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Introduction 

 

1.1 The main challenges for agriculture: population growth, 

climate change, environmental footprint & natural resources  
 

The last century has been marked by the green revolution. This change, characterized by 
industrialized agriculture, area expansion and chemical-intensive technologies with their high 
responsiveness varieties have tripled the agricultural yields. This transformation has led to a 
doubling of the world population.  

This trend of population growth is predicted to continue in the developing countries and 
the world’s population is expected to reach 9.2 billion by 2050. Hence, the future farmers will 
then need to produce food for 2.3 billion more people. In addition to that, the consumption per 
capita is expected to change: a higher purchasing power and a greater demand for meat, fish and 
processed food is expected. These changes are and will continue to be especially true in 
developing countries as predicted by (Bongaarts and Watkins, 1996). This adds pressure to the 
food supply system. According to some studies, the world will need 50 to 100% more food by 
2050  (Baulcombe et al., 2009; Porter and Semenov, 2005).  

 

Figure 1: Population growth to 2100, by region (medium variant) Source: UN, 2015 

On the other hand, it is likely that this general trend of population growth along with the 
expansion of agriculture will continue to impact the climate. Future atmospheric conditions will 
be characterized by increased variability in temperature, precipitation and elevated atmospheric 
carbon dioxide (CO2) concentration (Guillaume, 2018). These changes, in particular regarding 
the temperature, will impact the food production. A stronger year to year variability is expected 
and short-term variability in supply might put in danger the whole food supply system (Schlenker 
and Roberts, 2009). For instance, increased temperatures can lead to greater evaporative demand 
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and thus water stress on crops. Crops are more likely to be subject to abiotic and biotic stress 
(Zandalinas et al., 2018). Most of the simulations of crop yield under a climate change predict 
that yields of most crop species will be reduced. Under pessimistic high CO2 emissions scenario 
(RCP8.5) wheat and maize yields are projected to decrease respectively by 22% and 27% by 2050 
(Porfirio et al., 2018). The global wheat production is supposed to fall by 6% for each increase of 
1.0 °C (Asseng et al., 2015). It has to be noticed that crop yields are more negatively affected 
across most tropical areas than at higher latitudes (Wheeler and Von Braun, 2013). However, the 
ranges of the uncertainty of these simulations under the diversity of environmental conditions are 
high. We still need more knowledge regarding the parameterization of crop models for the CO2 
fertilization (Leakey et al., 2009; Ziska and Bunce, 2007), the temperature response functions to 
extremely hot days and the degree of the climatic changes. The lack of knowledge on cultivars 
needed for modeling also contributes to the uncertainties (Wang et al., 2017). 

This challenge for food security as mentioned above gives importance to the choices of the 
agricultural practices (Foley et al., 2011; Jarecki et al., 2018), the food distribution and 
consumption, crop management and the appropriate use of genetic variability (He et al., 2018; 
Parent et al., 2018). We will focus on the next sections on the genetic adaptation of crops.  

 

1.2 Genetic improvement 
 

1.2.1 A short history about plant domestication 

Sedentary agriculture and the domestication of plants are estimated to have come into 
practice 10000 years ago (Frumin, 2017; Zohary et al., 2012). Farmers selected plants with 
desirable characteristics and used their seeds for subsequent generations. Plants with less 
desirable characteristics were then culled. It has to be noted that domestication was also enforced 
with natural reason and unintentional genetic mutation. This has resulted in an accumulation of 
characteristics over time. 

 

Figure 2: Illustration of the evolution of maize. Source: ScienceMag 
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By the end of the 19th century, the first genetic cross of chosen parents was realized. For 
instance, the first hybrid maize was created in 1908 (Crow, 1998). The next improvement in crop 
production was achieved through plant breeding and crossing. The technology of plant breeding 
has indeed advanced greatly in the last century.  

Plant breeding was realized through cycles of crossing and phenotypic selection. This has 
induced a large increase in yield. After World War II, this breeding technology was developed in 
many developing countries. The subsequent yield increase was then more homogeneously 
observed. It was of the main component responsible for the green revolution.  

The continuous observation, migration, selection, and improvements in cross-breeding have 
resulted in homogenous cultivar with well-defined criterions and fixed in the time (reproducible). 

The discovery of DNA and the next generation sequencing (Metzker, 2010) then brought 
plant breeding into a new era (Evenson and Gollin, 2003). Now, it is not only possible to identify 
all the genes and genetic variants contributing to agronomic traits but also assess these changes 
made during the breeding process.  

 

1.2.2 The need for new genotypes 

The main goal of plant breeders is to create genotypes that are well-adapted to the future 
growing conditions defined by the meteorological conditions, soil properties and management 
practices in the production basin of interest. 

A recent study suggested that the productivity of major food crops is either stagnating or 
not increasing at the rate needed to ensure food security (Ousseini et al., 2017). In addition to 
that: climate change, population growth, and environmentally limited resources place a three-fold 
pressure on agriculture crop production and food security.  

To meet the future food demand, breeding efforts have to target more resource-efficient 
and stress-tolerant crops in different managing systems. This places a big demand on new cultivar 
with more resource efficiency and well-targeted to their environments (Licker et al., 2010; 
Neumann et al., 2010).  

 

1.2.3 Genomic selection 

Advances in sequencing technologies and bioinformatics tools have allowed rapid 
progress since the sequencing and assembly of the rice genome in 2005 (Sasaki, 2005). During the 
last decades, the tremendous decrease in the cost of DNA sequencing has led to a rapid rise in 
the size of crop genomic data. Today, there are over 260 land plant nuclear genomes publicly 
available in GenBank (Benson et al., 2012), including that of major crops. This enables a new way 
of genomic improvement (Heffner et al., 2009; Jannink et al., 2010). 

These new tools and techniques represent a paradigm shift by facilitating the direct study 
of all the genotypes and their relationships with the phenotype (Tester and Langridge, 2010). This 
can be very useful for the study of complex traits that have a multi-genic nature and a complex 
interaction with the environment such as yield and abiotic stresses. By genomic selection, the 
efficiency and speed of the selection process have also been improved by avoiding multiple cycles 
of phenotyping selection.  
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Hence, genomic-based breeding has been applied to produce many crops (Dwivedi et al., 
2017; M Perez-de-Castro et al., 2012; Mousavi-Derazmahalleh et al., 2019).  

 

1.2.4 The phenotyping bottleneck 

Currently, we have a lot of genomic information for several crops and the tools to relate 
them to their phenotype. This applies even for complex species such as wheat (Appels et al., 
2018). To harness this wealth of genomic information, it has to be comprehensively linked to the 
phenotype under a given environment.  

Because of the limitations of marker-assisted selections for assessing complex traits, the 
genome-enabled prediction is becoming increasingly important in plant breeding. Genome 
selection (Hayes and Goddard, 2001) includes all markers’ information in prediction models, 
thus, avoiding biased marker affect estimates and capturing the variation due to small-effect QTL 
(Quantitative Trait Loci) better (Heffner et al., 2009).  

Genomic selection needs a ‘training population’ of the genotype considered that has been 
both genotyped and phenotyped to develop a model that takes genotypic data from a ‘candidate 
population’ of untested individuals and produces genomic estimated breeding values (GEBVs). 
This breeding technology has been remarkably accurate (Habier et al., 2007; Hayes and Goddard, 
2001; Zhong et al., 2009) and has brought a revolution in plant breeding (Heffner et al., 2009).  

This paradigm shift changes the role of phenotyping, which would now then serve to 
both update prediction models or simply to train a prediction model.  

Typical plant breeding programs grow thousands of cultivar in a target environment. The 
varieties (cultivar) are identified through a genetic recombination pipeline (crossing of lines). This 
is most often carried out in complex private programs (Messina et al., 2018) which explains the 
lack of information and why a clear explanation of this program is not possible here.  

Cultivars are typically aggregated for plots of plants grown together in mini canopies of 1 
to 20 m² depending on the purpose and crop type, we call them microplots. These microplots are 
tested for adaptation to abiotic and biotic conditions. For instance, a part of the trial could be 
subjected to water stress and thus this part would not be irrigated. The presence of genotype by 
environment interaction is critical for the analysis of complex traits and the analysis is thus 
performed over multiple sites and several years. 

Because of the labor-intensive and the expensive nature of field phenotyping, many crop 
breeding programs make a single measurement of the final yield on replicated plots in contrasting 
environments over multiple seasons (Millet et al., 2016). However, yield is not a heritable trait 
and hence it is complicated to be linked with the genotype.  

The presence of Genotype-by-Environment-by–Management interactions (GxExM) is a 
significant challenge for the development of predictive approaches. Improvement in the speed 
and accuracy of phenotyping along with the integration of estimated traits into models 
representing the functioning of the plant will greatly enhance the value of the genomic selection.  

Affordable phenotyping associated with genomic selection may give us new insight into 
the stress resilience of crops; this will be relevant the food security challenge.  

This is the reason for the urgent need to develop accurate, cheap, robust and easy to 
integrate phenotyping pipeline. Heritability of a measurement methodology is a measure of the 
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degree to which it can be used as a selection or trait discovery tool (Piepho et al., 2008). The 
missing heritability (Maher, 2008) problem has to be taken into account, large relative 
measurement errors could lead to low heritability. This explains why the objective of our study is 
to deliver heritable traits to the breeders. 

We will present in the next section a brief overview of high throughput phenotyping in the field 
and also highlight the work done with images. 

 

1.3 State of the art of the field high-throughput crop phenotyping 
 

Plant phenotyping under controlled conditions have been well developed (Bai et al., 2016; 
Cabrera Bosquet et al., 2015; Pereyra-Irujo et al., 2012). However, progress in the field has been 
relatively slow. We will cover the advances and remaining challenges for field phenotyping in this 
section.  

 

1.3.1 Some definitions 

To get unambiguous use of the terms ‘trait’, ‘variable’ and ‘measurement’ we will propose the 
generally accepted definitions in the phenotyping community: 

 Trait: it is an intrinsic characteristic of the organ, plant or canopy (e. g. height, length, surface, 
intercepted radiation, stomatal conductance of the leaf...).  

 Variable: it is a discrete (class, order) or continuous quantity that quantifies the trait and can 
be used to compare different individuals/genotypes/treatments. A variable will be associated 
with a unit. It may be:  
o the estimated value of the variable derived from the measurement of a parent variable and 

using a given processing method. This will provide the "apparent" or "estimated" value of 
the variable: estimates of the same trait from several methods may show differences. 

o the value of a parameter of a model that is adjusted on a set of (parent) measurements. 
This value will depend on the model used, the estimation method and the distribution of 
the parent variables. 

A variable results from the combination of four elements: 
1. The trait to be estimated 
2. The specie or group of species on which the trait should be quantified 
3. The method used to estimate the trait 
4. The unit in which the trait is quantified. 
5.  

1.3.2 Traditional field phenotyping approaches 

Traditional breeders select cultivar based on the physical appearance in their 
environment. This could be, for example, the measurement of height with a ruler, times series 
measurement of the appearance of the phenological stages or comparative numerical scores or 
indices (leaf rolling, disease infection). Agronomic performances such as yield and biomass 
sampling are also typically conducted. However, these traits although derived from relatively 
reliable and simple measurements are often lacking heritability since they are strongly controlled 
by the GxExM interactions (Hallauer et al., 2010). In addition, these measurements are generally 
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labor intensive, low throughput and prone to errors in the sampling. This poses a limitation when 
breeders want to screen large phenotyping platforms.  

 

1.3.3 Field phenotyping platforms 

A standard phenotyping platform is constituted of hundreds of microplots. The data then 
have to be gathered over a large area (typically between 1 and 10 thousand meter square) where 
thousands of microplots can be sowed. Each microplot corresponds to a genotype, conducted 
under a given management practice. There might be several management practices investigated 
within one platform, including sowing density and date, nitrogen fertilization, irrigation or 
protection from biotic stresses. Further, each genotype conducted under a given management 
practice could be repeated several times to control possible variation of the environmental effects 
(mostly induced by soil heterogeneity) and ensures to quantify the repeatability of the 
measurements performed. 

 

Figure 3: Aerial view of the field phenotyping platform of Arvalis in Greoux-les-Bains France. 

These phenotyping systems are often divided in two categories: the ones that operate at the 
ground level and those operating aerially. The choice of the platform depends on the cost, 
scalability, spatial and temporal resolution desired. 
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Figure 4: Illustration of the different field phenotyping systems. Source : (Shakoor et al., 2017) 

1.3.3.1 Ground phenotyping systems  

 

Fixed Ground field phenotyping systems are well suited to develop phenotyping 
methodologies (Sadeghi-Tehran et al., 2017a, 2017b) by facilitating the data collection (e.g 
avoiding geo-referencing errors or vehicle mobility issues) and advantaged the spatial resolution 
while allowing the use of heavier sensors. This was the case for the zip-line (Kirchgessner et al., 
2017) and gantry crane (Virlet et al., 2016) installations. The drawback of these systems was their 
limited study area, restraining the multi-site experiment. Mobile ground systems have also been 
developed. The simplest versions of these are the wheeled buggies (White and Conley, 2013). 
These carts can also be motorized (White and Conley, 2013) and made fully autonomous, thus 
allowing high throughput phenotyping. A lot of research has been conducted to improve the 
robustness of these autonomous ground vehicles in the recent years (Burud et al., 2017; Grimstad 
and From, 2017; Underwood et al., 2017). They are relatively expensive systems with moderate 
throughput ranging from 50 to 250 microplots per hour. 

 

1.3.3.2 Aerial phenotyping systems 

The availability of aerial systems owing to the commercialization and affordable UAV 
(Unmanned Aerial Vehicles) combined with the accessibility of photogrammetric software have 
gathered the attention of many researchers in the last ten years (Yang et al., 2017). UAV or 
Drones have the ability to fly at an altitude between 10 and 100 meters which allows millimetric 
resolution images (from few millimeters to 1m) (Aasen, 2017; Jay et al., 2018). Their ability to 
cover larger areas within a short period of time has made them suitable for field trials. Their main 
limitation is the size of the payload (<20 kg and much lower in most models) and weather 
conditions as they ideally perform best under stable weather conditions with a light wind. See 
(Yang et al., 2017) for an extended review of the use of UAV in field crop phenotyping. These 
aerial systems could cover a platform within few minutes to few hours depending on the area of 
the platform and the ground spatial resolution required. 
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1.3.4 Sensors 

Images are now playing an important role in plant phenotyping. The advances in sensors 
(smaller, lighter and cheaper, increased resolution and sensitivity) have contributed to their wide 
usage.  

The most affordable sensors are visible light (400-700 nm) cameras (RGB images). RGB 
cameras have a high versatility (Remondino and El-Hakim, 2006) and are easy to maintain. They 
can be easily integrated in many systems and provide (2D) color images. RGB images have a lot 
of direct applications such as Canopy Cover estimation and LAI estimation. Indeed, every pixel 
of the image can be classified as vegetation or background, thus providing an estimation of the 
gap fraction in a given direction. A limitation of this method is the occlusion of the leaves. The 
illumination condition is another limitation that may affect the results to a great extent. However, 
these sensors offer an unrivaled spatial resolution, for instance, the best smartphone on the 
market now offers a spatial resolution between 12 and 20 megapixels.  

This high spatial resolution has made the computation of some features say, HOG, SIFT, 
and SURF (Dalal and Triggs, 2005). Associated with a classifier, these features have been used for 
phenological stages detection or segmentation (Guo et al., 2015; Sadeghi-Tehran et al., 2017a, 
2017b). Some of these features are also scale-invariant and have made 3D reconstruction of the 
scene possible. This technique, famously known as structure from motion, is based on the 
knowledge of the camera intrinsic parameters and requires a series of images acquired from 
various angles and positions. Some interesting phenotype information can be extracted from this 
3D structure of the scene. For example, the traits such as plant height, leaf angle and cases of 
lodging can be extracted from the reconstructed 3D canopy structure. Advances in computer 
vision now allow plant and organ counting in field conditions which will be more developed in 
the following sections. It has to be noted that several of the traits developed have been computed 
in laboratory conditions or with hand-held sensors which ease the acquisition procedure. The 
main challenges in adopting them to field conditions are the various conditions of data 
acquisition and to increase the throughput which results in a spatial resolution trade-off.   

Leaf and plant reflectance are governed by leaf surface properties and internal structure, 
as well as by the concentration and distribution of biochemical components. Remote sensing 
analysis in the infrared domains adds valuable information to assess the physiological status of a 
plant. In the near infrared domain, no strong absorption feature is present because of the specific 
structural discontinuities encountered in the leaf (Campbell and Wynne, 2011; Gao, 1996; 
Lillesaeter, 1982). Meanwhile, the pigment in plant leaves including chlorophyll strongly absorbs 
visible light. At the canopy level, spectral reflectance is a combination of soil and vegetation 
reflectance. The use of spectral vegetation indices calculated as a simple ratio or normalized 
difference from infrared and visible bands have been commonly used as indicators of the 
vegetation status (green area index (Verger et al., 2014), stay-green, vegetation cover …). 
Development of low weight and low-cost multispectral cameras (Berni et al., 2009) also referred 
to as 2D snapshot multi-cameras has facilitated their integration in field phenotyping platform 
and the computation of many vegetation indices.  

While multispectral cameras take images at a specific wavelength, hyperspectral cameras 
capture spectral information within every exposure. Hyperspectral information may access 
specific traits, but most of the times, dedicated wavelength are selected to compute vegetation 
indices (Aasen and Bolten, 2018). A general trade-off is spatial versus spectral resolution. Both of 
them are crucial for plant phenotyping and indeed, the accuracy of the phenotype measured is 
crucial to get good repeatability and enable genetic analysis. The high throughput natures of these 
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measurements have the potential to reduce the cost associated with the screening of large 
phenotyping platform.  

A common drawback of these spectral imagers is their calibration procedure. Radiometric 
calibration is often performed with a reference panel placed in the field. Stable illumination 
condition between the acquisition time of the radiometric target and the microplots is mandatory. 
Indeed, the presence of cloud affects the incident illumination that will be absorbed and reflected 
by the crops. Anisotropy effects should also be minimized by restricting the observation to a 
limited range of viewing angle. A spatial co-registration also has to be performed, which is a 
limitation for close range phenotyping applications. State-of-the-art methods in UAV spectral 
remote sensing were evaluated and well discussed in (Aasen and Bolten, 2018; Adão et al., 2017). 

The table below lists the traits now accessible in field conditions, robustness and 
limitation of the methods are evaluated by their technological readiness level (TRL)(Mankins, 
1995).  

14



Table 1 : A summary of crop traits and their associated sensors, spatial resolution and methodology Technological 
Readiness Level 

 

This table was compiled by Frederic Baret, inspired from the literature and the work mainly 
developed within the CAPTE unit.    

We can see from this table that a large number of traits are currently estimated with 2D images.  

Images generally have a throughput advantages against other sensor-derived 
methodology. The high levels of technology of imaging devices can be explained by their 
overriding place in the public sector, this induce a reduction of the cost for phenotyping 
(Reynolds et al., 2018).  
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The variables that estimates traits differs from the used sensors and methodologies. A 
large number of traits are not at a full readiness level. The reasons behind will be highlighted in 
the next section.  

 

1.3.5 From measurements to traits 

The extraction of phenotype-related traits from plants goes through many processing and 
calibration steps that can impact the accuracy of the estimates. For instance, during the 
acquisition of images from sensors mounted on UAVs, the images could be blurred if an 
inappropriate flying height and shutter speed are used. 3D mosaicking and microplots extraction 
might fail if protocols were not followed during the collection of ground control points. For 
example, a ground control point covered by leaves. Radiometric calibration could be 
compromised by the passage of a cloud. In another acquisition scenario, the collection of 
information from various angle and frequency may suffer from the BRDF effects. One more 
example is the vigneting correction that has to be performed for every multispectral image 
acquired since we have already experienced commercial cameras where no vigneting correction 
had been made.  

This highlights the importance to trace the metadata such as the flight parameters and 
calibration procedure. This meta-information should be accessible and there must be no black 
box in the processing pipeline. It is also important to standardize the processing chains and 
sensors used.  

The recent review on vectors and sensors showed that this is a currently matures aspect of 
the phenotyping activities, although significant and continuous improvements are expected. The 
phenotyping bottleneck is now shifted from the data acquisition to the data processing issues. In 
the next section we will present a brief state of the art of the machine learning methods currently 
used in field phenotyping based on images.  

 

1.4 Machine and Deep learning for trait estimation from images 
 

1.4.1 Introduction to deep learning 

Machine learning is the science of training systems to automatically learn and improve 
from experiences. They are trained to perform an assigned task and they learn to discriminate 
between the labeled input features using statistics. Originally inspired by the human brain and the 
biological neuron, Franck Rosenblatt in 1958 proposed the perceptron (Rosenblatt, 1958). The 
perceptron is an artificial neuron which gives a boolean output based on a linear operation on 

boolean inputs 𝑥𝑖 and weights 𝑤𝑖. This is followed by an activation function. The perceptron can 
be represented as below: 
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Figure 5: A visual representation of the perceptron 

A single neuron performs only elementary operations. However, when associated in a network, 
neurons perform complex tasks. Neural networks take this principle up by interconnecting 
multiple elementary units to solve a large range of problems. They are organized in layers where 
each layer responds to a level of abstraction of a problem and then passing the extracted 
information to the others.  

 

Figure 6: A visual representation of a neural network 

The difference between machine learning and deep learning is that deep learning 
automatically learns to extract the relevant features that will help to take the decision. To perform 
this task, deep learning models typically have more than three layers.  

 

Figure 7: Illustration of the difference between machine learning and deep learning 

Deep learning has made incredible progress in the last decade and is currently booming. 
It is a revolution in the era of artificial intelligence and the following reasons explain its success :  

● The creation of large annotated databases (such as ImageNet (Deng et al., 2009)) 
has allowed having enough supervised learning data to achieve good results. 
Indeed, the performance of deep learning approaches increased with the amount 
of training data whereas with the traditional machine learning approaches their 
performance stabilizes. 

● The continuous development of the GPU technology allows the computation of 
millions of parameters at the same iteration. This technology has enabled to train 
deep network within a reasonable time.  
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The first popular deep network for 2D image classification was made of 62.3 millions of 
parameters. AlexNet (Krizhevsky et al., 2012) famously won the 2012 ImageNet LSVRC-2012 
competition by a large margin (15.3% VS 26.25% (second place) error rates). The model had 
been trained for 5 to 6 days on the ImageNet dataset which at that moment contained over 1.3 
million annotated images from a total of over 1000 categories. The ImageNet dataset now 
contains 15 million images for 22000 categories. 

 

Figure 8: A visual represation of the Alexnet model 

There are different research topics in the field of deep learning. In this chapter, we will 
focus on the models used to process images: the convolutional neural networks (CNN) which are 
definitely the leading research topic in deep learning. 

A convolution is a small filter operation that is passed over the image. The processed 
image after a convolution contains weighted sums of small sub-areas of the original image. The 
figure below shows an example of a simple convolution operation (horizontal edge detection 
filter in this case). 

 

Figure 9: Example of a convolution operation (Edge detection) 

A CNN replaces the normal neurons by filtering operations (convolution). A convolution 
is followed by an activation where the activation adds some non-linearity in the models. Standard 
activation like ReLu has the advantage of vanishing large gradients while increasing the training 
efficiency. After few layers of convolution and pooling operation, the image is transformed into a 
set of features. Pooling operation helps to reduce the spatial dimensionality of a layer and also 
has a gainful local spatial invariance property and do not need any parameter to be tuned.  

 

18



Figure 10: Example of a pooling operation (in this case, max-pooling) 

In most cases, the network is built for a classification purpose and hence the final layer is 
often a classifier. In order to have a probability for each class, a softmax layer is often placed 
before the classifier. Fully connected (or Dense) layers connect every neuron of the previous 
layers to neurons of the next layer, and thus destroy the spatial organization of the input. This 
layer is used to classify the images using all the computed features.   

Many different network architectures have been proposed in the last decade. Indeed the 
more layers you use, the more difficult it will be to train them. The challenge in network 
architecture design is to avoid overfitting issues while training those millions of parameters. Some 
networks have achieved good accuracy by using 152 layers! They have used a residual connection 
for this purpose. We refer readers to the literature for a more detailed review of the recent 
network architecture (Alom et al., 2018; Canziani et al., 2016; Real et al., 2018).   

A key ingredient to reach high accuracy of the traits extracted is the training process. The 
parameters of the model are initialized randomly and are then updated with stochastic gradient 
descent. Gradient descent is an optimization algorithm which only requires a cost function to be 
defined. This process is repeated for mini-batches and stops when a criterion that can be 
computed on a validation dataset is reached. An optimizer needs a learning rate schedule and is 
also implemented with a Nesterov momentum. The selection of optimizers and optimization 
strategies is an active area of research (Martens and Grosse, 2015). 

Training a network also involves some regularization. For example, in Dropout 
(Srivastava et al., 2014) a randomly selected subset of activations are set to zero within a layer 
which reduces the network dependency to individual neurons and gives a more redundant and 
robust representation of the data.  

The features contained in the bottleneck of a trained CNN can be used for another 
application which is known as transfer learning. Training a model from scratch on large scale 
dataset (ImageNet, Coco) takes days or weeks on a standard GPU. CNNs are therefore often 
already trained (initialized) on a publicly available dataset. It is then possible to replace the last 
layer by another classifier and then train the model on a smaller dataset. This strategy which is 
known as fine-tuning is really useful when a small annotated dataset is available. This is currently 
the case in the agriculture field, especially in phenotyping. This is a challenging context that will 
need to focus on. 

  Today CNN in computer vision are applied with impressive accuracy and over a range of 
applications: classification, localization, segmentation, regression. The transfer of these 
technologies can add a lot of value to plant breeding. 

 

1.4.2 Deep learning applied to phenotyping under field conditions 

Deep learning for phenotyping has already been demonstrated under controlled 
conditions. Thanks to the initiative of the IPPN imaging group (Tsaftaris and Scharr, 2018), the 
leaf counting and segmentation challenges and the associated dataset have gathered the attention 
of many people in recent years. Not surprisingly, deep learning and state of the art algorithms 
have outperformed more classical methods (Ubbens and Stavness, 2017). It is interesting to note 
that the best approaches now use synthetic images generated as a training data augmentation 
(Giuffrida et al., 2017) strategy. This may be difficult to reproduce elsewhere because of the 
difficulty to simulate images of crops with realistic rendering and texture. However adding images 
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with variability of the shape of the object targeted is expected to increase the scalability and 
robustness of the CNN models (Geirhos et al., 2018).  

No study using deep learning for images acquired under field conditions were found 
before 2016 (Kamilaris and Prenafeta-Boldú, 2018). Deep learning methods were first used in the 
field for weeding activities (McCool et al., 2017). (Mortensen et al., 2016) use a RGB (Red-Green-
Blue) + NIR (Near infrared) sensor, and these four channel images were used to train their 
models that detect vegetation. The vegetation was then classified between crop and weeds with 
impressive accuracy. CNN models have tackled the problem of image classification for several 
years and have been recently applied to plants (Lim and Sugita, 2018), leaves (Ghosal et al., 2017), 
species (Botella et al., 2018; Joly et al., 2018) classification as well. The PlantNet experience and 
results suggest that state of the art deep learning is now close to top-level human expertise(Joly et 
al., 2018). The challenging problems of fruits counting have also been addressed by (Chen et al., 
2017; Sa et al., 2016).  

There is an exponential use of deep learning in crop production. An important 
component of this adoption is the development of robotic and autonomous vehicle and the 
internet of things technologies. It allows collecting millions of images under field conditions. The 
CNN models used in crop production and plant phenotyping were originally developed within 
the computer vision community where they were benchmarked on large datasets. The transfer of 
the technology has become easy with the general open source initiative. This is the case with the 
open-source libraries Tensorflow and Keras developed within Google and PyTorch releases by 
Facebook. In most cases, new research work in this domain has its own repository and is in 
theory reproducible. The same CNN architecture can be used for a large range of applications, 
and indeed the need for the design of specific handcrafted features targeted for a precise 
application is eliminated. A new trick concerning layer design or optimization strategy could then 
have a huge impact on a wide range of applications. For example, this was instrumental in the 
cases of the inception layer, residual network, deconvolution layer and optimizers (Adam). With 
these initiatives and an open-source environment, the deep learning era is developing fast. 
Recently (Zoph et al., 2018; Zoph and Le, 2016) designed the architecture of a neural network by 
automatically exploring several architectures. Their model has been tested on another dataset and 
has achieved a better accuracy than the state of the art, while preserving a reasonable 
computation cost. This change of paradigm emphasizes the importance and value to the dataset 
and the computer power as illustrated in Figure 11.  
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Figure 11. Evolution of the performances of the deep learning models as a function of the GPU 
requirements. Source : (Huang et al., 2016)  

In the plant phenotyping vision community, it is not yet possible to have a large 
annotated dataset under field conditions. The labor-intensive task of image annotation and the 
lack of crowd-funded solutions explain this problem. The operational agriculture sector, most of 
the activities are conducted by the private sector which makes the development of a shared 
accessible field phenotyping dataset difficult owing to privacy concerns. In phenotyping, we 
specially require a large dataset as the models are supposed to be able to generalize and to be 
accurate over a wide range of cultivars and conditions. 

 

1.4.3 Main challenges to address for efficient use of deep learning for trait 

estimation from images acquired under field conditions 

To be utilized by breeders, the images have to be transformed into a functional trait. In 
this section, we attempt to describe the main challenges that have to be solved and the 
prerequisites for the deployment of deep learning in a plant breeding trial. 

A typical trait which is of interest to the breeders is the number of plants or organs per 
unit area. From the deep learning point of view, different strategies could be used. One method 
could be to train a CNN to identify each plant in an image by an object detection algorithm. 
Another method could be to design an algorithm which would directly derive the number of 
plants in an image using a regression layer (continuous output) with a square loss cost function. 
To get an estimate of the green area index or fCover, the algorithms could directly classify each 
pixel into corresponding classes using some deconvolution layers. An alternative algorithm would 
be to first detect the plants in the image and then generate a segmentation mask for each instance 
of the plants. It is important to know which is the best strategy for the phenotyping applications 
we considered. The choice of the algorithms should be made depending on the type of crop 
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(wheat, maize) and phenological stages (early stage measurement, earing stage …), on their 
performances, robustness as well as the amount of efforts required for image labelling. 

In the field phenotyping community, deep learning is just emerging and it will certainly be 
adopted widely and rapidly. Given this context, it is important to standardize the methodology 
and the sensors used. Indeed, a deep learning model that was trained to detect a disease with 
high-resolution RGB images will not be able to do the same with images from a multispectral 
camera with a degraded spatial resolution and spectral bands that are different: transfer learning 
will not be directly possible, and the model will have to be trained over a new dataset. A similar 
problem will be encountered when using RGB images acquired with different spatial resolutions 
or even under a large range of variation in the illumination conditions and for variability 
regarding in the phenological stages. CNNs methods are known to be sensitive to the spatial 
resolution of the scene. Hence, a model trained to detect objects of size 50*50 only will fail to 
detect smaller objects. A bias introduced by one of these changes can have a direct impact on the 
heritability and subsequently on the genetic analysis and selection. It is thus important to test the 
models on a different dataset and inform users of their respective limitation and robustness. 

Because the data is the key to good performances, training the models with data 
augmentation strategy has been usually associated with an increase of the accuracy. Basic data 
augmentation strategies include flipping, rotating, zooming and histogram-based method. 
Domain style transfer algorithms with the use of Generative Adversarial Networks (GAN) have 
also been recently used for this purpose with promising results (Sankaranarayanan et al., 2018). 
The idea behind GAN is to transfer the image from the source domain to the target domain and 
to train the model with the source ground truth with the source and target data. More details on 
GAN and style transfer are available in this paper (Zhu et al., 2017). The use of plant models and 
3D canopy structure models could also potentially help to solve the data diversity problems and 
lack of annotated images. The work that needs to be done here is really similar to the one in the 
autonomous driving field with the Kitti (Gaidon et al., 2016) or game engines dataset. The 
challenge here is to reduce or fill the gap between synthetic and real images. Many authors have 
already attempted to solve this problem using GANs (Alhaija et al., 2017; Mahmood et al., 2017; 
Nogue et al., 2018; Shrivastava et al., 2017; Zhu et al., 2017). 

The fine-tuning and transfer learning techniques have the potential to take advantage of large-
scale datasets. It is interesting to study if the off-the-shelf pre-trained CNN features will achieve 
better results than transfer learning. This will probably depend on the size and diversity of the 
datasets considered. It may also be important to freeze some layers during the transfer learning 
process. Further, key questions are still pending: is it better to build a generic model that can be 
applied over several species or develop specific models for each crop? How to deal with the 
uneven class balance? Should we perform domain adaptation for each acquisition? 

 

1.5 Objectives and organization of the study 
 

The aim of this study is to estimate key structural traits from high-resolution images 
acquired with high throughput phenotyping systems which are now operational. It will contribute 
towards unlocking the bottleneck of phenotyping data interpretation which is now widely 
recognized.  

We propose to focus on a few structural traits that were up to now difficult to measure at 
high throughput. The spatial resolution of the acquired images varied from fraction of millimeter 
to 1 cm. The study was developed and evaluated on wheat, and can be easily transferred to others 
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crops. For each of these traits, we evaluate the performance of the high-throughput methods 
with a reference method. The acquisitions were performed using phenotyping platforms. It was 
thus also possible to compute the broad-sense heritability of the estimated traits. The traits are 
also tentatively used to derive biophysical parameters such as the biomass. The chapters are 
therefore organized as listed below, following the several traits considered: 
  

 Plant height derived from high resolution images taken from UAVs:  With the 
development of unmanned aerial vehicle platforms, it is now possible to access this 
information from a high throughput platform. In our first chapter, we evaluate this 
technology for the estimation of wheat plant height from the 3D point could derived 
from the Structure from Motion algorithm. Frequent LiDAR measurements were used as 
reference. The derived traits and workflow were evaluated in the context of plant 
breeding. This chapter corresponds to a paper that is currently published: 

o Madec, S., Baret, F., de Solan, B., Thomas, S., Dutartre, D., Jezequel, S., et al. (2017). 
High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles 
and Ground LiDAR Estimates. Front. Plant Sci. 8. doi:10.3389/fpls.2017.02002. 

 

 Wheat ear density estimation is currently labor intensive and prone to error due to 
sampling problems while using the low throughput invasive techniques. The feasibility of 
deep learning approaches for this application was evaluated in the second chapter. 
Robustness and limitation of the method was evaluated in the context of high throughput 
phenotyping. This chapter corresponds to a paper that is currently published: 

o Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al. (2019). Ear density 
estimation from high resolution RGB imagery using deep learning technique. 
Agricultural and Forest Meteorology 264, 225–234. 
doi:10.1016/j.agrformet.2018.10.013. 

 

 The methodology developed in the second chapter is tentatively transferred to the 
estimation of stem density after harvest. The stem diameter was also estimated. These 
two traits combined with the height were finally used to access the biomass. This chapter 
corresponds to a paper that has been recently accepted. 

o Jin, X., Madec, S., Dutartre, D., Solan, B. de, Comar, A., and press, F. B. High-
throughput measurements of stem characteristics to estimate ear density and above 
ground biomass. Available at: 
https://spj.sciencemag.org/plantphenomics/aip/4820305/ 

Finally, a conclusion is proposed to highlight the main findings and propose few improvements 
and application to a range of other traits. 
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2 High-Throughput Phenotyping of Plant 

Height: Comparing Unmanned Aerial Vehicles 
and Ground LiDAR Estimates 

 

Plant height is an attractive trait for breeders who currently measure using rulers. This 
approach is low throughput and prone to errors. With the development of UAV and ground 
vehicle platforms, it is now possible to access this information at high throughput. The recent 
adoption of UAV makes the collection of high-resolution images from various angles affordable. 
By applying the structure from motion method, it is possible to derive a dense 3D cloud. In this 
chapter we explore the potential of this technology for plant height phenotyping. The acquisition 
campaigns were realized in 2015. Plant height was estimated for different dates during the 
growing season. We have investigated many critical parameters for the computation of height 
from both RGB images and LiDAR point cloud. Wheat plant height is known to have a high 
heritability, and this was further validated by the high repeatability computed. 
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The capacity of LiDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height
estimates as a high-throughput plant phenotyping trait was explored. An experiment
over wheat genotypes conducted under well watered and water stress modalities was
conducted. Frequent LiDAR measurements were performed along the growth cycle
using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution
RGB camera was flying the experiment several times to retrieve the digital surface
model from structure from motion techniques. Both techniques provide a 3D dense
point cloud from which the plant height can be estimated. Plant height first defined
as the z-value for which 99.5% of the points of the dense cloud are below. This
provides good consistency with manual measurements of plant height (RMSE= 3.5 cm)
while minimizing the variability along each microplot. Results show that LiDAR and
structure from motion plant height values are always consistent. However, a slight under-
estimation is observed for structure from motion techniques, in relation with the coarser
spatial resolution of UAV imagery and the limited penetration capacity of structure from
motion as compared to LiDAR. Very high heritability values (H2 > 0.90) were found for
both techniques when lodging was not present. The dynamics of plant height shows
that it carries pertinent information regarding the period and magnitude of the plant
stress. Further, the date when the maximum plant height is reached was found to be
very heritable (H2 > 0.88) and a good proxy of the flowering stage. Finally, the capacity
of plant height as a proxy for total above ground biomass and yield is discussed.

Keywords: plant height, high throughput, unmanned aerial vehicles, dense point cloud, LiDAR, phenotyping,
broad-sense heritability

INTRODUCTION

Plant height is recognized as a good proxy of biomass (Yin et al., 2011; Bendig et al., 2014; Ota
et al., 2015; Tilly et al., 2015). Stem height that defines plant height appears to be sensitive to the
stresses subjected by the crop (Rawson and Evans, 1971). It is also one of the input of models
used to evaluate water stress (Blonquist et al., 2009). Plant height is known to make the crop

Abbreviations: DaS, day after sowing; Dflowering, date of flowering; Dmax(PH), date of maximum height; GDD, growth degree
day; GSD, ground sampling distance; H2, broad sense heritability; LiDAR, light detection and ranging; RMSE, root mean
square error; Rp, rank percentile; UAV, unmanned aerial vehicle; WS, water stress modality; WW, well watered modality.
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more sensitive to lodging (Berry et al., 2003). Plant height
appears thus a highly appealing trait for plant breeders
within phenotyping experiments, particularly under natural
field conditions. Current methods based on manual evaluation
with a ruler on a limited sample size for each microplot
are labor intensive, low throughput and prone to errors in
the sampling, ruler adjustment, reading and recording the
data. Alternative methods have been developed either from
LiDAR (Light Detection And Range) often called laser scanning
(Hoffmeister et al., 2015), ultrasonic sensors also called sonar
(Turner et al., 2007), or from depth camera also called time
of flight camera (Chéné et al., 2012; Schima et al., 2016),
and finally from RGB high resolution imagery associated with
structure from motion algorithms. Depth cameras are limited
to close range applications (Schima et al., 2016). Ultrasonic
systems are considered as a relatively low-cost solution and user
friendly. However, LiDAR measurements have been generally
preferred for their increased spatial resolution, higher throughput
and independency from air temperature and wind (Tumbo
et al., 2002; Escolà et al., 2011; Llorens et al., 2011). LiDAR
scanning can be performed from the ground with terrestrial
laser scanner). However, terrestrial laser scanners are conical
scanners that are well suited for vertically developed objects
such as buildings or forests. Their application to crops with
limited vertical extent and a canopy volume densely populated
by leaves and stems or other organs appears limited (Zhang
and Grift, 2012; Bareth et al., 2016): the system needs to be
moved over a high number of places for large phenotyping
platforms. Further, the several microplots may be seen from
different distances and angles with impact on the spatial
resolution and associated bias introduced between microplots.
It seems therefore preferable to observe crops from near nadir
directions.

Several manned or semi-autonomous GPS (Geo-Positioning
System) navigated vehicles, have been developed in the recent
years where vertically scanning LiDARs have been setup. LiDARs
provide a full description of the profile of interception, either
with single echo (Lisein et al., 2013; James and Robson, 2014)
when the resolution is fine enough, or with full wave form
systems (Mallet and Bretar, 2009) or an approximation of it
with multi-echo systems (Moras et al., 2010). Because of the
penetration of the laser beam into most canopies, nadir looking
LiDAR techniques provide at the same time the digital surface
model corresponding to the top envelope of the crop (called
also crop surface model) and the elevation of the background
surface called the digital terrain model. Plant height is then
simply computed as the difference between the digital surface
model and the digital terrain model. Accuracy on plant height
measurement using such LiDAR techniques were reported to be
better than a few centimeters (Deery et al., 2014; Virlet et al.,
2016). Because of their high accuracy, their independency from
the illumination conditions and therefore their high repeatability,
these LiDAR based techniques are expected to be more accurate
than traditional manual height ruler measurements in the
field.

RGB image-based retrieval of crop height remains, however,
the most widely used approach (Bendig et al., 2013) because

of its low cost and high versatility (Remondino and El-
Hakim, 2006). Further, the advances in sensors (smaller,
lighter and cheaper, increased resolution and sensitivity) and
improvements in computer performances along with advances
in algorithms have contributed to the recent success of
such techniques (Remondino et al., 2014). The 3D dense
point clouds are generated by using a large set of high
resolution overlapping images. They are processed using
structure from motion algorithms implemented in either
commercial software (Smith et al., 2015) such as pix4d1,
Agisoft photoscan2 or in open-source software including mic-
mac (MicMac, IGN, France) or Bundler (Snavely et al.,
2006). Nevertheless, accurate retrieval of 3D characteristics of
the canopy from structure from motion algorithms requires
careful completion of the image acquisition that should
provide enough view directions for each point of the scene
and with crisp high resolution images to identify the tie
points used for the 3D reconstruction of the surface (Turner
et al., 2014; Smith et al., 2015). Several factors will thus
influence the quality and accuracy of the dense point cloud,
including flight configuration (altitude, speed, frequency of
acquisitions, trajectory design and sensor orientation) camera
setting (resolution, field of view, image quality), illumination
and wind conditions, the distribution of ground control points
as well as the parameters used to run the structure from
motion algorithm (Dandois and Ellis, 2013; Remondino et al.,
2014).

Because of the spatial resolution of the images used for
the structure from motion algorithms and more importantly
because of the occlusions observed when a single point is to
be seen from two distinct directions, structure from motion
algorithms do not penetrate deeply into dense canopies (Lisein
et al., 2013; Grenzdörffer, 2014; Ota et al., 2015). Structure
from motion technique provides generally a good description
of the digital surface model but accessing the digital terrain
model is only possible when the ground is clearly visible
(Khanna et al., 2015). This is the case for low canopy coverage
or for phenotyping platforms where the ground is visible in
the alleys and between the plots (Holman et al., 2016). The
identification of ground points can be done directly by the
photogrammetric software such as Agisoft Photoscan (Geipel
et al., 2014). However, this method will depend on the choice of
the classification parameters and the type and stage of vegetation.
(Khanna et al., 2015) used the green index (Gitelson, 2004)
and applied the Otsu automatic thresholding method (Otsu,
1979) over green crops. For senescent vegetation this approach
will not provide good results because of confusions between
senescent crop and bare soil. Therefore, the generation of the
digital terrain model from the dense point cloud appears to
be still a challenge in many situations. The problem could
be solved by using a digital terrain model derived from an
independent source of information (Bendig et al., 2014; Geipel
et al., 2014; Grenzdörffer, 2014), assuming that the digital

1www.pix4d.com
2www.agisoft.com
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terrain model does not vary significantly during the growing
season.

The objective of this study is to develop a methodology
for estimating plant height of wheat crops from RGB camera
aboard UAV or LiDAR aboard a phénomobile (fully automatic
rover) in the context of high-throughput field phenotyping.
For this purpose, a comprehensive experiment was setup
where the field phenotyping platform was sampled several
times during the growing season with the UAV and the
phénomobile. A definition of the plant height is first provided
from the dense point cloud derived from the LiDAR that
will constitute the reference. The UAV derived plant height
based on the structure from motion algorithm will then
be compared with the LiDAR reference plant height, with
emphasis on the way the digital terrain model is computed.
The flowering date of wheat was estimated from the dynamics
of plant height. Finally, the broad-sense heritability of plant
height and its correlation with yield and biomass were
evaluated.

MATERIALS AND METHODS

Study Area
The field phenotyping platform (Figure 1B) is located in Gréoux
les Bains (France, 43.7◦ latitude North, 5.8◦ longitude East,
Figure 1A). The platform is approximately 200 m by 250 m size
and is mainly flat with a 1 m maximum elevation difference.
Wheat was sown on October the 29th 2015 with a row spacing
of 17.5 cm and a seed density of 300 seeds·m−2. It was
harvested on the 6th July 2016. A total of 1173 microplots of
1.9 m width (11 rows) by 10 m long was considered, each
of them corresponding to a given genotype among a total of
550 genotypes grown under contrasted irrigation modalities:
about half of the platform was irrigated (WW) while the other
part was subjected to water stress (WS modality). A moderate
water stress took place in the 2015–2016 season. The cumulated
water deficit was 126 mm for the WS modality and 18 mm for
the WW modality. A subset of 19 contrasting genotypes was
considered here to evaluate the plant height heritability. Each
of those genotypes were replicated three times over the WW
and WS modalities organized in an alpha plan experimental
design.

Plant Height, Biomass and Flowering
Stage Ground Measurements
Plant height was manually measured on 12 microplots: on each
microplot, the average of 20 height measurements was calculated;
each individual sample measurement corresponds to the highest
point of the representative plant within an area of 30 cm radius,
corresponding either to leaf or to an ear.

The above ground biomass was measured over three segments
of 2 m length by two adjacent rows. The first two rows
located at the border of the microplots were not considered
in the sampling to minimize border effects. The samples
were weighed fresh, and a subsample of around 30 plants
taken to measure the water content by weighing it fresh and
drying it in an oven for 24 h at 80◦C. Around stage Zadoks
26, 6 microplots were sampled. At the stage Zadoks 32, 54
microplots were sampled, corresponding to one replicate of
27 genotypes both in WW and WS modalities. Finally at
the flowering stage (Zadoks 50), 80 microplots were sampled
corresponding to one replicate of 40 genotypes grown under
the two irrigation modalities. However, due to measurement
errors, the biomass measurement one microplot was missing. The
invasive measurements were taken within less than 4 days from
the closest LiDAR survey.

The yield of all the microplots corresponding to 19 genotypes
times the three replicates in the two irrigation modalities was
measured during the harvest: the weight of harvested grain was
divided by the microplot area and the grain fresh weight was
normalized to 12% relative moisture.

The flowering date was eventually scored visually every 3 days
on one replicate for 19 genotypes grown under both irrigation
modalities. The usual scoring system was used: flowering stage
corresponds to the date when 50% of the ears have their stamina
visible.

LIDAR Reference Measurements
The LiDAR on the Phénomobile
The phénomobile, a ground-based high-throughput phenotyping
robot rover is equipped with a measurement head (Figure 1C)
that is maintained automatically at a constant distance from
the top of the canopy. The system steps over the microplots
with a maximum 1.35 m clearance and an adjustable width
of 2 m ± 0.5 m. The phénomobile automatically follows
a predefined trajectory in the experimental field using a

FIGURE 1 | (A) Localization of the platform in France; (B) Aerial view of the experimental field; (C) and the Phénomobile rover robot on which the LiDARs are fixed.
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centimetric accuracy real time kinetics GPS and accelerometers.
The measurement head is equipped with several instruments
including two LMS400 LiDARs (SICK, Germany) operating at
650 nm and scanning downward with ±35◦ zenith angle in
a direction perpendicular to the rows at a frequency of 290
scans per second (Lefsky et al., 2002). The two LiDARs allow
getting denser sampling of the scene. As the platform moves
forward (Figure 1C) at a speed of 0.3 m·s−1 as recorded with
the GPS information, the distance between two consecutive
scans of a LiDAR along the row direction is around 1 mm.
Measurements are taken every 0.2◦ along the scanning direction.
The size of the footprint will depend on the distance to the
sensor that varies from 2.4 mm × 5 mm at 0.7 m minimum
measuring distance up to 10.5 mm × 5 mm at 3 m maximum
measuring distance. The distance between the sensor and the
target is measured from the phase shift principle (Neckar and
Adamek, 2011). The intensity of the reflected signal and the
distance are recorded at the same time. When the target in the
LiDAR footprint is not horizontal or made of elements placed
at several heights, the distance and the intensity computed by
the LiDAR is approximately the average value over the LiDAR
footprint. The nominal error on the distance is 4 mm under
our experimental conditions. The scan of one microplot takes
about 30 s during which about 3 million points are recorded with
associated intensity and x-y-z coordinates. Each plot was sampled
14 times during the entire growth cycle to describe the whole
season.

Data Processing and Height Definition
A strip of 0.6 m width located in the center of the microplot was
extracted from the 3D point cloud (Figure 2A). This corresponds
roughly to three rows and allows to limit possible border effects
while increasing the probability to get points reflected by the soil
by limiting the scan angle. Noise from the resulting points where
then filtered using the Matlab implementation of the method
proposed by Rusu et al. (2008). This process removed about 1%
of the points. They were mainly located in the upper and lower
part of the regions of interest.

The 0.6 m width strip was further divided into 20 consecutive
non-overlapping elementary cells of 0.5 m length where the
canopy height was assessed (Figure 2A). This allows accounting
for possible variation of the digital terrain model if the microplot
is not perfectly flat. This cell size was large enough to get a
good description of the z profile (Figure 2C) including enough
points corresponding to the ground level used to define the
digital terrain model. The k-means clustering method (Seber,
1984) with two classes was applied to separate the ground
from the vegetation from both the distance and the intensity
values (Figure 2B). The maximum peak in the z-distribution
of the resulted non-vegetation points was assigned as the
ground level. The distance of the ground was subtracted from
the distance of the 3D point cloud for each elementary cell
in the microplot resulting into a distribution of the height
values. The height of the canopy is then defined as the height
value corresponding to a given Rp of the cumulated height
distribution of the vegetation points. The Rp = 99.5% was
selected here to define the vegetation height at the elementary

cell level. When considering the later stages where a large
heterogeneity of the height is observed at the top layer because
of the presence of ears, this corresponds roughly to the area
covered by 50 ears for each unit ground area, considering
an ear diameter of 1 cm and a typical ear density. The
sensitivity of the height to this percentile value will be later
discussed in the results section. Finally, the median value of the
elementary cells of the microplot was considered as the plant
height.

Plant Height Estimates from the UAV
RGB Camera and UAV Flight
A Sony ILCE-6000 digital camera with a 6000 × 4000 pixels
sensor was carried by a hexacopter with approximately 20 min
autonomy. The camera was fixed on a 2 axes gimbal that
maintains the nadir view direction during the flight. The larger
dimension of the image was oriented across track to get larger
swath. The camera was set to speed priority of 1/1250 s to avoid
movement blur. The aperture and ISO were thus automatically
adjusted by the camera. The camera was triggered by an
intervalometer set at 1Hz frequency that corresponds to the
maximum frequency with which RGB images can be recorded
on the flash memory card of the camera. The images were
recorded in the jpg format. Two different focal lengths were
used: 19 and 30 mm with respectively ± 31.0◦ and ± 21.5◦
field of view across track. The flight altitude was designed
to get around 1 cm GSD for both focal lengths (Table 1).
Five measurements were completed from tillering to flowering
(Table 1).

The speed of the UAV was set to 2.5 m/s to provide 90 and
94% overlap between images along the track respectively for the
30 mm and 19 mm focal lengths. The distance between tracks was
set to 9 and 11.8 m respectively for the 19 and 30 mm focal lengths
to provide 70% overlap across track. Two elevations of 10–15 min
were necessary to cover the full area of interest. No images were
acquired during the UAV stabilization over the waypoints. In
addition, images corresponding to the takeoffs and landings were
not used. This resulted in about 600 images for each date. The
typical flight plan is shown in Figure 3.

Ground Targets and Georeferencing Accuracy
A total of 19 ground targets were evenly distributed over
the platform with fixed position for all the flights. They
were made of painted PVC disks of 60 cm diameter where
the central 40 cm diameter disk was 20% gray level and
was surrounded by a 60% gray level color external crown.
These gray levels were selected to avoid saturation and allow
automatic target detection on the images. Their location was
measured with a real time kinetics GPS device ensuring a
1 cm horizontal and vertical accuracy for every flight. Among
the 19 targets, 14 were used in the generation of the dense
point cloud (ground control points) while the five additional
ones were used to evaluate the accuracy of the geo-referencing
(Check Points). The spatial distribution of the targets was
designed to get some even coverage of the field considered
(Figure 3).
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FIGURE 2 | (A) UAV-RGB images of one microplot where a 0.6 m × 0.5 m elementary cell is identified; (B) The 3D LiDAR points for an elementary cell. Each point
colored with the intensity value of the returned signal [from blue (low intensity) to yellow (high intensity)]; (C) The corresponding z-distribution of the 3-D points.

Generation of the 3D Dense Point Cloud from the
RGB Images
The ensemble of RGB images was processed with Agisoft
Photoscan Professional (V 1.2.6) software. The first step consists
in the image alignment performed using the scale invariant
feature transform algorithm (Lowe, 2004). An “on-the-job-
calibration” was applied to adjust the camera parameters within
the structure from motion process. The application of this
method was possible because of the high overlap between images
(Turner et al., 2014) and the suitable distribution of the ground
control points (James and Robson, 2014; Harwin et al., 2015).
The Agisoft software generates in a first step a set of tie points,
each point being associated with a projection error. As advised by
Agisoft, tie points with a projection error higher than 0.3 ground
sample distance were removed. A bundle adjustment is then
applied (Granshaw, 1980; Triggs et al., 1999). Further, points with
a low reconstruction uncertainty (points, reconstructed from

nearby photos with small baseline) were then removed. These
points are generally observed for small overlapping fraction
between images along with a large view zenith angle resulting
in larger ground sample distance. The ground control points
used in this process were automatically identified using a custom
developed pipeline. The check points were not used in the
bundle adjustment, the average accuracy on the check points
reported in Table 1 (σx, σy, and σz) were in agreement with
the recommendations from (Vautherin et al., 2016): 1–2 times
the ground sample distance in x and y directions, and 2–3 times
the ground sample distance in the z direction. The dense point
cloud is generated from dense-matching photogrammetry using
a moderate depth filtering option and the full image resolution
as implemented in Photoscan 1.2.6. This filtering process results
in more variable density of points of the dense cloud, the mean
density of points in the vegetation part of the study area was 2300
points/m2.

TABLE 1 | Characteristics of the five flights completed over the Gréoux experiment in 2016.

Date (DaS) Illumination
conditions

Wind speed
(km/h)

Focal length
(mm)

Altitude (m) GSD (cm) Overlap (%) σx (cm) σy (cm) σz (cm)

along across

139 Covered 8 30 75 0.98 90 70 2.4 3.1 5.5

152 Sunny 6 30 75 0.98 90 70 4.5 1.3 3.3

194 Sunny 10 19 50 1.04 94 70 5.1 1.3 3.9

216 Cloudy 7 19 50 1.04 94 70 2.1 2.9 2.8

225 Sunny 5 30 75 0.98 90 70 5.0 2.6 3.9

σx, σy, σz, correspond to the standard deviation of the localization of the control points used to quantify the geometric accuracy.
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FIGURE 3 | The flight plan with ground control points (yellow circles with red outline) and check points (yellow circles).

Derivation of the Digital Terrain Model
Two methods were used to derive the digital terrain model. The
first one is simply based on the collection of the coordinates
of the points recorded during sowing by the sowing machine
equipped with a centimetric accuracy Real Time Kinematic GPS.
The second approach is based on the extraction of ground
points from the dense point cloud and interpolation between
them to generate the digital terrain model. The phenotyping
platform (Figure 3) was split into 13 m × 13 m cells with a
75% overlapping (50% in both x and y directions). The size of
the cell is a compromise between a small one that allows to get
of finer description of digital terrain model variations, and a
large one that will ensure to get at least few background points
from the dense cloud points. Similarly to the LiDAR processing,
a k-means clustering (Seber, 1984) with 2 classes is applied
using the z-value and the red and green color associated to each
point of the dense cloud. This k-means clustering is iterated
over the previous background class if the standard deviation
in the background class, σb, is lower than 0.14 m. However,
if σb > 0.14 m after the 4th iteration the iteration process is
stopped and no background z-value is assigned to the considered
cell. The σb > 0.14 m value corresponds approximatively to
the background roughness expected over the 13 m × 13 m cell
and was defined after several trial and error tests. Then, ground
point cloud was filtered using (Rusu et al., 2008) algorithm to
regularize the z-values over each cell. Finally, a natural neighbor
interpolation (Owen, 1992) was applied to compute the z value
for each microplot. Note that here the microplot is assumed to
be flat.

Plant Height Estimation
For each plot, the z-values of the dense cloud points were
subtracted from the z-value of the digital terrain model assigned
to the microplot. Finally, the microplot is divided into 20
consecutive non-overlapping elementary cells of 50 cm × 60 cm
similarly to what was achieved for the LiDAR data. The median
value of plant height corresponding to a given Rp of the
cumulated z distribution is finally computed and considered as
the microplot crop plant height. The selection of the value of the
Rp used to define plant height will be discussed later in the Section
“Results.”

Date When the Maximum Plant Height Is
Reached
The flowering date appears roughly when the vegetative growth
is completed, i.e., when the stems reached their maximum height.
This stage could thus be tentatively estimated using the plant
height time course. This requires obviously frequent observations
as completed in this study with the LiDAR while the plant height
monitoring with the UAV was too sparse. As a consequence, only
the LiDAR measurements will be used here for estimating the
flowering stage. When expressing the time in GDDs the plant
height temporal profile can be approximated by a vegetative
growth phase, followed by a plateau during the reproductive
phase. The plant height corresponding to the plateau was simply
defined by the maximum plant height value over the whole cycle.
A second-order polynomial regression was used to describe the
plant height during the vegetative growth. The vegetative growth
period was assumed to start for GDD = 1000◦C.day. It was
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then incrementally extended by including additional observation
dates for GDD > 1500◦C.day if the corresponding plant height
elongation rate does not decrease by more than 60% than that
of the previous value. The intersection of the elongation curve
with the plateau provides the date when plant height reaches its
maximum.

RESULTS AND DISCUSSION

LiDAR Measurements of Plant Height
The LiDAR plant height defined using Rp = 99.5% were
compared with the available manual measurements in the field.
Results show a strong agreement with a low RMSE of 3.47 cm
and small bias (bias= 1.41 cm) (Figure 4).

The impact of the Rp value on plant height was further
investigated using the difference 1PH = PHx − PH99.5 where
PHx and PH99.5 represent the plant height values respectively
for Rp = x% and Rp = 99.5%. Results (Figure 5A) show that
very high values of Rp = 99.99% increases plant height by more
than 1PH = +5 cm in most situations. Conversely, Rp = 99.0%
decreases plant height by more than 1PH =−5 cm. The absolute
difference 1PH increases rapidly with plant height for PH < 0.1
(Figure 5A). Then, 1PH increases only slightly with plant height
(Figure 5A), with, however, significant scatter for the larger
plant height values and when Rp is different from the nominal
value (Rp = 99.5%). The variability of plant height across the 20
elementary cells within a microplot (Figure 5B) shows that it is
minimum for Rp = 99.5% with STD= 3.1 cm. It increases rapidly
either for Rp < 99.5% or for Rp > 99.5% although the STD value
keeps relatively small (STD < 3.7 cm for Rp = 99.99% or for

FIGURE 4 | Comparison between plant height derived from LiDAR
measurements with plant height measured manually in the field (n = 14). Solid
line is the 1:1 line.

Rp = 90%). The use of the median values computed over the 20
elementary cells provides in addition a better representativeness
of the plant height of a microplot. This appears more important
at the tillering stage where the plant height variability within a
microplot is the largest. These results confirm that Rp = 99.5%
provides an accurate and precise plant height estimation.

Derivation of the Digital Terrain Model
with Structure from Motion Algorithm
The digital terrain model extracted from the dense point cloud
for each of the 5 flights were compared. In addition, the digital
terrain model generated from the real time kinetics GPS placed
on the sowing machine during sowing was also used. A mean
altitude value of the ground level for the 1173 microplots was
then computed for the 7 digital terrain models. Results show
that the correlation between the altitudes computed from all
the digital terrain model combinations is always very high with
R2 > 0.97 (Table 2). This indicates that all the digital terrain
models were capturing consistently the general topography of the
experimental platform.

Results show further that the RMSE values are between 2.6 and
6.8 cm (Table 2), except for DaS 152 that shows larger values.
No clear explanation was found for the degraded performances of
DaS 152. However, better consistency seems to be observed when
using a shorter focal length (comparison between DaS 194, DaS
216 and Sowing).

Comparison of Plant Height Derived
from Structure from Motion and LiDAR
The LiDAR was more frequently sampling the platform along the
growth season as compared to the UAV flights (Table 1). Plant
height derived from the LiDAR were thus interpolated to the
dates of the UAV flights. However, if the LiDAR acquisition of
a microplot differs by more than a week from that of the UAV
flight, the corresponding microplot was not considered in the
comparison. This resulted in a total of 2076 couples of structure
from motion and LiDAR plant height. The plant height from
structure from motion was first derived using the same Rp as that
used for the LiDAR (Rp = 99.5%). Results (Figure 6) show that
structure from motion plant height are strongly correlated with
LiDAR reference plant height across the 5 UAV flights available.
This corroborates previous results reported (Bareth et al., 2016;
Fraser et al., 2016; Holman et al., 2016). The same level of
consistency is observed for plant height derived from a digital
terrain model computed from the same dense cloud (R2

= 0.97,
RMSE = 7.7 cm) as compared to using the digital terrain model
derived from the sowing (R2

= 0.98, RMSE = 8.4 cm). The
correlations are generally weaker for the early stages due to the
limited range of variation of plant height (DaS 139, DaS 152).
Further, using the 30 mm camera focal length (DaS 139 DaS
152 DaS 225) tends to decrease the plant height consistency
with the reference LiDAR derived plant height as compared to
the 19 mm focal length (Table 3). The 19 mm focal length
increases the disparity in the view configurations which may
help the structure from motion algorithm to get more accurate
estimates of the z component in the dense cloud as earlier
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FIGURE 5 | (A) Difference in plant height estimates using several Rp z-values (Rp) against estimate using Rp = 99.5; (B) Standard deviation of plant height (STD
intraplot, in cm) computed within a microplot between the 20 elementary cells as a function of the Rp value selected to define plant height.

TABLE 2 | Correlation (R2, bottom triangle) and RMSE (top triangle) values between the digital terrain models computed over the 1173 microplots for the 5 flights as well
as that derived from the real time kinetics GPS on the sowing machine.

R2
RMSE (cm)

Sowing DaS 139∗ DaS 152∗ DaS 194 DaS 216 DaS 225∗

Sowing − 2.6 7.2 3.4 2.6 6.0

DaS 139∗ 1.00 − 7.2 4.5 2.9 5.0

DaS 152∗ 0.96 0.95 − 9.2 7.4 9.8

DaS 194 0.99 0.99 0.95 − 3.8 6.8

DaS 216 0.99 0.99 0.96 0.99 − 6.0

DaS 225∗ 0.97 0.97 0.91 0.97 0.96 −

∗ Indicates that the camera was equipped with the 30 mm focal length instead of the 19 mm one.

FIGURE 6 | (A) Plant Height computed from the background points identified over each date; (B) Plant height computed from the digital terrain model derived from
the sowing machine. Each color corresponds to a flight date (DaS). ∗ Indicates that the camera was equipped with the 30 mm focal length instead of the 19 mm one.
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TABLE 3 | Agreement between LiDAR and structure from motion derived plant height when the digital terrain model used come either from the same dense cloud or
from the Sowing.

Digital terrain model from the dense cloud Digital terrain model from Sowing

DaS R2 RMSE (cm) Bias (cm) R2 RMSE (cm) Bias (cm)

139∗ 0.76 5.0 −4.4 0.50 6.8 −5.6

152∗ 0.31 9.2 −8.6 0.45 9.0 −9.0

194 0.84 11.0 −9.4 0.80 9.9 −7.7

216 0.92 5.1 −3.9 0.91 6.2 −5.0

225∗ 0.59 8.7 −0.38 0.63 9.8 −5.4

All 0.97 7.7 −5.1 0.98 8.4 −6.5

∗ Indicates that the camera was equipped with the 30 mm focal length instead of the 19 mm one.

reported (James and Robson, 2014). This result also confirms the
ability of Agisoft to model the radial lens distortion of wide field
of view lens. However, the calibration of the camera from the
bundle adjustment requires an even distribution of a sufficient
number ground control points (James and Robson, 2014; Harwin
et al., 2015) and a high overlapping between images as done in
this study.

A systematic overestimation of the plant height derived from
structure from motion is observed as compared to the reference
plant height derived from the LiDAR. This agrees with results
from other studies (Grenzdörffer, 2014; Bareth et al., 2016; van
der Voort, 2016) who found that structure from motion lacked
the ability to reconstruct accurately the top of the canopy. This
is partly due to the spatial resolution difference between the
LiDAR (3–5 mm) and the RGB camera (10 mm) as compared
to the size of the objects at the top of the canopy (on the
order of the cm). However, increasing the spatial resolution
will lead to more noisy dense cloud with more gaps over
vegetated areas as reported by Brocks et al. (2016) and as was

FIGURE 7 | Impact of the rank percentile (Rp) used to defined plant height
from the dense cloud derived from structure from motion on RMSE and bias
(left y axis) and the variability of plant height along the microplot (right y axis).
The reference plant height used here is that derived from the LiDAR with
Rp = 99.5%.

experienced also in this study (results not shown for the sake of
brevity).

The principles of height measurement are very different
between the LiDAR and structure from motion: the structure
from motion algorithm uses two different directions to build the
dense cloud, limiting the penetration capacity because of possible
occultation; conversely LiDAR uses only a single direction with
much better penetration in the canopy. As a consequence, the
z profiles are expected to be different between LiDAR and
structure from motion. The impact of the Rp value used to define
plant height from the dense cloud derived from structure from
motion was thus further investigated on the 2076 couples of
measurements. As expected, increasing the Rp value decreases
the bias and thus RMSE with the reference LiDAR plant height
(Figure 7). However, the decrease seems to be limited after
Rp > 99%, reaching 8 cm difference for Rp = 99.99% Note
that the 99.99% percentile corresponds to very few points in
the dense point cloud since the cell of 0.5 m × 0.6 m contains
around 1000 points. Increasing Rp reduces the variability of
plant height between the 20 elementary cells within a microplot
up to Rp = 99.9% (Figure 8). This simple sensibility analysis
shows that best consistency with the LiDAR reference plant
height is obtained for 99.5% < Rp < 99.99% with actually small
improvement for Rp larger than 99.5%. This justifies a posteriori
the Rp = 99.5% value used for plant height estimation from
structure from motion.

Plant Height as a Reliable Trait for Wheat
Phenotyping
Broad Sense Heritability
The H2 quantifying the repeatability of the plant height
trait estimation was computed as the ratio between the
genotypic to the total variances (Holland et al., 2002).
A linear mixed-effects statistical model was applied on
each date to quantify the genetic variance. The ‘lm4’ R
package applied to our experimental design (alpha design)
was used here (Bates et al., 2014). The soil water holding
capacity that was carefully documented was used as fixed
effect in the model. We write the model (random terms
underlined) as:

Y = µ+ S+ G+ L+ C+ L:C+ ε
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FIGURE 8 | Heritability (H2) of plant height for different environments
conditions and methods along the growth cycle. The two modalities (WW and
WS) and plant height derived from LiDAR and structure from motion are
individually presented.

FIGURE 9 | Dynamics of the LiDAR plant height for two genotypes (red and
blue lines and symbols) with three replicates in the WW environment (‘+’ solid
lines) and in the WS environment (‘∗’ dashed lines) the date when the
maximum plant height is reached is indicated by the vertical line. Time is
expressed in Growing Degree Days (GDD, ◦C.day).

Where S is the soil water holding capacity. G is the random
effect of the genotypes. L and C are, respectively, the random
lines and column effects in our alpha design plan and L:C is the
random sub-block effect. µ is the intercept term (fixed) and ε the
random residual error.

The plant height trait derived from the LiDAR shows a high
H2 up to DaS 210 (Figure 8) for the WW modality. It drops
dramatically at the end of the growth cycle in relation to lodging
that was affecting differently the replicates. Conversely, the WS
modality keeps relatively stable during the whole growth cycle
because no lodging was observed. However, when the water stress

FIGURE 10 | Comparison between the date expressed in Growing Degree
Day (GDD) of the maximum plant height growth with the flowering date visually
scored (expressed in GDD) (n = 114).

starts to impact crop growth around DaS 180, a small decrease of
the H2 is observed: residual environmental effects not accounted
for by the alpha experimental plan and the soil water holding
capacity were slightly degrading the H2 value.

The H2 values computed over the WW modality from
structure from motion are close to those observed for the
LiDAR, with, however, a slight degradation of the performances.
Conversely, the H2 values computed on the WS modality from
structure from motion show the smallest H2 values. On DaS 194,
the H2 is low for the WS modality. A detailed inspection shows a
noisy dense point cloud in the WS part of the field that impacted
the height computation and thus H2. At this specific date and
location, the phénomobile was operating during the UAV flights
which induces artifacts and problems in the dense point cloud
generation from structure from motion.

Plant Height as a Proxy of the Flowering Stage
Due to the reduced observation frequency of the UAV, flowering
time was only assessed using the LiDAR plant height. The
date when the maximum plant height is reached, Dmax(PH), is
considered as a proxy of the flowering stage. Figure 9 shows
that Dmax(PH) is well identified based on the simple algorithm
presented in the methods section. Further, it appears that
Dmax(PH) is little dependent on the environmental conditions:
WW and WS modalities are very close and for the WS modality,
there is no difference due to the soil water holding capacity
although differences in max(PH) are observed.

The flowering dates are well correlated with Dmax(PH)

(Figure 10) (R2
= 0.24, RMSE = 76, Dmax(PH) = 0.7

Dflowering + 541). However, the best linear fit shows that the
earlier genotypes reach the maximum plant height about 100
GDD after the flowering stage, which corresponds approximately
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FIGURE 11 | (left) Regression between plant height derived from LiDAR and Biomass (n = 139): (right) regression between plant height derived from structure from
motion and Biomass (n = 86). Blue and red symbols correspond respectively to the WW and WS modalities. Unfortunately, no UAV acquisition was conducted for
the Zadocks 32 stage. The Z32 and flowering stages are indicated by the corresponding green envelope of the points in the figures.

to 7 days. The late genotypes show less differences, around 20
GDD corresponding to 1 or 2 days after flowering. Dmax(PH)

appears thus to be a reasonable proxy of the flowering stage
considering that the accuracy of its visual scoring date is
around 2–3 days. Nevertheless, some genotypes show significant
differences from the main relationship as illustrated in Figure 10.

The heritability of Dmax(PH) was very high, H2
= 0.96 and

H2
= 0.88, respectively for the WW and WS modalities. This

confirms the small influence of the environment for the genetic
expression of this trait.

Relationship with Above Ground Biomass and Yield
Correlations between plant height and biomass along the
growing season are very strong (Figure 11) both for the LiDAR
(R2
= 0.88, RMSE = 112.2 g/m2) and the structure from motion

(R2
= 0.91, RMSE = 98.0 g/m2). These good relationships

confirm observations by several authors (Yin et al., 2011; Bendig
et al., 2014; Ota et al., 2015; Tilly et al., 2015). However, these
correlations are mainly driven by the variability across stages
along the growth cycle. For a given stage, little prediction power
of the biomass is observed from plant height (Figure 11). The
correlation at the flowering stage is relatively low (R2

= 0.5)
for both methods. Other variables such as the basal area should
be used to improve the correlations. Yield is poorly correlated
with maximum plant height both when derived from LiDAR
(R2
= 0.22, RMSE = 149.6 g.m−2) and structure from motion

(R2
= 0.13, RMSE = 152.3 g.m−2). This is consistent with the

poor correlation with biomass observed for a given growing stage,
assuming that the harvest index varies within a small range.

DISCUSSION AND CONCLUSION

Since crop surface is very rough, an important point addressed
in this study was to propose a definition of plant height from

the 3D point cloud retrieved from LiDAR or structure from
motion techniques. The 99.5% percentile of the cumulated
z-value was found to be optimal for comparison with ground
ruler measurements while minimizing the spatial variability over
each microplot. However, this definition will probably slightly
depend on the canopy surface roughness. As a consequence, the
99.5% percentile used as a reference for wheat should be checked
and possibly adapted for other crops as well as a function of
the spatial resolution used. LiDAR measurements are based on
a single source/view configuration allowing to penetrate into the
canopy and reach the ground reference surface. Plant height
could then be directly measured because of the availability of
ground reference points within a microplot. Conversely, the
penetration capacity of structure from motion methods based
on the combination of distinct view directions from the UAV is
limited because of possible occultation that will increase when the
canopy closes. In these conditions, two strategies were compared:
(1) either find ground reference points over the whole 3D dense
point cloud and interpolate these points to get the digital terrain
model; or (2) use and ancillary digital terrain model, that was in
this study derived from real time kinetics GPS acquired during
the sowing of the crop. The first approach might be limited in the
case of a terrain presenting a complex topography when only few
ground points are identified. Note that the ground control points
could be used as ground level points if the distance to the ground
is precisely known. Results show that both methods reach the
same level of accuracy. For the two approaches investigated here
to define the digital terrain model and extract the plant height
of each microplot, the methods presented here were designed
to process automatically the original imagery. This includes
automatic and direct extraction of the microplots as well as
of the digital terrain model from the dense cloud as opposed
to earlier studies where plant height was derived from a crop
surface model generated from the dense cloud (Bareth et al.,
2016).
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The comparison between plant height derived from LiDAR
and structure from motion shows a very high consistency
with strong correlation (R2

≈ 0.98) and small RMSE values
(RMSE = 8.4 cm). Most of the RMSE was explained by a
significant bias, the plant height being underestimated. This
may be partly due to the differences in the spatial resolution
of the two systems (about 4 mm for LiDAR and 10 mm for
UAV imagery) as well as in differences in canopy penetration
capacity. However, plant height derived from structure from
motion is systematically lower than that of the LiDAR. Our
results further indicate that larger field of view with shorter
focal lengths would generate more accurate 3D dense point
clouds from structure from motion and thus plant height
because of the increased disparity between the several view
points. However, complementary study should investigate more
deeply this effect as well as the impact of a degraded spatial
resolution.

High H2 (repeatability) of plant height was observed both
for LiDAR and structure from motion. The water stress
experiment over which the LiDAR and structure from motion
techniques were evaluated shows that plant height is a
very pertinent trait to characterize the impact of drought
before flowering stage: plant height not only quantifies the
magnitude of the stress, it allows also to date precisely
when the stress started to impact plant growth if sufficiently
frequent observations are available. In addition, the date when
plant height reaches its maximum was demonstrated to be
a reasonable proxy of the flowering date with, however,
some slight variability between genotypes. The heritability
of the Dmax(PH) reached was very heritable since it was
demonstrated to be very little dependent on the water stress
experienced by the plants in this experiment. The phasing
difference between the end of the vegetative growth period
and the flowering date might be investigated by breeders
as a new trait of interest. Finally, plant height provides
obviously a very easy and convenient way to identify plant
lodging either based on the temporal evolution of the
microplot, or from the variance between the 20 elementary
cells considered in each microplot. All these results make
the plant height trait very interesting for plant breeders.
However, very low correlation with total above ground biomass
and yield were observed for a given date of observation
while high correlations are found across stages. Additional
variables should be used such as the basal area to get the

biovolume to get a better proxy of the above ground biomass at
harvest.

Plant height derived from UAV using structure from motion
algorithms were demonstrated here to lead to similar degree
of accuracy as compared to the LiDAR observations from the
phénomobile. The affordability and flexibility of UAV platforms
and the constant improvement of cameras (better, smaller, lighter,
cheaper) will probably make UAVs the basic vehicle to be used
for high-throughput field phenotyping of plant height. Further,
the recent availability of centimetric knowledge of the camera
position for each image based on real time kinetics techniques will
ease the structure from motion processing while possibly limiting
the number of ground control points to be set up in the field.
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From this first study we have developed a methodology to derive the height through 
UAV and ground vehicle platforms. The pipeline presented in this chapter was also applied in 
many other studies. A low correlation was found between the height and the biomass at a given 
stage. This can be easily explained by the variation in plant and ear density and the basal area. 
This is going to be the next topics of research in the following chapters.   
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3  Ear density estimation from high resolution 

RGB imagery using deep learning technique  

 

Some key phenomic information can be derived by image analysis. The emergence of 
deep learning have motivated us to investigate the potential of convolutional neural network for 
the identification and counting of wheat ears. This trait is known to be challenging one wich 
more traditional images processing pipeline was not able to tackle. Traditional in-situ 
measurements were also prone to error measurements due to sampling problems as highlighted 
in this study. 
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A B S T R A C T

Wheat ear density estimation is an appealing trait for plant breeders. Current manual counting is tedious and
inefficient. In this study we investigated the potential of convolutional neural networks (CNNs) to provide ac-
curate ear density using nadir high spatial resolution RGB images. Two different approaches were investigated,
either using the Faster-RCNN state-of-the-art object detector or with the TasselNet local count regression net-
work. Both approaches performed very well (rRMSE≈6%) when applied over the same conditions as those
prevailing for the calibration of the models. However, Faster-RCNN was more robust when applied to a dataset
acquired at a later stage with ears and background showing a different aspect because of the higher maturity of
the plants. Optimal spatial resolution for Faster-RCNN was around 0.3 mm allowing to acquire RGB images from
a UAV platform for high-throughput phenotyping of large experiments. Comparison of the estimated ear density
with in-situ manual counting shows reasonable agreement considering the relatively small sampling area used
for both methods. Faster-RCNN and in-situ counting had high and similar heritability (H²≈85%), demonstrating
that ear density derived from high resolution RGB imagery could replace the traditional counting method.

1. Introduction

Wheat ear density in wheat crops is associated with components of
crop yield related to plant population and tiller number per plant, but is
a difficult and tedious trait for breeders to efficiently measure. Further,
it is prone to sampling errors when the sampling area is small due to
limited human resources. Computer vision approaches provide a po-
tential solution to increase the throughput as well as the spatial re-
presentativeness, leading potentially to an improved accuracy. A
number of studies based on high spatial resolution imaging systems
applied to plant phenotyping under field conditions have received
much attention in recent years (Li et al., 2014). Both ground-based and
aerial platform (Araus and Cairns, 2014; Deery et al., 2014; Tardieu
et al., 2015) have been exploited to image the microplots with a spatial
resolution spanning within few centimeters to a fraction of millimeter.

Because of the typical size of wheat ears and the possible occlusions
between them, a spatial resolution of few millimeters is required to
identify non-ambiguously the ears. Therefore, most studies focused on
high-resolution RGB images on which a high pass filter and

morphological operators were applied (Journaux et al., 2010)
(Fernandez-Gallego et al., 2018). Those methods provide promising
results on small datasets. However, these types of algorithms may fail
when applied to images acquired under different conditions and for
different development stages: the change in illumination conditions, the
occlusions, the variability of ear aspect due to genotype including the
presence or absence of awns, the flowering status, the variability of the
background and the image quality make the scalability of this pheno-
typing task challenging.

The advances in computation capacity along with the availability of
very large collections of labelled images have fostered enhanced ma-
chine learning methods based on convolutional neural networks (CNNs)
in the field of computer vision (Hinton and Salakhutdinov, 2006; LeCun
et al., 2015). CNNs are currently achieving impressive performances for
image classification (Singh et al., 2016; Krizhevsky et al., 2012). Be-
cause the number of label images required to train CNN models from
scratch is important, pre-trained are often used as a starting point.
Further, pretrained models generally improved the resulting accuracy
(Mohanty et al., 2016) and limit overfitting issues (Yosinski et al.,
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2014). Several network architectures have proven their effectiveness
over benchmark computer vision database like Alexnet (Singh et al.,
2016), VGG (Simonyan and Zisserman, 2014) and more recently re-
sidual network with inception layers like Inception-ResNet (Szegedy
et al., 2016). These models are then fine-tuned (Dauphin et al., 2012)
on a small training dataset specific to a particular classification task
(Yosinski et al., 2014; Donahue et al., 2014; Sharif Razavian et al.,
2014).

Some of these methods have already been applied to plant pheno-
typing. CNN models have demonstrated to be effective for dis-
criminating features for wheat plants including highly accurate iden-
tification of ears (Pound et al., 2017) in glasshouse condition. Similar
studies have shown that CNNs outperform classic hand-crafted feature
descriptors and offer an alternative approach for classification problems
(Pound et al., 2017; Allen et al., 2005; Madec et al., 2017). The de-
tection algorithm needs to identify and localize each ear in the image.
When the overlap between identified objects is a common pattern as for
crowded scenes, counting by regression networks was recently de-
monstrated to be a relevant alternative (Huang et al., 2016; Hosang
et al., 2017; The Open Images dataset, 2018): the TasselNet model was
proposed for counting maize tassels (Lu et al., 2017). Tasselnet is based
on a CNN with a regression output layer. The local counts regressed
from individual sub-images are merged to provide a count map for the
whole image. Likewise, a deep residual model with a regression output
was used to count the number of wheat plants at emergence (Salton and
McGill, 1983). The emergence counting is achieved through a two-stage
process: segmenting wheat plants and regressing the counts from small
image patches. This presents an alternative way to tackle occluded
wheat plants, while the precision of the system is also affected by the
segmentation algorithm used.

The main objective of this study is to evaluate deep learning ap-
proaches for high-throughput wheat ear counting under field condi-
tions. For this purpose, two types of CNN architectures will be in-
vestigated: (i) local object detection and (ii) counting by regression. The
influence of the spatial resolution of the RGB on the model performance
will be analyzed to select the optimal resolution. Finally, the ear density
estimated from the RGB images will be compared with the in-situ visual
ear counting and the broad sense heritability is then quantified to
evaluate the suitability of the proposed method for field phenotyping.

2. Material and methods

2.1. Data collection and labelling

2.1.1. Experimental site
The study area is a wheat field phenotyping platform located in

Gréoux les Bains (France, 43.7° latitude North, 5.8° longitude East).
Wheat was sown on November 3rd 2016 with a row spacing of 17.5 cm
and a density of 300 seeds·m−2. A trial of 120microplots of 2.0 m width
by 10m long was considered. Half of the microplots was irrigated
(called WW) while the other part was subjected to water stress (called
WS). The 20 contrasting genotypes were replicated three times both in
the WW and WS modalities and organized as an alpha-design.

A crop water balance model (Allen et al., 2005) has been used to
estimate the water stress during the whole growing season. It used the
measured soil water holding capacity of 143mm to compute the actual
evapotranspiration at the daily time from the rainfall and the potential
evapotranspiration. The difference between the actual and maximum
evapotranspiration values corresponds to the daily crop water deficit
that was cumulated from emergence up to maturity (Fig. 1). This in-
dicated that the water deficit for the WS modality started after the ear
emergence stage (stage Z59). The irrigation on the WW modality were
starting after this date.

2.1.2. Ground measurements of ear density
In each microplot, the ear density was measured on June the 7th

2017 after the flowering stage over three segments of 1m length by two
adjacent rows which represent a sampling area of 1.05 m². The first two
rows located at the border of the microplots were not considered in the
sampling to minimize border effects.

2.1.3. Canopy height
The height is required to define the footprint of the image and to

compute the ear density by dividing the number of ears by the size of its
footprint. The height was measured with a LiDAR fixed on a fully au-
tomated robot called “phénomobile” (Madec et al., 2017). The un-
certainties associated to the height estimated by the LiDAR were few
centimeters. More details can be found in (Madec et al., 2017).

2.1.4. Image acquisition and labelling
A Sony ILCE-6000 digital camera with a 6000× 4000 pixels was

fixed on a boom. The RGB images were taken from the nadir view di-
rection at 2.9m distance to the ground. For each microplot two images
were recorded. The measurements were completed on June 2nd and the
16th 2017. 60mm and 50mm focal lengths were used respectively on
June the 2nd and the 16th. This resulted in a ground sampling distance
between 0.010 - 0.016 cm/pixel and a footprint area of individual
images between 0.25m² and 0.56m² depending on the height of the
wheat and the focal length used.

The ears were interactively labelled in all the images of the first
experiment (June 2nd) resulting into 240 images (20 genotypes x 3
replicates x 2 modalities x 2 images). Between 80 and 170 ears were
contained in each image. The LABELIMG (darrenl, 2017) graphical
image annotation tool was used to draw the bounding boxes around
each identified ear in the images (Fig. 2). The bounding boxes contain
all the pixels of the ears, except when the bounding box would have to
be made too large to include the awns. If possible, the boxes also
contain a small portion of the stem. When comparing the results of the
identification by one of the model developed, we discovered that few
ears were forgotten by the operator in interactive label process. The
images were thus reprocessed interactively with greater care. Finally, a
total of 30,729 ears were identified after the second ear label round.

The second experiment (June the 16th) was only used to evaluate
the scalability of the models when applied to another stage with dif-
ferent illumination conditions and camera focal length: no interactive
labelling was made for this experiment.

2.1.5. Data preparation
It was not possible to train the model with the original 6000× 4000

pixels images because of GPU memory limitation. The maximum image
size acceptable for the available computer configuration () was

Fig. 1. Cumulated Dh for different zadocks development stages. Dh is the dif-
ference between the actual and maximum evapostranspiration values.
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500×500 pixels. The original images where therefore split into mul-
tiple sub-images while keeping 50% overlap between the sub-images.
The overlap allows to minimize problems observed on the borders when
ears are only partially contained in the sub-image. Note that using
smaller sub-images increases the size of the training dataset (Pound
et al., 2016). To investigate the influence of the spatial resolution,
several training datasets were generated by resampling the original
images by a factor of 2, 3, 4, 6 and 8 (Table 1) using a bi-linear ag-
gregation function. Note that the larger resampling factors corre-
sponding to a degraded spatial resolution will correspond to larger
footprints of the 500×500 pixels sub-images and therefore a limited
number of training data set. To investigate this trade-off, sub-image size
of 250×250 were also considered, which increased by a factor 4 the
training dataset at the expense of more border effects. Note that no
specific data-augmentation was applied to the training data base. Re-
garding the TasselNet method sub-image of a size of 256 were used,
these sub-images were further down sample by a factor of 8.

2.2. Data processing

2.2.1. Object detection using Faster-RCNN
Object detection techniques searches first in the sub-image potential

candidates. An object proposal method is thus required. A number of
object proposal methods have been reviewed and compared (Hosang
et al., 2015) for general object detection using the convolutional fea-
tures of the full sub-image network. The Region Proposal Network
(RPN) generates first a dense grid of anchor regions (candidate

bounding boxes) with specified sizes and aspect ratios over the input
sub-image. An anchor is assigned as positive/negative if its intersection
over union (IoU) ratio with the ground truth object is greater/lower
than a relatively large/small overlap threshold. The RPN made of a
shallow CNN predicts a score for each anchor, which measures its
probability to contain an ear. One of the advantages of this approach is
that the model learns features of the background, thus removing ne-
gative location to the classification step.

The TensorFlow implementation of Faster-RCNN by the object de-
tection API (Huang et al., 2016) was used. The RPN branch is inserted
between the conv4 and conv5 blocks. The Inception-Resnet-V2 model
was used here because it achieves the best accuracy among current
object detectors (Huang et al., 2016). An anchor is set at each location
considered by the convolution maps of the RPN layer. A set of 12 an-
chors with different sizes and aspect ratios were assigned at each lo-
cation, following the default setting. Anchors were considered con-
taining an ear if the IOU between their bounding boxes and those of the
labelled ears were between 0.6 and 1.0. Conversely, it was considered
as background if the IOU with label ears was lower than 0.175. When
the IOU was in between 0.175 and 0.6, the anchors were no more
considered. These hyper-parameters were corresponding to standard
values. The number of proposed anchors per sub-image was fixed to
300 which is consistent with the maximum expected number of ears in
a sub-image. The batch size was fixed to 1 because it saves the com-
putation time and memory requirement while marginally impacting the
performances (results not shown for the sake of brevity). Each bounding
box was associated with a score value. A score threshold of 0.5 was used
to decide whether a bounding box will be considered as an ear or not.
To limit overlap between bounding boxes containing the same ear, an
IOU threshold of 0.6 was used to select only one of the two bounding
boxes (Hosang et al., 2017). The model was pretrained on the COCO
dataset (The Open Images dataset, 2018). It contains 0.33 million
images with 1.5 million of object instances belonging to 80 object ca-
tegories. The model was finally fine trained with a learning rate of
0.0003 and a momentum of 0.9.

The results on the sub-images were then merged to count the ears
over the full original image. Because of the 50% overlap between the
sub-images an ear was generally detected in more than one sub-image.
An overlap ratio was computed for each bounding box. It was computed
as the intersection area between the two bounding boxes divided by the
area of the smaller bounding box. If this ratio was larger than 0.85, the
smaller bounding box was deleted.

2.2.2. Counting by regression using TasselNet
TasselNet is a recent regression-based counting approach. TasselNet

learns a mapping from local visual characteristics to local image counts.
The image is processed using a sliding window. The global image count
is computed by summing the counts over the set of local windows.
Compared to Faster R-CNN, learning TasselNet only needs dotted an-
notations (the center of each bounding box). Following the suggestions
from (Lu et al., 2017), the Alex-like CNN model with local counts as the
regression target based on L1 loss function were used here. Further,
since TasselNet allows to work on relatively low-resolution images, the
original image was down sampled to 1/8 of its original size and
32× 32 pixels sub-images were considered, corresponding to
256× 256 pixels sub-images in the original spatial resolution (Table 1).
We refer readers to (Lu et al., 2017) for further details.

2.2.3. Evaluation metrics
The training and validation datasets were populated with different

genotypes: 14 genotypes (168 images) out of the 20 were randomly
selected for training the models. The six remaining genotypes (72
images) were used for the validation. This will allow identification of
possible overfitting in the training process.

A predicted bounding box is considered correct (true positive, TP) if
it overlaps more than the IOU threshold with a labelled bounding box.

Fig. 2. Example of bounding boxes interactively drawn using the labelimg
software.

Table 1
Characteristics of the several models considered in this study.

Model Approach Resolution
factor

Resolution
(mm)

Size sub-
image
(pixels)

Number of sub-
images used
for training/
validation

#1 Faster-RCNN 1 0.13 500 56994/24426
#2 Faster-RCNN 2 0.26 500 12270/5258
#3 Faster-RCNN 3 0.39 500 5782/2478
#4 Faster-RCNN 4 0.52 250 12270/5258
#5 Faster-RCNN 4 0.52 500 2478/1062
#6 Faster-RCNN 6 0.78 250 5782/2478
#7 Faster-RCNN 6 0.78 500 990/424
#8 Faster-RCNN 8 1.04 250 2478/1062
#9 TasselNet 8 1.04 256 Sliding

window
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Otherwise the predicted bounding box is considered as false positive
(FP). When the labelled bounding box have an IOU with a predicted
bounding box lower than the threshold value, it is considered as false
negative (FN). The standard IOU threshold value of 0.5 was used. The
precision and recall are then computed (Eq. (1)):

=
+

=
+

Precision TP
FP TP

Recall TP
FN TP

,
(1)

The score associated to each bounding box allows evaluating the
trade-off between false positive and false negative. The average preci-
sion (AP@0.5IOU) (Salton and McGill, 1983) was used to quantify the
detection performances. The standard average precision metrics, AP@
0.5IOU, is the area under the precision-recall curve obtained for dif-
ferent bounding box scores. The AP@0.5IOU balances the precision and
recall performances terms that may be strongly correlated. AP@0.5IOU
varies between 0 (TP= 0) to 1 (FN=0)

The ear counting performances were quantified using several me-
trics: root mean squared error (RMSE), the relative RMSE (rRMSE), the
mean absolute error (MAE), the Bias (BIAS) and the coefficient of de-
termination (R²):
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Where N denotes the number of test images, tk and ck are respectively

the reference and estimated counts for image k, and tk
¯
is the mean

reference count.

3. Results and discussion

3.1. A resolution around 0.3 mm is needed for best performance with faster-
rcnn

The time required to train each model was around 1 h (4000
iterations run on a NVIDIA GTX 1080Ti). The model performance (AP@
0.5IOU computed on the validation dataset) was computed at several
stages during the training process for the several combinations of spa-
tial resolution and sub-window size (Table 2). This allows for evalua-
tion of the quality of the training process. Results showed that AP@
0.5IOU was generally converging rapidly towards a maximum value

(Fig. 3): after 1000 iterations, most of the models reached an AP@
0.5IOU close to the maximum one. This is explained by the fact that the
model was pretrained and initialized using the COCO dataset. No
overfitting characterized by a decrease of the AP@0.5IOU after
reaching a maximum value was observed (Fig. 3), except for the model
#8 that was trained on a to small number of sub-images. The maximum
values of AP@0.5IOU found here (Table 2) were higher than those
reported in other studies based also on the COCO dataset (Huang et al.,
2016). This improvement in the performances observed in our study
was mostly explained by the larger size of the training dataset used and
the relatively lower complexity of the ear detection problem as com-
pared to the categories considered in (Huang et al., 2016).

When using the original spatial resolution of the images (model #1),
borders with ears partially in the sub-image were often observed
(Fig. 3). This may explain why the performances degraded as compared
to slightly coarser resolution (Fig. 3, Table 2). Note that the sub-image
size was limited by the GPU memory. Further, the object size (Table 2)
observed for model #1 with the highest spatial resolution is much
larger than the typical size of objects considered in standard convolu-
tional networks (in between 100 and 250 pixels) (Huang et al., 2016).
This may pose difficulties to handle these large objects for the first step
of the algorithm where regions are proposed (RPN).

The spatial resolution showed a marginal impact on the AP@0.5IOU
values that kept around AP@0.5IOU=0.9 for most models having
more than 3000 sub-images used for the training, with the exception of
the original resolution (model #1) wich showed strong border effects
and too large bounding boxes as already discussed (Table 2). The AP@
0.5IOU was therefore mostly influenced by the number of sub-images
used in the training process. For the same spatial resolution (models #4
and #5 with 0.52mm resolution, and models #6 and #7 with 0.78mm
resolution) the AP@0.5IOU was always higher when the number of

Table 2
Performances of the Faster-RCNN models considered evaluated over the 72 validation images.

Dataset Resolution (mm) Average object size (pixels) Size of sub-image (pixels) Number of sub-images AP@0.5IOU after 4000 iterations ear count per image

R² rRMSE

#1 0.13 221.6 500 56994 0.70 0.73 11%
#2 0.26 110.8 500 12270 0.85 0.91 5.3%
#3 0.39 73.9 500 5782 0.83 0.85 5.4%
#4 0.52 55.4 250 12270 0.83 0.83 11.2%
#5 0.52 55.4 500 2478 0.67 0.87 24.7%
#6 0.78 36.9 250 5782 0.82 0.75 11.2%
#7 0.78 36.9 500 990 0.54 0.33 38.5%
#8 1.04 27.7 250 2478 0.49 0.62 30.3%

Fig. 3. AP@0.5IOU as a function of the number of iterations during the training
process. The several curves correspond to the models presented in Table 2.
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images used for training was larger (Table 2). Even with a spatial re-
solution degraded down to 0.78mm (model #6), AP@0.5IOU were
only marginally decreasing as compared to 0.39mm resolution (model
#3) when the training data set is large enough (5782 sub-images). For
the 0.78mm resolution, the average size of the ear bounding box is 37
pixels, which is consistent with other studies (A closer look, 2018) and
with the size considered for the proposed objects. For coarser spatial
resolution, the number of available sub-images used for the training
will be too small to provide robust performances. Further, even by in-
creasing the size of the training dataset with additional labelled images,
performances are expected to decrease because Faster-RCNN is known
to have difficulties with small objects (A closer look, 2018).

For a more detailed evaluation of the performances of the several
models presented in Table 2, the R² and rRMSE of the ear counting
estimation for each sub-image were also computed. Those two metrics
were generally in agreement with the AP@0.5IOU (Table 2). However,
relatively high rRMSE and small R² were observed for models #4 and
#6. Visual inspection of the resulting estimated bounding boxes showed
that too many boxes were assigned for the same ear which is not
properly considered by the AP@0.5IOU metrics. This problem corre-
sponds to poorer efficiency of the RPN step when the size of the sub-
images (250× 250) was too small. It was thus recommended to use
sub-image size larger than 250×250 pixels. However, it is possible
that manipulating concurrently other hyper-parameters such as the
number of maximum proposed bounding boxes will partly solve this
limitation.

Best performances were observed for dataset #2 with a sub-image
size of 500×500 pixels and a spatial resolution around 0.26mm
(Fig. 3). This dataset was used in the validation part of this project
(Fig. 4)

A total of 8097 ears were detected with model #2 applied to the
validation dataset, with 1.5% false positive (commission) and 2.9%
false negative (omission). Closer inspection of the false positive cases
showed that a significant part (around 40%) corresponded to actual
ears that were not identified during the interactive labelling process.
The Faster-RCNN model achieved thus a better ear detection than hu-
mans when properly trained. However, the model failed to detect most
of occluded ears with poor lighting conditions that were also largely
missed by the human labelling: the model was obviously not trained for
these situations. The false positive cases were also generally associated
with a lower confidence score (Fig. 5). The influence of this score will
be further discussed in later in this paper.

When part of a stem was visible, model #2 was more easily de-
tecting the ears: the stem carried therefore useful information for ear
recognition. However, this situation is not the dominant one for most of
the genotypes at the early stages since ears are mostly vertical and
observed from nadir (Fig. 6). The model also failed to detect very large
ears (Fig. 7, left). Lower AP@0.5IOU was computed when the model
was facing ears with no awn. Further, the model had more difficulties
with bounding boxes that had an aspect ratio different from one. The
IOU ratio with the reference labelled boxes was generally smaller for
ears with no awn or for bounding boxes with aspect ratio different from

one. This later problem can be improved by adding anchors with a
larger range of size and aspect ratio.

3.2. Faster-RCNN is more robust than TasselNet

The ear counting based on TasselNet required very few hyper-
parameters. The standard values proposed by (Lu et al., 2017) were
used here. The comparison between TasselNet and Faster-RCNN is
based on the ear density estimated from the images belonging to the
validation dataset. In fact, TasselNet did not identify and locate the ears
and so it is not possible to compute a confusion matrix from which the
AP@0.5IOU could be derived. Further, the lack of localization step in
TasselNet prevents the opportunity for exploration of other potential
traits exploration at the ear level such as detecting the presence of
awns, measuring the size and shapes of the ears and quantifying the
flowering status. Nervertheless, TasselNet presented the advantage to
identify each ear using a single point as compared to the more complex
label using bounding boxes as in the Faster-RCNN approach.

Results showed good performances for both methods as evaluated
over the validation dataset, with very small bias (< 5 ears) and a better
rRMSE for Faster-RCNN (≈5%) (Fig. 8). This result was expected in
cases of non-crowded scenes with little overlap between objects, which
was the case for ears in this study (Fig. 6): less than 1% of the inter-
actively label bounding boxes had an IOU > 0.5. TasselNet was more
efficient for relatively low spatial resolution images to evaluate the
density of small object instances (< 30 pixels). TasselNet seemed
therefore not exploiting all the detailed texture information required for
Faster-RCNN to identify individual ears: the degraded spatial resolution
(1.04 mm) of the images used for TasselNet provided better perfor-
mances as compared to Faster-RCNN applied to the same spatial

Fig. 4. Example of the sub-windows used for model-#1 (left: original resolution (0.13mm) and subimage size=500×500), model #2 (middle: resolution degraded
by a factor of 2 (0.26mm) and subimage size= 500×500), and model #5 (right: resolution degraded by a factor of 4 (0.52mm) and subimage size= 500×500).

Fig. 5. Distribution of the associated scores for the true positive (blue) and the
false positive (red) bounding boxes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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resolution (model #8 in Table 2).
Since the number of ears is not expected to change after the flow-

ering stage, estimations for the first date were compared with those of
the second date for which no ears were labelled. This allowed evalua-
tion of the scalability for the second date of the models calibrated on
the first date. Because the images taken over each microplot were not
located exactly at the same place between the two dates, performances
were based on the average ear density of the microplot. It was com-
puted from the ear count of the two images taken over each microplot,
divided by their footprint area defined by plant height and camera field
of view. Results showed that the application to the second date of the
Faster-RCNN previously trained over the first date agreed very well
with ear density estimates for the first date (Fig. 9) with however a
slight underestimation of the ear density that will be further in-
vestigated in the next section.

Conversely, TasselNet showed large discrepancies between the ear
density estimation of the two dates with a strong underestimation
(Fig. 9). This appeared mostly related to the senescence state of the
microplot, TasselNet having difficulties to detect senescent ears over
senescent leaves (Fig. 10). Further, ears from the second date presented

different visual aspects as compared to the first date, with in addition a
slight change in the spatial resolution due to the use of a 60mm and
50mm focal lengths camera respectively for the first and second dates
(Fig. 10). TasselNet failed to capture ears from the second date and thus
generalized poorly in new scenes. The better scalability of the Faster-
RCNN model may be due the fact that it was already pretrained to
detect millions of object instances, exploiting more the gray-scale image
pattern than the TasselNet model that seemed to be much more sensi-
tive to the color of the objects. More investigations should be carried
out to improve TasselNet scalability based on a larger training dataset
with a significant fraction of images over senescent crops, or to simply
transform the RGB images into gray-scale images.

Because of the limits of the TasselNet model highlighted previously,
focus will be put on the Faster-RCNN model#2 trained over the first
date. The slight degradation of performances of the Faster-RCNN model
for the second date was further investigated. The RMSE between the ear
density estimated from the RGB images and the ground measurements
were computed for a range of score threshold values used to decide if a
bounding box is considered containing an ear or not (Fig. 11). Results
showed that the RMSE decreases with the score threshold values down

Fig. 6. Examples of sub-images (500× 500 pixels) with ears detected by model #2.

Fig. 7. Illustration of problems encountered with model #2. On the left, example of False negative (omission). On the right, example of false positive (commission).
All the images have the same resolution.
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to a minimum around 0.7 for the first date: increasing the score
threshold value limits the fraction of false positives. After this minimum
value, the RMSE increased with the score since the fraction of false
negative will increase. The situation is slightly different for the second
date: the RMSE increased continuously with the score threshold value.
Ears for the second date were slightly different from the first date used
to train the model. The score threshold should therefore be relaxed to
prevent rejecting too many candidate ears that were slightly different
from the first date. The score threshold value initially used (0.5) ap-
peared thus to be optimal when considering the two measurement
dates: both curves were crossing for a score threshold value of 0.5
(Fig. 11).

3.3. Ear density estimates are highly heritable

The broad sense heritability (H²) quantifying the repeatability of the
ear density estimation was computed as the ratio between the genotypic
variances to the total one (Holland et al., 2002). A linear mixed-effects
statistical model was applied on each date to quantify the genetic
variance. The ‘lm4′ R package was applied to our alpha plan experi-
mental design (Bates et al., 2014). The soil water holding capacity (S)
that was carefully documented was used as fixed effect in the model
that writes (random terms are underlined) as:

= + + + + + +Y μ S G L C L C Ɛ_ _ _ :_ (7)

Where Y is the ear density, G_ is the random effect of the genotypes, L_
and C_ are respectively, the random effects for lines and column in the
alpha plan, and L C:_ is the random sub-block effect. μ is the fixed in-
tercept term and ε the random residual error. Since the genotypes may
express differently depending on the environmental conditions, the
heritability was computed independently for the two modalities.

The high heritability values (≈85%) for the estimated ear density
was observed for both measurement dates and the two modalities
(Table 3). This was partly explained by the fact that contrasted geno-
types were used with significant differences in the tillering capacity.
The heritability is higher for the first date as compared to the second
one. This can be attributed by the fact that the models were trained
with images from the first date. The heritability of the WS modality is
slightly higher than that observed on the WW modality. The heritability
associated to the ground measurements of the ear density were in the
same order of magnitude as those estimated from the RGB imagery and
the faster-RCNN model. The heritability of the WW modality
(H²= 80%) is lower than that of the WS modality (H²= 91%) in
agreement with RGB imagery estimates. However, the heritability of
the WW modality is lower than that provided by the Faster-RCNN
model. This point will be investigated in the next section.

3.4. Faster-RCNN was more reliable than ground measured ear density

The ear density of the WS and WW modalities were expected to be
very similar since the water stress was mostly appearing after the ear
emergence stage (Fig. 1) when all ears have already emerged from the
stems. The estimated ear density averaged over the three replicates
were thus compared between the two modalities. The same was done
for the ground measured ear densities. The best coefficient of de-
termination (R²) was observed with the images from the first date and
the output from Faster – RCNN model #2 (Fig. 12): the ear density
between the two modalities were very similar as expected with almost
no bias (Bias= 0.6 ears/m²). The same was observed over the second
date of RGB image acquisition (R²= 0.78; Bias= 20.6 ears/m²). Con-
versely, ground measured ear densities were higher in the WS modality
as compared to those of the WW modality. This was not expected and
should result from larger uncertainties in the ground measurements.
This may also explain the low heritability of ground measured ear
density found for the WW modality Table 3.

The ear density estimated with Faster-RCNN was finally compared
with the ground measurements. The ear density estimated with model
#2 was in relatively good agreement with the ground measurements for
the WS modality and the first date (June 2nd) of RGB images acquisi-
tion. (Table 4 and Fig. 13). The scatter of points observed might be
partly attributed to the relatively small sampling size used for the
ground observations (1.05 m²) and for the RGB images (about 0.6 m²
for the first date and 1.0 m² for the second date). The spatial re-
presentativeness was therefore limited to get an accurate comparison
between the two types of ear density that were not measured at the
same place over each microplot. Increasing the number of RGB images
taken on each plot would improve this aspect which should not be a
major issue considering the high-throughput associated both to the
image acquisition and data processing. The ear density over the WW

Fig. 8. Comparison between the number of ears in each image visually labelling
and that estimated using either the Faster-RCNN (model #2 black dots) or the
Tasselnet (model #9 red dots). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison between the average ear density estimated for the first
(June 2nd) and the second (June 16th) dates using Faster-RCNN (blue dots) and
TasselNet (red dots) models trained over the first date only. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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modality showed a significant degradation of the agreement between
estimated and measured values. A systematic under estimation of the
ear density from the ground measurement in the WW modality was
observed, probably due to the uncertainties attached to the ground
measurements already outlined.

4. Conclusions

The main objective of this study was to evaluate the efficiency of
deep learning approaches to estimate the ear density in wheat pheno-
typing trials using high resolution RGB images acquired at nadir.

Considering the challenge of managing the large diversity in the ear and
background aspects due to genotypic specificities as well as dates of
observations, our results were promising (rRMSE=5.3%) for the

Fig. 10. Example of two images selected from
the same microplot on the first and second date
over which Faster-RCNN and TasselNet models
were applied. The models were trained on the
first date and the genotype was in the valida-
tion dataset. The top images corresponded to
microplot showing little senescence, while the
bottom images corresponded to microplot
showing almost complete senescence. From left
to right: original RGB image, detection by
Faster-RCNN model #2, density maps esti-
mated using the TasselNet model.

Fig. 11. RMSE of the estimated ear density as a function of the score threshold
value.

Table 3
Broad sense heritability (H²) computed for the ear density for the ground
measurements and the estimates for the two dates considered. The H² values are
computed for the two modalities.

H² (%) Date WW WS ALL

Ground Measurements June 7th 79.8 91.4 66.3
Estimates from first date June 2nd 86.9 88.5 86.5
Estimates from second date June 16th 82.2 82.8 76.3

Fig. 12. Comparison between ear density estimated in the WW modality and in
the WS modality (The size of the circles represented the variability of the
measurements for the different replicates).

Table 4
Performances of ear density estimated from the Faster-RCNN trained over the
first date (June 2nd) and applied to the two dates for both WW (irrigated) and
WS (water stress) modalities.

June 2nd June 16th

WW WS All WW WS All

RMSE (ear/m²) 82.0 53.0 68.7 62.1 77.4 69.4
rRMSE (%) 16.4 12.1 14.4 15.1 18.9 16.9
Bias (ear/m²) 55.2 2.73 25.8 24.62 52.49 10.05
R² 0.52 0.70 0.53 0.46 0.62 0.37
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Faster-RCNN model. The Faster-RCNN model were much better than
the first round of interactive labeling: many ears were missed by the
operator when label the ears on the screen. This forced us to improve
the interactive label by reanalyzing the training and validation datasets.
Faster-RCNN model was demonstrated to be more robust than counting
by regression using the TasselNet model. Counting by regression such as
with the TasselNet model should be more efficient for crowded scenes
with objects that overlap frequently, which was not the case for ears as
observed from nadir. Faster-RCNN beneficiated from the transfer
learning approach based on a model pretrained on the COCO dataset.
However, the gain in robustness for the Faster-RCNN model comes at
the expense of larger computation requirements using GPU resources.
Nevertheless, models based on object detection present the advantage
of providing the basis for estimating additional traits for the ears in-
cluding spatial distribution between rows, presence of awns, size, in-
clination or color that could be useful for breeders.

Results showed that the broad sense heritability of ear density es-
timates from RGB images was high and close to that computed from the
direct in situ measurements. However, the ear density computed from
the RGB images based on Faster-RCNN model showed only a fair
agreement with the ear density measured in the field (rRMSE ≈ 15%),
particularly for the WW modality that was suspected to had larger
uncertainties attached to the ground counting. An improved match
between the RGB estimates and direct counting in the field is expected
mostly either (i) by working on the same samples which is not
straightforward to achieve, or better by (ii) increasing the sampling size
of both the ground sampling as well as the sampling area covered by the
images. This is easy to achieve with the RGB imagery by capturing more
images over each microplot, while it is expensive for the in-situ mea-
surements.

Faster-RCNN model was demonstrated to have optimal perfor-
mances for images with spatial resolution between 0.26 and 0.39mm.
Higher spatial resolution corresponded to too large bounding boxes as
well as increased border effects difficult to manage. For broader re-
solution, the loss of textural information degraded the identification
performances. Therefore, an optimal resolution around 0.3mm would
allow to use UAV observations for covering large phenotyping experi-
ments as already demonstrated by (Jin et al., 2017) and get a very high-
throughput method. Further, UAV observations cover the whole mi-
croplot, allowing a large sampling area, thus increasing the precision
and heritability. Further, uncertainties attached to the knowledge of the
area used to compute the density will be negligible. This was not the
case in this study where the relatively small footprint of the images

forced to get accurate estimation of the distance between the camera
and the ear layer, with possible representativeness of the row effect
since the width of the images was not necessarily a multiple of the
distances between rows.

The size and the diversity of the training dataset is critical to obtain
good estimation performances. A Faster-RCNN model trained over one
date was demonstrated to apply well on another date with only a small
degradation of performances even if the ears and the background as-
pects were quite different. However, improved performances are ex-
pected by applying data augmentation to artificially increase the size of
the training dataset that was demonstrated to be critical, as well as the
diversity of measurement conditions including orientation, adjustment
of the white balance, of the spatial resolution and of the sharpness. The
concept of domain adaptation should also help to tackle the domain and
dataset discrepancy problem (Chen et al., 2018). Nevertheless, perfor-
mance can be further improved with availability of large datasets of
carefully labelled images. For this reason, we offer to the community
the labelled dataset used in this study that is freely accessible at:
https://github.com/simonMadec where 30,729 ears were identified in
240 images over 20 contrasting genotypes grown in two environmental
conditions.
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In the third chapter we have shown that it is possible to derive the ear density from 2D 
RGB images. Further studies are planned to confirm the results and to report the robustness and 
limitations of the methods. The training dataset is expected to grow and many other 
improvements are possible. Pre and post processing can be for instance also easily implemented. 
The regression-based approach can also be improved and studies are currently being conducted 
on this aspect. The two acquisition campaign had a slight change regarding the configuration of 
the acquisition and crops were also at a different growth stage. This is a good illustration of the 
problem of the non-identical distribution between the training and testing dataset. This cross-
domain robustness issue also known as domain adaptation has been widely studies in the 
computer vision community. As discussed in the introduction, in field crop phenotyping each 
acquisition is subjected to a lot of parameters which make every campaign acquisition domain 
dependent. This highlights the urgent need to build domain adaptation algorithms for the 
processing of such networks in the wild.  
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4  High-throughput measurements of stem 

characteristics to estimate ear density and above 
ground biomass 

 

In the previous chapters we have derived several traits from RGB images the height and 
number of ears through their identification. It is interesting to note that by following the plant 
height dynamics we were able to have an estimate of flowering time with a reasonable accuracy. 
However it doesn’t look practicable to have a high frequency of observation with UAV. The new 
affordability of new IOT (Internet of Things) sensors may help to compensate for this lack of 
temporal information. Indeed, high resolution images can be acquired and so on the 
identification of the ears can be derived through this technology.  

In order to have good estimates of the above ground biomass more traits and information 
about the plant architecture should be computed. One such trait is the stem diameter. Stem 
diameter is rarely measured because it is tedious and time consuming. This motivated us to 
transfer the methodology developed in the third chapter to the study of the stem. Indeed, it is 
possible to derive the stem diameter by identifying them. For this purpose, 2D images were 
acquired after harvest. We finally use all the traits computed and presented in this thesis do derive 
the above ground biomass.  
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Abstract 

 
Total above ground biomass at harvest and ear density are two important traits to characterize wheat 
genotypes. Two experiments were carried out in two different sites where several genotypes were 
grown under contrasted irrigation and nitrogen treatments. A high spatial resolution RGB camera was 
used to image the residual stems standing straight after the cutting by the combine machine during 
harvest. It provided a ground spatial resolution better than 0.2 mm. A Faster Regional Convolutional 
Neural Network (Faster-RCNN) deep-learning model was first trained to identify the stems cross 
section. Results showed that the identification provided precision and recall close to 95%. Further, the 
balance between precision and recall a llowed getting accurate estimates of the stem density with a 
relative RMSE close to 7% and robustness across the two experimental sites. The estimated stem 
density was also compared with the ear density measured in the field with traditional methods. A very 
high correlation was found with almost no bias, indicating that the stem density could be a good proxy 
of the ear density. The heritability/repeatability evaluated over 16 genotypes in one of the two 
experiments was slightly higher (80 %) than that of the ear density (78 %). The diameter of each stem 
was computed from the profile of gray values in the extracts of the stem cross section. Results show 
that the stem diameters follow a gamma distribution over each microplot with an average diameter 
close to 2.0 mm. Finally, the biovolume computed as the product between the average stem diameter, 
the stem density and plant height were closely related to the above ground biomass at harvest with a 
relative RMSE of 6 %. Possible limitations of the findings and future applications are finally discussed. 
 
Keywords: Stem density, Stem diameter, RGB image, Faster-RCNN, deep learning, Ear density, 
above ground Biomass 
 
 
 

1 Introduction 
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Ear density (the numbers of ears per m
2
) is generally well correlated with above ground biomass 

and grain yield at maturity of wheat [1,2]. However, the correlation may depend on environmental 
conditions as well as genotypes. Most stems observed at harvest bear an ear: stem density (the 
numbers of stems per m

2
) appears thus as a good proxy of the ear density [3]. Stem density depends 

thus both on plant density and on the number of stems per plant which is quantified by the tillering 
coefficient. The environmental conditions experienced by the crop and the genotype control the 
tillering coefficient [4]. Therefore, several studies report the interest of the ear and stem density as 
traits to be used in the selection process of wheat genotypes [4,5]. Further, plant height and stem 
diameter are highly correlated with the above ground biomass in wheat [6-10]. Therefore, stem density, 
ear density, plant height, and stem diameter are thus highly desired to score the performances of a 
genotype in wheat crop breeding programs. 

The number of stems per plant is difficult to evaluate when plants start to produce tillers since 
plants are often intricated and hardly identifiable. Further, the number of stems per plant may change 
with time due to possible tiller regression during tillering and stem elongation stages. After the 
flowering stage, most stems bear an ear and the stem density provides therefore a good proxy of the 
ear density. Ear and stem densities are therefore usually measured at maturity by manual counting over 
a given sample area. The stem diameter is rarely measured since it is very tedious and time consuming. 
Similarly, above ground biomass is rarely measured extensively for the same reasons. Crop height at 
harvest is most frequently measured in the field using a ruler. In addition to the limits of these low-
throughput invasive measurements that require large human resources to be completed, the small 
sampling area used and errors associated to the manual measurements may result in significant 
uncertainties on these variables that would limit the repeatability and heritability as computed from the 
experimental observations. It appears therefore necessary to develop new methods for accurate 
measurements of the stem density, crop height and stem diameter for wheat crops within large field 
phenotyping experiments.  

The recent advances in high resolution imaging systems, computing capacity as well as image 
processing algorithms offer great opportunities to develop nondestructive high-throughput methods. 
Jin et al. [11] and Liu et al. [12] have demonstrated that the plant density could be estimated at early 
stages in wheat crops from high-resolution imagery. Direct estimates of the tillering coefficient at the 
end of the tillering stage were investigated by several authors with application to the management of 
nitrogen fertilization for stable crops. Vegetation indices computed from the reflectance measurements 
have been related empirically to the tiller density [13-15]. However, reflectance measurements are 
mainly sensitive to the amount of green foliage, which is loosely related to the stem density. 
Alternatively, several authors have developed algorithms for estimating wheat stem density at early 
stages from high-resolution imagery [16]. Unfortunately, this method applied to plants in pots grown 
under greenhouse conditions is difficult to transfer to field conditions. Further, the number of stems at 
relatively early stages may overestimate the actual stem density at harvest because of possible tiller 
regression as already pointed out. Previous scientists have used algorithms for estimating wheat ear 
density in-field conditions using RGB or thermal imagery [17-20]. However, these techniques 
operated from the top of the canopy before harvest may be limited when a significant number of ears 
are laying in the lower layers of the canopy. Previous studies have also demonstrated that above 
ground biomass (AGB) can be estimated using different remote sensing platforms [21-27]. However, 
the correlative nature of these relationships questioned their robustness when applied outside the 
domain where they have been calibrated. 

The aim of this study is to develop and evaluate a method to estimate stem density after the harvest. 
Images of the remaining stems cut by the combine machine during harvest show a clear circular cross 
section at their tip that could be identified by machine vision techniques. Further, the diameter of the 
stem could be also measured to tentatively estimate the AGB by combining the average stem diameter 
with the stem density and plant height. High throughput estimates of plant height have become now a 
standard trait easy to compute from 3D point clouds derived from LiDAR or standard cameras aboard 
drone [28]. The main objectives of this study are therefore: (1) to develop a method for identifying 
stems from post-harvest sub-millimetric RGB images and compute the stem density; (2) to compare 
the estimated stem density with the ear density measured with traditional invasive methods; (3) to 
estimate the stem diameter and describe their distribution; (4) to investigate the capacity of stem 
density, stem diameter and plant height to provide a proxy of AGB. The field experiments and data 
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acquisition are first described. The developed methods are then presented and their performances to 
estimate stem density, stem diameter and AGB are finally evaluated and discussed. 

 
 

2 Materials and methods 
 

2.1 Experimental sites, and ground measurements 
 
The Gréoux and Clermont sites located in France (Table 1) were hosting wheat phenotyping 

experiments with about one thousand microplots of 13 rows by 10 m length (Gréoux) or 8 rows by 2.5 
m length (Clermont). For both sites, rows were spaced by 17.0 cm. A subsample of microplots (Table 
1) was selected in both sites for the development and validation of the method. They included 
genotypes with contrasted tillering capacity and plant architecture as well as variation in irrigation 
(Gréoux) and nitrogen (Clermont) crop management.  
 

Table 1 Characteristics of the Gréoux and Clermont experimental sites 

Sites Latitude Longitude Number 

of plots 

Sowing 

date 

Sowing density 

(seeds/m
2
) 

Gréoux 43°45

′N 

5°53′E 66 27/10/2015 300 

Clermont 45°46

′N 

3°70′E 123 02/11/2016 280 

 
The ear density (ears/m²) was measured in the field at maturity for the 66 (Gréoux) or 123 

(Clermont) microplots considered, by counting the ears over three samples of two rows by 1.0 m 
length corresponding to a 1.02 m² sampled area. The AGB (g/m²) was measured in Gréoux over 37 
microplots by collecting all the plants within three samples of two rows by 1.0 m length. The samples 

were then oven-dried at 70 ℃ for three days and finally weighed. The height (cm) of the plants was 
measured using two LMS400 LiDARs (SICK, Germany) fixed on a phenomobile, i.e. a robot rover 
that automatically moved in the field and collected the measurements. More details on height 
measurements are given in Madec et al. [28]. 

 

2.2 Image acquisition and visual labelling of stems 
    
A Canon EOS 550D RGB camera with a resolution of 5184 by 3456 pixels equipped with a 29 mm 
focal lens was fixed on a pole and maintained at a 1.2 m distance from the ground at the Gréoux 
experimental site. The camera was set to speed priority. The same operating mode was used in 
Clermont, except that the camera was a Sony ILCE-6000 with 6000 by 4000 pixels equipped with a 60 
mm focal length lens and maintained at 1.8 m from the ground. The images were recorded in JPG 
format on the SD memory card. Measurements were completed under cloudy illumination conditions 
with light wind. Three (Gréoux) or four (Clermont) images were taken over each microplot. A 
subsample corresponding to four rows by 0.6 m length for Gréoux and four rows by 1.6 m length for 
Clermont (Table 2) was extracted in the center of each image. This offered the advantage to minimize 
image deformation observed mostly on the borders of the whole image. The Gréoux images were first 
resampled using a bicubic interpolation algorithm to provide the same resolution as that of Clermont. 

Table 2 characteristics of the images taken over the two experimental sites. 

Sites Date of 

images 

Distance to 

ground (m) 

Ground 

resolution (mm) 

Sampled 

area (m²) 

Gréoux 12/07/2016 1.20 0.18 1.23 

Clermont 18/07/2017 1.80 0.12 4.36 
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    The good quality of images provided strong confidence on the visual identification of the stems 
(Figure 1). A bounding box was interactively drawn around each stem identified in the images. The 
bounding box used to identify each stem was designed to include enough elements surrounding the 
stem (Figure 1). A total of 822 images were visually annotated to be used for the calibration and 
validation of the method.  

 
Figure 1. Visual stem identification. Each stem identified corresponds to a green bounding box. Note: 

The image is actually cropped from original image by 1000x1000 pixel. 

2.3 Object detection using Faster-RCNN 
    
Convolutional Neural Networks (CNNs) are powerful machine learning methods [29]. They are 
widely used to extract imagery information features and then classify objects. CNNs were trained 
using large collections of diverse images to extract more effectively rich feature representations. These 
CNNs features often outperform handcrafted ones such as histogram of oriented gradients (HOG), 
local binary patterns, or speeded up robust features [30]. The TensorFlow 
(https://www.tensorflow.org/) implementation of Faster Regional Convolutional Neural Network 
(Faster-RCNN) by the object detection application programming interface (API) [31] was 
implemented here. Faster-RCNN has been widely used to detect objects [32]. The region proposal 
network (RPN) branch was inserted between the conv4 and conv5 blocks. The Inception-Resnet-V2 
model was used as it obtained the best accuracy among several modern object detectors [31]. An 
anchor was set at each location considered by the convolution maps of the RPN layer. Each anchor 
was associated with a size and aspect ratio. A set of 12 anchors with different size and aspect ratio 
were assigned at each location, following the default setting. The number of proposed regions per 
patches was set to 300, which was consistent with the expected number of stems per patch. Note that 
the images used here were 1000 x 1000 pixels since the memory requirements were too demanding for 
larger images. The original images were thus split into 1000 x 1000 patches, keeping 50% overlap 
between neighboring patches to minimize possible problems associated to the borders. The batch size 
was fixed to 1 and the threshold value for the non-maxima suppression with an IOU (Intersection Over 
Union) was set to 0.2. The model was trained with a learning rate of 0.0003 and a momentum of 0.90. 
The model was first pretrained on the Common Objects in COntext (COCO) dataset to provide the 
starting point. The COCO dataset [31] contains 0.33 million images with 1.5 million of object 
instances belonging to 80 object categories. More details on the Faster RCNN used could be found in 
Madec et al. [20]. The pretrained model was then fine-tuned over the calibration image extracts. It 
identified and localized stems using a bounding box associated with a confidence score varying 
between 0.0 and 1.0. 
     The trained model was finally applied to all the image extracts available. When identified stem 
bounding boxes were overlapping, a minimum 0.75 overlap fraction was used to eliminate one of the 
overlapping bounding boxes. Finally, bounding boxes with a confidence score value smaller than 0.80 
were not considered as stems. This score threshold value was optimized to get the best stem density 
estimation performances. An example of the Faster-RCNN stem detection result is presented in Figure 
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2. The estimated stem density (stem/m²) was eventually computed by dividing the number of stems 
identified over the image extracts of a microplot by the size of the extracts ( 
Table 2). 

  
Figure 2. Application of the stem detection using Faster RCNN algorithm to an image extract in 

Gréoux. Each yellow bounding box corresponds to the identified stem and associated to its score 

corresponding to the probability to contain a stem. 

2.4 Estimating the stem diameter and biovolume 
   
 The bounding box of the identified stems was first transformed into gray images using the value (V) 
component of the HSV transform [33]: V=0.2989R+0.5870G+0.1140B, where R, G, and B were 
respectively the red, green and blue components of the RGB images coded in 8 bits. The gray value 
profiles were then extracted along four compass directions: 0°, 45°, 90° and 135° (Figure 3). The gray 
level profiles show typical patterns with high values corresponding to the border of the stem and lower 
values outside and inside the stem (Figure 3). The two borders of the stem were thus identified using 
the two maximum gray value. The distance between the maximums was computed and then averaged 
over the four compass directions to provide an estimate of the diameter. 

 
Figure 3. The extraction of stem diameter of each sub-window image using diameter gray level profile. 

    The stem diameter was used to compute the area of the section of the stem. The basal area of each 
microplot was then computed as the average area of the stem section multiplied by the stem density. 
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Finally, the biovolume was computed as the product of the basal area by the plant height as derived 
from the LiDAR measurements.  
 

2.5 Statistical analysis  

 
Both Gréoux and Clermont datasets were randomly split into 2/3 for model calibration and 1/3 for 

validation. A first global training (Called here Cgc) was investigated by pooling the calibration 
datasets of Gréoux and Clermont sites. The same was done for the validation datasets Vgc. The 
performances of this global calibration (Cgc) were also evaluated on both the Greoux (Vg) and 
Clermont (Vc) validation datasets. Then, a cross validation was also investigated to better evaluate the 
robustness of the classification: the calibration was completed on the Gréoux (Cg) or Clermont (Cc) 
calibration datasets and validated on the Gréoux (Vg) and Clermont (Vc) validation datasets. Table 3 
presents the several cases considered. 

Table 3. Characteristics of the data sets used for the calibration and validation of the algorithm. 
Statistics of the stem density are indicated for each data set, including minimum (Min), mean (Mean), 
maximum (Max), range (Range), standard deviation (SD) and coefficient of variation (CV) of the stem 

density. 

  Number of image extracts Stem density (stem/m²) 

Dataset Name Gréoux Clermont Min Mean Max Range SD CV (%) 

Calibration Cgc 132 416 112 493 991 879 132 26.77 
Validation Vgc 66 208 161 561 906 745 179 31.91 

Calibration Cg 132  112 357 605 493 77 21.57 

Validation Vg 66  161 352 601 440 78 22.16 

Calibration Cc  416 308 549 991 683 101 18.04 

Validation Vc  208 373 662 906 533 116 17.52 

 
A detected stem bounding box (i.e. with a score >0.8) was considered correct (true positive, TP) if 

its IOU with a labelled stem bounding box was larger than the IOU threshold value. Otherwise, the 
detected stem bounding box was considered as false positive (FP). The proposed bounding boxes with 
a score<0.8 (i.e. not considered as stems) with IOU larger than the IOU threshold value were 
considered false negative (FN). The IOU threshold value was set to the usual value of 0.5. The 
precision (TP/ (FP+TP)), recall (TP/ (FN+TP)), and bias (1-(Precision / Recall)) were also calculated. 

 

2.6 Heritability computation  

   The broad sense heritability (H²) evaluates the repeatability of the stem or ear density estimates. It 
was computed as the percentage of the genotypic variance, Vg, to the total variance, Vg+Ve, where Ve 
is the variance due to the environment [34]. The heritability of the stem density and ear density was 
computed over sixteen wheat genotypes (122 plots) selected from the Clermont experimental site 
where each genotype was replicated six to fifteen times. 
 
 

3 Results and discussion 
 

3.1 Stems are accurately identified using the Faster-RCNN model 
 
To evaluate the robustness of the RCNN model, it was calibrated on the Greoux (Cg), Clermont (Cc) 

or on both datasets (Cgc). Performances computed over the validation datasets were very good with 
0.91 < precision < 0.96 and 0.93 < recall < 0.97 (Table 4). Precision and recall were well balanced 
with a small bias: -0.03 < bias<0.01.  
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Table 4. Accuracy of stem identification using the Faster-RCNN method. Results are presented for 
three calibration datasets (Cg, Cc and Cgc). The evaluation is achieved on the validation data set (Vg, 

Vc, Vgc). 

Calibration 

dataset 

Validation 

dataset 

Precision Recall Bias 

Cg Vg 0.95 0.97 -0.02 

Vc 0.91 0.93 -0.02 

Vgc 0.92 0.94 -0.02 

Cc Vg 0.92 0.95 -0.03 

Vc 0.96 0.95 0.01 

Vgc 0.96 0.95 0.01 

Cgc Vg 0.94 0.95 -0.01 

Vc 0.96 0.95 0.01 

Vgc 0.95 0.95 0.00 

 
The results showed that the classification accuracy of stem identification was very high based on the 

precision and recall values over the same experiments (Table 4). The robustness of the classification 
was further investigated by comparing the precision and recall values computed over the validation 
datasets coming from the other experiments. Results show that the classification evaluated over the 
same experiment used to calibrate the model was always performing the best (Table 4). The 
classification performances decreased significantly when the model calibrated over a single 
experiment was validated on the other experiment. This may be explained both by the limited sample 
size of the calibration dataset, but also by the specific features associated to each experiment, 
including the spatial resolution (Tables 2 and 3). However, when the calibration was completed over 
the pooled experiments (Cgc), the precision and recall values decreased only slightly when evaluated 
over each individual experiment (Vg or Vc) (Table 5). The model captured the key information 
common to the two experiments to provide a consistent stem identification. It confirmed the efficiency 
and robustness of the Faster-RCNN method.  

 

3.2 Stem density is accurately estimated 

 
The consequences of the identification performances of the Faster-RCNN model discussed 

previously were evaluated in terms of plant density at the image extract level. For the sake of 
consistency, the several calibration and validation datasets were considered to further evaluate the 
robustness of the model. Results showed RRMSE values ranging from 6.08 % to 9.19 %. Calibrating 
over the pooled datasets (Cgc, Table 5) provided the best performances with RRMSE lower than 7%. 
A slight degradation of the performances was observed when calibrating over a single data set. 
Calibrating over the Greoux dataset provided the worst performances when validated over the 
Clermont dataset (RRMSE=9.2%) because of the smaller sample size and variation in the cutting 
height and inclination of the stems during harvest between Gréoux and Clermont sites. In the 
following, we have used the Faster RCNN trained over the pooled Gréoux and Clermont calibration 
datasets (Cgc) that provided the more robust performances. 
Table 5. Performances of the stem density estimation when using Faster-RCNN method for the post-

classification step. The evaluation is achieved on the three validation data sets (Vg, Vc and Vgc). 

Calibration 

dataset 

Validation 

dataset 

Sample  

size 

slope intercept R
2
 RMSE  

(stems/m²) 

RRMSE  

(%) 

Cg 

Vg 66 0.98 25.63 0.95 24.45 6.95 

Vc 208 0.94 41.25 0.85 60.82 9.19 

Vgc 274 0.95 38.12 0.90 40.23 7.17 

Cc 

Vg 66 0.95 20.85 0.88 30.52 8.67 

Vc 208 0.97 17.14 0.96 40.25 6.08 

Vgc 274 0.96 30.28 0.92 39.66 7.07 
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Cgc 

Vg 66 0.95 33.12 0.91 25.46 7.23 

Vc 208 0.97 45.33 0.92 42.81 6.47 

Vgc 274 0.98 38.16 0.94 38.45 6.85 

 
When considering the calibration over the pooled dataset (Cgc) that provided the overall best 

performances, very small biases were observed with points closely distributed around the 1:1 line 
(Figure 4). The scatter around the 1:1 line appeared to be relatively independent from the stem density 
(Figure 4). 

 
Figure 4. Comparison between the stem density estimated using Faster-RCNN method calibrated over 

the pooled Cgc dataset and the stem density evaluated visually over the images. The black line 
corresponds to the 1:1 line, the red and blue circles corresponding respectively to the Gréoux (Vg) and 

Clermont (Vc) validation datasets. 

3.3 The stem density is a good proxy of the ear density 

   
 The stem density estimated with the Faster-RCNN model calibrated over the Cgc dataset was 
compared to the ear counted visually at the ground level. Both quantities were evaluated on different 
samples expected however to represent the average microplot value. Results showed that the estimated 
stem density based on the Faster-RCNN model was very consistent (Figure 5) with the measured ear 
density at the Gréoux (Table 6) and Clermont (Table 6) experimental sites. The scatter between ear 
and stem densities appeared to increase with the density: this was obvious between the Gréoux 
(250<density<550) and Clermont (400<density<800) sites. Part of the larger scatter observed over the 
Clermont site might come from a smaller sample size for the ear density visual counting (1.02 m²). 
The scatter between ear and stem densities seems to increase with the density within the Clermont site 
between the low and high densities (Figure 5). Nevertheless, the good agreement found between ear 
and stem densities was thus confirming the results of Siddique et al. [3].  
Previous studies demonstrated that the RGB imagery can be used to estimate ear density using image 
processing algorithms [17-20]. However, ear density estimation performances were generally limited 
to a comparison between the ears detected by the machine learning algorithm and those that can be 
visually identified by and operator on the image. Some discrepancies could appear when comparing 
with the actual ear density, particularly when some ears are lying in the lower canopy layers and could 
not be easily seen from the top of the canopy. Counting ears from the stem sections appears therefore 
preferable under such conditions. Further, stem sections are relatively simpler objects to identify as 
compared to ears that may show a large aspect variability. Additionally, ears can frequently overlap in 
the field, making their identification more complex as compared to stem sections that never overlap. 
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Figure 5. Relationship between the estimated stem density and the measured ear density at the Gréoux 

(blue dots) and Clermont (red dots) datasets. The black line corresponds to the 1:1 line. 

Table 6. Statistics of the relationships between the estimated stem density and the measured ear 

density. The Faster-RCNN was trained over the Cg+Cc dataset. 

Datasets Slope  Intercept R
2
 RMSE 

(stems/m²) 

RRMSE 

(%) 

Gréoux 0.92 32.04 0.83 24.67 6.54 

Clermont 0.56 236.08 0.51 53.32 9.51 

Gréoux & Clermont 0.76 111.00 0.80 45.73 9.22 
 
 

3.4 Stem and ear densities are highly heritable 

 
The Heritability (H²) values of the stem density and ear density were compared at the Clermont 

experimental site where several replicates of 16 genotypes were available. Results show that the H² 
values of stem density (80.1%) and ear density (78.3 %) were high and close together. This is 
consistent with the strong relationship found between both quantities (Figure 5). These heritability 
values agreed well with the values provided by Madec et al. (2019) [20]. The H² value of the stem 
density was slightly higher than that of the ear density, probably because of the larger sample size used 
for estimating the stem density from the RGB images, which makes the values more repeatable. The 
high values of heritability found suggested that the proposed method will be well suited to serve the 
breeders needs. 

 

3.5 Stem diameter follows a gamma distribution 

 
The distribution of stem diameter was investigated at Gréoux and Clermont experimental sites 

respectively on 66 and 156 microplots. The distribution of the stem diameter may be a pertinent trait 
describing the structure of the tiller population that may be impacted by the growth conditions. The 
distribution of the stem diameter of each microplot was adjusted either to a normal or to a gamma 
distribution. The corresponding p values associated to the fit of each distribution was computed. 
Results show that the p value of the gamma distribution was larger than that of the normal distribution 
for 80% of the microplots for Gréoux and 84% of the microplots for Clermont. The gamma 
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distribution characterized by a scale and a shape parameter was therefore selected to describe the stem 
diameter distribution over each microplot. 
     The average stem diameter of each microplot ranged between 1.8 to 2.5 mm, with a median value 
close to 2.0 mm for both sites (Figure 6). The average stem diameter was loosely but positively 
correlated to the stem density (Figure 6): the stress experienced by the plants was affecting both the 
density and the diameter of the stems, with no apparent compensations between these two traits. The 
stem diameter distributions for each microplot as described by a gamma function was further 
investigated: shape parameters were slightly smaller for the Gréoux site (4<shape<8) as compared to 
those of the Clermont site (5<shape<10). Conversely, scale parameters were slightly larger for the 
Gréoux site (0.3<scale<0.6) as compared to the Clermont site (0.2<scale<0.5). The distribution of the 
diameters was more concentrated around the average for the Clermont site as compared to the Gréoux 
site where a larger range of diameters was observed. This may be related to the stress conditions that 
were stronger in Gréoux, particularly during the stem elongation phase. This was also reflected by the 
stem density that was more impacted in Gréoux. The scale and shape parameters were negatively 
correlated for both sites, with a stronger correlation for Clermont (Figure 6). Since the average of a 
gamma distribution is defined by the product between the shape and scale parameters, the negative 
correlation between the two parameters was explained by the constraint to keep the average close to 
2.0 mm. Therefore, both parameters could be equally used to describe the ‘flatness’ of the stem 
diameter distribution.  

 
Figure 6. Correlation and distribution between stem density, average stem diameter, shape, and scale 

parameters over Gréoux (a) and Clermont (b) experimental sites. The correlation coefficient, r, is 
given in the upper trianglar matrix with ** and * corresponding respectively to significant values at 

0.01 and 0.05 probability levels. 

3.6 The biovolume is a good proxy of the above ground biomass 

 
A total of 37 microplots from the Gréoux dataset was used to relate the measured AGB with the ear 

density and the four structural traits derived from high-throughput measurements: stem density, stem 
basal area computed as the product between the average stem diameter with the stem density, plant 
height, and biovolume computed as the product between the basal area and plant height. Results show 
that all these traits are strongly correlated with AGB (Figure 7 and Table 8). The best relationship is 
however obtained using the biovolume that combines the three main original traits: stem density and 
average stem diameter that combined into the basal area, and plant height. Note that these traits are 
relatively independent: stem density and plant height are loose ly correlated (Figure 6, r²=0.16); plant 
height and basal area are also loosely correlated (r²=0.15). 

Because the data set used was limited, the predictive performances of the relationships observed 
between the AGB and the five traits was evaluated using a leave-one-out cross-validation method (Jin 
et al., 2018). The best determination coefficients were observed consistently for the biovolume (Table 
8) with a relative error of 5.8%, i.e. within the order of magnitude of the accuracy with which AGB 
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was measured. Our results are very consistent with those presented by Aziz et al. (2004) and Pittman 
et al. (2015).  

To further improve the predictive model, we used all the five traits together within a multiple linear 
regression model. Marginal improvement of the model performances was observed (Figure 7 and 
Table 8). This may be explained by the strong relationships between the five traits used, as well as the 
decrease in the degree of freedom induced by the increase of the number of coefficients to adjust (six 
coefficients instead of two needed when using only the biovolume). The biovolume appeared therefore 
as a very sound proxy of the AGB. Previous results suggested that AGB could be estimated using 
different optical techniques and technologies [21-27]. Our study further confirmed these results. The 
results demonstrated that the estimation accuracy of AGB could be improved by combining Lidar data 
and RGB imagery. However, the stability of the relationship found over the limited sample used in this 
study should be further evaluated with emphasis on the possible dependency on the environmental and 
management conditions, as well as on differences between genotypes. 

 

 
Figure 7. Correlation matrix between the AGB and the six variables investigated.  Note: ** and * 

correlation significant at the 0.01 and 0.05 level of probability, respectively. 

Table 7. Biomass regression models derived from stem density, ear density, stem area, height, and 
biovolume at the Gréoux experimental site. Note: ** Model significant at the 0.01 level of probability. 

The R
2
, RMSE, and RRMSE are averaged R

2
, RMSE, and RRMSE values of leave one-out cross-

validation methods. 

Variables R
2
 RMSE (g/m

2
) RRMSE (%) 

Stem density 0.43** 94 8.0 

Ear density 0.51** 84 8.1 

Plant height 0.44** 110 9.8 

Basal area 0.64** 77 7.3 

Biovolume  0.81** 62 5.8 

All 0.85** 58 5.1 

 
 
 

4 Conclusion 
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This study demonstrated that the identification of the stems after the harvest was possible using 
deep-learning approaches applied to RGB images. This requires the spatial resolution to be sufficient, 
i.e. around 0.2 mm since the stem diameters are around 2.0 mm. It ensures that the object to be 
identified within the image are represented with an optimal number of pixels comprised between 40 
and 120 pixels as advised by Madec et al. [20]. Such high resolution could be achieved using either a 
high-resolution RGB camera fixed on a pole, on a cart, on a phenomobile or even on a UAV flying at 
low altitude as already demonstrated by Jin et al. [11]. Alternatively, a set of RGB cameras could be 
mounted on the combine machine and provide in near real time an estimate of the stem density.  
   The method requires the stems not to be covered by the straw rejected by the combine machine. 
Further, too inclined stems due to the harvest process or some post-harvest practice may result in 
degraded performances since the sections of the tip of the stems will not be viewed by the camera, or 
will be strongly deformed. Further, the proposed method may be not suitable under stem lodging 
situations where the stem sections will show unexpected patterns. Nevertheless, the objects to be 
identified are relatively simple, which would indicate that the Faster RCNN model trained over the 
data used in this study would be robust. Changes in the illumination conditions may have little impact 
of the stem identification since the objects are mostly identified by the relative brightness of the pixels, 
the color bringing itself very little information. We demonstrated therefore that the stem density is 
accessible with high-throughput, relatively low cost and with a very good accuracy. Further, the 
capacity to sample large area to estimate the stem density will minimize the impact of the spatial 
variability within a microplot. 
     Although Madec et al. [20] amongst others demonstrated that similar deep learning techniques 
could be applied efficiently to estimate the ear density, ear identification is more complex because of 
strong differences of the ear aspect between cultivars and environment, as well as because of possible 
occlusion of some ears by the top ears or the top leaves. We demonstrated in this study that the stem 
density was a very close proxy of the ear density although some discrepancy is expected under specific 
environmental conditions. In such circumstances, the distribution of the diameter of the stems could 
potentially provide the necessary information to get a better estimate of the ear density from the stem 
density and diameter distribution.  
   Once the stem is identified, we demonstrated that the diameter could be easily measured. The 
distribution of the stem diameters followed a gamma function with an average diameter close to 2.0 
mm. The distribution of the stem diameters may be indicative of the structure of the tiller population 
that may be governed by the genetics in interaction with the sowing density and pattern as well as the 
environmental conditions experienced by the plants. Finally, the biovolume computed as the product 
between the average stem diameter, the stem density and plant height were demonstrated to be a close 
proxy of the above ground biomass. This opens very attractive potentials to the breeders for getting a 
high-throughput estimates of the total plant biomass at harvest and possibly quantify the radiation use 
efficiency and the harvest index assuming that the yield will be measured anyway. Nevertheless, these 
promising results should be verified under a much larger number of situations to verify that the 
correlations are not too dependent on the environmental conditions as well as on the genotype.  
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5  Conclusion and perspectives 

 

The main objective of plant breeders is to create and identify genotypes that are well 
adapted to the targeted environments including future growing conditions. The identification of 
the corresponding genotypes or the QTLs associated to the desired structural and functional 
traits depends on the quality of the phenotype predictions. The private and public investment in 
phenotyping infrastructures has paved the way for collecting large amount of data. The 
bottleneck has now shifted to the extraction of the pertinent traits [1]. Focus should therefore be 
put on the development of methods for trait derivation from the phenotyping data available, to 
evaluate their performances and benchmark the associated algorithms.  

The main objective of this thesis was to develop methods to estimate few main structural 
traits in the context of plant breeding. Further, this thesis was undertaken in the context of rapid 
hardware and software technological advancements illustrated by the increasing accessibility to 
UAV and UGV platforms, the decreasing cost of the processing units (GPUs, cloud computing) 
and the boom in the development of deep learning algorithms. In the first section, we will sum 
up the main findings and limitations of the proposed workflows. 

 

5.1 Summary of the pipeline developed and the methodologies 

used 
 

In the second chapter, we focused on the development and comparison of high 
throughput methodologies for height estimation from RGB images and structure from motion 
(SFM) algorithms. The technique of structure from motion is now well developed and mature. 
Acquired from a UAV platform, the throughput, the accuracy and precision of the retrieved traits 
and the cost of the method are now suitable to be integrated in most breeding programs. Manual 
observations are labor intensive and prone to errors. We therefore relied on frequent LiDAR 
measurements as a reference for height estimation from the UAV observations. Best results with 
the RGB images were achieved over wheat crops with a spatial resolution of 1 cm. Our workflow 
differs from the literature because it directly extracts the height and soil level from the 3D dense 
cloud. This avoids sampling, filtering and other post-processing steps from GIS software to 
compute the digital surface model (DSM). We have defined the height as the 99.5 % rank 
percentile and the height distribution within a 0.5x0.6 m² subsample area from which the 
microplot value is computed as the median of all the corresponding subsamples. This strategy 
was also further applied in our other research and [2]. Many other studies have concluded 
positively about the capability of UAV platform for plant height estimation for genomic 
selection. This confirms that the broad-sense heritability computed with these methods is suitable 
in the context of plant breeding. 

It is interesting to note that slight underestimation of the height was observed which was further 
analyzed in another study (experiments) [3]. Bias introduced by the used methodology will be 
discussed in the next section. A critical step in the workflow is the soil level estimation. Our study 
has shown that it is either possible to extract the soil level from another or from the same 
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acquisition campaign. Separation between ground and vegetation points was performed with a 
semi-supervised machine learning algorithm (k-means). This classification step takes as input the 
RGB value of the points along with their heights. Contextual information may also add 
significant information which can be done using more complex features or the use of 
convolutional neural network (CNN). 

The next two chapters describe how to employ CNN to derive wheat ear and stem density. The 
wheat organ density estimation is a challenging trait for plant breeders. CNN algorithms are now 
surpassing hand-crafted algorithms in computer vision. A methodology was proposed to evaluate 
their feasibility for this phenotyping activity.  We compared two different approaches: counting 
by detection and counting by regression. In the first case the output of the algorithms are boxes 
around the ears along with a classification score, whereas in the second case the output of the 
CNN is a direct count. Both approaches achieved impressive results on the test datasets, 
suggesting that RGB-based images could replace in-situ measurements. For the Faster-RCNN 
object detection used here, the best results were obtained for a spatial resolution of around 
0.3mm while the regression approach did not require such high spatial resolution. In machine 
learning and especially in deep learning, the choice of the training data fundamentally influences a 
model’s behavior. For this reason we have tested the model on another acquisition campaign 
where the acquisition procedure was slightly different and the visual appearance of the ears were 
different as well (more senescent). The Faster-RCNN detection pipeline was able to generalize in 
a new scene while the regression approach failed. This result shows the importance of the 
“domain” concept and suggests that transfer learning where large datasets are used to calibrate 
the model helps to increase the robustness of the model. 

In the third chapter we addressed the challenge of stem counting. The stem detection was 
performed by imaging after harvest and was based on the same methodology presented in 
Chapter 2. We showed that it was possible to count the residual stems standing straight after the 
harvest by the combine machine from high resolution RGB images. Results showed good 
correlation with the in-situ ear density with an RMSE of 45.73 ears/m². This was lower than the 
ear density estimation by ear detection of 68.7 ears/m² observed for the experiment presented in 
the Chapter 2 although the experiments were different.  In this third study, we also derive the 
basal area by computing the gray level profiles of the stems. Although we think that more 
experiment should be conducted to validate the proposed methodology, standing stem detection 
after the harvest seems to be a promising phenotyping activity.  

 

5.2 Replacing in situ-measurements – Bias – Heritability 
 

In the three studies presented, results were really close to the ground truth. Indeed, the 
ground truth and manual/visual measurement were often examined and questioned. Plant height 
derived from UAV was demonstrated to yield similar degree of accuracy as compared to LiDAR 
observations from the Phénomobile. The ear and stem detection were almost as good as the 
human interactive count while sometimes outperforming them. Our study suggests that image-
based phenotyping can replace manual measurements for certain traits. This automation of the 
phenotyping activities with the development and cost-efficiency of the image-based phenotyping 
platform allows us to estimate the traits using larger sampling area. This has the advantage to 
increase the repeatability of the derived traits. This was the reason why the high broad sense 
heritability (H²) was computed in the three studies. H² from the manual in-situ measurements 
were always worse than the values computed with our algorithms.  
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However pipelines were always introducing biases in the results. This was the case with 
the plant height estimated from structure from motion algorithms where an underestimation was 
present. In the third chapter, uncertainties attached to the ground measurements had complicated 
the analysis of a potential Bias. Nevertheless, when comparing the density estimates from two 
different acquisition campaign, a Bias was present which was confirmed in further unpublished 
studies. Phenotyping increasingly depends on machine learning models, while the model behavior 
will subsequently depend strongly on the training data. This can lead to Biases which are not easy 
to control. For example, the regression-based counting models surprisingly failed while counting 
ears with advanced senescence; further, our counting models were detecting more easily ears with 
awns with potential biases introduced between genotypes with and without awns. In other 
disciplines where deep learning is in a more advanced stage such as for gender classification, 
words and articles embedding, machine learning models have been shown to exhibit racial biases 
[4], [5] leading to hiring discrimination [6]. It is therefore important to put effort towards creating 
a detailed annotation, avoiding the lack of diversity in our phenotyping information test dataset. 
Larger broad-sense heritability may also be computed if a genotype-specific biases and error is 
computed.  The future study should also report results on those datasets. This was one of the 
motivations behind the freely accessible datasets which were published during my INRA contract 
[7]. This development of public dataset is a remaining challenge regarding the private economical 
context of crop phenotyping development. 

Under field conditions, measurements are often subject to a lot of variations. In addition, 
the complex GxExM interactions add large variability to the visual aspect of the crops. The 
illumination and uncontrolled conditions of acquisition make two different acquisition campaigns 
domain-specific. This may be one of the main reasons why empirical relationships are often 
proposed to assess canopy state variables in the literature [8], [9] as self-calibration is a pragmatic 
and sure approach for phenotyping. It also has a twofold benefit because it could then help the 
continuous increase in the size and diversity of the annotated datasets. To get rid of this self-
calibration our networks and pipeline have to be able to generalize. I believe that our deep 
learning technology is not mature enough to apply the models in the wild. Possible improvement 
and developments regarding the convolution neural networks workflow will be discussed in the 
next section.  

 

5.3 Perspectives 
 

5.3.1 Convolutional neural networks 

There is a huge and growing interest in the deep learning technology. A keyword-based 
search from the web scientific indexing service Web of Science using the following query was 
performed and illustrated:  

[Deep Learning] or [CNN] or [Convolution neural network] 
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Figure 1 : Illustration of the increased interest of deep learning in research 

As reviewed in the introduction and by this illustration, model architecture and their 
hyper-parameters optimization are evolving rapidly. For instance in the object detection field, 
improvements were recently made by incorporating multi-scale training [10] and deformable 
layers [11], [12], improvement of the loss definition and the Non-Maxima-Suppression (NMS) 
[13].  

In our third chapter; counting was performed within local patches. This approach failed 
when incomplete objects were present within the patches. Accurate number of ears is hard to 
obtain without contextual information. Future model architecture should take into account this 
information. Further, robustness can be also added to regression-based counting approaches by 
adopting transfer-learning (pre-training the models on large scale dataset). These developments 
are the subject of a paper recently submitted thanks to collaborations with Huazhong University 
of Science.  

Regarding the training strategy, it is certainly interesting to train the models on many 
categories from numerous datasets. This is supposed to improve the definition of what 
background is [14]. It can then be relevant to merge datasets from varied crops to build universal 
models with diverse categories. This is one aspect of one of our ongoing studies, where a 
methodology for the identification and counting of plants at emergence is being developed.  

As discussed in the last section, bias and errors are introduced by the machine learning 
models when applied to a dataset from new domains. A strategy can be devised to solve this 
domain shift problem and to improve the performances of deep learning models when applied in 
the wild. Numerous studies have already tackled this problem, as in the case of data distillation 
[15] and domain adaptation [16]. More attention should also be paid to adversarial networks. 
They can for instance be used to learn the mapping between input and output image. They were 
recently used to learn to translate and image from a source domain X to a target domain Y [17] in 
the absence of paired examples.  

The use of synthetic dataset may also help the training data constitution. The main issue 
we are currently facing is the gap between the synthetic and real images as illustrated in the figure 
below. This problem has already been tackled in other domains [18]–[22]. 
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Figure 2 : Illustration of the gap between real (A) and synthetic (B) images 

Image segmentation is another example of an activity of interest in phenotyping. The 
segmentation goal generally refers to a pixel-level classification between vegetation and 
background. For instance, Leaf area, fraction of vegetation cover and stay-green can be derived 
through this process. CNNs have the ability to provide additional value because of their abilities 
to learn about the texture of the image [23]. This is a change of paradigm when compared to the 
classic approach where colors/spectral indices thresholding are performed at the pixel level. For 
this purpose we use deconvolutional layers, the model architecture is an encoder – decoder [24]. 
This is another example of the activities conducted within the CAPTE unit.    

In plant phenotyping we cannot rely on public dataset. Despite the increasing efforts to 
digitize agriculture, the increasing public/private investments, development of image acquisitions 
platforms and related publications; there is still a lack of annotated public datasets. Since 
annotating datasets is a time-consuming task and often requires contribution from experts, there 
is a need to optimize this effort by selecting the best images to annotate. Such an effort would 
particularly facilitate to build datasets with high diversity towards models that can generalize 
better without further fine-tuning. 

The phenotyping community is also facing the reproducibility crisis [25]. The non-
interpretability and black-box nature of neural networks is not expected to help tackling this 
issue. Open science contributions thus have to be encouraged and promoted.  

 

5.3.2 Use of the methodology for other crops 

The developed methodologies in this thesis can be easily transferred to others crops. 
Wheat was indeed one of the most challenging crop that we were working on. The high density 
of ears, small diameter of the stem, irregular spacing among the plants and high overlap between 
them make wheat a challenging crop to phenotype. 

 

5.3.3 Interest of the dynamics 

In crop phenotyping, the dynamics of a trait is interesting for breeders. The phenology, 
i.e. the date of appearance of ears, the flowering status or other important growth stages, are key 
informations. This is particularly related to the abiotic stress tolerance which is of interest with 
respect to climate change studies context. In this thesis, we have proposed a methodology to 
derive the flowering stage with the plant height information. This was roughly estimated when 
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the plant growth slows down and the height starts to reach a plateau. The heritability of this 
variable was found to be high. This was a reasonable proxy to the flowering date (RMSE = 76 
GDD), considering that the scoring was performed visually with a sampling time interval of 2 -3 
days. It is also interesting to note that the RMSE were different between the cultivars. Indeed, 
some cultivars appear to have specific growing patterns which can be interesting for breeders. 
The visual identification of ears in the RGB images presented in the second study would be the 
first step before identification or anthers used to get a more precise flowering status. We also 
demonstrated that precise plant height monitoring reveals when the stress starts to impact the 
plant growth when it occurs before flowering, with a quantification of its magnitude at least 
within each genotype.  

 

5.3.4 Robustness of allometric relationships for biomass estimation 

The total above ground biomass at harvest is a very important trait for breeders, since it 
first provides a way to evaluate the photosynthetic efficiency of the crop as well as the harvest 
index if the yield is independently measured. However, the biovolume used as a proxy of the  
biomass does not change from the flowering stage to harvest, although the total biomass is 
expected to increase significantly. This should be further investigated as well as the robustness 
and accuracy of such allometric relationship. The stem diameter, ear and stem density were 
demonstrated to be derivable with high-throughput. Combine machines should therefore be 
equipped with height devices and cameras to systematically derive such information.  
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