. .. Protocole-de-mesure,

. .. Résultats,

. .. Discussion,

. .. Conclusion,

, Chapitre 6 -Conclusions et perspectives de l'étude

. .. Chapitre-7--bibliographie and . Souza, 100 (> 3 kHz) sont très sensibles aux variations de positionnement de la sonde, Ainsi, les outils développés, 2014.

. Sloot, Une mauvaise étanchéité et des variations dans le positionnement de la sonde peuvent causer de faux négatifs (la non-détection d'un signal présent), puisque le test analyse l'amplitude des OEAs et la reproductibilité des résultats. Pour les basses fréquences, il est plus difficile d'obtenir un niveau acceptable de rapport signal-bruit, et une augmentation du nombre d'acquisitions (temps d'essai plus long) ne résout généralement pas le problème (Berninger 2007). C'est pourquoi un système plus efficace de réjection des artefacts et une meilleure étanchéité deviennent encore plus importants. Les courbes obtenues par l'AFPS peuvent également servir de référence pour un étalonnage plus efficace des stimulations sonores, Le test des TEOAE est celui le plus couramment utilisé dans le dépistage auditif néonatal, 2015.

. Kvoerner, La mesure des OEAs peut également être appliquée à l'identification précoce d'éventuels traumatismes sonores par l'analyse de la fatigue auditive

, Il s'agit cependant d'un test subjectif, influencé par la capacité du patient, qui ne permet pas de mettre en évidence la fatigue auditive (variations temporaires du seuil auditif), cette dernière pouvant être masquée par des mécanismes de compensation rétro-cochléaire, Les travailleurs exposés au bruit sont généralement soumis à une audiométrie tonale pour évaluer les variations du seuil auditif, 2014.

. Venet, Comme il s'agit d'un test qui compare deux états (avant et après l'exposition au bruit), l'AFPS est un outil qui peux augmenter la fiabilité du test, vu l'augmentation obtenue dans la corrélation entre le repositionnement et le positionnement initial. Les OEA présentent également des résultats plus fiables que l'analyse de seuil par audiométrie tonale dans l'évaluation de la persistance des acouphènes induits par le bruit après traumatisme acoustique aigu, en plus des mesures du PDA pour évaluer les cellules ciliées externes, utilisent l'analyse du PDA avec stimulation controlatérale (PDA-CL) pour évaluer l'efficacité du réflexe efférent (somme des effets du réflexe stapédien et olivocochlear), 2006.

. Rosowski, La caractérisation de l'impédance du système de génération par le circuit équivalent de Norton ou Thévenin peut permettre à l'analyse de l'étanchéité du conduit auditif de fournir des valeurs approximatives d'impédance acoustique

, L'utilisation d'un signal de stimulation avec une bande qui couvre les fréquences entre 100 et 500Hz peut permettre une plus grande précision dans l'analyse de l'étanchéité (Groon et al. 2015), pour des applications où l'analyse du positionnement de la sonde est sans intérêt. Ces applications peuvent inclure l'analyse in situ de l'étanchéité des protections individuelles contre le bruit, qui généralement ne donnent pas les performances attendues (Sarafian and Andeol, 1990.

. Whitehead, Étant donné que la sensibilité plus élevée de la phase PDA par rapport aux variations ICP est située autour de 1 kHz, la possibilité de variation de fréquence est limitée (Büki et al. 1996). Cependant, dans un intervalle de 3/32 d'octave, il est attendu qu'il y ait au moins un pic de la structure fine (He and Schmiedt 1993), permettant l'optimisation de ce paramètre. La valeur optimale pour f2/f1 réduit significativement avec l'augmentation de f2, présentant également quelques variations inter-sujets, 1993.

K. Al-noury, Distortion Product Otoacoustic Emission for the Screening of Cochlear Damage in Children Treated With Cisplatin, Laryngoscope, vol.121, pp.1081-84, 2011.

P. Avan, B. Büki, B. Maat, M. Dordain, and H. P. Wit, Middle Ear Influence on Otoacoustic Emissions. I: Noninvasive Investigation of the Human Transmission Apparatus and Comparison with Model Results, Hearing Research, vol.140, issue.1-2, pp.189-201, 2000.

P. Avan, B. Büki, and C. Petit, Auditory Distortions: Origins and Functions, Physiological Reviews, vol.93, issue.4, pp.1563-1619, 2013.

P. Avan, F. Giraudet, B. Chauveau, L. Gilain, and T. Mom, Unstable Distortion-Product Otoacoustic Emission Phase in Menière's Disease, Hearing Research, vol.277, issue.1-2, pp.88-95, 2011.

P. Avan, H. Normand, F. Giraudet, G. Gerenton, and P. Denise, Noninvasive In-Ear Monitoring of Intracranial Pressure during Microgravity in Parabolic Flights, Journal of Applied Physiology, vol.125, issue.2, pp.353-61, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01878609

M. F. Bear, W. Barry, M. A. Connors, and . Paradiso, Neurociências -Desvendando o Sistema Nervoso. 2 a, 2002.

E. Berninger, Characteristics of Normal Newborn Transient-Evoked Otoacoustic Emissions : Ear Asymmetries and Sex Effects, International Journal of Audiology, vol.46, pp.661-69, 2007.

D. M. Bowman, K. David, J. J. Brown, B. P. Eggermont, and . Kimberley, The Effect of Sound Intensity on f 1 -Sweep and f 2 -Sweep Distortion Product Otoacoustic Emissions Phase Delay Estimates in Human Adults, The Journal of the Acoustical Society of America, vol.101, issue.3, pp.1550-59, 1997.

B. Büki, F. Giraudet, and P. Avan, Non-Invasive Measurements of Intralabyrinthine Pressure Changes by Electrocochleography and Otoacoustic Emissions, Hearing Research, vol.251, issue.1-2, pp.51-59, 2009.

B. Büki, P. Avan, J. J. Lemaire, M. Dordain, J. Chazal et al., Otoacoustic Emissions: A New Tool for Monitoring Intracranial Pressure Changes through Stapes Displacements, Hearing Research, vol.94, pp.125-164, 1996.

B. Büki, A. Chomicki, M. Dordain, J. J. Lemaire, H. P. Wit et al., Middle-Ear Influence on Otoacoustic Emissions. II: Contributions of Posture and Intracranial Pressure, Hearing Research, vol.140, issue.1-2, pp.202-213, 2000.

. Büki, E. Béla, H. P. De-kleine, P. Wit, and . Avan, Detection of Intracochlear and Intracranial Pressure Changes with Otoacoustic Emissions: A Gerbil Model, Hearing Research, vol.167, issue.1-2, pp.180-91, 2002.

J. G. Casali and M. Y. Park, Attenuation Performance of Four Hearing Protectors under Dynamic Movement and Different User Fitting Conditions, Human Factors, vol.32, issue.1, pp.9-25, 1990.

K. K. Charaziak and C. A. Shera, Compensating for Ear-Canal Acoustics When Measuring Otoacoustic Emissions, The Journal of the Acoustical Society of America, vol.141, issue.1, pp.515-546, 2017.

J. Chen, Z. Gombart, S. Rogers, S. Gardiner, S. Cecil et al., Pupillary Reactivity as an Early Indicator of Increased Intracranial Pressure: The Introduction of the Neurological Pupil Index, Surgical Neurology International, vol.2, issue.1, p.82, 2011.

S. Chen, H. Zhang, L. Wang, and G. Li, An In-Situ Calibration Method and the Effects on Stimulus Frequency Otoacoustic Emissions, BioMedical Engineering OnLine, vol.13, issue.1, p.95, 2014.

, Committee on Hearing and Equilibrium Guidelines for the Diagnosis and Evaluation of Therapy in Meniere's Disease, Committee on Hearing and Equilibrium, vol.113, pp.181-85, 1995.

H. Davson, G. Hollingsworth, and M. B. Segal, The Mechanism of Drainage of the Cerebrospinal Fluid, Brain, vol.93, issue.4, pp.665-78, 1970.

D. Doyle, P. W. John, and . Mark, Analysis of Intracranial Pressure, Journal of Clinical Monitoring, vol.8, issue.1, pp.81-90, 1992.

S. Frota, Fundamentos Em Fonoaudiologia: Audiologia. 2 a . Rio de Janeiro: GUANABARA KOOGAN, 2003.

G. Gerenton, Mesures Non Invasives de l'activité Électrophysiologique Des Cellules Sensorielles et Des Neurones Auditifs. Applications Au Diagnostic de Pathologies de l'oreille Interne, 2015.

G. Gerenton, F. Giraudet, I. Djennaoui, Y. Pavier, L. Gilain et al., Abnormal Fast Fluctuations of Electrocochleography and Otoacoustic Emissions in Menière's Disease, Hearing Research, vol.327, pp.199-208, 2015.

F. Giraudet, F. Longeras, A. Mulliez, A. Thalamy, B. Pereira et al., Noninvasive Detection of Alarming Intracranial Pressure Changes by Auditory Monitoring in Early Management of Brain Injury: A Prospective Invasive versus Noninvasive Study, Critical Care, vol.21, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01661120

K. A. Groon, M. Daniel, J. G. Rasetshwane, M. P. Kopun, S. T. Gorga et al., Air-Leak Effects on Ear-Canal Acoustic Absorbance, Ear and Hearing, vol.36, issue.1, pp.155-63, 2015.

N. He and R. A. Schmiedt, Fine Structure of the 2f1-F2 Acoustic Distortion Product: Changes with Primary Level, The Journal of the Acoustical Society of America, vol.94, issue.5, pp.2659-69, 1993.

H. Hinghofer-szalkay, Gravity, the Hydrostatic Indifference Concept and the Cardiovascular System, European Journal of Applied Physiology, vol.111, issue.2, pp.163-74, 2011.

H. Jackson, The Management of Acute Cranial Injuries by the Early, Exactdetermination of Intracranial Pressure, and Its Relief by Lumbar Drainage, Surgery, Gynecology, and Obstetrics, vol.34, pp.494-508, 1922.

G. Jóhannesson, A. Eklund, and C. Lindén, Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects, Current Neurology and Neuroscience Reports, vol.18, issue.5, 2018.

J. B. Jonas, N. Wang, D. Yang, R. Ritch, and S. , Facts and Myths of Cerebrospinal Fluid Pressure for the Physiology of the Eye, Progress in Retinal and Eye Research, vol.46, pp.67-83, 2015.

E. R. Kandel, H. James, T. M. Schwartz, and . Jessell, Principles of Neural Science. 4 a, 2000.

D. T. Kemp, Evidence of Mechanical Nonlinearity and Frequency Selective Wave Amplification in the Cochlea, Archives of Oto-Rhino-Laryngology, vol.224, issue.1-2, pp.37-45, 1979.

D. T. Kemp and R. Chum, Properties of the Generator of Stimulated Acoustic Emissions, Hearing Research, vol.2, pp.213-245, 1980.

D. T. Kemp, Stimulated Acoustic Emissions from within the Human Auditory System, The Journal of the Acoustical Society of America, vol.64, issue.5, pp.1386-91, 1978.

M. Khan, H. Shallwani, M. Khan, and M. Shamim, Noninvasive Monitoring Intracranial Pressure -A Review of Available Modalities, Surgical Neurology International, vol.8, issue.1, p.51, 2017.

. Konrad-martin, K. M. Dawn, G. P. Reavis, M. F. Mcmillan, and . Dille, Multivariate DPOAE Metrics for Identifying Changes in Hearing: Perspectives from Ototoxicity Monitoring, Int, vol.51, issue.1, pp.1-30, 2012.

H. Kristiansson, E. Nissborg, J. Bartek, M. Andresen, P. Reinstrup et al., Measuring Elevated Intracranial Pressure through Noninvasive Methods, Journal of Neurosurgical Anesthesiology, vol.25, issue.4, pp.372-85, 2013.

K. J. Kvoerner, B. Engdahl, A. R. Arnesen, I. W. Mair, K. J. Kvoerner et al., Temporary Threshold Shift and Otoacoustic Emissions after Industrial Noise Exposure, Scand. Audiol, vol.24, issue.2, pp.137-178, 1995.

T. W. Langfitt, J. D. Weinstein, N. F. Kassell, and F. A. Simeone, Transmission of Increased Intracranial Pressure. I. Within the Craniospinal Axis, J Neurosurg, vol.21, pp.989-97, 1964.

C. Lindén, S. Qvarlander, G. Jóhannesson, E. Johansson, F. Östlund et al., Normal-Tension Glaucoma Has Normal Intracranial Pressure: A Prospective Study of Intracranial Pressure and Intraocular Pressure in Different Body Positions, Ophthalmology, vol.125, issue.3, pp.361-68, 2018.

A. R. Loiselle, P. Emile-de-kleine, N. M. Van-dijk, and . Jansonius, Noninvasive Intracranial Pressure Assessment Using Otoacoustic Emissions: An Application in Glaucoma, PLOS ONE, vol.13, issue.10, p.204939, 2018.

B. Lourenço, Monitorage Des Paramètres Pressionnels et Vasculaires Cochléaires Au Moyen Du Potentiel Microphonique Cochléaire -Etude Chez Le Patient, 2017.

M. ?. Lyons and F. B. Meyer, Cerebrospinal Fluid Physiology and the Management of Increased Intracranial Pressure, Mayo Clinic Proceedings, vol.65, issue.5, pp.684-707, 1990.

B. Magnaes, Body Position and Cerebrospinal Fluid Pressure, Journal of Neurosurgery, vol.44, issue.6, pp.698-705, 1976.

R. J. Marchbanks, A. Reid, A. M. Martin, A. P. Brightwell, and D. Bateman, The Effect of Raised Intracranial Pressure on Intracochlear Fluid Pressure: Three Case Studies, British Journal of Audiology, vol.21, issue.2, pp.127-157, 1987.

A. Moulin, Influence of Primary Frequencies Ratio on Distortion Product Otoacoustic Emissions Amplitude . I . Intersubject Variability and Consequences on the DPOAE-Gram, J. Acoust. Soc. Am, vol.107, issue.3, pp.1460-70, 2000.

S. T. Neely, T. A. Johnson, C. A. Garner, and M. P. Gorga, Stimulus-Frequency Otoacoustic Emissions Measured with Amplitude-Modulated Suppressor Tones, The Journal of the Acoustical Society of America, vol.118, issue.4, pp.2124-2151, 2005.

J. Nottet, A. Moulin, and N. Brossard, Otoacoustic Emissions and Persistent Tinnitus after Acute Acoustic Trauma, The Laryngoscope, vol.116, pp.970-75, 2006.

L. G. Petersen, J. C. Petersen, M. Andresen, N. H. Secher, and M. Juhler, Postural Influence on Intracranial and Cerebral Perfusion Pressure in Ambulatory Neurosurgical Patients, American Journal of Physiology -Regulatory, Integrative and Comparative Physiology, vol.310, issue.1, pp.100-104, 2016.

G. R. Popelka, R. K. Karzon, and R. A. Clary, Identification of Noise Sources That Influence Distortion Product Otoacoustic Emission Measurements in Human Neonates, Ear and Hearing, vol.19, issue.4, pp.319-347, 1998.

D. Popovic, M. Khoo, and S. Lee, Noninvasive Monitoring of Intracranial Pressure, Recent Patents on Biomedical Engineering, vol.2, pp.165-79, 2009.

. Purves, G. J. Dale, D. Augustine, W. C. Fitzpatrick, A. Hall et al., , 2010.

S. Qvarlander, N. Sundstrom, J. Malm, and A. Eklund, Postural Effects on Intracranial Pressure: Modeling and Clinical Evaluation, Journal of Applied Physiology, vol.115, issue.10, pp.1474-80, 2013.

P. H. Raboel, M. Bartek, B. M. Andresen, B. Bellander, and . Romner, Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods-A Review, Critical Care Research and Practice, vol.2012, pp.3-7, 2012.

. Rahne, J. L. Torsten, R. Verhey, and . Mühler, Sorted Averaging Improves Quality of Auditory Steady-State Responses, Journal of Neuroscience Methods, vol.216, issue.1, pp.28-32, 2013.

A. Reid, R. J. Marchbanks, D. M. Burge, A. M. Martin, D. E. Bateman et al., The Relationship between Intracranial Pressure and Tympanic Membrane Displacement, British Journal of Audiology, vol.24, issue.2, pp.123-152, 1990.

K. Reuter and D. Hammershøi, Distortion Product Otoacoustic Emission Fine Structure Analysis of 50 Normal-Hearing Humans, Journal of the Acoustical Society of America, vol.120, issue.1, pp.270-79, 2006.

J. J. Rosowski, S. Stenfelt, and D. Lilly, An Overview of Wideband Immittance Measurements Techniques and Terminology: You Say Absorbance, i Say Reflectance, Ear and Hearing, vol.34, pp.9-16, 2013.

L. Sakka, A. Chomicki, J. Gabrillargues, T. Khalil, J. Chazal et al., Validation of a Noninvasive Test Routinely Used in Otology for the Diagnosis of Cerebrospinal Fluid Shunt Malfunction in Patients with Normal Pressure Hydrocephalus, Journal of Neurosurgery, vol.124, pp.342-391, 2016.

C. A. Sanford, H. Douglas, Y. Keefe, D. Liu, R. W. Fitzpatrick et al., Sound-Conduction Effects on DPOAE Screening Outcomes in Newborn Infants: Test Performance of Wideband Acoustic Transfer Functions and 1-KHz Tympanometry, Ear Hear, vol.30, issue.6, pp.635-52, 2009.

D. Sarafian and G. Andeol, Problématique de Bouchons d Oreilles En Aeronautique Militaire, P. hal-00810645 in Proceedings of the Acoustics, 2012.

R. A. Scheperle, T. Stephen, J. G. Neely, M. P. Kopun, and . Gorga, Influence of in Situ , Sound-Level Calibration on Distortion-Product Otoacoustic Emission Variability, The Journal of the Acoustical Society of America, vol.124, issue.1, pp.288-300, 2008.

J. M. Schweinfurth, T. Anthony, S. M. Cacace, and . Parnes, Clinical Applications of Otoacoustic Emissions in Sudden Hearing Loss, The Laryngoscope, vol.107, pp.1457-63, 1997.

A. Shupak, R. Zeidan, and R. Shemesh, Otoacoustic Emissions in the Prediction of Sudden Sensorineural Hearing Loss Outcome, Otology and Neurotology, vol.35, pp.1691-97, 2014.

J. J. Silva, T. Santos, C. J. Tierra-criollo, and D. Barbosa-melges, Objective Response Detection of Multiple Auditory Steady-State Responses: Rice Detector vs Component Synchrony Measure, Journal of Physics: Conference Series, vol.477, p.12031, 2013.

D. M. Simpson, C. J. Tierra-criollo, R. T. Leite, E. J. Zayen, and A. F. Infantosi, Objective Response Detection in an Electroencephalogram during Somatosensory Stimulation, Annals of Biomedical Engineering, vol.28, issue.6, pp.691-98, 2000.

F. Sloot, L. J. Hans, . Hoeve, L. A. Marlou, A. De-kroon et al., Inventory of Current EU Paediatric Vision and Hearing Screening Programmes, Journal of Medical Screening, vol.22, issue.2, pp.55-64, 2015.

M. Smith, Monitoring Intracranial Pressure in Traumatic Brain Injury, Anesthesia and Analgesia, vol.106, issue.1, pp.240-288, 2008.

N. N. Souza, S. Dhar, S. T. Neely, and J. H. Siegel, Comparison of Nine Methods to Estimate Ear-Canal Stimulus Levels, The Journal of the Acoustical Society of America, vol.136, issue.4, pp.1768-87, 2014.

M. R. Stinson and B. W. Lawton, Specification of the Geometry of the Human Ear Canal for the Prediction of Sound-Pressure Level Distribution, The Journal of the Acoustical Society of America, vol.85, issue.6, pp.2492-2503, 1989.

T. Venet, A. Bey, P. Campo, J. Ducourneau, Q. Mifsud et al., Auditory Fatigue Among Call Dispatchers Working With Headsets, International Journal of Occupational Medicine and Environmental Health, vol.31, issue.2, pp.1-10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02391080

T. Venet, P. Campo, C. Rumeau, and C. Parietti-winkler, One-Day Measurement to Assess the Auditory Risks Encountered by Noise-Exposed Workers, International Journal of Audiology, pp.1-8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01070835

T. Venet, P. Campo, C. Rumeau, H. Eluecque, and C. Parietti-winkler, EchoScan : A New System to Objectively Assess Peripheral Hearing Disorders, Noise & Health, vol.14, issue.60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752601

S. E. Voss, J. Nicholas, . Horton, H. P. Taronne, F. O. Tabucchi et al., Posture-Induced Changes in Distortion-Product Otoacoustic Emissions and the Potential for Noninvasive Monitoring of Changes in Intracranial Pressure, Neurocritical Care, vol.4, issue.3, pp.251-57, 2006.

M. Wall, Update on Idiopathic Intracranial Hypertension, Neurologic Clinics, vol.35, issue.1, pp.45-57, 2017.

M. L. Whitehead, M. J. Mccoy, B. L. Lonsbury-martin, and G. K. Martin, Dependence of Distortion-Product Otoacoustic Emissions on Primary Levels in Normal and Impaired Ears . I . Effects of Decreasing L2 below L1, J Acoust Soc Am, vol.97, issue.4, pp.2346-58, 1995.

J. Zwislocki, Analysis of the Middle-Ear Function. Part I: Input Impedance, The Journal of the Acoustical Society of America, vol.34, issue.9B, pp.1514-1537, 1962.