, Principaux pays producteurs miniers de terres rares, 2019.

Ü. Özgü, Y. I. Ali-o, C. Liu, A. Teke, M. A. Resh-hiko et al., « A comprehensive review of ZnO materials and devices, J. Appl. Phys, vol.98, p.41301, 2005.

T. K. Gupta, « Application of Zinc Oxide Varistors, J. Am. Ceram. Soc, vol.73, issue.7, pp.1817-1840, 1990.

Z. Liu, J. Gan, and T. Yew, « ZnO-based one diode-one resistor device structure for crossbar memory applications, Appl. Phys. Lett, vol.100, p.153503, 2012.

J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying et al., « Electroluminescence behavior of ZnO/Si heterojunctions: Energy band alignment and interfacial microstructure, J. Appl. Phys, vol.107, issue.8, p.83701

J. Xu, Q. Pan, Y. Shun, and Z. Tian, « Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B Chem, vol.66, pp.277-279, 2000.

J. H. Li, R. Y. Hong, M. Y. Li, H. Z. Li, Y. Zheng et al., Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings, vol.64, pp.504-509, 2009.

S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson et al., « Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation, Skin Pharmacol. Physiol, vol.20, issue.3, pp.148-154, 2007.

D. Sharma, J. Rajput, B. S. Kaith, M. Kaur, and E. S. Sharma, Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties, vol.519, pp.1224-1229, 2010.

G. E. Servais and L. Cartz, « Structure of Zinc Phosphate Dental Cement, J. Dent. Res, vol.50, issue.3, pp.613-620, 1971.

D. Craig, W. L. Davidson, and A. E. Juve, « Tetramethylthiuram disulfide vulcanization of extracted rubber. V. Low molecular products and the mechanism of zinc oxide activation, J. Polym. Sci, vol.6, issue.2, pp.177-187, 1951.

C. Corinaldesi, F. Marcellini, E. Nepote, E. Damiani, and R. Danovaro, « Impact of inorganic UV filters contained in sunscreen products on tropical stony corals ( Acropora spp, Sci. Total Environ, pp.1279-1285, 2018.

W. Lin, Y. Xu, C. Huang, Y. Ma, K. B. Shannon et al., « Toxicity of nano-and micro-sized ZnO particles in human lung epithelial cells, J. Nanoparticle Res, vol.11, issue.1, pp.25-39

V. Sharma, D. Anderson, and A. Dhawan, « Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2), Apoptosis, vol.17, issue.8, pp.852-870

R. «-zincite and . Database,

E. M. Bachari, G. Baud, S. Ben-amor, and E. M. Jacquet, Structural and optical properties of sputtered ZnO films, Thin Solid Films, vol.348, issue.2, pp.165-172, 1999.

O. Agyeman, C. Xu, W. Shi, X. Zheng, and M. Suzuki, « Strong Ultraviolet and Green Emissions at Room Temperature from Annealed ZnO Thin Films », Jpn. J. Appl. Phys, vol.41, issue.2A, pp.666-669, 2002.

H. Chin and L. Chao, « The Effect of Thermal Annealing Processes on Structural and Photoluminescence of Zinc Oxide Thin Film, J. Nanomater, vol.2013, pp.1-8, 2013.

T. Minami, H. Nanto, S. Shooji, and E. S. Takata, « The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering, Thin Solid Films, vol.111, issue.2, pp.167-174, 1984.

P. Nunes, E. Fortunato, and R. Martins, « Influence of the post-treatment on the properties of ZnO thin films, Thin Solid Films, vol.383, issue.2, pp.277-280, 2001.

A. Janotti and C. G. , Van de Walle, « Native point defects in ZnO, Phys. Rev. B, vol.76, 2007.

H. Iwanaga, A. Kunishige, and E. S. Takeuchi, « Anisotropic thermal expansion in wurtzitetype crystals, p.4

W. M. Yim and R. J. Paff, « Thermal expansion of AlN, sapphire, and silicon, J. Appl. Phys, vol.45, issue.3, pp.1456-1457, 1974.

D. Kohl, M. Henzler, «. Sublimation, . From, . Cleaved-polar et al., , p.9

E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, « Heat of crystallization and melting point of amorphous silicon, Appl. Phys. Lett, vol.42, issue.8, pp.698-700, 1983.

D. Hapiuk and «. Tu, tude e p i e tale de l auto-organisation de nanoparticules et simulations numériques du dopage dans des phases expansées, p.265

D. Vogel, P. Krüger, and J. Pollmann, « Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials, Phys. Rev. B, vol.52, pp.14316-14319, 1995.

C. Klingshirn and . Zno, From basics towards applications, Phys. Status Solidi B, vol.244, issue.9, pp.3027-3073, 2007.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell et al., Phys. Rev. B, vol.60, issue.4, pp.2340-2344, 1999.

A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, Strain influence on valence-band ordering and excitons in ZnO: An ab initio study, vol.91, p.241915, 2007.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster et al., « Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Status Solidi B, vol.241, issue.2, pp.231-260, 2004.

A. Teke, Ü. Özgü, S. Do?a, X. Gu, H. Mo-koç et al., E e itt, « Excitonic fine structure and recombination dynamics in single-crystalline ZnO, Phys. Rev. B, vol.70, p.195207, 2004.

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, « Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition, J. Appl. Phys, vol.85, issue.11, pp.7884-7887, 1999.

J. Wilkinson, K. B. Ucer, and R. T. Williams, « Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors, Radiat. Meas, vol.38, pp.501-505, 2004.

M. R. Wagner, G. Callsen, J. S. Reparaz, J. Schulze, R. Kirste et al., « Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers, Phys. Rev. B, vol.84, issue.3, p.35313, 2011.

S. A. Chevtchenko, J. C. Moore, Ü. Özgür, X. Gu, A. A. Baski et al., « Comparative study of the (0001) and (0001¯) surfaces of ZnO », Appl. Phys. Lett, vol.89, p.182111, 2006.

H. C. Ong and G. T. Du, « The evolution of defect emissions in oxygen-deficient andsurplus ZnO thin films: the implication of different growth modes, J. Cryst. Growth, vol.265, pp.471-475, 2004.

S. Vempati, J. Mitra, and P. Dawson, « One-step synthesis of ZnO nanosheets: a bluewhite fluorophore, Nanoscale Res. Lett, vol.7, issue.1

F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density, vol.6, pp.10224-10234, 2014.

Y. W. Heo, D. P. Norton, and S. J. Pearton, « Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy, J. Appl. Phys, vol.98, issue.7, p.73502, 2005.

K. Bandopadhyay and J. Mitra, « Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal?, RSC Adv, vol.5, pp.23540-23547, 2015.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman et al., Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices », Materials, vol.3, pp.2643-2667

R. Vidya, P. Ravindran, H. Fjellvåg, B. G. Svensson, E. Monakhov et al., « Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations, Phys. Rev. B, vol.83, 2011.

J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, vol.58, pp.874-985, 2013.

M. D. Mccluskey, S. J. Jokela, «. Applied, and . Reviews-focused-review-», J Appl Phys, p.14

M. G. Wardle, J. P. Goss, and P. R. Briddon, « First-Principles Study of the Diffusion of Hydrogen in ZnO, Phys. Rev. Lett, vol.96, p.205504, 2006.

S. B. Zhang, S. Wei, and A. Zunger, « Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, vol.63, issue.7, p.75205, 2001.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason et al., « Characterization of homoepitaxial p -type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett, vol.81, issue.10, pp.1830-1832, 2002.

J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao et al., Zhu, « p-type conduction in N-Al co-doped ZnO thin films, p.3

M. Joseph, H. Tabata, and T. Kawai, « p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping », Jpn. J. Appl. Phys, vol.38, issue.11A, pp.1205-1207, 1999.

L. Chen, Z. Xiong, Q. Wan, and D. Li, « Realization of p-type ZnO by (nN, Mg) codoping from first-principles, Opt. Mater, vol.32, issue.9, pp.1216-1222, 2010.

M. Sanmyo, Y. Tomita, and K. Kobayashi, « Preparation of p-Type ZnO Films by Doping of Be?N Bo ds », Chem. Mater, vol.15, issue.4, pp.819-821, 2003.

E. Lee, Y. Kim, Y. Jin, and K. J. Chang, « Compensation mechanism for N acceptors in ZnO, Phys. Rev. B, vol.64, issue.8, p.85120, 2001.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, « Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Thin Solid Films, vol.445, issue.2, pp.263-267, 2003.

K. Ueda, H. Tabata, and T. Kawai, « Magnetic and electric properties of transition-metaldoped ZnO films, Appl. Phys. Lett, vol.79, issue.7, pp.988-990, 2001.

B. Matteo, Oxydes transparents conducteurs et convertisseurs de photons pour des applications photovoltaïques, p.178

Q. Luo, X. Qiao, X. Fan, and X. Zhang, « Near-infrared emission of Yb^3+ through energy transfer from ZnO to Yb^3+ in glass ceramic containing ZnO nanocrystals », Opt. Lett, vol.36, p.2767, 2011.

C. Davesnne, A. Ziani, C. Labbé, P. Marie, C. Frilay et al., « Energy transfer mechanism between terbium and europium ions in zinc oxide and zinc silicates thin films, Thin Solid Films, vol.553, pp.33-37, 2014.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen et al., Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering, Appl. Phys. A, vol.108, issue.1, pp.239-245

C. Davesnne, « Elaboration et caractérisation de films de ZnO dopé pour des applications optoélectroniques », phdthesis, 2014.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, « A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 », J. Chem. Phys, vol.90, issue.7, pp.3443-3457, 1989.

B. R. Judd, « Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev, vol.127, issue.3, pp.750-761, 1962.

B. Piriou, D. Fahmi, J. Dexpert-ghys, A. Taitai, and J. L. Lacout, « Unusual fluorescent properties of Eu3+ in oxyapatites, J. Lumin, vol.39, issue.2, pp.97-103, 1987.

O. L. Malta, W. M. Azevedo, E. A. Gouveia, G. F. De-sá, and «. O-the-d-?-f, J. Lumin, vol.26, issue.3, pp.337-343, 1982.

G. Nishimura, T. Kushida, and . Luminescence, Studies in Ca(PO 3 ) 2 :Eu 3+ Glass by Laser-Induced Fluorescence Line-Narrowing Technique. I. Optical Transition Mechanism of the 5 D 0 -7 F 0 Line, J. Phys. Soc. Jpn, vol.60, issue.2, pp.683-694, 1991.

J. Andriessen, E. Van-der-kolk, and E. P. Dorenbos, « Latti e ela atio stud of the f ? d excitation of Ce 3 + -doped La Cl 3 , La Br 3 , a d Na La F : Stokes shift pseudo Jahn-Teller effect, Phys. Rev. B, vol.76, issue.7, p.75124, 2007.

, The Atomistic Simulation Group in the Materials Department of Imperial College, « Shannon Radii

Y. Liu, W. Luo, R. Li, G. Liu, M. R. Antonio et al., « Optical Spectroscopy of Eu 3+ Doped ZnO Nanocrystals, J. Phys. Chem. C, vol.112, issue.3, pp.686-694, 2008.

M. Ishii, S. Komuro, T. Morikawa, and Y. Aoyagi, « Local structure analysis of an optically active center in Er-doped ZnO thin film, J. Appl. Phys, vol.89, issue.7, pp.3679-3684, 2001.

H. Song and Y. J. Kim, « Characterization of luminescent properties of ZnO:Er thin films prepared by rf magnetron sputtering, J. Eur. Ceram. Soc, vol.27, pp.3745-3748, 2007.

Y. Q. Jia, « Crystal radii and effective ionic radii of the rare earth ions, J. Solid State Chem, vol.95, issue.1, pp.184-187, 1991.

S. Liu, S. Zheng, C. Tang, X. Li, W. Xu et al., « Photoluminescence and radioluminescence properties of Yb2+-doped silica glass », Mater. Lett, vol.144, pp.43-45, 2015.

R. Okada, W. Miao, Y. Terai, T. Tsuji, and Y. Fujiwara, « Sputtering-assisted metalorganic chemical vapor deposition of Yb-doped ZnO for photonic conversion in Si solar cells, Phys. Status Solidi C, vol.11, pp.1292-1295, 2014.

I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-lefdil et al., « Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method, J. Appl. Phys, vol.109, issue.3, p.33708, 2011.

M. Balestrieri, G. Ferblantier, S. Colis, G. Schmerber, C. Ulhaq-bouillet et al., « Structural and optical properties of Yb-doped ZnO films deposited by magnetron reactive sputtering for photon conversion, Sol. Energy Mater. Sol. Cells, vol.117, pp.363-371, 2013.

M. V. Shestakov, A. N. Baranov, V. K. Tikhomirov, Y. V. Zubavichus, A. S. Kuznetsov et al., RSC Adv, vol.2, issue.23, pp.8783-8788, 2012.

G. L. Kabongo, G. H. Mhlongo, B. M. Mothudi, K. T. Hillie, H. C. Swart et al., « Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions, Mater. Lett, vol.119, pp.71-74, 2014.

C. L. Heng, T. Wang, W. Y. Su, H. C. Wu, M. C. Yang et al., « Intense ultraviolet photoluminescent emission from Yb doped ZnO thin films on Si after high temperature annealing, J. Alloys Compd, vol.695, pp.2232-2237, 2017.

D. Chen, Y. Wang, and M. Hong, « Lanthanide nanomaterials with photon management characteristics for photovoltaic application, Nano Energy, vol.1, issue.1, pp.73-90

G. H. Dieke, Spectra and energy levels of rare earth ions in crystals, 1968.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv et al., Synthesis, structure and photoluminescence properties of europium-, terbium-, and thulium-doped Ca3Bi(PO4)3 phosphors, vol.42, p.12395, 2013.

R. K. Verma, K. Kumar, and S. B. Rai, Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3: Tb (M = Mg, vol.12, pp.1146-1151, 2010.

A. D. Sontakke and K. Annapurna, « Study on Tb3+ containing high silica and low silica calcium aluminate glasses: Impact of optical basicity, Spectrochim. Acta. A. Mol. Biomol. Spectrosc, vol.94, pp.180-185

Q. Y. Zhang, K. Pita, W. Ye, and W. X. Que, « Influence of annealing atmosphere and temperature on photoluminescence of Tb3+ or Eu3+-activated zinc silicate thin film phosphors via sol-gel method », Chem. Phys. Lett, vol.351, issue.3, pp.163-170, 2002.

L. T. Francis, P. Rao, M. Thomas, M. S. , R. V. et al., Structural influence on the photoluminescence properties of Eu 3+ doped Gd 3 MO 7 (M = Nb, Sb, and Ta) red phosphors, vol.16, pp.17108-17115, 2014.

G. Blasse, « Energy transfer between inequivalent Eu2+ ions, J. Solid State Chem, vol.62, issue.2, pp.207-211, 1986.

Z. B. Fang, Y. S. Tan, H. X. Gong, C. M. Zhen, Z. W. He et al., « Transparent conductive Tb-doped ZnO films prepared by rf reactive magnetron sputtering », Mater. Lett, vol.59, pp.2611-2614, 2005.

R. S. Sreedharan, R. R. Krishnan, R. J. Bose, V. S. Kavitha, S. Suresh et al., « Visible luminescence from highly textured Tb 3+ doped RF sputtered zinc oxide films, J. Lumin, vol.184, pp.273-286, 2017.

A. Ziani, C. Davesnne, C. Labbé, J. Cardin, P. Marie et al., Annealing effects on the photoluminescence of terbium doped zinc oxide films, Thin Solid Films, vol.553, pp.52-57, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01138059

S. A. Lima, M. R. Davolos, W. G. Quirino, C. Legnani, and M. Cremona, « Low-voltage electroluminescence of europium in zinc oxide thin films », Appl Phys Lett, p.4

V. Kumar, S. Som, V. Kumar, V. Kumar, O. M. Ntwaeaborwa et al., Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications, Chem. Eng. J, vol.255, pp.541-552, 2014.

Y. Zhang, Y. Liu, L. Wu, E. Xie, and E. J. Chen, « Photolu i es e e a d Z O ? Eu 3+ energy transfer in Eu 3+ -doped ZnO nanospheres, J. Phys. Appl. Phys, vol.42, issue.8, p.85106, 2009.

L. Luo, F. Y. Huang, G. S. Dong, H. H. Fan, K. F. Li et al., « Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals, Opt. Mater, vol.37, pp.470-475, 2014.

S. Das and K. C. , « Optical downconversion in rare earth (Tb3+ and Yb3+) doped CdS nanocrystals », Mater. Lett, vol.66, issue.1, pp.46-49

G. M. Salley, R. Valiente, and H. U. Guedel, « Luminescence upconversion mechanisms in Yb3þ-Tb3þ systems, J. Lumin, p.5, 2001.

T. Naganuma and E. Traversa, « The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation, Biomaterials, vol.35, pp.4441-4453, 2014.

R. A. Vazirov, S. Y. Sokovnin, V. G. Ilves, I. N. Bazhukova, N. Pizurova et al., « Physicochemical characterization and antioxidant properties of cerium oxide nanoparticles, J. Phys. Conf. Ser, vol.1115, p.32094, 2018.

E. N. Okrushko, V. V. Seminko, P. O. Maksimuchuk, I. I. Bespalova, N. V. Kononets et al., « Low-temperature spectroscopy of optical centers in cerium-yttrium (Ce 1-x Y x O 2-x /2 ) and cerium-zirconium (Ce 1-x Zr x O 2 ) oxides », Low Temp, Phys, vol.43, issue.5, pp.636-640, 2017.

A. Masalov, O. Viagin, P. Maksimchuk, V. Seminko, I. Bespalova et al., « Formation of luminescent centers in CeO2 nanocrystals, J. Lumin, vol.145, pp.61-64, 2014.

J. Wang, T. Han, T. Lang, M. Tu, and L. Peng, « Synthesis and photoluminescence properties of cerium-doped terbium-yttrium aluminum garnet phosphor for white light-emitting diodes applications, Opt. Eng, vol.54, issue.11, p.117106, 2015.

M. Yousefi, M. Amiri, R. Azimirad, and A. Z. Moshfegh, « Enhanced photoelectrochemical activity of Ce doped ZnO nanocomposite thin films under visible light, J. Electroanal. Chem, vol.661, issue.1, pp.106-112, 2011.

F. Du, N. Wang, D. Zhang, and Y. Shen, « Preparation, characterization and infrared emissivity study of Ce-doped ZnO films, J. Rare Earths, vol.28, issue.3, pp.391-395, 2010.

Q. Shi, C. Wang, S. Li, Q. Wang, B. Zhang et al., « Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping, Nanoscale Res. Lett, vol.9, issue.1, p.480, 2014.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, vol.281, pp.2013-2016, 1998.

R. Bomila, S. Srinivasan, A. Venkatesan, B. Bharath, and K. Perinbam, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method », Mater. Res. Innov, pp.1-8, 2017.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, « Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses, J. Appl. Phys, vol.104, issue.11, p.116105, 2008.

C. L. Heng, T. Wang, W. Y. Su, H. C. Wu, P. G. Yin et al., « Down-conversion luminescence from (Ce, Yb) co-doped oxygen-rich silicon oxides, J. Appl. Phys, vol.119, p.123105, 2016.

J. Boyer, J. Gagnon, L. A. Cuccia, J. A. Capobianco, and . Synthesis, Ce 3+ , Tb 3+ /NaYF 4 Core/Shell Nanoparticles, vol.4, pp.3358-3360, 2007.

J. X. Meng, K. W. Cheah, Z. P. Shi, and J. Q. Li, Intense 1540nm emission from Er doped Ce:YAG phosphor, vol.91, p.151107, 2007.

Y. Yang, Y. Li, C. Wang, C. Zhu, C. Lv et al., Earth Doped ZnO Films: A Material Platform to Realize Multicolor and Near-Infrared Electroluminescence, Adv. Opt. Mater, vol.2, issue.3, pp.240-244, 2014.

«. Fichier, Diode-IV-Curve.svg -Wikipédia

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants électroniques -6ème édition: Cours et exercices corrigés. Dunod, 2009.

F. Rahman, « Zinc oxide light-emitting diodes: a review, Opt. Eng, vol.58, p.1, 2019.

Y. Ryu, T. Lee, J. A. Lubguban, H. W. White, B. Kim et al., « Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes », Appl Phys Lett, p.4

M. Jeong, B. Oh, M. Ham, and J. Myoung, « Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes », Appl Phys Lett, p.4

D. I. Son, B. W. Kwon, D. H. Park, W. Seo, Y. Yi et al., « Emissive ZnO-graphene quantum dots for white-light-emitting diodes, Nat. Nanotechnol, vol.7, issue.7, pp.465-471

S. Harako, S. Yokoyama, K. Ide, X. Zhao, and E. S. Komoro, « Visible and infrared electroluminescence from an Er-doped n-ZnO/p-Si light emitting diode, Phys. Status Solidi A, vol.205, issue.1, pp.19-22, 2008.

S. Iwan, S. Bambang, J. L. Zhao, S. T. Tan, H. M. Fan et al., Green electroluminescence from an n-ZnO: Er/p-Si heterostructured lightemitting diode, Phys. B Condens. Matter, vol.407, pp.2721-2724

Y. Yang, Y. Li, L. Xiang, X. Ma, and E. D. Yang, « Low-voltage driven ?1.54 m electroluminescence from erbium-doped ZnO/ p + -Si heterostructured devices: Energy transfer from ZnO host to erbium ions », Appl. Phys. Lett, vol.102, p.181111, 2013.

S. Iwan, J. L. Zhao, S. T. Tan, S. Bambang, M. Hikam et al., « Iondependent electroluminescence from trivalent rare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes », Mater. Sci. Semicond. Process, vol.30, pp.263-266, 2015.

S. A. Lima, M. R. Davolos, C. Legnani, W. G. Quirino, and M. Cremona, « Low voltage electroluminescence of terbium-and thulium-doped zinc oxide films, J. Alloys Compd, vol.418, issue.2, pp.35-38, 2006.

M. Huang, S. Wang, G. Wan, X. Zhang, Y. Zhang et al., « Effect of co-doped Tb3+ ions on electroluminescence of ZnO:Eu3+ LED, J. Mater. Sci. Mater. Electron, vol.29, issue.9, pp.7213-7219, 2018.

M. Dawber, K. M. Rabe, and J. F. Scott, « Physics of thin-film ferroelectric oxides, Rev. Mod. Phys, vol.77, issue.4, pp.1083-1130, 2005.

E. Fortunato, P. Barquinha, and R. Martins, « Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances », Adv. Mater, vol.24, pp.2945-2986

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2016.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior Thermal Conductivity of Single-Layer Graphene, vol.8, pp.902-907, 2008.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Stormer, « Ultrahigh electron mobility in suspended graphene, Solid State Commun, vol.146, issue.9, pp.351-355, 2008.

L. Znaidi, G. J. Soler-illia, S. Benyahia, C. Sanchez, and A. V. Kanaev, « Oriented ZnO thin films synthesis by sol-gel process for laser application, Thin Solid Films, vol.428, pp.257-262, 2003.

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, « Epitaxial ZnO piezoelectric thin films for saw filters, Mater. Sci. Semicond. Process, vol.2, issue.3, pp.247-252, 1999.

A. Fouchet, W. Prellier, B. Mercey, L. Méchin, V. N. Kulkarni et al., « Investigation of laser-ablated ZnO thin films grown with Zn metal target: A structural study, J. Appl. Phys, vol.96, issue.6, pp.3228-3233, 2004.

D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto et al., « Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE, J. Cryst. Growth, pp.605-609, 1998.

J. Lim and C. Lee, Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition, Thin Solid Films, vol.515, issue.7, pp.3335-3338, 2007.

A. Baptista, F. J. Silva, J. Porteiro, J. L. Míguez, G. Pinto et al., On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications », Procedia Manuf, vol.17, pp.746-757, 2018.

C. Liang, « Optical Properties of Nd-Doped Si-based thin films: towards an optical amplifier, p.153

J. Martin and A. George, Caractérisation expérimentale des matériaux. PPUR presses polytechniques, 1998.

C. T. Kirk, « Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica, Phys. Rev. B, vol.38, issue.2, pp.1255-1273, 1988.

P. Lange, U. Schnakenberg, S. Ullerich, and H. Schliwinski, « Disorder in vitreous SiO 2 : The effect of thermal annealing on structural properties, J. Appl. Phys, vol.68, issue.7, pp.3532-3537, 1990.

P. Lange, « Evidence for disorder-induced vibrational mode coupling in thin amorphous SiO 2 films, J. Appl. Phys, vol.66, issue.1, pp.201-204, 1989.

O. Debieu, R. P. Nalini, J. Cardin, X. Portier, J. Perrière et al., Structural and optical characterization of pure Si-rich nitride thin films, Nanoscale Res. Lett, vol.8, issue.1, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01138071

T. C. Damen, S. P. Porto, B. Tell, and . Raman, Phys. Rev, vol.142, issue.2, pp.570-574, 1966.

R. Cuscó, E. Alarcón-lladó, J. Ibáñez, L. Artús, J. Jiménez et al., « Temperature dependence of Raman scattering in $\mathrm{ZnO}$ », Phys. Rev. B, vol.75, p.165202, 2007.

F. J. Manjon, B. Soucase, J. Serrano, and A. H. Romero, Silent Raman Modes in Zinc Oxide and Related Nitrides, vol.97, 2005.

M. Tzolov, N. Tzenov, D. Dimova-malinovska, M. Kalitzova, C. Pizzuto et al., Modification of the structure of ZnO:Al films by control of the plasma parameters, vol.396, pp.276-281, 2001.

M. Bouzourâa, Y. Battie, S. Dalmasso, M. Zaïbi, M. Oueslati et al., « Comparative study of ZnO optical dispersion laws, Superlattices Microstruct, vol.104, pp.24-36, 2017.

C. Tanguy, « Optical Dispersion by Wannier Excitons », Phys. Rev. Lett, vol.75, pp.4090-4093, 1995.

X. Li, H. Li, Z. Wang, H. Xia, Z. Xiong et al., Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering, Opt. Commun, vol.282, issue.2, pp.247-252, 2009.

M. R. Cruz, O. Ceballos-sanchez, E. Luévano-hipólito, and E. L. , Torres-Martínez, « ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production », Int. J. Hydrog. Energy, vol.43, pp.10301-10310, 2018.

X. Q. Zhao, C. R. Kim, J. Y. Lee, C. M. Shin, J. H. Heo et al., « Effects of thermal annealing temperature and duration on hydrothermally grown ZnO nanorod arrays, Appl. Surf. Sci, vol.255, issue.11, pp.5861-5865, 2009.

B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei et al., « Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering, J. Appl. Phys, vol.99, p.123510, 2006.

M. A. Gluba, N. H. Nickel, and N. Karpensky, « Interstitial zinc clusters in zinc oxide, Phys. Rev. B, vol.88, p.245201, 2013.

F. J. Manjón, B. Marí, J. Serrano, and A. H. Romero, « Silent Raman modes in zinc oxide and related nitrides, J. Appl. Phys, vol.97, issue.5, p.53516, 2005.

M. Tzolov, N. Tzenov, D. Dimova-malinovska, M. Kalitzova, C. Pizzuto et al., « Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering, Thin Solid Films, vol.379, issue.2, pp.28-36, 2000.

A. Khan, « Raman Spectroscopic Study of the ZnO Nanostructures, p.5

A. Ismail and M. J. Abdullah, « The structural and optical properties of ZnO thin films prepared at different RF sputtering power, J. King Saud Univ. -Sci, vol.25, issue.3, pp.209-215, 2013.

. B. Dr, . Chandra, and . Babu, « Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors, J. Spectrosc. Dyn, vol.4, pp.1-8, 2014.

P. Y. Emelie, J. D. Phillips, B. Buller, and U. D. Venkateswaran, « Free carrier absorption and lattice vibrational modes in bulk ZnO, J. Electron. Mater, vol.35, issue.4, pp.525-529, 2006.

B. C. Babu, V. Naresh, B. J. Prakash, and S. Buddhudu, Thermal and Dielectric Properties of Lithium Zinc Silicate Ceramic Powders by Sol-Gel Method », Ferroelectr. Lett. Sect, vol.38, pp.114-127, 2011.

L. Yi, S. Wang, Y. Wang, C. Liang, S. Huang et al., Structure Study of Amorphous SiOx Films, pp.134-135, 2007.

J. H. Choi, H. Tabata, and T. Kawai, « Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition, J. Cryst. Growth, vol.226, issue.4, pp.493-500, 2001.

S. V. Prasad, S. D. Walck, and J. S. Zabinski, « Microstructural evolution in lubricious ZnO ®lms grown by pulsed laser deposition, Thin Solid Films, p.11, 2000.

R. Kumar, O. Al-dossary, G. Kumar, and E. A. Umar, Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review, pp.97-120, 2015.

B. Carter, D. B. Williams, and É. , Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry, 2016.

N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, « Control of preferred orientation for ZnOx films: control of self-texture, J. Cryst. Growth, vol.130, issue.2, pp.269-279, 1993.

S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, « Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition, J. Appl. Phys, vol.80, issue.2, pp.787-791, 1996.

R. G. Singh, F. Singh, R. M. Mehra, D. Kanjilal, and V. Agarwal, « Synthesis of nanocrystalline ? -Zn2SiO4 at ZnO-porous silicon interface: Phase transition study, Solid State Commun, vol.151, issue.9, pp.701-703, 2011.

Z. M. Wang and É. , Toward Functional Nanomaterials, 2009.

R. C. Rai, M. Guminiak, S. Wilser, B. Cai, and M. L. Nakarmi, « Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition, J. Appl. Phys, vol.111, issue.7, p.73511, 2012.

M. Gilliot, A. Hadjadj, and A. E. Naciri, « Dielectric function of very thin nano-granular ZnO layers with different states of growth, Appl. Opt, vol.54, issue.10, p.3043, 2015.

P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. Chang, « Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry, Appl. Phys. Lett, vol.72, pp.3261-3263, 1998.

M. H. Mamat, M. Z. Sahdan, S. Amizam, H. A. Rafaie, Z. Khusaimi et al., « The effect of annealing temperatures on zinc oxide thin films properties for electronic devices application, 2008 IEEE International Conference on Semiconductor Electronics, pp.566-570, 2008.

B. Lin, Z. Fu, and Y. Jia, « Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett, vol.79, issue.7, pp.943-945, 2001.

J. D. Ye, S. L. Gu, F. Qin, S. M. Zhu, S. M. Liu et al., « Correlation between green luminescence and morphology evolution of ZnO films, Appl. Phys. A, vol.81, issue.4, pp.759-762, 2005.

M. M. Ca, S. Is, M. F. Shah, C. R. Dot, and . Haugh, F? at, « Electrical and optical properties of point defects in ZnO thin films, J. Phys. Appl. Phys, vol.45, p.195104, 2012.

M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, « Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles », Jpn. J. Appl. Phys, vol.42, issue.2A, pp.481-485, 2003.

K. Ozaki and M. Gomi, « Strong Ultraviolet Photoluminescence in Polycrystalline ZnO Sputtered Films », Jpn. J. Appl. Phys, vol.41, issue.9, pp.5614-5617, 2002.

M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, « Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles », Jpn. J. Appl. Phys, vol.42, issue.2A, pp.481-485, 2003.

A. Janotti and C. G. , Van de Walle, « Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys, vol.72, p.126501, 2009.

F. K. Shan, G. X. Liu, W. J. Lee, and B. C. Shin, « The role of oxygen vacancies in epitaxialdeposited ZnO thin films, J. Appl. Phys, vol.101, issue.5, p.53106, 2007.

G. W. Tomlins, J. L. Routbort, and T. O. Mason, « Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide, J. Appl. Phys, vol.87, issue.1, pp.117-123, 2000.

D. Kim, G. Lee, and Y. Kim, « Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping, Solid State Commun, vol.152, pp.1711-1714, 2012.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, « Defect energetics in ZnO: A hybrid Hartree-Fock density functional study, Phys. Rev. B, vol.77, p.245202, 2008.

P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, and H. B. , Pan, « The electronic structure and spectral properties of ZnO and its defects », Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At, vol.199, pp.286-290, 2003.

A. K. Das, P. Misra, and L. M. Kukreja, « Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition, J. Phys. Appl. Phys, vol.42, p.165405, 2009.

H. Hess and E. Krautz, « Photoluminescence and photoconductivity of undoped and doped zinc silicate, J. Lumin, pp.321-324, 1981.

L. E. Mir, A. Amlouk, C. Barthou, and E. S. Alaya, « Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2 composite based on nanosized zinc oxide-confined silica aerogels, Phys. B Condens. Matter, vol.388, issue.2, pp.412-417, 2007.

Z. Fu, B. Yang, L. Li, W. Dong, C. Jia et al., « An intense ultraviolet photoluminescence in sol gel ZnO SiO 2 nanocomposites, J. Phys. Condens. Matter, vol.15, pp.2867-2873, 2003.

H. Xiang, Z. Feng, and Y. Zhou, « Mechanical and thermal properties of Yb2SiO5: Firstprinciples calculations and chemical bond theory investigations, J Mater Res, vol.29, p.12, 2014.

V. Kumar, O. M. Ntwaeaborwa, and H. C. Swart, « Deep level defect correlated emission and Si diffusion in ZnO:Tb 3+ thin films prepared by pulsed laser deposition, J. Colloid Interface Sci, vol.465, pp.295-303, 2016.

R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, and . Ytterbium, IEEE J. Quantum Electron, vol.33, issue.7, pp.1049-1056, 1997.

M. Nikl, A. Bensalah, E. Mihokova, J. Hybler, H. Sato et al., « Luminescence and decay kinetics of Yb2+ in LiCaAlF6 single crystal host, Opt. Mater, vol.24, issue.2, pp.191-195, 2003.

S. Lizzo, E. P. Klein, N. Nagelvoort, R. Erens, A. Meijerink et al., ON THE QUENCHING OF THE Yb 2+ LUMINESCENCE IN DIFFERENT HOST LATTICES, vol.58, pp.963-968, 1997.

S. Das, S. Das, A. Roychowdhury, D. Das, and E. S. Sutradhar, « Effect of Gd doping concentration and sintering temperature on structural, optical, dielectric and magnetic properties of hydrothermally synthesized ZnO nanostructure, J. Alloys Compd, vol.708, pp.231-246, 2017.

S. Geburt, M. Lorke, A. L. Da-rosa, T. Frauenheim, R. Röder et al., « Intense Intrashell Luminescence of Eu-Doped Single ZnO Nanowires at Room Temperature by Implantation Created Eu-O i Complexes, Nano Lett, vol.14, issue.8, pp.4523-4528, 2014.

R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar, and J. M. Ferreira, « Effects of rareearth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method, Ceram. Int, vol.40, issue.1, pp.523-529, 2014.

H. C. Ong and G. T. Du, « The evolution of defect emissions in oxygen-deficient andsurplus ZnO thin films: the implication of different growth modes, J. Cryst. Growth, vol.265, pp.471-475, 2004.

V. A. Nikitenko, « Luminescence and EPR of zinc oxide (review), J. Appl. Spectrosc, vol.57, pp.783-798, 1992.

I. Markevich, T. Stara, L. Khomenkova, V. Kushnirenko, and L. Borkovska, Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv, Ukraine, « Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds, AIMS Mater. Sci, vol.3, issue.2, pp.508-524, 2016.

M. A. Reshchikov, H. Morkoç, B. Nemeth, J. Nause, J. Xie et al., « Luminescence properties of defects in ZnO, Phys. B Condens. Matter, pp.358-361, 2007.

R. B. Lauer, « The I.R. photoluminescence emission band in ZnO, J. Phys. Chem. Solids, vol.34, issue.2, pp.249-253, 1973.

M. V. Shestakov, A. N. Baranov, V. K. Tikhomirov, Y. V. Zubavichus, A. S. Kuznetsov et al., RSC Adv, vol.2, issue.23, pp.8783-8788, 2012.

S. Ye, S. Tanabe, N. Jiang, and E. D. Wang, « Broadband spectral conversion due to cooperative and phonon-assistant energy transfer from ZnO to Yb3+ », Appl. Phys. B, vol.108, issue.3, pp.553-558, 2012.

F. Xiao, R. Chen, Y. Q. Shen, B. Liu, G. G. Gurzadyan et al., Infrared emission properties and energy transfer in ZnO-SiO2:Yb3+ composites, J. Alloys Compd, vol.509, pp.7794-7797, 2011.

C. L. Heng, J. T. Li, W. Y. Su, Z. Han, P. G. Yin et al., « The formation of Yb silicates and its luminescence in Yb heavily doped silicon oxides after high temperature annealing, Opt. Mater, vol.42, pp.17-23, 2015.

H. P. Barbosa, I. G. Silva, M. C. Felinto, E. E. Teotonio, O. L. Malta et al., « Photoluminescence of single-phased white light emission materials based on simultaneous Tb3+, Eu3+ and Dy3+ doping in CaWO4 matrix, J. Alloys Compd, vol.696, pp.820-827, 2017.

X. Chen, J. Zhao, L. Yu, C. Rong, C. Li et al., « A white light emitting phosphor Sr1.5Ca0.5SiO4:Eu3+, Tb3+, Eu2+ for LED-based near-UV chip: Preparation, characterization and luminescent mechanism, J. Lumin, vol.131, pp.2697-2702, 2011.

J. Felsche, « Polymorphism and crystal data of the rare-earth disilicates of type R.E.2Si2O7, J. Common Met, vol.21, issue.1, pp.1-14, 1970.

G. H. Dieke and H. M. Crosswhite, « The Spectra of the Doubly and Triply Ionized Rare Earths, Appl. Opt, vol.2, issue.7, pp.675-686, 1963.

P. Chen, X. Ma, D. Yang, and . Zno, Eu thin-films: Sol-gel derivation and strong photolu i es e e f o D ? F t a sitio of Eu + io s », J. Alloys Compd, vol.431, issue.2, pp.317-320, 2007.

S. Zhao, F. Shu, Y. Li, C. Liu, W. Shan et al., Synthesis and Luminescence Properties of ZnO:Eu 3+ Nano Crystalline via a Facile Solution Method, J. Nanosci. Nanotechnol, vol.12, issue.3, pp.2607-2611, 2012.

R. S. Ningthoujam, N. S. Gajbhiye, A. Ahmed, S. S. Umre, and S. J. Sharma, « Re-Dispersible Li + and Eu 3 + Co-Doped Nanocrystalline ZnO: Luminescence and EPR Studies, J. Nanosci. Nanotechnol, vol.8, issue.6, pp.3059-3062, 2008.

A. Hastir, R. L. Opila, N. Kohli, Z. Onuk, B. Yuan et al., « Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films, J. Mater. Sci, vol.52, pp.8502-8517, 2017.

N. S. Singh, S. D. Singh, and S. D. Meetei, Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles, vol.23, p.58104, 2014.

X. Liu, W. Xie, Y. Lü, J. Feng, X. Tang et al.,

, Nanocrystalline Phosphors for Near-UV LEDs », Inorg. Chem, vol.56, pp.13829-13841, 2017.

C. L. Heng, J. T. Li, Z. Han, and P. G. Yin, « An Abnormal Photoluminescence Enhancement in (Eu, Yb) Co-doped SiO 2 Thin Film, Integr. Ferroelectr, vol.151, issue.1, pp.179-186, 2014.

Q. Y. Zhang, K. Pita, and C. H. Kam, « Sol-gel derived zinc silicate phosphor films for fullcolor display applications, J. Phys. Chem. Solids, vol.64, issue.2, pp.333-338, 2003.

G. H. Mhlongo, M. S. Dhlamini, O. M. Ntwaeaborwa, H. C. Swart, and K. T. Hillie, « Luminescent properties and quenching effects of Pr3+ co-doping in SiO2:Tb3+/Eu3+ nanophosphors, Opt. Mater, vol.36, issue.4, pp.732-739, 2014.

W. Jia, K. Monge, and F. Fernandez, « Energy transfer from the host to Eu3+ in ZnO, Opt. Mater, vol.23, issue.2, pp.27-32, 2003.

H. Akazawa and H. Shinojima, « Concentration effect of H/OH and Eu 3+ species on activating photoluminescence from ZnO:Eu 3+ thin films, J. Appl. Phys, vol.114, p.153502, 2013.

G. Chen, F. Song, X. Xiong, and X. Peng, « Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET), Ind. Eng. Chem. Res, vol.52, pp.11228-11245, 2013.

E. Pavitra, G. S. Raju, Y. H. Ko, and J. S. Yu, « A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors, Phys. Chem. Chem. Phys, vol.14, p.11296, 2012.

B. Kaleli, M. Kulakci, and R. Turan, « Mechanisms of light emission from terbium ions (Tb3+) embedded in a Si rich silicon oxide matrix, Opt. Mater, vol.34, issue.11, pp.1935-1939, 2012.

Y. Li, Y. Chang, Y. Lin, Y. Chang, and Y. Lin, « Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors, J. Alloys Compd, vol.439, issue.2, pp.367-375, 2007.

A. K. Bedyal, D. D. Ramteke, V. Kumar, and H. C. Swart, « Excitation wavelength and Eu3+/Tb3+ content ratio dependent tunable photoluminescence from NaSrBO3:Eu3+/Tb3+ phosphor, J. Mater. Sci. Mater. Electron, vol.30, pp.11714-11726, 2019.

T. Ishizaka, R. Nozaki, and Y. Kurokawa, « Luminescence properties of Tb3+ and Eu3+-doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence, J. Phys. Chem. Solids, vol.63, issue.4, pp.613-617, 2002.

F. Ehré, C. Labbé, C. Dufour, W. M. Jadwisienczak, J. Weimmerskirch-aubatin et al., SiOxNy emission: towards optimized Ce3+ for LED applications, p.15, 2018.

J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu et al., « Electroluminescent and transport mechanisms of n-Z O?p-Si heterojunctions », Appl. Phys. Lett, vol.88, p.182112, 2006.

S. T. Tan, X. W. Sun, J. L. Zhao, S. Iwan, Z. H. Cen et al., Ultraviolet and visible electroluminescence from n-Z O?SiO ? ,p -Si heterostructured light-emitting diodes », Appl Phys Lett, p.4

P. Chen, X. Ma, and E. D. Yang, Ult a iolet ele t olu i es e e f o Z O?p-Si heterojunctions, vol.101, p.53103, 2007.

A. Ko-igit, I. Ak, and Z. Çald?-a, Tu ut, « Current-voltage characteristics of Au/ZnO/n-Si device in a wide range temperature, J. Mater. Sci. Mater. Electron, vol.28, pp.17177-17184, 2017.

D. Somvanshi and S. Jit, « Mean Barrier Height and Richardson Constant for Pd/ZnO Thin Film-Based Schottky Diodes Grown on n-Si Substrates by Thermal Evaporation Method, IEEE Electron Device Lett, vol.34, issue.10, pp.1238-1240, 2013.

P. Hazra, S. K. Singh, and E. S. Jit, « Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer, JSTSJournal Semicond. Technol. Sci, vol.14, issue.1, pp.117-123, 2014.

F. Z. Bedia, A. Bedia, D. Kherbouche, and B. Benyoucef, « Electrical Properties of ZnO/p-Si Heterojunction for Solar Cell Application, 2013.

S. Baturay, Y. S. Ocak, and D. Kaya, « The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions, J. Alloys Compd, vol.645, pp.29-33, 2015.

R. Ro-e-o, M. C. Pez, D. Lei-e, F. Ma, and J. , Ra os-Barrado, « Electrical properties of the n-ZnO/c-Si heterojunction prepared by chemical spray pyrolysis », Mater. Sci. Eng. B, vol.110, issue.1, pp.87-93, 2004.

R. Singh, M. A. Green, and K. Rajkanan, « Review of conductor-insulator-semiconductor (CIS) solar cells, Sol. Cells, vol.3, issue.2, pp.95-148, 1981.

P. Klason, M. M. Rahman, Q. Hu, O. Nur, R. Turan et al., « Fabrication and characterization of p-Si/n-ZnO heterostructured junctions, Microelectron. J, vol.40, pp.706-710, 2009.

A. Sarkar, A. K. Katiyar, A. K. Das, and S. K. Ray, « Si membrane-ZnO heterojunctionbased broad band visible light emitting diode for flexible optoelectronic devices, Flex. Print. Electron, vol.3, issue.2, p.25004, 2018.

M. Godlewski and M. Leskelä, « Excitation and recombination processes during electroluminescence of rare earth-activated materials, Crit. Rev. Solid State Mater. Sci, vol.19, issue.4, pp.199-239, 1994.

S. Bachir, C. Sandouly, J. Kossanyi, and J. , Ronfard-Haret, « Rare earth-doped polycrystalline zinc oxide electroluminescent ceramics, J. Phys. Chem. Solids, vol.57, pp.1869-1879, 1996.

G. Franzò, S. Coffa, F. Priolo, and C. Spinella, « Mechanism and performance of forward and reverse bias electroluminescence at 1.54 m from Er-doped Si diodes, J. Appl. Phys, vol.81, issue.6, pp.2784-2793, 1997.

B. O. Jung, J. H. Lee, J. Y. Lee, J. H. Kim, H. K. Cho et al., Purity Ultraviolet Electroluminescence from n -ZnO Nanowires/ p + -Si Heterostructure LEDs with i -MgO Film as Carrier Control Layer, J. Electrochem. Soc, vol.159, issue.2, pp.102-106, 2011.

W. Skorupa, J. M. Sun, S. Prucnal, L. Rebohle, T. Gebel et al., « Rare Earth Ion Implantation for Silicon Based Light Emission, Solid State Phenom, pp.755-760, 2005.

F. Ehré, Elaboratio et a a t isatio de fil s d o it u e de sili iu dop s iu et ytterbium: applications aux diodes électroluminescentes et au découpage quantique pour les cellules solaires, p.209

H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou et al., Appl. Phys. Lett, vol.94, issue.6, p.63512, 2009.

J. B. You, X. W. Zhang, H. P. Song, J. Ying, Y. Guo et al., « Energy band alignment of SiO2/ZnO interface determined by x-ray photoelectron spectroscopy, J. Appl. Phys, vol.106, p.43709, 2009.

F. Chiu, « A Review on Conduction Mechanisms in Dielectric Films, Advances in Materials Science and Engineering, 2014.

O. Blázquez, J. L. Frieiro, J. López-vidrier, C. Guillaume, X. Portier et al., « Resistive switching and charge transport mechanisms in ITO/ZnO/ p -Si devices », Appl. Phys. Lett, vol.113, p.183502, 2018.

S. Bachir, J. C. Ronfard-haret, K. Azuma, D. Kouyaté, and J. Kossanyi, « Direct impact excitation of thulium (III) luminescence in polycrystalline ZnO: Tm3+ electrodes in contact with an aqueous electrolyte, and attribution of the luminescence spectrum, Chem. Phys. Lett, vol.213, issue.2, pp.54-58, 1993.

T. Shalapska, G. Stryganyuk, Y. Romanyshyn, D. Trots, P. Demchenko et al., « Photon cascade luminescence from Pr 3+ ions in LiPrP 4 O 12 polyphosphate, J. Phys. Appl. Phys, vol.43, p.405404, 2010.

L. Chen, J. Zhang, X. Zhang, F. Liu, and E. X. Wang, « Optical properties of trivalent europium doped ZnO:Zn phosphor under indirect excitation of near-UV light, Opt. Express, vol.16, p.11795, 2008.

D. Xue, J. Zhang, C. Yang, T. Wang, «. Pl et al., Li+ films derived by sol-gel process, J. Lumin, vol.128, issue.4, pp.685-689, 2008.