tube. For elongated bubble flow, large
bubbles flow near the top of the tube, affected by buoyancy. At low velocity rates, the
gravitational force splits the two-phase into two distinct continuous phase (phase at the
bottom and gas at the top of the pipe), in the stratified flow (SS) and (SW) stratified
wavy flow. The boundaries between two-phase regimes remains approximate since the
exploration of the whole chart is limited (hence the hashed and plain boundaries on the
picture). Also, these maps are valid only for specific configurations (horizontal flow in a
pipe, vertical flow in a large channel, etc), and are thus not generic.

2.1.2 Numerical interface

The methods presented below try to bring an answer to the non-trivial problem of
discrete interface localization as depicted in fig. 2.3, where the true interface H(z) can
be mathematically approached by the zero level of the function F'(z), or the average value
of the smoothed field I(z). We now expose the different approaches for the numerical
treatment of the interface in two-phase or multiphase flows.

2.1.2.1 Level-set

The idea behind the level-set method [20-22] is to characterize the interface location
implicitly, by the numerical zero of a regular scalar function ¢, convected on top of a
eulerian grid, which compared to other dual mesh methods is computationally cheap.
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Figure 2.3 — Discrete interface localization.

The interface location can thus be written as I(t) = {x | ¢(x,t) = 0}. The Level-Set
Method(s) uses a distance function to locate the position of the transition between dif-
ferent fluids: as such, it must be reinitialized frequently in order to keep the distance
measure accurate (|||V¢(x)|| ~ 1) [23]. This redistanciation step is costly, reducing the
appeal for the method. Furthermore, the method is known to suffer from mass imbal-
ances or particles escape in under-resolved regions, thus requiring consequent computing
resources in order to avoid mass losses [24, 25].

2.1.2.2 Volume of Fluid

VOF' Y methods make use of a colour function [26] in order to compute the phase volume
and subsequently apply conservation laws. A cell containing a mixture is assumed to be
cut by a plane representing the local free surface. Hence, in order to find the interface
location and the cut plane, one must solve the inverse problem to determine surface
out of volumetric information, for example with the PLIC "' method [27]. Normals
are estimated with the discrete gradient of the colour function, on which a method for
interface reconstruction [28] is applied. VOF methods are conservative, but consequent
numerical work must be applied in order to recover the correct interface quantities.

2.1.2.3 Front-Tracking

The most intuitive way of following the phase interface in time and space is to discretize
the inclusion using coordinates, and follow their evolution and deformation over time
[29, 30]. The F'T method depicts an inclusion as a set of points forming a closed surface,
which can also be referenced as surface markers convected in a lagrangian fashion [31].
The difficulty resides in the re-meshing process, and the cost of the simulation with
multiple inclusions and their interactions (coalescence or break-up). However, these
methods benefit from stiff interfacial source terms, thus being less prone to excessive
numerical smoothing of the phase discontinuity [32], which can be observed in other

v. Volume Of Fluid
vi. Piecewise Linear Interface Calculation
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two-phase numerical methods. Although the method is quite simple to implement on
a bi-dimensional space curve, the extension to three dimension is not straightforward.
We also mention the ALE method [33] which, instead of using markers, deforms an
alternate mesh in order to match the inclusion deformation. We also mention that the
front tracking results will be used as a reference. With extra difficulty to distribute
front properties across multiple processes, the method was implemented only in a serial
version and used to roughly validate the cartesian method. Especially, the convergence
of the pressure solver on the variable density equation over the thickened interface was
of interest, since difficult numerical convergence with preliminary tests was observed.

2.1.2.4 Smoothed Particle Hydrodynamics

The SPH method [34, 35] represents fluid medium by an aggregate of particles. The
fluid is thus treated in a lagrangian way, usually resulting in a higher resolution for
conservation laws, than the methods based on continuum equations, with a trade-off
for the computational costs. For example, when solving shocks which are typically of
a few mean free paths thick [36], SPH method can give accurate results. This mesh-
free method simplifies problems on complex domains, even though is usually combined
with a classic eulerian method for the another phase, but one must pay attention to the
boundary conditions used [37, 38]. Also, even if the aggregate length for particle blobs
can be adjusted in terms of physical behaviour and locally, the methods remains costly,
and is subject to unbalance of charge between the computing units.

2.1.2.5 Phase-field models

The interface in this method is widen and kept of finite thickness, while being transported
thanks to an advection-diffusion equation. The Cahn-Hilliard equation [39, 40] models
the diffusion — migration — of species from a chemical point of view. Some authors also
interest themselves into conservative versus non-conservative equation of free energy (the
chemical potential being the derivative of the free energy) [41-43]. Due to the timescale
of the diffusive part, the method is of interest for viscous flows, such as Stokes flows at
low Re << 1.

2.1.2.6 Anti-diffusive approach

The objective of anti-diffusive schemes [44-46] is to maintain sharp discontinuities over
a long period of simulation time. These contact discontinuities are usually encountered
in compressible fluid dynamics with shock formation where the Euler equations are aug-
mented with jump conditions across states, but also solely travelling waves. For incom-
pressible flows, this approach is of interest for transport phenomenons when numerical
smearing has to be avoided to distinguish the different phases over time (transport phe-
nomena). We aim to avoid the artificially compressing approaches for example when
using negative diffusion in order to steepen the front, since these methods have a local
compressive effect leading to stair-cased solutions [47].
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We might also consider alternative methods such as the Artificial Compression Method
[48, 49]. In this case, the numerical velocities close to a discontinuous state are modified,
resulting in limiting the flux imbalance causing numerical smear. The method however
is subject to user tuning: immediate improvement of the accuracy is observed, but the
long term solution suffers from error accumulation, and thus excessive diffusion.

In general, high order scheme such as the WENO v scheme [50] are used in order to
compute accurate solution with limited truncature errors. However, these schemes do
not artificially compress solutions and a regular solution remains smooth. Also, these
schemes are more strict for numerical stability conditions. The anti-diffusive method
allows backward diffusion, in a sense, to sharpen smooth profiles.

vii. Weighted Essentially Non-Oscillatory
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2.2 Fluid-Structure interaction

One of the first examples of numerical simulation of fluid-structure interaction can be
found in [51], where the author achieves to reproduce the movement of a heart valve (in-
compressible blood flow), thanks to a lagrangian description of the immersed boundary.
The FSI' phenomenons are recurrent in the building (bridge deck excited by winds),
transport (aero-elastic fluttering of aircraft wings), offshore (under-water cables, oil rigs)
and nuclear (steam generator) industries. Weak amplitude vibrations can cause fatigue,
which propagates through cracks in the material resulting in weakening the whole struc-
ture. However, some shorter time-scale phenomenons, more violent, can provoke serious
damages. We focus here on transverse flows, which are likely to induce out of control
response of the structure.

2.2.1 Flow around a cylinder

Flow around a cylinder is a canonical hydrodynamics example: it has been studied
widely and is closely related to experiments from which accurate comparative data can
be extracted. With the cylinder movement and its deformation along the transversal
axis, the problem also falls within the scope of fluid-structure interaction. As an example,
turning the tap on a watering hose carrying an incompressible fluid induces movement
of the hose. The instability observed results in large amplitude fluttering of the flexible
pipe, originating from complex fluid-structure energy exchanges.

The fig. 2.4 shows the different flow patterns observed experimentally. We now describe
the flow behaviour based on the value of the Reynolds number.

Re <5 : Viscous effect dominates inertial terms. The flow is laminar and follows
the cylinder, with a horizontal axis of symmetry: the flow is said to be creeping.
The Stokes equations are obtained by linearisation of the NSE(s), and driving
Re towards 0.

5< Re <49 : The flow is laminar, and the detachment point evolves upstream of
the cylinder together with the velocity of the free stream. Instabilities are damped
after the recirculation zone, while two contra-rotating vortices are stable in time.
The downstream zone expands as the Reynolds number Re gradually increases.

49 < Re < 300 : A periodic pattern named Von Karman vortex street appears. Al-
ternate distribution of the pressure of the fluid around the cylinder sheds swirling
vortices which, if the detachment frequency matches natural frequency of the
flexible tube, makes the system enter into resonance.

300 < Re < Re. : Transition to turbulence phase, under-critical regime. The critical
Reynolds number is function of the rugosity of the cylinder and is estimated
somewhere between Re. ~ 1-10° and 3 - 10°.

i. Fluid-Structure Interation
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Figure 2.4 — Proposed classification of mono-phase flow regimes around a cylinder [52].
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Re., < Re <3.5-10% : The regime looses periodicity because of three-dimensional
effects. The shedding spectrum is widened and the wake looses its cohesion.
Transition to turbulence happens without separation of the boundary layer in
the upper region of the cylinder.

3.5-10% < Re : The regime reaches super-critical state. The wake recovers some
kind of periodic structure, and a steep increase of the fluctuating lift is observed.

2.2.2 Bundle vibration

In the upper part of the steam generator, called U-bend, the tubes are subject to a trans-
verse steam-water flow, with a high void fraction number. Regardless of the flow regime,
these tubes are subject to permanent random excitation forces, induced by turbulence
and its chaotic nature or by intermittence of interfaces impacting tube boundaries. The
induced vibrations level varies with the flow regime. For some set of velocities, fluid-
elastic instability is observed experimentally, meaning that a steep transition is observed
in the vibration amplitude of the tubes.

Fluid-structure coupling is induced by interaction between the surrounding fluid and the
structure in movement. For tube bundle subject to transverse flow, we distinguish three
kind of coupling:

— a coupling with an excitation force uncoupled from the proper motion of the
obstacles, under the assumption that the unsteadiness of the flow is not modified
by the vibrations themselves. We refer to this force as f,,q(t). For a mono-
phase flow, this force is solely driven by turbulence, whereas for multiphase flows
random forces stem from turbulence but also intermittence of the steam-water
phases;

— a fluid-elastic force, which characterizes the dynamic adaptation of the fluid to
the tube movements. Linear analysis of the fluid-elastic coupling allows to write
the fluid-elastic force contribution in terms of added mass, damping and stiffness
coefficients;

— for mono-phase flows, a third type of coupling can occur, the fluid-structure
coupling with a fluid at rest. For this kind of coupling, the fluid initially at rest is
put into motion by the vibrations of the immersed solid. Coupling forces are thus
function of the movement. This type of coupling is of help in order to validate
numerical, since we usually easily impose or measure an analytical movement (e.g.
sinusoidal vertical movement), and we are thus able to determine parameters and
dependence of the system to input stimuli. It is of help on simple canonical
cases, before using fluid-elastic coupling, where the fluid has its own non-linear
movement, resulting in a complex behaviour.

Generally, regardless of the flow regime — laminar or turbulent — and the nature of the
fluid — mono-phase or multiphase — the effect of the fluid on the solid is modelled as
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a single force [53]: the normal component of the fluid strain tensor integrated over the
fluid-solid boundary. In order to ease the analysis, most of the authors try to split the
fluid to solid force into two components [54]:

— random excitation forces, uncoupled from the tube movements, and whose re-
sponse is in general of weak amplitude;

— fluid-elastic forces, whose fluctuations depend on the bundle dynamics: in this
case, the steady state flow and the structure form a coupled system, and an
irreversible energy transfer occurs leading up to potential dynamic instabilities.

The classic approach proposes to describe fluid-elastic forces in the framework of linear
analysis of the tube response in terms of mass, stiffness and added damping [16]. The
underlying hypothesis is the linearity of the response to the fluid (a work hypothesis
since the NSE(s) are highly non-linear). This hypothesis is acceptable as long as the
tube vibrations are of small amplitude. Several authors [55], relying on experimental
work, show that the effects of the vibration levels on the coefficients of the linearised
fluid-elastic forces are negligible for an amplitude of vibration of 70 % of the inter-tube
spacing.

Thanks to this modelling, it is theoretically possible to obtain the tube response if the
mass, damping and stiffness coefficients, under the assumption that the random excita-
tion is somehow quantified. However, in practice, the main difficulty of this approach
is to characterize the dependency of these coefficients and the random fluctuation to
the flow parameters. In order to construct a coherent modelling, it is thus necessary to
understand the physical mechanisms involved in the F'ST phenomena in order to isolate
the coupling parameters as a first step, and to propose a law for these phenomena as a
second step.

Fluid-elastic and random excitation forces vary according to [56, 57]:
— the nature of the fluid (two-phase, mono-phase);
— the type of fluid used (water, steam, ...), or in general the thermo-chemical prop-
erties (viscosity, surface tension, volumetric mass ratios, ...);
— the flow regime (laminar or turbulent);
— the flow structure under two-phase flow (bubbly, churn, annular, slug, ...);
— the geometric characteristics of the bundle and the tubes.

2.2.3 Bundle stability

From fig. 2.5 in mono-phase flow, multiple distinct zones appear:

— a random excitation zone with Turbulence Induced Vibrations. The amplitude is
limited, and the levels grow with the free stream velocity;
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— a frequency lock zone with Vortex Induced Vibrations occurs, characterized by
a Strouhal number around Sh = .2. The phenomenons is similar to resonance,
where one the normal modes of the structure is excited by the unsteady wake.
Amplitude levels do rise, but the system remains stable;

— Beyond a certain critical reduced velocity, an aero-elastic coupling called Move-
ment Induced Vibrations is observed. The systems can become unstable, and
amplitude of the vibrations diverge until rupture of the structure;

— For small Scruton numbers (reduced mass damping parameter) Sc < 1, negative
damping is at the origin of this instability (damping dominated instability);

— For high Scruton numbers Sc > 1, displacements provoke the instability by a
stiffness coupling between two modes (thus requiring two or more tubes).

In the study of vibration levels of a tube bundle under cross-flow, modal analysis is of
great help, allowing to measure physical characteristics non accessible through experi-
ments. The movement of the tubes is projected onto the bending natural modes of the
tubes, and the coupled characteristics are described in the modal basis. Some authors
have developed semi-analytic models which are able to predict vibration behaviour of
the bundle (stability /instability boundary). The most notorious models are:

— Connors-Blevins [59-62];

— Price-Paidoussis [63, 64];

— Lever-Weaver [65, 66].

Let us write the Connors criterion, for a mono-phase flow:

Ur =alc,

where « is a constant dependent on the problem (especially the geometry). This pa-
rameter allows to predict empirically the velocity at which the tube is departing into
fluid-elastic instability. The parameters allowing nondimensionalization of the vibration
spectra are under intense discussion [67], but a consensus seems to emerge on the Scru-
ton number S, = m*( as a reduction parameter. The fig. 2.6 shows the Connors map,
with a clear boundary between the stable and unstable zone.

The major issue remains to develop a stability criterion for multiphase flows, since the
reference damping in the Sc¢ number is by definition the damping of the tube coupled
with a fluid at rest, and this definition makes no sense for multiphase flows.
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2.2.4 Fluid-Elastic instability

One of the hypothesis to explain fluid elastic instability is the predominance of similar
interfaces hitting a tube bundle.

The choice of the model is based on several assumptions on fluid/solid physical behaviour
in steam generators, including;:
— multiple inclusions, droplets into liquid or gas pockets into a liquid phase;
— topological changes induced by impact on obstacles, or thermodynamic consider-
ations (phase change), etc.

Fluid-elastic result from an interaction between a moving structure and the mean sur-
rounding flow, in the sense of either spatial, temporal or ensemble averaging. Contrasting
with random forces, fluid-elastic forces are coupled with the flow and result in a dynamic
adaptation of the fluid to the obstacle movements. Unstable modes can appear if energy
is transferred from the flow to the structure. Contrariwise, if the solid looses energy to
the flow, the system is damped in a stable manner.

We know some of the mechanisms leading to instability, for instance loss of damping,
loss of stiffness, antisymmetric modes; but the main issue is to quantify the dependence
of the system mechanical characteristics to the flow or structure parameters.
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2.3 Conclusion

Dans ce chapitre, nous avons exposé 1’état de 'art des méthodes de simulation numé-
rique pour les écoulements diphasiques, ainsi qu’une courte introduction concernant les
phénomenes d’interaction fluide-structure. Le deux problemes seront traités de maniére
découplés avant d’envisager de traiter un probléme couplé, qui pose des problématiques
d’ordre numérique, mais également d’ordre physique pour les discontinuités au voisi-
nage des parois. Le champ d’exploration de la discipline nous oriente vers des exemples
simples de simulation, afin d’atteindre ou de tendre vers les conditions d’exploitation des
générateurs de vapeurs, a savoir des inclusions multiples dans un environnement confiné
a des vitesses fluide élevées. Nous rappelons que 'objectif du code de calcul est de dé-
velopper une méthode numérique permettant de mesurer les efforts fluide sur un solide
a Reynolds élevé et pour un écoulement transverse diphasique. Nous nous intéressons
donc dans le chapitre suivant aux hypotheses constituantes des modeles utilisés, ainsi
qu’aux méthodes numériques utilisées et/ou développées.



Chapter 3

Modelling and numerical methods

This chapter is dedicated to the development of numerical methods for multiphase flows
followed by models and methods for the simulation of interaction between fluid and
un-deformable solids.

27
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3.1 Models

In this section, we will derive the conservation laws for an incompressible fluid, with
potential extension to heat transfer problem (beyond the scope of this work). These
continuous equations will serve as a basis for the discretization and implementation
strategy. We consider viscous, incompressible and isothermal flows, since our objective
is the observation of mechanical quantities such as load spectrum distribution around a
cylinder or oscillation frequencies. Longer scale fluctuations such as thermal exchange
by conduction or phase change are not considered throughout this work. Nevertheless,
a future addition could include thermal transfers without phase change. We distinguish
the multi-fluid formulation [69] versus a multiphase formulation, where each control
volume sees several interfaces. In the multi-fluid formulation, the phase in a control
volume is either quasi-continuous, quasi-discontinuous or is filled by a mixture around
the interface, where resolution is too poor to compensate for numerical diffusion.

3.1.1 Conservation laws

We interest ourselves to the conservation laws of the system. Mass is conserved through-
out the system if no internal source or sinks exists. Also, the body forces exerted on
a fluid element equal the time change of momentum. Finally, summing up the heat
addition and the work done on a fluid volume balances the rate of change of energy. In
our application, the fluid is viewed as a continuous medium with macroscopic properties
and not as a molecular aggregate.

3.1.1.1 Conservation of mass

We write the mass conservation law for a singl control volume. The rate of increase of
mass is the net influx of mass in the control volume V .

In its integral form, the equation for the conservation of mass reads:

0
— [ pdv =— pu-nds,
ot Jv 5
—_——— —_——
rate of change of mass net inflow of mass

where ds is an infinitesimal surface element of the control surface S and dv is an in-
finitesimal volume element of the control volume V.

3.1.1.2 Conservation of momentum

The rate of increase of momentum stems from the net influx of momentum, the body
forces and surface forces:

— momentum per unit volume: pu;

— momentum per control volume: fV pu dv .
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The Cauchy stress tensor over a fluid element is defined as the stress exerted over a fluid

element in a deformed state, as seen on fig. 3.1. Stresses over a Newtonian fluid are
induced by p! (volumetric stress —pI) and by viscous stresses (deviatoric stress 7).

The stress tensor T is written:
-
0 —
T = (—p+)M) I+2uD,
where I is the identity tensor, and the rate-of-strain tensor D is defined as:
D=_ (Vu + Vut>
2 9

for an isotropic newtonian incompressible fluid.

Gathering the terms results in:

2/puclv:—&Igpuuals—ﬁlgTnals.
ot Jv S S

If we substitute the stress tensor T' = —pI +2u.D |, in the previous equation, we obtain:
0
— [ pudv=— puu -nds — pnds +@ 2uD - nds+ pf dv
ot Jy S s S v
| S —— | — ~— | S —
rate of change net inflow of momentum  total pressure  total viscous force  total body force

of momentum

i. Pressure
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3.1.1.3 Conservation of energy

Conservation of energy is not used in the current fluid model, we expose it however as
a basis and perspective for a model evolution. At low Mach numbers, the fluid can
be considered as incompressible, and the energy equation can be decoupled from the
mass and momentum equations. Consequently, if the problem involves heat transfer,
the energy equation can be solved separately. We write the conservation of energy on
fluid control volumes:

i (e yu) = gu)uonans |
— [ ple+zu’)dv=—QPple+-u”)u-nds+ | u- fdv
ot Jy 2 S 2 v

rate of change of ~net inflow of work done by
kinetic + internal energy kinetic + internal energy body forces
+§1§ n-(uT)ds—¢ n-qds,
S S

net work done net heat flux
by the stress tensor

where e is the internal energy and q is the heat flux.

For a conduction dominant heat transfer, the heat flux is expressed as a function of the
gradient of temperature:
q=-\VT,

where T is the temperature field and A\ the thermal conductivity.

3.1.1.4 Differential form of the governing equations

The Divergence/Gauss Theorem is used to convert surface integrals to volume integrals:
/V-adv:yﬁa-nds.
\%4 S
Mass conservation

We begin by writing the integral form of the mass conservation equation:

gt/vpdv:—ygpu-nds. (3.1)

Using the Gauss theorem:

ygpu-nds:/v-(pu)dv.
S \%4

The mass conservation eq. (3.1) becomes:

0
&/Vpdv——/vv-(pu)dv.
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Since the control volume is fixed, the derivative can be positioned under the integral

sign:
ap
_ . d = .
/‘/(8t+v (pu)> v=20

The equation must hold for any control volume, no matter what shape and size. There-
fore, the integrand must be equal to zero:

op B
E‘FV'(pU)—O.

Expanding the divergence term reads:

V-(pu)=u-Vp+pV-u.

The mass conservation equation finally becomes:

D
+u-Vp+pV-u:F§+pV-u.

p
ot

Momentum conservation
The continuity equation for a variable ¢ over a control volume reads:

d
/¢dv=—y§¢u-nds—/sdv,
dt Jy s v

where s defines generic sources and sinks (either physical for example with gravitational
terms or numerical in order for example to ease convergence).

The Reynolds transport allows to write:

9 - _ [ v. _
Lot dv = /VV (pu) dv /Vsdv.

We now regroup the integrals:

/V<aaf+v-(q5u)+s>dv:0,

which must hold for any volume.

Using momentum pu as the balanced quantity:

/(M—FV-(pu@u)—i-s)dv:O, (3.2)
v\ ot

where ® denotes the outer product of two vectors, giving a second order tensor.
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The identity expressing the divergence of a dyad product:
Vi(a®b)=(V-a)b+a-Vb,
is used to expand the equation eq. (3.2).

After expansion and regrouping the terms:

(gtJrV( ))er(aatJru Vu) +s=0.

The first part is the transport equation for the scalar p'l. Under the hypothesis of
conservation of mass, the continuity equation of momentum is written:

ap
5+v (pu) = 0. (3.3)

The eq. (3.3) will be used in section 3.3.1.2 for the transport of a passive scalar. In our
final application, the density will be transported using this method.

The second equation is the particular derivative of the velocity field (derivative of a
quantity along the trajectory of a particle with velocity u):

Du Ou
D7t E + u - Vu (3.4)

The equation eq. (3.4) links the lagrangian derivative 2 D ¢~ to the eulerian derivative 68"; .

The physical meaning of this inertial term is the transport of momentum by the velocity
u.

As a result, the material derivative of u can be written as:

ou s <8p

Tl R ))u-Vu.

The differential form of the momentum equation is derived in the same way, as follows.
We begin with:
0
pudv— pfdv+ O (nT —pu(u-n))ds.
ot v g
With simplifications, we obtain:

dpu

5 =pf+V-(T—-pu-u).

The previous expression can be rewritten as

Du
— = V-T.
Py pf +

ii. Density
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Energy conservation
Although written here, the energy conservation laws will not be used in the models
nor in the code, and is left for future evolution of the method.

The mechanical energy equation is obtained by taking the dot product of the momentum
equation and the velocity:

0
u-(p£+pu-Vu:pf+V-T).

Expanding the previous terms lead to the definition of the mechanical energy:

0 [ u? u?
P <2> ——pu-V<2>+pu-f—|—u-(V-T).

With the specific energy defined as the sum of internal energy e and kinetic energy uTQ ,

the final energy equation in differential form is:

De
—=T-.V V-q.
th u + q

Expanding the constitutive relation for the stress tensor and using Fourier’s law for the
heat flux:

T=(p+kV-u)l+2uD-D,
qg=-\VT.

The final result reads:
De

pﬁ%—pv-u:@%—V-T, (3.5)

where
d=A(V-u)’+2uD-D
is the dissipation function and is the rate at which work is converted into heat.

We also need an Equation(s) Of State in the form p = p(e,p),T = T (e,p) , or if
we use alternate state variable (7, p): functions for p = p(T,p),e = e(T,p) . Closure
laws for u, A, k are also mandatory. The model should also account for thermodynamic
consistency for the energy conservation law [70].

3.1.1.5 Summary of the governing equations

We finally list the summary of the different fluid governing equations.
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Integral form:

a/pdv:—§£u-nds,

0
8t/vpudv—/vpfdv+y§(nT—pu(u-n))ds,

1 1
8/p(e+u-u)dv:/ u-pfdv%—?ﬁn-(uT—p(e—l—u2)—q)ds.

Conservative form:

dp B
a+v'(pu)_oa

dpu

ot

ap (e + %u . u)
ot

1
:V-<p(e+2u2)u—uT+q> .

Convective form:

Dp

_F V-u=0

Du

— V.T
Py pf + :
De
—_TvV-u-V-qg.
th Veu—-V.q

After establishing the mathematical description for the fluid, we will now restrict our-
selves to the modelling of isothermal fluid-structure problems. We will not make use of
the equation described in section 3.1.1.4, although these equation might be needed to
consider more complex physical cases such as the pulsating bubble with the Rayleigh-
Plesset hypothesis [71, 72].

3.1.2 Navier-Stokes equations with source terms

As a first approach, we shall consider isothermal flows. Thus, in our formulation, we
do not consider the temperature field in the list of physical quantities, and we do not
make use of the corresponding conservation laws. The justification, is that modelling
interfacial energy exchanges in terms of mass and heat transfers has a different time
scale in this particular industrial application. Furthermore, the phase change aspect
requires non trivial modelling, such as evaporation and/or condensation. Finally, we
are primarily interested in the frequency analysis and mechanical response from the
tube bundle under multiphase flows, and this response can be decoupled from thermal
problems.
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The Navier-Stokes Equation(s) are derived into the following mono-equation, bi-fluid
formulation [73]:

inertia volumetric stress divergence
ou 1 1 F
W AVe(ueuw)+-Vp--Vep(Vu+Viu)= = | (36)
g, T WOwFIVRTL =
ey convection . 5 L
variation diffusion

external forces

where F' encompasses a forcing term for a solid interface, an interfacial source term for
a gas/liquid interface (effect of surface tension), or volumetric forces such as gravity.
The formulation is mono-field for the two-phase problem, with the phase transition
characterized by the density transition in p.

3.1.3 Interfacial source terms

We interest ourselves to interfacial source terms, such as an additional diffusive term
source located at the interface (presence of species, Stefan flow), or a source term mod-
elling the evaporation or condensation processes (change of phase). In our simplified
approach of modelling, we only discuss some momentum source terms which illustrative
the regularization effect of surface tension forces exerted at the interface. We note that
alternative source terms may apply on momentum, for example diffusion of momentum
through the interface, induced by viscosity.

3.1.3.1 Surface tension model

Surface tension is acting on the interface between two fluids. The effect of surface ten-
sion in inherent to the inclusion: a surface tension force exists for a droplet of liquid
surrounded by vacuum. In our modelling, a kinematic constraint is added to the pre-
dicted velocity before solving for the incompressibility of the fluid, either as an explicit
acceleration term [74], or by deriving a stress tensor formulation [75], expressed from a
continuum point of view. The acceleration term by surface tension is seen on fig. 3.2,
where o1l is the physical surface tension coefficient, 1V the interface mean curvature,
0 the source term spreading and m the unit normal to the interface. In our approach,
since we implicitly describe the interface, the surface tension contribution is spread over
a few cells (§) when penalizing the NSFE(s). This approach is transposing mesoscopic
interactions (unbalance between attraction forces on neighbouring molecules) onto a
smooth macroscopic effect [76]. However, due to the discretization, the interface looses
the smooth properties of a n-dimensional manifold. We aim at recovering this smooth-
ness property so that the correct amount of surface tension force is exerted onto the
interface, together with the correct normal direction n .

iii. Surface tension coefficient
iv. Interface mean curvature
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Figure 3.2 — Interfacial source term accounting for capillary effects.

3.1.3.2 Derivation of the capillary pressure

The capillary pressure is the pressure difference across an interface between two fluids.
It is function of a thermo-chemical parameter, the surface tension coefficient o, and the
principal curvatures kpin, kmaz [77, 78]:

The Young-Laplace equation is written:
Ap = 0(kmin + kmaz) = 025K, (3.7)
where the choice for  is discussed later in section 3.2.3.

We consider the non spherical cap sketched in fig. 3.3, where « is the distance between
the center of the cap and the node mj or mgo (cap radius). The infinitesimal capillary
force applied on the segment dr around the node my projected onto n :

odrf = odrsin(f) = odr
lim 6—0 71

Summing up the infinitesimal contributions between the four nodes m;_4 results in:
1 1
df =2ao0dr <— + —) . (3.8)

o2

The normal section is the intersection of the plane determined by n, t and the surface
S, which determines a curve C on the surface S, as shown on fig. 3.4.
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Figure 3.3 — Interfacial force balance (mechanical equilibrium).

Figure 3.4 — Normal section curve C on a surface S'.
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Since the curvatures of two perpendicular normal sections sums up to kmin + kmaz 5 [79],
the integration of dr over the circumference is independent of the positioning of the
nodes mq and ms .

By integration of eq. (3.8):

ma m2
1 1 1 1
F:/dfdr:2ao—<—+—>/dr:2a2a(—+—)f. (3.9)
ry T o T2/ 2
mi mi

The force resulting in the pressure difference across the surface is thus:

F = (pin - pout)ﬂa2 .

Combining eq. (3.9) and the previous equation yields the Young-Laplace equation eq. (3.7).
The Young-Laplace equation can also be found when simplifying the Rayleigh-Plesset
equation in the static case (without radius perturbation).

In this formulation, since the stresses are continuous across the interface, we have:

[-p+T]n = —okn .

3.1.3.3 Regularization process

\l \4 \!

Figure 3.5 — Normals misalignment induced by scheme stiffness and discretization.
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In order to correctly estimate the normals field needed to apply the surface tension
term, we have to regularize the implicit surface embedded in the convected density field.
Designing an efficient filter is key to the elaboration of a fast eulerian solver. The ideal
filter for this problem would conserve the anisotropy of the manifold by applying an
isotropic regularization. The continuous to discrete mapping of the manifold results in
loss of the surface regularity as seen on fig. 3.5 where the cartesian coarse meshing of the
interface induces large errors when computing normals. Since too much regularization
leads to losses of information at the fine-scale, the idea is to smooth as little as possible
(concentration of the smoothing effect), while taking into account the whole domain.
Failing to do so leads to unbalance of the penalization term at locations where the
discrete density contour has a local discontinuity (between cells). This imbalance results
in spurious currents which lead to destabilization of the numerical interface, and thus
inevitable break-up of the inclusion.

The best candidate for smoothing would be the gaussian distribution since it is the only
filter with a separable kernel. The first approach was to use a separable filter in the three
euclidean directions. We started by considering the convolution of the density field with
a variable size filter, even though this approach will be abandoned afterwards.

We write the definition of the convolution between to functions f and k:

“+o0o
(f + B)(z) = /f(:c—T)k(T)dT.

By choosing an appropriate kernel, we can truncate the convolution operator to a finite
sum, which yields the following discrete sequence:

M
(f*K)n)= > fln—mlk[m].
m=—M

Nominal 3D convolution is O (k- ky - kz - fo - fy - f2) with z, y, z standing for the di-
mensions of the input f . Instead of this costly naive implementation, nesting convolution
(separating the filters, because the operator x is associative) has computational cost of
order:

O(kx'fx'fy'f2)+0(ky'fz'fy'f2)+0(kz'fr'fy'fz)7
which reduces the cost from O (6) down to O (4) .

ko-ky -k n—1 . . . .
hrs = 5 where n is the dimensionality of the
T Y z

problem and « a unit size for the convolution kernel.

The theoretical speed-up is thus

This implementation of convolution based filtering has substantial drawbacks. The filter
size needs to be at least of the order of the largest inclusion, which is to be determined
insitu and not a priori. Since inclusions evolve with time, a conservative choice must be
made before the computation can be run, and assumptions on the inclusion size must
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be made. We implemented this filter for comparison purposes, but it cannot practically
be used in the context of a fast eulerian fluid solver. Approximation of a gaussian blur
using recursive box filtering (central limit theorem) seems also unusable, especially in
the case of non-cubic cells, where the spread over the interface must be controlled.

3.1.3.4 Multi-scale computing

1111

TWO-PHASE
MIXTURE

¥ ;}g STREAM BOUNDARY

|

Figure 3.6 — Typical flow pattern observed in a tube bundle [80].

i

FLOW

Different two-phase patterns can be observed in a steam generator bundle as seen on
fig. 3.6. Small inclusions, due to shear-off on tube impact or droplet breakup, as well as
higher scale structures upstream of the bundle inlet, or in the recirculation/stagnation
zones make this problem a multi-scale one. In the context of DN.S, or coarse DN.S
where the flow is fully resolved up to the boundary layers, correct resolution of the small
scale structures is necessary. Therefore, a regularization method must be found in order
to preserve multi-scale properties of the flow up to a chosen criterion. DN S is opposed to
LES"Y method where the Navier-Stokes Equation(s) are spatially filtered and the effect
of smaller scale eddies are modelled, and RAN S ¥ methods where the whole turbulence
spectrum is modelled, and the equations are time-averaged.

Some experiments were first implemented using convolution or boxed filter. We also try
to formulate non linear regularization by backward diffusion [81-83]. Where forward
diffusion has a smoothing effect, backward diffusion has a sharpening effect. We can

v. Large Eddy Simulation
vi. Reynolds-Averaged Navier-Stokes
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also mention the curvature driven regularization methods [84, 85] where regions of high
curvature (pinch) are regularized by using a diffusion equation: we could for example use
the curvature to regularize a colour function ¢ based on the density field % =V-(dVe) ,
with d an artificial diffusion coefficient. Furthermore, curvature regularization is linked
to the concept of minimal surface [86-88], which in practice happens when the capillary
forces balance around a spherical bubble. Regularization by mean curvature also reduces
the time-stepping constraint imposed by capillary effects [89]. An other alternative would
consist of the implicitation of the contribution of capillary terms as exposed in [90, 91].

Ideally, the regularization process should preserve causality; hence, no new topological
feature should be introduced by the method. Also, the blurring effect should preserve
anisotropy. This criterion is important in the context of fluid mechanics since most of
the time, algorithms are directionally split and an arbitrary choice is made over the order
of application, thus requiring the algorithm to be space invariant [92].

The problem can also be exposed in the scale-space theory, where we view the surface
as the “signal” with increasing levels of details [93, 94]. In the fig. 3.7, we figure out
a surface as a fractal, successively smoothed increasing standard deviation filters. On
the right, the second derivative of the bi-dimensional curve is represented. We observe
that excessive filtering leads to loss of details from a topological point of view, hence the
regular circle shape limit on the left.

From this analysis, we require that the theoretical filter should ideally combine two
contradictory features:
— taking into account the whole inclusion topology, hence maximize the numerical
influence of the neighboring stencil;
— minimize the diffusion and the loss of fine scale details as demonstrated on fig. 3.7.

However, a fast approximation of gaussian filters can be made, and we shall use the filter
described in [95, 96].

We exploit a property of causality described in the theory of signal processing. The
input to the filter is akin to volumetric images, with the analogy of the density field
the image to filter. The causality in time is analoguous to a dependency in space in
this case, making the current discrete point being regularized dependent on the previous
point in space. What about the dependency to the following pixels/data ? The filter
can be separated by cascading two stable filters whose discrete transfer functions can be
written as:

1
N bog+ b1z +byz"2 4 bgz3 ’
B B
N bo + brzl + bg2? + 5323 ’

Hy(z)

H_(2)

(3.10)

where bg 3 are the chosen filter coefficients. The causal filter H solely depends on the
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(b) Scale-space representation.

Figure 3.7 — Loss of information induced by excessive filtering on a self-similar pattern
(fractal).
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previous discrete point, while the anti-causal part H_ depends only on the next data
(pixel).
We detail how the filter coefficients are determined using ITR ! analysis for a LT Vi
System.

We first consider the spatial gaussian:

exp (-2 /2)

g(x) = NGT:

(3.11)

The eq. (3.11) is approximated by an algebraic fraction (rational function) with truncated
HOT ™: .

HOT. 3.12
ao+a2w2+a4w4+a6w6+ (3.12)

| ag | a2 | a4 | as |

| 2.49231 | 1.44842 | —1.46374¢ — 11 | 0.17167 |

Table 3.1 — Least-squares fit of the spatial discrete filter.

For example, with = € [—5;5], the function in eq. (3.12) is fitted using a robust least-
squares curve fitting algorithm [97] to give the set of coefficients presented in table 3.1:

The eq. (3.11) is then parametrized by a standard deviation o :

exp (—a? / (20%))

= 3.13
g(z|o) — (3.13)

The eq. (3.13) is expanded into its Fourier transform:
Fleq. (3.13)) := G(w) = exp (—0?w? / 2), (3.14)

for a pulsation w .

Using the Laplace transform F(s) = [ f(z)exp (—sz)dx with s = iw, we write the
approximation of eq. (3.14) as:

Go(s) = ao — (a2q)s + (aag")s" — (a6¢°)s°, (3.15)
where ¢ is a mapping of o as explained in [95] and the relation between ¢ and o is
explicited in algorithm 1.

vii. Infinite Impulse Response
viii. Linear Time-Invariant
ix. Higher Order Terms
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Factoring the eq. (3.15) into transfer functions with complex negative poles (G;(s), left
hand side of the s plane) and positive poles G, (s):

Gy(s) = Gils) - Gu(s), (3.16)
with:
Gi(s) = : Ao : :
fo(ff + 13) —ig3s® — ¢?s(fo + 2f1) +iqs(2fofr + 7 + f3)
and
Gir(s) 1

 —folfE+ 3) —igPs + 22 (fo + 201) +igs(2fofr + FEH 1)
With identification of eq. (3.16) with eq. (3.15), the system to solve is thus:
ag
U+ f5)2-—=1,
ag
a
Ut = L)+ RUT 2 + o = = =1,
22y =1,
6

which yields the set of coefficients referenced in table 3.2.

o s e
| 1.18209 | 1.12353 | 1.40036 |

Table 3.2 — Filter coeflicients.

The effect of boundary conditions is key to any kind of regularization method. With this
approach, truncation of the input signal can result in the loss of symmetry of the filter at
the end of the domain as described in [98]. We reproduced the issue with an impulsion
stimulus applied to the filter, in order to analyse its impulse response. On fig. 3.8a,
amplitude and phase distortion is observed when using heuristic boundary data. On the
opposite, when extending the filter to fictitious extents, the formulation at boundaries
yields the correct impulse response as seen on fig. 3.8b.

The regularization effect over the volumetric image can be controlled by the standard
deviation of the approximated gaussian filter. The authors in [95] recommend to pick a
standard deviation above a value of .5 in order to correctly approximate the gaussian fil-
ter. The accuracy of the filter is enhanced with increasing standard deviation, but in our
application, the concentration of the source term is required in order to asymptotically
tend to a Dirac distribution across the thin interface width.

The algorithm 2 is used in order to distribute the regularization phase on multiple
processes. The filter is by construction sequential in the considered direction (1D): the
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(a) Truncated filter.
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(b) Corrected filter [98].

Figure 3.8 — Filter boundary regularization effect.
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Algorithm 1: Python pseudo-code for the sequential directional recursive filter
under a standard deviation o.

1 function filter_inplace__1d(o, line)
#s — ¢ transformation [95]

2 if 0 < 3.556 then
3 | q:=—.2568 4 .57840 + .05610?
4 else
5 | q:=.9804(c — 3.556) + 2.5091
6 end
7 | = (fot+ @)+ 542010+ ¢
8 | bo:=fo-(Si+13) /¢
9 by == q.2fo.-fr+ fE+ 3+ (2fo+4f1).9+3¢%) /¢
10 bo i= —q.(fo+2f1+3q) /¢
11 bs:i=¢q>/1
12 | Bi=1/(1—(b1+b2+0b3))
#filter initialization
13 a := line[n — 1] #saved value before first pass
14 | buffer[l : 4] := S.line[0] #boundary data
# causal pass
15 foreach pizel in 1D line, forward sweep Vi € [0;n — 1] do
16 buffer[0] = line[:] := line[s] + (buffer[1].b; + buffer[2].bs + buffer[3].b3)
17 buffer[[3, 2, 1]] := buffer[[2, 1, 0]] #buffer shift
18 end

#boundary regularization [98]

19 mo ‘= —bg.bl +1-— b?)) — bz

20 my = (bg + bl).(bz + b3b1)

21 mo = bg(bl + bg.bg)

22 ms = by + b3.bo

23 my = —(bg — 1).(b2 + b3.b1)

24 ms = —b3(b3.b1 + b% + by — 1)

25 me = bs.by + bg + b? — b3

26 m7 = b1.bg + bdb% — blbg — b% — b3.bg + b3
27 mg = bg(bl + bg.bz)

28 ¢y := buffer[1] — a.f

29 g = buffer[2] — a.f

30 c3 := buffer[3] — a.f

31 buffer[0] = line[0] := b (mg.c1 + m1.ca + ma.c3 + a.3?)
32 | buffer[1] := b3(ms.c1 + my.co + ms.c3 + a.3?)
33 buffer[2] := b3(mg.c1 + m7.co + mg.c3 + a.(5%)
#anti-causal pass

34 buffer[[3, 2, 1]] := buffer[[2, 1, 0]]

35 foreach pizel in 1D line, backward sweep Vi € [n — 1;0] do

36 buffer[0] = line[i] := line[i] 4+ (buffer[1].b; + buffer[2].by + buffer[3].b3)
37 buffer[[3, 2, 1]] := buffer[[2, 1, 0]]

38 end

39 end
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Algorithm 2: Domain decomposition parallel recursive blur (Fortran Coarray
implementation).

1 sync images(*) ! Synchronization point for all images

2 if 3 left image then

3 sync images(left) ! Barrier, synchronization point with previous
image

4 sync__halo(left) ! Fetch data from remote window on a remote
process, and fill the current processors halos

5 end

6 forward_filter() ! Apply a local recursive filter in the forward

direction using a limited stencil using algorithm 1
7 if image == rightmost image then
regularize for truncated data at boundaries [98]

9 end

10 sync images(right) ! Ready to sync data with a remote process

11 sync images(*) ! Synchronization point for all images (barrier)

12 if 3 right image then

13 sync images(right) ! Synchronize with the following image

14 sync__halo(right)

15 end

16 backward_filter() !Apply the local filter in the backward direction,
on each process

17 sync images(left) !Signal the remote process for halo synchronization

18 sync images(*) ! Synchronization point for all images
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right process must wait boundary data from the left process on 3 layers (since we chose
a 3 coefficients filter in table 3.2) and reverse this dependency for the anti-causal pass;
this results overall in negligible slow-down since the numerical implementation is three-
dimensional. The splitting of the filter thus occurs in a cascading manner on the z, yandz
directions.

Jy - 1001.00
_ | of
20 - fi - 1000.75
1 ]’ - 1000.50
10
' i - 1000.25
0 Lot 1000.00
_ - 999.75
—10 A H
] | - 999.50
—20 | - 999.25
| —» }
1 — » ‘ - 999.00

—-1.0 —-0.5 0.0 0.5 1.0

Figure 3.9 — Density transition and interfacial source term distribution across the
secondary phase.

On the fig. 3.9, the source term is distributed over a thin transition region obtained
by regularization of the convected density. The integration of the distribution over the
interface thickness sums up to unity. The width of the pulse determines the recirculation
in the transition region, which is due to gradients in the spatial distribution of k, when
considering interfaces evolving out of mechanical equilibrium.

We tried to alleviate the problem of multi-scale feature by combining multiple filters.

The fig. 3.10a shows a Delaunay triangulation (using the implementation from mat-
plotlib) drawn top of a cartesian density volumetric field, with the iso-value set to 0.
The discontinuity imposed by the non-conforming mesh yields large errors in numerical
curvature, thus erroneous interfacial forces. The fig. 3.10c shows a regularization us-
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(b) Conforming mesh smoothing (post
processing)[99].
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(d) gaussian approximation smoothing [95,
96.

(c) Pass band filter output.

Figure 3.10 — Initial un-regularized field (top-left), post-triangulation (top-right),
pass-band smoothing (bottom-left), recursive filter (bottom-right)

Algorithm 3: Pass band filter applied to the input manifold f .

1 choose A > 0 and p < 0, with |u|> ||

2 while norm(increment) < threshold do
3 | f4e=AAS

4 | fi=pAf

5 end
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ing a combination of an expanding filter based on the Laplace operator applied to the
input field (minimizing the curvature variations), and a consecutive contracting filter
algorithm 3, inspired by the work of [100].

The fig. 3.10d exposes the result after one forward and one backward pass of the gaussian
approximation recursive filter. This is the closest result to the post-processed fair surface
fig. 3.10b. The fair surface was obtained using triangulation of the surface as an input
to various regularization methods. This is un-applicable insitu, since our objective is to
use only cartesian description of inclusions and not conforming methods such as ALFE or
FT. However, since these methods are accurate, we are inclined to compare our method
with these post-processed results. Hence, fig. 3.10b shows the smoothed surface, with
minimal curvature variations V(Af) — 0.

A tentative to formulate the problem of curvature approximation on an highly discontin-
uous manifold, as an elliptic equation was experimented. However, for the time being,
this approach did not provide satisfactory results although it remained worth exploring.

3.1.4 Fluid properties evolution

Algorithm 4: Conservative transport of the thermodynamic properties

1 for each spatial direction do

2 compute the flux balance (in/out) for each cell using a chosen limiter on
fig. 3.23

3 update the scalar density field using the three fluxes computed in the
previous step

4 extrapolate viscosity as a spatial function of density

5 end

The density is transported in a conservative manner using algorithm 4. The dynamic
viscosity is extrapolated from the density in order to keep a constant kinematic viscosity
for each phase, and the transition in the mixture layer smooth:

max (1, p2) — min(p1, p2)

. 3.17
max(p1, p2) — min(p1, p2) (3.17)

pu(t, @) = min(p, po) + p(t, @) -

We also mention the fact that viscosity and density are not necessarily bound between
the primary and the secondary phase values. Clamping — truncating — the fields to
respect the bounds results in the loss of total mass and is not necessary for the code to
avoid FPE(s)*. Thus, it is better to keep values slightly outside the allowed intervals,
and optionally reset for mass conservation from time to time.

The density is averaged at facet locations where needed, for example when updating
velocities in the M AC ¥ convention for finite volume calculations. As for the update

x. Floating Point Exception(s)
xi. Marker and Cell
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of viscosities, a choice has to be made on the averaging method. Especially when the
density ratio is important e.g. air-water flow with p; = 1000 and ps = 1, the inter-
mediate facet values are key for the dynamic evolution for the transfer of momentum.
The choice of choosing the averaging method is left to the user: harmonic, geometric or
arithmetic mean. The harmonic mean, however is accurate when the function or field
is discontinuous [101-103]. A numerical study of the influence of the averaging method
should be interesting, especially the influence on the convergence of the two-phase in-
compressible pressure solver developed in section 3.3.4, which uses interpolated inverse
of facet densities.

3.1.5 Incompressible, non-dilatable formulation

A vector field can be uniquely decomposed into a sum of a solenoidal part and a irrota-
tional part [104-106]. The H H D! of this vector field is defined as:

v =vg+v,+ vy, (3.18)

where v 4 is irrotational and thus derives from of a scalar potential vy = VD, v, = VX R
is a solenoidal part and wvj, is an harmonic part. The three components are mutually
orthogonal with respect to the inner product in £2.

The analogy of eq. (3.18) with fluid motion is that a fluid element can move in R? by:
— expansion or contraction (irrotational movement: v g);
— rotation around an axis (incompressible displacement: v,);
— translation vy, .

The translation term vanishes in infinite space, or in finite domain with null boundary
flux. In the following, part, we will assume vy =0.

Both solenoidal and irrotational subspaces of £2(€) span the vector space of v :

L2Q)={v e L2V v e LN, v njyy=0}dVH(Q).

A correction term, homogeneous to a pressure gradient is computed to correct the pre-
dicted velocity field. The literature refers this method as the classic prediction-correction
method described in [107]. This implicit phase is often costly, requiring inversion of a
matrix using a direct inversion method such as the LU factorization/Cholesky decom-
position, or usage of an iterative methods based on updating the solution based on a
minimization criterion — for instance the orthogonality of the residual vectors of the
Krylov subspace for the CG*l method —, or minimizing the norm of the residual in
the span of the set {b, Ab, A%b, ..., A" 1b} for the GMRES*Y method.

xii. Helmotz-Hodge Decomposition
xiii. Conjugate Gradient
xiv. GEneralized Minimal RESidual
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We note that the pressure computed in this step, although homogeneous to a physical
pressure is no longer a thermodynamic variable, but a Lagrange multiplier to capture
the divergence-free condition.

We enforce a divergence free velocity with the correction step:

At
= g - = vp . (3.19)
P

Taking the divergence of the previous equation results in:

W"T:Ov-(ﬂ”)mv. <Vp;+l> :

We obtain a variable coefficient Poisson equation on the domain ©, and open of R?, with
homogeneous boundary 02 :

b

1
(Ot C(an
V (7,0 ) = —tv (u") on Q, (3.20)
—gp =0 on 0N.
n 0

g

A compatibility condition of the system eq. (3.20) requires that following equality be

satisfied:
/bdv:/gds,
\%4 S

where b is the RHS™ of the linear system and ¢ the boundary condition applied, which
is zero valued in our case (no pressure gradient across the walls).

Also, when the linear operator has a constant null-space (all Neummann BC'(s)*"1), we
enforce the multiplier fﬂ pdv = 0 at each iteration of the incremental Krylov method, so
that the solution is defined up to an zero additive constant. The meaning of the additive
constant and its physical meaning is to be discussed: it is believed that this pressure
gauge tends towards the real pressure in a thermodynamic sense (dynamic pressure).
We could also modify the linear system in order to fix an arbitrary pressure point in the
domain (solution valid up to a constant).

Despite chosen boundary conditions can be discussed [108], the usual approach is to
use zero flux pressure boundary conditions at walls. Since the problem with Neumann
boundary conditions is defined up to a constant, we subtract the average of the RH S of
eq. (3.20).

xv. Right-Hand Side
xvi. Boundary Condition(s)
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The problem was first solved in two dimensions, for the Navier-Stokes Equation(s) with
constant density p. We use simple harmonic functions for the velocity and the pressure

[109]:
u = —cos(x)sin(y),
v = sin(x) cos(y) , (3.21)
p= _fe (cos(2z) + cos(2y)) .

We compare the methods described in [110-112], and compute the error between the
computed field against the analytical solution.

In [110], the authors reuse the pressure gradient at the previous iteration in the prediction
step, before the projection step. The diffusive step is computed using an average between
an explicit step and an implicit step (CN*¥! method). For the velocities, we find a
second order convergence rate in time as shown in fig. 3.11.

—— L' velocity err, cv rate=1.969 81
124 L? velocity err, cv rate=1.969
—— L™ velocity err, cv rate=1.973 -107
—— 214 order slope
~13 —124
o
—14 4 I e —
141 g """ —— L pressure err, cv rate=1.976
log(e) log(e)16 4 L? pressure err, cv rate=1.897
—— L pressure err, cv rate=0.8254
~15 sl —— 2% grder slope
~16 —204 —
7 —92 4 LT T
17 < e A T B =
~ [
e —24 4 SN
—18 4 T T T T T T T T T T
-70 —65 —6.0 —55 ~5.0 -70 —65 ~6.0 -55 —5.0
log(At) log(At)
(a) Velocity. (b) Pressure.

Figure 3.11 — Convergence rates for the Taylor problem, using [110].

The second method of [112] enhances the ¢*° convergence rate on the pressure by sub-
tracting a correction term to the pressure used in the prediction step, while keeping the
velocity update un-modified. As shown on fig. 3.12, the method is second order accurate
for the velocity fields, second order accurate in the ¢! and ¢ norms on the pressure but
only slightly more than first order in the /*° norm.

The third method, proposed in [111], differs with the two others, since no pressure gra-
dient is applied to the predicted velocity field. Hence, we solve for a term homogeneous
to a pressure. A stabilization term is also added to make the pressure second order
accurate: p"tl = "t — %Aw”“ )

We also explored the promising method described in [113] without success: the incom-
pressibility of the fluid at the interface was never enforced.

xvii. Crank-Nicolson
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(a) Velocity. (b) Pressure.

Figure 3.12 — Convergence rates for the Taylor problem, using [112].
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(a) Velocity. (b) Pressure.

Figure 3.13 — Convergence rates for the Taylor problem, using [111].
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3.1.6 Pressure jump conditions

The convergence of the pressure solver was difficult to achieve: since the interface was
spread over a few cells, the solution presents strong discontinuities, and derivatives are
difficult to compute accurately. We thus seek an alternative numerical method, ideally a
discontinuity preserving one, where the interfacial gap must be recovered on the pressure.
In this part, we follow the reasoning of [114-116]. From eq. (3.20), we consider the family
of spatially variable coefficient Poisson equation, with Dirichlet or Neumann BC(s):

{v c(B(z)Vu(z)) = f(z),z € Q,

u(x) =d(x) or up(x) =g(x),x € 0N, (3.22)

where d(x) is the Dirichlet boundary condition, g(x) is the imposed derivative on the
boundary, z is the vector of spatial coordinates in R?®, and () is the spatially vari-
able coefficient in the linear operator (divergence term). The previous equation behaves
numerically well when () varies smoothly with a . However, in the context of incom-
pressible flows, the density in the domain composed of non-miscible fluids is discontinu-
ous at/around the interface. For this issue, we consider a partitioning of the domain 2
into multiple subsets 2;, where subsets are bound by interfaces I'; and/or computation
boundaries. The unit normal determines the direction of the jump from Q™ into QT .

Then, jump conditions (bracketed notation) can be written as:
{[U]F =u't(z) —u(x),
[Bun]r = 87 (@)uy (2) = B~ (2)u, (),

where u,, = Vu - n is the normal derivative.

(3.23)

Figure 3.14 — Laplace equation (u, f and r = f — A - u)
B=1,ul=0,[fuy] =0,u(0)=0,u(l)=1.

The one-dimensional results were obtained by considering the Laplace equation f(z)
and 8 = 1 with imposed Dirichlet BC(s) u(0) = 0 at the left of the domain and u(0) =
on the right, and interface located at x = .5.

0
1

The various interfacial source terms are shown on figs. 3.14 to 3.16. We observe the
solution u, obtained when solving the Laplace equation with the jump conditions inserted
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Figure 3.15 — Laplace equation (u, f and r)
B=1,ul=1,[Fuy] =0,u(0)=0,u(l)=1.
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Figure 3.16 — Laplace equation (u, f and r)
B=1,[ul=0,[fu,] =1,u(0)=0,u(l)=1.
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and the RHS f, together with the residual . We note that the behaviour of the residual
obtained using the [117] algorithm is not dependent of the position of the discontinuity,
which confirms that solving eq. (3.22) with eq. (3.23) is numerically well behaved and is
suitable for the multiphase problem with disjoint densities.

[“‘*««RW 10000 1
b,
v,
0.8 1 W*wttw
5000 1
0.6
sol u s f o]
0.4
~5000
0.2
~10000
0.0 -} gos00cenmoccrmoccoonoosanoood I A —
0.0 0.2 04 0.6 08 10 0.0 0.2 0.4 0.6 08 10
%107
0072 204

N \ﬂ[\/\/a /

esT1.54

ol X,X& 14

o5 e, 124
v 4
~3.0 1 Al
1.0 —ooooeoeonsnosascoopoooascsod  50000000000000000000000000000000090000

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.17 — Poisson equation (u, f, r, #) with two discontinuities.

The parameters for fig. 3.17 are:

= 1if x € [0;.3] N [.6;1],
)2 otherwise ;

22— e " if v € [.3;
f(x):{(s 4) fzel3;6],

0 otherwise.



58 CHAPTER 3. MODELLING AND NUMERICAL METHODS

[u] — _e—.36,
[Bun] = —2.4e736.

Finally, no source term originates from boundaries: we impose u(0) = 0 and u(1) =0

Atz = .6 :

Remarkably, the solution u in fig. 3.17 produces no intermediate or smeared values
around jumps, although g is discontinuous. Stiff source terms can also be inserted at
the interface, in place of smeared terms which lead to diffusion of the interface.

0.6

solu

0.2

0.0

x1079

20
15
10
0.5
00
~05

-1.0

-15

Figure 3.18 — Bi-dimensional extension of fig. 3.17 (u, f, r, ).

The fig. 3.18 extends the one-dimensional problem exposed in fig. 3.17 with the following

set of parameters:

g 1if (x — .5)%2 + (y — .5)% < .252,
)2 otherwise ;

f(x) 8(a2+y2 — e ™ ¥ ifzeQ,
x =
0 otherwise.
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The jumps conditions are:

[u] = e =¥,
2,2

[Bun) = 8(22% + 2% — 2 —y)e @ 7Y,

with null Dirichlet BC(s): u(0) =0 and u(1) =0.

In our opinion, this is the correct way to treat the spatially variable coefficient Poisson
equation. However, for this application, constrained numerical dissipation using the
anti-diffusive formulation (section 3.3.1.2) for the conservative transport of density yields
stiff coefficients for the eq. (3.20). This is thus a perspective in order to enhance the
slow convergence observed in fig. 3.33 with classic iterative methods. Some alternative
references on the GFM *Vill and other approaches can be found in [118-120].

3.1.7 Bundle model and coupling with numerical fluid dynamics

In order to study different physics, one has to couple different numerical methods to-
gether. Nowadays, expertise in specific domains is quite robust, but the coupling is a
brand new challenging area for numerical engineers and research scientists. The goal
of this part is to expose the mathematical description of the immersed portion of a
steam generator bundle, and how we might approach the coupling between tubes and
the influence of a single tube together with the surrounding fluid.

3.1.7.1 Introduction to vibration analysis

In our application, the target is to place obstacles in an evolving flow, while taking into
account the retro-action of the solid movement onto the fluid. For simplicity and com-
putational costs, we have chosen to solve the IBM ¥* equation in the fluid framework,
which implies to use the same discretization for the solid as the one used for the fluid.
Alternative choices could have been made — for instance a boundary fitting modelling
(ALE method) — but this poses other issues such as information transfer, interpolation
and non-coincident discretization. Hence, the solid interface is described implicitly, but
the effect is included onto the fluid solver as a penalization term on the NSE(s). The
canonical and academic set up to be studied is a non-deformable cylinder evolving in the
vertical and horizontal direction, with free transverse boundaries. An enriched model
should be able to reproduce the deformation of tubes with clamped/clamped BC(s).

The goal is to reproduce the flow configuration on a portion of the tube bundle under
the following hypotheses:

— nominal pressure and temperature conditions in a bundle section;

— air/water mixture.

xviii. Ghost Fluid Method
xix. Immersed Boundaries Methods
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It is generally assumed that the bundle is subject to random fluid-elastic forces [121]
induced by turbulence and phase intermittence of the secondary circuit (density tran-
sitions between a lighter — usually steam — and a heavier — usually water — fluid).
The wide excitation spectrum contributes to different modes along the whole structure.
Vibrations of the tubes induces a fluid motion, which results in a fluid-elastic force ex-
erted on the tube. The physical characters of the structure is thus dynamically modified
and unstable response can be observed, leading to potential damage of the structure.
When subject to cross-flow, two kinds of fluid-structure coupling can occur:

— coupling with a fluid elastic force, decoupled from the tube movement: it is
assumed that the flow unsteadiness is not impacted by the tube vibrations. For
mono-phase flows, it is the sole consequence of the turbulence of the stream,
whereas for a two-phase flow, the local fluid density has a key role [122];

— a fluid-elastic force which characterizes the adaptation of the fluid to the tube
movements, modelled as added mass, stiffness and damping coefficients [80, 123].

We also mention the coupling with a fluid at rest in case of a mono-phase flow, where
analytic solutions can be used in order to determine the solid parameters through simple
relaxation of initial tube movement in a viscous fluid.

Numerical simulation is key, since it is able to approach regime avoided during exploita-
tion. Experimentally, the fluid-elastic instability is obtained for specific flow regimes
using costly and complex mock-ups. However, those are far from nominal flows ob-
served in power plant exploitation. Numerically, more parameters can be explored by
fine tuning configurations, avoiding measure bias and/or reproducibility issues.

The underlying goal of numerical work is to provide nondimensionalization of the fluid-
elastic and random excitation forces in order to provide predictive knowledge of the
vibration spectrum.

3.1.7.2 Mathematical description

The first assumption is that the fluid response to the solid movement is linear. This is
a strong assumption since the NSE(s) are highly non-linear.

Fluid elastic instability occurs when the dynamic damping cs + ¢, — 0 [124]. The
coupling between the fluid and the solid solver is a weak one, since a Taylor expansion of
the fluid forces is used to compute the tube response. In the context of IBM [125], we
use a regularization process in order to smooth pressure jumps on the cartesian mesh.

The effect of the immersed boundary is enforced on the closest fluid nodes, even if the
solid boundary does not coincide with the eulerian mesh. The computational expense is
thus deterministic, since only the displacement of the centre of gravity is tracked.

The first approach chosen is the displacement of the centre of gravity of a single tube.
However, in a steam generator, the bundle can vibrate in the U bend plane or orthogo-
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nally relative to this plane. It might then be necessary to include a bending model with
moments and study the bundle in the transverse direction.

The fluid-solid force result in the fluid pressure and viscous stresses exerted on the
cylinder surface.

The static pressure part is retrieved from the diagonal part of the stress tensor:

F, = // —~Vpdv
= #9 —p-nds, (3.24)

The viscous contribution comes from the deviatoric part of stress tensor:

Fv:// V.Tdv
// Ve u(Vu + Viu)do

_# w(Vu +Viu) - nds. (3.25)
S

where S is the cylinder surface.

The nondimensionalization of the forces gives the pressure and viscous coefficients, which
are projected onto the movement axes to form the drag and lift coefficients:

—p-nds
T - nds
Cr=C,+C,. (3.28)

The next hypothesis is to use a discrete solid description instead of a continuous one.
Thus, displacements are characterized by the degrees of freedom. This description allows
to use modal theory in order to describe the bundle dynamics. For example, the discrete
description of a cantilever split into n segments depicted by springs converges to the
continuous description of the system when n — oo .

The degrees of freedom of the system span a vector space. The dot product in the
Hilbert space represent an energy in mechanics.

If we take a displacement field x(r,t) and a strain field f(r,t), then the dot product
(-,+) on a control volume represent the work of the applied forces:

<CC(7’,t), f(’l‘,t)> = ///V IIZ(’I‘,t)f(T,t) dv discrete:system sz(wfz(t) : (3'29>



62 CHAPTER 3. MODELLING AND NUMERICAL METHODS

The dot product used is defined on the complex space:

(X,F) = //V X*(r)F(r)dv = ZXF (3.30)

If we take x4 to be the displacement of the tube, we write the matrix equation:

Mg+ Cixs+ Koxg = # o(Ts,t) n(xs,t)ds = fros(xs,t), (3.31)
S

where S is the fluid-solid interface, M, Cs, K are the mass, damping and stiffness

matrices, and x is the vector of displacement of the tube along its degrees of freedom.

A simplification hypothesis is to consider the solid as non-deformable, which reduces the
n degrees of freedom to six (three in rotation and three in translation). The clamped-
clamped boundary condition, used in order to study the behaviour on a single tube
segments, further allows the reduction from six to two degrees, namely drag and lift
translations. This simplest description might however be too restrictive to capture the
complex dynamics of the tubes, and might evolve if the initial numerical results are
failing to provide conclusive answers.

The fluid-to-solid force appearing on the RH S of eq. (3.31) must be characterized. The
common approach is to split the force into a random excitation force f,,q and a fluid
elastic contribution f ¢, [54] in one-phase or two-phase cross-flow [126]. The random
excitation force is seen as white noise with wide band excitation spectrum.

The eq. (3.31) is projected into the modal base of the tube:

Msé'f'csq + Ksq,= frnd(t)+ffe(Qat)> (332)

where q(t) is the generalized displacement of the tube (linear combination of displace-
ment degrees of freedom).

The fluid elastic force is linearised into:
ffe:—qu—qu—k‘fq. (3.33)

Combining eq. (3.32) and eq. (3.33), we write

(ms+myp)q(t) + (cs +cp)q(t) + (ks + kf)g(t) = frna(t) . (3.34)

The equation eq. (3.34) m& + c& + kx = f is identified as a second order damped
system to a generic nondimensionalized oscillator equation:

dzq dq 2
— 4+ 2(w— =0 3.35
g T Awo twig=0, (3.35)

Cc

where w? = % is the undamped frequency and 2w( = = is the damping ratio.
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By identification of eq. (3.34) with eq. (3.35):

| ks +k
W= ﬁ’ (3.36)
ms + My

Cs +cf
=—" . 3.37
¢ 2w(ms + my) (3:37)

3.1.7.3 Multiple degrees of freedom

When a system has multiple degrees of freedom, coupling occurs between the different
directions.

k1 mi ks ﬂ ko
W W W—
| o1
I i &
I

Figure 3.19 — Coupling by stiffness.

{m1i’1 + (k1 + k3)z1 — ksxe = fi1, (3.38)

maity + (ko + k3)xo — k3x1 = fo.

The system eq. (3.38) depicted in fig. 3.19 shows a symmetric stiffness cross-coupling
term k3xq2 :

—— ¥y
=

Figure 3.20 — Coupling by inertia.

{(ml + mo)iy + ki1 — mady = fi + fa, (3.39)

maoZo + koo + maoi1 = fo.

The system eq. (3.39) depicted in fig. 3.20 shows a symmetric inertial cross-coupling
term moi1 2.
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Uncoupled system by operating a change of variables a1 = (x2 + 1) /2;a2 = (22 — 1) /
2;m = my = mo; k = k1 = ko in the system eq. (3.38):

{md1 +kar=(fi + f2) / 2, (3.40)

maso + (k + 2k3)a2 = (fg — fl) / 2.

The equivalent system eq. (3.40) shows no more cross-coupling term. This simple exam-
ple demonstrates that the real coupling term lies in the natural frequencies (f; = %\ / %

and fo = %1/ kt?lk?’) and the normal modes, more than the mathematical modelling of
the system.
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3.2 Discretization

The discrete approximation of PDE(s) ! is a pre-requisite step required before evaluation
of a numerical solution. The computer architectures are sequential and can be viewed
as a finite-state machine. We thus need to define discrete variables and more generally a
discrete framework with the idea in mind that discretization always induces some error
in the solution.

3.2.1 Finite Volume Method

In order to obtain a numerical solution, one must transpose the continuous equations
into their discrete counterparts, in time (Euler stepping for example) or in space (un-
structured grid with arbitrary volumes, structured grid for the volume of fluid method,
...). Tessellating the euclidean space has consequences on the numerical solution. On
one hand, poorly resolved areas with strong derivatives lead to large errors. On the other
hand, excessive meshing in smooth regions is costly and does not improve global accu-
racy of the solution. We use the FV M i on a Cartesian mesh, with M AC convention
[127], where fluxes are located on cube facets and intensive variables are located at cell
centres. The M AC method uses Finite Difference(s) to approximate the Navier-Stokes
Equation(s). A staggered mesh is used for the velocities, and the scalar pressure p or
the density p are evaluated at cell centres as seen on fig. 3.21. This method enhances
velocity-pressure decoupling and is known to avoid checker-board patterns induced by
odd-even decoupling on dependent variables.

The convention taken for the conservation laws is a positive outflow u - n > 0, with the
corresponding outward pointing normal.

The net inflow through the boundary of the control volume is thus — g"gSS pu + nds. For
example, the average pressure gradient on a single cell is:

1 1
Vhp—v//vadv—V#gpnds.

The momentum equation with the full stress tensor reads:

)
%+V.(pu®u):—Vp-i-v-,u(vu-f—vtu)-pr‘

We now define control volume averages for the diffusive D and the convective operators
A

1 1
D=// V'M(Vu+Vut>d’U=#u(vwwt)-nds,
Vv v V S

1 1
A=— V. = — . .
V// (pu @ u)dv V#g(pu@u) n ds

i. Partial Differential Equation(s)
ii. Finite Volume Method
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Figure 3.21 — Bi-dimensional grid quantities, and boundary shadow variables.
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The discretization of these operators is discussed later in sections 3.3.5.2 and 3.3.5.3.
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3.2.2 Numerical boundary conditions

Any physical boundary condition (Periodic, Inflow, Outflow, Slip (no adherence), Wall

(adherence, no-slip)) is mapped to a numerical boundary condition (copy, reflection,

mirroring, periodic, ...). For example for outflow on the = axis, we impose % = 0 by

copying the last velocity in the x direction to the wall velocity, so that the first order
gradient vanishes. For the vertical velocity w in the x direction, we wish to impose

g—? = 0 : we thus copy the last velocity in the domain onto the ghost layer vertical

velocity.

Since the flow is considered viscous, velocities across the interface are continuous, hence:

[u] = [v] = [w] = 0. (3.41)

No specific treatment is applied to velocities near the interface. In DN S, if the resolution
is sufficient for velocity boundary layers, then the velocity transition across the interface
is considered continuous enough.

D1/2 Uq Uo us U4 Dm+1/2

-3 dO -2 —1 0 1 2 dm+1 3
Figure 3.22 — One-dimensional domain unknowns and shadow variables.

We will now expose the numerical boundary conditions needed for the linear operators
in the implicitation phase. For simplicity, we will take a one dimensional discretization
with m = 4 unknowns: u;—1 4, as sketched in fig. 3.22.

We consider the discretization of the Laplace operator:
Au = f, (3.42)
and the associated Poisson equation with a RHS f .

The equation for uy reads:

us — 2u1 + ug

Neumann
The flux at point i =1 / 2 reads:
Uy — U
(%)1/2 = 1Al‘ 2 = 9(”1/2)- (3.44)

Then, rewriting eq. (3.43) and using eq. (3.44) yields:

f= ug —ug — (U1 — up) S g(u1/2)Ax
1 Ax? B Ax? ’

= uy —u; = Az?fy + g(uy2) Az .
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Similarly, the flux located at point i =m + 1 /2 is:
Um+1 — Um—1
(Ux)m+1/2 = — Az = 9(“m+1/2)~
So that:

~ (Umg1 = Um) —up A Um—1 9(“m+1/2)A93 = Um + Um—1

fm - A:U2 A:C2
= Up_1 — Um = Az [, — 9(Ump1/2) A

In matrix formulation, the eq. (3.42) with Neumann BC/(s) results in:

-1 1 Uy Az?f) + Axg(uy/z)
1 -2 1 Uy Az fy
1 —2 1 g = A.’EQfZ
1 =2 1 | |uma Az? frny
1 -1 U, Az?f,, — Azg(Uupmy1/2)
Dirichlet

For Dirichlet BC(s), ugp is imposed so eq. (3.43) becomes:

Ug — 2U7 U

Az h= Ax?’

In matrix formulation, we thus have:

-2 1 U1 A$2f1 — d(UQ)
1 -2 1 s Az’ f,
=21 up | = Az?f; ;
1 =2 1| | uma Az fr1
1 -2 Um Az? fr — d(Ums1)

Dirichlet midpoint
uy /2 1s the prescribed fictitious unknown: uy 5 = “0‘5“1 , meaning that:

up = 2uy/p — U . (3.45)

Using eq. (3.43) and eq. (3.45) leads to:

ug — 2uq + (2u1/2 — ul)

A$2 :f17
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and thus ug — 3u; = A:c2f1 — 2u1/2 .

As a result:
-3 1 ul Al'Qfl — 2D(U1/2)
1 -2 1 Uy Az f
1 -2 1 u | = Az?f;
1 -2 1 Up—1 Ax?n_l
1 -3 U, Az?f,, — 2D (U 41/2)

Periodic cell centred
With periodic BC(s), the linear system becomes:

—2 1 1 (5] A.TQfl
1 -2 1 U Ax? fo
1 -2 1 w | =1 AZ’f;

1 -2 1 Up—1 Ax? fy 1
1 1 -2 Uy Az?f,

3.2.3 Topological source terms

Curvatures
Several curvatures can be defined on a surface of R3 :
— the normal curvature k ;
— the principal curvatures k,,;, and kpqz ;
— the mean curvature x ;
— the gaussian curvature G'.

We first define the shape operator C' as the directional derivative of the normal vector
in the direction of a tangent vector [128]:

C(t(p)) = Di(n(p)). (3.46)

It is a measure of how the surface bends in R3.

The normal curvature is dependent on the direction of the tangent plane. The normal
curvature is the dot product between the derivative of the normal vector to the surface
(unique) and a chosen tangent vector, at a point p € S.
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We can now define the principal curvatures as the maximum (respectively minimum) of
the normal curvature along all the planes tangent to the surface S C R3.

The gaussian curvature G is the determinant of the shape operator eq. (3.46): G(p) =
det(C(p)), or the product of the two principal curvatures G = knin - kmaz -

The mean curvature « is a function of the trace of the shape operator k(p) = %trace(C (p)),
or the arithmetic average of the principal curvatures: xk = %(kmm + kmaz) -

As opposed to the gaussian curvature, the sign of the mean curvature depends on the
convention chosen for the normal to the surface (pointing inwards or outwards).

The parametric representation of S is defined by the vector mapping f : R?> — R3 :
f i (u,v) = (@(u,v),y(u, v), 2(u, v)) . (3.47)

For surface tension applications, we use the arithmetic mean curvature. On a cylinder
surface, the gaussian curvature is null, since on of the principal curvatures is null (the
curvature is either zero-valued or positive on a cylinder). The mean curvature, on the
other hand is non-zero on the cylinder surface, allowing a non-zero capillary force. The
curvature must also be invariant by rotation. Thus, the correct choice for the curvature
in capillary applications is the mean curvature between the principal curvatures.

Numerical implementation
The surface force acting on the interface at a microscopic level must be extrapolated
to a macroscopic term at the simulation scale, hence on the control volume.

The CSF 1 model [74] expresses the interfacial surface force term as fs = ockn , where
o is the surface tension coefficient, x the interfacial mean curvature and n the unit
normal to the interface surface. The singular surface force is spread onto a volumetric
force by the mean of a delta function (Dirac mass) centred on the interface.

Since the interface is implicitly tracked, the interfacial term must be spread out around
the interface locus. The interfacial term is thus spread out onto a volumetric term:

F,=o0kén, (3.48)
where § should represent a smooth pulsing term around the interface with unit [L~!].
The delta function can be expressed as

=[5

)

where p is the smoothed density used as a colour function, and [p] represents the global
density jump between the two phases [129, 130]. Quasi-discontinuous density can also

be used: § = ‘% )

iii. Continuum Surface Force
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On the other hand, if ¢ is spatially variable, as it can be the case in surfactant solutions
or when considering the Marangoni effect [131], a more elaborate model is to be used,
such as the CSSY method [28, 75].

The normal of a surface is the unit vector to a surface in R3. For closed surfaces, we
shall use the outward pointing convention. The unit normal to a surface S parametrized
by its spatial coordinates x,y, z is the gradient of the surface, normalized by its length.
The metrics used in the £2 space is the euclidean distance, provided by the ¢? norm of
the vector.

ViS(z,y,2)
n = VyS’(x,y,Z) /HVSHQ7
V.S(x,y, 2)

where V) is the gradient along a specific direction of the euclidean space.

The mean curvature s is defined as the divergence of the unit normal:
k=V-.n. (3.49)

Hence, to compute the normal of the implicit surface describing the two phases, we
must capture the interface position. Since the high order scheme has a local compressive
effect, the density is unreliable, and must be regularized, as discussed in section 3.1.3.3.

Practically, one must pay attention to the consistency between gradient when evaluating
curvatures, since the pressure gradient shall balance formally the capillary forces. Any
inconsistency between discretization will lead to parasitic numerical flow, as resumed in
[132]. The following computational sequence is found to be consistent and stable:

— compute vertices n, and cells n. normals using regularized density p;

— compute facet curvatures Ky from n, ;

— compute the interfacial facet pulse 6 := ’%’ interp(n.), using un-regularized
density p (integral distribution of the source term), and orient the vector using
interpolation of n. ;

— compute the facet capillary source term C;:=oksd ;.

3.2.4 Numerical stability conditions for the Navier-Stokes equations

Numerical approximation of eq. (3.6) requires stability conditions for timestepping, im-
posed by multiple contributions of the different parts of the equation. The stability of
the full set of the Navier-Stokes Equation(s) is usually too impractical to be performed.
When the flow is dominated by convective terms, the N SE(s) degenerate into hyperbolic
equations. On the opposite, the parabolic part remains when the flow is dominated by
diffusion (the tendency of a system to become uniform and homogeneous). The stability

iv. Continuous Surface Stress
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of the NSE(s) is assessed using the Von Neumann stability analysis [133], which con-
sists of disrupting the set of equations with a small parameter ¢, and study the decay
or growth of the error. Stability requires decay of the error, which implies that the
amplification factor must remain bounded by unity.

Convective and viscous constraints
We consider the one-dimensional advection-diffusion equation:

of  of  0*f
o gy =457 (3.50)

We advect and diffuse a small perturbation in the form £7 := f7*.

Injecting the previous equation in the discrete counterpart of eq. (3.50) yields:

+1
A | n u€?+1 — &1 _ dE?H e B
At 2Ax (Az)?
We can expand the error as a Fourier series: €7 = &" () = P elelFi | giving:
gntl dAt Ax ulAt
—=1-4 sin? ( k— ) —i—— sin(kAz) .
gn (Az)? ( 2 ) Az ( )
The stability condition requires that the error decreases i.e. 52:1 <1.

Consequently, for a one-dimensional problem, the stability of the numerical scheme re-
quires that:

dAt uAt
41— <2 — < 2.
Az2 — d —

For a bi-dimensional problem, we assume that the error can be expressed in the form
p , p
Snk — gnei(z\zziJr)\zzk) .
1, :

Ax? + A2? dAt 1 (Jul+|w|)?At
4dAt—————— < 2 - — < - - <4,
Ax?Az2 — Apen, A2 T4 d -
=Ah
For a three-dimensional problem, the analysis is similar:
AyYAZ? 4+ A2 AZ% + Axz?Ay? dAt 1 (|| 4| v|+|w|)2 At
4dAt <2 — — < = <8.
Ax2Ay?Az? - Ar=Ay Ah?2 ~ 6 d =8
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The convective restriction can be written as follows:

’u‘maz "U’ma:c ’w‘ma:v)
A 3.51
t ( Az + Ay * Az )5 (3:51)

where « €]0; 1] is a chosen criterion.
Source term constraint

If any source term is included (topological, gravity), then we can rewrite eq. (3.51) as
follows:

| maz+ACL|  |Vmaz+ALCy| \w|max+At|CZ|+gAt>
A
t ( Ar + Ay + As <o

where gravity is oriented in the z direction and C, Cy, C, represent capillary forces.

This leads to a quadratic equation on At giving the following time step stability bound
[134]:

2
At (’u‘maw T \/(’U|max> T 4(|92|+|Cx]) + V| maz

Ax Ax Ax Ay
‘U’mm)? 4(‘9@1“"‘01/‘) || mazx (w’mam>2 4(]g:|+|C-|)
1% imaz Iz Tzl 92
+\/< Ay * Ay * Az + Az + Az <@

Capillary constraint
The expression of the capillary force is of order okdp™
section 3.1.3.1.

1 using the formulation in

A minimal computational bound for the curvature would be and inclusion with a mesh
size in all directions. In this case, the curvature is K40 = .5 (ﬁ + i) < min (ﬁ, i) .

The numerical spread of the source term is of order of the mesh size, hence § ~
min(Az, Az).

Consequently, the capillary criterion in two dimensions can be approached by:

O Kmax

2 o
Crite,, =

min(p1, p2) min(Az, Az)2’

As exposed in [89], the explicit treatment of surface usually requires a restrictive time-
stepping. Generally, an explicit numerical computation is stable when the ratio of the
physical velocity to the numerical velocity is smaller than unity. Hence, the numerical
algorithm must resolve capillary wave which is of order:

ok
p1+p2’
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with k£ = 27” the wave number.
We can then write:
. . (2m)30
At critea, <1 = teap = ) 3.52
CHiteap C11teap \/(Pl + p2) min(A)3 ( )

A second stability criterion can be retrieved from [134]. From our experiments, it seems
that the eq. (3.52) can be alleviated by the regularization of the curvatures.

Combined constraint

The convective and viscous stability constraints can be merged into a single inequality

At <(Critconv + crityise) + \/(critconv + crityise )2 + 4erit2,, + 4critgap) <2a, (3.53)

where critg.. = Z?:l %' is the upper bound criterion of entrainment terms induced
1

by gravity and critc,p represents the upper limit for capillary terms. A safety factor
a €]0; 1] is left to the choice of the user.
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3.3 Numerical methods

After having defined the discretization strategy and context, we develop the numerical
methods for fluid and structure problems. In this part, we aim to develop a numeri-
cal model for the transport of two-phase flows, using a continuous description for the
two phases. Hence, there is no disperse treatment of the secondary phase (Lagrangian
treatment of the disperse phase [135]), which should be resolved up to the relevant scale.

3.3.1 Anti-diffusive approach for conservative scalar transport

Keeping track of the exact position of a multi-component fluid interface through time
is easy when the numerical description of the interface is explicited. However, following
the interface moving through time with an explicit representation is quite costly for ex-
ample with F'T', when the change of topology requires to balance the number of points.
Furthermore, this method does not scale well since the number of points required to
describe the interface follows the density of inclusions. In the context of superimposed
meshes such as ALFE, a re-meshing process induces mesh quality issues as well as in-
creased memory and computing costs induced by the re-meshing process. The issue of
coalescence and breakup which are areas requiring physical interpretation and modelling
up to finer scales comes also in mind. Another family of methods is the interface captur-
ing approach where the interface is described either by an additional field (in which the
interface is implicit), or by an additional equation solving for the localization as with
the LSM . The VOF method reconstructs the interface within each cell, by targeting
a conservation of volume by compensation of the diffusive term, and thus induces addi-
tional computing costs for accurate volume conservation. The goal sought by using this
numerical scheme is to bound over time the thickening mode of the interface imposed by
the numerical diffusion of the interface. Since no chemical reaction is solved, the effect
of the width of the transition layer is thought to be negligible for boundary layers.

3.3.1.1 Flux limiter formalism

Flux limited schemes were widely studied the between the sixties and the eighties and
are derived from FCT! schemes, where a flux correction stage follows the low order
advection phase [136].

We will first recall some classic schemes encountered for numerical approximation of
PDE(s). This will help in the understanding of numerical errors between the continuous
solution and the discrete approximation, when constructing a flux limiting scheme. We
consider the following one-dimensional first order hyperbolic equation (linear advection)
[137] in order to construct the scalar transport:

of of

i. Level-Set Method(s)
ii. Flux Corrected Transport
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where u is a constant velocity. For this equation, the solution f(x,t) is constant along
the characteristics lines in the range of influence cone.

We note that the conservative non-linear form of eq. (3.54) reads:

of  0u(f)
§+ ox

=0, (3.55)

where (f) represents the flux across the control volume facets.

We expand % up to the second order in time using Taylor series:

n+1 n n AtQ n 3
f = £+ At(f)f + T(ftt)i +0 (At ) ,
and replace time derivatives with spatial derivatives since eq. (3.54) implies f; = —uf, :

u2 At?
2

F = w2+ ()i + O (A8

We define ¢ = uﬁ—; to be the Courant number associated to the CF L condition [138].

We also introduce the concept of monotonicity-preserving schemes, which satisfy the
following property:
1 1y s
Lz = I = Vi

Moreover, a scheme is said to be linear if it can be written as a linear combination of its
arguments, hence:

1
fz'n+ :Zukfﬁkk:
k

When u;, > 0V k, the scheme is said to be monotone. As an example, the LEF 'V scheme
[139]:
S

1
f?ﬂ = 5(]2‘”-1 + fif1) — 5( 1 — fis1),

which is forward in time and centred in space with first order accuracy, is monotone

under the CFL condition.

Theorem 1 (Godunov [140])
A linear, monotonicity-preserving scheme is at most first order accurate .

This theorem exposes the issue usually encountered, since higher order scheme tends to
develop oscillations in non-smooth loci (and thus loose the TV D" property), whereas
first order scheme will tend to show excessive dissipative behaviour. Thus, in order to

iii. Courant-Friedrichs-Lewy
iv. Lax-Friedrichs
v. Total Variation Diminishing



78 CHAPTER 3. MODELLING AND NUMERICAL METHODS

conjugate higher order accuracy and monotonicity, non-linear scheme must be devel-
oped, in the sense that the algorithm toggles (non-linear operation) between different
behaviours, based on a chosen criterion.

We now introduce the following schemes, which will provide the base state for the high
order method.

The LW Vi scheme [141] is obtained using second order central F'D(s)"! for the spatial
derivatives,

Jit1 = fie1 ~ firr = 2fi+ fiaa
(f:p)z - AT (fzx)z — Ax2 ;
resulting in:
2
= = SR = )+ = 200+ ). (3.56)

The BM Vi1 scheme [142] is obtained using upwind differences for the spatial derivatives
(second, and first order of accuracy):

3fi —4fic1 — fi—2
2Ax

fico—=2fic1+ fi -

(fx)z = A2

2
S = A7 = SG4TSR (357)

We now rewrite the LW scheme eq. (3.56) forcing the appearance of the low order

upwind term f* — f* :

correction

¢(1—%9)
2

s(1—=5) .,

f?H:fﬁ— s(fi' = fit1)  +1|- 5 i1

low order upwind term

(L= fi" = - (3.58)

The equation eq. (3.58) is now rewritten in the conservative form:

n n At n . n s
=1 = e it 1/2) —e(fi=1/2)
where ¢(f",i+1/2) is the numerical flux on facets.

This yields the expression of the numerical flux:

high order facet flux

i1/ =t - ) (359

low order upwind flux

vi. Lax-Wendroff
vii. Finite Difference(s)
viii. Beam-Warming
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A weight is then applied to the correction term in order to change the scheme behaviour
based on a measure of smoothness. A common measure is the ratio of consecutive

gradients:
fi =1

poo— 2t Jizl
BT

so that the non-linearity induced can be written as £(r). When the ratio r approaches

unity, then f is sufficiently smooth. On the contrary, a zero valued ratio tends to indicate

some discontinuity in f .

With the additional term £(r), the equation eq. (3.59) becomes:

PU™ i1 D) = ue fit gu(l =)L) (S — 7). (360
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Figure 3.23 — Smoothness regions of the flux limiter function, for an arbitrary local
CFL s.

Local constraints over the non-linear mapping are derived in [143].

Some desirable properties of a numerical scheme are high resolution to counteract ex-
cessive numerical diffusion, and oscillation free schemes, meaning that the numerical
solution obtained does not take non-physical values for example when the solution is
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close to zero and negative values are neither allowed by the model nor by the numerical
method. Although preserving the discontinuity of solutions is key, numerical methods
fail to do so, due to numerical diffusion. A significant number of work has been con-
ducted in order to find exact numerical solutions. For example, in shock computations
(the state evolves towards discontinuous solution) [144] or in the generic case of phase
transition for a general PDFE(s), such as the toggling between congested and free flow
in urban traffic modelling [145]. The method of [146] is appealing because it is toggling
between full jump or no increment at the discontinuity [147]. The solution is discontin-
uous (piecewise linear), and despite the nature of the solution, the integral properties
are preserved [148].

3.3.1.2 Schemes comparisons

The test case presented in [149] exposes a test case with representative numerical issues
(usually encountered in concrete situations):
— a smooth varying shape, with continuous derivatives (e.g. gaussian profile);
— a constant derivative shape (cone), with a two valued derivative at the top point;
— a slotted disk, with a clean discontinuity and thin transition space.

The first item is interesting in order to study the compressive behaviour of these schemes.
For the second one, we focus on the conservation of local extrema, since the singularity
could represent the tip of a distorted bubble in our case. It is key here, to be able to
conserve physical properties such as density of the two phases: primary p; and secondary
pa. The third item is representative of a stiff interface between liquid and gaseous phase.
The theory predicts a numerical diffusion of one or two points [44, 46]. Four schemes
are compared: a diffuse stable upwind scheme, and three flux limiter based schemes as
seen on fig. 3.24.

What we can infer from fig. 3.24 is that we allow a wider region for the UB ™ and NB*
schemes. The resulting scheme is outside the TV D region (0 < £(r) < min(2r,7)), which
results in reducing the smoothness of the solution for initially smooth solutions. However,
for initial discontinuous profiles (shocks, phase transition), this allows the conservation of
the interface locus over numerous timesteps with limited amount of numerical diffusion.

We consider the following one-dimensional equation, with appropriate initial conditions:

ft=0,2) = fo(x).

The space and time discrete sequences are written as follows: x; = iAx and t, = nAt.
The discrete approximation of eq. (3.61) reads:

frt— go b R

i N2 T Ti-1/2
AL + u(x;)

Az =0

ix. Ultra-BEE
x. N-BEE
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r

(a) Superbee [150].

r

(b) Ultrabee [46, 151].

r

(c) Nbee [152].

Figure 3.24 — Common flux limiter profiles.
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partial differential LTE vanishes with (At, Az) — 0 [ dleI‘etlZQd
. 9 R e T T .
equation 6—{ consistency l equation = f
numerical scheme
(choice)
A A Y
exact golutior.l of exact solutign ] stability [numerica.d Solgtion
the differential of the numerical ~ »| of the discretized
2 ity B —n
equation f scheme f, J & =f"—1r l equation f*
T hmnﬁOO [er] < C \
|
| |
| convergence }
g = -1
&'
(At,Az)—0

Figure 3.25 — General methodology from PDE(s) to numerical solution.

The conservative form is:

+1 _ L R
=1 = (EZ1/2_FZL—1/2) ’

with ¢; = &t Aou(x;) the ratio of the physical velocity to the numerical velocity, and F' the
non- hnear quantity.

_ fi—fi—1
= fin—fi fz

When the flow is reversed (velocity sign change), the ratio is written r;” ;z lf “}t = i

Furthermore, the consecutive ratio in the direction of the flow is written r

The stability of the numerical scheme is based on the concept of TV D methods, intro-
duced by [143]. The Total Variation is defined, in the continuous form as TV = [ ‘
and in the discrete form as TV = Y, |fiy1 — fi] - When the property TV( f"“) <
TV(f™) is verified, the scheme is said to be TV D. The global methodology used for the
convergence of numerical schemes is exposed in fig. 3.25.

Based on the local cell velocity indicator ¢;, we resume the facet fluxes selection in
algorithm 5 (O% denotes the immediate right side of the considered facet, and O% its
left side):

When using the scheme [46], then the flux selection resumes to algorithm 6. Consistency
bounds are dynamically computed as a function of the local cell velocity in order to allow
extension of the stability margin.

The schemes of interest are:
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Algorithm 5: Facet fluxes selection for cell 7, in the flux limiter framework

(

1 pure function £(r,)

2 switch chosen limiter do

3 case None do return r

4 case UB do

5 ‘ return max (0, min(2r / [<[,2 / (1 —|s|)))

6 case NB do

7 ‘ return max (0, min(2r / ||, 1), min(r,2 / (1 — [¢])))
8 end

9

end
10 if ;1 > 0 then
11 ‘ Fnjl%/Q —fz 1+1 2= 12( Ti_1,Si— 1)(fi_fi—1)
12 else
13 ‘ 1/2 = fl 1—’2_%2(7”2‘_) _gi)(fl'—l - fl)
14 end
15 if ;11 < 0 then

L i —

16 ‘ F:H/Q = fit1+ MTHQ(%H, —Gi+1)(fi = fit1)
17 else
FZL%/Q =fi+ l?ig(rja g’i)(fi+1 - fz)
19 end

18

Algorithm 6: Facet fluxes selection for cell i, for the DL* scheme [46].

1 pure function £(§7 fupwind7 fcentrw fdoumwind)
2 fmin = min(fcentrea fupwind)

3 fmax = maX(fcentrea fupwind)
4

lower := max(min( fdownwind, feentre), MM £

upper := min(max(fdownwinda fcentre)a M + fmin)

5

6 return max(lower, min( fgownwind, Upper))
7 end

8 if ql > O then

9 1/2 —£(§z7fz 27fz lafl)

10 Fi+1/2 = L(s, fi—t1, fi, figr)

11 else

12 | F" 1/2 = L(=sis fir1, fir fi1)

L
18| F) g = L= fiez, fivs fi)
14 end
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— The SB*! scheme as formulated in [150];

— The UB scheme of [151];

— The DL scheme developed in the formalism of [46];
— The N B scheme proposed by [152].

1.0 $—o0—0to0 77— }——F— initial
= exact i :
O plo < upwind
o O superbee
0.8 - ubee
©  nbee
0.6

0.4 4
o O o o

0.2 1

i o
0.0 g —o—0—o0—0—o—b—o—n—b—o—8—

—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.26 — 1D plot of a bi-dimensional split periodic transport of a sharp
discontinuity.

The only scheme able to maintain the stiffness of the step function over discrete time is
the U B scheme on fig. 3.26. However, since the exact location of the interface position is
lost in the averaged unit volume using the F'V M, artificial compression of the interface
is not a wished-for property.

For smooth functions, the N B scheme seems to be the most appropriate since the global
error is minimal as seen on fig. 3.27. Also, this scheme is able to maintain global maxima
over time.

The slice in fig. 3.28 displays the transport of a bi-dimensional piecewise linear profile.
We interest ourselves to the behaviour of the singular (tip of the triangle) over time. This
example can be thought of being representative of a discrete tip of a droplet, when the
mesh resolution is of order of a single cell in coarse DN S computations. We target mass
conservation: the numerical scheme must thus be able to conserve global properties such
as extrema. Over multiple time steps, the UB scheme artificially stiffens the interface,
hence the local compression observed. The N B scheme performs best: the maximum
is slightly reduced, whilst the error in the piecewise region remains small. The SB

xii. Super-BEE
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85

Figure 3.27 — 1D plot of a bi-dimensional split periodic transport of a smooth initial
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condition (gaussian).
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Figure 3.28 — 1D plot of a bi-dimensional split periodic transport of a piecewise linear

profile.
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scheme has a global compressive behaviour, and consequent loss of information through
numerical dissipation at the tip of the data is observed.

Anti-diffusive schemes are high-order scheme which have interesting properties for scalar
transport. One looks for second order scheme in general but also TV D schemes. Scalar
transport in the context of multiphase flows is required as explained before to conserve
maxima in order to respect momentum balance, and compute the correct volumetric
forces exerted on the interface. Oscillatory schemes must thus be avoided.

For scalar transport (the density in our context), where ¢ defines the facet flux, we can
write:

a/p(m,t)dv—kygﬂux.nds:o
ot Jy s

:/Ppﬁhv-ﬂux}dvzo
Gauss [y, ot

dp

. pr— . . 2
arbitrary ot v (pU) 0 (3 0 )
volume

The eq. (3.62) is further developed into:

=V-(pu)

— Pl = ALV (pu) (3.63)

At
— " =p"+ E(@ZL—H/Q - ‘Pilp)

+ Iy(@j+1/z —@jl12) E(@kﬂ/z — Ph—1/2) -

The equation eq. (3.63) will be used in the flux limiter formalism (for the fluxes compu-
tations) for high order convection of the density in multiphase flows.

We assume that the error between the discrete solution 4y and the continuous solution
u depends smoothly on a small parameter h, which can be the unit mesh size Az for
spatial convergence, or the timestep At for temporal convergence study.

We can thus write:
lel= [ — ul= kP + O (h*1) (3.64)

where k is a constant to be determined and p is the convergence rate of the scheme used
to compute uy, .

The extrapolation using series in eq. (3.64) is only valid if the first order term is dominant
[153].
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Figure 3.29 — Convergence rates for the upwind, NB, SB, UB, and DL schemes.
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If a reference solution u is known, then logle|= log(k) + plog(h) + O (h) , provides the
slope p on a logarithmic scale plot of € versus h.

On the contrary, if the solution is unknown, consecutive difference between approached
solution is used in order to obtain the value of p.

For a fixed multiplier of the mesh size o/, we define consecutive difference between solu-
tions as: fr, — fan , allowing to write:

fo—fan kWP —k(ah)P + O (hP+1)
fon = fozn — k(ah)P = k(a?h)P + O (h*+1)

—a P+ 0(h) . (3.65)

Consequently, the ratio eq. (3.65) is used to estimate the convergence rate p.

The fig. 3.29 shows convergence rates for multiple schemes, for the advection problem of a
smooth initial condition (taken as a combination of sigmoids using hyperbolic tangents).

Error rate was computed against a reference solution. The timestep used is taken as
At = Az? so that one may avoid influence of the timestepping truncature error in the
solution. We expect a unit convergence order for the upwind scheme, and we obtain
p =.999. For the high order scheme, the only scheme able to capture the smoothness of
the solution is the N B scheme, and the order of convergence p = 1.813 tends to indicate
a second order behaviour.

In the computations, we will use either the N B scheme or the stiffer scheme of [154],
which we have found to perform best compared to other limiters. The choice of the limiter
is then left to the user of the code with the implementation presented in algorithms 5
and 6. For longer simulations or the simulations running under the I BM, we prefer to
use the stiffest [154] or UB limiters. If numerical convergence is difficult due to strong
velocity gradients impacting the diffusive term, we use the smoother N B scheme.
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3.3.2 Higher order convection operator (ENO)

The finite difference scheme applied to the advection operator in section 3.3.5.2 is un-
stable when considering low viscous flows, or in the absence of viscosity (for instance
with the inviscid Euler equations). In order to increase the stability margin of the com-
putation, and try to alleviate the viscous time-stepping constraints, we might consider
using a higher order method, as the methods discussed later in section 3.3.1. As an
example, we consider the Essentially Non-Oscillatory method [155]. The goal of these
methods is to avoid first order spurious oscillations in stiff regions where the solution is
discontinuous. As in signal theory, with the Gibbs phenomenon, these oscillations violate
the principle of maximum conservation of the solution and are often a source of poorly
resolved equations. This will further be developed in section 3.3.1.1 when introducing
TV D methods.

Uij—3/2 Uj—1/2 Uit1/2

1—2

Y

1 i+1

~.

Figure 3.30 — Flux balance for the ’left’ velocity, reconstruction of slopes.

The spirit of the method is to select the downwind flux by using the minimal rate of
change of the variable over a control volume. On the fig. 3.30, with a positive downwind
cell velocity u;, the two candidates for the downwind flux ¢, at the control volume facet

are:
ui_l/z + amin(A*ui_l/Q, A’ui_l/g) / 2 if U; > 0,

ui+1/2 — amin(A+ui+1/2, A_Ui+1/2) / 2 if U; < 0,

where amin represents the magnitude based switch:

in(a, b) a if |a|< |b],
amin(a, b) =
b otherwise,

and A the difference operator:

{A+Uz’—1/2 = Uip1/2 — YUi-1/2,
ATui 19 = uj_172 — Ui_3/2 -
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3.3.3 Semi-implicitation of the viscous operator

After having obtained the expected analytical result, the timestep restriction induced
by the explicit step for the diffusion operator leads us to consider implicitation of the
diffusive term using a C'N scheme [156], which is formally second-order accurate and
unconditionally stable:

W3/ /e Aptlv (VA gty

Yy %V (T2 g nt2) = it/

The first equation is a forward explicit step using At;, while the second equation rep-
resents the implicit resolution for the next half substep Ats, with the timestep split as
At = Aty + Ato.

Algorithm 7: Implicitation of the viscous operator.

1 compute the transport term (@ - V)u |"+1/ 1 and the capillary terms, using an
explicit formulation

2 solve the linear system A4a"t/2 = Ba” + f(a", a"+3/8,..), where A and B
account for the F'D(s) spatial part of the C'N scheme, applied to the
V- w(Vu + Viu) term

n+1/2 E} @ IEI

n+3/8 @)

n+1/4 E} @ @

i—1 { i+ 1

9%u
ox?

Figure 3.31 — Stencil for the C'N scheme.

The implicitation pseudo-algorithm is found in algorithm 7, using the C' N method whose
spatial and temporal stencil is depicted in fig. 3.31. The difficulty of the implementation
resides in additional unknowns (three velocities: u, v, w), and the imposition/consistency
of boundary conditions appearing in the linear system. Also, one must use spatially
variable edge centred viscosities since the viscosity is variable close to the interface in
the mixing transition layer for a multiphase system.
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For the validation of the C'N scheme, we consider the lid-driven cavity problem in two
dimensions as described in [157]. The fluid is put in to motion by the imposed top lid
velocity, and by viscous diffusion. One carefully imposes the velocity on outer tangential
facets using eq. (3.45), so that the average velocity on the boundary results in the
imposed lid velocity.

-0.4 -0.2 0.0 0.2 0.4

0.4 1 :l:alb o - 0.4

0.2 A1 / ——0.2
| /

0.0 A1 j - 0.0

vertical velocity

\
\

\
\

-0.4 -0.2 0.0 0.2 0.4
horizontal velocity

Figure 3.32 — Steady state horizontal (blue) and vertical (orange) velocity profiles.

The fig. 3.32 shows good agreement with the reference values from [158, 159]. This
steady state solution validates the behaviour of the multiphase pressure solver, when
the equation eq. (3.20) degenerates to a Poisson equation when the densities of the two
phases are set equal: p; = po.

We also tested the convergence of the pressure solver on the lid driven cavity test case,
enforcing specific corner boundary velocities in order to avoid the known edge pressure
singularities, where the system is ill-conditioned.
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3.3.4 Solving the variable coefficient Poisson equation

Multiple techniques can be used to solve the elliptic equation eq. (3.20), among which
the direct approach [160], the spectral methods [159] and the multi-level approach [161,
162].

‘ method ‘ computational complexity ‘
LU, Cholesky O (n?) (factor) + O (n?) (solve)
Jacobi, G/§ il O (n?)

SORXY with optimal w O (n?)
Spectral O (n.log(n))
Multi-grid O (n)

Table 3.3 — Complexity of linear algebra methods.

We distinguish direct methods from iterative methods. Whilst direct methods are suit-
able for small problems, computational and storage costs associated for matrices inver-
sion are usually prohibitive for real sized problems. Solving a system of linear equations
with a direct method is of complexity between O (n?) and O (n?) as exposed in table 3.3.

The problem studied results in a sparse linear operator, with at most 5n entries for a
five points stencil. Since the inverse of a sparse matrix is generally dense, and since
the operator is variable at each time-step, a preconditioning approach such as ILU(0)
might not be interesting (solving a linear system depends on the condition number
of the associated matrix, but also of the eigenvalues distribution) in terms of storage
requirements but also in terms of computing complexity for inverting the linear operator
at each time-step. An alternative is to use multi-grid or diagonal preconditioner, which
are relatively simple to implement in a matrix free implementation, as explained in
section 3.3.4.1.

The initial problem to solve is:
Ax =0b. (3.66)

We suppose that we can approximate in some way the inverse of A by a matrix M ~!,
which shall be a good sparse approximation of A~!, and is relatively easy to compute.
Then, the alternate problem preconditioned by M :

M1A=M"1b, (3.67)

is better conditioned since M~1 A ~ I, and the solution of eq. (3.67) is also a solution
of eq. (3.66).
3.3.4.1 Krylov subspace methods

Multiple parallel Krylov methods where implemented for the the incompressible problem
eq. (3.20):
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— CG [163];

— GMRES [164];

— BiCGSTAB [117];
— IDR(s)*"! [165].
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Algorithm 8: Preconditioned parallel Bi-CGSTAB [117, 166].

1 sync__halo(xg) I MPI - planes
2 T =g I'initial guess
3 r9g:=b— Ax !initial residual
4 pi=r:=rmg

5 while norm?(r) > tolerance do

6 pPI=T-Tg ! co_sum()
7 p:=(prec)? M 'p:p ! optional preconditioner step
8 sync__halo(p) I MPI - planes
9 q:=Ap

10 a:=p/(q-mrg) ! co_sum()
11 s:=7r—aq ! stabilizer
12 5:= (prec)? M~'s:s ! optional preconditioner step
13 | sync_halo($) I MPI - planes
14 t:=As

15 w:=(t-s)/(t-t) ! co_sum()
16 T +=apt+ws

17 ri=8—wt

18 B={r-ro)/p)*(a/w) ! co_sum()
19 p:=r+0[(p—-—wq) | search direction vector
20 end

We describe the parallel BiCGST AB pseudo-code in algorithm 8, which has been found
to outperform all other methods for this particular problem. The lines with sync_ halo
indicate inter process communications which usually are a bottleneck for strong scaling of
the problem (prefixed with co to denote collective operations). p is the search direction,
7 is the residual, and s is the residual after application of a Bi-CG step. w is chosen to
minimize r = (I —wA)s . Consecutive residuals are orthogonal, and consecutive search
directions are conjugate. q and t are temporary storage for matrix vector products.
Application of a preconditioner is denoted by .

We note that the matrix-free implementation strategy only allows to use preconditioners
which do not explicitly require to compute the inverse of a linear operator (M ~!). In
practice, when solving for p in algorithm 8, we iterate the linear system A p = p. Since

xv. BiConjugate Gradient STABilized
xvi. Induced Dimension Reduction
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M ~1 approaches in some sense A ™! we have the relationship:

~]
|

Ap: =AM ‘'p~p.

For the algorithm 8, we need to define a proper matrix vector product. Dense matrix
storage is prohibited for computational costs and storage issues. Sparse matrix storage
(CSR*Vi, CSC* ) is memory efficient, but algorithms have to be rewritten to
account for data distribution and distributed operations which require more complexity.
Alternatively, for a compact stencil, we can store the linear operator coefficient in the
n + 1 dimension of a regular n dimensional array, as shown in listing 1, to define
a matrix-free algorithm. The macros IJK represents the multi-dimensional bounds,
SIJK(...) allows to shift the input vector block along a specific direction, and map(...)
is a mapping of the displacement to an array index in order to fetch the coefficients for
the five points stencil. With this approach, some extra computations are done with zero
valued coeflicients, but those extra operations are overall a minor extra cost over clarity,
simplicity of the implementation and communications.

! pre-condition: synchronization of local the input wvector b
I ITJK := (lo(1):hi(1),10(2):hi(2),10(3):hi(3))
I > block selection in the z, y and z directions
! SIJK(-1,0,0) := (lo(1)-1:hi(1)-1,10(2):hi(2),10(3):h1(3))
I > shift by -1 unit in the x= direction
! map (0, 0, 0)
! > diagonal coefficient of the linear operator
c(IJK) = (&
A(IJK, map(0, 0, 0)) * b(IJK) + &
A(IJK, map(-1, 0, 0)) * b(SIJK(-1, 0, 0))
A(IJK, map(+1, 0, 0)) * b(SIJK(+1, 0, 0))
A(IJK, map(0, -1, 0)) * b(SIJK(0, -1, 0))
A(IJK, map(0, +1, 0)) * b(SIJK(0, +1, 0))
*
*

LR

A(IJK, map(0, 0, -1)) b(SIJK(O, 0, -1))
A(IJK, map(0, 0, +1)) b(SIJK(0, 0, +1))

&+ + + + +

)

Listing 1 — Compact matrix-free vector product for the five-points stencil, in Fortran.

The fig. 3.33 shows the residual reduction in the ¢ norm. We observe three phases:
first a super-linear rate of convergence below the first ten iterations, then a sub-linear
phase for the next 150 iterations, followed by a second super-linear convergence rate for
the next 50 iterations. The convergence criterion was set to 1- 107> on the norm of the

xvii. Compressed Sparse Row
xviii. Compressed Sparse Column
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Figure 3.33 — BiCGST AB residuals for the two-phase problem.

relative residual:
norm?(b — Ax)

norm?(b)

I'€Syre] —

The slow convergence of the iterative method, and the amount of required communica-
tion increasing with the domain decomposition indicate that a better pressure solving
method is needed in the multiphase formulation. This is why we interest ourselves in
accelerators such as the multi-grid method in section 3.3.4.2.

‘ norm ‘ £ ‘ A ‘ 2 ‘
| presolve | 2731 | .9045-10° | 35380 |
| post-solve | .5221-1077 | .2180-107% | .9392- 1077 |
| reduction factor | 5231-10' | .4148-10® | .3768-10° |

Table 3.4 — Pressure residual norms for a chosen criterion 1-107° in the ¢2 norm.

The iterative method allows to strictly reduce the divergence of the fluid in any chosen
norm table 3.4. We usually choose the ¢? norm, but the ¢*° can also be chosen as a
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Figure 3.34 — Post BiCGST AB velocity divergence pattern.
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relaxed criterion since the local expansion/compression of the fluid is of interest and not
necessarily the whole domain reduction. Hence, as soon as the maximum value of the
residual is small enough, the incompressibility of the fluid is locally enforced up to the
given precision. In our opinion, the ¢ is thus the best compromise between accuracy
and costs in terms of FLOPS XX,

3.3.4.2 Multi-grid methods
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Figure 3.35 — Multi-grid strategy for linear systems.

Algorithm 9: Two Grid Method.

1 2= S (z,b) ! pre-smoothing with 1y, iterations

2 d:=Ri(b— Ajx) ! defect computation and restriction to a coarser
grid

3 e:= A;ld ' solve the coarse problem (error as a function of the
defect)

4 x += Pse ! prolongation and correction step

5 = S (x,b) ! post-smoothing with 1pes¢ iterations

Multiple multi-level strategies are available, usually allowing to spend more time on the
coarsest levels, where computations are the cheapest.

For the inter-level restriction, we use simple weighted cell averaging, and straight in-
jection on boundary nodes when needed. Following the conclusions of [167], we use a
higher order interpolation operator (surface interpolation in two-dimensions and cubic
interpolation in three-dimensions).

The restriction of the linear operator to the coarser level is prone to discussion. The
Galerkin method restricts the linear operator onto the subspace of the coarser grid

xix. Floating Point Operations per Second



98 CHAPTER 3. MODELLING AND NUMERICAL METHODS

A°¢:= RA/P . The method is quite costly since it requires time consuming parallel
matrix-matrix products, and additional storage since each interpolation and restriction
operator spreads out the finer stencil used [161, 168]. An alternative approach is the
assembly of the linear operator on each sub-grid. This approach is problem dependent,
since it now depends on how the PDE(s) on the fine grid is solved on the coarse grid. For
cell centred multi-grid, we use the same boundary conditions, and the same averaging
process for the densities onto the facets. The density field is projected onto the coarser
grid using the same weighted operator presented before.

Relaxation on the grid also needs to be discussed. For the multiphase problem, we
found that using either Jacobi or parallel RBGS** did not improve the reduction of the
residual. Even worse, the residual followed an oscillating pattern (periodic increase and
reduction), often leading to non-convergence of the pseudo-time pressure loop. We first
considered potential issues with the imposed BC(s), and afterwards with the domain
decomposition and parallelism, but the implementation proved to be correct since the
two-phase solver with density p set equal for the two-phases was converging to the
required tolerance. The only convergent method was to reuse the Krylov methods (direct
coarsest solver) as a pre/post smoother. Some authors [169, 170] seemed to hit similar
issues.

The MG method using non-Galerkin approach shows on fig. 3.36 the concentration of
the residual velocity divergence along the interface, as opposed to the fig. 3.34, where
interface position cannot be inferred from the residual pattern.

The listing 2 shows the convergence results for a one-dimensional multi-grid on 6 levels
with fine-grid resolution of 1024 cells and 1025 nodes. The error is computed with re-
spect to an analytical solution for the chosen RH.S. The Poisson problem is solved for a
sinusoidal RH S on an appropriate domain with 0 valued Dirichlet boundary condition.
The convergence factor around 1 / 3 is reasonable and increasing with the number of
V-cycles as expected. Grid unknowns are kept odd for nodal multi-grid and even for
the cell centred version across all levels, for consistency with the spatial spacing along
boundary conditions. The non-square interpolation and restriction operators (not neces-
sary symmetric: P # R! for a cell-centred multigrid) are key to the correct convergence
of the method, especially the consistency of BC(s) injection/interpolation on fine and
coarser levels. The linear operator is restricted to the coarser grid (Galerkin method)
resulting in denser matrix as the depth increases, and is not practically usable as is for
three-dimensional real case problems, or as in our case where the operator coefficients
are stored in a fixed size array as exposed in listing 1. We use vpre = 5 and vpest = 5
pre/post-smoothing G'S iterations on each grid level, and the recursive version of algo-
rithm 9. This version will be kept for reference mostly for inter-level transfer operators
(injection, half or full-weighting) since we use a cell-centred approach, and non-Galerkin
linear operator, and will serve as a basis for the development of a variable coefficient
Poisson multi-grid accelerator.

xx. Red-Black Gauss-Seidel



3.3. NUMERICAL METHODS 99

— 7.3e-0

e
-5.9e-(

Figure 3.36 — Post MG *¥(2) velocity divergence pattern.
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|step | rel_err | rel_res | cv ||step | rel_err | rel_res | cv |
| 0| 6.19e+01 | 3.90e+04 | 1.00 || 0 | 4.85e+00 | 3.90e+04 | 1.00 |
| 1| 5.35e+00 | 2.85e+03 | 0.07 || 1 | 1.61e+00 | 3.06e+03 | 0.08 |
| 2] 1.74e+00 | 5.75e+02 | 0.20 || 2 | 5.64e-01 | 6.99e+02 | 0.23 |
| 3] 3.30e-01 | 1.33e+02 | 0.23 || 3 | 2.01e-01 | 1.83e+02 | 0.26 |
| 4] 9.69e-02 | 3.30e+01 | 0.25 || 4 | 7.23e-02 | 5.14e+01 | 0.28 |
| 5| 3.18¢-02 | 8.55e+00 | 0.26 || 5 | 2.61e-02 | 1.50e+01 | 0.29 |
| 6| 1.03e-02 | 2.31e+00 | 0.27 || 6 | 9.45e-03 | 4.59e+00 | 0.30 |
| 7 | 3.47e-03 | 6.51e-01 | 0.28 || 7 | 3.42e-03 | 1.43e+00 | 0.31 |
| 8] 1.15e-03 | 1.90e-01 | 0.29 || 8 | 1.24e-03 | 4.58e-01 | 0.32 |
| 9| 3.84e-04 | 5.73e-02 | 0.30 || 9 | 4.52e-04 | 1.48e-01 | 0.32 |
| 10 | 1.28e-04 | 1.76e-02 | 0.31 || 10 | 1.64e-04 | 4.86e-02 | 0.33 |
| 11 | 4.30e-05 | 5.52e-03 | 0.31 || 11 | 5.98e-05 | 1.60e-02 | 0.33 |
| 12 | 1.45e-05 | 1.75e-03 | 0.32 || 12 | 2.17e-05 | 5.32e-03 | 0.33 |
| 13 | 4.92e-06 | 5.60e-04 | 0.32 || 13 | 7.92e-06 | 1.77e-03 | 0.33 |
| 14 | 1.67e-06 | 1.80e-04 | 0.32 || 14 | 2.88e-06 | 5.92e-04 | 0.33 |
| 15 | 5.72e-07 | 5.83e-05 | 0.32 || 15 | 1.04e-06 | 1.98e-04 | 0.34 |
| 16 | 1.96e-07 | 1.89e-05 | 0.33 || 16 | 3.80e-07 | 6.69e-05 | 0.34 |
| 17 | 6.76e-08 | 6.20e-06 | 0.33 || 17 | 1.38e-07 | 2.25e-05 | 0.34 |
| 18 | 2.34e-08 | 2.03e-06 | 0.33 || 18 | 5.02e-08 | 7.64e-06 | 0.34 |
| 19 | 8.12e-09 | 6.72e-07 | 0.33 || 19 | 1.82e-08 | 2.59e-06 | 0.34 |
| 20 | 2.82e-09 | 2.22e-07 | 0.33 || 20 | 6.62e-09 | 8.84e-07 | 0.34 |
| 21 | 9.87e-10 | 7.42e-08 | 0.33 || 21 | 2.40e-09 | 3.02e-07 | 0.34 |
| 22 | 3.45e-10 | 2.48e-08 | 0.33 || 22 | 8.71e-10 | 1.03e-07 | 0.34 |
| 23 | 1.21e-10 | 8.34e-09 | 0.34 || 23 | 3.16e-10 | 3.55e-08 | 0.34 |
| 24 | 4.25e-11 | 2.81e-09 | 0.34 || 24 | 1.14e-10 | 1.22e-08 | 0.34 |
| 25 | 1.50e-11 | 9.54e-10 | 0.34 || 25 | 4.15e-11 | 4.22e-09 | 0.35 |
| 26 | 5.20e-12 | 3.24e-10 | 0.34 || 26 | 1.50e-11 | 1.46e-09 | 0.35 |
| 27 | 1.92e-12 | 1.10e-10 | 0.34 || 27 | 5.49e-12 | 5.06e-10 | 0.35 |

| 28 | 2.04e-12 | 1.75e-10 | 0.35 |

Listing 2 — Error, residuals and convergence rate for cell-centred (left) and nodal
(right) one-dimensional V-cycle multi-grid.
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In our late experiments, we have found that using the algorithm 8 with a multi-grid
preconditioner is more efficient than solving the problem using a multi-grid such as
the algorithm 9 with Krylov methods or RBGS as smoother and bottom solver. On
fig. 3.37 we solve a three-dimensional problem with 323 unknowns, with and without
preconditioning the algorithm 8. In fig. 3.37a, the solver reaches the requested decrease
ratio of the residual of 1-107° in 237 iterations. However, when using 4 grid levels,
the iterations for each level towards the coarsest are {71,65,65,65}, for a total of 266
iterations. The solver is optimal in a sense since one iteration of the preconditioned
problem reaches a decrease of one decade on the residual on fig. 3.37b. The total number
of iterations is similar (minus the extra cost for the inter-grid interpolation (prolongation)
and restriction), but the resolution is cheaper since the number of unknowns on each
grid decrease with a factor 2", where n is the dimensionality of the code.
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Figure 3.37 — Preconditioner using multi-grid acceleration.
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3.3.4.3 Spectral methods

The method exploits the fact that the basis functions of the Fourier transform are eigen-
functions of the discrete Laplace operator. Hence, the algorithms performs a forward
Fourier transform on the RHS of eq. (3.20), a scaling is performed on the Fourier ex-
pansion, and a backward Fourier expansion is applied to yield the pressure. However,
the fast spectral solvers using the Fourier transform expansion require constant spatial
coefficients [171].

As an alternative to this problem, a strategy is proposed to split the problem into a
standard Poisson equation. The LHS** can be split into an explicit and an implicit

parts:
1

pn—i-l

1 1 1
Vpn+1 N 7vpn+l + ( — o ) Vf),
Pmin P Pmin

where p is an explicit pressure extrapolation of p™.

This yields a Poisson type equation with constant coefficients (thus avoiding the need to
assemble a linear system per timestep), which is to be solved by a fast spectral solver:

2, n+1 _ . 1 Pmin ~ Pmin o
Vil = v K pn+1>Vp]+ Y.

We implemented this approach using the open-source library PoisF FT ¥ [172], which
uses a parallel implementation of the FFT [173, 174]. However, results were inconsistent
and the method has to be reworked, starting with a simple one-dimensional F'F'T" code
from scratch that we would extend to n-dimensions. Moreover, the incompressibility
of the fluid at the interface was not enforced, contrarily to the approaches exposed in
section 3.3.4.1.

xxii. Left-Hand Side

xxiii. Fast Fourier Transform
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3.3.5 Multi-dimensional splitting

The numerical methods developed all along the section 3.3 will be implemented on one-
dimensional cases before being extended to multiple dimensions. We therefore expose
the concept of splitting methods, and how the choice of a particular method over another
can affect the numerical results. We will expose the splitting of NSE(s) operators, and
expose some validation test cases.

3.3.5.1 General splitting methods

We now reconsider eq. (3.54) in multiple dimensions:

of ~
o TV el =0, (3.68)

where ¢(f) corresponds to the numerical flux of f across cell boundaries for the FV M.

Multiple strategies exist for updating the variable f. One can first compute all fluxes
from the variable available at time m, and once the fluxes are computed, update the
variable to time n + 1 : this is the unsplit method.

Alternatively, composing the directional update is called a Lie splitting [175, 176]. As an
example, we consider the following initial value problem with ordinary linear differential
operators A = aa% and B = ba% :

fe=Af+Bf, (3.69)
f(0) = fo. '
The exact solution of the system eq. (3.69) is f(t) = foe(A+B)t,
Using a Lie splitting, we write:
eAAteBAth , or
fo(At) = {eBAteAAtfo_ (3.70)

The splitting error, after Taylor expansion and appropriate truncature is thus:

fr(At) — f(AL) = { (1 + ANt + AQA;Q +0 (At3>> : (1 + BAt+ BQA;Q +0 (At3)>

_ <1+(A+B)At+(A—|—B)2A2t2+(’)(At3)>}f0

At?

= A, B~ fo+0(A)

where [A, B] is the commutator AB — BA.
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Since the truncature error is of order O (AtQ), the Lie splitting is thus, in general, only
first order accurate.

An alternative is the Strang splitting [177]:

AD/2BALAN2 o

fL(At) = {GBAt/QeAAteAAtme_ (3.71)

The truncature error when using this splitting reads:

At At? At? 4
Fs(AL) — f(AL) = { (1 AT AT AT 10 (at ))

2 3
: (1 + BAt + 32% S e (At‘*))

6
At A2 A 4
'<1+A2+A < 4 4—8+O(At)

- <1+(A+B)At+(A+B)2A;2 +(A+B)3A6tg +O<At4)>}f0

B?A BAB AB? A’B ABA BA? 3 A
_<12 T T2 o T T 24>f0At+O(At)

_ (112[B, [B,AH _ 2714[147 [A7 BH) foAt?’ + O (At4) .

Using the Strang splitting leads to a second order accurate scheme.

From the splitting methods eq. (3.71) and eq. (3.70), one can construct a family of
weighted splitting for example the SW S splitting [178, 179]:

fSWS(At) _ (eAAteBAt + eBAteAAt) fo/2.

This method uses algebraic cancellation of the commutator term in the Lie splitting,
and allows a global O (At?) time accuracy.

According to [140], bi-dimensional split schemes are at most first order accurate in time.

3.3.5.2 Convective operator
The convective operator of the Navier-Stokes Equation(s) is written:

U2 uv  uw

1
A:#p vu V2 vw | -nds.
Vs 2

wu wv w

i. Symmetrically Weighted Sequential
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Applying second order central F'D(s) on the spatial z,y, z components of the convective
operator A :

x

" 1
(A$)i—1/2,j,k =7 #q(pu ®@u)-nds
1

AxAyAz [((puu)i,jvk — (pun)i—1,jk) AyAz (3.72)

+ ((puv)i—l/Z,j+1/2,k - (puv)i—l/Z,j—1/2,k) AzAz
+ ((puw)i71/2,j,k+1/2 - (Puw)i71/2,j,k71/2) AmAy}

1
Ay)i;- Z#pw@u-nds
1
- AzAyAz [<(pvu)i+1/27j—l/2,k - (pvu)i—1/2,j—1/27k) AyAz
+ ((pvv)ijk — (pvv)ij—1k) AzAz

+ ((pvw)i,jfl/2,k+l/2 - (pvw)i,jfl/Z,k71/2) ACCA?J]

n 1
(A2)} p1y2 = v #é(ﬂu ®u) - nds
_ 1
 AzAyAz

[((Pwu)iﬂ/z]’,kq/z - (pwu)ifl/Q,j,kfl/Z) AyAz
+ ((Pwv)z‘,j+1/2,k—1/2 - (pwv)i,j—l/Q,k—l/Q) AzAz

+ ((pww); i — (pww); jr—1) AﬂJAy] :

3.3.5.3 Diffusion operator

We first consider the bi-dimensional case:

1 2uy Uz T+ Uy
D —Vﬁgu<uy+vx 2, ) nds. (3.73)

The divergence-free flow condition:
Uy +vy =0 (3.74)

is then used to simply eq. (3.73).
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Taking the x or y derivative of eq. (3.74) yields:
Upg + Uye =0, (3.75)
Ugy + Vyy = 0.

If we use spatial constant viscosity, as it can be the case with sharp interfaces [134],
considering each fluid solely, we can write:

V-u(Vu+Vul)=pu <2um + Uy ¥ uyy> :

Uyz + Uz + 20yy
Then, using eq. (3.75):

V-u(Vu +Vaul) =p (?}m 1 Zyy> : (3.76)
we T Uyy

The equation eq. (3.76) is appealing, because the diffusive term does not depend on
coupled terms. However, this is not the case when the equation considered are three-
dimensional.

‘We now consider the three-dimensional case:

1 2y Vg + Uy Wz + Uy
D—V#u Uy + Vg 2vy wy +v; | - ds.
s Uy + Wy VU + Wy 2w,

The divergence-free flow condition:
Uy + vy +w, =0
implies:

Ugy + Vyz + Wey =0,
Ugy + Vyy + Wzy =0,
Upz + Uy + Wz, =0 (3.77)

As previously, assume a constant viscosity for each phase, on both sides of the interface:

2Ugy + Vgy + Uyy + Wez + Usz
Veu(Vu +Vul) = p | uye + ve + 20y + wys + 02,
Uzg + Wag + Vay + Wyy + 2w,

Then, using eq. (3.77):

Ugy + Uyy + Uzz
Veu(Vu +Vul) =p| vee + Vyy + V22
Wyr + Wyy + Wy
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For the discretization of the diffusive operator D , we use first order F'D(s):

n 1
(D2)_1p250 = 3 #;M(VU +Vu') - nds

1
- AzAyAz {[N(qu)i,j,k — p(2ug)i—1,5k] AyAz

+ [y +v2)iz1/2, 54172k — WUy + V2)im1/2,j—1/2 k] ATAZ
+ [p(ue +we)im1/2,5 k4172 — #(uz + ww)z‘—l/Q,j,k—uQ]AfCAy}

xT

(3.78)

1
(DY)ij-1/20 = v # w(Vu +Vu') - nds
S Yy
1
= m {[N(Ux + uy)i+1/2,j71/2,k — vz + uy)i71/2,j71/2,k]AyAZ
+ [1(2vy)i ik — 1(20y )i j—1,4] ATAZ
+ [p(vs + wy)i7j—1/2,k+1/2 — p(v; + wy)i,j—1/2,k—1/2]AxAy}
n 1 t
(Dz)id’k_U2 =7 S,u,(Vu +Vu') - nds
1
= m {[M(wx + Uz)i+1/2,j,k71/2 — p(wy + uz)ifl/Z,j,kfl/Q]AyAz

+ [(wy +v2); 541 /2,6—172 — Wy + V2)i j—1/2.k—1/2] ATA2
+ (2w )i gk — N(sz)i,j,k—l]A‘TAy} :

3.3.5.4 Bi-dimensional splitting on high order schemes

In this test case [149, 180], a deformative velocity field is applied to a bi-dimensional
field. The flow sign is reversed at ¢ = T/ 2, so that the time ¢ = T should in theory
yield the initial condition at t = 0.

This test case takes an initial bi-dimensional scalar field in a unit length box z,y €
[0; 1], with an initial condition set to represent height levels. We thus plot in 3D a
cone, with a singular maximum, a smoothly varying shape - bump, and a slotted disk
(U-shape). Each shape has interesting properties from a numerical point of view, as
mentioned in section 3.3.1.2. The radial velocity field (counter-clockwise rotation) is
applied with maximum located at R = .25, centred at (x,y) = (.5,.5), and a minimum
at R = 0 and 1. Consequently, the maximal deformation is observed in the annular
portion around R = .25 for 6 € [0;27]. The fig. 3.38 exposes the field at instant of
maximal deformation ¢ = 7'/ 2 in blue with the initial condition in green. The flow sign
is now reversed so that the velocity field acts positively in the clockwise direction. At
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Figure 3.40 — Slices along the z and y directions.
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t =T, the fig. 3.39 shows the numerical computed field in blue superimposed with the
initial condition, the goal being to recover the initial field with the least spatial error
in the chosen norm. The diffusive upwind scheme is also plotted in order to assess the
improvements brought by the flux limiting approaches. Even with fine grid resolution,
the upwind scheme eventually smears the interface in transient or steady state. Slices at
x =.5 and y = .5 are extracted from fig. 3.39 (top view) and displayed in fig. 3.40 (side
view). For the pyramid on the right figure, the UB seems to be unstable, with a local
compressive effect. However, the maxima is conserved accurately (maximum principle).
On the other hand, the SB scheme has a global compressive behaviour as seen on the left
figure, with the bump gradually becoming a gate function. Also, we observe consequent
loss of the maximum value on the pyramid singular point. Finally, the NB seems to
be a good compromise between accuracy of the solution (conservation of the integral
properties, hence mass) and spatial diffusion. This behaviour is also consistent on the
right figure, with the fusion of the points of the U shape in the slotted disk. As the
theory predict, a stiff interface should diffuse on at most one cell (1D) and 2 or 3 cells
(2D).

3.3.5.5 Three-dimensional splitting on high order schemes

Figure 3.41 — Streamlines for the deformative test case [181].

The fig. 3.41 exposes the streamlines corresponding to a periodic velocity field modulated
in time. At time 7'/ 2, the sign of the velocity is reversed, and we should in theory be
able to recover the initial condition with some numerical errors. The sequence in fig. 3.42
shows the droplet deformation within the range ¢ € [0;7]. This was used for example
in [24] with the LSM. We use here the scheme of [46], with a density ratio of 1000,
and an isocontour of 500. The sphere is deformed by the counter rotating vortices, and
some limitation of the numerical method used is to be seen when a trailing film appears
because of the squeezing effect. The challenge is to recover the total mass when the film
is of the order of a unit or a few cells. The thin interface is challenging for the algorithm,
since it performs less well with velocities tangent to the interface. In order to increase
the accuracy of the method with flux limited schemes a candidate approach would be to
use adaptive refinement where the thinning of the interface is excessive [182].
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Figure 3.42 — Back and forth movement of a droplet in a deformative velocity field.
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3.3.6 Fluid - solid coupling strategy

The previous parts was dedicated to the numerical methods for the fluid part. We will
now justify the choices made for the numerical simulation of immersed boundaries, and
how the information from one solver is transferred to another.

3.3.6.1 Coupling schemes

In order to transfer information from one solver to another, one has to choose the order of
integration. Monolithic algorithms solve the equations simultaneously (strong coupling
[183]), while loosely coupled algorithms induces time lag between solvers, and thus errors
[184]. The possible choices are:

— explicit;

— semi-explicit;

— implicit.

A full implicit fluid solver might be interesting when the computational overhead induced
by assembling and solving a linear system for multiple unknowns (velocities, pressure,
...) is balanced by allowing larger time-steps. Also, an implicit scheme induces a residual
criterion, which is prone to tuning. In some of our test cases, topological source term
(surface tension) dominates the time-step restriction, and we chose to take the explicit
approach for the fluid solver.

The different forcing methods [125] are:
— continuous forcing, where a term is added to the continuous NSE(s), before
discretization;
— discrete forcing, for which a term is inserted after discretization: this offers inter-
esting properties in term of numerical spreading, numerical stability, and discrete
laws of conservation.

3.3.6.2 Implicit coupling

Numerical boundary conditions can be imposed in a direct or an indirect manner. Indi-
rect forcing was introduced by [186, 187]: the imposed velocity field originates from the
prediction step in the method of resolution of the NSFE(s). The boundary is thus neces-
sarily spread over one or more conservation volumes, which locally modifies the physics
close to the tube walls. On the contrary, direct forcing imposes numerical behaviour
on the boundary, for instance by modifying the local stencil. However, this method is
likely to cause numerical issues, when derivatives are non-continuous. For instance in
[188], the authors propose to linearly interpolate the velocity in the cylinder tangential
direction (i.e. when velocity gradients are sufficiently smooth), while proposing a higher
order (quadratic interpolation) in the normal direction.
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Figure 3.43 — Fluid - solid codes coupling [185].

As a work hypothesis, we choose to model the tube behaviour with a damped oscillator
equation [189]. Then, we suppose that the fluid force exerted on the solid can be decom-
posed into a random excitation force and a fluid-elastic force [54]. This decomposition is
only valid under the hypothesis of small displacements of the tube against its geometry,
hence in this case the diameter of the tube. Finally, we suppose that a linearisation of
the mass, damping and stiffness terms is possible under the previous hypothesis [55].

We begin with the equation of a damped oscillator:

(ms +ma)q + (¢s + ca) @ + (ks + ka)a = fre(t) + falt). (3.79)

The numerical integration of eq. (3.79) leaves the choice of the method of integration.
The Newmark method is a numerical method, whose purpose is to solve non-linear
second order differential equations. This method is used in the coupling of the solver as
depicted in fig. 3.43.

The displacement and the velocity can be decomposed into a Taylor expansion:

2 8 (@) (z — a)k
> ()]i! ) 7

k=0
under the following formulation:

tn+1

Fltn+h) = fltn)+h.f'(t )+h—2f”(t )+---+h—kf<’“)(t )+l / FEED () (t+h—1)F dr
n - n . n 2 n k! n ,IC! n .

tn
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We can thus write:

tn+1
Qn-i-l =qn+ / Q(T) dr, (380&)
tn
tn+1
gn+1=qn+hqg,+ / q(r)(tpsr —7)dr. (3.80b)

ln

On the other hand, for 7 € [ty;t,41] :

(tn — 7')2

R (3.81a)

dn=d(r) + a9 (1)(ta — 1) + ¢W(7)
2

e = (1) + a0 )t~ 1)+ OO @

By multiplying eq. (3.81a) by 1—+ and eq. (3.81b) by 7, we obtain the following equality:

Q(1) = (1 =) @n+7dnt1 + ()7 = by =) + 0 (g W) .

We now write:

lnt1 lniy1
g(r)dr = / (1= @n+7dns1 + aD @) = hy =) + O (h?q™) | ar,

tn ln

tn+1
=1 =9)hqn+vhqn+1 + / q(3)(7')(7' —hy—t,)dr+ O (h3q(4)) ,

t’!L

2 tn,+1
— (1 ki ’ @) (=) [ (T hy = ta)” 3, (4)
tn<f<t7(’L:4l-1 N+ 3han+ a(7) l 2 +0 (h 1 ) ’

1
= (U= b+ i + (5 -7 ) D@ 0 (a®) . (352

Tn
In a similar fashion,

(1 —2B)eq. (3.81a) + (28)eq. (3.81b)
= 4(7)
= (1= 28)dn +2B84ni1 + ¢P(7)(7 = 218 — t,) + O (h2qW) |
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leads to:

tn41

4Nt =) dr = (5= B) B2 + B2+ (G - 8) a7 + 0 (' q W)

T
(3.83)
Finally, by reporting eq. (3.81b) in eq. (3.80a) and eq. (3.83) in eq. (3.80b) we obtain:
Gn+1=qn+ (1 =7hGn+vhGni1,
A 1 . .
Ani1 = qn+hgn + 1 (2 - B) dn+ P2 Bdns . (3.84)
A necessary and sufficient condition for the convergence of a numerical scheme is the
consistency and the stability of the scheme. Consistency is achieved if the discretized

numerical tends to the exact solution when the spatial and temporal spacing are refined,
which can be written formally as: }Lin%) w = u(t,).
—

Taking the former and applying it to the chosen numerical method:

. Unt1l — Up . (1 - V)QH +7i1n+1 o qn
W T g h( S B) g, +/3hqn+1] B [q] '
algorithm v I5} properties
explicit 0 0 explicit - unstable
finite differences 1/2 10 explicit - conditionally stable
Fox & Goodwin 1/2 | 1/12 | implicit - conditionally stable
linear acceleration 1/211/6 | —"—
average acceleration | 1/2 | 1/4 | implicit - unconditionally stable

Table 3.5 — Properties of the Newmark algorithm as a function of the parameters «
and (3.

On the other hand, the stability of the method is subject to the parameters v and 3, as
exposed in table 3.5.
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3.4 Domain decomposition and implementation

After having defined a discretization and suitable numerical methods, we expose the
domain decomposition approach for parallel simulation. Therefore, we will have to
choose a programming language based on several requirements. For structured grids,
modern Fortran' is an adapted language with its native multi-dimensional array sup-
port. Domain decomposition has been implemented with the help of both Coarrays [190]
(Fortran 2008 standard) and regular arrays with the help of a M PI library. The dual
communication-layer strategy serves as a validation of the inter-process (or inter-nodal)
data exchange since the Coarrays library mimics shared memory access on a remote
process and M PI provides the performance of blocked communications. However, we
found that Coarray Fortran, as implemented in open-source compilers lacks performance
and robustness, and should only be used for prototyping codes. Especially, the compiler
delegates communication to an external library, and this change of behaviour with the
-fcoarray=lib compiler flag can — and does in real practice — trigger specific IC E(s) 11l
which are hard to get rid of (however, recent compiler aware OpenCoarrays version
> 2.2.0 should be relatively bug free). For communications other than halo synchro-
nizations, one-sided communications using RM A" is used as described in algorithm 10.
The whole code was prototyped in Python language with C' language bindings for crit-
ical parts in a serial version. The code was then ported to Fortran for distributed
computation among nodes with possible heterogeneous processing units.

i. FORmula TRANslator

ii. Message Passing Interface
iii. Internal Compiler Error(s)
iv. Remote Memory Access
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Algorithm 10: One sided communication.

1 acquire a global window lock

| phase 1

for each process in a communicator do

insert the slab information in an integer shared window on the target

w N

process

4 end
5 release the global window lock
! phase 2
6 for each process in a communicator do

7 if request present in local window then
8 perform the non-blocking send of the required array section using the
local window
9 end
10 end

| phase 3
11 for each process in a communicator do
12 if data requested in phase 1 then
13 wait until reception and move the data buffer into the final array section
14 end
15 end
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3.4.1 Conventions and sequencing

[ 2
Tz’,j,k+1/2
[ ]
° \ ,4}+1/2,k
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Figure 3.44 — Velocities control volumes, with ’left’ convention.

Regular array decomposition induces overlap of unknowns. The convention used is the
ownership of ’left’ facet data by the current process. Hence, the right facet on the
fig. 3.44 must locally be overwritten by data fetched — and thus computed or owned —
on the remote process. The same reasoning applies for nodal and edge unknowns, since
only cell-centred data does not overlap. The decomposition of sub-blocks is as follows:
each process owns a three dimensional number of ¢ - j - k£ cells in the euclidean space.
The process locally sees (i +1) - (7 + 1) - (k 4+ 1) nodes, together with:

— (i+1)-j - k facet velocities (u), along the = direction;

— i+ (j+1) -k facet velocities (v), along the y direction;

— i+ (k+1) facet velocities (w), along the z direction.

Accordingly, n layers of phantom (ghost) cells are added along each direction for halo
synchronization. This decomposition, closest to the discretization taken, allows vector-
ized computation, strided access and easy pointer reshapes.

The top-level solver loop is described in algorithm 11, and reflects a high-level implemen-
tation structure, and we will now describe each computational step. We first compute
the current timestep for the range [t";¢""1] based on the current velocities using the
eq. (3.53). The immersed boundaries are updated using an extrapolation of F" ~ F"~1
from the previous timestep, under the assumption of small displacements (using an
explicit formulation for the fluid solver enforces this restriction). The density field is
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regularized using algorithm 1:
p = function(p) .

Vertices normals are computed using at least second order finite differences for accuracy
using p. Facet curvatures can now be extracted from vertex normals using eq. (3.49).
Control volume facet surface tension pulse is computed using density gradients magni-
tude and is oriented along the aforementioned normals. The predicted velocity w™t1/2
is assembled using:

— convective operator of section 3.3.5.2 and eq. (3.72), or a higher order scheme

described in section 3.3.2;

— diffusive operator of section 3.3.5.3 and eq. (3.78);

— buoyancy terms eq. (4.9);

— capillary terms eq. (3.48).
An optional implicit step is performed for the viscous operator applying algorithm 7
to compute %", Velocity is imposed from the solid part to the fluid fields, with
the pressure spikes regularization method described in section 3.5.3. This step occurs
before the pressure splitting step, because the velocity transition from the solid phase
to the fluid phase is not divergence free, resulting in potential expansion of the fluid
and gain/loss of mass. An implicitation step is now applied for the two-phase Poisson
equation as exposed in section 3.3.4:

v . <1vpn+1> — iv . ,dn+1
p At ’
using iterative methods and optional multi-grid acceleration of section 3.3.4.2. Hereby
follows the correction step using the new pressure multiplier eq. (3.19). The forces around
the immersed obstacle F7! are computed using the divergence free velocity u™! and

pressure p"t1:
F™! — function(u™ ™, p™ Ty

and will be used in the next timestep using extrapolation. The density is convected in a
conservative way as a passive scalar using eq. (3.63), where each flux is computed using
either algorithm 5 or algorithm 6, depending on the chosen formalism for flux limited
schemes as seen in section 3.3.1.2. From the new computed density p"t!, we extrapolate
the updated viscosity u"*! using eq. (3.17).
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Algorithm 11: Temporal discretization.

1 fields initialization or computation restart from a checkpoint (density, velocities,

pressure)

2 while end of computation not reached do

3 timestep restriction update eq. (3.53)

4 IBM displacement of the obstacles, compute new positions

5 regularization of the density field for capillary term using algorithm 2

6 advection operator contribution from the previous velocity field u”

7 diffusion operator contribution from the previous velocity field u”

8 capillary operator contribution (curvatures and capillary force computation)
9 velocity prediction step (using explicit or semi-implicit step)
10 IBM contribution (force solid velocities inside the fluid solver)
11 implicit pressure step for the spatially variable pressure part of the NSE(s)
12 velocity correction step for divergence free flows
13 computation of the fluid forces on the obstacles for the I BM

14 conservative phase transport eq. (3.63)

15 viscosities extrapolation eq. (3.17)

16 periodic insitu post treatment and data input/output
17 end

18 memory release and exit

3.4.2 Performance

The fig. 3.45 shows the strong scaling on the first steps on the bubble rise test case. For a
fixed problem size, the program is run under increasing number of processes, with extra
care for performance flags (compilation, linking to external libraries), CPU - memory
affinities, input/output minimization. The speed-up and efficiency observed on fig. 3.45
are reasonable for such application, but the code has to be run over multiple nodes
in a cluster NUMAY environment. Indeed, the test is biased since data movement
does not transit over the network. Using hyper-threading (logical cores exceeding the
numbers of physical cores) deteriorates speed-up: we only show speed-up for p <= 16
processes. Although it is interesting to develop a highly optimized code with excellent
scaling capabilities, it is beyond the development of a “proof of concept” code.

v. Non Uniform Memory Access
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Figure 3.45 — Strong-scaling for the bubble rise problem (M G(2) pressure solver).
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3.5 Validation

Before analysing and interpreting results, there is a need to quantify and assess the lim-
itations of the numerical methods or models. It thus necessary to establish a validation
criterion that allows an objective quantification of the difference between the results
and what is observed in reality. This validation process is usually done by testing each
model or scheme within an isolated framework, where analytic solution or references are
available.

3.5.1 Mono-phase flows

In order to validate the implementation of eq. (3.6), we compare code results to analytical
solutions, or make use of the MM S [191]. The method uses analytic solutions as input
fields, and the output is derived by hand for the multiple operators. Then, the numerical
solution is compared to the expected analytical solution, and an error measure can be
derived from these results.

As an example, in order to validate the diffusion operator, we impose a pressure gradient
on a three-dimensional rectangular channel and observe the Poiseuille profile. The flow
parameters are Re = 100 and p = .01.
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Figure 3.46 — Vertical and transverse velocity profiles in a rectangular channel.

The horizontal velocity profile for an arbitrary rectangular channel of width w and height
h in the y € [—w / 2;w / 2], z € [0; h] directions has the analytical solution:

) = B S L (e[ Y (05

3Ly n’oddﬁ ~ cosh(nrw / (2h h

where Ap is the imposed pressure gradient in the x direction of the length L, .

The fig. 3.46 shows satisfying superposition (agreement) of the steady state computed
profiles and the analytical profiles eq. (3.85).

i. Method of Manufactured Solutions
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3.5.2 Laplace pressure

— 4.7e+01

l -7.6e+00

Figure 3.47 — Pressure surge on a static bubble, induced by capillary forces at the
interface.

pressure

On a static droplet, with stiff interfacial terms as shown on fig. 3.48, we recover a
pressure jump of 54.6, and with a radius of .04 [m] on fig. 3.47, the mean curvature
being x = % = 25, and the error of eq. (3.7) being equal to 9[%]. This error might
be induced by curvature gradients, and errors in normals estimations. The density is
regularized using the techniques described in section 3.1.3.3. In the static droplet case, a
dynamic equilibrium of the phases must be reached in order to yield the exact pressure,

and parasitic currents as evoked in section 4.1.2 prevent this exact steady state.
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Figure 3.48 — Stiff interfacial capillary source term.
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3.5.3 Pressure oscillation regularization

Displacement of the centre of gravity toggles a state transition from a fluid state onto a
solid state and vice-versa. The effect of this transition is reflected on the pressure field
because of the instantaneous relaxation of incompressible flows. A method is therefore
sought in order to reduce the amplitude of these pressure spikes. We use the regulariza-
tion method proposed by [192].

The direct forcing consists of imposing the solid velocity on all surround fluid cells.
Consequently, the pressure solver will adapt the pressure to satisfy the numerical incom-
pressibility constraint.

When using a direct forcing, the DC' contribution to the pressure oscillation evolves
as O (%), whereas the FC'! contribution follows a O (Az) behaviour. The main
contributing mechanism is thus the transition from a fluid cell to a solid cell DC.

We use a pressure oscillation indicator: C ]2)5 = CZH —-2C,+ C’g*l, as an indicator of
pressure jump and discontinuities [125].

C %J‘SM ax quantifies the pressure oscillations, which originates from the transition of
control volume from fluid to solid state DC, whereas C %350 quantifies the solid to fluid

ii. Dead Cell
iii. Fresh Cell
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FC change of state but also the contribution of the DC cells. In [193] it is also shown
that the pressure oscillations for the DF IV method evolves as O (1) + O (Az)+ O (AA“;) ),
and O (1) + O (Azx) + O (At) for the RGY method.

We use the directional derivative Dy, f = V(f)+ u cos(f) in order to compute the surface
cylinder quantities.

In the bi-dimensional (z, z) plane we have:

u:<u1> ,n:<n1> andt:<n3>.
us ns —ni

Using the previously defined vectors, we write the normal derivative of the tangential

velocity:
Gut

% = (ulzng + u;),znl)nl e + (ulzng + U3zn1)’l’L3 es . (386)

Since the cylinder velocity is imposed, the tangential velocity is constant along the
tangential direction:

9 — wuyng —uymy =0, 387
5f — Us.n3 —uz.ny=0.
Consequently, using eq. (3.87) in eq. (3.86), we can write:
8Ut
O (u1,m1 —uz,n1)nier + (u1,n3 — uz,n3)nies
= w1, (n§ +n3) e1 —ug, (nf +nj) es
T T
=Uuip,€1 —us,€s. (3.88)

The alternative methods shown on figs. 3.50 to 3.52 expose the clear contribution to the
reduction of the numerical pressure surges observed on fig. 3.49 (coarser space step with
a factor k € {1,2,3} on the left, and reduced timestep with a factor k € {1,2,4}).

The DF method shows spurious pressure surges on the lift coefficient. The spread forcing
method fig. 3.50 allows reduction of the pressure spikes. A finer mesh contributes to the
reduction of the effect observed, whilst relaxing the timestep impacts the reduction of
the surges. The smooth regularization on fig. 3.51 and the piecewise linear regularization
of fig. 3.52 performs best for the objective.

iv. Direct Forcing
v. ReGularized DF
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3.5.4 Mono-phase cross-flow around a cylinder

The cross-flow around a cylinder test case is used in order to validate the numerical
behaviour of immersed boundaries in mono-phase flow. A stagnation zone appears to
form upstream of the cylinder. The flow departs on the upper or the lower section of
the cylinder, with possible detachment depending on the laminar/turbulent regime. The
downstream region exhibits well know Von Karman street of vortices [194] as observed
on fig. 3.53. With this kind of flow, the correct resolution of the fluid boundary layer
on the cylinder is key to capture the correct detachment frequencies in the wake of the
cylinder.

plkgm ™3] | plkgm™t-s7 [ Re[—] | Uintet [m-s!]

1. 1-1073 100 1.5
U [m-s7'] | D[m] | domain[m] | no. nodes
1. 1 2.2x.41 1025x193

Table 3.6 — Fine grid parameters for the unsteady 2D case.

We use the unsteady test case presented in [195], with focus on the 2D results of [196].
The configuration parameters are found in table 3.6, where D is the cylinder diameter,
and U = 2Ujpiet / 3 is the nondimensionalization velocity.

The pressure and viscous contributions to the total forces are computed using volumetric
integrals [[[ or surface integrals ¢f on the fixed cylinder. The inlet velocity profile is set
to u(0,z,t) = 4Uz(L, — 2)sin(rt / 8) / L% [m-s™!], and is time dependent, so that the
maximal inlet velocity is reached at t = 4 [s].

The number of control volume used for volumetric integration is nlll = 1700, whereas
the number of surface segments is n# = 1440.

On fig. 3.56, the lift coefficient matches the reference ¢; max = .5 at t = 4.9 [s] . However,
the drag coefficient seems to have been underestimated (¢gmax = 2.) at t =4.5[s].

By examination of the pressure and viscous contributions on figs. 3.54 and 3.55, this
difference might be explained by the nondimensionalized coefficient based on either
U or Ujplet -

We obtain Ap(8s) = —.067 [kg-m~!-s72] versus the reference [196] of Ap(t = 8s) =
—.111 [kg‘m_l‘s_Q] . The maximum value of the pressure difference on fig. 3.57 seems
to match the reference (maximum around Ap = 2.35 [kg-m~1-s72] at t = 4.5s]).
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Figure 3.53 — Vorticity of cross-flow around a cylinder in a channel with inlet, wall and
outflow boundaries ¢ € [0; 8] .
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Figure 3.54 — Pressure drag and lift coefficients (volumetric and surface integration).
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Figure 3.55 — Viscous contribution of the drag and lift coefficients.
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Figure 3.56 — Drag and lift coefficients of the fluid forces exerted on the fixed cylinder.
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Figure 3.57 — Pressure difference between the stagnation point and the cylinder tail
(recirculation zone).



Chapter 4

Application examples

Ce chapitre liste les exemples applicatifs obtenus a partir de la maquette finale a la
suite des validations 0D, 1D et 2D obtenues dans la partie précédente. Nous exposons
des résultats diphasiques et couplés fluide-structure. Ces exemples sont pour la plupart
observables dans la nature. Nous commencons la sous-section diphasique par le cas de la
goutte ou bulle oscillante. Cet exemple ne peut étre que reproduit de maniére numérique
ou bien en conditions d’absence de gravité. Cet exemple expose également la probléma-
tique des courants parasites résiduels observables avec ce type de méthode. L’instabilité
de Rayleigh-Taylor, consécutive a la superposition d’un fluide lourd au dessus d’un fluide
plus léger permet de se rendre compte des effets d’échelle de simulation. La rupture de
barrage, cas concret dans lequel ’écoulement rentre en régime torrentiel avec impact
brutal sur un plan vertical, expose les limites de la méthode utilisée: manque de 'effet
de compressibilité pour un gaz mais également limite d’exploitation pour des résultats
sous-résolus. L’instabilité de Kelvin-Helmholtz induite par le cisaillement de l'interface
par des vitesses opposées rend également compte des effets d’échelle pour les schémas
anti-diffusifs. Le cas test de la bulle nous permet de comparer les résultats numériques
a un benchmark de plusieurs codes numériques exposé dans la littérature. Dans ce
cas, des résultats non plus uniquement qualifiables mais également quantifiables sont
exposés. Dans la sous-section fluide-structure, la vibration d’un cylindre sous hypothese
de petits mouvements en eau stagnante permettra d’obtenir les coefficients de masse et
d’amortissement ajoutés en monophasique, qui sont a la base d’un travail sur le couplage
fluide diphasique-structure. Nous nous intéressons ensuite a la séparation d’une goutte
sur un barreau, afin d’observer le comportement numérique du code en couplage, no-
tamment a cause de la présence de points triples (gaz, liquide et solide) qui posent des
questions d’ordre physique et numérique. Enfin, nous terminons par un exemple simple
d’écoulement diphasique en faisceau de tubes, avec un tube central flexible et plusieurs
inclusions de taille différente qui pourront coalescer ou bien se séparer (phénomeéne de
rupture, ou break-up). Cette sous-section a pour objectif d’évaluer de maniere qualitative
les méthodes: une validation fine a proprement parler représente donc des perspectives
d’évolution pour des travaux futurs.

137
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4.1 Two-phase cases

In this section, we expose physical test cases using the multiphase method developed in
the section 3.3: we will use the regularization method developed in section 3.1.3.3, the
pressure solver tested in section 3.3.4 and the anti-diffusive method of section 3.3.1.2 for
conservative density transport.

4.1.1 Droplet oscillation

We now consider a test case for the multiphase problem with capillary interfacial terms.
This problem should validate the implementation of the method described in section 3.1.3.1
and section 3.2.3. According to [197-199], we can link the period of oscillation of
a deformed bubble with an ellipsoidal initial shape to the surface tension coefficient

3
T =2my/ quop, where 74 is the equilibrium radius of the drop and p is the density of the
fluid in the droplet.

The n'" mode of oscillation of a inviscid droplet/bubble in three-dimensions can be
written as [200-202]:

W=t = \/ ((n+1)p2 +np1)rd, (1)

where the n = 0 corresponds to a volume pulsation, n = 1 to a translational oscillation,
and n = 2 to a fixed volume periodic deformation.

Bi-dimensional

In 2D, the work of [203] extends the linear theory of oscillations of cylindrical jets in the
transverse plane [199] to the contribution of an external fluid surrounding the inclusion.
When the interface undergoes a perturbation in the form of r(x) = 74 + e cos(nf) , the
bi-dimensional period of oscillation is written:

(n3 —n)o
(Pl + p2)r§q

n _

p1 kg m™] [ pp [kg-m™?] | py [kg-m™"s7'] | pp [kgm™"-s7'] [ g [m-s™7]
0

1. 20. 5-107* 1-10°°
Teq m] | o [kg-s™2] | no. cells | domain[m] | BC(s) | lim
2 5e — 3 128x128 | 1.x1. PxP NB

Table 4.1 — Numerical parameters used for the droplet oscillation test case.

We use the case described in [204] over the one of [205] which is computationally expen-
sive, even in 2D. For the set of parameters in table 4.1, we should recover a theoretical
droplet oscillation period of T"=2 = 14.87[s], or equivalently f"=2 = .067 [Hz]. The
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Figure 4.1 — Bi-dimensional droplet oscillation (total kinetic energy).

oscillation frequency was post-treated using the kinetic energy of fig. 4.1, and is half of
the kinetic energy frequency. Alternate indicators are used in conjunction of the kinetic
energy: either the quadratic moment < 22 >= i x?dxdz, , the accumulation of density
p along a central probe or the amplitude of the tip of the droplet to measure the ellipse
major/minor axes alternation. Depending on the stiffness of the case (viscosity ratio,
limiter used, ...) some numerical noise is sometimes observed for an indicator.

The grid convergence study of fig. 4.2 shows the error relative to the theoretical period of
14.87 [s]. The frequency is .35 [%] longer on a 322 grid, .28 [%] with 642 cells and .25 [%]
for the finest 1282 grid. For the same case, in [204], the errors are respectively 9.3 [%],
3.4[%] and 1.9 [%] .

Multiple factor can influence the oscillation results such as:
— capillary method used to model surface tension effect (discussed in section 4.1.2);
— truncature error of the different operators (order of the discretization method);
— boundary conditions retro-action (recirculation);
— post-treatment method.

The fig. 4.3 shows the total mass evolution on the domain. The maximal mass fluctuation
is overall about 3 - 1073 [%], using the most accurate limiter N B.

We show a bi-dimensional slice of the density of the ellipse after 100 steps of the simula-
tion on fig. 4.4, before extracting the two corresponding one-dimensional curves in fig. 4.5.



140 CHAPTER 4. APPLICATION EXAMPLES

0.34

0.32 1

err [%130 |

0.28

0.26

0.010 0.015 0.020 0.025 0.030
A

Figure 4.2 — Grid convergence: relative error of the oscillation frequency.
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Figure 4.3 — Total mass evolution.
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Figure 4.4 — Convected density field (2D gravity free oscillation case) - Contour before
and after regularization.
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Figure 4.5 — Density (x and z directions).



142

CHAPTER 4. APPLICATION EXAMPLES

20.0 1 #
| 0.4
175 | !
1 t
| |
| |
| |
15.0 i 1
1 1 02
[ |
|
125 ‘ t
|
|
. 4 .
col | [ Z 00
10.0 ‘1 1
|
|
‘ \
54 !
75 § 1
| | —0.2
| |
5.0 | |
7 1
| x
- } A ~04
25 t
~04 ~02 0.0 0.2 0.4

2.5 5.0 75 10.0 125 15.0 175 20.0

Figure 4.6 — Regularized density (colour function) for normals computation, using a
standard deviation o = 3. (x and z directions).

i
kappax

31

| i
{ ‘9 0.4

0.2
* 00

—0.2

|
|

str ) |

—0.4

-0.2 0.0 0.2 0.4
a

0.0

0.1 0.2 0.3 0.4 0.5 0.6
kappaz
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Figure 4.12 — Fluid divergence post incompressible solver (x and z directions).

On fig. 4.5, the density has been convected for numerous timesteps: the numerical dif-
fusion is limited to 3 stencils points. This was expected and observed in section 3.3.5.4
with the use of non-linear high-order schemes for the conservative transport of density.

The fig. 4.7 shows the curvature computed with the regularized density p used as a
colour function. The spread around the interface is controlled by the standard deviation
of the filter described in section 3.1.3.4 and a threshold is applied around the interface
to avoid spurious terms contribution in the bulk of the domain in the primary phase or
inside the bubble/droplet in the secondary phase. The curvature is increasing towards
the inclusion centre as expected.

The fig. 4.8 shows the interfacial source term modelling capillary effect. The effect on
the fluid is a velocity contribution consecutive to momentum increment at the interface
(density transition). The source term is localized as an interface pulse with no apparent
interface spread thanks to the anti-diffusive scheme. Later, in the simulation, the spread
zone might widen to two or three cells. The interfacial source term has been computed
using the regularized density field plotted on fig. 4.6 and the O (n) filter described in
section 3.1.3.3. We note the regularity of fig. 4.6 versus the stiff density seen on fig. 4.5.
The regularized solution allows correct computation of unit normals n to the surface:
Vo

Vol

A pulse (Dirac mass) is applied after curvature computations in order to spread the
source term around the interface. Since we wish to insert stiff source terms at the
interface to limit the numerical diffusive layer, we have found that using a smooth pulse
could affect the cohesion of the inclusion over time in a negative way, by magnifying the
negative effect of parasitic currents.

The fig. 4.10 shows the term homogeneous to a pressure gradient used to correct the
predicted velocity field. The Vp term is non zero in the diffuse interface. The pressure
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value in fig. 4.9 is implicit and non-physical, even if homogeneous to a pressure unit: the
numerical value taken is conditioned by the incompressibility constraint of the fluid. The
divergence of the fluid in the domain after velocity prediction and insertion of source
terms is seen on fig. 4.11. The divergence is driven towards a chosen criterion (usually
grater than the machine epsilon: € ~ 1 - 10716 for double precision floating point values)
by the implicit pressure step. With this non multi-grid solver (BiCGST AB), the exact
interface position cannot be inferred from the residual pattern as seen on fig. 4.12.

Three-dimensional

A 3D oscillation computation was performed on a 323 grid. We use the case described
in [206], with a unit radius droplet immersed in a 4.0 [m] wide cubic box. The parameters
are stiff for the method using implicit interface, with a density ratio of 100, and a viscosity
ratio of 10000 . Nonetheless, we recover a period of T' = 34.06 [s] which is 8.9 [%] longer
than the analytical period using eq. (4.1).

The theoretical viscous decay time [200, 207, 208] is:

2
Teq

T - D)En+ 1)

amplitude
"""" curve fit 0.1193 - exp(—t/25.74) + 3.006

3.000 ~

2.975 1

2.950 A

0 20 40 60 80 100
time [s]

Figure 4.13 — Viscous decay fit of the 3D droplet oscillation amplitude.

On fig. 4.13, an exponential law is fitted onto the droplet amplitude. The amplitude
is slightly overestimated with 3.006 instead of 3. for the static amplitude. For the
theoretical value of 7 = 20, we obtain a fitted value of 7 = 25.74.
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4.1.2 Parasitic currents

A drawback of the numerical method used where the interfacial terms are spread onto
a thin transition layer is the production of parasitic currents. These spurious velocities
should vanish under equilibrium: the pressure gradient should balance capillary forces
exactly. However, it is mathematically challenging to compensate an explicit term with
the result of an iterative implicit process up to numerical precision or even less. The
origin of these spurious currents is believed to be numerical curvature gradients, which
are the source of local production of vorticity [209].

At static equilibrium, the momentum equation eq. (3.6) reduces to:

Vp =okin. (4.2)

Applying the curl V x () operator to the equation eq. (4.2) leads to:

0 = oRE T V(okd) x n = V(kd) x n, (4.3)

assuming a constant in space surface tension coefficient (which has been the assumption
throughout this work), and the validity of the gradient of the Dirac functional under a
set of test functions (smooth functions with compact support).

If the eq. (4.3) is not satisfied, then the static equilibrium condition is violated, hence the
production of eddy currents - sources of vorticity. We conclude that the numerical chal-
lenge of parasitic currents free computations lies in computing a gradient free curvature.
With slight parasitic gradients, the interface becomes unstable and in our application
leads to excessive numerical diffusion induced by strong local velocity gradients and later
loss of the interface with exponential growth of a wavy pattern along the surface.

In our early computations using a convolution kernel as exposed in section 3.1.3.3, we
observed strong parasitic currents patterns, leading eventually to rupture and desegre-
gation of the interface. The kinetic energy on fig. 4.14 shows that a non-zero steady
average value of the kinetic energy during oscillation tends to indicate a spurious resid-
ual mean value at steady state. In three dimensions, parasitic currents do appear along
the domain diagonals with a periodic pattern: this tends to indicate a splitting effect
(which remains to be studied). We mention that the results of fig. 4.14 were obtained
using a total different set of parameters than the test case resulting in fig. 4.13, and
cannot be compared as is.

Experiments with the case described in section 4.1.1, or with a static droplet clearly show
a non-zero residual velocity. Other alternatives or parasitic current reduction attempts
worth mentioning can be found in [41, 170, 210-213].

An approach for the reduction of parasitic currents consists of shifting the interfacial
source term towards region of high density. This allows reduction of the effect of fluid
acceleration induced by capillary forces by applying the acceleration term preferably to
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Figure 4.14 — 3D oscillation case, convolution based regularization.

denser phase, while keeping the integral value un-modified across the interface. The ¢
facet impulse is modified according to:

_ . A
§p *=2. (pfpmzn) : (4.4)

Pmazx — Pmin

where A > 0. is an arbitrary factor. The factor 2. in eq. (4.4) accounts for the truncation
of the external part in the region of weak density, so that the integral value of 6 over the
interface remains approximatively equal to unity as seen on fig. 4.15. For strong density
ratio, failing to shift the source term results in un-physical accumulation or depletion
of mass across the domain because of the incorrect accuracy of the continuity equation
with erroneous fluxes. However, this approach leads to wrong total dynamics and was
thus abandoned. Another approach for the total conservation of mass because of small
variations is to shift the average point of mass across the whole domain periodically.
This is the approach retained to avoid non-negligible variation of total mass.

In order to assess the effect of parasitic currents, we compare our method to front track-
ing computations found in [206, 214]. The simulation are exposed in table 4.2, with strict
convergence tolerance of the pressure solver set to 10715 in the /> norm. The density
is initialized on a regular cartesian grid. A transient regime thus appears for a limited
amount of time in order for the phases to equilibrate. We use the least compressive, yet
the most accurate (second order) limiter of [152]. After a short transient, the pressure
forces balances with surface tension and the total kinetic energy decreases in the do-
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Figure 4.15 — Capillary source term shift.
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main. We compute the capillary number Ca = %i by measuring the maximal velocity
magnitude for each phase. The method shows capillary numbers of Ca; = O (1()_3)
outside the inclusion on fig. 4.16a and Cas = O (10~%) inside the inclusion on fig. 4.16b.
Total mass conservation is ensured within 5 - 1073 [%], as seen on fig. 4.16c. Our method
thus behaves better than methods such as [75] with Cag = O (1072) and is equivalent to
FT methods which expose Cas = O (10~%) parasite currents behaviour. However, other
specialized methods can get as far as O (10*20) [210, 215] (using an energy conservative
method instead of a momentum conservation one); or O (10~!4) under LSM approaches
[209]. We compare the capillary number for the inclusion: the capillary-viscous length
R, is computed using the droplet parameters [214].

p1 kg m™] | p2 [kg-m ™3] | pg [kgmt-sTH | po [kgem s | erit(6°) | o [kgsT?]

10. 50. 2.102 1-1071 1-1071 | 1
La[—] | req[m] | no. cells | domain [m] | BC(s) | lim
250 .25 33x33 1.x1. PxPxP | NB

Table 4.2 — Numerical parameters used for the parasitic currents test case.

i. Capillary number: measure of viscous forces versus surface tension
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4.1.3 Rayleigh-Taylor instability

We consider a physical hydrodynamic test case called the RTI'. This phenomenon oc-
curs when a dense fluid is placed over a less-dense fluid in a gravitational field. An initial
perturbation of the interface (required to numerically trigger the instability) results in
the growth of bubbles and dense, falling tear-drops of fluid [216-218]. This example is
non-trivial to reproduce through experiments since the initial condition are unstable,
and influence of the start-up mechanism over the interface is not negligible. Numerous
analysis is available in the following references, for the set-up of the complex test case
[219-222].

According to [131, 223], the exponential growth rate of instability exp(nt) is:

2 g ’<A_k20) (4.5)
v 1gl(p1+p2) ) '

where A = % is the Atwood number and ps is assumed to be the density of the

heavier fluid.

In order to validate the text case, a theoretical stability parameter is derived from a
critical surface tension value o, for which ng = 0.

The critical surface tension is expressed using eq. (4.5):

ng \ lgl(p2 + p1)
=(A-—2 .
70 ( k-|g|> 2

Departure from this equilibrium induces local shears, and movement of one fluid into
another, in a filamentary manner. The shape of the dense fluid evolves in a well known
mushroom shape pattern in the surrounding lighter fluid medium as it can be observed
on fig. 4.17. We also observe capture of a secondary sub-scale instability at the beginning
of the simulation, which are eventually damped over time. The primary instability shows
the typical shape of the fluid at the end of the simulation. Numerical convergence with
air water mixture and capillary terms is excessively slow using explicit discretization of
the diffusion operator at the sub-scale level.

The fine-scale artefacts observed at the beginning of the simulation on fig. 4.17 are likely
to originate from the stair-cased interface (regular cartesian mesh). This Moiré like
pattern is dependent on initial conditions for density. We also tested a slight perturbation
of the gravitational field in the centre of the interface at the begin of the simulation
before establishing a uniform field for the rest of the simulation. We first used a smooth
varying function of the horizontal coordinate x , with one spatial period in the horizontal
direction to trigger the instability. The perturbation initially triggers the instability and
allows local small-scale movements of the lighter phase into the denser fluid.

ii. Rayleigh-Taylor Instability
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Figure 4.17 — Air - Water: (1 /1000) density ratio simulation with capillary terms.

p1 [kg-m =] | po[kg-m ] [y [kg-m™" 5™ [ po [kgm™"s7'] | g [m-s™7]

10. 100. 1 1-1072 9.8
o [kg-s™?] | no. cells domain [m] | BC(s) lim | no. levels | smoother
1-1073 64x64x256 | .1x.1x.4 WixWxW | NB | 4 RBGS

Table 4.3 — Numerical parameters used for the RT'I case.
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We choose a surface tension coefficient, for which the interface growth is stable: o = koy,
with & < 1. The simulation parameters are found in parameters in table 4.3, with the
conditions close to those of a steam generator with a 1/10 density ratio. The computation
was run on a single computing unit under 16 threads (data decomposition) and 14h wall
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Figure 4.18 — Three dimensional RT'I - First computation steps.
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Figure 4.19 — Last steps of the RT'I simulation.
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The instability is triggered by a cosine spatial perturbation. The three-dimensional
computation exposes the transverse behaviour, especially the entrainment of the fluid
behind the main column. Local perturbations in the form of waves forming a K HI i
develops on the central fluid column. Wall impact is observed at the bottom of the
rectangular computational domain, as seen in the first steps on fig. 4.18, as well as
splashing effect on the surrounding walls. Run-off is observed on the walls, where no-
slip boundary conditions are applied, together with ceiling detachment and fall of the
remaining viscous fluid droplets at the end of the simulation as observed on fig. 4.19.
The wall impact is crucial for the preparation of immersed boundary cases where the
interfaces will hit tubes in a bundle.

iii. Kelvin-Helmholtz Instability
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4.1.4 Dam break of incompressible fluids

Sudden release and impact of a consequent quantity of fluid is of interest for example in
designing protection walls against cataclysmic events. The dam break application allows
comparison with experimental data for example the height of the wave which impacts
the boundaries after release. A block of fluid is released at time ¢ = 0 and then flows
on top of a dry bed. This method allows comparison with the shallow water equations
results (integration of the NSE(s) along the depth) [224]. Our objective is to compare
data obtained in [225] with numerical results and numerical experiment similar to the
references [127, 226].

p1[kg-m ] | pa[kg-m™] [ [kg-m™"-s71] [ po [kg-m™"-s71] [ g [m-s?]

5. 10. 1-1073 1-102 10.
o [kg-s72] | no. cells | domain[m] | BC(s) | lim
5 512x256 | 2.x1. Sty | NB

Table 4.4 — Numerical parameters used for the dam break test case.

The parameters of the bi-dimensional numerical simulation are listed in table 4.4, with
a constrained density ratio. The limit of this method is the compressibility of the con-
tinuous phase. The reversed flow induced by fluid movement consecutive to the wall
impact, and observed on fig. 4.20, is noticeably missing compressible behaviour, at the
end of the simulation. The gaseous phase is convecting a non-physical amount of inertial
energy - which shall instead be consumed by a compression of the fluid. Consequently,
the gaseous vortex splits the liquid phase in two distinct portions after wall impact.

We also observe excessive numerical diffusion, which questions the choice of the mesh res-
olution which is likely to be un-adapted for DN .S computations. Two-phases structures
are under the cell size, hence they cannot be captured and excessive mixture prevents
distinction of the interface. The surface tension takes erroneous values (direction and
magnitude) on coarse control volumes. The limit of the capillary method used lies in
the way coarse DN S is unable to capture the fine-scale behaviour of surface tension.

Alternatively, one can consider an evolution law for the pressure in addition to the
evolution law for the velocity:

Pt + AV-ou=0.
The system is hyperbolic, and ¢!V brings an additional computational constraint on the
timestep.

More advanced methods such as the low Mach number approach (M < 1) might perform
better since they include the contraction/expansion of the fluid without involving phase
change [227-229].

The dilatable approach adds a non-zero contribution to the RH S of eq. (3.20), requiring
closure equations for the expression of the source term. On the opposite, taking a

iv. Sound celerity
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Figure 4.20 — Dam break of incompressible fluids.
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compressible approach would allow to compute the shock waves induced by the water
hammer [230, 231] effect when the fluid is suddenly forced to stop or changes direction
in an abrupt manner. We might also consider the case where the domain is not a closed
rectangle with walls, but an open box with free surface boundary conditions at the top.
However, this approach posed numerical issues for the imposition of boundary condition
for the pressure solver and the velocities.
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4.1.5 Kelvin-Helmholtz instability

Figure 4.21 — Cat eye patterns observed numerically [232] and experimentally [233].

This test case should reproduce static equilibrium of a droplet or fluids under a shear
flow. The flow which will undergo a perturbation of finite wave length will stabilize
under surface tension and the presence of different fluids [234]. Although un-necessary
for the instability to develop from a theoretical point of view, viscosity and capillary
terms were used in the discrete set of equations.

p1 [kg-m =] | p3 [kg-m =] | pn [kg-m™" 57 | po [kg-m " s71] | o [kgs~?]

998.2 960. 1.003-1073 4.8-1072 7.37-1072
g [m-s7?] | uy [m-s7!] [ ug [m-s7!] | no. nodes | domain[m] | BCO(s) | lim
0. —1 3. 513x257 | 1.x.5 PxW | DL

Table 4.5 — Numerical parameters used for the Kelvin-Helmholtz instability test case.

In order to ease numerical computation, a high viscosity fluid (oil) is chosen, with a
density close to the aqueous phase in table 4.5. The slow settling of the lowest boundary
layer requires the use of the implicitation step, or the initialization of the velocity field
to wall velocities. Interface movement is induced by momentum diffusion through the
boundary layer originating from wall boundaries. We imposed opposite wall velocities
with different magnitudes, resulting in overall movement of the fluid towards the eastern
part of the domain (periodic in the z direction). The capillary forces were inserted at the
interface transition, as described in section 3.1.3.3. The density flux evaluated during
conservative transported is computed using the most compressive scheme DL of [46].

A theoretical stability criterion is developed, as for the section 4.1.3. If we write n(x,t)
as seen on fig. 4.22, with the interface deviating from the initial flat interface, we seek
solutions in the form n(z,t) = Re(Age!**~wh) | where Ay is the interface initial dis-
turbance amplitude. It can be shown that the growth rate stability condition of the
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Figure 4.22 — Interface perturbation.

interface a function of & :

_ (U1 — Up)?
(p1 + p2)?

where s(k) = 222£22 + % L is a function of the wave-number k.
pitp2 kT pitp2

F(k) + s(k),

The details are omitted, but if p; < ps, and the initial shear velocities are null, the
growth is unstable if 0 < k < \/(p2 — p1)g / o : this is the case exposed in section 4.1.3
[235].

On the contrary, if p; > po (lighter fluid on top of the heaviest), and if the phase
velocities are different, the system is unstable [131, 236] under the condition:

U1 — Uz|> (p1 > p2)\/ g/ (p1p2) -

A vortex sheet should develop, induced by the vorticity source at the interface. Vor-
ticity originates from strong interfacial tangential discontinuity due to imposed velocity
boundary effects migration from the horizontal walls towards the interface. Under shear
dominated flow, these vortices should develop and roll up in a spiral manner once the
growth rate has settled. The fig. 4.21 shows such development examples.

On fig. 4.23, when the vortex sheet starts to roll up, strong shear provokes detachment
of droplets in a chaotic manner. These droplets or inclusions live in the opposite phase
until latter coalescence. The method is in general able to capture the development of
vortices, and the growth of the vortex layer thickness [237]. However, numerical dissi-
pation is important and interfacial terms are likely to be under resolved. Due to limited
computation resources available, we were not able to investigate the problem in three
dimensions, neither with increased resolution nor with different anti-diffusive/capillary
schemes. We believe that the interfacial term on the tip of the expected spiral, being
difficult to capture since the interface is pinched with high curvatures values, is most
likely erroneous as seen on fig. 4.23. Comparison with experimental data could thus show
very different results. We also mention the fact that accumulated numerical diffusion of
the various schemes used has the tendency to stabilize the flow.

This test case also shows the limit of the method applied on regular meshes requiring a
substantial amount of computing resources in order to capture areas where dissipation
of the numerical scheme dominates (inner spiral in the cat eye patterns). However,
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Figure 4.23 — Development of the Kelvin-Helmholtz instability (first steps).
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Figure 4.23 — Development of the Kelvin-Helmholtz instability (last steps).
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the AM RY method is able to reduce the computing costs whilst increasing resolution
in regions of strong density gradients [238]. With this multi-level approach, we might
be able to capture the development of the spiralling pattern with sufficient accuracy.
Another way to stabilize the development of the structure is to tune the viscosity up.
With a higher viscous fluid, the structures are more coherent. With a too weak viscosity,
the structures rapidly degenerate and finer scale inclusions detach from the fluid bulk.

v. Adaptive Mesh Refinement
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4.1.6 Bubble rise in buoyant flow

prkem™] | po[kg-m™] | pi[kg-m~ "5 | po[kgm™' s | o [kgs™7]

1000. 100. 10. 1. 24.5
g [m-s7?] | no. cells | domain[m] | BC(s) | lim
.98 160x320 | 1.x2. WxW | NB

Table 4.6 — Numerical parameters of the bubble rise in a channel (first test case).

First test case: terminal velocity

In this test, buoyancy induces a bubble rise in a fluid initially at rest in a channel [239].
This test case is interesting for the wall recirculation, the droplet deformation induced
with the boundaries proximity, and the competition between capillary forces, pressure
and buoyancy. We use the parameters of [240], with a mesh step of A = ﬁ, and an
adaptive time-stepping, as exposed in table 4.6. Capillary terms are applied on the stiff
interface, with no artificial thickening (singular pulse). We use the least compressive
limiter from [152], and the C'SF method for the capillary terms.

In fig. 4.24, we recover the results of [240], with a delay of .3 [s], whose origin must be
investigated. We also note that the shape of the bubble lacks some deformation towards
the ellipsoidal shape.

The rise velocity of the droplet, as defined in [240], is the average bubble velocity in the
direction of gravity. An overestimation of the velocities versus the reference article can
be seen on fig. 4.25. The difference might lie in the way we recover the bubble velocity,
since we use an implicit defined interface, and some mixture cells (continuous and dense
phase) contribute to the reduction of the terminal velocity.

The bubble reaches a terminal velocity, and deformation occurs until stabilization at
the steady state, when buoyancy is balanced by viscous dissipation. A drag coefficient
quantifying the resistance of the droplet to buoyancy induced movement and the con-
gestion of the channel by the secondary phase could be extracted from fig. 4.25. The
larger blocking ratio due to deformation induces a slight reduction of the terminal veloc-
ity relative to the peak velocity observed. The bubble remains symmetric as expected,
which suggests that the code is bug free (synchronization points, halo exchanges) under
domain decomposition.
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Figure 4.24 — Density contour, at time ¢t = 3.3 [s], for the first test case 160x320.
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Figure 4.25 — Rise and terminal velocity of the inclusion (80x80).

p1 [kg-m ] | po [kg-m ] [ pn [kg-m™ "5 [ po [kg-m "5 ] | o [kg-s™?]

1000. 1. 10. 1 1.96
g [m-s7?] | no. cells | domain[m] | BC(s) | lim
.98 80x160 1.x2. WxW | DL

Table 4.7 — Numerical parameters of the the bubble rise in a channel (second test
case).

Second test case: high density ratio

In fig. 4.26, we use a high density ratio (1 : 1000) as seen in table 4.7, and the anti-
diffusive formulation of [46], together with a conservative formulation. This scheme
is known to compress profiles, even for initially smooth solutions. A multi-grid solver
with two levels described in algorithm 9, with pressure splitting of [241] and constant
coefficients Poisson equation is used. The problem with O (15000) unknowns is solved
on 4 processes, and results are obtained within 13 minutes for 46.000 steps.

We can observe filaments detaching from the secondary phase. The side filaments are
induced by fluid circulation between the walls and the droplets: they also appear in
the benchmark of [240]. However, the origin of the small fragments in the wake of the
droplet in the recirculation zone is more difficult to explain. Those fragments do not
appear in the results of [240]. It is likely that the Weber number is now high enough,
so that the droplets starts to disaggregate under increasing inertial forces and weaker
effect of surface tension.
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Figure 4.26 — Density contour, at time ¢t = 3 [s], for the second test case 80x160.
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4.1.7 Conclusion

Nous avons présenté une méthode de résolution des écoulements diphasiques, a savoir le
transport anti-diffusif des phases sur maillages cartésien régulier, qui semble adaptée a la
modélisation des phénomenes d’interaction fluide-structure sur des maquettes représen-
tant une portion de générateur de vapeur. Nous allons par la suite coupler cette méthode
multi-fluides & une méthode d’inclusion des corps immergés dans un écoulement fluide,
I’objectif final étant de pouvoir simuler le cas canonique de la circulation d’inclusions
au sein d’un faisceau de tubes dont le tube central est flexible et les tubes ’entourant
rigides.



170 CHAPTER 4. APPLICATION EXAMPLES

4.2 Fluid-Solid cases

The classic examples developed in this section stress out the numerical response of the
immersed object to the fluid forces, and the retro-action on the bodies onto the fluid
equations. The multiphase tube bundle case is close to the experiments conducted
at CEA: the future prospects using this method should thus be directed towards an
experimental and physical validation.

4.2.1 Vibration of a cylinder in quiescent fluid

In order to determine the added mass and damping coefficients we impose a sinusoidal
movement on the tube:

q=(t) = Apsin(wt) . (4.6)

The added mass and damping coefficients can be determined using the phase method:

o Fmam COS(‘b)

M, =+ A, (4.7)
_ Fmax Sin(¢)

T (48)

where ¢ is the phase shift between the imposed displacement g, (t) and the total fluid
force F'(t) acting on the cylinder (pressure and viscous contributions).

The phase shift can be determined using different methods such as curve fitting, zero
crossing detection, or using the correlation between two (not necessarily harmonic) sig-
nals. Spatial convergence analysis has to be made in order to ensure that the integration
method is sufficiently resolved for the computation of pressure and viscous forces around
the cylinder.

The drag and lift forces are estimated using discrete integration of eqs. (3.26) and (3.27).
The phase shift is then estimated using the imposed displacement eq. (4.6) and the total
force around the cylinder eq. (3.28). In order to separate the physics, it seems necessary
to separate the contribution of the pressure forces and the viscous forces exerted on
the cylinder. This will be of use for the stability analysis and the interpretation of the
fluid-structure numerical coupling.
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4.2.2 Multiphase flow around an obstacle

This simple test with a droplet impacting a static obstacle is solely set up to demonstrate
convergence of the numerical behaviour, and a correct behaviour of the phase separation
close to the solid boundaries. The inclusion is separated not on the obstacle itself, as
seen on fig. 4.27, but around the velocity transition layer induced by the regularization
method (section 3.5.3) over a few cells, and because of the velocity boundary layer on
the nose of the obstacle. Surface tension is disabled for this test, resulting in longer
separation time, and trailing density on the obstacle.

Numerically, the volumetric source term is expressed as an acceleration term function of
the deviation from the continuous phase:

S<w7t) :g(p(:c,t)—pl) ) (4'9>
such that the velocity increment induced by buoyancy results in:

S
Ubuoyancy — At; .

It would be interesting to profile the immersed object in order to provoke separation of
the inclusion, or at the opposite use a larger obstacle provoking adhesion of the inclusion
to the obstacle under buoyant forces. Theoretically, the inclusion would remain attached
and symmetry is to be observed. We observe this symmetry for at least one passage
across periodic boundaries.
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Figure 4.27 — Impact of an inclusion on a static obstacle in channel with densities
p € {5,10}, and without surface tension.
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4.2.3 Multiple inclusions through a tube bundle
prkem™] | po[kg-m™?] | pi[kg-m s | po[kgm' s | o [kgs7]
100. 10. 1-1072 1-1073 1
no. cells | domain [m] | BC(s) | lim | time[s] | wall time[h]
512x256 | .2x.1 WxP | DL | .6 1
0 procs | ps [kgm ] [ & [] | ks [hgs 2] | IBM
16 500. 5[% | 1-1072 RG

Table 4.8 — Fluid, simulation and solid parameters for the bundle case.

We use a semi-implicited CN 6! scheme in order to avoid stringent restriction due to
the viscous part of the NSE(s). The forcing method is applied on the centre tube with
two degrees of freedom in the x and z directions. The forcing is regularized with the
method exposed in [192] in order to avoid numerical pressure surges. The solid numerical
parameters were arbitrarily chosen as exposed in table 4.8, and more tuning needs to be
performed in order to reach water-air flow with industrial characteristics of the bundle.
Numerical study of the influence of the parameters remains to be performed.

recursive surface semi-implicit immersed | incompressible | conservative
regularization | tension | prediction phase | boundaries projection transport
3 [%] 7[%] 33 [%] 3 [%] 51 [%] 3 [%]

Table 4.9 — Decomposition of the time spent during a single timestep.

The table 4.9 shows that most of the time is spend during the projection method ex-
posed in section 3.3.4. With two unknowns in 2D (u,w velocities), the semi-implicit 6
scheme converges faster in only a few iterations and a third of the CPU time is spent
in the prediction phase. We expose some hints in order to enhance the convergence of
the implicitation steps, but this goes beyond the scope of this thesis and requires rework
of the code (maybe with parallel sparse matrix structures), with only hypothetical en-
hancement on computation performance and scalability. Another approach would be to
consider specific methods such as treating the interface pressure jump as described in
section 3.1.6.

i. Implicit fraction of a semi-implicit scheme
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Figure 4.28 — Multiphase flow through a bundle (centre tube flexible).
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Figure 4.28 — Coalescence of multiple inclusions.
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Figure 4.28 — Breakup of inclusions on cylinder impact.
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Discrete time sequences extracted from the simulation are exposed in fig. 4.28. At the
beginning of the simulation on fig. 4.28, the inclusions start to move under buoyancy
(acceleration term in the z direction). The acceleration term is applied to the secondary
fluid only as a drifting term, with the standard gravity magnitude of 9.8 [m-S_Q}. The
smallest inclusion is immediately carried into the wake of the lowest inclusion in the
bottom left hand corner. The interfaces follow the obstacle contours, with consequent
deformation, and they recover a circular shape under the effect of surface tension with
the algorithm described in section 3.1.3.3. The surface tension coefficient between the
two fluids is kept important enough in order to maintain droplets cohesion (interface
regularity) and avoid breakup. Leakage of one fluid into another is limited with the use
of the most compressive anti-diffusive scheme [46], in a conservative flux formulation.
Periodic boundary conditions are applied on the x direction in order to assess the eulerian
methods under a high number of timesteps.

After a few seconds of simulation, the two bubbles near the center tube coalesce to form
a larger bubble as seen on fig. 4.28. The front bubble is slowed down by the confinement
of the tubes, allowing the two inclusions to merge. There is systematic coalescence, and
the method does not allow two droplets to bounce on each other. The limit for droplets
coalescence is the continuous phase film resolution when the two bubbles approach one
another. Especially, how this fluid is forced away determines the physics of the merge.
In our application, the boundary layer is under resolved and can only be captured with
specific high resolution methods (even with a conforming method such as FT, it is not
guaranteed to capture the correct behaviour). Another coalescence is observed, where
the front inclusion is slowed down and flattened by the repulsion of the fluid at the
leading edge. This allows the smaller inclusion (resolution of about 20 cells in diameter)
to catch up in the wake of the front bubble and coalesce.

Breakup is observed at the end of the simulation subset on fig. 4.28. As the bubble
hits the center left obstacle, the secondary phase fluid is stretched until separation. We
observe small leakage of density near the obstacle boundaries which is likely to come
from shear effect on velocities. The restoring force effect induced by surface tension is
especially visible after separation. The breakup phenomenon would be interesting to
investigate for example against alternate methods such as the LSM [242].
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4.2.4 Conclusion

Dans ce chapitre, nous avons exposé le couplage de la partie corps immergés aux mé-
thodes diphasiques monochamp proposées dans le chapitre précédent. L’inclusion d’obs-
tacles mobiles dans le domaine a nécessité une méthode de régularisation permettant
d’atténuer les oscillations de pression lors de la transition d’état des mailles allouées au
solide. Nous n’avons cependant pas réussi a exploiter cette méthode de maniere inten-
sive afin d’analyser les spectres d’efforts sur les tubes, a des fins d’adimensionnement
des forces de couplage fluide-structure. Cette étape de mesure des spectres nécessitera
une instrumentation fine du code, sur un cas test reproduisant toutes les conditions
d’un essai expérimental en boucle air-eau (vitesses, taux de vide, générateur de phases,
structure de la turbulence d’entrée) pour réaliser des études paramétriques. Il semble
également nécessaire de revoir la performance du code en terme de scalabilité, dominée
par le solveur en pression (bien que les derniers essais sur le préconditionnement de I’ago-
rithme bi-cgstab par une méthode multi-niveaux soient prometteurs), avant de pouvoir
atteindre les régimes en condition générateur de vapeur. Cependant, le démonstrateur
permet d’exposer la faisabilité de la simulation numérique ainsi que la pertinence ou
encore les limites des méthodes proposées.
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General conclusion and
perspectives

This thesis falls within the category of DN S of multiphase flows coupled with F'S1I, for
the safety studies of nuclear power plants.

In the second chapter, we recalled the scope of the thesis and the existing methods in a
bibliographic study. Choices have been made with the scope of future industrial appli-
cations, according to the existing knowledge. We retained the Front Tracking method
for comparison, super-imposed on top of a cartesian mesh for numerical juxtaposition
with the pure eulerian method used. This method is suitable for cases where the DN .S
computations are cheap (microfluidics, ...).

The third chapter exposed the development of numerical methods for the multiphase
liquid phase and the fluid-structure coupling. The first contribution is the use of an
anti-diffusive method for density transport. After this, a convergent pressure solver was
developed from scratch for incompressible multiphase flows, since numerous methods for
single phase flows were found to be unable to scale well or sometimes converge for mul-
tiphase flows. Then, a regularization method suited for a fast eulerian solver has been
developed to account for relevant topological terms at the interface singularity (surface
tension). This algorithm is key since it is able to maintain the droplet cohesion and
correct interfacial balance at all resolved scales, under the constraint of usage of an anti-
diffusive scheme for the phase discontinuity transport, without the use of recalibration
methods of mesh conforming nodes. At last, we interested ourselves to methods em-
bedding moving solid in fluids, especially the bi-directional coupling between the fluid
and solid physics. A specific method was used in order to reduce the spurious pressure
oscillations in the context of eulerian methods.

The fourth chapter was dedicated to the exploitation of relevant test cases. First, the
two-phase tests including buoyancy driven flows and zero-gravity test case. In a second
phase, the fluid-structure examples with immersed boundaries in mono-phase or two-
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phase flows. We were only able to run the fluid-structure simulations at the end of
the thesis, thus the lack of quantitative results on flow regime, parametric studies of
the influence of the bundle parameters, etc. We believe that full physical cases are
reachable with our method, provided time to run the simulations, analyse and interpret
the results is available. A wide variety of studies is to be investigated as perspective:
the numerical impact of spurious currents, the triplet points gas - liquid - solid [243], the
breakup and coalescence behaviours, contraction/expansion of a weakly compressible
phase, statistical analysis [244] of multiple inclusions for upscaling in CFD codes.



Appendix A

CEMRACS 2016:
Numerical challenges in parallel
scientific computing

A detached work was conducted during the 2016 C EM RAC'S ' summer school (numeri-
cal challenges in parallel scientific computing) on the topic "High Performance simulation
of geothermal systems: ComPASS-Geothermal”. This work was published in June 2018
under the title "Parallel Geothermal Numerical Model With Fractures And Multi-branch
Wells”. The 6 weeks long project, whilst dealing with different physics, was an applied
introduction to team work on research projects. I also benefited from enhancing my
skills on parallel coding and modern Fortran language. The project was a joint work
between BRGM i INRIA!: team COFFEEY, and LJAD". The goal was to repre-
sent and implement the numerical model of a well into the Compass code, by the mean
of a connected graph through an unstructured discretized medium. The first task was
to represent well-reservoir interaction by the mean of a Darcy flux. After a thermody-
namic balance, computed at each timestep from a equilibrium flash of a multicomponent
liquid. Then, the well mode was toggled between imposed pressure or imposed flux by
a non-linear Newton update. The assembly of the Jacobian matrix was complex since it
required multicomponent equations, an elliptic part for the pressure, and an hyperbolic
part for the saturations/compositions of the multi-species flow. The time-stepping of
geological phenomena required an all implicit formulation, whilst being constrained by
a strong heterogeneity and anisotropy induced by the reservoir interaction with a net-

i. Centre d’Eté Mathématique de Recherche Avancée en Calcul Scientifique
ii. Bureau de Recherches Géologiques et Minieres
French geological survey
iii. Institut National de Recherche en Informatique et en Automatique
French Institute for Research in Computer Science and Automation
iv. COmplex Flows For Energy and Environment
v. Laboratoire J.A. Dieudonné (Université de Nice)
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work of planar fractures and a mostly orthogonal graph of well nodes. The meshing and
partitioning uses the CGAL i /METIS libraries while the linear solver was implemented
using the PETScV! library in Fortran, with Schur decomposition beforehand. For
performance issues, an algebraic multi-grid preconditioner was used for the elliptic part
and an incomplete LU factorization for the global matrix. I also had the opportunity
to interact with another team about code coupling issues on a thermo-hydraulic code
TRUST Vi [245, 246] developed at CEA.

vi. Computational Geometry Algorithms Library
vii. Portable Extensible Toolkit for Scientific Computation
viii. TrioU Software for Thermohydraulics
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Abstract. To answer the need for an efficient and robust geothermal simulation tool going beyond
existing code capabilities in terms of geological and physical complexity, we have started to develop a
parallel geothermal simulator based on unstructured meshes. The model takes into account complex
geology including fault and fracture networks acting as major heat and mass transfer corridors and
complex physics coupling the mass and energy conservations to the thermodynamic equilibrium between
the gas and liquid phases. The objective of this Cemracs project was to focus on well modeling which
is a key missing ingredient in our current simulator in order to perform realistic geothermal studies
both in terms of monitoring and in terms of history matching. The well is discretized by a set of edges
of the mesh in order to represent efficiently slanted or multi-branch wells on unstructured meshes. The
connection with the 3D matrix and the 2D fracture network at each node of the well is accounted for
using Peaceman’s approach. The non-isothermal flow model inside the well is based on the usual single
unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well. The
parallelization of the well model is implemented in such a way that the assembly of the Jacobian at
each Newton step and the computation of the pressure drops inside the well can be done locally on
each process without MPI communications.

L Université Céte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, France,
laurence.beaude@unice.fr
2 CEA Saclay, DEN/DANS/DM2S/STMF/LMEC thibaud.beltzung@cea.fr

3 Université Cote d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, France,
konstantin.brennerQunice.fr
4 BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France, s.lopez@brgm.fr

5 Université Cote d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, France,
roland.massonC@unice.fr
6 BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France, f.smai@brgm.fr

7 Storengy, jean-frederic.thebault@storengy.com
8 Université Cote d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, and BRGM,

feng.xingQoutlook.com
© EDP Sciences, SMAI 2018

Article published online by EDP Sciences and available at https://www.esaim-proc.org or https://doi.org/10.1051/proc/201863109



110

Résumé. Afin de dépasser les limites des codes actuels de simulation des systémes géothermiques
en matiere de complexité géologique et physique, nous avons initié le développement d’un nouveau
simulateur d’écoulements géothermiques parallele a base de maillages non structurés. Le modele prend
en compte une géologie complexe incorporant notamment les réseaux de failles qui jouent un réle majeur
dans le transport de masse et d’énergie, ainsi qu'une physique complexe couplant les conservations de
la masse et de ’énergie & 1’équilibre thermodynamique entre les phases liquide et gazeuse. L’objectif
de ce projet Cemracs était d’y incorporer un modele de puits qui constitue un ingrédient essentiel pour
réaliser des études géothermiques réalistes a la fois pour la surveillance du réservoir et la reproduction
des historiques de production. Le puits est discrétisé par un sous ensemble d’arétes du maillage de
fagon a pouvoir représenter efficacement des puits déviés ou multi-branches. La connection avec la
matrice 3D et le réseau de failles 2D repose sur des indices de productivité de type Peaceman. Le
transport de masse et d’énergie dans le puits se base sur un modele classique en simulation de réservoir
a une inconnue par puits qui suppose I’équilibre hydrostatique et thermodynamique dans le puits. La
parallélisation du modele de puits est réalisée de fagon a pouvoir assembler la Jacobienne et a calculer
les pertes de charge dans le puits localement sur chaque processus sans nécessiter de communications
MPI.

INTRODUCTION

Geothermal energy is a carbon-free steady energy source with low environmental impact. In countries with a
favorable geological context, high temperature geothermal energy can make a significant contribution to power
production. On the French territory, it is already an attractive option in volcanic islands context compared to
importing fossil fuel. Today, about 5 percent of yearly electricity consumption of Guadeloupe already comes from
geothermal energy and it is essential for achieving energetic and environmental targets, according to which the
overseas territories should produce 50 percent of their electricity consumption from renewable resources by 2020
and achieve their self sufficiency in 2030. As for other parts of the world, the geothermal development potential
of the Caribbean islands is high and several industrial projects are under development or already underway, in
French overseas territories (Guadeloupe, Martinique) as well as in nearby islands (Dominica, Montserrat, St.
Kitts & Nevis, St Lucia...) that currently depend mainly on diesel for power generation.

Numerical modeling has become essential in all phases of geothermal operations. It is used in the exploration
phases to assess the geothermal potential, validate conceptual hypothesis and help well siting. Field develop-
ment and resource management need quantitative estimation to prevent resource exhaustion and achieve its
sustainable exploitation (production/injection scenarios). Finally, numerical modeling is also helpful in studying
exploitation related industrial risks such as the interaction with shallow water levels (drinking water resources,
hydrothermal vents or eruption).

There is a need to develop new efficient and robust simulation tools to go beyond existing code capabilities
in terms of geological and physical complexity [25,32]. In particular such code should be able to deal with fault
and fracture networks acting as major heat and mass transfer corridors in high energy geothermal reservoirs
and also to simulate both under critical and super critical thermodynamical domains. Existing tools such as
Tough2 [31], used for more than 25 years in geothermy, are limited to structured meshes and are not able to
integrate conductive fractures. Moreover, their parallel efficiency is very limited.

This has motivated the development of a new geothermal simulator based on unstructured meshes and
adapted to parallel distributed architectures with the ability to represent fractures as co-dimension 1 surfaces
connected to the surrounding matrix domain. The current version of this simulator is described in [42]. The
objective of this Cemracs project is to bring the development of this simulator to a level where operational
use is possible and real geothermal test cases can be considered. In this regard, wells are central features of
geothermal exploitation and are the main focus of this work.
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The use of lower dimensional rather than equi-dimensional entities to represent fracture or fault networks
has been introduced in [3,9, 19,23, 28] to facilitate the grid generation and to reduce the number of degrees
of freedom of the discretized model. The reduction of dimension in the fracture network is obtained from the
equi-dimensional model by integration and averaging along the width of each fracture. The resulting so called
hybrid-dimensional model couple the 3D model in the matrix with a 2D model in the fracture network taking
into account the jump of the normal fluxes as well as additional transmission conditions at the matrix-fracture
interfaces. These transmission conditions depend on the mathematical nature of the equi-dimensional model
and on additional physical assumptions. They are typically derived for a single phase Darcy flow for which
they specify either the continuity of the pressure in the case of fractures acting as drains [3,10] or Robin type
conditions in order to take into account the discontinuity of the pressure for fractures acting either as drains or
barriers [4,13,19,28]. In our case, the fractures will be assumed to act as drains both for the Darcy flow and for
the thermal conductivity leading us to set the pressure and temperature continuity as transmission conditions
at the matrix fracture interfaces.

The discretization of hybrid-dimensional Darcy flow models has been the object of many works using cell-
centered Finite Volume schemes with either Two Point or Multi Point Flux Approximations (TPFA and
MPFA) [1,2,4,20,23,36,40], Mixed or Mixed Hybrid Finite Element methods (MFE and MHFE) [3,22,28], Hy-
brid Mimetic Mixed Methods (HMM, which contains mixed-hybrid finite volume and mimetic finite difference
schemes [15]) [5,10,12,18], Control Volume Finite Element Methods (CVFE) [9, 20, 29, 30, 35].

This article focus on the Vertex Approximate Gradient (VAG) scheme which has been introduced for the dis-
cretization of multiphase Darcy flows in [17] and extended to hybrid-dimensional models in [10-13,41,42]. The
VAG scheme uses nodal and fracture face unknowns in addition to the cell unknowns which can be eliminated
without any fill-in. Thanks to its essentially nodal feature, it leads to a sparse discretization on tetrahedral or
mainly tetrahedral meshes. It has the benefit, compared with the CVFE methods of [9,29,30,35], to avoid the
mixing of the control volumes at the matrix fracture interfaces, which is a key feature for its coupling with a
transport model. As shown in [11] for two phase flow problems, this allows for a coarser mesh size at the matrix
fracture interface for a given accuracy.

At the reservoir scale of a few kilometers, the mesh cannot resolve the well boundary with a radius of say 10
cm and the well is modeled as a Dirac source term along the well trajectory. Most well models in reservoir sim-
ulations are defined by a set of connected perforations, each perforation belonging to a cell of the mesh [33,34].
This type of approach is adapted to cell-centered finite volume discretization. In order to take advantage of
unstructured meshes and of the nodal feature of the VAG scheme, it is more convenient in our case to discretize
each well as a subset of edges of the mesh. This alternative approach provides an efficient way to represent
slanted and multi-branch wells. The fluxes connecting the well with the 3D matrix and the 2D fracture network
at each node of the well will be computed using Peaceman’s approach [14,33,34]. It is based on a Two Point
Flux Approximation with a transmissibility taking into account the unresolved singularity of the pressure (or
temperature) solution in the neighborhood of the well. The non-isothermal flow model inside the well is defined
in the spirit of what is conventionally done in oil reservoir simulators [7] using a single implicit unknown for
each well corresponding to a reference pressure often called the bottom hole pressure. The pressures along the
well will be deduced from the bottom hole pressure assuming that the pressure is hydrostatic inside the well.
The temperatures along the well will be computed assuming thermal equilibrium and a stationary flow inside
the well. Then, the well equation is obtained by the complementary conditions between a specified well mass
flow rate and a specified limit bottom hole pressure. By connecting all the nodes along the well trajectory to
the well reference pressure unknown, the well equation introduces an additional connectivity. This difficulty will
be accounted for by the definition of ghost and own wells for each process and by extension of the ghost nodes
of each process in order to take into account the additional connections induced by the own and ghost wells.
This allows to assemble the Jacobian and to compute the well pressure drops locally on each process without
the need of MPI communications.
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The outline of the remaining of the paper is as follows. In section 1, the hybrid-dimensional model presented
in [42] is recalled. Although the implementation has been done for the multi-phase compositional model defined
in [42], we focus here on the particular case of a non-isothermal single-component single-phase Darcy flow model
in order to simplify the presentation. Section 2 introduces the space and time discretization of the model. The
definitions of the multi-branch well data structure and of the well model are detailed in subsection 2.3. Section
3 presents the parallel implementation of the model including the partitioning of the mesh and wells, as well
as the parallel assembly of the nonlinear and linear systems to be solved at each time step of the simulation.
The solution of the linear systems uses the parallel linear solver library PETSc [8] and is based on the GMRES
iterative solver preconditioned by a CPR-AMG preconditioner [27,37]. The implementation of the CPR-AMG
preconditioner takes into account the well equations in the definition of the pressure block. Two numerical tests
are presented in section 4. The first test case is used to validate our model. It considers an isothermal single-
phase stationary Darcy flow on a simple geometry with one horizontal fracture and one vertical well for which
an analytical pressure solution can be obtained. The second test case considers a single-phase non-isothermal
transient flow on a complex geometry including three intersecting fractures, one slanted injection well and one
multi-branch production well.

1. HYBRID-DIMENSIONAL NON-ISOTHERMAL SINGLE-PHASE DISCRETE FRACTURE MODEL

This section recalls, in the particular case of a non-isothermal single-component single-phase Darcy flow
model, the hybrid-dimensional model introduced in [42].

1.1. Discrete Fracture Network

Let Q denote a bounded domain of R? assumed to be polyhedral. Following [3,10,12,19,28] the fractures are
represented as interfaces of codimension 1. Let J be a finite set and let T = J e T'; and its interior I' =T\ 0T
denote the network of fractures I'; C €, j € J, such that each I'; is a planar polygonal simply connected open
domain included in a plane of R3. The fracture width is denoted by d; and is such that 0 < df <ds(x) < Ef

BT

I3
0 /

I

FiGURE 1. Example of a 2D domain with 3 intersecting fractures I'y, 'y, I's.

for all x € I'. We can define, for each fracture j € J, its two sides + and —. For scalar functions on €2, possibly
discontinuous at the interface I' (typically in H'(Q\T')), we denote by 4* the trace operators on the side & of I'.
Continuous scalar functions u at the interface I' (typically in H'(Q)) are such that ytu = v~ u and we denote
by v the trace operator on I' for such functions. At almost every point of the fracture network, we denote by
n* the unit normal vector oriented outward to the side + of I such that n* +n~ = 0. For vector fields on ©,
possibly discontinuous at the interface I" (typically in H g, (€2\ T'), we denote by v:F the normal trace operator

on the side + of T oriented w.r.t. n¥.
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The gradient operator in the matrix domain Q \ T is denoted by V and the tangential gradient operator on
the fracture network is denoted by V. such that

V,u=Vu—(Vu-n*)nt.

We also denote by div, the tangential divergence operator on the fracture network, and by dr(x) the Lebesgue
measure on .

We denote by ¥ the dimension 1 open set defined by the intersection of the fractures excluding the boundary
of the domain €2, i.e. the interior of U (; ine x| jpyy OF5 NOT; \ 0.

For the matrix domain, Dirichlet (subscript D) and Neumann (subscript V) boundary conditions are imposed
on the two dimensional open sets 9Qp and 0y respectively where 9QpNINN = 0, 9Q = 9QpUIN . Similarly
for the fracture network, the Dirichlet and Neumann boundary conditions are imposed on the one dimensional
open sets OT'p and T respectively where OT'p N Oy =0, AT NOQ = OT'p U AT .

Let v, or; J € J denote the normal trace operator at the fracture I'; boundary oriented outward to T';.

1.2. Non-isothermal single-phase flow model

To focus on the implementation aspects related to well modeling, the physics of the fluid is kept relatively
simple and we refer to [42] for a compositional multiphase non-isothermal modeling of reservoir flow. The fluid
is monophasic and is described by its thermodynamical variables X = (P,T) where P is the pressure and T the
temperature. We denote by p(X) its mass density, by u(X) its dynamic viscosity, by e(X) its specific internal
energy, and by h(X) its specific enthalpy. The rock energy density is denoted by E,.(X).

The reduction of dimension in the fractures leading to the hybrid-dimensional model is obtained by integra-
tion of the conservation equations along the width of the fractures complemented by transmission conditions at
both sides of the matrix fracture interfaces (see [42]). In the following, X,,, = (P, T),) denote the pressure and
temperature in the matrix domain Q \ T', and X; = (Py,T}) are the pressure and temperature in the fractures
averaged along the width of the fractures. The permeability tensor is denoted by K,,, in the matrix domain and
is assumed to be constant in the width of the fractures and to have the normal vector n as principal direction.
We denote by Ky the tangential permeability tensor in the fractures. The porosity (resp. thermal conductivity
of the rock and fluid mixture) is denoted by ¢,, (resp. A,,) in the matrix domain. It is assumed to be con-
stant in the width of the fractures and denoted by ¢¢ (resp. A¢). The gravity acceleration vector is denoted by g.

The set of unknowns of the hybrid-dimensional model is defined by X,,, in the matrix domain Q\ T, by X I
in the fracture network I', and by X5 = (Psx,T%) at the fracture intersection X. The set of equations couples
the mass and energy conservation equations in the matrix

¢matp(Xm) + div(qm) =0,

00 (X)) ) (1~ 000 (Xo) + (e ) =0, W

in the fracture network

dgds0p(Xs)+dive(ar) — Yo dm — Y dm = 0,

2
droso. <p(Xf)€(Xf))+df(1 — ¢1)0E (Xy) + dive(Qe,f) — Vi De,m — Y De,m = 0, )

and at the fracture intersection

Z(’Ynarj qf)|2 =0, Z(’Yﬂarj qe,f)‘E =0, (3)

jed jedJ
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as well as the Darcy and Fourier laws providing the mass and energy fluxes in the matrix

P(Xim)
qm = va Qe,m = h Xm qdm — )\mVTmy 4
w(Xom) (%om) )
and in the fracture network
p(Xy)
= Vy, Ae,r = M Xy)ay —dpAsV, Ty, (5)
M(Xf) f f f1af fAf f

where
V=Ko (VPm - p(Xm)g), V= —d;K; (VTPf - p(Xf)g.r), g =g— (g n")n".

The system (1)-(2)-(3)-(4)-(5) is closed with the transmission conditions at the matrix fracture interface
I'. These conditions state the continuity of the pressure and temperature at the matrix fracture interfaces
assuming that the fractures do not act as barrier neither for the Darcy flow nor for the thermal conductivity
(see [3,19,28,42]).

’Y+Pm:’77Pm:7Pm:Pf7

_ (6)
’7+Tm =7 Ty =7Tn = Tf-

Note also that the pressure Py (resp. the temperature T%) is assumed continuous and equal to Ps (resp. T%)
at the fracture intersection ¥, and that homogeneous Neumann boundary conditions are applied for the mass
qy and energy q. ¢ fluxes at the fracture tips OI" \ 0.

2. VAG FINITE VOLUME DISCRETIZATION

2.1. Space and time discretizations

The VAG discretization of hybrid-dimensional two-phase Darcy flows introduced in [11] considers generalized
polyhedral meshes of €2 in the spirit of [16]. Let M be the set of cells that are disjoint open polyhedral subsets
of © such that Uxc K = Q, for all K € M, xi denotes the so-called “center” of the cell K under the
assumption that K is star-shaped with respect to xg. The set of faces of the mesh is denoted by F and Fi is
the set of faces of the cell K € M. The set of edges of the mesh is denoted by £ and &, is the set of edges of
the face o € F. The set of vertices of the mesh is denoted by V and V, is the set of vertices of the face o. For
each K € M we define Vg = UaefK V.

The faces are not necessarily planar. It is just assumed that for each face o € F, there exists a so-called
“center” of the face x, € o\ Ueesa e such that x, = Zsevg Bo,s Xs, With Zsevg Bss = 1, and B, > 0 for
all s € V,; moreover the face o is assumed to be defined by the union of the triangles T, . defined by the face
center X, and each edge e € £,. The mesh is also supposed to be conforming w.r.t. the fracture network I' in
the sense that for all j € J there exist the subsets 1, of F such that

We will denote by Fr the set of fracture faces

Jr = U Fr;s

JjeJ
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and by

o= V.,
oeFr

the set of fracture nodes. This geometrical discretization of  and T is denoted in the following by D.
In addition, the following notations will be used

Mg={KeM|seVk}, M,={KeM|oeFx},

and

.7:1‘75 = {U S fp|S S VU}.

For Ny, € N*, let us consider the time discretization O=0<tl< o<t <cpne <tV = ty of the
time interval [0,¢7]. We denote the time steps by At™ =¢" — "~ foralln =1,--- s Ni,
2.2. VAG fluxes and control volumes

The VAG discretization is introduced in [16] for diffusive problems on heterogeneous anisotropic media. Its
extension to the hybrid-dimensional Darcy flow model is proposed in [11] based upon the following vector space
of degrees of freedom:

Vp={vk eRus eRv, eR,K € M,s €V, 0 € Fr}.

The degrees of freedom are exhibited in Figure 2 for a given cell K with one fracture face ¢ in bold.

The matrix degrees of freedom are defined by the set of cells M and by the set of nodes V \ Vr excluding the
nodes at the matrix fracture interface I'. The fracture faces Fr and the fracture nodes Vr are shared between
the matrix and the fractures but the control volumes associated with these degrees of freedom will belong to
the fracture network (see Figure 3). The degrees of freedom at the fracture intersection ¥ are defined by the
set of nodes Vs; C Vr located on 3. The set of nodes at the Dirichlet boundaries 9Qp and 0L p is denoted by
Vp.

The VAG scheme is a control volume scheme in the sense that it results, for each non Dirichlet degree of
freedom in a mass or energy balance equation. The matrix diffusion tensor is assumed to be cellwise constant
and the tangential diffusion tensor in the fracture network is assumed to be facewise constant. The two main
ingredients are therefore the conservative fluxes and the control volumes. The VAG matrix and fracture fluxes
are exhibited in Figure 2. For up € Vp, the matrix fluxes Fi ,(up) connect the cell K € M to the degrees
of freedom located at the boundary of K, namely v € Ex = Vg U (Fx N Fr). The fracture fluxes Fy s(up)
connect each fracture face o € Fr to its nodes s € V,. The expression of the matrix (resp. the fracture) fluxes
is linear and local to the cell (resp. fracture face). More precisely, the matrix fluxes are given by

Fg,(up) = Z T3 (uge —w),

V' EEK

with a symmetric positive definite transmissibility matrix Tk = (T}’(’”/)(V’,ﬂ)eg x=r depending only on the cell
K geometry (including the choices of xx and of x,,0 € Fk) and on the cell matrix diffusion tensor. The
fracture fluxes are given by

Fos(up) = Y T3% (ug — uy),
SEV,

with a symmetric positive definite transmissibility matrix T, = (lesl)(sysl)eya <y, depending only on the fracture
face o geometry (including the choice of x,) and on the fracture face width and tangential diffusion tensor. Let
us refer to [11] for a more detailed presentation and for the definition of Tk and Ty.
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FIGURE 2. For a cell K and a fracture face o (in bold), examples of VAG degrees of freedom
UK, Us, Uy, Us and VAG fluxes Fi o, Fr s, Frs, Fos.

The construction of the control volumes at each degree of freedom is based on partitions of the cells and of
the fracture faces. These partitions are respectively denoted, for all K € M, by

K = wg U U WKs |
and, for all o € Fr, by

E:i,U U Sos

s€V,\Vp
It is important to notice that in the usual case of cellwise constant rocktypes in the matrix and facewise constant
rocktypes in the fracture network, the implementation of the scheme does not require to build explicitly the
geometry of these partitions. In that case, it is sufficient to define the matrix volume fractions

fwK . dx

OKs = —=— sV \(VpUVr),K e M,
dex

constrained to satisfy ag , > 0, and ZSEVK\(VDUVI‘) aks <1, as well as the fracture volume fractions

e )
7 [ df(x)dr(x)

constrained to satisfy a, ¢ > 0, and Zseva\vD a5 < 1, where we denote by dr(x) the 2 dimensional Lebesgue

measure on I'. Let us also set

,S €V, \Vp,o € Fr,

ox = (1— Z aK.s) /Kqu(x)dx for K € M,

SEVK\(VDUVF)

and

bo=(1- Y ams)/gi)f(x)df(x)dT(x) for o € Fr,

s€V,\Vp
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as well as

s = Z aK7s/K¢m(x)dx forse V\ (VpUVr),

KeMsg
and

s = Z ag)s/ ¢¢(x)ds(x)dr(x) forse Vp\Vp,
oEFr,s g
which correspond to the porous volumes distributed to the degrees of freedom excluding the Dirichlet nodes.
The rock complementary volume in each control volume v € M U Fr U (V \ Vp) is denoted by ¢,.

As shown in [11], the flexibility in the choice of the control volumes is a crucial asset, compared with usual
CVFE approaches and allows to significantly improve the accuracy of the scheme when the permeability field is
highly heterogeneous. As exhibited in Figure 3, as opposed to usual CVFE approaches, this flexibility allows to
define the control volumes in the fractures with no contribution from the matrix in order to avoid to artificially
enlarge the flow path in the fractures.

is

Ficure 3. Example of control volumes at cells, fracture face, and nodes, in the case of two
cells K and L splitted by one fracture face o (the width of the fracture is enlarged in this
figure). The control volumes are chosen to avoid mixing fracture and matrix rocktypes.

In the following, we will keep the notation F s, F,», Fo,s for the VAG Darcy fluxes defined with the cellwise
constant matrix permeability K,,, and the facewise constant fracture width d; and tangential permeability K.
Since the rock properties are fixed, the VAG Darcy fluxes transmissibility matrices Tk and T, are computed
only once.

The VAG Fourier fluxes are denoted in the following by Gk s, Gk,s, Gos- They are obtained with the
isotropic matrix and fracture thermal conductivities averaged in each cell and in each fracture face using the
previous time step fluid properties. Hence VAG Fourier fluxes transmissibility matrices need to be recomputed
at each time step.

2.3. Multi-branch non-isothermal well model

Let W denote the set of wells. Each multi-branch well w € W is defined by a set of oriented edges of the
mesh assumed to define a rooted tree oriented away from the root. This orientation corresponds to the drilling
direction of the well. The set of nodes of a well w € W is denoted by V,, C V and its root node is denoted by
sroot A partial ordering is defined on the set of vertices V,, with s < s if and only if the unique path from the

oot
root s7°° to s’ passes through s. The set of edges of the well w is denoted by &, and for each edge € € &, we
set € = 8189 with 81 < sy. It is assumed that &, N &y, = 0 for any wy,ws € W such that wy # ws.

w

We focus on the part of the well that is connected to the reservoir through open hole, production liners
or perforations. In this section, exchanges with the reservoir are dominated by convection and we decided to
neglect heat losses as a first step. The latest shall be taken into account when modeling the wellbore flow up
to the surface. It is assumed that the radius r,, of each well w € W is small compared to the cell sizes in the
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neighborhood of the well. It results that the Darcy flux between the reservoir and the well at a given well node
s € V,, is obtained using the Two Point Flux Approximation

Vs,w = ms,w(Ps - Ps,w)a

where Fs is the reservoir pressure at node s and P, is the well pressure at node s. The Well Index Wi, is
typically computed using Peaceman’s approach (see [14,33,34]) and takes into account the unresolved singularity
of the pressure solution in the neighborhood of the well. Fourier fluxes between the reservoir and the well could
also be discretized using such Two Point Flux Approximation but they are assumed to be small compared with
thermal convective fluxes and will be neglected in the following well model. The temperature inside the well is
denoted by T, at each well node s € V,,.

For any a € R, let us define a™ = max(a,0) and ¢~ = min(a,0). The mass flow rate between the reservoir
and the well w at a given node s € V,, is defined by the upwind formula:

inj P(Xsw) - rod P(Xs) "
Qm,s,w = 5(7;7] %ms,w Ps - Ps,w + 55 ° V[/Is,w Ps - Ps,w I 7
1(Xoo) ( ) (X0 ( ) (7)
and the energy flow rate by
Gesw = M Xew)lm s + MXS) G 5.0 (8)

The well coefficients 37 and 8P7°¢ are used to impose specific well behavior. The general case corresponds to
pind = grrod — 1. Yet, for an injection well, it will be convenient as explained in subsection 2.3.2, to impose that
the mass flow rates g, s. are non positive for all nodes s € V,, corresponding to set 8% = 1 and prred = (.
Likewise, for a production well, it will be convenient as explained in subsection 2.3.3, to set 8% = 0 and
ﬁf]“d = 1 which corresponds to assume that the mass flow rates ¢, s are non negative for all nodes s € V,,,.
These simplifying options currently prevent the modeling of cross flows where injection and production occur
in different places of the same well, as it sometimes happen in geothermal wells, typically in closed wells.

2.3.1. Well model

Our conceptual model inside the well assumes that the flow is stationary at the reservoir time scale along with
perfect mixing and thermal equilibrium. The pressure distribution along the well is also assumed hydrostatic.

For the sake of simplicity, the flow rate between the reservoir and the well is considered concentrated at each
node s of the well. Hence the mass flow rate along each edge € € &€, depends only on time. It is denoted by g,
and is oriented positively from s; to so with € = s185. Since Fourier fluxes are neglected, the specific enthalpy
depends as well only on time along the edge € and is denoted by h..

The set of well unknowns is defined by the well pressure Ps ., and the well temperature T, at each node
s € V,, the mass flow rate ¢. and specific enthalpy h. at each edge € € &,, the well total mass flow rate g, (non
negative for production wells and non positive for injection wells) as well as the well specific enthalpy h,, for
injection wells.

For each edge € = s189 € &,,, the specific enthalpy h. satisfies the equation

_ h(X51,w) if g > 0,
he = { h(Xs, o) if ge < 0. )

For all sys; =€ € &,, let us set ks = 1if s = sy and ks = —1 if s = s;. The well equations account for the
mass and energy conservations at each node of the well. Let & denote the set of edges sharing the node s, then
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for all s € V,, we obtain the equations

Sro()t

Z Re,sqe + dm,s,w = 5SW qu,

ecEsNE,, oot (10)

> keshete+ Gesw =052 (hwtg + h(Xsw)al)
e€EsNE,

where 0 stands for the Kronecker symbol. Inside the well, the hypothesis of hydrostatic pressure distribution
implies that

% = —gp(X) on € = s189,
h(X) = hea
P(Zsl) :Psl,wv (11)

P(Zsz) = Ps, w0,
for each edge € € &,. To close the system, the well boundary conditions prescribe a limit total mass flow rate
G and a limit bottom hole pressure P,,. Then, complementary constraints accounting for usual well monitoring
conditions, are imposed between q,, — G, and P,, — P,, with P, = sroot - In addition, the well specific enthalpy
h,, is also prescribed for an injection well.

In the following subsections, we consider the particular cases of an injection well and a production well.
The flow rates are enforced to be non positive (resp. non negative) at all well nodes for injection wells (resp.
production wells). It corresponds to set 5% = 1, BP7°% = 0 for an injection well and i = 0, fEr°? = 1 for
a production well. The limit bottom hole pressure P,, is a maximum (resp. minimum) pressure and the limit
total mass flow rate g, is a minimum non positive (resp. maximum non negative) flow rate for injection (resp.
production) wells. In both cases, using an explicit computation of the hydrostatic pressure drop, the well model
can be reduced to a single equation and a single implicit unknown corresponding to the well reference pressure
P, (see e.g. [6]).

2.3.2. Injection wells

The injection well model sets Bz}”j =1, ﬁf]’”d = 0 and prescribes the minimum well total mass flow rate
Jw < 0, the well maximum bottom hole pressure P,, and the well specific enthalpy h,,.

Since B =1 and P"°? = 0, the mass flow rates g, are enforced to be non negative and it results from (10)
that he = h,, for all e € &,,.

To compute the pressures along the well, we first solve numerically the equations (11) using the well reference
pressure P71 = P"; L obtained at the previous time step n — 1 and he = hy,. It provides the pressure drop

Sroot
AP, 1= P(z) — P77 ! at each node s € V,,, from which we deduce the well pressures using the bottom well
pressure at the current time step n
Pl', =PI+ AP

From the equation h(XZ,) = WP, Td,) = he, the well temperature 7', at each node s € V,, depends
only on the implicit unknown P]}. The mass and energy flow rates at each node s € V,, between the reservoir
and the well are defined by (7)-(8) with 3" = 1 and 827°¢ = 0 and depend only on the implicit unknowns X2
and PJ:

p(Xe) ,
Um0 (Xs' B) = M(Xsri )stw(Ps"—Ps’fw) v esw(XS PY) = hotimsw (XS, P).
s,w

The well equation at the current time step is defined by the following complementary constraints between the
prescribed minimum well total mass flow rate and the prescribed maximum bottom hole pressure

(Z qm,s,w(X:7P£)_(jw)(Pw _PLL) 207 Z Qm,s,w(X:an)_QUJ 20, Pw_P:} ZO (12)
sEV, s€EV,
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2.3.3. Production wells

The production well model sets 3% = 0, 3274 = 1 and prescribes the maximum well total mass flow rate
G > 0 and the well minimum bottom hole pressure P,,.

The solution at the previous time step n — 1 provides the pressure drop APg7 1 at each node s € V,,. This
computation is detailed below. As for the injection well, we deduce the well pressures using the bottom well
pressure at the current time step n

Pl', =Pl + AP
The mass and energy flow rates at each node s € V,, between the reservoir and the well are defined by (7)-(8)
with 8% = 0 and $E7°? = 1 and depend only on the implicit unknowns X2 and P":

p(X3)

dm,s,w X;LvPZ;I = n
P = )

[/[/]SM(PS” - Psr,bw)-i_v qe,s,w(Xsn’ PB}) = h(Xg)Qm,S,W(X:’ Fy).

The well equation at the current time step is defined by the following complementary constraints between the
prescribed maximum well total mass flow rate and the prescribed minimum bottom hole pressure

(@0 = D" amowX2PD) (P2 = P) =0, @ Y Gmsw(XE,P2) 20, PL =Py >0, (13)

seV, seV,

Let us now detail the computation of the pressure drop at each node s € V,, using the previous time step
solution n — 1. We first compute the well temperature Ts’f;l at each node s using equations (10). The mass
and energy flow rates from the upstream nodes of the node s are given by

Qm,s,w = Z Qm,s’,w(Xg_la P371)7 Qe,s,w = Z Qe,s’,w(Xg_la Pgil)'

s'EV,|s'>s s'EV,|s'>s
© w

The temperature 7', I inside the well at node s is the solution of the nonlinear system

ML) = eee

’ Qm,s,w

from which we deduce the mass density p;’Ll = p(XS",;l) inside the well at node s. These mass densities and the
reference pressure P?~! are then used to compute the hydrostatic pressure drop AP, I for each node s € V,,
using equations (11).

2.4. Discretization of the hybrid-dimensional non-isothermal single-phase flow model

The time integration is based on a fully implicit Euler scheme to avoid severe restrictions on the time steps
due to the small volumes and high velocities in the fractures. An upwind scheme is used for the approximation
of the mobilities in the mass and energy fluxes that is to say the same scheme that is already used in the
computation of the well mass and energy fluxes (see e.g. [7]). At the matrix fracture interfaces, we avoid mixing
matrix and fracture rocktypes by choosing appropriate control volumes for o € Fr and s € Vr (see Figure 3).
In order to avoid tiny control volumes at the nodes s € Vy located at the fracture intersection, the volume is
distributed to such a node s from all the fracture faces containing the node s. It results that the volumes of the
control volumes s € Vx at the fracture intersection are not smaller than at any other matrix fracture degrees
of freedom. This solves the problems reported in [23] and [36] related to the small volumes at the fracture
intersections and avoids the Star-Delta transformation used in [23] which is not valid when coupled with a
transport model.
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For each v € MU Fr UV the couple of reservoir pressure and temperature is denoted by X, = (Pl,7 Ty). We
denote by Xp, the set of reservoir unknowns

Xp ={X,, v e MUFrUV},
and similarly by Pp and Tp the sets of reservoir pressures and temperatures. The set of bottom hole pressures

is denoted by Py, = {P,, w € W}.
The Darcy fluxes taking into account the gravity term are defined by

Vko(Xp) = Fro(Pp)+ MFK,V(Q'D)v veEg, KeM, (14)
Vos(Xp) = Fyo(Pp) + 2520328 E, (Gp), s € Vs 0 € Fr,
where Gp denotes the vector (g - X, )vemuruy-
For each Darcy flux, let us define the upwind control volume cv,, ,, such that
K i Vi, (Xp) >0 _
CUK v { Vi Viey(Xp) <0 for K e M,v € Zg,
for the matrix fluxes, and such that
o o if Va,s(XD) 2 0
Vo5 = { s if V,(Xp) <0 for o € Fr,s €V,,
for fracture fluxes. Using this upwinding, the mass and energy fluxes are given by
p(Xev, )
qm,l/,l//(X’D) = mvu,u’ (XD)v Ge,v,v’ (XD) - h(Xcvuyy/ )Qm,u,l/(XD) + Gu,l//(TD)~
In each control volume v, the mass and energy accumulations are denoted by
Am,u(Xl/) = ¢Vp(Xu)7 AC,V(XL/) = e(Xu)Am,l/(XV) + QEVET(XV)-
We can now state the system of discrete equations at each time step n = 1,---, N;, which accounts for the
mass (i =m) and energy (i = e) conservation equations in each cell K € M
ny . A%K(X?() _‘Ai,K(X?(il) n n
Rici(Xp) = A + Y aiks(XB)+ D aike(Xp) =0, (15)
sEVk ceFrNFi
in each fracture face o € Fr
n AiyU(X:rL) _'Ai,U(Xgil) n n
Roi(Xp) == A + Y Gios(XB)+ Y, —aiko(Xp) =0, (16)
s€EV, KeM,

and at each node s € V\ Vp

Ai,s(X;L) - Ai,S(
At

Xn—l
Y KB Y g (XBE Y gan(XDED) =0
oc€Fr,s KeMg weEW|seV,,

Rs (X3, Ppy) ==

(17)
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It is coupled with the well equations for the injection wells w € Wy

R (X, Py) = —min( > qsw(XT, PL) = G P — P1) =0, (18)
seV,

and for the production wells w € W4

Ry(X3, Ppy) =min(qy — Y gmsw(XI, PL), P} — P,) =0, (19)
sEV,

reformulating respectively (12) and (13) using the min function.
The system is closed with the Dirichlet boundary conditions

n _
X - S,D;

s

for all s € Vp, where X5 p = (Ps,p,Ts,p) are the imposed pressure and temperature at node s.

Let us denote by R, the vector (Ry,i, i € {m, e})7 and let us rewrite the conservation equations (15), (16),

(17), (18), (19) as well as the Dirichlet boundary conditions in vector form defining the following nonlinear
system at each time step n = 1,2, ..., N,

RS(XD,Pw), seV,
RJ(XD), o € Fr,
RK(XD), KeM,
Rw(XDaPW)a w e W7

where the superscript n is dropped to simplify the notations and where the Dirichlet boundary conditions have
been included at each Dirichlet node s € Vp in order to obtain a system size independent of the boundary
conditions.

The nonlinear system R(Xp, Py) = 0 is solved by a Newton-min algorithm [26]. Our implementation is
based on an active set method which enforces either the total mass flow rate or the bottom hole pressure at
each Newton iterate and use the remaining inequality constraint to switch from prescribed total mass flow rate
to prescribed bottom hole pressure and vice versa.

3. PARALLEL IMPLEMENTATION

In this section, the extension to our well model of the original parallel implementation described in [42] is
detailed. The distribution of wells to each MPI process p is such that any well with a node belonging to the set
of own nodes of p belongs to the set of own and ghost wells of p (see subsection 3.1). Then, the set of own and
ghost nodes of p is extended to include all the nodes belonging to the own and ghost wells of p. These definitions
ensure that (i) the local linearized systems can be assembled locally on each process without communication as
in [42], and (ii) the pressure drops of the wells can be computed locally on each process without communication.
This last property is convenient since the pressure drop is a sequential computation along the well rooted tree.
This parallelization strategy of the well model is based on the assumption that the number of additional ghost
nodes resulting from the connectivity of the wells remains very small compared with the number of own nodes
of the process.

In subsection 3.2, the new structure of the local linearized systems is described as well as the local elimination
of the cell unknowns. Then, the modification of the pressure block in the CPR-AMG preconditioner and the
extension of the synchronization to the ghost well unknowns are addressed.
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3.1. Mesh decomposition

Let us denote by IV, the number of MPI processes. The set of cells M is partitioned into N, subsets
MP . p=1,...,N, using the library METIS [24]. The non overlapping partitioning of the set of nodes V, of the
set of fracture faces Fr, and of the set of wells W is defined as follows: assuming we have defined a global index
of the cells K € M let us denote by K(s),s € V (resp. K(o), 0 € Fr) the cell with the smallest global index
among those of Mg (resp. M, ). Then we set

VP ={seV|K(s) e MP}, FE={oe Fr|K(o) e MP},

and

WP = {w e W|sl? € VP}.
These sets of own elements are then extended with ghost elements as follows. The overlapping decomposition
of M into the sets

M", p=1,...,Np,

is chosen in such a way that any compact finite volume scheme such as the VAG scheme can be assembled
locally on each process. Hence, as exhibited in Figure 4, M is defined as the set of cells sharing a node with
a cell of MP. The overlapping decompositions of the set of wells, of the set of nodes and of the set of fracture
faces for p = 1,--- , N, are performed in such a way that the linearized systems can be assembled locally on
each process and that the pressure drops of the own and ghost wells can be computed locally on each process
p. It results that any well with a node belonging to VP is included in the set W’ of own and ghost wells of the
process p. Then, the set of own and ghost nodes V" is extended compared to the definition of [42] in such a
way that any node of a well in w’ belongs to V”. The definition of the set of own and ghost fracture faces is
unchanged compared with its original definition in [42]. This leads to the following definitions:

W ={weW [ V,n W £0}, V=V UV, Fr= ] Fxnrr,
KeM”

where

Vﬂp = U VK, VWP = U Vw.
KeM” wew”

Ml Yy el ot M2 ./\_/ll
NSNS NS
Yl V2 o'

FIGURE 4. Example of mesh decomposition.

The partitioning of the mesh is performed by the master process (process 1), and then, each local mesh
is distributed to its process. Therefore, each MPI process contains the local mesh (ﬂ”, Vp, ?111, Wp), p =
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1,2,..., N, which is splitted into two parts:

own elements: (MP, VP, FE WP,
ghost elements: (M"\MP, V'\VP, FR\FE, W\WP).

We now turn to the parallel implementation of the Jacobian system to be solved at each Newton iteration of
each time step.

3.2. Parallelization of the Jacobian system

The Jacobian of the nonlinear system (20) is assembled locally on each process p = 1, ..., N, resulting in the
following rectangular linear system

g gt grarn\ (U, by
P P P T7P A
Tre Ty Jre O UL 1Y (21)
Jgs ch Jg)c 0 Uc bc
Je, 00 Jp,) \U. bL,

In (21), Uﬁ € R(Q#vp), U? € Re#77) , U? € RC#M") denote the vectors of pressure and temperature unknowns

at nodes s € V', fracture faces 0 € Fp, and cells K € M". The vector U,, € R#W") is the vector of well
reference pressures. Likewise, b2 € RZ#Y") and S RE#7E) are the right hand side vectors of own node

and fracture faces equations, b2 € RC#M”) ig the right hand side vector of own and ghost cell equations, and
br e RE#W?) is the right hand side vector of own well equations.

The matrix JZ, is a non singular block diagonal matrix with 2 x 2 blocks, and the cell unknowns can be easily
eliminated without fill-in leading to the following Schur complement system

Jr (948
. 14 sw s D
JPUP — Jschur 0 UE _ < bs(():}}jlur > (22)
Jhe 0 | Jhu U, v

with

JrJP JP , , bP JP —p

Js:.pc ur ‘T ( » Sf) - ( 80) (ch)_l Jé)s Jf ) bé)c ur T < S> - ( SC) (ch)_lbm

we =\t )~ Ul Jeg) e = g ) = ()

and

Up = (JE) 7' (b2 — JRUS — J2,05). (23)

The linear system (22) is built locally on each process p and transferred to the parallel linear solver library
PETSc [8]. The parallel matrix and the parallel vector in PETSc are stored in a distributed manner, i.e. each
process stores its own rows. We construct the following parallel linear system

JU =b, (24)

with
JIR! } process 1
J?R? } process 2
J = . .

JN*RNv» |} process N,
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and
bl h
schur
Ul } process 1 up bqlu process 1
2 s 9
v } process 2 L UP = Up ], b= bsg%lur process 2
; : up w

where RP,p =1,2,..., N, is a restriction matrix satisfying
RPU =T".

The matrix JPRP, the vector U’ and the vector <b§glg“r) are stored in process p.

w

The linear system (24) is solved using the GMRES iterative solver preconditioned by a CPR-AMG pre-
conditioner introduced in [27,37]. This preconditioner combines multiplicatively a parallel algebraic multigrid
preconditioner (AMG) [21] for a pressure block of the linear system with a block Jacobi ILUO preconditioner
for the full system. In our case, the columns of the pressure block are defined by the node, the fracture face
and the well pressure unknowns, and its lines by the node and the fracture face mass conservation equations as
well as the well equations.

The solution of the linear system provides on each process p the solution vector (UP, U ff ,UP) of own node,
fracture-face and well unknowns. Then, the ghost node unknowns U?, v € (VP\VP), the ghost fracture face
unknowns U2, v € (]4:111\]:113) and the ghost well unknowns U}’, v € (WP\WP ) are recovered by a synchronization
step with MPI communications. This synchronization is efficiently implemented using a PETSc matrix vector
product

U=5SU (25)

where
Ul
U= |7

is the vector of own and ghost node, fracture-face and well unknowns on all processes. The matrix S, containing
only 0 and 1 entries, is assembled once and for all at the beginning of the simulation.
Finally, thanks to (23), the vector of own and ghost cell unknowns U IC’ is computed locally on each process p.

4. NUMERICAL RESULTS

All the numerical tests have been implemented on the Cicada cluster of the University Nice Sophia Antipolis
composed of 72 nodes (16 cores/node, Intel Sandy Bridge E5-2670, 64GB/node). We always fix 1 core per
process and 16 processes per node. The communications are handled by OpenMPI 1.8.2 (GCC 4.9) and PETSc
3.5.3. Gravity acceleration is set to 0 in all of the test cases.

4.1. Numerical convergence for an analytical solution with one horizontal fracture and a
vertical well

We consider the domain Q = (—H, H)?, H = 1000 m, with one horizontal fracture I' = {(z,y,2) € Q | 2 = 0}
of width dy = 0.5 m and one vertical well of radius r,, = 0.1 m and defined by the line {(z,y,2) € Q |z =y = 0}.
Both the matrix and the fracture are isotropic and homogeneous with permeability K, = ki1, ky, = 107 m?
in the matrix and with tangential permeability Ky = kI, ky = 107! m? in the fracture. For such a simple
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geometry, an analytical solution of the isothermal stationary linear Darcy equation is defined by the radial
pressure B
P(r)=P, + 2‘12#[) ln(TL), r=+yz24+y%2>0, (z,y,2) € Q, (26)
™ m w
where g, is the mass flow rate per unit well length. The total mass flow rate is

0= H + Ly,
This solution will be used to test the convergence of our discretization for both an injection and a production
well with fixed temperature. For both test cases, the fluid properties are set to x = 1073 Pa.s for the viscosity
and to p = 10% kg.m ™3 for the mass density.

We consider a uniform Cartesian mesh of size n, x n, x n, of the domain 2 conforming to the fracture and
to the well. The well indices Wi, for s € V,, are computed following Peaceman’s methodology [14,33,34] using
the analytical solution (26). Since the mesh is uniform it suffices to solve numerically a local 2D problem with
four (or more) horizontal faces around a given well node s. The pressure equation is solved using the VAG
scheme in the 2D domain composed of the four (or more) faces with the flow rate g, imposed at the well node
s and the radial pressure analytical solution (26) imposed at the boundary nodes. From the pressure numerical
solution at the well node Ps we deduce the Peaceman radius ry defined by

gl 70
P,—P,) = In(—).
(s ) 21k p n(rw

This computation leads to the following solution for the numerical Peaceman indices at the limit of a large
number of faces around the well node. Let us set

H P
de ==, o =0.14036dz, Wo= —r .
Ng In(>)

w

Then, denoting by &, the set of edges of the well, the well index of a given node s € V,, is given by

W= (3 )l

eEéL,lSEE

for a matrix node s € V,, \ Vr, and by

W= (deks+ 3 dgkm)wo

ec&, |s€e

for the fracture node s € V,, N Vpr. Since there is no coupling between the fracture and the matrix for this
radial pressure solution, note that for the fracture node, the Peaceman index is just obtained by summing up
the contributions from the fracture and from the matrix.

For both test cases, Dirichlet boundary conditions given by the analytical solution are imposed at the lateral
boundaries of €2 and at the boundary of I'. Homogeneous Neumann boundary conditions are imposed at the
top and bottom boundaries of 2. The well boundary condition is set to either a specified bottom hole pressure
P, or a specified total flow rate q,.

Let us first consider the case of an injection well with the well pressure P, = 2 x 107 Pa and the flow rate per
unit well lengh set to g, = 0.1 kg.s~*.m~!. The corresponding analytical solution defined by (26) with these
parameters is shown in Figure 5. Figure 6 shows, for both a specified pressure or flow rate, the convergence
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of the relative L? errors between the analytical solution and the numerical solution both in the matrix domain
and in the fracture as a function of the mesh size n, = 10, 20,40, 80. We obtain a convergence of order 1 in all
cases.

Injection well

Pressure
1.1842407

Ew 054147

Pressure
1.184e+07

~1008e+7 F
- “a.78de

82235846 -
- —7.0277e+b

—6 5666e+6
5.2707e+6
28102406

48108406

FIGURE 5. Analytical solution with the injection well in the matrix domain (left) and in the
fracture (right).
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(A) Imposed pressure. (B) Imposed flow rate.

FIGURE 6. Relative L? errors between the analytical solution and the numerical solution with
one injection well in the matrix domain and in the fracture, where the pressure is imposed (A)
or the flow rate is imposed (B).

Next, we consider the case of a production well with the well pressure P, = 5 x 10° Pa and the well flow
rate per unit well lengh set to g, = 0.1 kg.s~1.m~!. Figure 7 shows the analytical solution defined by (26) with
these parameters.

We present in Figure 8 the convergence of the relative L? errors between the analytical solution and the
numerical solution as a function of the mesh size n, = 10,20, 40,80, both in the matrix domain and in the
fracture and for both for a specified pressure or a specified flow rate. We obtain as previously a convergence of
order 1 in all cases.

4.2. Non-isothermal single-phase flow

This test case considers a non-isothermal liquid flow with mass density, viscosity, specific internal energy
and enthalpy obtained from [38]. The thermal conductivity is fixed to A = 2 W.m~1.K~! and the rock internal
energy density is defined by E,.(T) = ¢, T with ¢, = 16.10° Jm—3. K1,
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FIGURE 7. Analytical solution with the production well in the matrix domain (left) and in the
fracture (right).
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FIGURE 8. Relative L? errors between the analytical solution and the numerical solution ob-
tained with the production well in the matrix domain and in the fracture, where the pressure
is imposed (A) or the flow rate is imposed (B).

The simulation domain is defined by © = (0,2000)? in meters. The mesh is a 3D tetrahedral mesh conforming
to the fracture network and to the wells. It was generated using the implicit framework from the 3D mesh
generation package from the Computational Geometry Algorithms Library (CGAL [39]). As shown in Figure
9, there is one injection well (red line) and one multi-branch production well (green line). This mesh contains
about 4.9 x 106 cells, 2.8 x 10* fracture faces and 8.0 x 10° nodes. The radius of both wells is set to 0.1 meter
and the fracture width is fixed to dy = 1 meter. The permeabilities are isotropic and set to K,, = 10714 m?
in the matrix domain and to K; = 1077 m? in the fracture network. The porosities in the matrix domain
and in the fractures are ¢,,, = 0.1 and ¢y = 0.4 respectively. The computation of numerical Peaceman indices
would require an analytical solution for the linear diffusion equation, which is not known for such a complex
geometry involving fractures and multi-branch wells. This solution could also be obtained numerically using a
mesh at the scale of the wells but its generation is out of the scope of this test case. Alternatively, we will use
for this test case approximate analytical Peaceman type formulas providing a good order of magnitude for the
Peaceman indices.

The domain is initially at the constant temperature 413 K and the constant pressure 2.0 x 107 Pa. The
temperature is fixed to 413 K and the pressure is fixed to 2.0 x 107 Pa at the lateral boundaries of the domain.
Zero fluxes for both mass and energy are imposed at the top and bottom boundaries of the domain. At the
injection well, a cold water at temperature Tj,; = 333 K is injected with the maximum bottom hole pressure
Pmar = 3.0 x 107 Pa and the total mass flow rate g;,; = —27.78 kg/s (i.e. —100 t/h). At the production well,

inj
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FicURE 9. Coarse 3D tetrahedral mesh conforming to the fracture network and to the wells.
There are one injection well (red line) and one production well (green line).

ty 5-10° days | final simulation time

At 4-10%* days | time step

N on 40 maximum number of nonlinear iterations
Nomires 150 maximum number of linear iterations
Encwton 10~° nonlinear relative residual stopping criteria
€gmres 106 linear relative residual tolerance

TABLE 1. Simulation parameters

hot water is produced with the minimum bottom hole pressure Py = 1.0 x 107 Pa and the total mass flow
rate Gprod = —Qin; = +27.78 kg/s.

Figures 10 and 11 exhibit the temperature in the matrix domain and in the fractures at times ¢t = 4 x 10*
days and ¢ = t;. The temperature at the root node of the production well as a function of time is shown in
Figure 12.

Then, we show in Figures 13 and 14 the pressure in the matrix domain and in the fractures at times t = 4 x 10*
days and t = ty. In addition, the pressures at the root nodes of both wells as a function of time are shown in
Figure 15.

Finally, we present in Figure 16 the total computational time in hours for different numbers of MPI processes
N, =4,8,16, 32, 64,128. The scalability behaves as expected for fully implicit time integration and AMG type
preconditioners. It is well known that the AMG preconditioner requires a sufficient number of unknowns per
MPI process, say 10° as typical order of magnitude, to achieve a linear strong scaling. For this mesh size,
leading to roughly 8.2 x 10° unknowns for the pressure block, the scalability is still not far from linear on up to
64 processes and then degrades more rapidly for NV, = 128.

5. CONCLUSION

In this paper, the non-isothermal hybrid-dimensional Darcy flow model presented in [42] has been extended
to incorporate thermal well models coupled with both the matrix domain and the fracture network. The well
data structure is based on a rooted tree defined by a set of edges of the mesh. This allows to represent efficiently
both slanted and multi-branch wells taking advantage of the unstructured mesh and of the nodal feature of the
VAG discretization. The fluxes connecting the well with the 3D matrix and the 2D fracture network at each
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FIGURE 10. Left: temperature in the matrix domain and in the fractures at t = 4 x 10* days
where a clip view on plane {y = 1000} is used in the matrix domain. Right: temperature in
the fractures at t = 4 x 10* days. The wells are drawn as black lines in both figures.
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FIGURE 11. Left: temperature in the matrix domain and in the fractures at t = 5 x 10° days
where a clip view on plane {y = 1000} is used in the matrix domain. Right: temperature in
the fractures at ¢ = 5 x 10 days. The wells are drawn as black lines in both figures.

node of the well are computed using Peaceman’s approach, and the well non-isothermal flow model is based on
the usual single unknown approach assuming the hydrostatic and thermodynamical equilibrium inside the well.
The parallelization of the well model is performed by definition of own and ghost wells for each process and by
extension of the ghost nodes in order to account for the additional connectivity induced by the own and ghost
well equations. This allows to assemble the Jacobian and to compute the well pressure drops locally on each
process without MPI communications.

The model has been validated using a pressure analytical solution on a simple geometry with one horizontal
fracture and one vertical well. The efficiency of the model, both in terms of ability to account for complex
geology and in terms of parallel scalability, is demonstrated on a non-isothermal single-phase flow test case
using a tetrahedral mesh with roughly 4.9 x 10% cells and including three intersecting fractures, one slanted
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FIGURE 12. Temperature at the root node of the production well as a function of time.
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FIGURE 13. Left: pressure in the matrix domain and in the fractures at t = 4 x 10* days where

a clip view on plane {y = 1000} is used in the matrix domain. Right: pressure in the fractures
at t = 4 x 10* days where the wells are drawn with black lines.
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FIGURE 14. Left: pressure in the matrix domain and in the fractures at t = 5 x 10° days where
a clip view on plane {y = 1000} is used in the matrix domain. Right: pressure in the fractures
at t = 5 x 10% days where the wells are drawn with black lines.
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FIGURE 15. Pressures at the root nodes of both wells as a function of time.

e—e Total time
-=-+ Linear speedup

Time (hours)
=

0.1

4 8 16 32 64 128
Number of MPI processes

FicUrE 16. Total computational time vs. number of MPI processes.

injection well, and one muti-branch production well. This is an important step toward the application of our
simulator to real geothermal test cases in a near future.
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Appendix B

Discrete operators

The explicit expression of the convective operator in three dimensional space, for the
FV M reads:
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For the diffusion operator, the expressions are:
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Résumé : Les générateurs de vapeur (GV) sont I'un des com-
posants majeurs des réacteurs nucléaires, et une connaissance
approfondie de leur comportement constitue un enjeu industriel
important aussi bien pour le concepteur que pour I'exploitant
EDF. Une des problématiques rencontrées pour le dimension-
nement des GV concerne la vibration des tubes induite par
I"écoulement, ce qui nécessite une évaluation raisonnable de la
réponse des tubes a |'excitation provoquée par le fluide envi-
ronnant. La zone identifiée comme la plus critique est la région
en U (partie haute du GV) ol I'écoulement est diphasique avec
un fort taux de vide et interagit plut6t transversalement avec
les tubes. Afin d'évaluer les excitations générées sur les tubes
par les fluctuations inhérentes a I'écoulement, les paramétres
physiques pertinents doivent étre identifiés. Pour les écoule-
ments monophasiques, il semble possible de relier les efforts
exercés sur les structures tubulaires au niveau de turbulence
de I'écoulement ; a la fois en utilisant des méthodes de réduc-
tion des données expérimentales mais également en utilisant
des méthodes de simulations numériques. Pour les écoulements
diphasiques, les forces induites sur les tubes par I'écoulement
ont a priori une autre origine et seraient plutot liées aux contri-
butions dynamiques de chaque phase ainsi qu'aux transferts
interfaciaux (fluctuations de pression liées au passage des dis-
continuités). Néanmoins, les paramétres physiques pertinents
qui permettent de prévoir I'amplitude de ces forces restent lar-

gement débattus (taux de vide, régime d'écoulement, etc.) et
les mécanismes physiques mal compris. Pour étudier ces insta-
bilités vibratoires lorsque |I'écoulement est diphasique, un cer-
tain nombre d'expériences analytiques ont été et continuent
d’'étre menées au CEA. Ces expériences analytiques portent
sur un tube isolé ou en faisceau, rigide ou flexible, et sur une
large gamme de régimes d'écoulement (maquettes AMOVI et
DIVA du CEA). Leur objectif est de caractériser ces instabilités
vibratoires (mesure des forces exercées sur |'obstacle) en fonc-
tion de paramétres globaux de I'écoulement (débit gaz, débit
liquide, taux de vide “moyen”, etc.) mais aussi de certains para-
metres locaux (taux de vide local, taille des bulles, vitesse gaz,
etc.). Ces paramétres mesurés ou estimés localement sont ceux
qui permettent d’obtenir les adimensionnements les plus per-
tinents a la fois sur les forces d’excitations aléatoires (spectres
d'excitation en diphasique sur tube rigide) et sur les forces de
couplage fluide-élastiques (tube flexible seul puis en faisceau).
Il reste néanmoins une bande de dispersion sur les résultats
obtenus, les mécanismes physiques sont mal compris et ces
adimensionnements restent tributaires du choix de la localisa-
tion des mesures. L'objectif de la thése est donc de mettre en
oeuvre des simulations numériques avec suivi d'interface dans
des configurations proches de celles des expériences analytiques
menées au CEA afin d'approfondir I'analyse des phénomenes
conduisant aux vibrations des tubes de GV.
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Abstract : Steam generators are a key component of nuclear
power reactors, and an in-depth knowledge of their mecha-
nisms is a major industrial challenge for the designer and the
operator EDF. Vibration of tube bundles induced by cross-
flow is one of the problems encountered by the designer, thus
needing to assess the vibration response to the excitation ge-
nerated by the flow. The critical region is the U shape of
the bundle (upper part of the steam generator), where two-
phase cross-flow occurs with an important void fraction. In
order to measure excitation induced by flow fluctuations on
the tube bundle, some physical parameters have to be identi-
fied. For single-phase flows, it seems possible to link load on
tubular structure to turbulence intensity of the flow, thanks
to experimental data reduction methods together with nume-
rical simulation methods. For two-phase flows, it is believed
that forces induced on the tubes by the flow have other ori-
gins, and might be connected to dynamic contribution of each
phase together with energy interfacial transfers (pressure fluc-
tuations induced by density discontinuities). Nevertheless, re-
levant physical parameters which could predict the amplitude
of the forces remain a subject of debate (void fraction, flow
regime, etc.) and physical processes not yet fully understood.

fluid-structure interaction; two-phase flows; immersed boundary methods; anti-diffusive methods; numerical

In order to study mechanical instabilities in two-phase flows,
some analytic experiments a have been and continue to be
conducted at CEA. These analytic experiments focuses on iso-
lated tube or tube bundles (rigid or flexible), and on a large
regime flow range (AMOVI and DIVA mockups at CEA). They
aim to describe these mechanical instabilities (forces measure-
ment on the obstacle) based upon average parameters of the
flow (gas and liquid flow rates, “mean” void fraction, etc.), but
also local parameters (local void fraction, bubble size, gas velo-
city, etc.). These measured or locally estimated parameters are
used to conduct relevant nondimensionalization, both on the
random excitation forces (two-phase excitation spectrum on a
rigid tube) and the fluid-elastic coupling forces (single flexible
tube or flexible bundle). Nonetheless, some dispersion remains
on the results, physical mechanisms are not well understood,
and the nondimensionalization process remains dependent on
metrology. The aim of this PhD thesis is to conduct numeri-
cal simulations with interface capture methods in configura-
tions close to the experiments conducted at CEA in order to
expand the knowledge on phenomena leading to vibration of
tube bundle in steam generators.
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