. .. References,

. .. Zeolites and .. .. .-;-t-o-t]-bond-angle, 2.1. Nature of the acid sites, ChemSusChem, vol.2011, issue.5, pp.665-665

B. Katryniok, S. Paul, V. Bellière-baca, P. Rey, and F. Dumeignil, Glycerol dehydration to acrolein in the context of new uses of glycerol, Green Chem, issue.12, pp.2079-2098, 2010.

A. Fairbourne, G. P. Gibson, and D. W. Stephens, The preparation, properties, and uses of glycerol derivatives. Part I. Glycerol ethers, J. Taiwan Inst. Chem. Eng, vol.49, issue.49, pp.1021-1023, 1930.

R. Christoph, B. Schmidt, U. Steinberner, W. Dilla, R. Karinen et al., Ullmann's Encyclopedia of Industrial Chemistry, 2006.

C. A. Quispe, C. J. Coronado, and J. A. Carvalho, Glycerol: Production, consumption, prices, characterization and new trends in combustion, Renew. Sust. Energ. Rev, vol.27, pp.475-493, 2013.

S. A. Steinmetz, J. S. Herrington, C. K. Winterrowd, W. L. Roberts, J. O. Wendt et al., Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions, Proc. Combust. Inst, vol.34, issue.2, pp.2749-2757, 2013.

Y. Gu, A. Azzouzi, Y. Pouilloux, F. Jérôme, and J. Barrault, Heterogeneously catalyzed etherification of glycerol: new pathways for transformation of glycerol to more valuable chemicals, Green Chem, vol.10, issue.2, pp.164-167, 2008.

C. H. Zhou, J. N. Beltramini, Y. X. Fan, and G. Q. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev, vol.37, issue.3, pp.527-549, 2008.

C. Len and R. Luque, Continuous flow transformations of glycerol to valuable products: an overview. Sustain. chem. process, vol.2, pp.1-10, 2014.

A. Behr, J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner, Improved utilisation of renewable resources: New important derivatives of glycerol, Green Chem, vol.10, issue.1, pp.13-30, 2008.

S. P. Srivastava and J. Hancsók, Fuel Additives, Fuels and Fuel-Additives, pp.177-269, 2014.

P. Gaudin, R. Jacquot, P. Marion, Y. Pouilloux, and F. Jerome, Acid-catalyzed etherification of glycerol with long-alkyl-chain alcohols, ChemSusChem, vol.2011, issue.6, pp.719-722
URL : https://hal.archives-ouvertes.fr/hal-00727363

S. Pariente, N. Tanchoux, and F. Fajula, Etherification of glycerol with ethanol over solid acid catalysts, Green Chem, issue.8, pp.1256-1261, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00395168

J. A. Melero, G. Vicente, M. Paniagua, G. Morales, and P. Munoz, Etherification of biodieselderived glycerol with ethanol for fuel formulation over sulfonic modified catalysts, Bioresour. Technol, vol.2012, issue.1, pp.142-151

V. P. Yadav, S. K. Maity, and D. Shee, Etherification of Glycerol with Ethanol over Solid Acid Catalysts: Kinetic Study Using Cation Exchange Resin, Indian Chem. Eng, vol.59, issue.2, pp.117-135, 2016.

K. Y. Nandiwale, S. E. Patil, and V. V. Bokade, Glycerol Etherification using n -Butanol to Produce Oxygenated Additives for Biodiesel Fuel over H-Beta Zeolite Catalysts, Energy Technol, vol.2014, issue.5, pp.446-452

W. Fang, S. Wang, A. Liebens, F. De-campo, H. Xu et al., Silica-immobilized Aquivion PFSA superacid: application to heterogeneous direct etherification of glycerol with n-butanol, Catal. Sci. Technol, vol.5, issue.8, pp.3980-3990, 2015.

C. Cannilla, G. Bonura, L. Frusteri, and F. Frusteri, Batch reactor coupled with water permselective membrane: Study of glycerol etherification reaction with butanol, Chem. Eng. J, vol.282, pp.187-193, 2015.

V. O. Samoilov, D. N. Ramazanov, A. I. Nekhaev, and A. L. Maksimov, Heterogeneous catalytic conversion of glycerol with n-butyl alcohol, Petrol. Chem, vol.56, issue.2, pp.125-130, 2016.

J. F. Izquierdo, M. Montiel, I. Palés, P. R. Outón, M. Galán et al., Fuel additives from glycerol etherification with light olefins: State of the art, Renew. Sust. Energ. Rev, vol.2012, issue.9, pp.6717-6724

H. S. Kesling, L. J. Karas, and F. Liotta, J. Diesel fuel, vol.5308365, 1994.

E. Theodore, K. R. Edlund, M. Mantovani, W. A. Carvalho, R. Rodrigues et al., Biodiesel wastes: An abundant and promising source for the preparation of acidic catalysts for utilization in etherification reaction, Process and product relating to tertiary ethers. US1968033A, 1934. 23. Gonçalves, vol.256, pp.468-474, 2014.

A. Demirbas, Glycerol-Based Fuel Oxygenates for Biodiesel and Diesel Fuel Blends, Energ. Source. Part A, issue.19, pp.1770-1776, 2009.

D. Serio, M. Casale, L. Tesser, R. Santacesaria, and E. , New Process for the Production of Glyceroltert-Butyl Ethers ?, Energy Fuels, vol.24, issue.9, pp.4668-4672, 2010.

E. Vlad, C. S. Bildea, and G. Bozga, Design and control of glycerol-tert-butyl alcohol etherification process, ScientificWorldJournal, pp.1-11, 2012.

S. K. Saxena, A. A. Al-muhtaseb, and N. Viswanadham, Enhanced production of high octane oxygenates from glycerol etherification using the desilicated BEA zeolite, Fuel, vol.159, pp.837-844, 2015.

K. Klepáþová and M. D. , Etherification of Glycerol, Pet. Coal, vol.45, issue.1-2, pp.54-57, 2003.

M. P. Pico, J. M. Rosas, S. Rodríguez, A. Santos, and A. Romero, Glycerol etherification over acid ion exchange resins: effect of catalyst concentration and reusability, J. Chem. Technol. Biotechnol, vol.88, issue.11, pp.2027-2038, 2013.

N. Leddy, Surface area and porosity, CMA Analytical Workshop, vol.2012, pp.1-28

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc, vol.60, issue.2, pp.309-319, 1938.

, Acidic sites on catalyst surfaces and their determination, Catal. Today, vol.5, issue.1, pp.1-120, 1989.

M. Miranda, C. D. Ramírez, S. , A. E. Jurado, S. G. Vera et al., Superficial effects and catalytic activity of ZrO2-SO42? as a function of the crystal structure, J. Mol. Catal. A: Chem, vol.398, pp.325-335, 2015.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, vol.47, issue.1, pp.145-152, 2009.

N. Oger, Y. F. Lin, C. Labrugère, E. Le-grognec, F. Rataboul et al., Practical and scalable synthesis of sulfonated graphene, Carbon, vol.96, pp.342-350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01265760

H. P. Boehm, E. Diehl, W. Heck, and R. Sappok, Surface Oxides of Carbon, Angew. Chem. Int

R. W. Ed-;-broach, D. Jan, D. A. Lesch, S. Kulprathipanja, E. Roland et al., References 1, Ullmann's Encyclopedia of Industrial Chemistry, vol.3, pp.669-677, 1964.

E. M. Flanigen, . Practice, H. Van-bekkum, E. M. Flanigen, P. A. Jacobs et al., Chapter 2 Zeolites and molecular sieves: An historical perspective, Introduction to Zeolite Science, 2001.

M. Guisnet and J. Gilson, Published by Imperial College Press and distributed by, vol.3, 2002.

O. Weigel, E. Steinhoff, and . Ix, Die Aufnahme organischer Flüssigkeitsdämpfe durch Chabasit

, Z. Kristallogr. Cryst. Mater, p.125, 1924.

J. W. Mcbain, The Sorption of Gases and Vapours by Solids, J. Phys. Chem, vol.1932, issue.1, pp.149-150

R. M. Barrer, Synthesis of a zeolitic mineral with chabazite-like sorptive properties, J. Chem. Soc, vol.33, issue.0, pp.127-132, 1948.

R. M. Milton, Molecular-sieve adsorbents, 1959.

R. L. Wadlinger, G. T. Kerr, and E. J. Rosinski, Catalytic composition of a crystalline zeolite

R. J. Argauer and G. R. Landolt, Crystalline zeolite zsm-5 and method of preparing the same, 1969.

E. M. Flanigen, Chapter 2 Zeolites and Molecular Sieves an Historical Perspective, Introduction to Zeolite Science and Practice, 1991.

T. Maesen, . Practice, J. ?ejka, H. Van-bekkum, and A. Corma, The Zeolite Scene -An Overview, Introduction to Zeolite Science, vol.168, pp.1-12, 2007.

E. M. Flanigen and R. L. Patton, Silica polymorph and process for preparing same, 1976.

S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids, J. Am. Chem. Soc, vol.104, issue.4, pp.1146-1147, 1982.

K. Tanabe, Industrial application of solid acid-base catalysts, Appl. Catal., A, vol.181, issue.2, pp.399-434, 1999.

J. D. Sherman, Synthetic zeolites and other microporous oxide molecular sieves, Proc Natl Acad Sci U S A, issue.7, pp.3471-3479, 1999.

J. A. Rabo and M. W. Schoonover, Early discoveries in zeolite chemistry and catalysis at Union Carbide, and follow-up in industrial catalysis, Atlas of Zeolite Framework Types, vol.222, pp.261-275, 2001.

J. V. Smith, Topochemistry of zeolites and related materials. 1. Topology and geometry

, Chem. Rev, vol.88, issue.1, pp.149-182, 1988.

J. M. Newsam, The zeolite cage structure, Science, vol.231, issue.4742, pp.1093-1099, 1986.

N. Y. Chen, T. F. Degnan, and C. M. Smith, Molecular Transport and Reaction in Zeolites: Design and Application of Shape Selective Catalysts, 1994.

M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowdert, A molecular sieve with eighteen-membered rings, Nature, vol.331, issue.6158, pp.698-699, 1988.

R. M. Dessau, J. L. Schlenker, and J. B. Higgins, Framework topology of AIPO4-8: the first 14-ring molecular sieve, Zeolites, vol.10, issue.6, pp.522-524, 1990.

M. Estermann, L. B. Mccusker, C. Baerlocher, A. Merrouche, and H. Kessler, A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening, Nature, vol.352, issue.6333, pp.320-323, 1991.

E. G. Derouane, J. C. Védrine, R. R. Pinto, P. M. Borges, L. Costa et al., The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity, Chem. Rev, vol.55, issue.4, pp.454-515, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00914604

C. Walling, The Acid Strength of Surfaces, J. Am. Chem. Soc, vol.1950, issue.3, pp.1164-1168

J. A. Rabo and G. J. Gajda, Acid Function in Zeolites: Recent Progress, Guidelines for Mastering the Properties of Molecular Sieves, pp.273-297, 1990.

J. N. Bronsted, Acid and Basic Catalysis, Chem. Rev, vol.1928, issue.3, pp.231-338

G. N. Lewis, The Atom and the Molecule, J. Am. Chem. Soc, vol.1916, issue.4, pp.762-785

G. Busca, Acidity and basicity of zeolites: A fundamental approach, Microporous Mesoporous Mater, vol.254, pp.3-16, 2017.

R. D. Shannon, K. H. Gardner, R. H. Staley, G. Bergeret, P. Gallezot et al., The nature of the nonframework aluminum species formed during the dehydroxylation of H-Y, J. Phys. Chem, issue.22, pp.4778-4788, 1985.

S. Morin, A. Berreghis, P. Ayrault, N. S. Gnep, and M. Guisnet, Dealumination of zeolites Part VIIIAcidity and catalytic properties of HEMT zeolites dealuminated by steaming, J. Chem. Soc., Faraday Trans, vol.93, issue.17, pp.3269-3275, 1997.

M. Elanany, M. Koyama, M. Kubo, E. Broclawik, and A. Miyamoto, Periodic density functional investigation of Lewis acid sites in zeolites: relative strength order as revealed from NH3 adsorption, Appl. Surf. Sci, vol.246, issue.1-3, pp.96-101, 2005.

T. Chen, A. Men, P. Sun, J. Zhou, Z. Yuan et al., Lewis acid sites on dehydroxylated zeolite HZSM-5 studied by NMR and EPR, Catal. Today, vol.30, issue.1-3, pp.189-192, 1996.

M. Guisnet, Influence of zeolite composition on catalytic activity, Supported Catalysts and Their Applications, pp.55-67, 2007.

P. A. Parikh, N. Subrahmanyam, Y. S. Bhat, and A. B. Halgeri, Toluene ethylation over metallosilicates of MFI structure. Effects of acidity and crystal size on para-selectivity, Catal. Lett, vol.14, issue.1, pp.107-113, 1992.

T. Hattori and T. Yashima, Zeolites and Microporous Crystals, 1994.

N. Chaouati, A. Soualah, I. Hussein, J. D. Comparot, and L. Pinard, Formation of weak and strong Brønsted acid sites during alkaline treatment on MOR zeolite, Appl. Catal., A, vol.526, pp.95-104, 2016.

B. Smit and T. L. Maesen, Towards a molecular understanding of shape selectivity, Nature, issue.7179, pp.671-678, 2008.

S. M. Csicsery, Shape-selective catalysis in zeolites, Zeolites, vol.1984, issue.3, pp.202-213

I. E. Maxwell, Shape-selective catalysis and process technology via molecular inclusion in zeolites, Journal of Inclusion Phenomena, vol.4, issue.1, pp.1-29, 1986.

E. G. Derouane, P. Dejaifve, Z. Gabelica, and J. C. Védrine, Molecular shape selectivity of ZSM-5, modified ZSM-5 and ZSM-11 type zeolites, Faraday Discuss. Chem. Soc, vol.72, issue.0, pp.331-344, 1981.

P. B. Weisz, Molecular shape selective catalysis, Pure Appl. Chem, vol.52, issue.9, pp.2091-2103, 1980.

S. Teketel, M. Westgård-erichsen, F. Lønstad-bleken, S. Svelle, K. Petter-lillerud et al., Chapter 6. Shape selectivity in zeolite catalysis. The Methanol to Hydrocarbons (MTH) reaction, Catalysis, vol.26, pp.179-217, 2014.

S. M. Csicsery, Catalysis by shape selective zeolites-science and technology, Pure Appl. Chem, vol.58, issue.6, pp.841-856, 1986.

T. F. Degnan, The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries, J. Catal, vol.216, issue.1, pp.32-46, 2003.

J. A. Martens, G. Vanbutsele, P. A. Jacobs, J. Denayer, R. Ocakoglu et al., Evidences for pore mouth and key-lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites, Catal. Today, vol.65, issue.2-4, pp.111-116, 2001.

R. Roque-malherbe and V. Ivanov, Codiffusion and counterdiffusion of para-xylene and orthoxylene in a zeolite with 10 MR/12 MR interconnected channels. An example of molecular traffic control, J. Mol. Catal. A: Chem, vol.313, issue.1-2, pp.7-13, 2009.

D. S. Santilli, T. V. Harris, and S. I. Zones, Inverse shape selectivity in molecular sieves: Observations, modelling, and predictions. Microporous Mater, vol.1, pp.329-341, 1993.

D. Dubbeldam, S. Calero, T. L. Maesen, and B. Smit, Understanding the window effect in zeolite catalysis, Angew. Chem. Int. Ed. Engl, vol.42, issue.31, pp.3624-3630, 2003.

D. M. Bibby and M. P. Dale, Synthesis of silica-sodalite from non-aqueous systems, Nature, issue.6033, pp.157-158, 1985.

R. E. Morris and S. J. Weigel, The synthesis of molecular sieves from non-aqueous solvents

, Chem. Soc. Rev, vol.26, issue.4, pp.309-317, 1997.

U. Deforth, K. K. Unger, and F. Schüth, Dry synthesis of B-MFI, MTN-and MTW-type materials. Microporous Mater, vol.9, pp.287-290, 1997.

R. Althoff, K. Unger, and F. Schüth, Is the formation of a zeolite from a dry powder via a gas phase transport process possible? Microporous Mater, vol.2, pp.557-562, 1994.

M. Blanes, J. M. Szyja, B. M. Romero-sarria, F. Centeno, M. Á. Hensen et al., Multiple Zeolite Structures from One Ionic Liquid Template, Chem. Eur. J, vol.19, issue.6, pp.2122-2130, 2013.

J. ?ejka, J. Peréz-pariente, and W. J. Roth, Zeolites: From Model Materials to Industrial Catalysts, 2008.

E. N. Coker, J. C. Jansen, J. A. Martens, P. A. Jacobs, F. Direnzo et al., The synthesis of zeolites under micro-gravity conditions: a review, Microporous Mesoporous Mater, vol.23, issue.1-2, pp.119-136, 1998.

C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism, Microporous Mesoporous Mater, vol.82, issue.1-2, pp.1-78, 2005.

D. W. Breck, Zeolite molecular sieves: structure, chemistry, and use, 1973.

K. S. Triantafyllidis, E. F. Iliopoulou, S. A. Karakoulia, C. K. Nitsos, A. A. Lappas et al., Mesoporous Zeolite Catalysts for Biomass Conversion to Fuels and Chemicals, Mesoporous Zeolites: Preparation, Characterization and Applications, vol.60, pp.7130-7144, 2015.

R. H. Poladi and C. C. Landry, Oxidation of octane and cyclohexane using a new porous substrate, Ti-MMM-1, Microporous Mesoporous Mater, vol.52, issue.1, pp.11-18, 2002.

R. Chal, C. Gérardin, M. Bulut, and S. Van-donk, Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores, ChemCatChem, vol.2011, issue.1, pp.67-81
URL : https://hal.archives-ouvertes.fr/hal-00602568

F. S. Xiao, Y. Han, Y. Yu, X. Meng, M. Yang et al., Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites, J. Am. Chem. Soc, vol.124, issue.6, pp.888-889, 2002.

J. C. Groen, J. C. Jansen, J. A. Moulijn, and J. Pérez-ramírez, Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication, J. Phys. Chem. B, vol.108, issue.35, pp.13062-13065, 2004.

A. Sachse, A. Grau-atienza, E. O. Jardim, N. Linares, M. Thommes et al., Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating, Cryst. Growth Des, vol.17, issue.8, pp.4289-4305, 2017.

K. Egeblad, C. H. Christensen, M. Kustova, and C. H. Christensen, Templating Mesoporous Zeolites ?. Chem. Mater, vol.20, issue.3, pp.946-960, 2008.

N. Viswanadham and M. Kumar, Effect of dealumination severity on the pore size distribution of mordenite, Microporous Mesoporous Mater, vol.92, issue.1-3, pp.31-37, 2006.

N. S. Nesterenko, F. Thibault-starzyk, V. Montouillout, V. V. Yuschenko, C. Fernandez et al., Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO, Microporous Mesoporous Mater, vol.71, issue.1-3, pp.157-166, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01831315

J. Weitkamp, M. Sakuth, C. Chen, and S. Ernst, Dealumination of zeolite beta using (NH4)2SiF6 and SiCl4, J. Chem. Soc., Chem. Commun, issue.24, pp.1908-1910, 1989.

N. A. Sánchez, J. M. Saniger, J. .;-d'espinose-de-la-caillerie, A. L. Blumenfeld, and J. J. Fripiat, Dealumination and surface fluorination of H-ZSM-5 by molecular fluorine, Microporous Mesoporous Mater, vol.50, issue.1, pp.41-52, 2001.

M. Müller, G. Harvey, and R. Prins, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR, Microporous Mesoporous Mater, vol.34, issue.2, pp.135-147, 2000.

J. C. Groen, J. A. Moulijn, and J. Pérez-ramírez, Alkaline Posttreatment of MFI Zeolites. From Accelerated Screening to Scale-up, Ind. Eng. Chem. Res, vol.46, issue.12, pp.4193-4201, 2007.

R. M. Dessau, E. W. Valyocsik, and N. H. Goeke, Aluminum zoning in ZSM-5 as revealed by selective silica removal, Zeolites, vol.12, issue.7, pp.776-779, 1992.

M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi et al., Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution, Chem. Lett, issue.8, pp.882-883, 2000.

L. Su, L. Liu, J. Zhuang, H. Wang, Y. Li et al., Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts, Catal. Lett, vol.91, issue.3/4, pp.155-167, 2003.

M. A. Benghalem, L. Pinard, J. Comparot, A. Astafan, T. J. Daou et al., Impact of Crystal Size on the Acidity and the Involved Interactions Studied by Conventional and Innovative Techniques, J. Phys. Chem. C, vol.2017, issue.34, pp.18725-18737
URL : https://hal.archives-ouvertes.fr/hal-01885058

V. Valtchev and L. Tosheva, Porous nanosized particles: preparation, properties, and applications, Chem. Rev, vol.113, issue.8, pp.6734-6760, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02403240

M. Zaarour, B. Dong, I. Naydenova, R. Retoux, and S. Mintova, Progress in zeolite synthesis promotes advanced applications, Microporous Mesoporous Mater, vol.189, pp.11-21, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01840270

S. Mintova, N. H. Olson, V. Valtchev, and T. Bein, Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature, Science, vol.283, issue.5404, pp.958-960, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02398306

L. Huang, Z. Wang, J. Sun, L. Miao, Q. Li et al., Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals, J. Am. Chem. Soc, vol.122, issue.14, pp.3530-3531, 2000.

S. C. Larsen, Nanocrystalline Zeolites and Zeolite Structures: Synthesis, Characterization, and Applications, J. Phys. Chem. C, vol.111, issue.50, pp.18464-18474, 2007.

G. T. Vuong and T. O. Do, A new route for the synthesis of uniform nanozeolites with hydrophobic external surface in organic solvent medium, J. Am. Chem. Soc, vol.129, issue.13, pp.3810-3811, 2007.

M. A. Camblor, A. Corma, and S. Valencia,

, Microporous Mesoporous Mater, vol.25, issue.1-3, pp.59-74, 1998.

Y. Liu, M. Sun, C. M. Lew, J. Wang, and Y. Yan, MEL-type Pure-Silica Zeolite Nanocrystals Prepared by an Evaporation-Assisted Two-Stage Synthesis Method as Ultra-Low-k Materials, Adv. Funct. Mater, vol.18, issue.12, pp.1732-1738, 2008.

O. Larlus, S. Mintova, and T. Bein, Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution, Microporous Mesoporous Mater, vol.96, issue.1-3, pp.405-412, 2006.

Y. C. Kim, J. Y. Jeong, J. Y. Hwang, S. D. Kim, and W. J. Kim, Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure, J. Porous Mater, vol.16, issue.3, pp.299-306, 2008.

Y. Huang, K. Wang, D. Dong, D. Li, M. R. Hill et al., Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes, Microporous Mesoporous Mater, vol.127, issue.3, pp.167-175, 2010.

E. P. Ng, D. Chateigner, T. Bein, V. Valtchev, and S. Mintova, Capturing ultrasmall EMT zeolite from template-free systems, Science, vol.2012, issue.6064, pp.70-73
URL : https://hal.archives-ouvertes.fr/hal-01840338

C. Madsen, C. Madsen, and C. J. Jacobsen, Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis, Chem. Commun, issue.8, pp.673-674, 1999.

K. Tang, Y. G. Wang, L. J. Song, L. H. Duan, X. T. Zhang et al., Carbon nanotube templated growth of nano-crystalline ZSM-5 and NaY zeolites, Mater. Lett, pp.2158-2160, 2006.

H. Wang, B. A. Holmberg, and Y. Yan, Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels, J. Am. Chem. Soc, vol.125, issue.33, pp.9928-9937, 2003.

K. Klepáþová and M. D. , Etherification of Glycerol, Pet. Coal, vol.45, issue.1-2, pp.54-57, 2003.

K. Klepá?ová, D. Mravec, and M. Bajus, tert-Butylation of glycerol catalysed by ion-exchange resins, Appl. Catal., A, vol.294, issue.2, pp.141-147, 2005.

M. D. González, Y. Cesteros, and P. Salagre, Establishing the role of Brønsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites, Appl. Catal., A, vol.450, pp.178-188, 2013.

M. D. González, P. Salagre, M. Linares, R. García, D. Serrano et al., Effect of hierarchical porosity and fluorination on the catalytic properties of zeolite beta for glycerol etherification, Appl. Catal., A, vol.473, pp.75-82, 2014.

N. Simone, W. A. Carvalho, D. Mandelli, and R. Ryoo, Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert -butyl alcohol, J. Mol. Catal. A: Chem, vol.422, pp.115-121, 2016.

P. Manjunathan, M. Kumar, S. R. Churipard, S. Sivasankaran, G. V. Shanbhag et al., Catalytic etherification of glycerol to tert-butyl glycerol ethers using tert-butanol over sulfonic acid functionalized mesoporous polymer, RSC Advances, vol.6, issue.86, pp.82654-82660, 2016.

P. B. Weisz and V. J. Frilette, Intracrystalline and Molecular-Shape-Selective Catalysis by Zeolite Salts, J. Phys. Chem, vol.64, issue.3, pp.382-382, 1960.

E. G. Derouane, Zeolites as solid solvents1Paper presented at the International Symposium `Organic Chemistry and Catalysis' on the occasion of the 65th birthday of Prof. H. van Bekkum, J. Mol. Catal. A: Chem, vol.1, issue.1-3, pp.29-45, 1997.

K. Okada, T. Tomita, Y. Kameshima, A. Yasumori, and K. J. Mackenzie, Surface Acidity and Hydrophilicity of Coprecipitated Al(2)O(3)-SiO(2) Xerogels Prepared from Aluminium Nitrate Nonahydrate and Tetraethylorthosilicate, J. Colloid Interface Sci, vol.219, issue.1, pp.195-200, 1999.

R. B. Borade and A. Clearfield, Preparation of aluminum-rich Beta zeolite. Microporous Mater, vol.5, pp.289-297, 1996.

N. Lauridant, T. Jean-daou, G. Arnold, J. Patarin, and D. Faye, MFI/ * BEA hybrid coating on aluminum alloys, Microporous Mesoporous Mater, vol.166, pp.79-85, 2013.

K. Na, C. Jo, J. Kim, K. Cho, J. Jung et al., Directing Zeolite Structures into Hierarchically Nanoporous Architectures, Science, vol.333, issue.6040, pp.328-332, 2011.

A. Astafan, M. A. Benghalem, Y. Pouilloux, J. Patarin, N. Bats et al., Particular properties of the coke formed on nano-sponge *BEA zeolite during ethanol-tohydrocarbons transformation, J. Catal, vol.336, pp.1-10, 2016.

I. Kabalan, I. Khay, H. Nouali, A. Ryzhikov, B. Lebeau et al., Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites, J. Phys. Chem. C, vol.119, issue.32, pp.18074-18083, 2015.

M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki et al., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature, issue.7261, pp.246-249, 2009.

A. Astafan, Synthèses, caractérisations et performances catalytiques des zéolithes nanoéponge de type structurale *BEA, 2016.

C. Coutanceau, J. M. Alvarez, and M. Guisnet, Dealumination of zeolites. Influence of the acid treatment of a HBEA zeolite on the framework composition and on the porosity, J. Chim. Phys. Phys.-Chim. Biol, vol.94, pp.765-781, 1997.

M. A. Makarova, K. Karim, and J. Dwyer, Limitation in the application of pyridine for quantitative studies of brönsted acidity in relatively aluminous zeolites, vol.4, pp.243-246, 1995.

C. A. Emeis, Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts, J. Catal, vol.141, issue.2, pp.347-354, 1993.

G. Shi and H. Zhang, The relationship between absorption coefficient and temperature and their effect on the atmospheric cooling rate, J. Quant. Spectrosc. Radiat. Transfer, vol.105, issue.3, pp.459-466, 2007.

A. Bauer, M. Godon, J. Carlier, Q. Ma, and R. H. Tipping, Absorption by H2O and H2O-N2 mixtures at 153 GHz, J. Quant. Spectrosc. Radiat. Transfer, vol.50, issue.5, pp.463-475, 1993.

V. Paixão, R. Monteiro, M. Andrade, A. Fernandes, J. Rocha et al., Desilication of MOR zeolite: Conventional versus microwave assisted heating, Appl. Catal., A, pp.59-68, 2011.

V. C. Nguyen, N. Q. Bui, P. Mascunan, T. T. Vu, P. Fongarland et al., Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts: Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide, Appl. Catal., A, vol.552, pp.184-191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01717976

J. Kim, K. Cho, and R. Ryoo, High catalytic performance of surfactant-directed nanocrystalline zeolites for liquid-phase Friedel-Crafts alkylation of benzene due to external surfaces, Appl. Catal., A, vol.470, pp.420-426, 2014.

K. Kim, R. Ryoo, H. Jang, and M. Choi, Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences, J. Catal, vol.288, pp.115-123, 2012.

B. Xu, C. Sievers, S. Hong, R. Prins, and J. Vanbokhoven, Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites, J. Catal, vol.244, issue.2, pp.163-168, 2006.

M. Silaghi, C. Chizallet, and P. Raybaud, Challenges on molecular aspects of dealumination and desilication of zeolites, Microporous Mesoporous Mater, vol.191, pp.82-96, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068519

C. Song, J. M. Garcés, and Y. Sugi, Shape-Selective Catalysis, 1999.

T. E. Whyte, R. A. Betta, E. G. Derouane, and R. T. Baker, Catalytic Materials: Relationship Between Structure and Reactivity, vol.248, p.484, 1984.

B. C. Gates, Chemistry of catalytic processes, vol.25, 1979.

F. R. Ribeiro and M. Guisnet, Les zéolithes, un nanomonde au service de la catalyse: un nanomonde au service de la catalyse, 2012.

W. Kiatkittipong, P. Intaracharoen, N. Laosiripojana, C. Chaisuk, P. Praserthdam et al., Glycerol ethers synthesis from glycerol etherification with tert-butyl alcohol in reactive distillation, Comput. Chem. Eng, vol.35, issue.10, pp.2034-2043, 2011.

L. Constantinou and R. Gani, New group contribution method for estimating properties of pure compounds, AlChE J, vol.40, issue.10, pp.1697-1710, 1994.

M. P. Pico, A. Romero, S. Rodríguez, and A. Santos, Etherification of Glycerol by tert-Butyl Alcohol: Kinetic Model, Ind. Eng. Chem. Res, vol.2012, issue.28, pp.9500-9509

R. S. Karinen and A. O. Krause, New biocomponents from glycerol, Appl. Catal., A, vol.306, pp.128-133, 2006.

F. Frusteri, F. Arena, G. Bonura, C. Cannilla, L. Spadaro et al., Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel, Appl. Catal., A, vol.367, issue.1-2, pp.77-83, 2009.

S. R. Blaszkowski and R. A. Van-santen, The Mechanism of Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons, J. Am. Chem. Soc, vol.118, issue.21, pp.5152-5153, 1996.

F. Kirsch, Isoparaffin-olefin alkylations with crystalline aluminosilicates I. Early studies?C4-olefins, J. Catal, vol.27, issue.1, pp.142-150, 1972.

J. Vandenberg, Low-temperature oligomerization of small olefins on zeolite H-ZSM-5. An investigation with high-resolution solid-state 13C-NMR, J. Catal, vol.80, issue.1, pp.130-138, 1983.

P. B. Venuto, P. S. Landis, and D. D. Eley, Organic Catalysis over Crystalline Aluminosilicates, Advances in Catalysis, vol.18, pp.259-371, 1968.

M. P. Pico, J. M. Rosas, S. Rodríguez, A. Santos, and A. Romero, Glycerol etherification over acid ion exchange resins: effect of catalyst concentration and reusability, J. Chem. Technol. Biotechnol, vol.88, issue.11, pp.2027-2038, 2013.

J. A. Melero, G. Vicente, G. Morales, M. Paniagua, and J. Bustamante, Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters, Fuel, vol.2010, issue.8, pp.2011-2018

M. Xu, J. H. Lunsford, D. W. Goodman, and A. Bhattacharyya, Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Appl. Catal., A, vol.149, issue.2, pp.289-301, 1997.

F. Yaripour, M. Mollavali, S. M. Jam, and H. Atashi, Catalytic Dehydration of Methanol to Dimethyl Ether Catalyzed by Aluminum Phosphate Catalysts, Energy Fuels, vol.23, issue.4, pp.1896-1900, 2009.

S. M. Aboul-fotouh, Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of ?-Al2O3 for methanol dehydration to dimethyl ether, Journal of Fuel Chemistry and Technology, vol.41, issue.9, pp.1077-1084, 2013.

J. R. Copeland, I. A. Santillan, S. M. Schimming, J. L. Ewbank, and C. Sievers, Surface Interactions of Glycerol with Acidic and Basic Metal Oxides, J. Phys. Chem. C, vol.117, issue.41, pp.21413-21425, 2013.

M. Guidotti, C. Canaff, J. Coustard, P. Magnoux, and M. Guisnet, Acetylation of aromatic compounds over H-BEA zeolite: the influence of the substituents on the reactivity and on the catalyst stability, J. Catal, vol.230, issue.2, pp.375-383, 2005.

P. Magnoux, Coking, aging, and regeneration of zeolites *1II. Deactivation of HY zeolite during n-heptane cracking, J. Catal, vol.106, issue.1, pp.235-241, 1987.

P. M. Veiga, A. C. Gomes, C. O. Veloso, and C. A. Henriques, Acid zeolites for glycerol etherification with ethyl alcohol: Catalytic activity and catalyst properties, Appl. Catal., A, vol.2017, pp.2-15

O. Levenspiel, Chemical reaction engineering, 1999.

I. Ruud, K. R. Wijngaarden, A. Kronberg, and A. N. Bos, Industrial Catalysis: Optimizing Catalysts and Processes, 2008.

S. Li, Separation of 1,3-propanediol from glycerol and glucose using a ZSM-5 zeolite membrane, J. Membr. Sci, vol.191, issue.1-2, pp.53-59, 2001.

M. Guisnet, P. Magnoux, . Reactivity, E. G. Derouane, F. Lemos et al., Deactivation of Zeolites by Coking. Prevention of Deactivation and Regeneration, Zeolite Microporous Solids: Synthesis, Structure, and, pp.457-474, 1992.

H. O. Pierson, 2 -The Element Carbon, Handbook of Carbon, Graphite, Diamonds and Fullerenes, pp.11-42, 1993.

C. B. Carter and M. G. Norton, Ceramic Materials, p.766, 2013.

A. Hirsch, The era of carbon allotropes, Nature Materials, vol.9, p.868, 2010.

H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, and R. E. Smalley, Nature, vol.60, p.162, 1985.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, p.56, 1991.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, p.438, 0197.

D. Shi, Z. Guo, N. ;. Bedford, D. Shi, and Z. Guo, 3 -Carbon Nanotubes, Nanomaterials and Devices, pp.49-82, 2015.

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys, vol.81, issue.1, pp.109-162, 2009.

R. Yan, S. Qiu, L. Tong, and Y. Qian, Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs, Chem. Speciation Bioavailability, vol.28, issue.1-4, pp.72-77, 2016.

S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. D. Adhikari et al., Magical Allotropes of Carbon: Prospects and Applications, Crit. Rev. Solid State Mater. Sci, vol.2016, issue.4, pp.257-317

R. Mas-ballesté, C. Gómez-navarro, J. Gómez-herrero, and F. Zamora, 2D materials: to graphene and beyond, Nanoscale, vol.2011, issue.1, pp.20-30

P. R. Wallace, The Band Theory of Graphite, Phys. Rev, vol.1947, issue.9, pp.622-634

J. W. Mcclure, Diamagnetism of Graphite, Phys. Rev, vol.104, issue.3, pp.666-671, 1956.

G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly, Phys. Rev

. Lett, , pp.2449-2452, 1984.

R. Peierls, Bemerkungen über umwandlungstemperaturen, J Helv. Phys. Acta, vol.1934, pp.81-83

R. Peierls, Quelques proprietes typiques des corpses solides, J Ann. IH Poincare, vol.5, pp.177-222, 1935.

L. D. Landau, E. M. Lifshitz, L. Pitaevskii, and K. Huang, Statistical physics, part I. pergamon, Dynamical theory of crystal lattices, 1954.

N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett, issue.22, pp.1133-1136, 1966.

G. Lee, Y. Yu, X. Cui, N. Petrone, C. Lee et al., Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures, ACS Nano, vol.7, issue.9, pp.7931-7936, 2013.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A, vol.102, issue.30, p.10451, 2005.

Y. Zhang, Y. Tan, H. L. Stormer, P. Kim, S. Stankovich et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.438, issue.23, p.282, 2005.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nanoscience and Technology, pp.11-19, 2009.

N. D. Mermin, Crystalline Order in Two Dimensions, Phys. Rev, vol.176, issue.1, pp.250-254, 1968.

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth et al., The structure of suspended graphene sheets, Nature, p.60, 2007.

N. David, P. Tsvi, and W. Steven, Statistical mechanics of membranes and surfaces, 2004.

C. Schafhaeutl, Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden, J. prakt. Chem, vol.1840, issue.1, pp.129-157

B. Benjamin and C. Xiii, On the atomic weight of graphite, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.1859, pp.249-259

L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen Gesellschaft, vol.1899, issue.2, pp.1394-1399

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc, vol.80, issue.6, pp.1339-1339, 1958.

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, Dünnste Kohlenstoff-Folien, In Zeitschrift für Naturforschung B, vol.17, p.150, 1962.

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien, Z. Anorg. Allg. Chem, vol.316, issue.3-4, pp.119-127, 1962.

P. Wick, A. E. Louw-gaume, M. Kucki, H. F. Krug, K. Kostarelos et al., Classification Framework for Graphene-Based Materials, Angew. Chem. Int. Ed, vol.53, issue.30, pp.7714-7718, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01447812

K. S. Novoselov, Graphene: Materials in the Flatland (Nobel Lecture), Angew. Chem. Int. Ed, vol.50, issue.31, pp.6986-7002, 2011.

V. Palermo, Not a molecule, not a polymer, not a substrate? the many faces of graphene as a chemical platform, Chem. Commun, issue.28, pp.2848-2857, 2013.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotech, vol.3, p.654, 2008.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett, vol.8, issue.3, pp.902-907, 2008.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications, Nat. Chem, 1015.

A. Sakhaee-pour, Elastic properties of single-layered graphene sheet, Solid State Commun, vol.149, issue.1, pp.91-95, 2009.

C. Lee, X. Wei, J. W. Kysar, J. Hone, S. S. Verbridge et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Nano Lett, vol.321, issue.5887, pp.2458-2462, 2008.

V. Berry, Impermeability of graphene and its applications, Carbon, vol.62, pp.1-10, 2013.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett, vol.9, issue.1, pp.30-35, 2009.

R. M. Brydson and C. Hammond, Generic Methodologies for Nanotechnology: Classification and Fabrication, Nanoscale Science and Technology, 2005.

G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications, 2004.

H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules, pp.6515-6530, 2010.

D. Li, R. B. Kaner, S. Stankovich, R. D. Piner, X. Chen et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem, vol.320, issue.5880, pp.155-158, 2006.

S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, vol.44, issue.15, pp.3342-3347, 2006.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, issue.7, pp.1558-1565, 2007.

J. I. Paredes, S. Villar-rodil, A. Martínez-alonso, and J. M. Tascón, Graphene Oxide Dispersions in Organic Solvents, Langmuir, vol.24, issue.19, pp.10560-10564, 2008.

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotech, vol.3, p.101, 2008.

J. Li, X. Zeng, T. Ren, and E. Van-der-heide, The Preparation of Graphene Oxide and Its Derivatives and Their Application in Bio-Tribological Systems, Lubricants, vol.2014, issue.3

T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater, vol.18, issue.11, pp.2740-2749, 2006.

H. He, J. Klinowski, M. Forster, and A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett, vol.287, issue.1, pp.53-56, 1998.

S. Park, R. S. Ruoff, H. Shin, K. K. Kim, A. Benayad et al., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Adv. Funct. Mater, vol.19, issue.12, pp.1987-1992, 2009.

W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem, p.403, 2009.

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali et al., Hydrazine-reduction of graphite-and graphene oxide, Carbon, vol.49, issue.9, pp.3019-3023, 2011.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced Graphene Oxide Molecular Sensors, Nano Lett, vol.8, issue.10, pp.3137-3140, 2008.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk et al., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater, issue.35, pp.3906-3924, 2010.

J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang et al., Reduction of graphene oxide vial-ascorbic acid, Chem. Commun, vol.46, issue.7, pp.1112-1114, 2010.

M. J. Fernández-merino, L. Guardia, J. I. Paredes, S. Villar-rodil, P. Solís-fernández et al., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J. Phys. Chem. C, vol.114, issue.14, pp.6426-6432, 2010.

J. Li, G. Xiao, C. Chen, R. Li, and D. Yan, Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer, J. Mater. Chem. A, vol.2013, issue.4, pp.1481-1487

S. Some, Y. Kim, Y. Yoon, H. Yoo, S. Lee et al., High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process, 1929.

Y. Liu, Y. Li, Y. Yang, Y. Wen, and M. Wang, Reduction of Graphene Oxide by Thiourea, J. Nanosci. Nanotechnol, vol.11, issue.11, pp.10082-10086, 2011.

S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, and J. H. Lee, Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method, J. Mater. Chem, vol.2012, issue.19, pp.9696-9703

R. S. Dey, S. Hajra, R. K. Sahu, C. R. Raj, and M. K. Panigrahi, A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide, Chem. Commun, vol.2012, issue.12, pp.1787-1789

X. Mei and J. Ouyang, Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon, vol.49, pp.5389-5397, 2011.

V. H. Pham, H. D. Pham, T. T. Dang, S. H. Hur, E. J. Kim et al., Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen, J. Mater. Chem, vol.2012, issue.21, pp.10530-10536

O. C. Compton, S. T. Nguyen, and G. Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, Small, vol.6, issue.6, pp.711-723, 2010.

T. Yeh, F. Chan, C. Hsieh, and H. Teng, Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide, J. Phys. Chem. C, vol.115, issue.45, pp.22587-22597, 2011.

A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande et al., Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide, J. Phys. Chem. Lett, vol.2012, issue.8, pp.986-991

C. Xu, R. Yuan, and X. Wang, Selective reduction of graphene oxide, New Carbon Mater, vol.29, issue.1, pp.61-66, 2014.

A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem, vol.2, p.581, 2010.

D. Wu, F. Zhang, P. Liu, and X. Feng, Two-Dimensional Nanocomposites Based on Chemically Modified Graphene, Chem. Eur. J, vol.17, issue.39, pp.10804-10812, 2011.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev, vol.39, issue.1, pp.228-240, 2010.

K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, The chemistry of graphene, J. Mater. Chem, issue.12, pp.2277-2289, 2010.

J. Pyun, Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology, Angew. Chem. Int. Ed, vol.50, issue.1, pp.46-48, 2010.

D. R. Dreyer, H. Jia, and C. W. Bielawski, Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions, Angew. Chem. Int. Ed, issue.38, pp.6813-6816, 2010.

C. Su, M. Acik, K. Takai, J. Lu, S. Hao et al., Probing the catalytic activity of porous graphene oxide and the origin of this behaviour, Nat. Commun, vol.3, p.1298, 2012.

A. Dhakshinamoorthy, M. Alvaro, M. Puche, V. Fornes, and H. Garcia, Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature, ChemCatChem, vol.2012, issue.12, pp.2026-2030

A. Dhakshinamoorthy, M. Alvaro, P. Concepción, V. Fornés, and H. Garcia, Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides, Chem. Commun, vol.2012, issue.44, pp.5443-5445

S. Zhu, C. Chen, Y. Xue, J. Wu, J. Wang et al., Graphene Oxide: An Efficient Acid Catalyst for Alcoholysis and Esterification Reactions, ChemCatChem, vol.6, issue.11, pp.3080-3083, 2014.

X. Gao, S. Zhu, and Y. Li, Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification, Catal. Commun, vol.62, pp.48-51, 2015.

F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi et al., Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions, J. Mater. Chem, vol.2012, issue.12, pp.5495-5502

P. P. Upare, J. Yoon, M. Y. Kim, H. Kang, D. W. Hwang et al., Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts, Green Chem, vol.2013, issue.10, pp.2935-2943

J. Ji, G. Zhang, H. Chen, S. Wang, G. Zhang et al., Sulfonated graphene as water-tolerant solid acid catalyst, Chem. Sci, vol.2011, issue.3, pp.484-487

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik et al., Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations, Chem. Mater, vol.11, issue.3, pp.771-778, 1999.

N. Oger, Y. F. Lin, C. Labrugère, E. Le-grognec, F. Rataboul et al., Practical and scalable synthesis of sulfonated graphene, Carbon, vol.96, pp.342-350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01265760

A. T. Quitain, Y. Sumigawa, E. G. Mission, M. Sasaki, S. Assabumrungrat et al., Graphene Oxide and Microwave Synergism for Efficient Esterification of Fatty Acids, Energy Fuels, vol.32, issue.3, pp.3599-3607, 2018.

K. Nakajima and M. Hara, Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst, ACS Catal, vol.2012, issue.7, pp.1296-1304

X. Y. Liu, M. Huang, H. L. Ma, Z. Q. Zhang, J. M. Gao et al., Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process, Molecules, vol.2010, issue.10, pp.7188-96

R. Kunin, E. A. Meitzner, J. A. Oline, S. A. Fisher, and N. Frisch, Characterization of Amberlyst 15. Macroreticular Sulfonic Acid Cation Exchange Resin. I&EC Product Research and Development, vol.1, pp.140-144, 1962.

M. M. Antunes, P. A. Russo, P. V. Wiper, J. M. Veiga, M. Pillinger et al., Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels, ChemSusChem, vol.7, issue.3, pp.804-816, 2014.

R. L. Whitby, V. M. Gun'ko, A. Korobeinyk, R. Busquets, A. B. Cundy et al., Driving forces of conformational changes in single-layer graphene oxide, ACS Nano, vol.6, issue.5, pp.3967-73, 2012.

B. Manoj and A. Kunjomana, Study of stacking structure of amorphous carbon by X-ray diffraction technique, Int. J. Electrochem. Sci, vol.2012, issue.4, pp.3127-3134

R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes, Advances in Physics, vol.60, issue.3, pp.413-550, 2011.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay et al., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Lett, vol.8, issue.1, pp.36-41, 2008.

N. R. Wilson, P. A. Pandey, R. Beanland, R. J. Young, I. A. Kinloch et al., Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy, ACS Nano, vol.3, issue.9, pp.2547-2556, 2009.

H. Kang, A. Kulkarni, S. Stankovich, R. S. Ruoff, and S. Baik, Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques, Carbon, vol.47, issue.6, pp.1520-1525, 2009.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, issue.20, pp.14095-14107, 2000.

G. Wang, B. Wang, J. Park, J. Yang, X. Shen et al., Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method, Carbon, vol.47, issue.1, pp.68-72, 2009.

S. Eigler and A. Hirsch, Chemistry with Graphene and Graphene Oxide-Challenges for Synthetic Chemists, Angew. Chem. Int. Ed, vol.53, issue.30, pp.7720-7738, 2014.

C. Hontoria-lucas, A. J. López-peinado, J. D. López-gonzález, M. L. Rojas-cervantes, and R. M. Martín-aranda, Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, vol.33, issue.11, pp.1585-1592, 1995.

J. Ji, G. Zhang, H. Chen, S. Wang, G. Zhang et al., Sulfonated graphene as water-tolerant solid acid catalyst, Chem. Sci, vol.2011, issue.3, pp.484-487

A. V. Nakhate and G. D. Yadav, Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Solvothermal Carbonization for Esterification and Unsymmetrical Ether Formation, ACS Sustainable Chem. Eng, vol.2016, issue.4, pp.1963-1973

M. Cordoba, C. Miranda, C. Lederhos, F. Coloma-pascual, A. Ardila et al., Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation, vol.7, p.384, 2017.

C. Miranda, J. Urresta, H. Cruchade, A. Tran, M. Benghalem et al., Exploring the impact of zeolite porous voids in liquid phase reactions: The case of glycerol etherification by tert-butyl alcohol, J. Catal, vol.365, pp.249-260, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02352299

F. Frusteri, F. Arena, G. Bonura, C. Cannilla, L. Spadaro et al., Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel, Appl. Catal., A, vol.367, issue.1-2, pp.77-83, 2009.

W. Kiatkittipong, P. Intaracharoen, N. Laosiripojana, C. Chaisuk, P. Praserthdam et al., Glycerol ethers synthesis from glycerol etherification with tert-butyl alcohol in reactive distillation, Comput. Chem. Eng, vol.35, issue.10, pp.2034-2043, 2011.

K. Klepá?ová, D. Mravec, and M. Bajus, tert-Butylation of glycerol catalysed by ion-exchange resins, Appl. Catal., A, vol.294, issue.2, pp.141-147, 2005.

M. Xu, J. H. Lunsford, D. W. Goodman, and A. Bhattacharyya, Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts, Appl. Catal., A, vol.149, issue.2, pp.289-301, 1997.

P. M. Veiga, A. C. Gomes, C. O. Veloso, and C. A. Henriques, Acid zeolites for glycerol etherification with ethyl alcohol: Catalytic activity and catalyst properties, Appl. Catal., A, vol.2017, pp.2-15

M. D. González, Y. Cesteros, and P. Salagre, Establishing the role of Brønsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites, Appl. Catal., A, vol.450, pp.178-188, 2013.

M. Mirza-aghayan, M. M. Tavana, and R. Boukherroub, Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation, Ultrason. Sonochem, vol.29, pp.371-380, 2016.

J. D. Urresta, Deshidratacion de los alcoholes presentes en el aceite fusel y su conversión en alquenos empleando una zeolita tipo HZSM-5 Inycompe, vol.16, pp.79-90, 2014.

F. S. Ruiz, Cultivo de la Caña de Azúcar, 1995.

N. B. Engineers, Industrial Alcohol Technology Handbook, 2010.

R. J. Nel and A. De-klerk, Dehydration of C5?C12 Linear 1-Alcohols over ?-Alumina to Fuel Ethers, Ind. Eng. Chem. Res, vol.48, issue.11, pp.5230-5238, 2009.

J. Tejero, C. Fité, M. Iborra, J. F. Izquierdo, F. Cunill et al., Liquid-phase dehydrocondensation of 1-pentanol to di-n-pentyl ether (DNPE) over medium and large pore acidic zeolites, Microporous Mesoporous Mater, vol.117, issue.3, pp.650-660, 2009.

R. Cataluña, Z. Shah, V. Venturi, N. R. Caetano, B. P. Da-silva et al., Production process of di-amyl ether and its use as an additive in the formulation of aviation fuels, Fuel, vol.228, pp.226-233, 2018.