B. W. Nextbigfuture, Promising thermoelectric project goal 20% improvement in fuel efficiency for cars, 2008.

E. Ademe and . Heat, , 2017.

C. Yu, G. Zhang, Y. Zhang, and L. Peng, Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm, Nano Energy, vol.17, pp.104-110, 2015.

Z. Sun, S. Liufu, X. Chen, and L. Chen, Tellurization: An alternative strategy to construct thermoelectric Bi2Te3 films, The Journal of Physical Chemistry C, vol.115, pp.16167-16171, 2011.

M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke et al., Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles, Advanced Functional Materials, vol.19, pp.3476-3483, 2009.

J. Lee, J. Kim, W. Moon, A. Berger, and J. Lee, Enhanced seebeck coefficients of thermoelectric Bi2Te3 nanowires as a result of an optimized annealing process, The Journal of Physical Chemistry C, vol.116, pp.19512-19516, 2012.

L. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, vol.508, p.373, 2014.

Q. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal et al., Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping, vol.5, p.1500360, 2015.

Y. Li, B. He, J. P. Heremans, and J. Zhao, High-temperature oxidation behavior of thermoelectric SnSe, vol.669, pp.224-231, 2016.

Z. Tan, W. Jesser, and F. Rosi, Microstructure of thermoelectric SiGe alloys containing fullerite, Materials Science and Engineering: B, vol.33, pp.195-203, 1995.

M. Strasser, R. Aigner, M. Franosch, and G. Wachutka, Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining, Sensors and Actuators A: Physical, vol.97, pp.535-542, 2002.

E. K. Lee, L. Yin, Y. Lee, J. W. Lee, S. J. Lee et al., Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties, Nano letters, vol.12, pp.2918-2923, 2012.

C. Okamura, T. Ueda, and K. Hasezaki, Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process, Materials Transactions, vol.51, pp.860-862, 2010.

T. Schroder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier et al., Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, vol.53, pp.7722-7729, 2014.

B. Kusz, T. Miruszewski, B. Bochentyn, M. ?api?ski, and J. Karczewski, Structure and thermoelectric properties of Te-Ag-Ge-Sb (TAGS) materials obtained by reduction of melted oxide substrates, Journal of electronic materials, vol.45, pp.1085-1093, 2016.

B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control, Nature Reviews Materials, vol.1, p.16050, 2016.

D. Mireille, Polymères organiques conducteurs, influence de la chimie, de la formulation et de la structuration, Techniques de l'ingénieur Propriétés électriques et électrochimiques, base documentaire, p.336, 2013.

A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes et al., Advanced Materials, vol.27, pp.2101-2106, 2015.

I. Petsagkourakis, E. Pavlopoulou, G. Portale, B. A. Kuropatwa, S. Dilhaire et al., Structurally-driven enhancement of thermoelectric properties within poly (3, 4-ethylenedioxythiophene) thin films, Scientific reports, vol.6, p.30501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369623

L. Stepien, A. Roch, R. Tkachov, and T. Gedrange, Progress in polymer thermoelectrics, Thermoelectrics for Power Generation-A Look at Trends in the Technology, vol.6, pp.111-133, 2016.

J. Wu, Y. Sun, W. Pei, L. Huang, W. Xu et al., Polypyrrole nanotube film for flexible thermoelectric application, Synthetic Metals, vol.196, pp.173-177, 2014.

C. Li, H. Ma, and Z. Tian, Thermoelectric properties of crystalline and amorphous polypyrrole: A computational study, Applied thermal engineering, vol.111, pp.1441-1447, 2017.

H. Wang, M. Wang, C. Qian, X. Hong, D. Zhang et al., Spin thermoelectric effects in organic singlemolecule devices, Physics Letters A, vol.381, pp.1738-1744, 2017.

R. Kroon, D. A. Mengistie, D. Kiefer, J. Hynynen, J. D. Ryan et al., Thermoelectric plastics: from design to synthesis, processing and structure-property relationships, Chemical Society Reviews, vol.45, pp.6147-6164, 2016.

L. Zhao, J. Zhao, X. Sun, Q. Li, J. Wu et al., Enhanced thermoelectric properties of hybridized conducting aerogels based on carbon nanotubes and pyrolyzed resorcinol-formaldehyde resin, Synthetic Metals, p.205, 2015.

L. Zhao, X. Sun, Z. Lei, J. Zhao, J. Wu et al., Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites, Composites Part B: Engineering, vol.83, pp.317-322, 2015.

F. Fischer, Synthèse et étude de matériaux nanostructurés à base d'acétate de cellulose pour applications énergétiques, 2006.

M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels handbook, 2011.

A. D. Mcnaught and A. D. Mcnaught, Compendium of chemical terminology, 1997.

I. Smirnova and P. Gurikov, Aerogel production: Current status, research directions, and future opportunities, The Journal of Supercritical Fluids, vol.134, pp.228-233, 2018.

S. S. Kistler, Coherent Expanded aerogels, J. Phys. Chemistry, vol.36, p.52, 1932.

R. Pekala and F. Kong, A synthetic route to organic aerogels-mechanism, structure, and properties, Le Journal de Physique Colloques, vol.50, pp.4-33, 1989.
URL : https://hal.archives-ouvertes.fr/jpa-00229481

N. Job, R. Pirard, B. Vertruyen, J. Colomer, J. Marien et al., Synthesis of transition metal-doped carbon xerogels by cogelation, Journal of Non-Crystalline Solids, vol.353, pp.2333-2345, 2007.

E. Bekyarova and K. Kaneko, Structure and Physical Properties of Tailor-Made Ce, Zr-Doped Carbon Aerogels, Advanced Materials, vol.12, pp.1625-1628, 2000.

N. U. Singapore, ANALYZING HI-TECHNOLOGY OPPORTUNITIES, 2010.

P. C. Thapliyal and K. Singh, Aerogels as promising thermal insulating materials: An overview, Journal of materials, 2014.

F. (. , Gels and gelling processes, Disc. Faraday Soc, vol.57, pp.7-18, 1974.

L. Kocon, J. Phalippou, and A. , Aspect matériau, Technique de l'ingénieur, 2005.

N. Job, Matériaux carbonés poreux de texture contrôlée synthétisés par procédé sol-gel et leur utilisation en catalyse hétérogène, 2005.

L. Kocon and J. Phalippou, Caracterisation des Proprietes des Aerogels, 2012.

S. Zeng, A. Hunt, and R. Greif, Theoretical modeling of carbon content to minimize heat transfer in silica aerogel, Journal of Non-Crystalline Solids, vol.186, pp.271-277, 1995.

S. A. Al-muhtaseb and J. A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels, Advanced Materials, vol.15, pp.101-114, 2003.

E. Kinnertová and V. Slovák, Influence of catalyst amount on properties of resorcinol-formaldehyde xerogels, Thermochimica Acta, vol.660, pp.37-43, 2018.

R. Tannert, M. Schwan, and L. Ratke, Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels by means of a pH-controlled sol-gel process, The Journal of Supercritical Fluids, vol.106, pp.57-61, 2015.

J. Phalippou and L. Kocon, Aérogels Aspects fondamentaux, p.1, 2004.

R. Pekala, P. Coronado, and D. Calef, Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels, 1995.

A. Fung, G. Reynolds, . Am, Z. Wang, M. Dresselhaus et al., Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions, J Non-Cryst Solids, vol.186, pp.200-208, 1995.

P. R. Alviso, C. Gross, J. Lu, X. Caps, R. Fricke et al., Resorcinol-formaldehyde and carbon aerogel microspheres, pp.521-525, 1996.

T. F. Baumann, M. A. Worsley, T. Y. Han, and J. H. Satcher, High surface area carbon aerogel monoliths with hierarchical porosity, Journal of Non-Crystalline Solids, vol.354, pp.3513-3515, 2008.

X. Lu, O. Nilsson, J. Fricke, and R. W. Pekala, Thermal and electrical conductivity of monolithic carbon aerogels, Journal of Applied Physics, vol.73, pp.581-584, 1993.

D. Langohr, A study on hydrogen storage through adsorption in nanostructured carbons, 2004.
URL : https://hal.archives-ouvertes.fr/pastel-00001383

D. Dong, H. Guo, G. Li, L. Yan, X. Zhang et al., Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells, Nano Energy, pp.470-477, 2017.

H. Zubyk, O. Mykhailiv, A. N. Papathanassiou, B. Sulikowski, E. Zambrzycka-szelewa et al., A phenol-formaldehyde polymeric network to generate organic aerogels: synthesis, physicochemical characteristics and potential applications, Journal of Materials Chemistry A, vol.6, pp.845-852, 2018.

G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch et al., Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes, Acs Nano, vol.7, pp.10920-10930, 2013.

R. Sellak, Elaboration et caractérisation d'une résine thermodurcissable conductrice, 2013.

L. Zhao, J. Zhao, X. Sun, Q. Li, J. Wu et al., Enhanced thermoelectric properties of hybridized conducting aerogels based on carbon nanotubes and pyrolyzed resorcinol-formaldehyde resin, Synthetic Metals, p.205, 2015.

M. Hassar, Influence des nano-charges de noir de carbone sur le comportement mécanique de matériaux composites: application au blindage électromagnétique, 2013.

T. J. Seebeck, Magnetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, vol.265, pp.1822-1823

J. C. Peltier, nouvelles experiences sur la caloricite des courants électriques, Ann. Chim, pp.1-371, 1834.

E. Lenz, Einige versuche im gebiete des galvanismus, Annalen der Physik, vol.120, pp.342-349, 1838.

J. P. Joule and X. , On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis, The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, p.19, 1841.

W. Thomson, 4. on a mechanical theory of thermo-electric currents, Proceedings of the Royal Society of Edinburgh, vol.3, pp.91-98, 1857.
URL : https://hal.archives-ouvertes.fr/in2p3-00416546

A. F. Ioffe, L. Stil'bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch et al., Semiconductor thermoelements and thermoelectric cooling, vol.12, p.42, 1959.

D. M. Rowe, CRC handbook of thermoelectrics, 1995.

B. Lenoir, J. Michenaud, and A. Dauscher, Thermoélectricité: des principes aux applications, Technique de l'ingénieur, 2010.

F. Rosi, E. Hockings, and N. Lindenblad, Semiconducting materials for thermoelectric power generation, RCA (Radio Corporation of, America) Review (US), p.22, 1961.

P. C. Prof, Thermoelectric Properties of Materials, 2019.

A. Ioffe, Energeticheskic osnovy termoelektricheskikh baterei iz poluprovoduikov, 1949.

G. J. Snyder and A. H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties, Energy & Environmental Science, vol.10, pp.2280-2283, 2017.

M. Gerl, Phénomènes de transport, Techniques de l'ingénieur, Sciences fondamentales, 1976.

J. Heron, Transport des phonons à l'échelle du nanomètre, 2009.

P. Jund, C. De-thermoélectricité, and -. Durable--csmat@ed2, , 2015.

J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, p.9997, 2017.

Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Spin entropy as the likely source of enhanced thermopower in Na x Co 2 O 4, Nature, p.425, 2003.

M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee et al., New directions for low-dimensional thermoelectric materials, vol.19, pp.1043-1053, 2007.

J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi et al., On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective, npj Computational Materials, vol.2, p.15015, 2016.

M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich et al., Power factor enhancement by modulation doping in bulk nanocomposites, Nano letters, vol.11, pp.2225-2230, 2011.

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al., Highperformance bulk thermoelectrics with all-scale hierarchical architectures, Nature, p.414, 2012.

D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Physical Review B, vol.46, p.6131, 1992.

O. B. Grenoble, ). , and T. Innovations, , 2014.

H. Goldsmid, Electronic Refrigeration, pp.57-87, 1986.

X. Li, Z. Zhong, J. Luo, Z. Wang, W. Yuan et al., Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module, International Journal of Photoenergy, p.2019, 2019.

R. Jonas and L. Thermoélectricité, , 2008.

T. Kousksou, J. Bédécarrats, D. Champier, P. Pignolet, and C. Brillet, Numerical study of thermoelectric power generation for an helicopter conical nozzle, Journal of Power Sources, vol.196, pp.4026-4032, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02014930

S. Kumar, S. D. Heister, X. Xu, J. R. Salvador, and G. P. Meisner, Thermoelectric generators for automotive waste heat recovery systems part I: numerical modeling and baseline model analysis, Journal of electronic materials, vol.42, pp.665-674, 2013.

H. Lee, A. M. Attar, and S. L. Weera, Performance prediction of commercial thermoelectric cooler modules using the effective material properties, Journal of electronic materials, vol.44, pp.2157-2165, 2015.

D. Champier, Générateurs thermoélectriques : de la conception aux applications, Technique de l'ingénieur, p.31, 2018.

M. G. Kanatzidis, Nanostructured thermoelectrics: the new paradigm?, Chemistry of materials, p.22, 2009.

C. Godart, Matériaux à effets thermoélectriques, Techniques de l'ingénieur, 2009.

S. Gorsse, Matériaux thermoélectriques nanostructurés et architecturés, Technique de l'ingénieur, 2012.

S. Siouane, S. Jovanovic, and P. Poure, A Novel Identification Method of Thermal Resistances of Thermoelectric Modules Combining Electrical Characterization Under Constant Temperature and Heat Flow Conditions

C. Satterthwaite and R. Ure, Electrical and thermal properties of Bi 2 Te 3, Physical review, vol.108, p.1164, 1957.

S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, vol.348, pp.109-114, 2015.

O. Yamashita and S. Tomiyoshi, Effect of annealing on thermoelectric properties of bismuth telluride compounds, Japanese Journal of Applied Physics, vol.42, p.492, 2003.

M. Lippmann, Environmental toxicants: human exposures and their health effects, 2000.

M. C. Yarema and S. C. Curry, Acute tellurium toxicity from ingestion of metal-oxidizing solutions, Pediatrics-English Edition, vol.116, p.319, 2005.

Y. Ma, R. Heijl, and A. E. Palmqvist, Composite thermoelectric materials with embedded nanoparticles, Journal of Materials Science, vol.48, pp.2767-2778, 2013.

M. Strasser, R. Aigner, M. Franosch, and G. Wachutka, Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining, Sensors and Actuators A: Physical, vol.97, pp.535-542, 2002.

N. S. Bennett, N. M. Wight, S. R. Popuri, and J. G. Bos, Efficient thermoelectric performance in silicon nano-films by vacancy-engineering, Nano Energy, vol.16, pp.350-356, 2015.

G. Cerofolini, M. Ferri, E. Romano, A. Roncaglia, E. Selezneva et al., Industrially scalable process for silicon nanowires for Seebeck generators, 2010.

B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control, Nature Reviews Materials, vol.1, p.16050, 2016.

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature. Mater, vol.7, pp.105-114, 2008.

J. Sharp, Some properties of Ge-Te based thermoelectric materials, Proc 22nd International Conference on Thermoelectrics, p.267, 2003.

H. J. Goldsmid, Introduction to thermoelectricity, 2010.

G. Savelli, Etude et développement de composants thermoélectriques á base de couches minces, 2007.

G. Nolas and D. Rowe, Structure, thermal conductivity, and thermoelectric properties of clathrate compounds, Thermoelectrics Handbook: Macro to Nano

D. M. Rowe and E. , , p.33, 2006.

G. Tan, F. Shi, S. Hao, L. Zhao, H. Chi et al., Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe, Nature communications, vol.7, p.12167, 2016.

J. Sharp, Some properties of GeTe-based thermoelectric alloys, Proceedings ICT'03. 22nd International Conference on Thermoelectrics, pp.267-270, 2003.

K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller et al., Thermoelectric modules based on half-Heusler materials produced in large quantities, Journal of electronic materials, vol.43, pp.1775-1781, 2014.

B. P. Kofstad, Store norske leksikon, vol.16, 2016.

R. D. Schmidt, E. D. Case, J. Giles, J. E. Ni, and T. P. Hogan, Room-temperature mechanical properties and slow crack growth behavior of Mg 2 Si thermoelectric materials, Journal of electronic materials, pp.1210-1216, 2012.

A. Nozariasbmarz, P. Roy, Z. Zamanipour, J. H. Dycus, M. J. Cabral et al., Comparison of thermoelectric properties of nanostructured Mg2Si, FeSi2, SiGe, and nanocomposites of SiGe-Mg2Si, SiGe-FeSi2, APL Materials, 4, p.104814, 2016.

C. Wood, Materials for thermoelectric energy conversion, Reports on progress in physics, vol.51, p.459, 1988.

J. Yang and T. Caillat, Thermoelectric materials for space and automotive power generation, MRS bulletin, pp.224-229, 2006.

A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, vol.2, pp.466-479, 2009.

G. Cerretti, M. Schrade, X. Song, B. Balke, H. Lu et al., Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb 8? x W 9+ x O 47 (0< x< 5), vol.5, pp.9768-9774, 2017.

M. Ohtaki, K. Araki, and K. Yamamoto, High thermoelectric performance of dually doped ZnO ceramics, Journal of electronic materials, vol.38, pp.1234-1238, 2009.

Y. Pei, H. Wu, D. Wu, F. Zheng, and J. He, High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping, Journal of the American Chemical Society, vol.136, pp.13902-13908, 2014.

S. Saini, H. S. Yaddanapudi, K. Tian, Y. Yin, D. Magginetti et al., Terbium ion doping in Ca 3 Co 4 O 9: A step towards high-performance thermoelectric materials, Scientific reports, vol.7, p.44621, 2017.

S. M. Kauzlarich, S. R. Brown, and G. J. Snyder, Zintl phases for thermoelectric devices, Dalton Transactions, pp.2099-2107, 2007.

F. Gascoin, S. Ottensmann, D. Stark, S. M. Haïle, and G. J. Snyder, Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2, Advanced Functional Materials, vol.15, pp.1860-1864, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00182240

W. D. Lawson, A method of growing single crystals of lead telluride and lead selenide, Journal of Applied Physics, vol.22, pp.1444-1447, 1951.

A. Weeber and H. Bakker, Amorphization by ball milling. A review, Physica B: Condensed Matter, p.153, 1988.

S. Airapetyants and G. Shmelev, Method for growing uniform monocrystals of alloyed semiconductor materials, solid solutions, and intermetallic compounds of a given composition determined by the composition of the melt, Soviet Physics-Solid State, vol.2, pp.689-696, 1960.

C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials, vol.22, pp.3970-3980, 2010.

T. Nemoto, T. Iida, J. Sato, Y. Oguni, A. Matsumoto et al., Characteristics of a pin-fin structure thermoelectric uni-leg device using a commercial n-type Mg 2 Si source, Journal of electronic materials, vol.39, pp.1572-1578, 2010.

T. Nemoto, T. Iida, J. Sato, T. Sakamoto, T. Nakajima et al., Power generation characteristics of Mg 2 Si uni-leg thermoelectric generator, Journal of electronic materials, pp.1312-1316, 2012.

E. Evonik and . Production-process, , 2018.

G. G. Yadav, J. A. Susoreny, G. Zhang, H. Yang, and Y. Wu, Nanostructure-based thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment, Nanoscale, vol.3, pp.3555-3562, 2011.

S. Leblanc, S. K. Yee, M. L. Scullin, C. Dames, and K. E. Goodson, Material and manufacturing cost considerations for thermoelectrics, Renewable and Sustainable Energy Reviews, vol.32, pp.313-327, 2014.

S. K. Yee, S. Leblanc, K. E. Goodson, and C. Dames, $ per W metrics for thermoelectric power generation: beyond ZT, Energy & Environmental Science, vol.6, pp.2561-2571, 2013.

. Buehler,

. Fritsch,

. Kurtj and . Leskercompany,

W. R. Riber and . Com,

. Thermaltechnologyllc,

H. Hachiuma and K. Fukuda, Activities and future vision of Komatsu thermo modules, Proceedings of the Fifth European Conference on Thermoelectrics, pp.10-12, 2007.

A. Ivanov, S. Varlamov, V. Emelyanov, A. Manko, and S. Kopylov, Thermoelectric air conditioner for railwaysmodifications, results, prospects, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT'02, pp.554-557, 2002.

H. Bottner, J. Nurnus, M. Braun, J. Wollenstein, F. Volkert et al., MicroPelt: state of the art, road map and applications, Infineon Technologies AG, 2004.

S. B. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications, Applied thermal engineering, vol.23, pp.913-935, 2003.

C. Yu and K. Chau, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Conversion and Management, vol.50, pp.1506-1512, 2009.

Y. Zhou, S. Paul, and S. Bhunia, Harvesting wasted heat in a microprocessor using thermoelectric generators: modeling, analysis and measurement, 2008 Design, Automation and Test in Europe, pp.98-103, 2008.

J. Yang and F. R. Stabler, Automotive applications of thermoelectric materials, Journal of electronic materials, vol.38, pp.1245-1251, 2009.

J. Vázquez, M. A. Sanz-bobi, R. Palacios, and A. , Arenas, State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles, Proc. 7th European Workshop on Thermoelectrics, 2002.

J. Martins, F. P. Brito, L. Goncalves, and J. Antunes, Thermoelectric exhaust energy recovery with temperature control through heat pipes, Sae Technical Papers, 2011.

V. Leonov, P. Fiorini, S. Sedky, T. Torfs, and C. Van-hoof, Thermoelectric MEMS generators as a power supply for a body area network, Solid-State Sensors, Actuators and Microsystems, vol.1, pp.291-294, 2005.

K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi et al., Thermoelectric module and generator for gasoline engine vehicles, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365), pp.464-467, 1998.

A. Adavbiele, Generation of electricity from gasoline engine waste heat, Journal of Energy Technologies and Policy, vol.3, pp.3-16, 2013.

H. A. Sodano, G. E. Simmers, R. Dereux, and D. J. Inman, Recharging batteries using energy harvested from thermal gradients, Journal of Intelligent material systems and structures, vol.18, pp.3-10, 2007.

K. Mcenaney, D. Kraemer, Z. Ren, and G. Chen, Modeling of concentrating solar thermoelectric generators, Journal of Applied Physics, vol.110, p.74502, 2011.

L. L. Baranowski, G. J. Snyder, and E. S. Toberer, Concentrated solar thermoelectric generators, Energy & Environmental Science, vol.5, pp.9055-9067, 2012.

J. Huang, Aerospace and aircraft thermoelectric applications, DoE Thermoelectric Applications Workshop, 2009.

T. Bombardier, . Facility-comprising-a-thermoelectric, . Means-for, . The, . On et al., , 2008.

H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x, Journal of the Chemical Society, Chemical Communications, pp.578-580, 1977.

Y. Du, S. Z. Shen, K. Cai, and P. S. Casey, Research progress on polymer-inorganic thermoelectric nanocomposite materials, Progress in Polymer Science, vol.37, pp.820-841, 2012.

A. Attias, Polymères conjugués et polymères conducteurs électroniques, Technique de l'ingénieur, 2002.

J. Li, Y. Du, R. Jia, J. Xu, and S. Shen, Thermoelectric properties of flexible PEDOT: PSS/polypyrrole/paper nanocomposite Films, p.780, 2017.

K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang et al., Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices, Journal of Materials Science: Materials in Electronics, vol.26, pp.4438-4462, 2015.

M. Nikitin and S. Skipidarov, Thermoelectrics for Power Generation: A Look at Trends in the Technology, 2016.

G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nature materials, vol.12, p.719, 2013.

K. Chang, M. Jeng, C. Yang, Y. Chou, S. Wu et al., The thermoelectric performance of poly (3, 4-ethylenedi oxythiophene)/poly (4-styrenesulfonate) thin films, Journal of electronic materials, vol.38, pp.1182-1188, 2009.

M. Defranceschi, Polymères organiques conducteurs, influence de la chimie, de la formulation et de la structuration, 2013.

D. Mireille, Polymères organiques conducteurs, influence de la chimie, de la formulation et de la structuration, Techniques de l'ingénieur Propriétés électriques et électrochimiques, base documentaire, p.336, 2013.

S. Liu, H. Deng, Y. Zhao, S. Ren, and Q. Fu, The optimization of thermoelectric properties in a PEDOT: PSS thin film through post-treatment, vol.5, pp.1910-1917, 2015.

G. Zuo, Z. Li, E. Wang, and M. Kemerink, High Seebeck Coefficient and Power Factor in n-Type Organic Thermoelectrics, Advanced Electronic Materials, 4, p.1700501, 2018.

X. Zhao, D. Madan, Y. Cheng, J. Zhou, H. Li et al.,

. Katz, High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air, Advanced Materials, vol.29, p.1606928, 2017.

S. Wang, H. Sun, T. Erdmann, G. Wang, D. Fazzi et al., A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics, Advanced Materials, vol.30, p.1801898, 2018.

S. Wang, H. Sun, U. Ail, M. Vagin, P. O. Persson et al., Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers, Advanced Materials, vol.28, pp.10764-10771, 2016.

Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu et al., Organic Thermoelectric Materials and Devices Based on p-and n-Type Poly (metal 1, 1, 2, 2-ethenetetrathiolate) s, Advanced Materials, pp.932-937, 2012.

K. Shi, F. Zhang, C. Di, T. Yan, Y. Zou et al., Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones, Journal of the American Chemical Society, vol.137, pp.6979-6982, 2015.

R. A. Schlitz, F. G. Brunetti, A. M. Glaudell, P. L. Miller, M. A. Brady et al., Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications, Advanced Materials, vol.26, pp.2825-2830, 2014.

L. Zhao, X. Sun, Z. Lei, J. Zhao, J. Wu et al., Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites, Composites Part B: Engineering, vol.83, pp.317-322, 2015.

X. Sun, J. Zhao, L. Zhao, J. Wu, and Q. Li, Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity, RSC Advances, vol.6, pp.109878-109884, 2016.

X. Sun, Y. Wei, J. Li, J. Zhao, L. Zhao et al., Ultralight conducting PEDOT: PSS/carbon nanotube aerogels doped with silver for thermoelectric materials, Science China Materials, vol.60, pp.159-166, 2017.

Z. Lei, Y. Yan, J. Feng, J. Wu, G. Huang et al., Enhanced power factor within graphene hybridized carbon aerogels, RSC Advances, vol.5, pp.25650-25656, 2015.

Z. U. Khan, J. Edberg, M. M. Hamedi, R. Gabrielsson, H. Granberg et al., Thermoelectric polymers and their elastic aerogels, vol.28, pp.4556-4562, 2016.

W. Parker and R. Jenkins, Thermal conductivity measurements on bismuth telluride in the presence of a 2 MeV electron beam, in, Nabal Radiological Defense Lab, 1960.

W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, High thermoelectric performance BiSbTe alloy with unique low-dimensional structure, Journal of Applied Physics, p.113713, 2009.

J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Thermoelectric properties of individual electrodeposited bismuth telluride nanowires, Applied Physics Letters, vol.87, p.133109, 2005.

S. C. Andrews, M. A. Fardy, M. C. Moore, S. Aloni, M. Zhang et al., Atomic-level control of the thermoelectric properties in polytypoid nanowires, Chemical Science, vol.2, pp.706-714, 2011.

T. Harman, P. Taylor, M. Walsh, and B. Laforge, Quantum dot superlattice thermoelectric materials and devices, Science, vol.297, pp.2229-2232, 2002.

K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck et al., Cubic AgPbmSbTe2+ m: bulk thermoelectric materials with high figure of merit, Science, pp.818-821, 2004.

T. Schroder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier et al., Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, vol.53, pp.7722-7729, 2014.

B. Kusz, T. Miruszewski, B. Bochentyn, M. ?api?ski, and J. Karczewski, Structure and thermoelectric properties of Te-Ag-Ge-Sb (TAGS) materials obtained by reduction of melted oxide substrates, Journal of electronic materials, vol.45, pp.1085-1093, 2016.

G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu et al., Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano letters, vol.8, pp.4670-4674, 2008.

J. A. Martinez, P. P. Provencio, S. Picraux, J. P. Sullivan, and B. Swartzentruber, Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering, Journal of Applied Physics, vol.110, p.74317, 2011.

S. K. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kaner et al., Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide, Journal of Materials Chemistry, vol.21, pp.12259-12266, 2011.

V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov et al., Highly effective ${\mathrm{Mg}}_{2}{\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Sn}}_{x}$ thermoelectrics, Physical Review B, vol.74, p.45207, 2006.

S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen et al., Nanostructured bulk silicon as an effective thermoelectric material, Advanced Functional Materials, vol.19, pp.2445-2452, 2009.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, p.163, 2008.

X. Chen, A. Weathers, A. Moore, J. Zhou, and L. Shi, Thermoelectric properties of cold-pressed higher manganese silicides for waste heat recovery, Journal of electronic materials, pp.1564-1572, 2012.

D. Cederkrantz, M. Nygren, and A. Palmqvist, Thermoelectric properties of partly Sb-and Zn-substituted Ba 8 Ga 16 Ge 30 clathrates, Journal of Applied Physics, vol.108, p.113711, 2010.

E. S. Toberer, M. Christensen, B. B. Iversen, and G. J. Snyder, High temperature thermoelectric efficiency in Ba 8 Ga 16 Ge 30, Physical Review B, vol.77, p.75203, 2008.

J. H. Roudebush, E. S. Toberer, H. Hope, G. J. Snyder, and S. M. Kauzlarich, Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8? ySryAl14Si32 (0.6? y? 1.3) prepared by aluminum flux, Journal of Solid State Chemistry, vol.184, pp.1176-1185, 2011.

C. Okamura, T. Ueda, and K. Hasezaki, Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process, Materials Transactions, vol.51, pp.860-862, 2010.

X. Song and T. G. Finstad, Review of research on the thermoelectric material ZnSb, Thermoelectrics for Power Generation: A Look at Trends in the Technology, p.117, 2016.

P. Qiu, J. Yang, R. Liu, X. Shi, X. Huang et al., High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R= Ca, Journal of Applied Physics, vol.109, p.63713, 2011.

J. Peng, J. He, P. N. Alboni, and T. M. Tritt, Synthesis and thermoelectric properties of the double-filled skutterudite Yb 0.2 In y Co 4 Sb 12, Journal of electronic materials, vol.38, pp.981-984, 2009.

M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe et al., Beneficial effect of Ni substitution on the thermoelectric properties in partially filled Ca y Co 4? x Ni x Sb 12 skutterudites, Journal of Applied Physics, vol.97, p.83712, 2005.

T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxidematerial for high-temperature thermoelectric conversion, Journal of Materials Chemistry, vol.7, pp.85-90, 1997.

G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, Thermoelectric properties of the Bi-and Nasubstituted Ca 3 Co 4 O 9, Applied Physics Letters, vol.80, pp.3760-3762, 2002.

K. Fujita, T. Mochida, and K. Nakamura, High-temperature thermoelectric properties of NaxCoO2-? single crystals, Japanese Journal of Applied Physics, vol.40, p.4644, 2001.

S. Sakurada and N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds, Applied Physics Letters, vol.86, p.82105, 2005.

Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang et al., Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds, Applied Physics Letters, vol.79, pp.4165-4167, 2001.

T. Katayama, S. W. Kim, Y. Kimura, and Y. Mishima, The effects of quaternary additions on thermoelectric properties of TiNiSn-based half-Heusler alloys, Journal of electronic materials, vol.32, pp.1160-1165, 2003.

L. Stepien, A. Roch, R. Tkachov, and T. Gedrange, Progress in polymer thermoelectrics, Thermoelectrics for Power Generation-A Look at Trends in the Technology, vol.6, pp.111-133, 2016.

H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x, Journal of the Chemical Society, Chemical Communications, pp.578-580, 1977.

E. Schrödinger, Quantisierung als eigenwertproblem, Annalen der Physik, vol.385, pp.437-490, 1926.

P. A. Dirac, Quantum mechanics of many-electron systems, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.123, pp.714-733, 1929.

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln, Annalen der Physik, vol.389, pp.457-484, 1927.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, vol.136, pp.864-871, 1964.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, pp.542-548, 1927.

D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, pp.89-110, 1928.

W. Pauli, Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren, Zeitschrift für Physik A Hadrons and Nuclei, vol.31, pp.765-783, 1925.

J. C. Slater, The theory of complex spectra, Physical review, vol.34, p.1293, 1929.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical review, vol.140, pp.1133-1138, 1965.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, pp.5048-5079, 1981.

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.46, p.6671, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, vol.77, p.3865, 1996.

D. Benson, O. F. Sankey, and U. Häussermann, Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs, Physical Review B, vol.84, p.125211, 2011.

A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, The Journal of chemical physics, vol.98, pp.1372-1377, 1993.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, p.98, 1993.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, p.785, 1988.

J. Heyd and G. E. Scuseria, Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, The Journal of chemical physics, vol.121, pp.1187-1192, 2004.

C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Physical review, vol.46, p.618, 1934.

J. M. Ziman, Principles of the Theory of Solids, 1979.

B. M. Wong and J. G. Cordaro, Electronic properties of vinylene-linked heterocyclic conducting polymers: Predictive design and rational guidance from dft calculations, The Journal of Physical Chemistry C, vol.115, pp.18333-18341, 2011.

H. Sun and J. Autschbach, Electronic energy gaps for ?-conjugated oligomers and polymers calculated with density functional theory, Journal of chemical theory and computation, vol.10, pp.1035-1047, 2014.

W. F. Pasveer, Charge and Energy Transport in Disordered ?-conjugated Systems, 2004.

T. M. Mccormick, C. R. Bridges, E. I. Carrera, P. M. Dicarmine, G. L. Gibson et al., Conjugated polymers: Evaluating DFT methods for more accurate orbital energy modeling, Macromolecules, vol.46, pp.3879-3886, 2013.

B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system, The Journal of chemical physics, vol.27, pp.1208-1209, 1957.

L. Verlet, Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical review, vol.159, p.98, 1967.

F. H. Stillinger, Water revisited, vol.209, pp.451-457, 1980.

A. Rahman, Correlations in the motion of atoms in liquid argon, Physical review, vol.136, p.405, 1964.

J. Nicolas, K. Gubbins, W. Streett, and D. Tildesley, Equation of state for the Lennard-Jones fluid, vol.37, pp.1429-1454, 1979.

J. Barker and R. Watts, Structure of water

, A Monte Carlo calculation, Chemical Physics Letters, vol.3, pp.144-145, 1969.

S. G. Volz and G. Chen, Molecular-dynamics simulation of thermal conductivity of silicon crystals, Physical Review B, vol.61, p.2651, 2000.

J. D. Honeycutt and H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Physical Chemistry, vol.91, pp.4950-4963, 1987.

B. Hess, Determining the shear viscosity of model liquids from molecular dynamics simulations, The Journal of chemical physics, vol.116, pp.209-217, 2002.

L. X. Dang and T. Chang, Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials, The Journal of chemical physics, vol.106, pp.8149-8159, 1997.

A. Chandra, Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions, Physical review letters, vol.85, p.768, 2000.

C. Briant and J. Burton, Molecular dynamics study of the structure and thermodynamic properties of argon microclusters, The Journal of chemical physics, vol.63, pp.2045-2058, 1975.

R. Joshi and D. Ferry, Effect of multi-ion screening on the electronic transport in doped semiconductors: A molecular-dynamics analysis, Physical Review B, vol.43, p.9734, 1991.

C. W. Gear, The numerical integration of ordinary differential equations of various orders, 1966.

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 2003.

C. Runge, Über die numerische Auflösung von Differentialgleichungen, vol.46, pp.167-178, 1895.

W. Kutta, Beitrag zur naherungsweisen Integration totaler Differentialgleichungen, Z. Math. Phys, vol.46, pp.435-453, 1901.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2006.

F. Fraige and P. Langston, Integration schemes and damping algorithms in distinct element models, Advanced Powder Technology, vol.15, pp.227-245, 2004.

W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of chemical physics, vol.76, pp.637-649, 1982.

D. Frenkel and B. Smit, From algorithms to applications, 1996.

F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B, vol.31, p.5262, 1985.

P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Physical review, vol.34, p.57, 1929.

I. G. Kaplan, Intermolecular interactions: physical picture, computational methods and model potentials, 2006.

J. E. Jones, On the determination of molecular fields.-II. From the equation of state of a gas, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.106, pp.463-477, 1924.

R. A. Buckingham, The classical equation of state of gaseous helium, neon and argon, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.168, pp.264-283, 1938.

M. J. Lépinay, Impact des chimies de nettoyage et des traitements plasma sur les matériaux diélectriques à basse permittivité, 2014.

P. Ewald, Evaluation of optical and electrostatic lattice potentials, Ann. Phys, vol.64, pp.253-287, 1921.

E. Deguillard, Simulations de Dynamique Particulaire Dissipative pour le calcul de tension interfaciale dans des systèmes eau/tensioactif/huile, in, 2014.

S. W. De-leeuw, J. W. Perram, and E. R. Smith, Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.373, pp.27-56, 1980.

J. W. Gibbs, Elementary principles in statistical mechanics, Courier Corporation, 2014.

D. Pavel and R. Shanks, Molecular dynamics simulation of diffusion of O2 and CO2 in blends of amorphous poly (ethylene terephthalate) and related polyesters, Polymer, vol.46, pp.6135-6147, 2005.

M. Hayoun, La méthode de monte carlo metropolis, École «Simulation Numérique en Matière Condensée, pp.29-31, 2002.

P. Viot, Simulation numérique en physique statistique, 2006.

K. Maeda, W. Matsuoka, T. Fuse, K. Fukui, and S. Hirota, Solid-liquid phase transition of binary Lennard-Jones mixtures on molecular dynamics simulations, Journal of molecular liquids, vol.102, pp.1-9, 2003.

S. Nosé and M. Klein, Constant pressure molecular dynamics for molecular systems, Molecular Physics, pp.1055-1076, 1983.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.52, pp.255-268, 1984.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics, vol.81, pp.511-519, 1984.

W. G. Hoover, A. J. Ladd, and B. Moran, High-strain-rate plastic flow studied via nonequilibrium molecular dynamics, Physical review letters, vol.48, p.1818, 1982.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical review A, vol.31, p.1695, 1985.

H. J. Berendsen, J. V. Postma, W. F. Van-gunsteren, A. Dinola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of chemical physics, vol.81, pp.3684-3690, 1984.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, vol.52, pp.7182-7190, 1981.

M. Parrinello and A. Rahman, Crystal structure and pair potentials: A molecular-dynamics study, Physical review letters, vol.45, p.1196, 1980.

G. Bussi and M. Parrinello, Stochastic thermostats: comparison of local and global schemes, Computer Physics Communications, vol.179, pp.26-29, 2008.

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of chemical physics, vol.72, pp.2384-2393, 1980.

P. Debye, Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index, Mathematische Annalen, vol.67, pp.535-558, 1909.

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, NBS, 1952.

J. L. Lagrange, Traité de la résolution des équations numériques de tous les degrés: avec des notes sur plusieurs points de la théorie des équations algébriques, p.1806

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science, pp.671-680, 1983.

C. C. Lab, Introduction to Geometry Optimization, 2014.

D. Systèmes and M. Studio, , 2017.

W. Hehre, W. Lathan, R. Ditchfield, M. Newton, and J. Pople, Gaussian 70 (Quantum Chemistry Program Exchange, 1970.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

V. N. Kudin, T. A. Staroverov, R. Keith, J. Kobayashi, K. Normand et al.,

J. Iyengar, M. Tomasi, J. M. Cossi, M. Millam, C. Klene et al., Gaussian 16 Rev. B, vol.01, 2016.

M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb et al., Gaussian 09, revision a. 02, vol.200, p.28, 2009.

B. Delley, D. E. Ellis, A. J. Freeman, E. Baerends, and D. Post, Binding energy and electronic structure of small copper particles, Physical Review B, vol.27, p.2132, 1983.

B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, The Journal of chemical physics, pp.508-517, 1990.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera et al., The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter, vol.14, p.2745, 2002.

R. Robles, J. Izquierdo, A. Vega, and L. Balbás, All-electron and pseudopotential study of the spin-polarization of the V (001) surface: LDA versus GGA, Physical Review B, vol.63, p.172406, 2001.

J. Izquierdo, A. Vega, L. Balbás, D. Sánchez-portal, J. Junquera et al., Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems, Physical Review B, vol.61, p.13639, 2000.

M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels handbook, 2011.

C. Laulhé, Outils mathématiques : fonction de distribution de paires, 2012.

P. C. Cross, J. Decius, and E. B. Wilson, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. Cross, 1955.

P. Hermet, Introduction à la théorie de la fonctionnelle de la densité et application aux matériaux thermoélectriques, 2019.

S. L. Mayo, B. D. Olafson, and W. A. Goddard, DREIDING: a generic force field for molecular simulations, Journal of Physical Chemistry, vol.94, pp.8897-8909, 1990.

H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, An ab initio CFF93 all-atom force field for polycarbonates, Journal of the American Chemical Society, vol.116, pp.2978-2987, 1994.

H. Sun, Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, vol.28, pp.701-712, 1995.

P. Dauber-osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest et al., Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins: Structure, Function, and Bioinformatics, vol.4, pp.31-47, 1988.

H. Sun, P. Ren, and J. Fried, The COMPASS force field: parameterization and validation for phosphazenes, Computational and Theoretical Polymer Science, vol.8, pp.229-246, 1998.

H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases, Journal of molecular modeling, vol.22, p.47, 2016.

H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds, vol.102, pp.7338-7364, 1998.

D. Rigby, H. Sun, and B. Eichinger, Computer simulations of poly (ethylene oxide): force field, pvt diagram and cyclization behaviour, Polymer International, vol.44, pp.311-330, 1997.

M. P. Allen and D. J. Tildesley, Computer simulation of liquids, 2017.

L. W. Hrubesh and R. W. Pekala, Thermal properties of organic and inorganic aerogels, Journal of Materials Research, vol.9, pp.731-738, 1994.

R. H. Boyd, An off-lattice constant-pressure simulation of liquid polymethylene, Macromolecules, vol.22, pp.2477-2481, 1989.

F. Wikipedia, , 2012.

S. Wang, Y. Xu, M. Yan, Z. Zhai, B. Ren et al., Comparative study of metal-doped carbon aerogel: Physical properties and electrochemical performance, Journal of Electroanalytical Chemistry, 2017.

J. Montes, F. Cuevas, J. Cintas, and P. Urban, Electrical conductivity of metal powders under pressure, Applied Physics A, vol.105, pp.935-947, 2011.

N. Job, R. Pirard, J. Marien, and J. Pirard, Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol-formaldehyde aqueous solution, Carbon, vol.42, pp.3217-3227, 2004.

A. T. García-sosa and M. Castro, Density functional study of FeO2, FeO article empty _2^+, and FeO article empty _2, International Journal of Quantum Chemistry, vol.80, pp.307-319, 2000.

A. V. Arbuznikov, M. Hendrickx, and L. G. Vanquickenborne, Quantum chemical study of the geometric and electronic structure of the FeC2 molecule, Chemical Physics Letters, vol.310, pp.515-522, 1999.

A. Degiovanni, Techniques de l'Ingénieur, traité Mesures et Contrôle-Doc, vol.2, p.850, 1994.

. Afnor, Isolation thermique. Détermination de la résistance thermique et des propriétés connexes en régime stationnaire: Méthode flux métrique, vol.8301, 1991.

P. Thureau, Fluxmètres thermiques, Technique de l'ingénieur, 1996.

, NETZSCH, Heat Flow Meter -HFM 436 Lambda -High Precision Instrument for Testing Insulating Materials Compliant to ASTM C518, vol.8301, 2002.

J. R. Macdonald, Impedance spectroscopy: emphasizing solid materials and systems, Applied Optics, vol.28, p.1083, 1989.

S. L. Zelinka, L. Ortiz-candelaria, D. S. Stone, and D. R. Rammer, Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood, Forest products journal, vol.59, issue.2, pp.77-82, 2009.

F. Makhlooghiazad, J. Guazzagaloppa, L. A. O&apos;dell, R. Yunis, A. Basile et al., The influence of the size and symmetry of cations and anions on the physicochemical behavior of organic ionic plastic crystal electrolytes mixed with sodium salts, Physical Chemistry Chemical Physics, vol.20, pp.4721-4731, 2018.

G. S. Ohm, Die galvanische Kette, mathematisch bearbeitet, TH Riemann, p.1827

J. Guazzagaloppa, A novel Organic Ionic Plastic Crystal electrolyte for sodium batteries Institute for Frontier Materials (IFM) -Melbourne, 2016.

L. Euler, Introduction à l'analyse infinitésimale, Chez Barrois, p.1796

U. Riko, ZEM-3 Series -Seebeck Coefficient / Electric Resistance Measurement System, p.2, 2005.

. Zeiss and . Zeiss-geminisem-family, , 2012.

J. Ruste, Microscopie électronique à balayage-Principe et équipement, Techniques de l'ingénieur, p.33, 2013.

. Micromeritics, , 2000.

P. Laplace, Sur l'action capillaire, p.349, 1806.

K. Suslick, , vol.26, pp.517-541, 1998.

J. Daudon, Thermogravimétrie, P1260, Techniques de l'ingénieur, 2001.

M. Toledo and T. Dsc-3+, , 2012.

L. Karpenko-jereb, V. Shaposhnik, and F. Pregl, Journal of analytical chemistry, vol.67, pp.600-602, 2012.

R. C. Sahu, R. Patel, and B. C. Ray, Removal of hydrogen sulfide using red mud at ambient conditions, Fuel processing technology, vol.92, pp.1587-1592, 2011.

M. Dr, D. Liliana-krotz, and . Scientific, ItalyThermo Scientific, Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH, Elemental Analyzer, 2000.

. Micromeritics, Performance Testing Porous Aluminas Using the TriStar 3000

L. Sun and F. Meunier, Adsorption. aspects théoriques, vol.2, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02484091

J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications, 2013.

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, On a theory of the van der Waals adsorption of gases, Journal of the American Chemical Society, vol.62, pp.1723-1732, 1940.

M. Albi, Sciences et Technologies des Poudres, 2016.

S. J. Gregg, K. S. Sing, and H. Salzberg, Adsorption surface area and porosity, Journal of The Electrochemical Society, vol.114, pp.279-279, 1967.

M. Mirzaeian and P. J. Hall, The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels, Journal of Materials Science, vol.44, pp.2705-2713, 2009.

K. Gregg and W. Sing, Adsorption, surface area and porosity, pp.195-197, 1982.

D. Gantenbein, E. Berg-hansen, and R. E. Orten, Method for the manufacturing of a suspension comprising a calcium carbonate-comprising material, in, Google Patents, 2019.

I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, vol.40, pp.1361-1403, 1918.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, vol.60, pp.309-319, 1938.

J. White, Literature review on adsorption cooling systems, 2012.

D. M. Young and A. D. Crowell, Physical adsorption of gases, 1962.

P. Wikipedia, , 1957.

M. A. Hubbe, N. Wu, O. J. Rojas, and S. Park, Permeation of a cationic polyelectrolyte into mesoporous silica: Part 3. Using adsorption isotherms to elucidate streaming potential results, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.381, pp.1-6, 2011.

G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch et al., Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes, Acs Nano, vol.7, pp.10920-10930, 2013.

M. M. Bruno, N. G. Cotella, M. C. Miras, and C. A. Barbero, A novel way to maintain resorcinol-formaldehyde porosity during drying: Stabilization of the sol-gel nanostructure using a cationic polyelectrolyte, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.362, pp.28-32, 2010.

R. W. Pekala, S. T. Mayer, J. L. Kaschmitter, and R. L. Morrison, Method for making thin carbon foam electrodes, in, Google Patents, 1999.

R. W. Pekala and C. T. Alviso, Carbon aerogels and xerogels, MRS Online Proceedings Library Archive, p.270, 1992.

R. W. Pekala, Low density, resorcinol-formaldehyde aerogels, in, Google Patents, 1989.

R. Pekala and F. Kong, A synthetic route to organic aerogels-mechanism, structure, and properties, Le Journal de Physique Colloques, vol.50, pp.4-33, 1989.
URL : https://hal.archives-ouvertes.fr/jpa-00229481

R. Pekala, J. Farmer, C. Alviso, T. Tran, S. Mayer et al., Carbon aerogels for electrochemical applications, Journal of Non-Crystalline Solids, vol.225, pp.74-80, 1998.

R. Pekala, C. Alviso, X. Lu, J. Gross, and J. Fricke, New organic aerogels based upon a phenolic-furfural reaction, Journal of Non-Crystalline Solids, vol.188, pp.34-40, 1995.

R. Pekala, C. Alviso, and J. Lemay, Organic aerogels: a new type of ultrastructured polymer, 1991.

R. Pekala, C. Alviso, and J. Lemay, Organic aerogels: microstructural dependence of mechanical properties in compression, Journal of Non-Crystalline Solids, pp.67-75, 1990.

R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of Materials Science, vol.24, pp.3221-3227, 1989.

G. Pajonk, A. V. Rao, N. Pinto, F. Ehrburger-dolle, and M. B. Gil, Monolithic carbon aerogels for fuel cell electrodes, Studies in Surface Science and Catalysis, vol.118, pp.167-174, 1998.

C. Moreno-castilla and F. Maldonado-hódar, Carbon aerogels for catalysis applications: An overview, vol.43, pp.455-465, 2005.

S. T. Mayer, J. L. Kaschmitter, and R. W. Pekala, Google Patents, 1997.

S. T. Mayer, J. L. Kaschmitter, and R. W. Pekala, Method of low pressure and/or evaporative drying of aerogel, in, Google Patents, 1995.

B. Mathieu, B. Michaux, R. Pirard, O. Vant, J. Cantfort et al., Synthesis of resorcinol-formaldehyde aeroels by the freeze-drying methods, vol.22, pp.19-30, 1997.

B. Mathieu, S. Blacher, R. Pirard, J. Pirard, B. Sahouli et al., Freeze-dried resorcinol-formaldehyde gels, Journal of Non-Crystalline Solids, vol.212, pp.250-261, 1997.

C. Lin and J. A. Ritter, Carbonization and activation of sol-gel derived carbon xerogels, Carbon, vol.38, pp.849-861, 2000.

C. Lin and J. Ritter, Effect of synthesis pH on the structure of carbon xerogels, Carbon, vol.35, pp.1271-1278, 1997.

R. Kocklenberg, B. Mathieu, S. Blacher, R. Pirard, J. Pirard et al., Van den Bossche, Texture control of freeze-dried resorcinol-formaldehyde gels, Journal of Non-Crystalline Solids, vol.225, pp.8-13, 1998.

R. Tannert, M. Schwan, and L. Ratke, Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels by means of a pH-controlled sol-gel process, The Journal of Supercritical Fluids, vol.106, pp.57-61, 2015.

A. Fung, G. Reynolds, Z. Wang, M. Dresselhaus, G. Dresselhaus et al., Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions, Journal of Non-Crystalline Solids, vol.186, pp.200-208, 1995.

G. Reynolds, A. Fung, Z. Wang, M. Dresselhaus, and R. Pekala, The effects of external conditions on the internal structure of carbon aerogels, Journal of Non-Crystalline Solids, vol.188, pp.27-33, 1995.

S. Hulsey, C. Alviso, F. Kong, and R. Pekala, The Effect of Pyrolysis Temperature and Formulation on Pore Size Distribution and Surfacearea of Carbon Aerogels, MRS Online Proceedings Library Archive, p.270, 1992.

E. Kinnertová and V. Slovák, Influence of catalyst amount on properties of resorcinol-formaldehyde xerogels, Thermochimica Acta, vol.660, pp.37-43, 2018.

J. Balach, L. Tamborini, K. Sapag, D. F. Acevedo, and C. A. Barbero, Facile preparation of hierarchical porous carbons with tailored pore size obtained using a cationic polyelectrolyte as a soft template, Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.343-348, 2012.

B. K. Atieh, Synthèse et procédé de fabrication d'un matériau superisolant, HUTCHINSON -Centre de recherche ? Innovations Technologiques, 2014.

L. Dupuy, Synthèse organique et influence des paramètres de formulation sur les propriétés d'aérogels organiques, 2014.

J. Kuhn, R. Brandt, H. Mehling, R. Petri?evi?, and J. Fricke, In situ infrared observation of the pyrolysis process of carbon aerogels, Journal of Non-Crystalline Solids, vol.225, pp.58-63, 1998.

G. Biesmans, A. Mertens, L. Duffours, T. Woignier, and J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels, Journal of Non-Crystalline Solids, vol.225, pp.64-68, 1998.

E. Fitzer, W. Schafer, and S. Yamada, The formation of glasslike by pyrolysis of nonmelting resins, Carbon, vol.82, p.217, 1968.

G. Reichenauer, A. Emmerling, J. Fricke, and R. Pekala, Microporosity in carbon aerogels, Journal of Non-Crystalline Solids, vol.225, pp.210-214, 1998.

V. Bock, A. Emmerling, and J. Fricke, Influence of monomer and catalyst concentration on RF and carbon aerogel structure, Journal of Non-Crystalline Solids, vol.225, pp.69-73, 1998.

Y. Hanzawa, H. Hatori, N. Yoshizawa, and Y. Yamada, Structural changes in carbon aerogels with high temperature treatment, Carbon, vol.40, pp.575-581, 2002.

E. Fitzer, W. Schaefer, and S. Yamada, The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin, Carbon, vol.7, pp.643-648, 1969.

S. A. Al-muhtaseb and J. A. Ritter, Preparation and properties of resorcinol-formaldehyde organic and carbon gels, Advanced Materials, vol.15, pp.101-114, 2003.

L. Zuppiroli, M. Bussac, S. Paschen, O. Chauvet, and L. Forro, Hopping in disordered conducting polymers, Physical Review B, vol.50, p.5196, 1994.

P. Sheng, B. Abeles, and Y. Arie, Hopping conductivity in granular metals, Physical review letters, p.44, 1973.

H. Kim, D. Kim, S. Jung, S. N. Yi, Y. J. Yun et al., Charge transport in thick reduced graphene oxide film, The Journal of Physical Chemistry C, vol.119, pp.28685-28690, 2015.

J. Hosdez, Fissuration par fatigue de fontes à graphite sphéroïdal et vermiculaire : caractérisation des effets de la plasticité et d'un vieillissement thermique, 2017.

D. Pantea, H. Darmstadt, S. Kaliaguine, and C. Roy, Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology, Applied Surface Science, vol.217, pp.181-193, 2003.

F. ,

J. Sánchez-gonzález, A. Macías-garcía, M. Alexandre-franco, and V. Gómez-serrano, Electrical conductivity of carbon blacks under compression, vol.43, pp.741-747, 2005.

B. Hervé-bazin, Les nanoparticules: Un enjeu majeur pour la santé au travail?, L'Editeur, 2007.

N. Yoshizawa, H. Hatori, Y. Soneda, Y. Hanzawa, K. Kaneko et al., Structure and electrochemical properties of carbon aerogels polymerized in the presence of Cu2+, Journal of Non-Crystalline Solids, vol.330, pp.99-105, 2003.

C. Moreno-castilla, F. J. Maldonado-hódar, J. Rivera-utrilla, and E. Rodr??uez-castellón, Group 6 metal oxidecarbon aerogels. Their synthesis, characterization and catalytic activity in the skeletal isomerization of 1-butene, Applied Catalysis A: General, vol.183, pp.345-356, 1999.

F. Maldonado-hódar, C. Moreno-castilla, J. Rivera-utrilla, Y. Hanzawa, and Y. Yamada, Catalytic graphitization of carbon aerogels by transition metals, Langmuir, vol.16, pp.4367-4373, 2000.

F. Maldonado-hódar, C. Moreno-castilla, J. Rivera-utrilla, and M. Ferro-garcia, Studies in Surface Science and Catalysis, vol.130, pp.1007-1012, 2000.

F. Maldonado-hódar, M. Ferro-garc?a, J. Rivera-utrilla, and C. Moreno-castilla, Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives, Carbon, vol.37, pp.1199-1205, 1999.

C. Lin, J. A. Ritter, and B. N. Popov, Development of Carbon-Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels, Journal of The Electrochemical Society, vol.146, pp.3155-3160, 1999.

E. Bekyarova and K. Kaneko, Structure and Physical Properties of Tailor-Made Ce, Zr-Doped Carbon Aerogels, Advanced Materials, vol.12, pp.1625-1628, 2000.

Z. Xu, Y. Zhang, P. Li, and C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores, Acs Nano, vol.6, pp.7103-7113, 2012.

M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher et al., Synthesis of graphene aerogel with high electrical conductivity, Journal of the American Chemical Society, vol.132, pp.14067-14069, 2010.

D. Sim, D. Liu, X. Dong, N. Xiao, S. Li et al., Power factor enhancement for few-layered graphene films by molecular attachments, The Journal of Physical Chemistry C, vol.115, pp.1780-1785, 2011.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature nanotechnology, vol.3, p.491, 2008.

A. Boulerouah, Propriétés thermiques et électriques de composites à base de nanotubes de carbone et application à la détection de gaz, 2011.

E. T. Thostenson and T. Chou, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites, Carbon, vol.44, pp.3022-3029, 2006.

J. Silvain, C. Vincent, J. Heintz, and N. Chandra, Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications, Composites Science and Technology, vol.69, pp.2474-2484, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438188

P. Raghavan, X. Zhao, J. Manuel, G. S. Chauhan, J. Ahn et al., Electrochemical performance of electrospun poly (vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid, Electrochimica Acta, vol.55, pp.1347-1354, 2010.

R. Prasanth, N. Shubha, H. H. Hng, and M. Srinivasan, Effect of nano-clay on ionic conductivity and electrochemical properties of poly (vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries, European Polymer Journal, vol.49, pp.307-318, 2013.

I. Nam, H. Lee, and J. Jang, Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites, Composites Part A: Applied Science and Manufacturing, vol.42, pp.1110-1118, 2011.

Y. Li, S. Fu, and Y. Mai, Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency, Polymer, vol.47, pp.2127-2132, 2006.

A. Laachachi, D. Ruch, F. Addiego, M. Ferriol, M. Cochez et al., Effect of ZnO and organo-modified montmorillonite on thermal degradation of poly (methyl methacrylate) nanocomposites, Polymer Degradation and Stability, vol.94, pp.670-678, 2009.

O. K. Johnson, G. C. Kaschner, T. A. Mason, D. T. Fullwood, and G. Hansen, Optimization of nickel nanocomposite for large strain sensing applications, Sensors and Actuators A: Physical, vol.166, pp.40-47, 2011.

Y. R. Hernandez, A. Gryson, F. M. Blighe, M. Cadek, V. Nicolosi et al., Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites, Scripta Materialia, vol.58, pp.69-72, 2008.

D. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon, vol.39, pp.279-285, 2001.

. Sigma-aldrich, , 2018.

. Ferlam, , 2018.

. Sgl-group, , 2018.

R. Payerne, Structure et propriétés électroniques à différentes échelles de systèmes modèles de polymères conducteurs et semi-conducteurs, in, 2004.

R. Zallen and C. M. Penchina, The physics of amorphous solids, American Journal of Physics, vol.54, pp.862-863, 1986.

S. Kirkpatrick, Percolation and conduction, Reviews of modern physics, p.574, 1973.

Q. Yuan and D. Wu, Low percolation threshold and high conductivity in carbon black filled polyethylene and polypropylene composites, Journal of applied polymer science, vol.115, pp.3527-3534, 2010.

F. Gubbels, R. Jérôme, P. Teyssie, E. Vanlathem, R. Deltour et al., Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites, Macromolecules, vol.27, pp.1972-1974, 1994.

S. Softtonic, , 2016.

M. Ciszewski, E. Szatkowska, A. Koszorek, and M. Majka, Carbon aerogels modified with graphene oxide, graphene and CNT as symetric supercapacitor electrodes, Journal of Materials Science: Materials in Electronics, vol.28, pp.4897-4903, 2017.

G. Wikipédia, , 2019.

D. M. Rowe, CRC handbook of thermoelectrics, 1995.

L. Zhao, J. Zhao, X. Sun, Q. Li, J. Wu et al., Enhanced thermoelectric properties of hybridized conducting aerogels based on carbon nanotubes and pyrolyzed resorcinol-formaldehyde resin, Synthetic Metals, p.205, 2015.

L. Zhao, X. Sun, Z. Lei, J. Zhao, J. Wu et al., Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites, Composites Part B: Engineering, vol.83, pp.317-322, 2015.

X. Sun, J. Zhao, L. Zhao, J. Wu, and Q. Li, Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity, RSC Advances, vol.6, pp.109878-109884, 2016.

X. Sun, Y. Wei, J. Li, J. Zhao, L. Zhao et al., Ultralight conducting PEDOT: PSS/carbon nanotube aerogels doped with silver for thermoelectric materials, Science China Materials, vol.60, pp.159-166, 2017.

Z. Lei, Y. Yan, J. Feng, J. Wu, G. Huang et al., Enhanced power factor within graphene hybridized carbon aerogels, RSC Advances, vol.5, pp.25650-25656, 2015.

S. Suzuki, C. Bower, Y. Watanabe, and O. Zhou, Work functions and valence band states of pristine and Csintercalated single-walled carbon nanotube bundles, Applied Physics Letters, vol.76, pp.4007-4009, 2000.

A. Benayad, H. Shin, H. K. Park, S. Yoon, K. K. Kim et al., Controlling work function of reduced graphite oxide with Au-ion concentration, Chemical Physics Letters, vol.475, pp.91-95, 2009.

J. Zide, D. Vashaee, Z. Bian, G. Zeng, J. Bowers et al., Demonstration of electron filtering to increase the Seebeck coefficient, Physical Review B, vol.74, p.205335, 2006.

A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, vol.2, pp.466-479, 2009.

C. Meng, C. Liu, and S. Fan, A promising approach to enhanced thermoelectric properties using carbon nanotube networks, Advanced Materials, vol.22, pp.535-539, 2010.

J. Martin, L. Wang, L. Chen, and G. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites, Physical Review B, vol.79, p.115311, 2009.

D. Ko, Y. Kang, and C. B. Murray, Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites, Nano letters, vol.11, pp.2841-2844, 2011.

M. He, J. Ge, Z. Lin, X. Feng, X. Wang et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface, Energy & Environmental Science, vol.5, pp.8351-8358, 2012.

S. V. Faleev and F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Physical Review B, vol.77, p.214304, 2008.

M. A. Gutie?rez, F. Rubio, and F. Monte, Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon? carbon nanotube composites, Chemistry of materials, vol.22, pp.2711-2719, 2010.

Q. T. Nguyen, Analyse expérimentale et numérique de la compaction des renforts fibreux: Application pour la perméabilité, 2011.

D. Lecointe, Caractérisation et simulation des processus de transferts lors d'injection de résine pour le procédé RTM, 1999.

. Goodfellow, Votre fournisseur international de matériaux, 2019.

I. Rexor and . Functions, , 2019.

N. Tape, , 2019.

G. Tronic, R. , and C. Electroniques, , 2019.

A. Montecucco, J. Siviter, and A. R. Knox, Simple, fast and accurate maximum power point tracking converter for thermoelectric generators, IEEE Energy Conversion Congress and Exposition (ECCE), pp.2777-2783, 2012.

I. Laird, H. Lovatt, N. Savvides, D. Lu, and V. Agelidis, Comparative study of maximum power point tracking algorithms for thermoelectric generators, pp.1-6, 2008.

D. M. Rowe, CRC handbook of thermoelectrics, 1995.

G. Min and D. Rowe, Optimisation of thermoelectric module geometry for 'waste heat'electric power generation, Journal of Power Sources, vol.38, pp.253-259, 1992.

L. Technology, LTC3108 Ultralow Voltage Step-Up Converter and Power Manager, 2017.

S. Davis, Ultra-Low-Voltage Input Power Converters Support Energy Harvesting, Power Electronics Technology, 2010.

. Stripres, Stripres Sensor for Pressure Measurements in Vacuum Insulation Panels, 2018.

J. Kim, F. E. Boafo, S. Kim, and J. Kim, Aging performance evaluation of vacuum insulation panel (VIP), Case studies in construction materials, vol.7, pp.329-335, 2017.

R. Baetens, B. P. Jelle, J. V. Thue, M. J. Tenpierik, S. Grynning et al., Vacuum insulation panels for building applications: A review and beyond, Energy and Buildings, vol.42, pp.147-172, 2010.

H. Goldsmid, Porous thermoelectric materials, pp.903-910, 2009.

L. Zhao, J. Zhao, X. Sun, Q. Li, J. Wu et al., Enhanced thermoelectric properties of hybridized conducting aerogels based on carbon nanotubes and pyrolyzed resorcinol-formaldehyde resin, Synthetic Metals, p.205, 2015.

X. Sun, J. Zhao, L. Zhao, J. Wu, and Q. Li, Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity, RSC Advances, vol.6, pp.109878-109884, 2016.

X. Sun, Y. Wei, J. Li, J. Zhao, L. Zhao et al., Ultralight conducting PEDOT: PSS/carbon nanotube aerogels doped with silver for thermoelectric materials, Science China Materials, vol.60, pp.159-166, 2017.

Z. Lei, Y. Yan, J. Feng, J. Wu, G. Huang et al., Enhanced power factor within graphene hybridized carbon aerogels, RSC Advances, vol.5, pp.25650-25656, 2015.

, Références bibliographiques de la conclusion générale

N. Toshima, Recent progress of organic and hybrid thermoelectric materials, Synthetic Metals, vol.225, pp.3-21, 2017.

L. Stepien, A. Roch, R. Tkachov, and T. Gedrange, Progress in polymer thermoelectrics, Thermoelectrics for Power Generation-A Look at Trends in the Technology, vol.6, pp.111-133, 2016.

Z. U. Khan, J. Edberg, M. M. Hamedi, R. Gabrielsson, H. Granberg et al., Thermoelectric polymers and their elastic aerogels, vol.28, pp.4556-4562, 2016.

X. Sun, J. Zhao, L. Zhao, J. Wu, and Q. Li, Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity, RSC Advances, vol.6, pp.109878-109884, 2016.

I. P. Das, Thermoelectric Energy Harvesting 2018-2028: Applications, Markets, Players, 2018.