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Abstract

Modeling of integrated magnetic components in electrical engineering (such as high fre-
quency transformers) leads to several issues related to frequency increase. This frequency
increase induces eddy currents in conducting material which require very fine meshes and
consequently, it leads to large systems of equations and prohibit computational cost, es-
pecially for 3D structures. The commercial scientific software only partially tackle these
issues due notably to the presence of airgaps (modeling "infinite" medium by radiating
conditions), the presence of thin layers (very heterogeneous meshes), and the inclusion of
winding multi-layers.

To deal with these difficulties, dedicated tools have been implemented. The primary issue
that is the presence of airgaps is treated by solving a coupled "Finite Element Method
(FEM)/ Boundary Element Method (BEM)" system in 3D. The BEM is adapted to gen-
eral field problems with unbounded structures because no artificial boundaries are needed,
this is not the case for the FEM. Moreover, the BEM requires only a surface discretisation
which reduces the number of unknowns and then the computational time.

The secondary issue is to deal with thin conductive layers used in a wide range of appli-
cations for shielding purpose. Modeling such conductive regions require very fine volume
discretisation due to the rapid decay of fields through the surface for high frequencies. To
avoid this difficulty, we derive an equivalent model for 3D Eddy Current problem with
a conductive thin layer of slight thickness, where the conductive sheet is replaced by its
mid-surface, and its shielding behaviour is satisfied by an equivalent transmission condi-
tion which connects the electric and magnetic fields around the surface. In addition, an
efficient discretisation using the BEM is provided to solve numerically the problem with
the transmission condition.

The last issue is to tackle the foil winding problems. We proceed by considering the sim-
ple case of a problem of laminar stacks. We provide an effective modeling of the laminar
stacks in 1D and 2D by deriving the classical homogenisation in the domain of the laminar
stacks. Then, we study the influence of the interface (with air) on the vector potential to
treat the problem in the whole domain. We also consider the case where the skin depth
is kept less than or equal to the thickness of the metal sheet.
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Résumé

La modélisation de composants magnétiques intégrés en génie électrique (ex. les transfor-
mateurs hautes fréquences) conduit à un certain nombre de problèmes liés à l’augmentation
de la fréquence. Cette augmentation de fréquence induit notamment des courants de
Foucault dans les pièces conductrices qui nécessitent des maillages très fins et conduit de
grands systèmes d’équations et donc souvent à des temps de calcul prohibitifs, notamment
pour les structures 3D. Les outils de calcul numérique commerciaux ne répondent que par-
tiellement à ces difficultés, induites notamment par la présence d’entrefers (modélisation
du milieu «infini» par une condition de radiation), la présence des couches minces (mail-
lages très hétérogènes) et la prise en compte d’enroulements multi-couches.

Pour répondre à ces difficultés, on se propose de développer des outils dédiés. Une pre-
mière action a été menée pour répondre au problème de grands entrefers en résolvant un
système avec deux techniques couplées : la méthode des éléments finis volumiques (FEM)
et la méthode des éléments finis de frontière (BEM) en 3D. La BEM est bien adaptée aux
problèmes avec des structures non bornées, car aucune condition aux limites artificielle
n’est nécessaire, ce qui n’est pas le cas pour la FEM. De plus, la BEM ne nécessite qu’une
discrétisation de surface, ce qui réduit le nombre d’inconnues et généralement le temps de
calcul.

Une autre problématique sera de traiter les couches conductrices minces utilisées dans
un large éventail d’applications à des fins de blindage. La modélisation de telles régions
conductrices requiert une discrétisation volumique très fine en raison de la décroissance
rapide des champs vers la surface pour les hautes fréquences. Pour éviter cette difficulté,
nous dérivons un modèle équivalent pour le problème des courants de Foucault en 3D
avec une couche mince conductrice de faible épaisseur, dans laquelle la feuille conductrice
est remplacée par sa surface médiane, et son comportement de blindage est satisfait par
une condition de transmission équivalente qui relie les champs électrique et magnétique
autour de la surface. De plus, une discrétisation efficace utilisant la BEM est proposée
pour résoudre numériquement le problème avec la condition de transmissions.

La dernière problématique est de traiter les problèmes d’enroulements. Nous procédons
en considérant le cas plus simple d’un problème d’empilement de tôles. Nous four-
nissons une modélisation efficace des empilements des tôles en 1D et 2D en utilisant
l’homogénéisation classique dans le domaine des empilements. Ensuite, nous étudions
l’influence de l’interface (avec l’air) pour traiter le problème dans le domaine entier. Nous
considérons le cas où la profondeur de pénétration est maintenue inférieure ou égale à
l’épaisseur de la tôle.
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Notations

E Electric field (V/m).
H Magnetic field (A/m).
B Magnetic induction (T).
D Electric induction (C/m2).
J Current density (A/m2).
A Magnetic vector potential (Wb/m).
Φ Scalar potential.
µ Magnetic permeability (H/m).
σ Electric conductivity (S/m).
ω Angular frequency (rad/s).
f Frequency (Hz).

× Cross product.
Id Identity operator.

ε Thickness of the thin layer.
δ The skin depth.

[ · ]Γ The Jump through Γ.
{·}Γ The mean.

γD· Dirichlet trace.
γN · Neumann trace.
γn· Normal trace.
L2(Γ) square integrable vector fields.
H

1
2
‖ (Γ) Vector fields with tangential continuity.

H
1
2
⊥(Γ) Vector fields with normal continuity.

HMipse Magnetic field calculated by simulations done in Mipse.
HComsol Magnetic field calculated by simulations done in Comsol.

L2-error ||U − V ||2 =
√∑

i
(Ui − Vi)2

L∞-error ||U − V ||∞ = max
i
|Ui − Vi|

〈·, ·〉Ω 〈f, g〉Γ =
∫

Ω f(x)g(x)dΩ(x)
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Introduction

Eddy currents appear in various electrical systems, for example in motors, or in power
electronics devices. Thin conductive layers also appear in many of these devices: for
instance, shielding of transformers, casing of devices, foil windings, or constructing a
chamber to measure antenna features (see Figures 1 and 2).

The phenomenon of eddy currents was discovered by the French physicist Léon Foucault
in 1851. Supplying an electric current creates a time-varying magnetic field, that will
induce eddy currents in the conductive domain (according to Faraday’s law). An induced
magnetic field is then produced which is opposite to the excitation field, and then reduces
the total magnetic field (according to Ampère’s law). The subject of this thesis is about
asymptotic modeling and discretisation of magnetic components in eddy-current problems,
especially in the presence of thin layers.

Figure 1

Figure 2: An anechoic chamber used to
measure antenna characterisation.

https://www.comsol.fr

An accurate calculation of the magnetic field distribution is necessary to optimise the
design of the electrical devices. At a high frequency, the incoming electromagnetic fields
do not penetrate completely into the interior of the material. In this case, the current
will circulate exclusively on the surface of the conductors. This is often called "the skin
effect". In this case, very fine meshes are required in the conducting material which lead
to a large system of equations and prohibitive computational times, especially for 3D
structures. Moreover, in the presence of large homogeneous volumes like the exterior
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Introduction

air, it will be more expensive if we consider numerical methods which require a volume
discretisation (like the finite element method, or the finite difference method).

The phenomenon of skin effect restricts the current to the skin depth calculated as follows:

δ =
√

2
µσω

,

where µ is the magnetic permeability (H/m), σ is the electric conductivity (S/m), and ω
is the angular frequency (rad/s). Thus, δ is equal to the distance where the majority of
the current density circulates in a conductor (around 63% of the current density). The
current density in the conducting medium is described by the following formula:

J(r) = J0e
−r/δ,

where r is the depth from the surface. Consequently, the current density decreases expo-
nentially from its initial value at the surface J0.

In Figure 3, we show the flow of current in a thin layer with respect to its thickness and
skin depth (according to the possible cases δ � ε, δ ≈ ε, and δ � ε). For δ � ε, this is
the case for high frequencies, the density current circulates only near the interface which
makes the simulation more problematic because the field decays rapidly near the interface.
Mesh of δ/2 maximum element size is then needed to reach a minimal accuracy.

Figure 3: The skin effect in a thin layer.

Based on that, numerical simulations of structures containing thin layers is still a challenge
for many reasons:

• It is difficult to mesh by some mesh generators.
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• Heterogeneous meshes can lead to ill-conditioned matrices, and regular meshes will
lead to a high number of degrees of freedom.

In fact, a lot of commercial softwares exist for simulating 3D structures in eddy-current
problems, but there are still also many issues which are only partially tackled. In this
thesis, we handle partially the issues related to the presence of large homogeneous medi-
ums, the presence of thin layers, and the inclusion of winding multi-layers.

0.1 Objective
In the context of this thesis, we will focus on the modeling of thin layers by asymptotic
expansion and an appropriate discretisation in eddy-current problems. The objectives of
this thesis are:

1. To treat the presence of infinite domain considering the appropriate numerical meth-
ods in order to reduce the computational time. The coupling of the Finite Element
Method (FEM) and the Boundary Element Method (BEM) will be proposed for
this reason.

2. To model and discretise the conductive thin layers in eddy-current problems in order
to avoid the difficulties of meshing and dealing with strongly refined meshes (see
Figure 4). These difficulties can be treated by deriving an equivalent model with
transmission conditions that replace the thin layer by its mid-surface, and using a
well-adapted method of discretisation as the boundary element method.

Figure 4: A mesh consists of 825,207 elements and 10,956,146 DOF. It needs a storage
of 69,77GB, and 37 mins 6 secs to be created.

3. To deal with the treatment of the foil windings. In this thesis, we start by consid-
ering the more simple case of laminar stacks. A homogenisation technique with an
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interface correction is derived.

Throughout this thesis, we consider the case where the skin depth is kept less than or
equal to the thickness of the metal sheet.

0.2 Plan of the thesis
The thesis manuscript is organized as follows:

1. In the first chapter, we recall briefly the Maxwell equations, as well as its eddy-
current approximation. We give some mathematical formulations of the eddy-
current problems. We recall the principles of the finite element method and the
boundary element method. Finally, we give some shape functions used to approxi-
mate the vector fields in the second chapter.

2. In the second chapter, we present the mathematical formulation of the magneto-
static and the eddy-current problems using the magnetic potentials. Both formula-
tions have been discretised using the FEM/BEM coupling. Results are validated in
comparison to the analytical solutions.

3. In the third chapter, we present the hybrid formulation of 3D eddy current problems
with a thin layer. We provide a formal calculus using the asymptotic expansion in
a power series of a small parameter ε (the layer thickness) in order to obtain the
equivalent models of the first and second order. We apply the BEM to calculate
the first term of the expansion (model of the first order), the second term, and the
model of the second order. Some examples are provided to check the accuracy of
the models, as well as the efficiency of the discretisation method.

4. In the last chapter, a formulation of the eddy-current problem in laminar stacks
using the magnetic vector potential is presented. We demonstrate our procedure
concerning the homogenisation in the domain composed of sheets, and the correction
at the interface. Some examples are also provided to validate our approach.

Complementary elements including the calculation of analytical solutions and post-processing
calculations of the exterior field are given in the appendices.

0.3 Contributions
Various parts of this work make an original contribution to the modelisation and numerical
simulations in electromagnetism. In particular, we contribute to the following aspects:

• The modeling of a conductive thin layer for 3D eddy-current problems using a hybrid
formulation. The equivalent models with the transmission conditions which replace
the layer offer less complexity in discretising the problem [83].

• An efficient discretisation using the BEM in the interior and the exterior domain of
the layer is provided for the equivalent models of a conductive thin layer. It validates
the accuracy of these models, as well as saving computational time requiring only a
surface discretisation. [82 ; 84 ; 85].
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• An effective modeling of a lamination stack in 1D using two-scale homogenisation
and a correction for the interface between the air and the lamination stack is pro-
posed. This procedure is validated in 1D and shows a agreement comparing with an
analytical solution. [101]. Using the same procedure, we proceed to treat the case
in 2D that is actually in progress.
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CHAPTER 1 Introduction to
Eddy-Current Problems
and Discretisation
Techniques
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1.1 Maxwell’s equations

Electromagnetic phenomena are described by Maxwell’s equations, a system of partial
differential equations satisfied by the electromagnetic field. In electrical engineering, we
often focus on the diffusion of the magnetic field by neglecting the current displacement
introduced by Maxwell, this approximation is often called the Eddy-Current Problem.

Discretisation methods play an important role in the solution of eddy current problems.
Among these methods, the finite element method is the most widespread. However, the
boundary element method can also be considered to approximate the eddy current prob-
lems using less unknowns.

In this chapter, we recall the system of Maxwell’s equations, and the eddy-current prob-
lem in sections 1.1 and 1.2, respectively. In section 1.3, we compare several formulations
of the eddy-current problems. Then, we provide the main elements for the numerical
simulation of these formulations in sections 1.4, 1.5, and 1.6.

1.1 Maxwell’s equations

Maxwell’s equations describe the interactions of components of the electromagnetic field.
The system of equations can be written in differential form as follows [2]:

• Maxwell-Ampère’s law:
∂D
∂t

+ J = curlH , (1.1)

which describes the magnetic field H resulting from the displacement current ∂D
∂t

and the total current J .

• Faraday’s law:
∂B
∂t

+ curlE = 0, (1.2)

which describes the electric field E induced by the time variations of the magnetic
induction field B.

• Gauss’ electrical law:
divD = ρ, (1.3)
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Techniques

which indicates that the charges ρ are the source of the electric displacement field D.

• Gauss’ magnetic law:
divB = 0, (1.4)

which indicates that the magnetic induction is solenoidal.

In the previous equations, all the quantities are functions of the space coordinates x ∈ R3,
and of the time t ∈ R+.

Material laws
To complete the system (1.1)-(1.4), relations between (D,B) and (E ,H ) are introduced
for isotropic, homogeneous and linear materials in the form:

D = εE , (1.5)

B = µH . (1.6)

In addition, the Ohm law expresses the current density in terms of the electric field:

J = σE , (1.7)

where σ denotes the electric conductivity, ε is the electric permittivity, and µ is the
magnetic permeability.
Note that when a given current density Js is applied, we need to consider the general Ohm
law [2]:

J = σE + Js , (1.8)

assuming that divJs = 0 in any non-conducting region, by reason of the Maxwell-Ampère
and Gauss electrical equations.

Eventually, the full Maxwell system of equations can be written in the following form:


∂εE
∂t

+ σE + Js = curlH ,

∂µH
∂t

+ curlE = 0,

divεE = ρ,

divµH = 0.

(1.9)
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1.1 Maxwell’s equations

Integral form of Maxwell’s Equations
Here, we present the integral form of Maxwell’s equations [8]. This form can be shown to
be equivalent to the differential forms through the use of the general Stokes’ Theorem.

∮
C

H · dl =
∫
S J · ds+

∫
S
∂D
∂t
· ds,∮

C E · dl = −
∫
S
∂B
∂t
· ds,∮

S D · ds =
∫
V ρdv,∮

S B · ds = 0,

where C = ∂S, S = ∂V , and V represent the line integral, surface integral, and volume
integral, repectively (see Figure 1.1).

Figure 1.1

The time-harmonic Maxwell’s equations
In this thesis, we deal with the time-harmonic fields. Ordinarily, this happens when the
excitation fields are time-harmonic. Using this assumption, the applied current density Js

is an alternating current that has the form

Js(x, t) = Re[Js(x)eiωt], (1.10)

where Js is a complex-valued vector function called phasor and ω 6= 0 is the angular
frequency.
Consequently, we look for a time-harmonic solution through the usual relationship:

E(x, t) = Re[E(x)eiωt], (1.11)

H (x, t) = Re[H(x)eiωt], (1.12)
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where E, and H are phasors representing the electric and magnetic fields.
By inserting this representation (1.10)-(1.12) into the time-dependent Maxwell equations
(1.9) we obtain the following set of the time-harmonic Maxwell’s equations:



curlH − iωεE = J,

curlE + iωµH = 0,
divD = ρ,

divB = 0.

(1.13)

Transmission conditions
We consider the transmission conditions on the interface between two subdomains (see
Figure 1.2). The tangential components of the electric and magnetic fields are continuous:

H+ × n|Γ = H− × n|Γ , (1.14)

E+ × n|Γ = E− × n|Γ . (1.15)

The normal components of the electric displacement field and the magnetic induction are
continuous:

D+ · n|Γ = D− · n|Γ , (1.16)

B+ · n|Γ = B− · n|Γ , (1.17)

where the signs indicate the different sides of the interface Γ and n is the normal vector
of Γ (see Figure 1.2).

Figure 1.2: The different sides of the interface Γ.
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1.2 Eddy-current approximation of Maxwell’s equations

1.2 Eddy-current approximation of Maxwell’s equa-
tions

The system of equations obtained when the displacement current term ∂D
∂t

(or iωεE in
the time-harmonic regime) can be neglected is called the eddy current approximation or
magnetoquasistatic approximation of Maxwell’s equations [1]

curlH = J in R3, (1.18)

iωB + curlE = 0 in R3, (1.19)

B = µH in R3, (1.20)

J = σE + Js in R3, (1.21)

divB = 0 in R3, (1.22)

divεE = 0 in R3. (1.23)

To complement this system, we consider the continuity of the tangential traces of the
magnetic and electric fields across any interface Γ, as well as the limit condition at infinity


[E × n]Γ = 0 on Γ,
[H × n]Γ = 0 on Γ,
|H(x)|+ |E(x)| = O(|x|−2) |x| −→ ∞.

(1.24)

1.3 Formulations of eddy current problems

In this section, we denote by Ω ⊂ R3 the domain of study, which is composed of two
domains

Ω = ΩI ∪ ΩE,

where ΩI is the conductive region and ΩE the exterior region (air). Let also Γ be the
boundary of the domain ΩI (see Figure 1.3).

There are various ways to reformulate the initial eddy-current problem. By eliminating
the electric field [32] (H-Based Formulation), eliminating the magnetic field [33] (E-Based
Formulation), or by considering hybrid formulations [20 ; 31].
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Figure 1.3: A cross section of the domain Ω.

Hybrid formulations are the case where the eliminated field in the conducting region is
different from the one eliminated in the exterior domain. Thus there are two possibilities
if we consider only the electrical and the magnetic field, the first one is to use a "E-Based
formulation" inside ΩI and a "H-Based formulation" in ΩE, the second one is to use a
"H-Based formulation" inside ΩI and a "E-Based formulation" in ΩE.
In addition, we may consider the formulations in terms of the potentials that describe
the E and H fields [19 ; 22], i.e. the magnetic vector potential or the scalar magnetic
potential for instance.

Boundary conditions
When electromagnetic problems are defined in an unbounded domain, a boundary far
away from the electromagnetic device should be considered with either Dirichet or Neu-
mann boundary conditions [10], asymptotic boundary conditions [11], Robin boundary
conditions [9], Kelvin transformation [12], or shell transformation [13].
In the case of solving the unbounded problem using some numerical methods (like the
finite element method), a fictitious boundary has to be introduced. A suitable boundary
condition must be written also as a compromise between the accuracy, the implementa-
tion, and the computational efficiency.

On the other hand, using the boundary element method does not require a boundary
surface. It is sufficient to consider that the fields vanish as |x| → ∞

|E(x)| = O
( 1
|x|2

)
as |x| → ∞, (1.25)
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1.3 Formulations of eddy current problems

|H(x)| = O
( 1
|x|2

)
as |x| → ∞. (1.26)

1.3.1 An Electric Field Formulation

Multiplying equation (1.18) by iω and substituting (1.21) and the curl of (1.19), we obtain:

curl(µ−1curlE) + iωσE = −iωJs in Ω. (1.27)

As the whole domain Ω is subdivided into a conductive region ΩI free of any source cur-
rent and the air region ΩE possibly containing source currents. Hence, the final system
can be written as:



curl(µ−1curlE) + iωσE = 0 in ΩI ,

curl(curlE) = −iωJs in ΩA,

divE = 0 on R3,

[E × n]Γ = 0 on Γ,
|E(x)| = O(|x|−2) as |x| → ∞.

(1.28)

1.3.2 A Magnetic Field Formulation

Applying curl to the equation (1.18) and substituting (1.21), we obtain:

curl( 1
σ
curlH) = curlE + curl 1

σ
Js in ΩI , (1.29)

replacing (1.19) and (1.20) in (1.29), we get:

curl( 1
σ
curlH) = −iωµH + curl 1

σ
Js in ΩI . (1.30)

Similarly, substituting the electromagnetic properties in both regions of Ω, we end with
the following system:
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

curl(σ−1curlH) + iωµH = 0 in ΩI ,

curl(curlH) = curl(Js) in ΩA,

divH = 0 on R3,

[H × n]Γ = 0 on Γ,
[∂nH]Γ = 0 on Γ,
|H(x)| = O(|x|−2) as |x| → ∞.

(1.31)

1.3.3 E −H Formulation

In what follows, we consider the "E-Based Formulation" inside ΩI and the "H-Based For-
mulation" inside ΩE. In this case, the problem is formulated as follows:



curl(µ−1curlE) + iωσE = 0 in ΩI ,

curl(curlH) = curl(Js) in ΩA,

divH = 0 on R3,

[E × n]Γ = 0 on Γ,
[H × n]Γ = 0 on Γ,
|E(x)|+ |H(x)| = O(|x|−2) as |x| → ∞.

(1.32)

1.3.4 E − Φ Formulation

In this section, we present another formulation which depends on a combination of the
electric field considered in the conductive domain ΩI , and the magnetic scalar potential
considered in ΩE.

In ΩE, the magnetic field can be written as H = Hr + H0, where H0 represents the
source terms and satisfies curlH0 = Js, and Hr is the reaction magnetic field that satisfies
curlHr = 0. Considering a simple geometry and using the fact that curlHr = 0 in ΩE, we
can write Hr = −∇Φ where Φ is a magnetic scalar potential.
As divHr = 0 in ΩE, then div(∇Φ) = 0, which gives that ∆Φ = 0.

The overall formulation is then represented by the following model:
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

curl(µ−1curlE) + iωσE = 0 in ΩI ,

∆Φ = 0 in ΩA,

[E × n]Γ = 0 on Γ,
[Φ]Γ = 0 on Γ,
|Φ(x)| = O(|x|−1) as |x| → ∞.

(1.33)

1.3.5 A Magnetic Vector Potential Formulation A

Starting from (1.22)
divB = 0 in Ω, (1.34)

we can express magnetic induction B in terms of the magnetic vector potential A

B = curlA in Ω. (1.35)

Replacing (1.35) in (1.19), we obtain that A = (iω)−1E. Here A is subjected to the
so-called temporal gauge that makes the scalar potential vanish.
Replacing (1.20), (1.21), (1.35) and E = iωA in (1.18), we obtain the A-based formulation

curl(µ−1curlA) + iωσA = Js in Ω. (1.36)

In order to assure the uniqueness of the solution of A, it is sufficient to add the following
conditions

divA = 0 in Ω, (1.37)∫
Γ
A · ndΓ = 0 on Γ. (1.38)

Adding the continuity condition, the complete system can be written as follows:



curl(µ−1curlA) + iωσA = Js in ΩI ,

[A× n]Γ = 0 on Γ,
divA = 0 on R3,∫

Γ A · ndΓ = 0 on Γ.
|A(x)| = O(|x|−2) as |x| → ∞.

(1.39)

1.4 Finite Element Method

The Finite Element Method (FEM) is a standard numerical technique for solving partial
differential equations. It became one of the most effective and widely used methods for
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numerical computation in electromagnetics [3–5]. The starting idea of the FEM is to write
a weak variational formulation of the problem. Then, we divide the domain of study into
elements (called finite elements) to generate a finite element mesh. There are several
types of element shapes, for example meshes may consist of triangles in two dimensions
and tetrahedra in three dimensions. Then, the unknown scalar or vector functions are
approximated by shape functions defined over each element to represent the behaviour
of the unknown variables (see section 1.6). The shape function is a continuous function
defined over a single finite element (such as nodes and edges). According to Galerkin’s
method, we then replace test functions by the same basis functions. Finally, we solve the
linear system to find the approximate solution.

1.4.1 Example

Consider the Poisson equation on a domain Ω with homogeneous Dirichlet boundary
condition  −∆u = f in Ω,

u = 0 on ∂Ω.
(1.40)

1. Weak formulation:
To obtain the weak formulation of the problem (1.40), we multiply by an arbitrary
function v (called the test function). Then, we integrate over Ω

−
∫

Ω
(∆u)vdΩ =

∫
Ω
fvdΩ. (1.41)

Using Green’s theorem, we can rewrite (1.41) as follows
∫

Ω
∇u · ∇vdΩ−

∫
∂Ω

(n · ∇u)vd∂Ω =
∫

ΩI

fvdΩ. (1.42)

Choosing v such that v|∂Ω = 0, we get
∫

Ω
∇u · ∇vdΩ =

∫
Ω
fvdΩ. (1.43)

Thus, if we choose the functional space

V = {v ∈ H1(Ω), v|∂Ω = 0} = H1
0 (Ω),

where [14]
H1(Ω) = {v ∈ L2(Ω), ∂xi

v ∈ L2(Ω), 1 ≤ i ≤ 3},
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we can write the weak formulation in the following form
 Find u ∈ V,

such that a(u, v) = l(v), ∀v ∈ V,
(1.44)

where a(u, v) =
∫
Ω∇u∇vdΩ is a bilinear form, and l(v) =

∫
Ω fvdΩ is a bounded

linear functional on V .

The weak formulation reduces the requirement to only first order partial derivatives.
The choice of the functional space V can be justified by the form of the weak
formulation that requires functions in H1(Ω), and the boundary conditions of the
strong formulation (1.40).

2. Galerkin’s method:
The variational problems are usually solved by the Galerkin method. To approx-
imate the unknowns, we should define a vector subspace Vh of V generated by
the basis functions φ1, φ2, .., φn. Then, we approximate the solution u as a linear
combination of these basis functions

uh(x) =
n∑
i=1

uiφi(x), (1.45)

and the test functions came from the same space. Then, the Galerkin formulation
is written as  Find uh ∈ Vh,

such that a(uh, vh) = l(vh), ∀vh ∈ Vh.
(1.46)

Using the basis (φj) of Vh, it is also equivalent to
 Find uh ∈ Vh,

such that a(uh, φj) = l(φj), ∀j ∈ [1, n].
(1.47)

3. Linear system:
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Replacing (1.45) in (1.47), we obtain the following linear system


A11 A12 · · · A1n

A21 A22 · · · A2n
... ... . . . ...

An1 An2 · · · Ann





u1

u2
...
un

 =



L1

L2
...
Ln

 ,

where Aji = a(φi, φj) and Lj = l(φj).

1.4.2 Advantages and disadvantages of the Finite Element Method

As is the case for other numerical methods, the FEM has some advantages and drawbacks.

Advantages of the Finite Element Method

1. The FEM is simple, for that it is widely popular among the engineering community.

2. Modeling of complex geometries as a wide range of element shapes exist for dis-
cretising the domain (unstructured mesh) [7].

3. Non-Linear Analysis : non-homogeneous materials can be easily considered.

4. The sparsity of the generated matrix system.

Drawbacks and limitations of the Finite Element Method

1. Volume discretisation : FEM requires a volume disretization, and so it may lead to
a large number of unknowns (see Fig. 1.4).

2. It can require large memory because of the volume discretisation.

3. Finite domains: additional boundaries must be added in free-space problems with
appropriate boundary conditions to limit the studied domain.

1.5 Boundary Element Method

The Boundary Element Method (BEM) is also a numerical method for solving the eddy-
current problems, that play an important role in the modern numerical computation in
the engineering science. It is more convenient than many numerical methods such as the
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Figure 1.4: The mesh in 2D for the Finite Element Method

FEM and the Finite Difference Method, as it reduces the number of elements and often
the computational time while maintaining accuracy.
The Boundary Element Method is just FEM applied to an integral equation. For this
reason, it is convenient to introduce the Boundary Integral Equations (BIE).

1.5.1 Boundary Integral Equation by Scalar Form of Green’s
Identity

The BIE’s are reformulations of the partial differential equations on a simple smooth
boundary. Obtaining these equations consists of defining the mathematical model, the
representational formula of the unknowns, then passing through limits toward the bound-
ary. Here, we introduce the most popular BIE formulation for the Laplace equation, as
it will be considered in section 2.2.2.

• Mathematical model:
The magnetic scalar potential Φ which derives from the field H in absence of current
satisfies

− div(µgradΦ) = 0. (1.48)

As we are interested to apply BEM in an air region or any linear-isotropic medium,
then Φ verifies in this case the Laplace equation

∆Φ = 0. (1.49)
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Let u = Φ, the mathematical model is formulated as follows:

∆u = 0 in ΩE, (1.50)

|u(x)| = O
( 1
|x|2

)
as |x| → ∞. (1.51)

• Representation formula:
Firstly, let us recall the fundamental solution of the PDE (1.50),

G(x, y) = − 1
2π log|x− y| for x, y ∈ R2, (1.52)

G(x, y) = 1
4π|x− y| for x, y ∈ R3. (1.53)

The solution of the partial differential equation (1.50) can be represented in terms
of boundary potentials. In potential theory we have [27]:

u(x) = −
∫

Γ
∂n(y)G(x, y)[u(y)]ΓdΓy +

∫
Γ
G(x, y)[∂n(y)u(y)]ΓdΓy, (1.54)

for x ∈ Rn \ Γ. Here ∂n denotes the normal derivative, where n is the unit normal
vector on Γ oriented from the interior domain enclosed by Γ towards the outer
domain.

The representation formula in ΩE can be obtained depending on the assumption of
u in ΩI , u = 0 in Rn \ ΩE, we obtain

u(x) = −
∫

Γ
∂n(y)G(x, y)u(y)dΓy +

∫
Γ
G(x, y)∂n(y)u(y)dΓy (1.55)

for x ∈ ΩE.

We can rewrite the equation (1.55) in the following form:

u(x) = S(∂nu)(x)−D(u)(x), (1.56)

where,
(Sφ)(x̃) =

∫
Γ
G(x̃, y)φ(y)dΓ, (1.57)

is the scalar single layer potential, and

(Dφ)(x̃) =
∫

Γ
∂n(y)G(x̃, y)φ(y)dΓ, (1.58)
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is the scalar double layer potential, for all x̃ ∈ ΩE and y ∈ Γ.

• Integral Equations:
The solution u in the domain ΩE is given by the representational formula (1.56).
Using this representational formula, we must pass through limits toward the surface
Γ in order to obtain the boundary integral equations. Taking the limits of the single
layer potential S from both sides, we obtain [27]:

lim
Ω+3x̃→x∈Γ

(Sφ)(x̃) =
∫

Γ
G(x, y)φ(y)dΓ, (1.59)

and
lim

Ω−3x̃→x∈Γ
(Sφ)(x̃) =

∫
Γ
G(x, y)φ(y)dΓ, (1.60)

for all x ∈ Γ and y ∈ Γ.

Similarly for the double layer potential D, we get:

lim
Ω+3x̃→x∈Γ

(Dφ)(x̃) = −1
2φ(x) +

∫
Γ
∂n(y)G(x, y)φ(y)dΓ, (1.61)

and
lim

Ω−3x̃→x∈Γ
(Dφ)(x̃) = +1

2φ(x) +
∫

Γ
∂n(y)G(x, y)φ(y)dΓ, (1.62)

for all x ∈ Γ and y ∈ Γ.

Applying the limits (1.59-1.61) on (1.56), we obtain the following boundary integral
equation

1
2u(x) = −

∫
Γ

(
u(y)∂G(x, y)

∂n
−G(x, y)∂u(y)

∂n

)
dΓ. (1.63)

We can rewrite the integral equation as follows

1
2u(x) = S(∂nu)(x)− (Du)(x). (1.64)

for all x ∈ Γ.

The solution of the problem as well as its gradients or even high order derivatives are
then given by the application of the representation formula, this method based on Green’s
formula is called the direct BEM approach. Another possibility is to use the property that
single or double layer potentials solve the partial differential equation exactly for any given
density function. In any case, passing through limits of the representational formula give
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the boundary integral equations. Then, as for the FEM, a numerical procedure applied
to the boundary integral equation leads to a linear system of algebraic equations.

1.5.2 Example

Consider the Poisson equation on the domain ΩI with Dirichlet boundary condition
 −∆u = f in ΩI ,

u = f on Γ.
(1.65)

1. Representational formula:
By considering the single layer potential, the solution u is given by

u(x̃) = S(∂nu)(x̃) =
∫

Γ
G(x̃, y)∂n(y)u(y)dΓy for all x̃ ∈ ΩI , and y ∈ Γ, (1.66)

where u and ∂nu are the unknowns.

2. Integral Equation:
Passing through limits, we obtain:

f(x) = V (∂nu)(x) =
∫

Γ
G(x, y)∂n(y)u(y)dΓy for all x and y ∈ Γ, (1.67)

where p = ∂nu is the only unknown to find.

3. Galerkin’s method:
Considering V f = {v ∈ H1(Γ), v|Γ = f} as an admissible vector space. The integral
equation (1.67) is equivalent to the variational formulation (1.68)

∫
Γ

∫
Γ
G(x, y)p(y)q(x)dΓydΓx =

∫
Γ
f(x)q(x)dΓx, (1.68)

for all q ∈ V f . Similarly, as for the FEM (section 1.4.1). To approximate the
unkown p(y) using Galerkin’s method, we should define a vector subspace V f

h of V f

generated by the basis functions ψ1, ψ2, .., ψn. Then, we approximate the solution p
as a linear combination of these basis functions

ph(y) =
n∑
i=1

piψi(y), (1.69)

and the test functions are considered from the same functional space. Then, the
Galerkin formulation is written as
Find ph ∈ V f

h , such that
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∫
Γ

∫
Γ
G(x, y)ph(y)ψj(x)dΓydΓx =

∫
Γ
f(x)ψj(x)Γx, ∀j ∈ [1, n]. (1.70)

4. Linear system:
Replacing (1.69) in (1.70), we obtain a linear system

Ap = b,

where
Aji =

∫
Γj

∫
Γi

G(x, y)ψiψjdΓydΓx,

p =



p1

p2
...
pn

 ,

and
bj =

∫
Γj

f(x)ψjΓx.

1.5.3 Advantages and disadvantages of the Boundary Element
Method

The BEM has also some advantages and drawbacks.

Advantages of Boundary Element Method

1. Only boundary discretisation is required (see Figure 1.5).

2. Less data and less memory storage: it is a direct result from the first point. Only
the surface is discretised, so less number of elements are used.

3. Unbounded domains are treated in the same way as the bounded domains.

Disadvantages of Boundary Element Method

1. Non linearity: In general, the non-linear problems cannot be treated simply by pure
BEM, as it normally requires the discretisation of the interior domain to take into
account the non-homogeneous parameters. Then, a coupling of BEM with another
numerical method can be an appropriate solution [21], or obtaining the solution as
a sum of homogeneous solution and one particular non-homogeneous one [28 ; 29].
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Figure 1.5: The mesh in 2D for the Boundary Element Method

2. Fully populated matrix: Matrices obtained by the BEM may be unsymmetrical and
fully populated with non-zero coefficients. It can lead to specific difficulties for the
solution. To handle these difficulties, a compression and preconditioning techniques
can be used [16–18], or using an iterative solution method without the dense matrix
but with approximately the same accuracy [45].

3. Singular kernels: the numerical solution requires the evaluation of integrals having
singular kernels which must have a patricular treatment [15].

1.6 Shape functions

Numerical methods, such as the finite element method and the boundary element method,
are used to find approximate solutions of partial differential equations. The unknowns
of these equations which are scalar or vector functions are approximated by continuous
functions defined over each single element of the mesh. These functions defined over a
single element called "shape functions" are combined over all the mesh to form the basis
functions. In the following, we introduce the usual nodal, edge, and cell shape functions.

In 1980, some families of finite elements in R3 were introduced by Nédélec [24]. For the
H(curl)−conforming elements that provide the continuity of the tangential component of
a vector function, new complementary families are introduced in [30]. In [25], it exposed
the relevance of the linear edge elements for numerical calculations as well as their disad-
vantages. A comparison was done with the tetrahedral low order edge elements, and the
more accurate and efficient solutions are obtained with the linear edge elements and the
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nodal elements. Concerning storage requirements, nodal elements are less expensive than
linear edge elements.

1.6.1 Nodal shape functions - H(grad)

For a nodal element, a scalar or a vector function is approximated by a linear combination
of shape functions associated with vertices (see Figure 1.6). Within an element, a scalar
function u is approximated as:

u =
n∑
i=1

uiNi, (1.71)

where Ni is the nodal shape function corresponding to a node i, n is the number of nodes
in the element, and ui’s are the coefficients of u at nodes i = 1, .., n.
For a vector function W , it is approximated by considering three scalar components:

W =
n∑
i=1

WiNi =
n∑
i=1

(W x
i ~x+W y

i ~y +W z
i ~z)Ni, (1.72)

where W x
i , W

y
i , and W z

i are the components of Wi in the cartesian coordinates. When
two elements share a node i, the nodal values Wi at node i are equal, consequently the
vector function W is normally and tangentially continuous across all element interfaces.

Considering a tetrahedral element for example, the nodal shape functions in local coor-

Figure 1.6: First order tetrahedral nodal finite element in local coordinates.

dinates can be written as [23]:

N1 = λ1 = 1± x± y ± z,

- 26 - PhD Thesis - Mohammad ISSA



Chapter 1 : Introduction to Eddy-Current Problems and Discretisation
Techniques

N2 = λ2 = x,

N3 = λ3 = y,

N4 = λ4 = z,

where λ1, λ2, λ3 and λ4 are the barycentric coordinates of nodes 1, 2, 3 and 4. Within the
element, the nodal shape function Ni equals unity at node i and zero at all other nodes.

1.6.2 Edge shape functions - H(curl)

As the nodal element has one shape function associated with each of the vertices of the
element, the edge element has one shape function for each of the edges of the element.
The edge shape functions in local coordinates for the tetrahedral element can be written
as:

Ei = λk∇λl ± λl∇λk,

where the edge i goes from the node k to the node l. Within the element, the line
integral of an edge shape function Ei along edge i equals unity and is zero along all
other edges. The tangential component of a vector function approximated by edge shape
functions is continuous across the element boundaries, however the normal component
is not necessarily continuous. For the lowest order edge elements in a tetrahedron, the
divergence of the edge shape functions is zero [26]. Thus, the vector function approximated
by edge shape functions is divergence free in this element. However, that does not imply
that the vector field approximated by the edge basis functions is globally divergence free
since the normal components of these functions are not continuous.

1.6.3 Cell shape functions

The cell shape functions are zero order shape functions correspond to the scalar cell space
function. This function is well suited to approximate densities. Note that there is no
continuity properties between elements.
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2.1 Why FEM/BEM ?

In this chapter, we couple the Finite Element Method (FEM) and the Boundary
Element Method (BEM) for solving 3D magnetostatic and magnetodynamic problems.
This coupling is provided to treat one of the objectives of this thesis concerning the
presence of infinite homogeneous domains. We justify the use of this coupling in section
(2.1). We provide the Φ−Φ formulation for the magnetostatic case in section (2.2) and the
A − Φ formulation to consider magnetodynamic problems in section (2.3), the magnetic
vector potential is denoted by A and Φ is the magnetic scalar potential.

2.1 Why FEM/BEM ?

The Finite Element Method and the Boundary Element Method are widespread discreti-
sation techniques for computing approximate solutions of the partial differential equations
that appear in engineering. However, each method has some drawbacks in terms of com-
putational costs and some complementary advantages. Consequently, the whole domain of
the problem can be divided into subdomains, so that we may choose the most appropriate
discretisation technique in each subdomain. In this way, we mainly keep the advantages
of each method [55 ; 56].

In [34], the FEM/BEM coupling has been proposed for the first time using the standard
collocation BEM. Before, many papers adopted this coupling method until they became
used to habituated the coupling based on the symmetric Galerkin BEM [35–42]. The
symmetric coupling of FEM and BEM has been used to treat many problems [54]. It is
also used for transient electro-quasistatic field simulations in the time domain, as well as
for electrostatic simulations of 3D high voltage technnical devices [47].

An accurate field computation is needed for modeling the design and the optimisation of
some devices. Therefore, the FEM/BEM coupling is used in [48] to facilitate the model-
ing of large hadron collider (LHC) superconducting magnets. It is also used to model the
propagation of interacting acoustic-acoustic/acoustic-elastic waves through axisymmetric
media [49].

Considering movement is also one of the situations where using FEM/BEM is attractive.
In [44], The FEM/BEM coupling has been applied on 3D eddy-current problems with
moving bodies which can arise from the modeling of electromechanical systems. Similar
approach applied on the electrodynamic levitation device [43]. It is used as well for the
modeling of induction heating processes including moving parts [46].

- 30 - PhD Thesis - Mohammad ISSA



Chapter 2 : FEM/BEM coupling for Magnetostatic and Eddy Current problems

For an eddy current problem, the equations inside the conductor region ΩC can be non-
linear, it is not the case in a homogeneous medium (such as the infinite exterior region
that corresponds to the air in our case). In addition, there is no need for an extra artificial
boundary conditions if we consider the BEM in the exterior domain and only a surface
discretisation is required. This is why the proposed coupling is useful for eddy current
problems and becomes more important in 3D [50–53].

2.1.1 Setting of the problem

We divide the domain Ω into two subdomains: ΩC which is a conductive or magnetic
bounded domain, and ΩA which is the exterior domain (Air). It leads to a natural
FEM/BEM coupling, where the BEM is applied in the exterior domain and the FEM in
the interior domain (see Fig. 2.1). Let Γ be the common interface Γ = ∂Ωc ∩ ∂ΩA.

Figure 2.1: A cross section of the two sub-domains ΩA and Ωc and their corresponding
appropriate numerical methods.
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2.2 Φ−Φ Formulation for Magnetostatic Field Equa-
tions

The magnetostatic problem can be written as follows:

curlH = Js in Ω, (2.1)

divB = 0 in Ω, (2.2)

B = µH in Ω, (2.3)

[B · n]Γ = 0, in Γ, (2.4)

|H(x)| = O
( 1
|x|2

)
as |x| → ∞. (2.5)

The magnetic field H in ΩA can be expressed as the sum of two fields:

H = Hs +Hr, (2.6)

where Hs is the field produced by the source current that satisfies:

curlHs = Js, (2.7)

and, Hr is the remaining part produced by the magnetised material (reaction magnetic
field) given by:

curlHr = 0. (2.8)

The equation (2.8) implies that there exists a magnetic scalar potential Φ such that
Hr = −gradΦ, and so H can be written as:

H = Hs − gradΦ. (2.9)

2.2.1 Weak formulation for Φ in ΩC

Starting from (2.2), multiplying by a test function α ∈H(grad) and integrating over ΩC :∫
Ωc

α(divB)dΩc = 0, (2.10)
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and using the divergence theorem:

−
∫

Ωc

(divφ)φ′ =
∫

Ωc

φ(gradφ′)−
∫

Γ
n · φφ′, (2.11)

we get: ∫
Ωc

(gradα) ·BdΩc −
∫

Γ
(n ·B)αdΓ = 0. (2.12)

Using (2.3) and (2.9) in (2.12), we obtain:
∫

Ωc

(gradα) · µ(gradΦ)dΩc +
∫

Γ
BnαdΓ =

∫
Ωc

(gradα) · µHsdΩc, (2.13)

where Bn = B · n is the normal component of the magnetic induction.

2.2.2 Integral equation for Φ in ΩA

The potential Φ derives from the magnetic field H and in absence of the current satisfies

−div(µgradΦ) = 0.

As we consider just an air region or any linear-homogeneous medium, Φ verifies in this
case the Laplace equation

∆Φ = 0. (2.14)

Therefore, we can write the boundary integral equation as follows (see section 1.5.1)

cΦ = −
∫

Γ

(
Φ∂G
∂n
−G∂Φ

∂n

)
dΓ, (2.15)

where c = −1
2 .

2.2.3 Coupled variational formulation

Both methods should be linked by considering the same unknowns. For coupling the
integral equation (2.15) with the weak form (2.13), we have to evoke the normal component
of the magnetic flux density [57]. Thus, if we substitute the magnetic scalar potential:

Bnr = µ(−gradΦ · n), (2.16)
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in (2.15), we get:
cΦ = −

∫
Γ
(Φ∂G

∂n
−G(−Bnr

µ
))dΓ. (2.17)

However,
Bn = B · n = µ(Hs − gradΦ) · n, (2.18)

then:
Bn

µ
= Hs · n− gradΦ · n = Hs · n+ Bnr

µ
. (2.19)

From (2.15) and (2.19), we end with the following integral equation:

cΦ = −
∫

Γ

(
Φ∂G
∂n

+G
(
Bn

µ
−Hs · n

))
dΓ. (2.20)

The final set of equations for both domains ΩC and ΩA, which are connected at a common
interface Γ, can be written as:



∫
Ωc

(gradα)µ(gradΦ)dΩc +
∫

Γ
BnαdΓ =

∫
Ωc

(gradα)µHsdΩc,

cΦ +
∫

Γ
Φ∂G
∂n

dΓ−
∫

Γ
G
Bn

µ
dΓ = −

∫
Γ
G.Hs · ndΓ.

(2.21)

The complete variational formulation can be written as:

Find Φ ∈ H(grad,Ωc) and Bn ∈ H(div,Γ), such that:
 〈µgradΦ, gradα〉Ωc + 〈Bn, α〉Γ = 〈µHs, gradα〉Ωc ,

〈(cI +D)Φ, β〉Γ − 〈µ−1S(Bn), β〉Γ = −〈S(β), Hs · n〉Γ,
(2.22)

for all α ∈ H(grad,Ωc) and β ∈ H(div,Γ).

where, as defined in subsection 1.5.1,

(Sφ)(x) =
∫

Γ
G(x, y)φ(y)dΓ, (2.23)

and
(Dφ)(x) =

∫
Γ
∂n(y)G(x, y)φ(y)dΓ, (2.24)
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for all x ∈ Γ and y ∈ Γ.
And note that 〈f, g〉Γ =

∫
Γ f(x)g(x)dΓ(x) and 〈f, g〉ΩC

=
∫

ΩC
f(x) · g(x)dΩC .

2.2.4 FEM/BEM discretisation

In ΩC , Φ can be approximated by a linear combination of shape functions associated with
the nodes:

Φh =
n∑
i=1

Φiαi,

where n is the number of nodes, the coefficients Φi’s are the values of Φh at node i, and
αi is the nodal shape function of degree 1 corresponding to node i. Note that when using
the conforming elements in H(grad,Ωc), the degrees of freedom are associated with the
nodes (see section 1.6.1).

Bn is approximated using scalar cell shape function (0-order shape function), those func-
tions are equal to a constant on the face of the tetrahedral on the boundary and zero
elsewhere. Bn is approximated by:

Bnh
=

m∑
i=1

Bnj
βj,

where m is the number of faces of tetrahedrals, the coefficients Bnj
’s are the values of Bnh

at face j, and βj is the scalar cell shape function of degree 0 corresponding to face j.

Applying Galerkin’s Method, we can write the discretised formulation as:

Find Φj ∈ Rn and Bn ∈ Rn, such that

n∑
j=1

Φi〈µgradαi, gradαl〉Ωc +
m∑
j=1

Bnj
〈βj, αl〉Γ = 〈µHs, gradαl〉Ωc , (2.25)

n∑
i=1

Φi〈(cI +D)αi, βk〉Γ −
m∑
j=1

Bnj
〈µ−1S(βj), βk〉Γ = −〈S(βk), Hs · n〉Γ, (2.26)

for l = 1, . . . , n, and k = 1, . . . ,m.

Matrix assembly:
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We end up with the following system of linear equations

 F 1 0
F 2

0 B1 B2




ΦΩc

ΦΓ

Bn

 =
 S1

S2

 ,

where ΦΩc represents the values of Φ on the nodes inside the domain Ωc, ΦΓ represents
the values of Φ on the nodes on the boundary Γ,
F 1
li= ∫

Ωc

(gradαi) · µgradαldΩc,

F 2
lj= ∫

Γ
αlβjdΓ,

B1
ki=

c
∫

Γ
βiβkdΓ +

∫
Γ
βi
∂G

∂n
βkdΓ,

B2
kj= ∫

Γ

1
µ
βiGβjdΓ,

S1
l = ∫

Ωc

gradαl · (µHs)dΩc,

S2
k= ∫

Γ
G(Hs · n)dΓ.

2.2.5 Numerical results

We consider a sphere with a radius of 1m, and a source current excited by a uniform
magnetic field HS = 1~z (see Figure 2.2).
We implement this formulation in the platform «MIPSE» of the G2Elab. A LU-

preconditioning method is used to solve the problem using an iterative solver, and the
BEM Matrix is approximated by a H-matrix [58]. With these results, we compute
the external magnetic field HMipse on an arc of circle at radius 1.3m and we compare
the results to the analytical solution. In table (2.1), we calculate the relative L2-error(
||Hanalytic−HMipse||2

||Hanalytic||2

)
on this arc for a range of values of the relative permeability. These

errors show a harmonised agreement as the error is less than 2% and the time of simu-
lation is around 8s. The considered mesh consists of 322 nodes and 458 cell elements on
the boundary.
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Figure 2.2

µr ||Hanalytic −HMipse||

102 0.0159

103 0.0108

104 0.01027

105 0.01022

Table 2.1: Relative L2-errors of the solution HMipse.

We also compare the magnetic field HMipse with the results of a simulation done by
Comsol in 2D axisymmetry HComsol for µr = 103 H/m. In Fig. (2.3), we represent
both components Hx and Hz of the field calculated on the segment that connects the two
points (1.1, 0,−1) and (1.1, 0,+1). In the figures (2.4-2.6), it is shown the magnetic scalar
potential Φ, the normal component of the magnetic induction Bn, and the magnetic field
in the sphere, respectively.

2.3 A − Φ Formulation for Magnetodynamique Field
Equations

Recall the eddy-current problem (1.18-1.23).
Starting from the fact that divB = 0, then B can be written as:

B = curlA,

PhD Thesis - Mohammad ISSA - 37 -



2.3 A− Φ Formulation for Magnetodynamique Field Equations

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

z(m)

-0.5

0

0.5

1

1.5

M
ag

ne
tic

 F
ie

ld
 (

A
/m

)

Hx
Mipse Hx

Comsol Hz
Mipse Hz

Comsol
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Figure 2.6: Magnetic field on the sphere.
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where A is the magnetic vector potential. Therefore, H can be written in the following
two forms:

H = νcurlA, (2.27)

and
H = Hs − gradΦ. (2.28)

where ν = µ−1.

2.3.1 Weak formulation for A in ΩC

We consider Js = 0 in ΩC , we have

curlH = σE. (2.29)

Multiplying (2.29) by a test function W and integrating over Ωc∫
Ωc

W · curlHdΩc =
∫

Ωc

(σE) ·WdΩ, (2.30)

and using the property div(A×B) = B · (curlA)− A · (curlB), we get
∫

Ωc

H · curlWdΩc +
∫

Ωc

div(H ×W )dΩc =
∫

Ωc

(σE) ·WdΩ, (2.31)

∫
Ωc

H · curlWdΩc −
∫

Ωc

div(W ×H)dΩc =
∫

Ωc

(σE) ·WdΩ. (2.32)

Using the fact that ∫
Ωc

div(W ×H)dΩc =
∫

Γ
(W ×H) · ndΓ,

we obtain, ∫
Ωc

H · curlWdΩc −
∫

Γ
(W ×H) · ndΓ =

∫
Ωc

(σE) ·WdΩ. (2.33)

Substitute H = νcurlA, implies
∫

Ωc

curlW · νcurlAdΩc −
∫

Ωc

(σE) ·WdΩ−
∫

Γ
(W ×H) · ndΓ = 0, (2.34)

then substitute H = Hs − gradΦ, we get
∫

Ωc

curlW ·νcurlAdΩc−
∫

Ωc

(σE)·WdΩ−
∫

Γ
(gradΦ×W )·ndΓ =

∫
Γ
(W×Hs)·ndΓ, (2.35)

∫
Ωc

curlW ·νcurlAdΩc−
∫

Ωc

(σE)·WdΩ−
∫

Γ
(gradΦ×W )·ndΓ =

∫
Γ
W ·(Hs×n)dΓ. (2.36)
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However
∫

Γ
(gradΦ×W ) ·ndΓ = −

∫
Γ
(n×W )gradΦdΓ =

∫
Γ
divΓ(n×W )ΦdΓ = −

∫
Γ
n · curlWΦdΓ,

implies
∫

Ωc

curlW · νcurlAdΩc −
∫

Ωc

(σE) ·WdΩ +
∫

Γ
n · curlWΦdΓ =

∫
Γ
W · (Hs × n)dΓ. (2.37)

Using Faraday’s equation, we can write E = −iωA, which gives that:
∫

Ω
curlW ·νcurlAdΩ+ iω

∫
Ωc

(σA) ·WdΩ+
∫

Γ
(n ·curlW )ΦdΓ =

∫
Γ
W · (Hs×n)dΓ. (2.38)

2.3.2 Integral equation for Φ in ΩA

Similarly as in section (2.2.2), the integral equation is written as follows

cΦ +
∫

Γ
Φ∂G
∂n

dΓ−
∫

Γ
G
Bn

µ
dΓ = −

∫
Γ
G.Hs · ndΓ. (2.39)

where Bn = B · n is the normal component of the magnetic induction.

2.3.3 Coupled variational formulation

Both methods are linked by the following interface condition:

Bn = B · n = curlA · n,

to get

∫

Ωc

curlWνcurlAdΩ + iω
∫

Ωc

(σA)WdΩ +
∫

Γ
n · curlWΦdΓ =

∫
Γ
W · (Hs × n)dΓ,

cΦ +
∫

Γ
Φ∂G
∂n

dΓ−
∫

Γ
G
curlA · n

µ
dΓ = −

∫
Γ
G.Hs · ndΓ.

(2.40)
The variational formulation is written as:

Find A ∈ H(curl) and Φ ∈
(
Cell or H(grad)

)
, such that

 〈νcurlA, curlW 〉Ωc + iω〈σA,W 〉Ωc + 〈Φ, n · curlW 〉Γ = 〈Hs ∧ n,W 〉Γ,
〈µ−1S(curlA · n), F 〉Γ − 〈(cI +D)Φ, F 〉Γ = −〈S(F ), Hs · n〉Γ,

(2.41)
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for all W ∈ H(curl) and F ∈
(
Cell or H(grad)

)
.

Where Cell is the function space of zero order shape functions (constants). Note that the
aim of choosing Φ either in the functional space Cell or H(grad) is to test two ways of
discretisation. The interest is to show that the cell shape functions can be sufficient in
simple geometries, moreover it may reduce the computational time.

2.3.4 FEM/BEM discretisation

In ΩC , A is approximated by a linear combination of shape functions associated with
edges

Ah =
n∑
i=1

AiWi,

where the coefficient Ai is the value of A at edge i, and Wi is the edge shape function of
degree 1 corresponding to edge i (see section 1.6.2).
When using the conforming elements in H(curl), the degree of freedom are associated
with the edges.

Φ is approximated using nodal shape functions (first order shape function) or using cell
shape functions (zero order shape functions).
Applying Galerkin Method, we state the discretised formulation knowing that Φ is ap-
proximated by:

Φh =
m∑
j=1

ΦjNj,

where Nj represents either the nodal shape function, or the cell shape function. Applying
Galerkin’s Method, we can write the discretised formulation as:

Find Ai and Φj ∈ Rn, such that

∑n
i=1Ai < νcurlWi, curlWl >Ωc −

∑n
i=1Ai < iωσWi,Wl >Ωc +∑m

j=1 Φj < Nj, n · curlWl >Γ

=< Hs ∧ n,Wl >Γ,

(2.42)
n∑
i=1

Ai < µ−1S(curlWi · n), Nk >Γ −
m∑
j=1

Φj < (cI +D)Nj, Nk >Γ=< Hs · n, S(Nk) >Γ

(2.43)
for l=1..n, and k=1..m.
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Matrix assembly:
We end up with the following system of linear equations:

 F 1 0
F 2

0 B1 B2


 A

Φ

 =
 S1

S2

 ,

where

F 1
il =

∫
Ωc

(curlWi)νcurlWldΩ + iω
∫

Ω WiσWldΩ

F 2
jl =

∫
Γ curl(Wl · n)NjdΓ

B1
ik =

∫
Γ

1
µ
(curlWi · n)GNkdΓ

B2
jk = c

∫
Γ NjNkdΓ +

∫
Γ Nj

∂G
∂n
NkdΓ

S1
l =

∫
Ωc

(Wl) · (Hs ∧ n)dΩ

R2
k =

∫
Γ G(Hs · n)dΓ

2.3.5 Numerical results

We consider a sphere with a radius of 1 m, µr = 10 H/m, σ = 5.5 × 106 S, f = 103 Hz.
The source current is excited by a uniform magnetic field Hs = 1~z.
The simulation is performed by both ways of discretisation concerning Φ (Nodal and Cell),
and using the same mesh. We calculate the external magnetic field HMipse on an arc of
circle at radius 1.3m and we compare the results to the analytical solution. In Table (2.2),
we provide the error obtained considering the discretisation of Φ by the nodal and cell
shape functions, as well as their computational time.

||Hanalytic −HMipse|| Time

Φcell 0.003 11s

Φnodal 0.004 22s
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Table 2.2: Relative L2-errors of the solution HMipse.

We also compare the magnetic fieldHMipse with the results of a simulation done by Comsol
in 2D axisymmetry HComsol for µr = 103 H/m. In Figs. (2.7) and (2.8), we trace both
fields calculated on the segment that connects the two points (1.1, 0,−1) and (1.1, 0,+1).
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Figure 2.7: The x and z components of the real
part of the magnetic fields HMipse using cell

shape functions, and HComsol in 2D
axisymmetry.
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Figure 2.8: The x and z components of the real
part of the magnetic fields HMipse using nodal

shape functions, and HComsol in 2D
axisymmetry.

2.4 Conclusion and Perspectives

Magnetostatic Maxwell equations are solved in 3D using the Φ−Φ FEM/BEM coupling
formulation and 3D magnetodynamic problem is solved using the A − Φ FEM/BEM
coupling method. Note that, we consider here only linear and homogeneous materials.
One of the interests in choosing a FEM/BEM coupling is to treat the nonlinearity in
the bounded domain using the FEM (see section 2.1). In addition, the initial project
is represented by the discretisation of the magnetic circuit in the coupler (see Figure 1,
section 0.1), thus one of our perspectives is to apply these formulations on non-linear
problems.
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Chapter 3 : Boundary Element Method for 3D Conductive Thin Layers in
Eddy-Current Problems

3.1 Introduction

Many components are surrounded by conductive thin layers for shielding purposes such
as the anechoic chamber used to measure antenna characterization, and the Helmholtz
coils used to cancel the earth magnetic field and generate the required magnetic fields for
experiments. Modeling these conducting regions requires a very fine volume discretisation
because the fields decay rapidly through the surface due to the skin depth. Therefore, it
may lead to a large system of equations (using the FEM) and then to prohibitive compu-
tational time especially for 3D structures. To prevent this difficulty, the conductive sheet
can be replaced by a mid-surface with equivalent transmission conditions. The transmis-
sion conditions are derived asymptotically for vanishing sheet thickness ε where the skin
depth is kept proportional to ε, in this way we will maintain the skin depth less than or
equal to the sheet thickness.

In [68], an integral formulation using facet elements is presented for modeling a non-
magnetic conductive thin sheet in the general case (the skin depth is smaller, larger, or
equal to the thickness of the sheet).

In [77], a thin shell approximation that reduces the thin shell volume to an average
surface situated halfway between the inner and outer surface of the shell is proposed. It is
based on the treatment of the surface terms that appear in the finite element formulation.
This treatment is done by establishing an appropriate impedance boundary conditions and
a discretisation using Whitney edge elements. They assumed that the electromagnetic
fields H and E have no components perpendicular to the surface of the shell. This ap-
proach is applied on the perforated magnetic shield for electric power applications in [79].

In [81], a time-domain approach with a magnetic field vector formulation is proposed
to consider the presence of thin layers. It is based on the treatment of the surface term
in the weak formulation of finite element method and the use of orthogonal polynomial
basis functions to account for the variation of the magnetic flux and the current den-
sity through the shell thickness. A tangential vector fields are introduced on the average
surface to take into account the time domain behavior of the thin shell. This work has
been extended to the magnetic field formulation in [80], and an application on a shielded
induction heater with a pulsed current is presented in [103].

In [65] two families of Impedance Transmission Conditions (ITC) for Eddy Current
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Model in 2D have been derived using asymptotic expansions, ITC-1-N based on scaling
the conductivity with the sheet thickness ε like 1/ε and ITC-2-N based on scaling the
conductivity with the sheet thickness ε like 1/ε2, where N + 1 is the order of convergence
for these families. The robustness of the ITC-2-N family of transmission conditions is val-
idated in [67] and it shows a higher accuracy in comparison with ITC-1-N. The ITC-2-N
family thus adopted in [59] to derive an equivalent transmission conditions for the full
time-harmonic Maxwell equations in 3D, where curved thin sheets are considered, and
the material constants can take different values inside and outside the sheet.

In this work, the family ITC-2-N is considered, we present impedance transmission
conditions derived asymptotically for eddy-current problems in 3D, for curved thin sheets,
where the materials inside and outside the sheet are non-conductive. The difference be-
tween this work and the work in [64] is that we proceed with an hybrid (electric and
magnetic fields) formulation, where in [64] the derivation of asymptotic models is based
on a magnetic field formulation and a multi-scale expansion for the magnetic field and
then impedance conditions are identified for the electric field.

We also study a discretization that can be the numerical relevant for ITCs. We avoid
the volume mesh required in the Finite Element Method (FEM) by discretising the prob-
lem using the Boundary Element Method (BEM) that uses only a mesh on the surface. In
addition, the BEM is well adapted to general field problems with unbounded structures
because no artificial boundary is needed [66]. This is not the case for the FEM.

We validate the results by comparing them to an analytical solution, and to the same
problem simulated in COMSOL and solved numerically using the Finite Element Method
with very fine meshes.

This chapter is organized as follows: Sections 3.2.3 and 3.3 presents the hybrid formu-
lation of the eddy current problem, and the mathematical demonstration of the equivalent
models up to order 2. In Section 3.5 we provide the Boundary Element Method with spe-
cific basis functions to solve the problem. Numerical results are provided in Section 3.6,
we validate our models and assumptions, and we study the computational time using the
BEM.
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3.2 Mathematical Model

3.2.1 Notations

Let Γ be any orientable and closed surface of R3, and let v be a vector field on Γ, then
we denote by

vT = n× (v × n)

the tangential component of v. Here n is the unit normal vector on Γ which is oriented
from the interior domain enclosed by Γ towards the outer domain (see Figure 3.1).

We also denote by γD·, γN · and γn· the Dirichlet, Neumann, and normal traces, respec-
tively. They are defined as

γDv = vT = n× (v × n)|Γ ,

γNv = (curlv × n)|Γ ,

γnv = (v · n)|Γ .

We denote by curlΓ the tangential rotational operator and by curlΓ the surface rotational

Figure 3.1: A cross section of the domain Ω

operator:
∀f ∈ C∞(Γ), curlΓf = (∇Γf)× n

∀v ∈ (C∞(Γ))3, curlΓv = divΓ(v × n)

where ∇Γ and divΓ are respectively the tangential gradient and the surface divergence on
Γ.

PhD Thesis - Mohammad ISSA - 49 -



3.2 Mathematical Model

Denote also the space of L2-integrable tangent vector fields by

L2
t (Γ) = {v ∈ (L2(Γ))3, v · n = 0 on Γ}.

Let Ω− and Ω+ be two Lipschitz domains, and let Γ := ∂Ω− ∪ ∂Ω+ be the common
interface which is a closed set (see Figure 3.1).

Let Σ be any smooth surface, we denote by [f ]Σ the jump of f across Σ

[f ]Σ = f|Σ+ − f|Σ− for f ∈ C∞(Ω±)

where for all x ∈ Σ, the one sided traces are defined by:

f|Σ± = lim
s→0±

f(x+ sn).

Also we denote by {f}Σ the mean value of f across Σ

{f}Σ = 1
2(f|Σ+ + f|Σ− ) for f ∈ C∞(Ω±).

The same definitions can be extended to vector fields v ∈ (C(Ω±))3.
For the tangential traces, we have the following relations:

{v × n}Σ = {v}Σ × n, [v × n]Σ = [v]Σ × n,

{vT}Σ = ({v}Σ)T , [vT ]Σ = ([v]Σ)T .

3.2.2 Eddy Current Problem for a Thin Layer

Throughout this chapter, we denote by Ω ⊂ R3 the domain of study, which is itself
composed of three sub-domains

Ω = Ωε
− ∪ Ωε

0 ∪ Ωε
+

where Ωε
− is the interior domain that corresponds to any non-conductive linear material,

Ωε
+ is the exterior of the structure domain, and the subdomain Ωε

0 is a conductive thin
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layer of constant thickness ε surrounding the subdomain Ωε
−. Let Γε− and Γε+ be the two

smooth boundaries of the subdomains Ωε
− and Ωε

− ∪ Ωε
0 respectively (see Figure 3.2). As

Figure 3.2: A cross section of the domain Ω

the three subdomains have different properties, we define µε(magnetic permeability) and
σε(conductivity) as piecewise constant functions:

µε =


µ− in Ωε

−,

µc0 in Ωε
0,

µ+ in Ωε
+,

and σε =


0 in Ωε

−,

σ0 in Ωε
0,

0 in Ωε
+.

At high frequency, the skin depth δ =
√

2
ωµc

0σ0
becomes smaller than the thickness ε. In

this case, very fast changing field near the interface will be observed, and the magnetic
field does not penetrate completely in the interior of the layer. This skin effect makes the
studying of the behavior of the magnetic field near the interface more problematic, as a
very fine mesh is required. That is why we are interested in the case where the skin depth
is smaller than ε or of the same order.

For studying the asymptotic behaviour, we assume an explicit dependence of the layer
conductivity σ0 on ε

σ0 = ε−2σ̄,

which comes from the fact that as the layer is thinner, the conductivity is larger and δ

remains less than or equal to ε.

The general model of the eddy current problem is already presented in chapter 1, but we
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recall it once again for clarity

curlHε = J in Ω, (3.1)

curlEε − iωµεHε = 0 in Ω, (3.2)

Bε = µεHε in Ω, (3.3)

J = σεEε + Js in Ω, (3.4)

divEε = 0 in Ωε
±, (3.5)∫

Γε
±

Eε
± · ndS = 0 on Γε±, (3.6)

Eε = O
( 1
|x|

)
as |x| → ∞, (3.7)

where ω is the angular frequency.

3.2.3 Eε
±/Hε

0 Hybrid Formulation

In [64] the formulations in H and E are adopted but it is also possible to do all the
calculations in a hybrid formulation E/H.
Using Faraday’s law (3.2), the magnetic field can be written in Ωε

± in function of the
electric field as

Hε
± = (iω)−1(µε±)−1curlEε

±,

and substituting it in Ampère’s law (3.1), we obtain an equation for the electric field in
the insulator or air region Ωε

±

curlcurlEε
± = iωµε±Js.

Similarly, using Ampère’s law (3.1) the electric field can be written in Ωε
0 as

Eε
0 = (σ0)−1(curlHε

0 − Js),

and substituting it in Faraday’s law (3.2), we obtain an equation for the magnetic field
in the conductor Ωε

0

curlcurlHε
0 − iωµε0σ0H

ε
0 = curlJs.
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Transmission conditions across the two conductor surfaces Γε+ and Γε− are considered [70]

[Hε × n]Γε
±

= 0 on Γε±, (3.8)

[µHε · n]Γε
±

= 0 on Γε±. (3.9)

Using Faraday’s law and the tangential continuity of the magnetic field across the bound-
ary, we obtain

iω(Hε
0 × n) = iω(Hε

± × n) = 1
µε±

curlEε
± × n.

Using the continuity of the normal component of the magnetic induction (3.9) and the
Faraday law, we get

µε0H
ε
0 · n = µε±H

ε
± · n = 1

iω
curlEε

± · n.

For simplicity, we assume that the source current term Js is smooth enough and its support
does not meet the layer Ωε

0 (Js = 0 in Ωε
0).

Therefore the hybrid eddy current model can be written


curlcurlEε
± = iωµε±Js in Ωε

±,

curlcurlHε
0 − kε0Hε

0 = 0 in Ωε
0,

iω(Hε
0 × n) = 1

µε
±
curlEε

± × n on Γε±,
µ0H

ε
0 · n = 1

iω
curlEε

± · n on Γε±,
divEε

± = 0 in Ωε
±,∫

Γε
±
Eε
± · ndS = 0 on Γε±,

(3.10)

where kε is the complex wave number given by

(kε)2(x) = iωσε(x)µε(x).

It is defined as a piecewise constant function inside the three subdomains

kε =


0 in Ωε

−,

k0 in Ωε
0,

0 in Ωε
+,

where Eε
+, Eε

− and Hε
0 denote the restrictions of Eε and Hε to the respective domains

Ωε
+, Ωε

− and Ωε
0.
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3.2.4 Objective

The discretisation of the conducting sheet by the FEM is time-consuming as it requires
meshing by very small cells due to the rapid decay of the field under high conductivity.
To avoid meshing the thin layer Ωε

0, we suggest replacing it by an interface, usually its
mid-surface Γ, on which appropriate conditions are set.

This is to say that we have to approximate new models defined on ε-independent domains

Figure 3.3: The cross sections of the domain of the main problem Ωε
− ∪ Ωε

0 ∪ Ωε
+ and of

the approximate problem Ω− ∪ Ω+

Ω− and Ω+ (see Figure 3.3), where

Ω− = lim
ε→0

Ωε
−,

and
Ω+ = lim

ε→0
Ωε

+.

In the approximate model, we redefine the magnetic properties in the new subdomains
by a simple extension of µε and σε outside the sheet. We obtain the new values:

µ =

 µ− in Ω−,
µ+ in Ω+,

and

σ =

 σ− = 0 in Ω−,
σ+ = 0 in Ω+.

Similarly, we define k the extension of kε as
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k =

 0 in Ω−,
0 in Ω+.

3.3 Multiscale Expansion and Equivalent Models with
Transmission Conditions

In problem (3.10), Ωε
0 is a thin layer, and Γ its mediant-surface (Ωε

0 is then a tubular
neighborhood of Γ in Ω− ∪ Ω+)
Assuming that Γ is a smooth curve, then it is possible to derive a multiscale expansion
for the solution of the problem: It possesses an asymptotic expansion in power series of
the small parameter ε [64]

Eε
±(x) ≈ E±0 (x) + εE±1 (x) + ε2E±2 (x) + ...+O(εk), (3.11)

Hε
0(x) ≈H0

(
yα,

h

ε

)
+ εH1

(
yα,

h

ε

)
+ ...+O(εk), (3.12)

where O(εk) means that the remainder is uniformly bounded by εk.
Here, x ∈ R3 are the cartesian coordinates, and (yα, h) is the local coordinate system
where h ∈ (− ε

2 ,
ε
2) is the normal coordinate to Γ and yα for α = 1, 2 (i.e. (y1, y2)) are

the tangential coordinates to Γ (see Figure 3.4). Note that, yα is called the "slow" variable
and h/ε is called the "fast" variable according to the normal coordinates.

The term Hj are profiles defined on Γ× (−1
2 ,

1
2) and are smooth for all variables. These

profiles describe the magnetic field in the thin layer Ωε
0 according to the normal coordinate

system.

The derivation is based on:

• the expansion of the differential operators inside the thin layer Ωε
0, (see Appendix

A.1)

• the Taylor expansion of Ej|Γε
±
around the mid-surface Γ, (see Figure (3.5))

• the collection of the terms with the same power in ε in the PDE inside and outside
the sheet, and the conditions for the Dirichlet and normal traces on Γε±.

Then, we can introduce a problem satisfied by an approximation Ek
ε of the expression

E0(x) + εE1(x) + ε2E2(x) + ...+ εkEk(x) up to a residual term O(εk+1).
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Figure 3.4: Normalised domain

Figure 3.5: Taylor expansion around the mid-surface.

3.3.1 Equations of the coefficients of Eε
±/H

ε
0

Keep in mind that the hybrid formulation Eε
±/H

ε
0 satisfies the following

curlcurlEε
± = iωµε±Js in Ωε

± (3.13)

curlcurlHε
0 − kε0Hε

0 = 0 in Ωε
0 (3.14)

iω(Hε
0 × n) = 1

µε±
curlEε

± × n on Γε± (3.15)

µc0H
ε
0 · n = 1

iω
curlEε

± · n on Γε± (3.16)

divEε
± = 0 in Ωε

± (3.17)∫
Γε
±

Eε
± · ndS = 0 on Γε± (3.18)
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Approximating this model by considering just the mid-surface of the thin layer subdomain
Ωε

0 requires us to write the second partial differential equation (3.14) in the thin conductor
in the scaled local coordinate system (yα,Y3).
We find that the profiles Hj satisfy the following

L[ε]∑∞j=0 ε
jHj(yα, Y3) = 0 in Γ× I, (3.19)

where L is the second order Maxwell operator defind in Appendix A.1, and I = (−1
2 ,

1
2).

We can easily see that the terms E±j of the expansion (3.11) depends on ε, because they
are evaluated on Γε± when replacing the expansion of Eε in the transmission conditions
across Γε±. This is not convenient, and we propose to consider the Taylor expansion of
this term towards the surface Γ. This should give a more accurate approximation.

As the expansion of Eε is assumed to be valid for any small ε > 0 the terms E±j are
defined in Ωε

± for all ε > 0 and hence in Ω±. According to the assumption that the thin
conductors, and its mid-surface Γ are smooth, that µ±, σ± are constants, and that the
current Js is zero close to Γ it makes sense to accept that the vector fields E±j are regular
in the neighbourhood of Γ. This can be justified using the regularity theory in [74].
Hence we can use the Taylor expansion and infer for n ∈ N, that

curlE±n × n|h=± ε
2

= curlEn × n|0± ±
ε

2∂h
(
curlEn × n|0±

)
+ ..., (3.20)

curlE±n · n|h=± ε
2

= curlEn · n|0± ±
ε

2∂h
(
curlEn · n|0±

)
+ ..., (3.21)

where ·|0± means the limit for positive or negative h→ 0, respectively.

Proposition 3.3.1 The components of L[ε]∑∞j=0 ε
jHj(yα,Y3 ) in Γ×I after performing

the identification of terms with the same power of ε are:

L0(H0) = 0,

L0(H1) + L1(H0) = 0,

and
k∑
l=0

Ll(Hk−l) = 0 for n ≥ 2,
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where Ll, l = 0..k are the terms of expansion of L in power series of ε (see Appendix
A.1).

Proof. see the Appendix A.2

Proposition 3.3.2 The profiles Hn = (Hn, hn) and the terms En have to satisfy, for all
n ≥ 0

L0
3(Hn) = γ2(hn) = −

n∑
j=1

Lj3(Hn−j) in Γ× I, (3.22)

L0
α(Hn) = −∂2

3Hn,α + γ2Hn,α = −
n∑
j=1

Ljα(Hn−j) in Γ× I, (3.23)

curlcurlE±n = δ0
niωµ±Js in Ω±, (3.24)

curlE±n · n|0± = iωµc0Hn · n|± 1
2
−

n∑
j=1

1
(±2)j ∂

j
h

(
curlE±n−j · n|0±

)
on Γ, (3.25)

curlE±n × n|0± = iωµε±Hn × n|± 1
2
−

n∑
j=1

1
(±2)j ∂

j
h

(
curlE±n−j × n|0±

)
on Γ, (3.26)

divE±n = 0 in Ωε
±, (3.27)∫

Γε
±

E±n · ndS = 0 on Γε±, (3.28)

where ·|± 1
2
abbreviates the trace on Y3 = ±1

2 , and δ
0
n = 1 if n = 0 and zero otherwise.

Where H = (Hα, h), Hα = (H1,H2) and h are the tangential and normal coordinates of
H, respectively, and γ = exp(3iπ

4 )
√
ωµc0σ̄.

Proof. see the Appendix A.3

Corollary 3.3.1 The model in (3.3.2) is equivalent to

L0
3(Hn) = γ2(hn) = −

n∑
j=1

Lj3(Hn−j) in Γ× I, (3.29)

L0
α(Hn) = −∂2

3Hn,α + γ2Hn,α = −
n∑
j=1

Ljα(Hn−j) in Γ× I, (3.30)

curlcurlE±n = δ0
niωµ±Js in Ω±, (3.31)

curlE±n · n|0± = iωµc0hn|± 1
2
−

n∑
j=1

1
(±2)j ∂

j
h

(
curlE±n−j · n|0±

)
on Γ, (3.32)

iωµε±Hn|± 1
2

= n× curlE±n × n|0± +
n∑
j=1

1
(±2)j ∂

j
h

(
n× curlE±n−j × n|0±

)
on Γ, (3.33)

divE±n = 0 in Ω±, (3.34)∫
Γ±
E±n · ndS = 0 on Γ±, (3.35)
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where E±n is the trace of En on Γ±.

3.4 Equivalent Models up to order 2

In the previous section we derived the coupled systems for the terms of the asymptotic
expansions to any order n. Hence we can determine now the first terms Hn = (Hn, hn)
and En by induction.

3.4.1 Equivalent Model of Order 1

For n = 0 in the previous system (see corollary 3.3.1), it is straightforward that H0 =
(H0, h0) and the terms E0 satisfy

γ2(h0) = 0 in Γ× I, (3.36)

−∂2
3H0,α + γ2H0,α = 0 in Γ× I, (3.37)

curlcurlE±0 = iωµ±Js in Ω±, (3.38)

curlE±0 · n|0± = iωµc0h0|± 1
2

on Γ, (3.39)

iωµ±H0|± 1
2

= n× curlE±0 × n|0± on Γ, (3.40)

divE±0 = 0 in Ω±, (3.41)∫
Γ±
E±0 · ndS = 0 on Γ±. (3.42)

Obviously 3.36 implies that h0 = 0 by the fact that γ 6= 0 and in view of (3.38), (3.39),
(3.41), and (3.42) we can obtain the following limit system for E±0



curlcurlE−0 = iωµ−Js in Ω−,
curlE−0 · n = 0 on Γ,
curlcurlE+

0 = iωµ+Js in Ω+,

curlE+
0 · n = 0 on Γ,

divE±0 = 0 in Ω±,∫
Γ± E

±
0 · ndS = 0 on Γ±.

(3.43)

PhD Thesis - Mohammad ISSA - 59 -



3.4 Equivalent Models up to order 2

3.4.2 Equivalent Model of Order 2

In the same way we find that H1 = (H1, h1) and the terms E1 satisfy

γ2(h1) = −L1
3(H0) in Γ× I, (3.44)

−∂2
3H1,α + γ2H1,α = −L1

α(H0) in Γ× I, (3.45)

curlcurlE±1 = 0 in Ω±, (3.46)

curlE±1 · n|0± = iωµc0H1 · n|± 1
2
∓ 1

2∂h
(
curlE±0 · n|0±

)
on Γ, (3.47)

iωµ±H1|± 1
2

= n× curlE±1 × n|0± ±
1
2∂h

(
n× curlE±0 × n|0±

)
on Γ, (3.48)

divE±1 = 0 in Ω±, (3.49)∫
Γ±
E±1 · ndS = 0 on Γε±. (3.50)

According to (3.44), and proposition (A.4.1) we obtain

h1(yβ, Y3) = −γ−1
(
Dα

{ 1
iωµ

curlEα
0

}
Γ
(yβ)sinh γY3

cosh(γ2 ) +Dα

[ 1
iωµ

curlEα
0

]
Γ
(yβ) cosh γY3

2 sinh(γ2 )

)
,

where Eα
0 is the tangential components of E0, and Dα is the covariant derivative.

Now, inserting this explicit representation into the condition (3.47), we find that the term
E±1 satisfies the following problem:



curlcurlE−1 = 0 in Ω−,
curlE−1 · n = e−1 on Γ,
curlcurlE+

1 = 0 in Ω+,

curlE+
1 · n = e+

1 on Γ,
divE±1 = 0 in Ω±,∫

Γ± E
±
1 · ndS = 0 on Γ±,

(3.51)

where

e±1 :=− γ2iωµc0

(
±Dα

{ 1
iωµ

curlEα
0

}
Γ
(yβ) tanh(γ2 ) +Dα

[ 1
iωµ

curlEα
0

]
Γ
(yβ) 1

2 tanh(γ2 )

)
∓ 1

2∂h
(
curlE±0 · n|0±

)
.

(3.52)
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According to [73, Prop. 3.36] we can write

∂hcurlE±0 · n = −divΓ(curlE±0 )T (3.53)

divΓ(curlE)T = DαcurlEα (3.54)

Substituting (3.53) and (3.54) in (3.52), we get

e±1 :=− γ2iωµc0

(
±Dα

{ 1
iωµ

curlEα
0

}
Γ
(yβ) tanh(γ2 ) +Dα

[ 1
iωµ

curlEα
0

]
Γ
(yβ) 1

2 tanh(γ2 )

)
± 1

2divΓ(curlE±0 )T .

(3.55)

After simple calculations, the boundary conditions for E1 in (3.51) can be written as

[curlE1 · n]Γ =
(
{µ} − 2µ

c
0
γ

tanh(γ2 )
)
divΓ

{ 1
µ

(curlE0)T
}

Γ
+
(1

4[µ]
)
divΓ

[ 1
µ

(curlE0)T
]

Γ
,

(3.56)

and

{curlE1 · n}Γ =
({µ}

4 − µc0
2γ coth(γ2 )

)
divΓ

[ 1
µ

(curlE0)T
]

Γ
+
(1

4[µ]
)
divΓ

{ 1
µ

(curlE0)T
}

Γ
.

(3.57)

Adding the obtained equations (3.56-3.57) multiplied by ε to the conditions for E0 (4.33)
and by replacing E0 + εE1 on the left side by E1

ε and by replacing εE0 on the right hand
side by εEε

1, we obtain the second order approximate solution E1
ε that solves the system



curlcurlE1
ε = iωµJs in Ω±,

[curlE1
ε · n]Γ = ε

((
{µ} − 2µ

c
0
γ

tanh(γ2 )
)
divΓ

{
1
µ
(curlE0)T

}
Γ

+
(

1
4 [µ]

)
divΓ

[
1
µ
(curlE0)T

]
Γ

)
on Γ,

{curlE1
ε · n}Γ = ε

((
{µ}
4 −

µc
0

2γ coth(γ2 )
)
divΓ

[
1
µ
(curlE0)T

]
Γ

+
(

1
4 [µ]

)
divΓ

{
1
µ
(curlE0)T

}
Γ

)
on Γ.

(3.58)
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3.4 Equivalent Models up to order 2

Which is equivalent to


curlcurlE1
ε = iωµJs in Ω±,

E1
ε = O( 1

|x|) as |x| → ∞,( [curlE1
ε · n]Γ

{curlE1
ε · n}Γ

)
= ε

( D1 D3

D3 D2

) { 1
µ
(curlE1

ε )T}Γ

[ 1
µ
(curlE1

ε )T ]Γ

 on Γ,

where

Di = Cidiv Id for i = 1, .., 3,

and
C1 = {µ} − 2µ

c
0
γ

tanh(γ2 ), , C2 = {µ}4 − µc0
2γ coth(γ2 ),

C3 = 1
4[µ].

Note that Id is an identity operator.

3.4.2.1 Impedance Transmission Conditions in function of Dirichlet and Neu-
mann Traces of Electric Field

Using Faraday’s law (H1
ε )T = 1

iωµ
(curlE1

ε )T and using the Stokes formula µH1
ε · n =

1
iw
divΓ(E1

ε × n), we get
curlE1

ε · n = divΓ(E1
ε × n).

Using this relation, and applying "the inverse" of the operator divΓ, we obtain


curlcurlE1
ε = iωµJs in Ω±,

E1
ε = O( 1

|x|) as |x| → ∞,( [E1
ε × n]Γ

{E1
ε × n}Γ

)
= ε

( C1 C3

C3 C2

) { 1
µ
(curlE1

ε )T}Γ

[ 1
µ
(curlE1

ε )T ]Γ

 on Γ.

Applying n × I operator, we obtain the following transmission conditions in function of
the Neumann and Dirichlet trace of the electric field, we can say that it is in function of
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the transverse magnetic field and the transverse electric field. we get


curlcurlE1
ε = iωµJs in Ω±,

E1
ε = O( 1

|x|) as |x| → ∞,( [γDE1
ε ]Γ

{γDE1
ε}Γ

)
= −ε

( C1 C3

C3 C2

) { 1
µ
(γNE1

ε )}Γ

[ 1
µ
(γNE1

ε )]Γ

 on Γ.

3.4.2.2 Symmetric case with permeability µ0

For µ− = µ+ = µ0, E1 satisfies



curlcurlE1 = 0 in Ω±,
divE1 = 0 in Ω±,
E1 = O( 1

|x|) as |x| → ∞,( [γDE1]Γ
{γDE1}Γ

)
=

( K1 0
0 K2

) {(γNE0)}Γ

[(γNE0)]Γ

 on Γ,

(3.59)

and E1
ε satisfies



curlcurlE1
ε = iωµJs in Ω±,

E1
ε = O( 1

|x|) as |x| → ∞,( [γDE1
ε ]Γ

{γDE1
ε}Γ

)
= ε

( K1 0
0 K2

) {(γNE1
ε )}Γ

[(γNE1
ε )]Γ

 on Γ,
(3.60)

where
K1 = −1 + 2 1

γ
tanh(γ2 ) , K2 = −1

4 + 1
2γ coth(γ2 ).

3.5 Discretisation by the Boundary Element Method

As out of the layer we mainly consider a non-conductive linear homogeneous domain and
an open boundary problem, we can avoid the volume mesh required in the FEM by using
the BEM that uses only 2D elements on the surfaces. Moreover, the BEM is adapted
to general field problems with unbounded structures because no artificial boundaries are
needed. After introducing the functional spaces, the potentials, and the general represen-
tation formula in sections 3.5.1, 3.5.2 and 3.5.3 respectively. We formulate the integral
equations, the variational formulations, and the Galerkin discretisation using special ba-
sis functions of the terms of expansion E0 in section 3.5.4, E1 in section 3.5.5, and the
equivalent model of order 2 E1

ε in section 3.5.6. Note that we consider µ− = µ+ = µ0 all
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over this section.

3.5.1 Functional Spaces

The spaces that are related to the traces of vector fields in H(curl,Ω±) onto Γ must
be considered using Boundary Integral Equations. We will use the following spaces of
tangential vector fields on Γ, which are defined in [61],

• H
1
2
‖ (Γ) which represents the tangential surface vector fields that are in H 1

2 (Γi) for
each smooth component Γi of Γ, and provides the weak tangential continuity across
the edges of Γi,

• H
1
2
⊥(Γ) which provides the weak normal continuity.

Note that for a smooth boundary Γ, these spaces coincide with that of tangential surface
vector fields in H

1
2 (Γ). We denote by H

− 1
2

‖ (Γ), and H
− 1

2
⊥ (Γ) the dual spaces of H

1
2
‖ (Γ)

and H
1
2
⊥(Γ), respectively. These dual spaces can be considered as the images of tangential

traces of vector fields.

These surface differential operators are used to define the spaces H−
1
2

⊥ (curlΓ,Γ), and
H
− 1

2
‖ (divΓ,Γ) introduced in [61] by

H
− 1

2
⊥ (curlΓ,Γ) = {v ∈ H−

1
2

⊥ (Γ), curlΓv ∈ H−
1
2 (Γ)},

H
− 1

2
‖ (divΓ,Γ) = {w ∈ H−

1
2

‖ (Γ), divΓw ∈ H−
1
2 (Γ)}.

Another property in [62, sec. 4] is that H−
1
2

⊥ (curlΓ,Γ) and H−
1
2

‖ (divΓ,Γ) are dual of each
others, when the space of L2-integrable vector fields L2(Γ) is used as pivot space [75].
According to [60, sec. 3], H−

1
2

⊥ (curlΓ,Γ), H−
1
2

‖ (divΓ0,Γ) and H 1
2 (Γ) are the suitable spaces

for the Dirichlet data γD·, the Neumann data γN ·, and the normal data γn· respectively,
where H−

1
2

‖ (divΓ0,Γ) = Ker(divΓ, H
− 1

2
‖ (divΓ,Γ)).

3.5.2 Potentials

For any tangential vector field λ on Γ we define the vectorial single-layer potential ΨA by

ΨA(λ)(x) =
∫

Γ
λ(y)G(x, y)dΓy, x 6∈ Γ, (3.61)

- 64 - PhD Thesis - Mohammad ISSA



Chapter 3 : Boundary Element Method for 3D Conductive Thin Layers in
Eddy-Current Problems

the vectorial Newton-potential

N(λ)(x) =
∫
R3
λ(y)G(x, y)dy,

and the vectorial double-layer potential

ΨM(u) = curlΨA(Ru), Ru = n× u. (3.62)

Recall that G(x, y) is defined in (1.53), and denote by ΨV the scalar single layer potential
defined in (1.57).

3.5.3 Boundary Integral Equations

Let E ∈ L2(R3) with curlE ∈ L2(Ω±).

Theorem 3.5.1 If a vector field E : Ω± −→ C3 satisfies


curlcurlE = 0 in Ω±,
divE = 0 in Ω±,
E(x) = O( 1

|x|) as |x| → ∞,

then it satisfies the following transmission formula [60]

E = ΨM([γDE]Γ) + ΨA([γNE]Γ)− gradΨV ([γnE]Γ).

Applying the trace operators γD· to the representation formula leads to the boundary-
integral equations. For this reason we define the following operators

K = {γDΨM}Γ , V = {γDΨA}Γ,

Q = {γDΨV }Γ.

As the potentials ΨA, ΨM , and ΨV are not necessarily continuous across Γ, it is useful
to provide the jump relations (see Appendix A.5).
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3.5.4 Equivalent Model of Order 1

3.5.4.1 Integral Equations for E0

In order to write the integral equation in the case where we have an excitation by Js, we
introduce the Newton potential representing the source term

Es(x) = iωµ
∫
R3
Js(y)G(x, y)dy.

It is sufficient to consider the representation formula of E0 in Ω+, using Theorem 3.5.1
we state the representation formula as

E0 = −ΨM(γ+
DE0)−ΨA(γ+

NE0)− gradΨv(γ+
nE0) + Es.

Applying γ+
D to the representation formula, we find for E0

γ+
DE0 =

(1
2I−K

)
(γ+
DE0)− V (γ+

NE0)− gradQ(γnE0) + γ+
DEs,

this equation is set in H−
1
2

⊥ (curlΓ,Γ) which is the appropriate space for Dirichlet data.

3.5.4.2 Variational Formulation for E0

We obtain an equivalent variational formulation by testing against function from the dual
space of H−

1
2

⊥ (curlΓ,Γ). The dual space of H−
1
2

⊥ (curlΓ,Γ) is the space H−
1
2

‖ (divΓ,Γ).
Find γ+

NE0 ∈ H
− 1

2
‖ (divΓ0,Γ), such that

〈V (γ+
NE0), B1〉Γ = 〈γ+

DEs, B1〉Γ, (3.63)

for every B1 ∈ H
− 1

2
‖ (divΓ0,Γ).

Since

〈gradQ(Φ), v〉Γ = 0 for every v ∈ H−
1
2

|| (divΓ0,Γ),

[60, eq 7.4]

γ+
DE0 = 0.
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3.5.4.3 Galerkin Discretisation

Let λ = γ+
NE0 be the rotated tangential field of the electric field E0. Conforming boundary

element discretisation of (3.63) has to be selected in a finite dimensional subspace Hh of
H
− 1

2
‖ (divΓ0,Γ). In fact, the suitable functional space for E0 is H(curl,Ω) which is usually

discretised by the edge basis functions. So one may think that rotating these functions
by 90o is enough. But because of the divergence constraint, we have to search for a basis
function that satisfies {φh ∈ Eh × n, divΓφh = 0} where Eh is a subspace of H(curl,Ω).
Then the Neumann data λ can be approximated by the space of divergence-free lowest
order Raviart-Thomas elements RT(Γ) on Γ [63 ; 76]. If Γ is simply connected, then
RT(Γ)=curlΓN1(Γ), where N1(Γ) is the space of nodal functions of degree 1 [69](see
Figure 3.6).
λ is approximated as :

Figure 3.6: Basis function of Hh associated with a vertex

λh =
N∑
i=1

λiW i
curlN ,

where N is the number of nodes, the coefficients λi’s are the values of λh at node i, and
W i
curlN is the surface rotational operator of the nodal shape function of degree 1 corre-

sponding to the node i.
Applying the Galerkin method, the test functions B1 should be replaced by the basis
functions W j

curlN . We can now state the discretised formulation as:
Find λi ∈ Rn, such that

N∑
i=1

λi〈V (W i
curlN),W j

curlN〉Γ = 〈γ+
DEs,W

j
curlN〉Γ, (3.64)

for j = 1, .., N .
The assembly of the linear system of equations is the following:
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[
M1

] [
λ
]

=
[
S1

]
,

where
M1ji = −

∫
Γj

V (W i
curlN)W j

curlNdΓj,

and
S1j =

∫
Γj

(γ+
DEs) ·W

j
curlNdΓj.

3.5.5 Strong Formulation for E1

Recall that E1 satisfies (3.59).

3.5.5.1 Variational Formulation for E1

Using Theorem 3.5.1, we write the representation formula of E1 in Ω+ as

E1 = −ΨM(γ+
DE1)−ΨA(γ+

NE1)− gradΨv(γ+
nE1).

Applying the Dirichlet trace, we arrive at

γ+
DE1 =

(1
2I−K

)
(γ+
DE1)− V (γ+

NE1)− gradQ(γnE1). (3.65)

By the transmission conditions of the E1 model (3.59), we can write:

γ+
DE1 = K1

4 γ+
NE0 +K2γ

+
NE0. (3.66)

Replacing γ+
DE1 in (3.65) by the formula (3.66) and testing against a function B1 in

H
− 1

2
‖ (divΓ0,Γ), we obtain the variational formulation:

Find γ+
NE1 ∈ H

− 1
2

‖ (divΓ0,Γ), such that

〈V (γ+
NE1), B1〉Γ = 〈(−1

2I−K)(K1

4 γ+
NE0 +K2γ

+
NE0), B1〉Γ, (3.67)

for every B1 ∈ H
− 1

2
‖ (divΓ0,Γ).

3.5.5.2 Galerkin Discretisation

Let α = γ+
NE1, α is approximated as αh = ∑N

i=1 α
iW i

curlN where N is the number of nodes,
the coefficients αi’s are the values of αh at node i. Applying Galerkin Method, we can
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state the discretised formulation as:
Find αi ∈ Rn, such that

N∑
i=1

αi〈V (W i
curlN),W j

curlN〉Γ = 〈(−1
2I−K)(K1

4 γ+
NE0 +K2γ

+
NE0),W j

curlN〉Γ, (3.68)

for j = 1, ..., N .
The assembly of the linear system of equations is the following:

[
M2

] [
α
]

=
[
S2

]
,

where
M2ji = −

∫
Γj

V (W i
curlN)W j

curlNdΓj,

and
S2j =

∫
Γj

(−1
2I−K)

(
K1

4 γ+
NE0 +K2γ

+
NE0

)
W j
curlNdΓj.

3.5.6 Equivalent Model of Order 2

Recall that E1
ε satisfies (3.60).

3.5.6.1 Variational Formulation for E1
ε

For E1
ε ∈ L2(R3), the representation formulas can be given by

E1
ε = −ΨM(γ+

DE
1
ε )−ΨA(γ+

NE
1
ε )− gradΨV (γ+

nE
1
ε ) + Es in Ω+, (3.69)

E1
ε = ΨM(γ−DE1

ε ) + ΨA(γ−NE1
ε ) + gradΨV (γ−nE1

ε ) in Ω−. (3.70)

Applying the Dirichlet trace on (3.69) and (3.70), we get the following integral equations

V (γ+
NE

1
ε ) + (1

2I +K)(γ+
DE

1
ε ) = γ+

DEs − gradΓQ(γ+
nE

1
ε ), (3.71)

−V (γ−NE1
ε ) + (1

2I−K)(γ−DE1
ε ) = gradΓQ(γ+

nE
1
ε ). (3.72)

Using the transmission conditions, we obtain the following equalities

γ+
DE

1
ε = D0γ

+
NE

1
ε +D1γ

−
NE

1
ε , (3.73)

γ−DE
1
ε = −D1γ

+
NE

1
ε −D0γ

−
NE

1
ε , (3.74)
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where D0 = ε(K1
4 +K2), and D1 = ε(K1

4 −K2).

Substitute the transmission conditions (3.73) and (3.74) in the integral equations (3.71)
and (3.72), we find the variational formulation
Find γ+

NE
1
ε , γ

−
NE

1
ε ∈ H

− 1
2

‖ (divΓ0,Γ), such that

〈(V + 1
2D0I +D0K)(γ+

NE
1
ε ), B1〉Γ + 〈(1

2D1I +D1K)(γ−NE1
ε ), B1〉Γ = 〈γ+

DEs, B1〉Γ, (3.75)

〈(−1
2D1I +D1K)(γ+

NE
1
ε ), B2〉Γ + 〈(−V − 1

2D0I +D0K)(γ−NE1
ε ), B2〉Γ = 0, (3.76)

for every B1, B2 ∈ H
− 1

2
‖ (divΓ0,Γ).

3.5.6.2 Galerkin Discretisation

Let β = γ+
NE

1
ε and β ′ = γ−NE

1
ε . β and β ′ are approximated as βh = ∑N

i=1 β
iW i

curlN and
β
′
h = ∑N

i=1 β
′i
W i
curlN respectively, where N is the number of nodes, the coefficients βi’s and

β
′i ’s are the values of βh and β ′h respectively at node i. Applying the Galerkin method,

we can state the discretised formulation as:
Find βi, β ′i ∈ Rn, such that

∑N
i=1 β

i〈(V + 1
2D0I +D0K)(W i

curlN),W j
curlN〉Γ+ ∑N

i=1 β
′i〈(1

2D1I +D1K)(W i
curlN),W j

curlN〉Γ
= 〈γ+

DEs,W
j
curlN〉Γ,

(3.77)
N∑
i=1

βi〈(−1
2D1I+D1K)(W i

curlN),W j
curlN〉Γ+

N∑
i=1

β
′i〈(−V−1

2D0I+D0K)(W i
curlN),W j

curlN〉Γ = 0.

(3.78)
The assembly of the linear system of equations:

 M11 M12
M21 M22

  β

β′

 =
 S1
S2

 ,

where
M11ji =

∫
Γj

(V + 1
2D0I +D0K)(W i

curlN)W j
curlNdΓj,

M12ji =
∫

Γj

(1
2D1I +D1K)(W i

curlN)W j
curlNdΓj,
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M21ji =
∫

Γj

(−1
2D1I +D1K)(W i

curlN)W j
curlNdΓj,

M22ji =
∫

Γj

(−V − 1
2D0I +D0K)(W i

curlN)W j
curlNdΓj,

S1j =
∫

Γj

(γ+
DEs) ·W

j
curlNdΓj,

and
S2j =

∫
Γj

(γ+
NEs) ·W

j
curlNdΓj = 0.

3.5.7 Implementation

We implement our model in the platform "MIPSE" of the G2Elab. For actual implemen-
tation, we need integral representations for the boundary integral operators.

Proposition 3.5.1 [69] For λ ∈ L∞(Γ)

• V (λ) = {γD} ◦ΨA(λ) =
∫
Γ λ(y)G(x, y)dS(y),

• K̃(λ) = {γN} ◦ΨA(λ) =
∫

Γ(∂G(x,y)
∂n(x) λ(y)− gradxG(x, y)(λ(y) · n(x)))dS(y).

Theorem 3.5.2 [60] If Re(k2) ≥ 0, the boundary operators K̃ and K satisfy

< K̃µ, v >Γ= − < µ,Kv >Γ

for every µ ∈ H−
1
2

‖ (divΓ0,Γ) and v ∈ H−
1
2

⊥ (curlΓ,Γ).

3.6 Numerical Results

In this section, we study the accuracy of the integral equations by considering the problem
with PEC (Perfect Electric Conductor) conditions, as well as the validity of the asymptotic
expansion. Then we provide many examples to validate our model, examples 1, 2, and 3
satisfy the theoretical condition where closed curved thin layer is considered. Particularly,
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example 2 is done to show the robustness of the equivalent models versus the parameter
σ̃. However, example 4 is provided to show the effectiveness of our model even in open
domains that do not satisfy the theoretical condition.

3.6.1 Validation of Integral Equations

To verify the efficiency of the integral equations, we consider the eddy-current problem in
a sphere of radius r1 = 1m with PEC boundary conditions. As it is the conditions satisfied
by the model of order 1. We compare the numerical solution of the magnetic field to an
analytical solution calculated on the arc of radius r2 1.3m (see Figure 3.7). The curves

Figure 3.7: A cross section of the domain
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Figure 3.8: The magnetic field H0 on the arc of radius 1.3m compared to the analytical
solution

coincide (see figure 3.8) with L2-relative error ||Hanalytic−H0||2/||Hanalytic||2 = 3.9× 10−4

(where ||U −V ||2 =
√∑

i
(Ui − Vi)2) which shows a great success of the integral equations.

- 72 - PhD Thesis - Mohammad ISSA



Chapter 3 : Boundary Element Method for 3D Conductive Thin Layers in
Eddy-Current Problems

Details about the calculation of the analytical solution and the postprocessing to calculate
the external magnetic field are given in the Appendix A.

3.6.2 Verification of the consistency of H1
ε with H0 and H0 + εH1

In order to validate the robustness of the asymptotic expansion and thus the equivalent
models, we consider a spherical thin layer with a frequency f = 10kHz, and a conductivity
σ̃ = 103S/m. In Figure 3.9 we show the relative L2-error of the solution H1

ε = H0 +εH1 +

ǫ
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L
2
 e

rr
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||H
ǫ

1-(H0+ǫ H1)||2

||H
ǫ

1-H0||2

Figure 3.9: L2 error of the solution H1
ε with respect to H0 and H0 + εH1

O(ε2) versus the thickness ε in comparison with the first term of expansion H0 and
H0 + εH1. Comparing H1

ε and H0 we can see that the error behaves like ε. Moreover,
the error between H1

ε and H0 + εH1 behaves like ε2. These error orders validate the
consistency of H1

ε with H0 and H0 + εH1.

3.6.3 Example 1

We consider a sphere with a radius 0.99m, surrounded by a conductive sheet of thickness
ε = 2cm with σ̃ = 1000S/m and f = 1kHz. The skin depth is δ = 0.001cm and the source
is excited by a uniform magnetic field in ~z direction Hs

0 = 1~z (A/m).

In figure 3.10, we visualize the real and imaginary parts of γ+E1
ε and γ−E1

ε . We calculate
the external magnetic field on an arc of circle at radius 1.3m using a mesh of 384 elements,
and we compare the results to the analytical solution. The results are represented in Figure
3.11 that shows a good agreement with L2-relative error

||Hanalytic −H0||2/||Hanalytic||2 = 0.0047,

||Hanalytic −H1
ε ||2/||Hanalytic||2 = 5× 10−4.
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Figure 3.10: The real and imaginary part γ+E1
ε and γ−E1

ε for a spherical thin layer of radius
0.99m and thickness 0.02m.
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Figure 3.11: The magnetic fields H0 and H1
ε on the arc of radius 1.3m compared to the

analytical solution.

We calculate the internal magnetic field on an arc of circle at radius 0.7m in order to
study the influence of the thin layer on the interior domain i.e. to validate the effect of
the thin conductive layer on the interior domain. We compare the results to the analytical
solution. These results are represented in Figure 3.12 which affirm the shielding function
required by the thin layer with error

||Hanalytic −H1
ε ||2/||Hanalytic||2 = 6× 10−2.

3.6.4 Example 2

The aim of this example is to show the robustness of the equivalent models versus the
parameter σ̃. Fixing the frequency f = 10kHz and the radius of the sphere r = 0.98m
surrounded by a conductive sheet of thickness ε = 4cm, the skin depth is a function of σ̃,
and the source is a uniform magnetic field Hs

0 = 1~z(A/m).
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Figure 3.12: The magnetic fields Hanalytic and H1
ε in the interior domain of the sphere.

Similarly the error is calculated on an arc of circle at a radius 1.3m. In Figure 3.13
we show the relative L2 errors of the solutions H0 and H1

ε of the equivalent models of
order 1 and 2 versus the parameter σ̃. The equivalent model of order 1 shows a good

Figure 3.13: Relative L2 errors of the solutions H0 and H1
ε of the equivalent models of

order 1 and 2 versus the parameter σ̃ for ε = 4cm

agreement, we observe a small error in a wide range of skin depths, the interval where the
skin depths is small compared to ε or of the same order, this result corresponds to the
theoretical assumption. The same interpretation is observed after the correction by H1,
smaller errors are obtained in the region of small skin depth. This result can be explained
by the direct dependence of H1 on H0, and the theoretical assumptions. The equivalent
model of order 2 gives few errors for all ranges of the skin depth, from very small to very
large.
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3.6.5 Example 3

Here, we consider a spherical conductive thin sheet of thickness 1cm, radius 1m, conduc-
tivity σ̃ = 55S/m, and permeability µ0. The source current is excited by a cylindrical coil
of radius 1.5m, height 2m, thickness 1cm, and current 1A (see Figure 3.14).

Figure 3.14: A spherical thin sheet with a cylindrical Coil

This problem has been solved using the two equivalent models of order 1 and 2, in Fig-
ures 3.15 and 3.16 we visualize the real and the imaginary part of the solution γ+

NE
1
ε of

the integral equations, respectively. In the Figures 3.17, 3.19, 3.18 and 3.20, we trace

Figure 3.15: The real part of γ+
NE

1
ε Figure 3.16: The imaginary part of γ+

NE
1
ε

the x and z components of magnetic fields calculated on the segment that connect the
two points (1.1, 0,−1) and (1.1, 0,+1). In Figures 3.17 and 3.19, the model of order 1 is
compared to the simulation performed by Comsol in 2D axisymmetry HComsol, where the
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results obtained by the model of order 2 are shown in Figures 3.18 and 3.20.
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Figure 3.17: The x component of H0,
HComsol, and the source field Hs.
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Figure 3.18: The x component of H1
ε ,

HComsol, and the source field Hs.
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Figure 3.19: The z component of H0,
HComsol, and the source field Hs.
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Figure 3.20: The z component of H1
ε ,

HComsol, and the source field Hs.

Comparing the L2-relative errors calculated on the same segment in Table 3.1, we
validate the efficiency of the two models, in addition to the better accuracy obtained
using the model of second order.

Table 3.1: L2-relative errors of H0 and H1
ε

||HComsol−H0||2
||HComsol||2

||HComsol−H1
ε ||2

||HComsol||2

0.0021 0.0008
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3.6.6 Example 4

In this example we provide an open boundary problem which does not satisfy the theoret-
ical assumption, i.e. the surface of the thin layer is not simply connected. We consider a
cylinder of r = 1m, h = 3m and thickness 2cm. The source is excited by a spire of radius
R = 1.1m and a current of 10A. We compute the norm of the magnetic field on a segment
that connect the two points (1.3, 0,−2) and (1.3, 0,+2) (see Fig.3.22) and we compare
the results to the 2D axisymmetric formulation in Comsol that is discretised using the
Finite Element Method (see Figure 3.21). Note that, discretising using the FEM requires
a very fine mesh near the surface of the thin layer and the maximum size of the local
element must not exceed δ/2 in order to accurately describe well the flow of current near
the surface.

Figure 3.21: Meshing the domain in Comsol

Figure 3.23 shows the magnetic fields H0 and H1
ε and the solution obtained by Comsol

Hcom on the segment. The corresponding L2-relative errors are reported in Table 3.2 and
we observe that the model of order 2 still works well, that improves the effectiveness of
the second order model even in open domains. In Table 3.3 we compare the computa-
tional time and the number of elements of the mesh used by each method, we deduce that
the boundary element method may reduce the computational time as it needs a reduced
number of elements for the discretisation, note that the error is less than 5% with a mesh
of 816 elements. The obtained results will be more important if we compare with the
same problem using a 3D discretisation.

The errors obtained are strongly lower than the amplitude of the components of the
reaction magnetic fields, see Figure 3.24 for the x-component and see Figure 3.25 for the
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Figure 3.22: A cylindrical thin layer with an exterior spire

z-component. This seems to indicate that, in this configuration, no particular care has to
be taken, even if the surface is not simply connected.
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Figure 3.23: The magnetic fields H0 and H1
ε

on the segment compared to Comsol (Hcom)

||Href−H0||2
||Href ||2

||Href−H1
ε ||2

||Href ||2

0.045 0.008

Table 3.2: L∞-errors of H0 and H1
ε

Table 3.3: Computational time of our models comparing with Comsol

Nb of elements Time

Comsol 1771542 132s
Model Order 1 544 25s
Model Order 2 544 56s

3.7 Conclusion

A second order equivalent model for eddy current problems with a thin layer in 3D is
proposed and discretised using the Boundary Element Method. The model is validated

- 80 - PhD Thesis - Mohammad ISSA



Chapter 3 : Boundary Element Method for 3D Conductive Thin Layers in
Eddy-Current Problems

Z
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

M
ag

ne
tic

 F
ie

ld

-4

-3

-2

-1

0

1

2

3

4

H1
ǫ

HSource

H1
ǫReduced

Figure 3.24: The x−component of the real
part of the total magnetic fields H1

ε , the
reduced magnetic fields H1
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Figure 3.25: The z−component of the real
part of the total magnetic fields H1

ε , the
reduced magnetic fields H1

εReduced and the
source field HSource.

and shows a good agreement with reference results. The discretisation method shows a
great success in the accuracy of results and in reducing the computational time.
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Many electrical equipments such as motors or transformers use lamination stacks to
form the core of coils. These laminated cores are commonly used in order to reduce the
eddy current losses, as it increase resistivity in the direction the current would flow. The
simulation of these lamination stacks requires many elements and leads to a large system
of equations, mostly when the skin depth is smaller or equal to the thickness of one sheet.
A homogenisation method is proposed here for an efficient numerical modeling of the
laminated sheets in eddy-current problems.

In the last few decades, these laminated cores have been modeled by one solid medium
to save computational costs [92]. In this case, the laminated cores have been modeled
as a homogeneous medium, indeed, but not always neglecting the eddy currents. This is
only the case if this homogeneous block is considered as non-conducting without equiva-
lent complex permeability and conductivity. In order to consider the eddy current losses
inside the laminated cores, this lamination is modeled by a homogeneous medium with
conductivity and permeability calculated by the analytical solution of the magnetic field
inside the sheet [98–100]. The resulting complex permeability are then embedded in either
an integral formulation [99] or a differential formulation [98 ; 100].

Many papers have provided approximate formulas for eddy-current losses by means of
a posteriori computations. These formulas are given for either low frequencies [94 ; 97]
where the thickness of a sheet is greater than the skin depth or high frequencies [95 ; 96].
Starting from these formulas, an equivalent electric conductivity has been provided in [93]
permitting to replace the laminated cores with a homogeneous isotropic or anisotropic
medium.

A two-scale finite element method based on the magnetic vector potential A has been
developed to describe eddy currents in laminar stacks with linear materials [87]- [89],
and non-linear materials [86]. In [90], some multiscale finite-element formulations for the
eddy current problem in laminated iron in 2D are introduced. They provide multiscale
formulations based on the magnetic vector potential, the single component current vector
potential and on a mixed formulation of the magnetic vector potential and the current
density. They considered the case where the main magnetic flux is parallel to the lami-
nates and assumed to be perpendicular to the plane of projection to study the performance
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of multiscale finite element formulations.

In [106], a time-domain homogenisation technique for laminated iron cores in 3D finite
element models in terms of the magnetic vector potential was proposed. This approach
based on an approximate 1D solution in the time domain is applicable to linear and non-
linear materials. The time-domain homogenisation is also adopted in [103] where the net
current feature is added. The homogenisation approach presented is based on a finite ele-
ment model in terms of the magnetic vector potential and the expansion of the induction
throughout the lamination thickness using a set of basis functions.

Another finite element computational homogenisation for modeling non-linear multi-
scale materials in 2D magnetostatics and magnetodynamics problems are presented in
[105] and [104] respectively. In these papers, the modeling of the laminated cores is based
on heterogeneous multiscale method (HMM) which is based on the transformation of in-
formation between macroscale problem, microscale problem, and mesoscale problems.

In the presence of conductive laminar sheets, the fields oscillate strongly. The classical
homogenisation [88] is an efficient method to simplify the numerical simulation of such
periodic heterogeneous materials, as it leads to an equivalent equation that is generally
simpler and describes the behavior of the solution. In fact, the classical homogenisation
is an asymptotic homogenisation proceeds by introducing the fast variable and posing a
formal expansion. Thus, the formal two-scale expansion considered in chapter 3 to study
the behavior of the field in a conductive thin layer will be also adopted to model the
lamination stacks.

In this chapter, we present an effective model of a lamination stack using a classical
homogenisation approach (section 4.3.2) and a correction for the interface between the
air and the lamination stack (section 4.3.4). We consider the case where the skin depth
is kept less than or equal to the thickness of one metal sheet.
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4.1 Mathematical Formulation

Consider a lamination stack composed of insulating and metal sheets of permeability µ0

and µ1, and conductivity σ0 = 0 and σ1 respectively. The thickness of one metal sheet
and an insulating sheet together is ε, which is small compared with the whole domain
Ω (see Fig. 4.1). We consider also that the thickness of an insulating sheet is negligible
compared with the metal sheet.

For simplicity, we consider Ω = (−1, 1)× [0, 1), the air is the interval ΩA = (−1, 0)× [0, 1),
and the laminar stack domain is ΩL = (0, 1)× [0, 1). Let Γ be the interface between the
air region and the lamination stacks.

Figure 4.1: Representation of the whole domain Ω which consists of an air domain ΩA

and a lamination stack ΩL. A global magnetic flux and a current source will be enforced.

In this problem, we consider electrically isolated sheets. They are isolated from any exte-
rior circuit, and each sheet is isolated from the others. We thus express the conservation
of the current, and the global net current is zero.

The formulation of the magnetic potential in the air region is:

∆Aε = µ0Js, in ΩA. (4.1)

In each sheet i, the magnetic potential can be written as the sum Aε + Ai, where Ai =
Mε(Aε) is a constant related to the sheet i [91]. Using this fact, the formulation of the
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magnetic potential in ΩL can be written as

∆Aε − iωσ1µ1(Aε −Mε(Aε)) = 0, in ΩL, (4.2)

whereMε is an average operator in each sheet defined by

Mε(f) : (x1, x2)→ 1
ε

∫ 1

0

∫ εbx1/εc+ε

εbx1/εc
f(s, y)dsdx2, ∀f ∈ C(Ω). (4.3)

Note that b·c is the floor function.
This constant (4.3) in each sheet is chosen to ensure the continuity of Aε between all the
interfaces of the sheets, i.e. on both sides of the sheet. As well as the continuity of its
Neumann trace related to the tangential magnetic field between two layers.

A global magnetic flux is enforced on the whole domain in a manner that the total flux
in the domain is zero, that is to say what enters from the bottom get out of the top. It
will be expressed by the following boundary conditions:

Aε|x1=−1 = g(x2), Aε|x1=1 = h(x2), (4.4)

∂x2Aε|x2=0 = ∂x2Aε|x2=1 = 0. (4.5)

In addition, we have also to take into account the continuity condition at the interface
between the lamination stack and the air Γ

1
µ0

∂Aε
∂n
|Γ− = 1

µ1

∂Aε
∂n
|Γ+ , (4.6)

Aε|Γ− = Aε|Γ+ . (4.7)

We are interested in the case where the skin depth is smaller or equal to the thickness ε.
Because we will study the limit case (ε → 0), we should assume an explicit dependence
of the layer conductivity σ1 on ε

σ1µ1 = ε−2ᾱ, (4.8)

where ᾱ is a constant, that enables δ/ε to remain constant when ε goes to zero (the same
assumption as in Chapter 3).
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4.2 Procedure

Our methodology is based on two points:

• Applying the classical 2-scale homogenisation method in the domain of lamination
stacks ΩL.

• Studying the influence of the interface Γ on the vector potential to treat the problem
in the whole domain Ω.

The derivation of the asymptotic terms in ΩL is based on:

1. The expansion ofMε for any function a of Ω× R/Z.

2. A standard formal 2-scale expansion for Aε.

3. Identifying the terms of same powers of ε in the governing PDE.

In order to validate the possibility of adopting this methodology to model the lamination
stacks, we will start by a 1D problem then we proceed in 2D.

4.3 The 1D model problem

The magnetic vector potential satisfies (in a 1D assumption we simply denote x = x1):

∂2
xAε = 0, in ΩA, (4.9)

∂2
xAε − iωσ1µ1(Aε −Mε(Aε)) = 0, in ΩL, (4.10)

whereMε is an average operator in each sheet defined by

Mε(f) : x→ 1
ε

∫ εbx/εc+ε

εbx/εc
f(s)ds, ∀f ∈ C(Ω), x ∈ (0, 1). (4.11)

A global flux is enforced on the whole domain and expressed by the boundary conditions

Aε|x=−1 = 0, Aε|x=1 = 1. (4.12)

Moreover, we have the continuity condition at the interface

1
µ0
∂xAε|x=0− = 1

µ1
∂xAε|x=0+ . (4.13)
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4.3.1 Expansion of Mε

By changing of variable in (4.11), we observe that

Mε(f)(x) =
∫ 1

0
f(εbx/εc+ εy)dy, ∀f ∈ C(Ω). (4.14)

Therefore the function f has the following expansion with respect to ε

f(εbx/εc+ εy) =f(x) + ε
(1

2 −
x− εbx/εc

ε

)
∂xf(x) + ε2

(1
3

− x− εbx/εc
ε

(
1− x− εbx/εc

ε

))
∂2
xf(x) + ...

(4.15)

Now we can observe that for any function a defined on Ω× R/Z one has

Mε(a)(x) =
∫ 1

0
a(x, s)ds+ ε

∫ 1

0

(1
2 −

x− εbx/εc
ε

)
∂xa(x, s)ds+ ... (4.16)

Therefore one can define the sequence of operators (Mi)i∈N defined on the space of func-
tions of Ω× R/Z such that

M0(a)(x, y) =
∫ 1

0
a(x, s)ds, (4.17)

M1(a)(x, y) = (1
2 − y)

∫ 1

0
∂xa(x, s)ds, (4.18)

M2(a)(x, y) = (1
3 − y(1− y))

∫ 1

0
∂2
xa(x, s)ds. (4.19)

The operators (Mi)i∈N satisfy for any function of Ω× R/Z

Mε(a(·, ·/ε))(x) = M0(a)(x, x/ε) + εM1(a)(x, x/ε) + ε2M2(a)(x, x/ε) + .., (4.20)

for all x ∈ Ω.

4.3.2 Classical homogenisation of the laminar stacks in ΩL

The problem (4.10)-(4.12) in ΩL can be reformulated by the following

∂2
xAε −

iωᾱ

ε2 (Aε −Mε(Aε)) = 0, (4.21)

Aε|x=0 = 0, Aε|x=1 = 1. (4.22)
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As standard in classical asymptotic homogenisation assumes that Aε has the following
2-scale expansion:

Aε(x) = A0(x, x/ε) + εA1(x, x/ε) + ε2A2(x, x/ε) + ..., (4.23)

where Ai(x, y) are assumed to be 1-periodic with respect to the y variable.
Note that each term of the expansion depends on both the slow variable x = x1 and the
fast variable y = x/ε.

Replacing (4.23) in (4.21), we obtain (see the Appendix B.1.1)

(4.21) :∂2
xA0 + ε−2∂2

yA0 + 2ε−1∂2
yxA0 + ε∂2

xA1 + ε−1∂2
yA1 + 2∂2

yxA1 + ε2∂2
xA2

+ ∂2
yA2 + 2ε∂2

yxA2 − iω
ᾱ

ε2

(
A0 + εA1 + ε2A2 −M0(A0)− εM1(A0)− ε2M2(A0)

− εM0(A1)− ε2M1(A1)− ε3M2(A1)− ε2M0(A2)− ε3M1(A2)− ε4M2(A2)
)

= 0.

(4.24)

Identifying the terms of same order in powers of ε, the expansion (4.23) leads to the
following

• Order ε−2: we have

∂2
yA0 − iωᾱ(A0 −M0(A0)) = 0, ∀(x, y) ∈ Ω× R/Z (4.25)

Using the assumption that A0(x, ·) is 1-periodic, the solution A0 is a constant func-
tion with respect to y but it may depend on x (see the appendix B.1.2)

A0(x, y) = A0(x). (4.26)

• Order ε−1: we have

∂2
yA1 + ∂y∂xA0 − iωᾱ(A1 −M1(A0)−M0(A1)) = 0, (4.27)

using (4.26), we get

∂2
yA1 − iωᾱ(A1 −M0(A1)) = −iωᾱ(M1(A0)), (4.28)
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then,
∂2
yA1 − iωᾱ(A1 −M0(A1)) = iωᾱ(y − 1

2)∂xA0. (4.29)

We call W a periodic function (unique up to an additive constant) solution of

∂2
yW − iωᾱ(W −M0(W )) = iωᾱ(y − 1

2), (4.30)

and deduce by linearity that

A1(x, y) = W (y)∂xA0(x). (4.31)

The solution of (4.30) in a unit cell is

W (y) =
(1

2 − y
)

+ 1
2
sinh(κ(y − 1/2))

sinh(κ/2) , (4.32)

where κ2 = iωᾱ.

• Order ε0: we have

∂2
yA2 − iωᾱ(A2 −M0(A2)) = −∂2

xA0 − 2∂x∂yA1 + iωᾱ(M2(A0) + M1(A1)) (4.33)

Integrating (4.33) on y ∈ (0, 1), we get (see the appendix B.1.3)

(
− 1 + iωᾱ

6

)
∂2
xA0 = 0. (4.34)

The solution of (4.34) considering the boundary condition (4.22) is

A0(x) = x. (4.35)

For clarity, we denote by Akε = A0 + εA1 + ...+ εkAk.
Using (4.23), (4.31), and (4.35), the magnetic vector potential in the lamination stack can
be written as

A1
ε(x) = A0(x) + εW (y)∂xA0(x), (4.36)

A1
ε(x) = x+ εW (y). (4.37)

4.3.3 Numerical validation in ΩL

We consider ε = 0.1 (10 toles), ᾱ = 1. We show in Figs. 4.2 and 4.3 the magnetic vector
potential expansion A1

ε(x) = A0(x)+εW (y)∂xA0(x), the first term of the expansion A0(x),
and the magnetic potential AAnalytic calculated analytically (see the appendix B.1.4), for
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different frequencies. The results show a good agreement as the curves coincides, and
their relative error is given in Table 4.1:.

ω ||Aanalytic − A1
ε||2

50 0.0398

103 0.0183

Table 4.1: Relative L2-errors of the solution A1
ε for several ω.
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Figure 4.2: The magnetic vector potential in ΩL

for ω = 50.
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Figure 4.3: The magnetic vector potential in ΩL

for ω = 103.

The relative L2−errors
||Aanalytic − A1

ε||2
||Aanalytic||2

are shown in Fig. (4.4) versus the thickness ε, for ω = 800. The result shows a convergence
of O(ε) as expected by the 2-scale expansion.

4.3.4 Accounting of the interface

Recall that the magnetic potential in Ω satisfies (4.9-4.13).
Considering the coupling between the air and the lamination stack, we are seeking for an
expansion such as:

Aε(x) = A−0 (x) + εK−(x/ε)∂xA−0 (x) + ..., in ΩA (4.38)

Aε(x) = A+
0 (x) + εK+(x/ε)∂xA+

0 (x) + .... in ΩL (4.39)
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Figure 4.4: Relative L2−errors of the solution A1
ε versus the thickness ε.

Knowing that in the presence of infinite thin sheets, the effect of the interface with air
will decrease as we go far from Γ. Consequently, K must behave like x 7→ W (x

ε
− bx

ε
c) at

∞, as it can be deduced from (4.36).

Note that we do not know the problem satisfied by A−0 and A+
0 . We just know that

they are harmonic, should satisfy the boundary conditions at x = −1, x = 1, and the
continuity and Neumann conditions at the interface.

Using the fact that W (0) = 0, we get that

A1
ε(x) =


A−0 (x), if x ∈ ΩA

A+
0 (x) + εW (x/ε)∂xA+

0 (x), if x ∈ ΩL

(4.40)

is continuous and satisfies

∂2
xA

1
ε −

iωᾱ

ε2 (A1
ε −Mε(A1

ε)) = o(ε). (4.41)

Thus, we simply have to adjust the Neumann condition at x = 0 to adopt the approxi-
mation (4.40)

1
µ0
∂xA

−
0 (0) = (1 + ∂yW (0))

µ1
∂xA

+
0 (0). (4.42)
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This condition combined to the conditions defines A−0 and A+
0 (4.9), (4.12), (4.34) and

the continuity condition at the interface put up the following system

∂2
xA
±
0 = 0, in Ω, (4.43)

A−0 (−1) = 0, A+
0 (1) = 1, (4.44)

1
µ0
∂xA

−
0 (0) = (1 + ∂yW (0))

µ1
∂xA

+
0 (0), (4.45)

A−0 (0) = A+
0 (0), (4.46)

which gives

A0(x) =


µ0(1+∂yW (0))

µ1+µ0(1+∂yW (0))(x+ 1), if x ∈ ΩA,
1

µ1+µ0(1+∂yW (0))(µ1x+ µ0(1 + ∂yW (0))), if x ∈ ΩL,
(4.47)

and

A1
ε(x) =


A0(x), if x ∈ ΩA,

A0(x) + ε µ1
µ1+µ0(1+∂yW (0))W (x/ε), if x ∈ ΩL.

(4.48)

4.3.5 Numerical validation in Ω

Considering ε = 0.1 (10 toles), µr1 = 50H/m, and σ1 = 105S/m. The magnetic vector
potential expansion A0(x) + εW (y)∂xA0(x) shows a good agreement. A comparison with
the analytical solution AAnalytical is shown in Figs. 4.5 and 4.6.
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Figure 4.5: The magnetic vector potential in Ω
for ω = 50
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The relative L2−errors versus the thickness ε are shown in Fig. 4.7 , for ω = 10, ᾱ =
µr = 1. The result shows a convergence of O(ε) as expected by the 2-scale expansion.
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Figure 4.7: Relative L2−errors of the solution A1
ε versus the thickness ε.

Finally, the robustness of the result with respect to ᾱ is studied. In Figure 4.8, we show
the relative L2−error in dependence of the parameter ᾱ for ω = 10, and µr = 1. Fixing
ε = 0.1 or ε = 0.2 as well as the other parameters, the skin depth depends on ᾱ, varying ᾱ
corresponds to a variation of the skin depth and so these experiments study the accuracy
for a large range of skin depths, from very small to very large. In Figure 4.8, we observe
an error reduction for any small or large value of ᾱ, in other words, for large and small
skin depths. The error reduction is higher for large values of ᾱ, or equivalently for δ

ε
� 1

(factor 2 for ᾱ→∞), than for small values of ᾱ where δ
ε
� 1 (factor 1.6 for ᾱ→ 0).

4.4 The 2D model problem

The formulation based on the magnetic vector potential in 2D is provided in section 4.1.

Remark: To avoid singularities, it is important, in a first step, to consider g such that
g′(0) = g′(1) = 0.
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Figure 4.8: Relative L2−errors of the solution A1
ε versus ᾱ.

4.4.1 Expansion of Mε

Using the same development ofMε used in 1D in the direction x1 (see section 4.3.1), and
by integrating on x2 ∈ (0, 1) we get:

Mε(a(x, y)) = M0(a)(x, y) + εM1(a)(x, y) + ε2M2(a)(x, y) + .. (4.49)

for all x = (x1, x2) ∈ Ω and y ∈ R/Z, where

M0(a)(x, y) =
∫ 1

0

∫ 1

0
a(x, s)dsdx2, (4.50)

M1(a)(x, y) = (1
2 − y)

∫ 1

0

∫ 1

0
∂x1a(x, s)dsdx2, (4.51)

M2(a)(x, y) = (1
3 − y(1− y))

∫ 1

0

∫ 1

0
∂2
x1a(x, s)dsdx2, (4.52)

4.4.2 Classical homogenisation of the laminar stacks in ΩL

Considering the domain of the laminated stacks ΩL, the problem in 2D can be written as
the following:

∆Aε −
iωᾱ

ε2 (Aε −Mε(Aε)) = 0, in ΩL, (4.53)

Aε(0, x2) = g(x2), Aε(1, x2) = 0, for x2 ∈ (0, 1), (4.54)

∂x2Aε(x1, 0) = 0, ∂x2Aε(x1, 1) = 0, for x1 ∈ (0, 1). (4.55)
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Aε admits the following two-scale expansion:

Aε(x) = A0(x, x1/ε) + εA1(x, x1/ε) + ε2A2(x, x1/ε) + ..., (4.56)

where Ai(x, y) are assumed to be 1-periodic with respect to the y variable.
Note that each term of the expansion depends on both the slow variable x = (x1, x2) and
the fast variable y = x1/ε.

Replacing (4.56) in (4.53) and equating all terms of the same orders in powers of ε, the
expansion (4.56) leads to the following:

• Order ε−2: we have

∂2
yA0 − iωᾱ(A0 −M0(A0)) = 0, ∀(x, y) ∈ Ω× R/Z (4.57)

The solution A0 is a constant function with respect to y but it may depend on x

A0(x, y) = A0(x).

• Order ε−1: we have

∂2
yA1 + ∂y∂x1A0 − iωᾱ(A1 −M1(A0)−M0(A1)) = 0, (4.58)

∂2
yA1 − iωᾱ(A1 −M0(A1)) = −iωᾱ(M1(A0)), (4.59)

then,
∂2
yA1 − iωᾱ(A1 −M0(A1)) = iωᾱ(y − 1

2)
∫ 1

0
∂x1A0dx2. (4.60)

We call W (y) a periodic vector (unique up to an additive constant) solution to

∂2
yW − iωᾱ(W −M0(W )) = iωᾱ(y − 1

2), (4.61)

and deduce by linearity that

A1(x, y) = W (y)
∫ 1

0
∂x1A0(x)dx2. (4.62)

• Order ε0: we have
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∂2
yA2− iωᾱ(A2−M0(A2)) = −∂2

x1A0− ∂2
x2A0− 2∂x1∂yA1 + iωᾱ(M2(A0) +M1(A1))

(4.63)
Integrating (4.63) on y ∈ (0, 1), we get:

∂2
x1A0 +∂2

x2A0− iωᾱ
( ∫ 1

0
A2(x, y)dy−

∫ 1

0

∫ 1

0
A2(x, y)dx2dy

)
= iωᾱ

6

∫ 1

0
∂2
x1A0(x)dx2

(4.64)

Then, we try to eliminate the coefficients of the term A2. For this reason, we integrate
the equation (4.64) on x2 ∈ (0, 1). we get:

(
1− iωᾱ

6

) ∫ 1

0
∂2
x1A0dx2 + ∂x2A0|x2=1

x2=0 = 0. (4.65)

Considering the equation (4.65), the term A0 cannot be obviously determined. Thus,
we propose to decompose the main problem and calculate the terms ∂x2Aε and

∫ 1
0 Aεdx2

separately.

4.4.2.1 Approximation of the derivative of Aε along x2 by the asymptotic
expansion in power series of δ

Denote by b = ∂x2Aε the derivative of Aε along x2. The problem satisfied by b can be
written as follows:

∆b− iωᾱ

ε2 b = 0, in (0, 1)× (0, 1), (4.66)

b(0, x2) = ∂x2g(x2) = g′, b(1, x2) = ∂x2h(x2) = h′, for x2 ∈ (0, 1), (4.67)

b(x1, 0) = 0, b(x1, 1) = 0, for x1 ∈ (0, 1). (4.68)

According to the conditions at the boundaries and knowing that the total flux in the
domain is zero, we can simply consider infinite sheets in x2 direction. Moreover, as the
width of the domain is much larger than δ, we can take into account only the left interface
(see Figure 4.9).

Then, we can rewrite the problem as follows

−∆bδ + i

δ2 bδ = 0, in Γ× (0, 1), (4.69)

bδ(0, ·) = g′, on Γ. (4.70)
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Figure 4.9

It is possible to derive a multiscale expansion in power series of the small complex pa-
rameter δ

bδ(x) = b0(x, δ) + δb1(x, δ) + δ2b2(x, δ) + ...,∀x ∈ R2 (4.71)

with bj(x, δ) = χ(ν)wj(t, ν/δ), where t and ν are the tangential and normal variation in
a neighborhood χ(ν) of Γ.

Following the work in [102], we obtain (see Appendix B.1.5)

b(x1, x2) = g′(x2)e−x1κ/ε +O(ε). (4.72)
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4.4.2.2 Approximation of the mean value of Aε along x2

Denote now the mean value of Aε along x2 by Āε : x1 7→
∫ 1

0 A
ε(x1, x2)dx2. The function

Āε satisfies the following 1D problem

∂2
x1Āε −

κ2

ε2

(
Āε −

1
ε

∫ ε(bx1/εc+1)

εbx1/εc
Āε(s, t) dsdt

)
= 0, in ∪b1/εck=1 (ε(k − 1), εk)× (0, 1)

(4.73a)

Āε|x1=0 =
∫ 1

0
g(x2)dx2 := ḡ, Āε|x1=1 = 0. (4.73b)

Using the 1D expansion in section 4.3.2, the solution of the differential equation (4.34)
considering the interface conditions (4.73b) is

Ā0 = ḡ (1− x1) , (4.74)

which leads to

Ā1
ε(x1) = ḡ (1− x1 − εW (x1/ε)) . (4.75)

4.4.3 Recombination of the results

The magnetic potential Aε can be written, using simple calculations, in the following way:

Aε(x1, x2) =
∫ x2

0
b(x1, s)ds−

∫ 1

0

∫ x2

0
b(x1, s)dsdx2 + Āε(x1). (4.76)

Hence, using the approximations (B.22)–(4.75), we obtain

A1
ε(x1, x2) = (g(x2)− ḡ)e−x1κ/ε + ḡ (1− x1 − εW (x1/ε)) , (4.77)

where ḡ =
∫ 1

0 g(x2)dx2.

4.4.4 Numerical results

We consider ε = 0.1 (10 toles), ᾱ = 1, ω = 50, g(x2) = 1 + cos(πx2), and δ = 0.014. In
Figure 4.10, we show the approximate magnetic vector potential A1

ε(x) compared to the
magnetic potential AFDM calculated numerically using the finite difference method.
The result shows a good agreement as we have the correct oscillations far from the interface
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(x1 = 0), a good behavior in its neighborhood which is due to the presence of the term b,
and a relative L2-error ||AF DM−A1

ε||2
||AF DM ||2

= 0.007.
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Figure 4.10: The magnetic vector potential A1
ε in ΩL compared to the numerical

solution AFDM .

4.5 Conclusion

A solution is provided by classical homogenization in 1D and a correction at the interface
with the air. Another solution is also provided in 2D in the domain of the lamination
stacks, while the correction at the interface with air have to be added
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Conclusion and
Perspectives

Conclusion

In this thesis, we presented an asymptotic modelling and discretisation techniques for
eddy current problems in electromagnetism. This coupling between the two notions led
to an accurate result with less computational time.

In chapter 2, we provided a FEM/BEM coupling for magnetostatic and magnetodynamic
problems using different mathematical formulations. The results validate the interest of
the coupling by reducing the discretisation elements with a good accuracy.

In chapter 3, an asymptotic modelling of a conductive thin layer in eddy-current problem
is accomplished. An equivalent models of high order is derived by replacing the thin
layer by its mid-surface with an impedance transmission conditions that connects the
electromagnetic fields. Moreover, these models are discretised by the BEM. Both models
show a good agreement, and the equivalent model of second order show an accuracy for
all range of the skin depth. Thus, the modelisation and discretisation techniques together
lead to a high reduction of the number of mesh elements, as well as to a good precision
comparing with analytical solutions.

In chapter 4, a homogenisation technique with an interface correction is proposed for
modeling a lamination of conductive sheets in eddy-current problems. The 1D case is
validated by comparing the results to an analytical solution. However, the 2D case is
actually in progress.

Perspectives

Firstly, we aim to implement and test the FEM/BEM coupling for 3D eddy current
problems in non-linear medium. Taking into account the nonlinearity of the magnetic
materials is necessary for the computation of the electromagnetic fields in many direct
applications, like the analysis of large power transformers.

Another aspect to consider concerns the conductive thin layers in open domain (i.e. with
holes) and take into account the vicinity of the corners of the conducting layer. For this
purpose, there are two steps to be done:

1. Test the equivalent models with transmission conditions on some complex geometries
in order to validate or to detect if they do not work in specific cases.
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2. Make an appropriate modification on the discretization technique to treat the prob-
lem near the corners.

Finally, we aim to consider the direct continuation of the work presented in chapter 4 by
proceeding in the following plan:

1. Complete and validate the homogenization technique of laminated stacks in 2D.

2. Proceed with this technique to treat a 3D case.

3. Consider the case of connected sheets to go towards foil windings.
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APPENDIX A Annex

A.1 Expansion of differential operators inside the con-
ductive sheet Ωε

0 [59, section 5.1]
The derivatives in the normal and tangential directions scale differently in ε, due to the
small thickness of the conductor. Thus, it is more convenient to use the local normal
coordinate system in Ωε

0.
For this coordinate system, we denote by Dα the covariant derivative which specifies the
derivative along the tangent vectors of the mean surface Γ. The covariant derivative at a
point p ∈ Γ depends on a small neighborhood of p, and thus it considers the information on
the neigbourhood of p and allows us to transport vectors along surfaces that are parallel
with respect to Γ. Denote also ∂h3 the partial derivative with respect to the normal
coordinate y3 = h.
We use the covariant derivative as partial derivative when it acts on a scalar function:
Dαw = ∂αw, where α = 1, 2 refers to the tangential coordinates on Γ.

Let Γh be the surface contained in Ωε
+∪Ωε

− at a distance h of Γ. We denote by aαβ(h) and
bαβ(h) the metric tensor and the curvature tensor of the manifold Γh, respectively. The
metric tensor generalizes many of the familiar properties of the dot product of vectors,
aαβ(h) is the restriction of the metric of Γ on Γh , in such a coordinate system it writes

aαβ(h) = aαβ − 2bαβh+ bγαbγβh
2,

and its inverse expands in power series of h

aαβ(h) = aαβ − 2bαβh+O(h2).

The curvature tensor describes the curvature of a Riemannian manifold, given in terms
of Christoffel symbols.

Let L(yα, h;Dα, ∂
h
3 ) be the second order Maxwell operator

curlcurl− (kε0)2I,

in Ωε
0 in the normal coordinate system and by B(yα, h;Dα, ∂

h
3 ) = (Bα(yα, h;Dα, ∂

h
3 ), 0)

the tangent trace operator curl · ×n on Γε±, with [ [73], chapter 3, prop 3.36]

Bα(yα, h;Dα, ∂
h
3 )H = ∂h3Hα −Dαh ,

for H = (Hα, h), where Hα = (H1,H2) and h are the tangential and normal coordinates
of H, respectively.
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A.2

These two operators L and B expand in power series of h with intrinsic coefficients with
respect to Γ.
In order to obtain a coordinate which does not depend on ε we can scale the normal
coordinate Y3 = ε−1h . We use from now on the same symbol H for three dimensional
one-form field in these scaled coordinates i.e. the linear combination of the differentials
of theses coordinates, and call L[ε] and B[ε] the respective three dimensional harmonic
Maxwell operators in Ωε

0. These operators expand in power of ε

L[ε] = ε−2
∞∑
n=0

εnLn,

and
B[ε] = ε−1B0 +B1,

whose coefficients are intrinsic operators on Γ, which are completely determined by the
shape of Γ and the material parameters of the conducting sheet. Let Lnα and Bn

α be the
surface components of Ln and Bn, respectively. Defined as follows

L0
α(H) = −∂2

3Hα + γ2Hα,

L1
α(H) = −2bβα∂3Hβ + bββ∂3Hα,

B0
α(H) = ∂3Hα, and B1

α(H) = −Dαh .

Here, ∂3 is the partial derivative with respect to Y3. We denote by Ln3 the transverse
components of Ln, they satisfy

L0
3(H) = γ2h ,

and
L1

3(H) = γαα(∂3H) + bββ∂3h ,

where γαβ(H) = 1
2(DαHβ+DβHα)−bαβh is the change of metric tensor and γαα = aαβγαβ

and γ = exp(3iπ
4 )
√
ωµc0σ̄ γ is defined such that (kε0)2 = −ε−2γ2.

A.2
Applying the Cauchy product of the formal series ∑n≥0 ε

nLn associated to the operator
L[ε], with the formal series ∑j≥0 ε

jHj.
we get: (∑

n≥0
εnLn

)(∑
j≥0

εjHj

)
=
∑
n≥0

εn
[ n∑
l=0

LlHn−l

]
.

Clearly the coefficient for each εk-term is ∑k
l=0 L

lHk−l.
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A.3
Considering the first equation of the system (3.19): L[ε]∑∞j=0 ε

jHj(yα, Y3) = 0.
And using Proposition (3.3.1), we get that ∑n

j=0 L
j(Hn−j) = 0 for all n ≥ 0

Taking into account the surface and transverse components of Ln, we get

k∑
j=0

Lj3(Hk−j) = 0,

k∑
j=0

Ljα(Hk−j) = 0.

Using the expression of the operators, and substituting the first term of the operator L[ε],
we obtain the first two equations (3.22) and (3.23).
Expanding Eε, we get (3.24).
Finally, the equation (3.26) is obtained from (3.20) and the transmission condition (3.15).

A.4
Proposition A.4.1 [72] According to equations (3.37), (3.40) when n = 0, the tangen-
tial field H0,α satisfies the following ODE

{
∂2

3H0,α(·, Y3)− γ2H0,α(·, Y3) = 0 for Y3 ∈ I,
iωµ±H0|± 1

2
= n× curlE±0 × n|0±,

and has a unique solution

H0,0 cosh(γY3) +H0,1 sinh(γY3),

with

H0,0 = 1
cosh(γ2 )

{ 1
iωµ

curlE0

}
Γ
,

H0,1 = 1
2 sinh(γ2 )

[ 1
iωµ

curlE0

]
Γ
.

A.5
Theorem A.5.1 The potentials satisfy the jump relations

[γDΨM ] = −Id , [γDΨA] = 0,
[γNΨM ] = 0 , [γNΨA] = −Id,
[γDΨV ] = 0.
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A.6 Calculation of the External Field

A.6 Calculation of the External Field
The representation formula of any vector field E for all x ∈ Ω± is

E(x) = ΨM([γDE]Γ)(x) + ΨA([γNE]Γ)(x)− gradΨV ([γnE]Γ)(x).

where ΨM , ΨA, and ΨV are defined in section 3.5.2.
Moreover

H(x) = −(iωµ0)−1curlE(x),

then

H(x) = −(iωµ0)−1
(
curlcurl

∫
Γ
(n× [γDE]Γ)G(x, y)dS(y) + curl

∫
Γ
[γNE]ΓG(x, y)dS(y)

)
,

which is equivalent to :

H(x) = −(iωµ0)−1
( ∫

Γ
divΓ(n× [γDE]Γ)∇xG(x, y)dS(y)+

∫
Γ
(∇xG(x, y)× [γNE]Γ)dS(y)

)
,

or

H(x) = −(iωµ0)−1
( ∫

Γ
−curlΓ([γDE]Γ)∇xG(x, y)dS(y) +

∫
Γ
(∇xG(x, y)× [γNE]Γ)dS(y)

)
.

Concerning the terms of asymptotic expansion introduced in 4.33, 3.59, and 3.60, we will
consider the following formulas.

A.6.1 First term H0

As [γDE0] = 0,

H̃0(x) = −(iωµ0)−1
( ∫

Γ
(∇xG(x, y)× [γN Ẽ0]Γ)dS(y)

)
,

and so
H0 = H̃0 +Hs.

A.6.2 Second term H1

H1(x) = −(iωµ0)−1
(
−
∫

Γ
curlΓ([γDE1]Γ)∇xG(x, y)dS(y)+

∫
Γ
(∇xG(x, y)×[γNE1]Γ)dS(y)

)
.

But
[γDE1]Γ = K1{γNE0}Γ,

then

H1(x) = −(iωµ0)−1
(
−K1

∫
Γ
curlΓ({γNE0}Γ)∇xG(x, y)dS(y)+

∫
Γ
(∇xG(x, y)×[γNE1]Γ)dS(y)

)
.
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A.6.3 Second order H1
ε

H1
ε (x) = −(iωµ0)−1

(
−
∫

Γ
curlΓ([γDE1

ε ]Γ)∇xG(x, y)dS(y)+
∫

Γ
(∇xG(x, y)×[γNE1

ε ]Γ)dS(y)
)
.

But
[γDE1

ε ]Γ = εK1{γNE1
ε}Γ,

then

Hε
1(x) = −(iωµ0)−1

(
−εK1

∫
Γ
curlΓ({γNE1

ε}Γ)∇xG(x, y)dS(y)+
∫

Γ
(∇xG(x, y)×[γNE1]Γ)dS(y)

)
.

A.7 Analytical Solution of the Eddy-Current Prob-
lem for a Sphere with a Thin Layer in 3D

Consider a thin layer made of an inner sphere of radius r2 and an outer spherical shell of
radius r1 (see figure A.1). The source current is provided by a uniform magnetic field in
the ~z direction.

Figure A.1: A cross section of the domain

A.7.1 Formulation of the problem
We introduce the spherical coordinates system (r, θ, φ) with a center at O, where θ and
φ stands for the azimuthal and polar angle respectively.

We consider the three regions R0, R1, and R2 defined as follows:

R0 : {r > r1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} containing air.
R1 : {r2 < r < r1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} which is a conducting medium where σ ans µ
are constants.
R2 : {0 ≤ r < r2, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} which is a non-conducting medium where σ = 0
and µr = µ0.
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A.7 Analytical Solution of the Eddy-Current Problem for a Sphere with a Thin
Layer in 3D

We introduce the vector potential curlA = B, where B is the magnetic induction vector.
Using Ampere’s and Faraday’s laws the eddy current model can be reduced to the following
second order equation for the magnetic vector potential

curlcurlA+ iσωµA = µJe,

as
divA = 0,

we obtain
∆A+ k2A = −µJe (A.1)

where k2 = −iσωµ.

Proposition A.7.1 The source term can be expressed as an initial excitation of a mag-
netic vector potential As, which is written in spherical coordinates as follows

As = µ

2 r sin(φ)eθ

Proof. For Hs = 1ez,
We can write the uniform magnetic field in terms of the spherical coordinates using

Hr

Hφ

Hθ

 =

sinφ cos θ sinφ sin θ cosφ
cosφ cos θ cosφ sin θ − sinφ
− sin θ cos θ 0


Hx

Hy

Hz


to obtain that

Hs = cosφer − sinφeφ

Using the formula of curl in spherical coordinates we can prove that curlAs = 1
µ
Hs

curlA = 1
r sinφ

[
∂

∂φ
sinφAθ −

∂Aφ
∂θ

]
~r + 1

r

[ 1
sinφ

∂Ar
∂θ
− ∂

∂r
(rAθ)

]
~φ+ 1

2

[
∂

∂r
(rAφ)− ∂Ar

∂φ

]
~θ

Taking into account the axial symmetry, we obtain that A has only one non-zero
component,

A = (0, A(r, φ), 0)

Writing the equation A.1 in spherical coordinates with considering the θ-component of A,
we obtain the following equation for the function A(r, φ)

∂2A

∂r2 + 2
r

∂A

∂r
+ cotφ

r2
∂A

∂φ
+ 1
r2
∂2A

∂φ2 −
A

r2 sin2 φ
+ k2A = −µ0Je
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A.7.2 Mathematical Analysis
We consider the case where σ and µ are defined as a piecewise constant functions

µ =


µ0 in R2
µ0 in R1
µ0 in R0

and σ =


0 in R2
σ in R1
0 in R0

Substituting these properties, we obtain the following system of equations:

∂2A0

∂r2 + 2
r

∂A0

∂r
+ cotφ

r2
∂A0

∂φ
+ 1
r2
∂2A0

∂φ2 −
A0

r2 sin2 φ
= −µ0Je (A.2)

∂2A1

∂r2 + 2
r

∂A1

∂r
+ cotφ

r2
∂A1

∂φ
+ 1
r2
∂2A1

∂φ2 −
A1

r2 sin2 φ
+ k2A1 = 0 (A.3)

∂2A2

∂r2 + 2
r

∂A2

∂r
+ cotφ

r2
∂A2

∂φ
+ 1
r2
∂2A2

∂φ2 −
A2

r2 sin2 φ
= 0 (A.4)

whereAi denotes the θ component of the vector potential in region Ri, for i = 0, .., 2.

The boundary conditions are:

A0|r=r1
= A1|r=r1

, A1|r=r2
= A2|r=r2

. (A.5)

∂A0

∂r |r=r1

= ∂A1

∂r |r=r1

,
∂A1

∂r |r=r2

= ∂A2

∂r |r=r2

. (A.6)

To solve the problem (A.2)-(A.6), we use the following integral transform [71]:

Āi(r, n) = 1
Dn

∫ −1

−1
Ai(r, t)P (1)

n (t)dt (A.7)

where t = cosφ, P (1)
n (t) is an associated Legendre function of first kind, and

Dn :=
∫ −1

−1
(P (1)

n (t))2dt = 2n(n+ 1)
2n+ 1

Using this integral transform (A.7), and using the fact that A0 = Ar0 + As, we obtain

∂2Ār0
∂r2 + 2

r

∂Ār0
∂r
− n(n+ 1)

r2 Ār0 = 0 (A.8)

∂2Ā1

∂r2 + 2
r

∂Ā1

∂r
− n(n+ 1)

r2 Ā1 + k2Ā1 = 0 (A.9)

∂2Ā2

∂r2 + 2
r

∂Ā2

∂r
− n(n+ 1)

r2 Ā2 = 0 (A.10)

The general solution of (A.8) is:

Ār0 = C1r
−1−n + C

′

1r
n,
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A.8 Analytical Solution of the Eddy-Current Problem for a Sphere without Thin
Layer

But Ar0 should vanish as r →∞ since the potential goes to zero far away from any charges,
so

Ār0 = C1r
−1−n. (A.11)

The general solution of (A.9) is expressed in terms of Bessel functions:

Ā1 = C2r
−1/2Jn+ 1

2
(kr) + C3r

−1/2Yn+ 1
2
(kr). (A.12)

The general solution of (A.10) is:

Ā2 = C4r
n + C

′

4r
−1−n,

But the solution must remain bounded as r → 0, thus

Ā2 = C4r
n. (A.13)

Inverting the integral transform (A.7), we obtain the solution to the problem in the form

Ai(r, φ) =
∞∑
n=1

Āi(r, n)P (1)
n (cosφ) (A.14)

Applying (A.14) to (A.20)-(A.22), we obtain the solution of (A.2)-(A.4) in the form
A0(r, φ) = ∑∞

n=1C1r
−1−nP (1)

n (cosφ) + As R0

A1(r, φ) = ∑∞
n=1(C2r

−1/2Jn+ 1
2
(kr) + C3r

−1/2Yn+ 1
2
(kr))P (1)

n (cosφ) R1

A2(r, φ) = ∑∞
n=1C4r

nP (1)
n (cosφ) R2

The sinφ dependence of the excitation source requires that only n = 1 be present, with

P
(1)
1 (cosφ) = sinφ.

Therefore, the solution for the vector potential is

Aθ(r, φ) =


A0(r, φ) = C1r

−2 sinφ+ µ
2 r sinφ R0

A1(r, φ) = (C2r
−1/2J 3

2
(kr) + C3r

−1/2Y 3
2
(kr)) sinφ R1

A2(r, φ) = C4r sinφ R2

Using the boundary conditions (A.5)-(A.6), we can determine the constants Ci for i =
1, .., 4.

A.8 Analytical Solution of the Eddy-Current Prob-
lem for a Sphere without Thin Layer

Consider a sphere of radius r1 (see figure A.2). The source current is given by the excita-
tion of a uniform magnetic field in ~z direction in the domain R0.

We consider the two regions R0 and R1 defined as follows:
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Figure A.2: A cross section of the domain

R0 : {r > r1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} containing air.
R1 : {0 ≤ r < r1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} which is a conducting medium where σ ans µ
are constants.

The solution of the problem satisfy the following system of equations:

∂2A0

∂r2 + 2
r

∂A0

∂r
+ cotφ

r2
∂A0

∂φ
+ 1
r2
∂2A0

∂φ2 −
A0

r2 sin2 φ
= −µ0Je (A.15)

∂2A1

∂r2 + 2
r

∂A1

∂r
+ cotφ

r2
∂A1

∂φ
+ 1
r2
∂2A1

∂φ2 −
A1

r2 sin2 φ
+ k2A1 = 0 (A.16)

Ai(r, φ) denotes the θ component of the vector potential in region Ri, for i = 0, 1.

With the boundary conditions

A0|r=r1
= A1|r=r1

,
∂A0

∂r |r=r1

= ∂A1

∂r |r=r1

. (A.17)

Using the integral transform (A.7), and using the fact that A0 = Ar0 + As, we obtain

∂2Ār0
∂r2 + 2

r

∂Ār0
∂r
− n(n+ 1)

r2 Ār0 = 0 (A.18)

∂2Ā1

∂r2 + 2
r

∂Ā1

∂r
− n(n+ 1)

r2 Ā1 + k2Ā1 = 0 (A.19)

The general solution of (A.18) is:

Ār0 = C1r
−1−n. (A.20)

The general solution of (A.19) is expressed in terms of Bessel functions:

Ā1 = C2r
−1/2Jn+ 1

2
(kr) + C

′

2r
−1/2Yn+ 1

2
(kr). (A.21)

But the solution must remain bounded as r → 0, so

Ā1 = C2r
−1/2Jn+ 1

2
(kr). (A.22)
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Layer

Applying (A.14) to (A.20)-(A.22), we obtain the solution of (A.15)-(A.16) in the form

Aθ(r, φ) =


A0(r, φ) = C1r

−2sinφ+ µ
2 r sinφ R0

A1(r, φ) = C2r
−1/2J 3

2
(kr) sinφ R1

Using the boundary conditions (A.17), we can determine the constants Ci for i = 1, 2.
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B.1 Appendix

B.1.1
Using the derivation of Ai(x, x/ε)

d

dx
[Ai(x, x/ε)] = ∂

∂x
Ai(x, x/ε) + 1

ε

∂

∂y
Ai(x, x/ε),

we get
∇ · (∇Ai) = ∂2

xAi + 2ε−1∂y∂xAi + ε−2∂2
yAi.

B.1.2
Multiplying (4.25) by A0 −M0(A0) and integrating on y ∈ (0, 1), we obtain∫ 1

0

(
|∂yA0|2 + iωᾱ(A0 −M0(A0))2

)
dy = 0. (B.1)

Which gives that
A0 = M0(A0) = A0(x). (B.2)

B.1.3
Details of calculation of (4.34) are as follows:

−2
∫ 1

0
∂x∂yA1dy =− 2

∫ 1

0
∂x1∂y

(
W (y)∂xA0(x)

)
dy = −2

∫ 1

0

(
∂2
xA0(x)

)
∂yW (y)dy

=− 2
(
∂2
xA0(x)

)
W (y)|10 = 0.

(B.3)

∫ 1

0
M2(A0)dy =

∫ 1

0

(
(1
3 − y(1− y))

∫ 1

0
∂2
xA0(x)ds

)
dy =

(
∂2
xA0(x)

) ∫ 1

0
(1
3 − y(1− y))dy

=1
6∂

2
xA0(x).

(B.4)∫ 1

0
(−∂2

xA0)dy = −∂2
xA0. (B.5)∫ 1

0
M1(A1)dy =

∫ 1

0

(
(1
2 − y)

∫ 1

0
∂xA1(x, s)ds

)
dy =

∫ 1

0
(1
2 − y)dy

∫ 1

0
∂xA1(x, s)ds

=0.
(B.6)

∫ 1

0
(∂2
yA2 − iωᾱ(A2 −M0(A2)))dy =∂yA2|10 − iωᾱ

( ∫ 1

0
A2(x, y)dy −

∫ 1

0
A2(x, y)dy

)
= 0.
(B.7)
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B.1.4 Analytical solution of Aε in the domain of lamination stack
ΩL

Recall that the magnetic vector potential in 1d assumption satisfies (4.21)-(4.22).
Define the vector a = Aε −M(Aε) in each sheet. Replacing a in (4.21), we obtain a
second order ordinay differential equation

∂2
xa− iωσ1µ1a = 0. (B.8)

The solution of (B.8) is
a = Ci

1e
κx + Ci

2e
−κx, (B.9)

in each sheet i, where κ2 = iωµ1σ1.

By integrating a = Aε−M(Aε) on each thin layer (εbx1/εc, εbx1/εc+ ε), we obtain that
the average value of a in each layer is nul. we have then∫ εbx1/εc+ε

εbx1/εc
a(s)ds = 0. (B.10)

Let xi and xi+1 be the extremities of the layer i. Integration (B.9) on the sheet i, and
using (B.10), we have ∫ xi+1

xi

(Ci
1e
κs + Ci

2e
−κs)ds = 0, (B.11)

which gives that
Ci

1(eκxi+1 − eκxi) + Ci
2(−e−κxi+1 + e−κxi) = 0, (B.12)

in each sheet i = (xi, xi+1.

By considering the continuity conditions of Aε = a +M at the interface of each two
consecutive sheets, we obtain the following equalities

Ci
1e
κxi+1 + Ci

2e
−κxi+1 +Mi − Ci+1

1 eκxi+1 − Ci+1
2 e−κxi+1 −Mi+1 = 0, (B.13)

Ci
1e
κxi+1 − Ci

2e
−κxi+1 − Ci+1

1 eκxi+1 + Ci+1
2 e−κxi+1 = 0, (B.14)

where xi+1 is the boundary point between the two stacks i and i+ 1.

Adding together the equations (B.12), (B.13), (B.14) and the boundary conditions (4.22)
we obtain the coefficients Ci

1,Ci
2 and Mi in each sheet by solving a linear system of

equations.

B.1.5 Approximation of the derivative of Aε along x2 by the
asymptotic expansion in power series of δ

Using the multiscale expansion in power series of the small complex parameter δ

bδ(x) = b0(x, δ) + δb1(x, δ) + δ2b2(x, δ) + ...,∀x ∈ R2 (B.15)

with bj(x, δ) = χ(ν)wj(t, ν/δ), where t and ν are the tangential and normal variation in
a neighborhood χ(ν) of Γ.
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Rescaling Υ = ν
δ
, the operator ∆ expands in power series of δ with coefficients intrinsic

operators with respect to Γ [102]:

δ2∆ = ∂2
Υ +

∑
n≥1

δnAn, (B.16)

where
A1 = −k(t)∂Υ,

A2 = ∂2
t − k(t)2Υ∂Υ.

Denote by vδ(t,Υ) = bδ(x). After scaling ν −→ Υ = ν/δ, we get:

(−∂2
Υ + i)vδ −

∑
n≥1

δnAnvn = 0 in Γ× (0,+∞). (B.17)

Inserting vδ = ∑
n≥0 δ

nwn(t, ν/δ) with wn(.,Υ) −→ 0 as Υ −→ +∞ in (B.17), the terms
wn satisfy the following family of problems coupled by their conditions on the interface
Γ(Υ = 0) −∂2

Υwn + wn = ∑n
p≥1Apwn−p in Γ× (0,+∞),

wn = g′δ0
n on Γ,

(B.18)

where δ0
n is the Kronecker symbol.

The first term to be determined in the asymptotics is the profile w0. According to (B.18)
for n = 0, w0 solves the ODE:−∂Υw0(·,Υ) + w0(·,Υ) = 0 in Γ× (0,+∞),

w0(·,Υ) = g′(X(t)) on Γ,
(B.19)

i.e. −∂Υw0 + w0 = 0 in Γ× (0,+∞),
w0 = g′ on Γ.

(B.20)

The general solution of (B.20) is:

w0 = a(t)e−Υ.

Using the boundary condition on Γ, we get:

w0 = g′(X(t))e−Υ.

Thus,
b0(x, δ) = g′(x2)e−x1/δ, (B.21)

and

b(x1, x2) = g′(x2)e−x1κ/ε +O(ε). (B.22)
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