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Abstract

With the evolution of technologies and robotics, the possibilities offered by 3D ac-
quisition systems have increased. Nowadays, these systems are used in different
domains as for autonomous vehicles, rescue robots, cultural heritage, for example.
These application fields often require to perform object recognition from acquired
data. Therefore, various methodologies have been investigated to automatically
process 3D point cloud data in order to detect contained objects. The best method-
ologies depend on the context, that means they are specific to the data to be pro-
cessed and the objects to be recognized. They produce efficient recognition, which
is essential whatever the application field. However, adapting methodologies to a
particular application field or use case limits the flexibility to extend the use of a
method to other fields. These observations highlight the importance of develop-
ing object recognition methodologies specific to a detection context, but also the
limitation of existing methods to preserve their capacity within changing detection
contexts. An excellent example of a high degree of flexibility to changing contexts
is human intelligence and human’s ability to design ad hoc methodologies. Hu-
mans can analyze the context according to their knowledge and combine different
characteristics or strategies according to the objective to be achieved. It would,
therefore, be helpful for Computer Vision tools to integrate elements of artificial
intelligence, allowing to adapt to the context of an application fields and to guide
the detection process in this respect. This Ph.D. thesis presents a knowledge-based
approach for object recognition that can be used whatever the application field. Its
architecture is based on semantic technologies to allow a knowledge management
module to guide the objects detection process through a step by step procedure
performing the selection, parameterization, and execution of algorithms. The de-
tection process is performed thanks to an artificial intelligence approach that uses
explicit knowledge to design a context-dependent object recognition solution. Its
strength is its adaptability to the context, but also its capability to analyze and
understand a scene and contained objects and the specificities of the data to be
processed. This understanding capability is realized through a self-learning pro-
cess able to define and validate hypotheses concerning the context, also enabling
to enrich the knowledge base and to improve the objects recognition process. The
efficiency of this adaptation capability will be demonstrated in four use cases from
different application fields. The first use case is an indoor of a building. It is used
for a monitoring purpose. The second use case is located in the field of Archaeol-
ogy represented by ancient ruins containing a terrace house with a watermill. The
third use case is an outdoor representing a part of the city of Freiburg in Germany.
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It is used for an industrial purpose. Finally, the last use case is an indoor acquired
by Microsoft’s Kinect. It is used for a robotic purpose.

Résumé

Avec l’évolution des technologies et de la robotique, les possibilités offertes par
les systèmes d’acquisition 3D ont augmenté. Aujourd’hui, ces systèmes sont util-
isés dans différents domaines comme par exemple pour les véhicules autonomes,
les robots de sauvetage, le patrimoine culturel. Ces champs d’application né-
cessitent souvent la reconnaissance d’objets à partir de données acquises. C’est
pourquoi diverses méthodologies ont été étudiées pour traiter automatiquement
les données 3D des nuages de points afin de détecter les objets contenus. Les
meilleures méthodologies dépendent du contexte, c’est-à-dire qu’elles sont spéci-
fiques aux données à traiter et aux objets à reconnaître. Elles produisent une recon-
naissance performante, ce qui est essentiel quel que soit le domaine d’application.
Toutefois, l’adaptation des méthodologies à un domaine d’application ou à un cas
d’utilisation particulier limite la possibilité d’étendre l’utilisation d’une méthode
à d’autres domaines. Ces observations soulignent l’importance de développer des
méthodologies de reconnaissance d’objets spécifiques à un contexte de détection,
mais aussi la limitation des méthodes existantes pour préserver leur capacité dans
des contextes de détection changeants. Un excellent exemple d’un degré élevé de
flexibilité face à l’évolution des contextes est l’intelligence humaine et la capacité
de l’homme à concevoir des méthodologies ad hoc. L’homme peut analyser le con-
texte en fonction de ses connaissances et combiner différentes caractéristiques ou
stratégies en fonction de l’objectif à atteindre. Il serait donc utile que les outils de
vision par ordinateur intègrent des éléments d’intelligence artificielle permettant
de s’adapter au contexte d’un domaine d’application et de guider le processus de
détection à cet égard. Cette thèse de doctorat présente une approche de la recon-
naissance d’objets basée sur la connaissance qui peut être utilisée dans tous les do-
maines d’application. Son architecture est basée sur des technologies sémantiques
pour permettre à un module de gestion des connaissances de guider le processus
de détection d’objets à travers une procédure étape par étape effectuant la sélec-
tion, le paramétrage et l’exécution des algorithmes. Le processus de détection est
réalisé grâce à une approche d’intelligence artificielle qui utilise des connaissances
explicites pour concevoir une solution de reconnaissance d’objets en fonction du
contexte. Sa force réside dans son adaptabilité au contexte, mais aussi dans sa ca-
pacité d’analyse et de compréhension d’une scène et d’objets contenus ainsi que
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dans les spécificités des données à traiter. Cette capacité de compréhension est
réalisée par un processus d’auto-apprentissage capable de définir et de valider des
hypothèses concernant le contexte, permettant ainsi d’enrichir la base de connais-
sances et d’améliorer le processus de reconnaissance des objets. L’efficacité de cette
capacité d’adaptation sera démontrée dans quatre cas d’utilisation de différents
domaines d’application. Le premier cas d’utilisation est l’intérieur d’un bâtiment.
Il est utilisé à des fins de surveillance. Le second cas d’utilisation se situe dans le
domaine de l’archéologie représenté par des ruines anciennes contenant une mai-
son en terrasse avec un moulin à eau. Le troisième cas d’utilisation est un extérieur
représentant une partie de la ville de Fribourg en Allemagne. Il est utilisé à des fins
industrielles. Enfin, le dernier cas d’utilisation est un intérieur acquis par Kinect
de Microsoft. Il est utilisé à des fins robotiques.
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Contexte et motivation

Grâce à la puissance des nouvelles technologies de détection, nous numérisons
de plus en plus le monde réel. Cependant, les instruments produisent des don-
nées non structurées, principalement sous forme de nuages de points pour les
données 3D et d’images pour les données 2D. Néanmoins, de nombreuses ap-
plications (p. ex. la navigation ou la documentation de conformité) nécessitent
des données structurées contenant des objets et leur géométrie. La structuration
des données nécessite l’interprétation de leur contenu. Cette interprétation corre-
spond à l’identification des objets et de leurs géométries contenus dans les données.
L’application détermine les objets et leurs géométries.

De plus, une application nécessite une qualité de données qui dépend des besoins
et des contraintes de cette application. La qualité des données est déterminée par
les caractéristiques des données (p. ex. densité, texture, couleur, bruit, résolution,
régularité, complétude) qui répondent aux exigences de l’application. Les carac-
téristiques des données dépendent du processus d’acquisition. L’application guide
le choix du processus d’acquisition correspondant au choix des méthodologies (p.
ex. stratégie de mise en place et de mesure), des technologies d’acquisition (comme
les instruments) et du contexte d’acquisition (p. ex. objet, scène, conditions envi-
ronnementales). Par exemple, en archéologie, l’acquisition d’une copie virtuelle
d’un objet peut nécessiter une résolution de données de 0,01 mm, alors que pour
les fouilles, quelques millimètres peuvent être suffisants. Dans cet exemple, la
technologie d’acquisition est choisie en fonction de sa capacité à fournir une ré-
solution de données appropriée. D’autres applications nécessitent la préservation
de la couleur et de la texture de la scène acquise. Dans ces cas, l’acquisition 2D
combinée à la photogrammétrie, qui construit un nuage de points 3D exclusive-
ment à partir de plusieurs images 2D, est généralement préférée aux technologies
laser-scanner en raison de sa performance à préserver les textures. Dans le domaine
industriel, les voitures autonomes ou la planification d’infrastructures urbaines, né-
cessitent l’acquisition de grandes scènes. C’est pourquoi un scanner laser (comme
le scanner Lidar) est principalement utilisé pour cette application pour acquérir des
scènes 3D sur de très longues distances.
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Cependant, le processus de détection produit souvent une qualité de données
inférieure à celle requise par l’application. Les compromis entre le choix des
méthodologies et des technologies, d’une part, et les contraintes du contexte
d’acquisition, d’autre part, produisent cette différence. Il est donc nécessaire de
compenser la différence entre la qualité des données obtenue par le processus de
détection et la qualité attendue. Cette compensation peut être obtenue en inté-
grant des informations sur le processus de détection (technologies d’acquisition,
méthodologie d’acquisition et contexte d’acquisition) pour adapter l’interprétation
du contenu des données à leur qualité.

Plusieurs approches de vision par ordinateur visent à interpréter le contenu des
données et à essayer de compenser la qualité inférieure des données. Ces ap-
proches sont principalement contextuelles, c’est-à-dire spécifiques aux données à
traiter et aux objets à détecter. Certaines approches (appelées approches axées
sur les modèles) considèrent principalement une partie de l’information sur le
contexte de la scène et sur les objets contenus dans les données. Ces approches
utilisent des informations sur la géométrie et la forme des objets pour construire
des modèles correspondants. Ces approches examinent les données pour identifier
les sections qui sont similaires aux modèles construits. Les sections identifiées per-
mettent l’interprétation des objets et de leur géométrie pour structurer les données.
Toutefois, ces approches n’utilisent qu’une partie de l’information sur le contexte
de l’acquisition et n’exploitent pas l’information sur les méthodes ou les technolo-
gies d’acquisition. Ces approches ne sont donc pas en mesure de compenser les
faiblesses de la qualité des données. Les résultats de ces approches dépendent
directement de la qualité des données. D’autres approches (appelées approches
axées sur les données) n’exploitent pas directement l’information sur les méthodes
d’acquisition et les technologies d’acquisition, mais se concentrent sur la qualité des
données obtenues. Ces approches sont principalement composées de trois étapes
principales. La première étape consiste à préparer les données pour compenser les
faiblesses de la qualité des données (comme le bruit) en supprimant les éléments
dont les informations ne sont pas pertinentes ou qui peuvent induire en erreur le
traitement. La deuxième étape consiste à segmenter les données en sous-régions
par des algorithmes ad hoc ou des combinaisons d’algorithmes. Cette étape vise
à faciliter l’interprétation des données en divisant leur complexité. Chaque sous-
région fournit des indices pour interpréter le contenu des données. La dernière
étape consiste à classer chaque sous-région pour interpréter le contenu des don-
nées. Toutefois, ces approches n’utilisent pas directement l’information sur le con-
texte d’acquisition, les méthodes d’acquisition ou les technologies d’acquisition.
Ils ne peuvent donc pas comprendre les principes fondamentaux de la qualité des
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données et doivent, par conséquent, compenser toute faiblesse dans la qualité des
données. Compenser toutes les faiblesses de qualité des données est souvent trop
fastidieux dans certaines applications pour réussir.

Par conséquent, il est logique d’explorer les possibilités d’utiliser l’information sur
les méthodes et les technologies d’acquisition pour adapter l’interprétation des
données à leur qualité. Par conséquent, il est nécessaire de connaître la qual-
ité des données pour guider l’interprétation des données. Il est donc nécessaire
d’utiliser l’information sur les méthodologies et les technologies d’acquisition pour
estimer la qualité des données. Enfin, il faut utiliser l’information sur le contexte
d’acquisition (principalement les scènes et leurs composantes) pour interpréter le
contenu des données. Cette interprétation s’effectue en classant les sections de
données. La prise en compte de toutes ces informations permet une interprétation
plus robuste du contenu des données que d’autres approches (axées sur le mod-
èle et sur les données). De plus, la compréhension de ces informations permet de
s’adapter à différents types de contextes de données. Toutefois, la qualité estimée
peut différer de la qualité obtenue. Cette différence crée des problèmes imprévis-
ibles pour l’interprétation du contenu des données. Il est nécessaire de résoudre
ces problèmes causés par la différence entre la qualité des données estimées et la
qualité des données obtenues par le processus de détection. Une approche pour
compenser cette différence de qualité consiste à comprendre la dérivation entre la
qualité des données estimées et la qualité des données obtenues. Cette compréhen-
sion permet d’adapter l’estimation de la qualité des données. Cette adaptation per-
met donc d’adapter l’interprétation du contenu des données. De plus, il est difficile
d’anticiper les écarts entre la qualité estimée et la qualité obtenue. Par conséquent,
ces écarts doivent être observés et analysés pour l’ensemble des données. Ce traite-
ment nécessite une évaluation locale de la qualité des données obtenues. De plus,
les résultats produits par l’interprétation du contenu des données fournissent des
indices sur la qualité des données obtenues. Ainsi, l’analyse de ces résultats per-
met de déduire de nouvelles informations sur la qualité des données obtenues. Ces
nouvelles informations permettent d’adapter l’interprétation du contenu des don-
nées. Cette adaptation permet une meilleure structuration des données en fonction
de leur qualité.
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Portée de la thèse

Cas d’utilisation

Dans cette thèse, nous nous sommes concentrés sur quatre cas d’application dif-
férents pour illustrer les différentes complexités qui peuvent exister dans les prin-
cipaux domaines de la détection d’objets. Ces cas d’application proviennent de
différents domaines d’application (p. ex. patrimoine culturel, documentation con-
forme à l’exécution) dans différents contextes (p. ex. excavation de ruines, intérieur
de bâtiment, extérieur dans un milieu urbain). Ils disposent de données 3D non
structurées, sous la forme d’un nuage de points et ont besoin de la détection de
divers objets (p. ex. mur, plancher, plafond, voiture, chaise, moulin à eau, ar-
bre) pour structurer leurs données. Dans cette thèse, nous nous concentrons sur
la structuration des données. C’est pourquoi nous nous concentrons sur la détec-
tion des éléments qui constituent les données. Cette tâche génère d’importantes
difficultés scientifiques.

Cas d’utilisation en intérieur

Le premier cas d’application consiste à documenter un bâtiment en reconstru-
isant un modèle 3D de celui-ci. Pour ce faire, il est nécessaire d’identifier cha-
cune des pièces qui composent le bâtiment. L’identification des pièces nécessite
l’identification des murs, des planchers et des plafonds. Ces éléments sont de
grands objets dont les couleurs peuvent être très variables. Dans les bâtiments
modernes, ces éléments ont principalement une forme régulière et rectangulaire.

Le bâtiment choisi pour ce cas d’application est numérisé par scanner laser en in-
térieur, produisant un nuage de points 3D non structuré [Armeni et al., 2017]. Ainsi,
plusieurs facteurs influencent la représentation des planchers, des murs et des pla-
fonds.

L’utilisation de scanners laser ne permet pas d’acquérir des objets en verre ou ayant
une surface très réfléchissante. Ainsi, certaines parties des murs numérisés sont ab-
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sentes lorsque les murs sont composés de fenêtres ou de surfaces réfléchissantes.
De plus, la méthode d’acquisition consiste à déplacer le scanner à l’intérieur du bâ-
timent en suivant un chemin qui génère des occlusions. Ainsi, cet ensemble de don-
nées contient de nombreuses discontinuités, principalement pour les murs et le sol
en raison de leur occlusion par des éléments à l’intérieur des pièces. De plus, parmi
les principaux facteurs externes, la couleur artificielle de la lumière et les variations
de lumière d’une pièce à l’autre influencent le processus d’acquisition en générant
du bruit et influencent respectivement les couleurs des éléments numérisés. La
figure 1 illustre l’ensemble de données de ce cas d’application.

Figure 1: Présentation de l’ensemble de données sur les espaces intérieurs de "Stan-
ford 3D à grande échelle" [Armeni et al., 2017].

Le principal défi des approches de vision par ordinateur dans ce cas d’application
est la segmentation des pièces qui ont des caractéristiques et des éléments com-
muns. Par exemple, deux pièces différentes peuvent partager un plafond, un
plancher ou des murs.

Cet ensemble de données est en libre accès et permet de comparer l’approche pro-
posée dans cette thèse avec d’autres approches existantes dans la littérature.

Cas d’utilisation pour le patrimoine culturel

Le deuxième cas d’application provient du domaine du patrimoine culturel et
représente une maison en terrasse partiellement détruite en Turquie. Le but de cette
application est de soutenir l’interprétation archéologique par la détection d’objets
basée sur la connaissance.

CONTENTS



CONTENTS 17

L’objet principal recherché dans cette application est un moulin à eau. Cet objet est
décrit comme étant composé de deux parties principales (une grande pièce et une
pièce étroite), dont l’une contenait la roue du moulin et l’autre le mécanisme.

Dans ce cas d’application, une scène d’excavation de ruines est numérisée par
scanner laser terrestre (TLS) [Lemmens, 2011], produisant un nuage de points 3D
non structuré [Wefers, 2015]. Cependant, dans le contexte des fouilles de ruines,
le moulin à eau n’a pas résisté au temps et seule la structure de certaines de ses
pièces a été conservée. Le plafond et une grande partie des murs manquent, ce qui
augmente la difficulté de détecter le moulin à eau. De plus, l’utilisation du laser-
scanner sur ce nuage de points produit des formes irrégulières liées à la structure
du sol et aux murs qui ne sont pas planaires, rendant l’utilisation et les configura-
tions des algorithmes plus complexes.

La figure 2 montre le nuage de points acquis et un modèle du moulin à eau.

(a) Une portion de la maison en terrasse ac-
quise en nuage de points.

(b) Dessin du moulin à eau
prévu.

Figure 2: Présentation de la maison en terrasse avec le moulin à eau.

Le principal défi dans ce cas d’application est d’adapter le processus de détection
au contexte de fouille de ruines qui transforme considérablement les caractéris-
tiques de l’objet.

Cas d’utilisation en milieu extérieur urbain

Le troisième cas d’application est l’acquisition d’une scène dans un environnement
extérieur urbain acquise par un laser-scanner. Cette technologie d’acquisition pro-
duit un nuage de points 3D non structuré. Le nuage de points est obtenu en bal-
ayant séquentiellement la scène avec le laser se déplaçant sur une voiture le long
de la route. Dans cette application, de nombreux facteurs (variation de luminosité,
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vibration de l’instrument de mesure, conditions météorologiques) influencent le
processus d’acquisition. Ainsi, ils influencent les caractéristiques (p. ex. bruit,
densité, régularité) du nuage de points généré. En outre, la méthode d’acquisition
séquentielle par balayage provoque d’une part l’acquisition de données sous forme
"d’étapes" et d’autre part la génération de zones d’occlusion (zones sans informa-
tion). De plus, les différents matériaux (p. ex. métal, verre, pierre) et la distance
entre les objets et le scanner laser au moment de l’acquisition influencent grande-
ment le processus d’acquisition. Ainsi, certaines parties des données peuvent être
denses et continues, tandis que d’autres peuvent être discontinues avec une faible
densité. De plus, la complexité des différents facteurs influençant le processus
d’acquisition conduit à la génération de situations et de problèmes imprévisibles
où les caractéristiques des données obtenues diffèrent sensiblement des caractéris-
tiques attendues.

Le principal défi dans ce cas d’application est de résoudre les problèmes découlant
de changements imprévisibles dans les caractéristiques des données. Deux nuages
de points intéressants traitent de ce cas d’application.

Le premier nuage de points provient du domaine industriel et vise à documenter
des parties de la ville de Freiburg en Allemagne. Certaines parties de la ville sont
numérisées par Fraunhofer IPM1 en utilisant un scanner laser Lidar.

La figure 3 illustre une partie de cet ensemble de données.

Figure 3: Présentation de la partie de Freiburg en nuage de points (fictivement
coloré pour augmenter la visibilité).

L’autre nuage de points correspond à l’ensemble de données "Paris-rue-Madame
: MINES ParisTech jeu de données de la rue Madame à Paris obtenu par scanner

1Fraunhofer IPM: https://www.ipm.fraunhofer.de/de/presse_publikationen/
Presseinformationen/messfahrzeug-3D-Daten-breitbandausbau.html
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laser mobile 3D" 2 [Serna et al., 2014].

Il représente la rue Madame, une rue du 6eme arrondissement parisien en France.
Cette rue est numérisée par un système MLS (Mobile Laser Scanning) provenant
du laboratoire de robotique (CAOR) de MINES ParisTech (Paris, France). La figure
4 illustre cet ensemble de données.

Figure 4: Illustration de la base de données "Paris-rue-Madame : MINES ParisTech
jeu de données de la rue Madame à Paris obtenu par scanner laser mobile 3D".

Les principaux objets à détecter dans ce cas d’application en milieu urbain sont les
voitures, les panneaux de signalisation, les murs (parfois aussi appelés façade dans
ce contexte), le sol et les motos. Dans le contexte des scènes urbaines extérieures,
ces objets ont des formes et des caractéristiques diverses.

Cas d’utilisation "Time-of-flight"

Le quatrième cas d’application vise à localiser des objets spécifiques dans dif-
férentes scènes intérieures pour la surveillance. Dans ce cas d’utilisation, les objets
recherchés sont des meubles tels que des chaises et des tables, dont la forme et
la couleur diffèrent d’une scène à l’autre. Les caractéristiques géométriques et
physiques des objets sont donc diverses.

Les scènes choisies pour ce cas d’application sont numérisées par [Lai et al., 2011] à
l’aide d’une caméra de type Kinect de Microsoft qui produit des nuages de points
3D, comme le montre la Figure 5. Chaque nuage de points est composé de plus
d’un million de points.

L’utilisation d’une caméra de type Kinect de Microsoft produit un ensemble de
données de faible qualité avec des surfaces principalement irrégulières. De plus,
le processus d’acquisition de ces nuages de points produit de nombreuses parties

2MINES ParisTech c© copyright. MINES ParisTech a créé cet ensemble spécial de données MLS
3D pour les activités de recherche en détection-segmentation-classification, mais ne cautionne pas
la manière dont elles sont utilisées dans ce projet ni les conclusions avancées.
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manquantes en raison des occlusions et de la faible fréquence d’acquisition. Ces
caractéristiques augmentent la difficulté de détection des objets.

(a) Première scène dans le nuage de
points.

(b) Seconde scène dans le nuage de
points.

(c) Troisième scène dans le nuage de
points.

(d) Quatrième scène dans le nuage de
points.

Figure 5: Présentation des quatre scènes acquises [Lai et al., 2011].

Le principal défi, dans ce cas d’application, est de détecter des objets même si leurs
caractéristiques et leurs formes changent considérablement (p. ex. table ronde,
table carrée, chaise de bureau, chaise en bois).

Énoncé du problème

Comprendre les données non structurées est un véritable défi. Cela nécessite de
détecter les représentations dans les données des objets et géométries de la scène
numérisée. La détection d’objets et de géométries dépend d’une part de leurs
caractéristiques (ex. : taille, forme) et d’autre part des caractéristiques des don-
nées (ex. : densité, bruit, occlusion, rugosité). Les caractéristiques des données
dépendent du processus d’acquisition (p. ex. technologie et méthodologie util-
isées) qui les génère. Les caractéristiques des objets numérisés (p. ex. matériau,
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réflectance, rugosité, taille), le contexte de la scène (p. ex. extérieur en milieu
urbain, bâtiment intérieur, excavation de ruines) et divers autres facteurs externes
au processus d’acquisition (p. ex. lumière ambiante, intensité lumineuse, condi-
tions météorologiques, mouvement de l’instrument de mesure ou encore des objets
numérisés) ont un effet sur ce processus d’acquisition. De petites variations dans
l’un de ces facteurs peuvent fortement influencer les caractéristiques des données.
Ces variations de caractéristiques génèrent des divergences entre les caractéris-
tiques attendues et les caractéristiques obtenues.

Les approches fondées sur l’apprentissage machine (comme l’apprentissage appro-
fondi et l’apprentissage continu) remplacent le manque de compréhension de ces
facteurs par l’identification de schémas fiables. Ces schémas doivent être appris au
cours d’une phase d’entraînement. C’est pourquoi l’apprentissage machine "fiable"
nécessite une grande quantité de données. Cependant, dans certains domaines
d’application, tels que le patrimoine culturel (voir le cas d’application 2.1.2), les
données annotées ne sont pas disponibles ou sont insuffisantes. Ainsi, les ap-
proches basées sur l’apprentissage machine ne sont pas pertinentes pour détecter
des objets dans un tel ensemble de données. De plus, les approches d’apprentissage
machine fonctionnent tant que les données considérées sont représentatives du con-
tenu à comprendre. Plus l’objet ou l’apparence varie, plus il faut de données pour
l’entraînement. Les méthodes d’apprentissage machine restent rigides et ne perme-
ttent pas de détecter l’objet ou la géométrie pour lesquels ils ne sont pas entraînés.
De plus, une petite modification du processus d’acquisition ou des facteurs ex-
ternes qui influencent les données peuvent engendrer un changement pour lequel
les approches d’apprentissage machine ne sont pas entraînées.

Au contraire, d’autres approches basées sur les technologies sémantiques ten-
tent d’intégrer des connaissances sur l’objet ou le processus de détection afin
d’alimenter le processus de compréhension des données. Néanmoins, ces ap-
proches sont incapables de formuler la connaissance d’une manière qui représente
tous les cas.

Par conséquent, les approches actuelles ne sont pas assez robustes, souples et
généralisables pour surmonter ces différences. Leur manque de robustesse lim-
ite la compréhension des données (p. ex. parties de données mal identifiées ou
non identifiées). De plus, ces approches sont contextuelles, c’est-à-dire spécifiques
aux données à traiter et aux objets à détecter. Par conséquent, la question de cette
thèse est de savoir comment fournir un processus de détection d’objets robuste face
aux variations des caractéristiques des données et sans dépendre du contexte.

Pour composer avec les variations des caractéristiques des données, il faut com-
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prendre leur origine et leur incidence sur le processus de compréhension des don-
nées. La compréhension est basée sur la connaissance, elle-même basée sur la
connexion de l’information. Par conséquent, une approche fondée sur la connais-
sance de la source et de l’impact des variations des caractéristiques des données
est nécessaire pour guider le processus de compréhension des données. Pour ré-
soudre ce problème à l’aide d’une approche fondée sur les connaissances, il faut
résoudre trois sous-problèmes. Le premier sous-problème est de savoir comment
représenter les connaissances sur la source et l’impact des variations des données.
Le deuxième sous-problème est de savoir comment fournir la flexibilité manquante
dans d’autres approches fondées sur les connaissances pour fournir un processus
de détection adapté aux variations. Le troisième sous-problème, également lié à la
flexibilité, est de savoir comment apporter un enrichissement dynamique et adapté
des connaissances pour surmonter le manque de connaissances sur la diversité des
cas représentés dans les données.

Solution proposée

C’est pourquoi l’approche proposée dans cette thèse aborde d’abord le premier
sous-problème en considérant le processus d’acquisition des données et les dif-
férents facteurs qui l’influencent. Cette approche tente de comprendre l’origine des
caractéristiques des données en comprenant les influences des caractéristiques du
processus d’acquisition et les différents facteurs qui l’influencent. Une telle com-
préhension permet d’anticiper les caractéristiques des données. Cette compréhen-
sion exige une connaissance explicite des domaines des données, de la scène et
du traitement des données, ainsi qu’une connaissance de l’influence entre ces do-
maines.

Domaine de données: Le domaine des données se compose de la connais-
sance des caractéristiques des données et de la connaissance du processus
d’acquisition (p. ex. méthodologie d’acquisition, technologie d’acquisition, in-
strument d’acquisition).

Domaine de scène: Le domaine de la scène numérisée est composé de la connais-
sance des objets, de leur répartition dans la scène, du contexte de la scène, et des
facteurs externes.
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Domaine de traitement des données: Enfin, la connaissance des algorithmes
(p. ex. conditions d’utilisation, objectif de l’algorithme, configuration, conditions
d’utilisation privilégiées) à utiliser pour traiter les données constitue le domaine de
traitement des données.

La connaissance de ces domaines et de leurs influences permet d’établir une base
de raisonnement efficace.

Par conséquent, l’approche présentée utilise cette connaissance explicite pour
guider le traitement des données. Les algorithmes de vision par ordinateur de
diverses bibliothèques (telles que PCL [Rusu and Cousins, 2011], OpenCV3) sont util-
isés pour traiter les données. De même, les technologies du Web sémantique per-
mettent la gestion des connaissances. L’approche présentée répond ensuite au
deuxième sous-problème en combinant ces deux paradigmes à travers un pont
à la fois technique et conceptuel. Ce pont permet aux connaissances de piloter
pleinement le processus de traitement des données étape par étape, grâce à un
échange continu entre les deux paradigmes. Cet échange continu permet d’adapter
le processus de détection d’objets et de géométrie en fonction des nouvelles con-
naissances acquises à chaque étape du traitement des données.

L’approche proposée commence par la combinaison des données et de la connais-
sance des scènes pour déduire et anticiper les caractéristiques des données (telles
que la rugosité, la densité, les occlusions) et ainsi enrichir la connaissance des don-
nées. Cette combinaison de connaissances augmente également les connaissances
sur les représentations possibles des objets dans les données. Par exemple, la tech-
nologie du scanner laser n’acquiert pas correctement le verre. Ainsi, une table avec
pieds en bois et plateau en verre ne sera représentée dans les données que par ces
pieds.

Ensuite, l’approche combine les connaissances sur les trois domaines pour sélec-
tionner et configurer automatiquement et adéquatement les algorithmes en fonc-
tion de ces connaissances, et donc en fonction du cas d’application considéré. Les
algorithmes doivent être sélectionnés et configurés en fonction des résultats déjà
obtenus par les algorithmes précédemment exécutés pour obtenir un traitement
efficace des données. C’est pourquoi l’approche proposée interprète automatique-
ment les données issues de l’exécution des algorithmes pour enrichir les connais-
sances. Ainsi, les algorithmes sont dynamiquement sélectionnés et configurés en
fonction de l’évolution du traitement des données.

L’approche combine ensuite la connaissance des résultats des algorithmes avec la

3Laganière, R. (2014). OpenCV Computer Vision Application Programming Programming Cook-
book Deuxième édition. Packt Publishing Ltd.
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connaissance de la représentation des objets dans les données pour les comprendre
et les structurer.

Bien qu’une telle compréhension puisse suffire à structurer entièrement les données
dans certains cas, elle peut ne pas suffire dans d’autres. Dans ce cas, la structura-
tion des données peut être de qualité insuffisante pour l’application en question.
Ce cas se produit lorsque la connaissance des représentations d’objets diffère des
représentations réelles des objets dans les données. Dans ce cas, il est nécessaire
d’augmenter les connaissances sur la représentation des objets en fonction des car-
actéristiques des données.

C’est pourquoi nous proposons d’intégrer une nouvelle méthode de génération au-
tomatique de connaissances, répondant au troisième sous-problème. Cette méth-
ode consiste à utiliser les connaissances existantes comme base d’apprentissage
pour construire et tester de nouvelles connaissances. Ce processus d’auto-
apprentissage consiste à rassembler et à combiner les informations contenues dans
les connaissances pour formuler de nouvelles hypothèses. Ces hypothèses sont
ensuite testées en vérifiant que leur intégration dans les connaissances initiales ne
crée pas d’incohérence. En d’autres termes, cela consiste à vérifier que l’ajout de
l’hypothèse n’engendre pas de contre-exemple dans la base de connaissance. Si
une hypothèse ne crée pas d’incohérence, elle est considérée comme cohérente et
intégrée aux connaissances existantes. L’intégration de nouvelles connaissances
enrichit les connaissances sur les représentations des objets et modifie le comporte-
ment du processus de détection.

Prenons, par exemple, une partie des données représentant une table. Si cette partie
a été mal acquise et qu’aucune connaissance n’était disponible pour anticiper cette
mauvaise acquisition, alors la connaissance des représentations de la table peut
ne pas correspondre à celle de la table dans les données. Ainsi, la table ne serait
pas détectée. Dans ce cas, le processus d’auto-apprentissage fondé sur les connais-
sances recueillerait toute l’information dont il dispose sur les autres représenta-
tions des tables qui ont été détectées. Supposons que les chaises entourent toutes
les autres tables détectées. Alors le processus formulerait l’hypothèse que "si des
chaises entourent un objet, alors cet objet est une table". Il vérifiera ensuite que la
connaissance ne contient pas de contre-exemple de cette hypothèse. Dans ce cas, la
vérification consiste à vérifier que tous les objets entourés de chaises sont des tables.
Si l’hypothèse est validée, ces nouvelles connaissances sont intégrées aux connais-
sances existantes. Supposons maintenant que les chaises détectées entourent la
partie des données correspondant à la table non détectée. Alors, les nouvelles con-
naissances ajoutées permettraient d’identifier cette partie des données en tant que
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table.

Le processus d’auto-apprentissage vise à adapter les connaissances sur les
représentations des objets pour qu’elles correspondent aux représentations réelles
des objets dans les données. De cette façon, il améliore la compréhension des don-
nées non structurées.
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Aperçu des contributions et de la
thèse

Les travaux présentés dans cette thèse visent à produire un processus de détection
d’objets robuste à la variation de la qualité des données 3D et utilisable quel que
soit le domaine d’application. En d’autres termes, ce processus doit rester efficace,
quelles que soient les données ou les spécificités de l’objet. La réalisation de cet
objectif se fait en utilisant la connaissance humaine et en l’adaptant dynamique-
ment au cours du processus de détection de l’objet. Nos principales contributions
se situent donc dans le domaine de l’intelligence artificielle avec la création d’un
processus d’auto-apprentissage basé sur la connaissance, ainsi que dans le domaine
du Web sémantique et de la vision par ordinateur.

Contributions

Web sémantique

Nous avons trois contributions principales dans le domaine du Web sémantique.
La première contribution est l’intégration automatique d’informations (telles que
des métadonnées dans des fichiers de données ou des informations géographiques)
dans le Web sémantique. Ces travaux ont été publiés dans [Prudhomme et al., 2017]
et dans [Prudhomme et al., 2019].

La deuxième contribution est une extension de SPARQL, qui est une technologie
standard du Web sémantique. Cette contribution est un ensemble d’extensions
intégrées à SPARQL (built-ins) pour le traitement des données pour la vision par
ordinateur.

La troisième contribution est l’interprétation automatique de OWL-restriction et
OWL2-restriction en requêtes SPARQL.

Ces trois contributions sont combinées dans un framework qui exécute automa-
tiquement des algorithmes de vision par ordinateur uniquement à travers des re-
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quêtes SPARQL à partir de processus de raisonnement. Ce processus de raison-
nement est appliqué à l’ontologie qui contient toutes les descriptions nécessaires.
Ainsi, nous créons un pont entre l’ingénierie des connaissances du Web sémantique
et les algorithmes de vision par ordinateur.

Vision par ordinateur

En plus de proposer un état de l’art compréhensif des différentes approches de
vision par ordinateur pour détecter des objets dans un nuage de points 3D, nous
avons trois contributions principales dans le domaine de la vision numérique.

Tout d’abord, nous proposons une adaptation automatique du processus de détec-
tion des objets en fonction du contexte (cas d’application, processus d’acquisition et
caractéristiques des données) et des objets recherchés. Cette approche tient compte
de l’acquisition des données et du contexte pour identifier les objets dont les carac-
téristiques géométriques ne sont pas suffisantes ou utilisables pour les reconnaître.
Ce travail a été appliqué dans le domaine du patrimoine culturel et a abouti à la
publication [Ponciano et al., 2019b].

Deuxièmement, nous proposons un système qui sélectionne et configure automa-
tiquement les algorithmes de détection d’objets 3D par l’utilisation d’une base
de connaissances et d’un mécanisme de raisonnement. Ce système sélectionne
et paramètre les algorithmes en fonction des objets recherchés, des données util-
isées et des conditions préalables des algorithmes. Ce travail a été publié dans
[Ponciano et al., 2017].

Troisièmement, nous proposons un processus de détection des objets, qui est prior-
isé en fonction de la taille des objets et de leurs relations topologiques. La détection
hiérarchique réduit la zone de recherche d’un objet aux endroits où l’objet peut se
trouver. Cette stratégie de détection améliore la performance des algorithmes ap-
pliqués aux parties localisées des données plutôt qu’à l’ensemble des données. Ces
travaux ont été publiés dans [Ponciano et al., 2019a].

La combinaison de ces trois contributions produit un système de détection d’objets
robuste et puissant. Ce système obtient d’excellents résultats pour différents do-
maines d’application et objets recherchés.

Intelligence artificielle

La principale contribution au domaine de l’intelligence artificielle est un processus
d’auto-apprentissage basé sur la connaissance. Nous créons un système capable
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d’adapter ses connaissances en fonction de l’expérience acquise lors d’un premier
processus de détection. Ce système formule des hypothèses puis les valide par une
analyse des conséquences produites par leurs applications. Un tel comportement
permet au système de se développer par lui-même sans aucune condition préalable,
même si l’intégration des connaissances humaines améliore sa progression.

Aperçu de la thèse

Cette thèse commence par expliquer, au chapitre 4, toutes les connaissances néces-
saires à la compréhension de la thèse. Ces connaissances couvrent le domaine de
l’acquisition des données, le domaine du traitement des données et le domaine de
l’ingénierie des connaissances. Les travaux de thèse sont ensuite présentés en qua-
tre parties : la revue de littérature (partie II), la méthodologie (partie III), la mise
en œuvre (partie IV) et la conclusion (partie V).

La partie II donne un aperçu de la littérature sur la détection d’objets 3D. Cette par-
tie est composée de quatre chapitres. Chacun des trois premiers chapitres présente
une catégorie de détection d’objets 3D. Le dernier discute de la comparaison des
trois catégories.
Le chapitre 5 présente la première catégorie correspondant aux approches guidées
par un modèle. La stratégie des approches dans cette catégorie consiste à créer des
modèles pour chaque objet recherché et à les comparer à chaque région de don-
nées.
Le chapitre 6 présente la deuxième catégorie correspondant aux approches fondées
sur des données. Contrairement aux approches axées sur les modèles, les ap-
proches de cette catégorie visent à caractériser les données afin d’en isoler des
parties et de les classer selon les objets recherchés.
Le chapitre 7 présente la dernière catégorie d’approches, qui sont des approches
fondées sur la connaissance. Les approches de cette catégorie utilisent la connais-
sance des objets et des données pour adapter le processus de détection.
Enfin, le chapitre 8 compare ces catégories d’approche selon les critères de qualité,
d’ambiguïté, de robustesse, de flexibilité et de généralisabilité.

La partie III explique l’approche proposée par cette thèse. Cette partie commence
par un aperçu du système. Ensuite, elle explique l’ingénierie des connaissances
utilisée par le système. Enfin, elle présente l’approche axée sur la connaissance
appliquée par le système pour la détection d’objets 3D.
Le chapitre 9 donne un aperçu du système. Il rappelle les problèmes liés à la détec-
tion des objets 3D. Puis il présente les composants du système et leurs interactions.
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Le chapitre 10 explique l’ingénierie des connaissances. Celui-ci permet la modéli-
sation de la connaissance des domaines des données, de la scène et du traitement
des données. Le but de cette connaissance est de guider le processus de détection
d’objet.
Le chapitre 11 présente la détection d’objets basée sur la connaissance. Cette dé-
tection est tout d’abord constituée d’une phase de gestion des algorithmes qui con-
siste à sélectionner, configurer et exécuter les algorithmes pertinents pour traiter
le cas d’application. Une phase de classification suit cette gestion des algorithmes.
Ces deux phases permettent d’effectuer la détection d’objets selon des connais-
sances explicitement définies. Cette détection est ensuite suivie d’une étape d’auto-
apprentissage visant à enrichir la base de connaissances afin de réexécuter une
détection d’objet plus précise.

La partie IV décrit la mise en œuvre de l’architecture de traitement et donne un
aperçu de la modélisation et du traitement des cas d’utilisation. Il présente enfin
les résultats obtenus par l’approche implémentée.
Le chapitre 12 présente l’architecture implémentée pour l’approche proposée.
Le chapitre 13 présente la modélisation des connaissances pour les cas
d’application.
Le chapitre 14 décrit le processus de détection d’objet hiérarchique pour ces cas
d’application.
Le chapitre 15 présente les résultats obtenus pour chacun des quatre cas
d’utilisation étudiés. Il compare également les résultats obtenus par l’approche
proposée avec les approches de la littérature.
Le chapitre 16 traite des choix de mise en œuvre et des résultats obtenus pour
conclure sur l’efficacité de l’approche proposée.

Enfin, la partie V avec chapitre 17 résume les contributions apportées par cette
thèse et discute des avantages et des limites de l’approche proposée. Il conclut en
suggérant des travaux futurs.

Publications

Les travaux de cette thèse ont été diffusés dans les publications suivantes :

[Ponciano et al., 2017] Ponciano, J.-J., Boochs, F., and Trémeau, A. (2017).
Knowledge-based object recognition in point clouds and image data sets.
gis.Science - Die Zeitschrift für Geoinformatik.

[Ponciano et al., 2019a] Ponciano, J.-J., Boochs, F., and Tremeau, A. (2019a). Identifi-
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cation and classification of objects in 3d point clouds based on a semantic concept.
In 3D-Tage, Oldenburger, Germany.

[Ponciano et al., 2019b] Ponciano, J.-J., Karmacharya, A., Wefers, S., Atorf, P., and
Boochs, F. (2019b). Connected semantic concepts as a base for optimal recording
and computer-based modelling of cultural heritage objects. In Aguilar, R., Torre-
alva, D., Moreira, S., Pando, M. A., and Ramos, L. F., editors, Structural Analysis of
Historical Constructions, pages 297–304, Cham. Springer International Publishing.

[Ponciano et al., 2019c] Ponciano, Jean-Jacques, Trémeau, Alain, and Boochs, Frank.
Automatic detection of objects in 3d point clouds based on exclusively semantic
guided processes. ISPRS International Journal of Geo-Information, 8(10) (2019c).
ISSN 2220-9964. URL http://dx.doi.org/10.3390/ijgi8100442.

[Prudhomme et al., 2017] Prudhomme, C., Homburg, T., Ponciano, J.-J., Boochs,
F., Roxin, A., and Cruz, C. (2017). Automatic integration of spatial data into the
semantic web. In WebIST 2017 , Porto, Portugal.

[Prudhomme et al., 2019] Prudhomme, C., Homburg, T., Ponciano, J.-J., Boochs,
F., Cruz, C., and Roxin, A.-M. (2019). Interpretation and automatic integration of
geospatial data into the semantic web. Computing, pages 1–27

[Ponciano et al., 2019a ] concerne les chapitres 11, 14 et 15.

[Ponciano et al., 2019b ] concerne les chapitres 10, 13 et 15.

[Ponciano et al., 2019c ] concerne les chapitres 9, 10 et 11 de la partie III (Method-
ologie) et les chapitres 12, 13, 14 et 15 de la partie IV (Implémentation).

[Ponciano et al., 2017 ] concerne les chapitres 9 et 10 .

[Prudhomme et al., 2017 ] and [Prudhomme et al., 2019] concerne les chapitres 4
et 12.
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The introduction part is composed of four chapters that aim at providing an
overview of the research work presented in this thesis.
Chapter 1 presents the context and motivations for this research. These works are
involved in the detection of context-dependent objects. They are motivated by the
engineering of a framework to perform this type of detection in any application
case automatically.
Chapter 2 explains the scope of the thesis. First, it presents the four application
cases considered to evaluate the proposed approach. Then, it gives the problem
related to the difficulty of dealing with the detection of objects in very different
application cases such as the four cases considered. Finally, it presents the solution
proposed in this thesis.
Chapter 3 presents the contributions. First, it presents the contributions made in
the different research disciplines. Then, it gives an overview of the thesis. Finally,
it sets out the published research work.
Chapter 4 presents the background of this thesis through the following three do-
mains: data acquisition, data processing, and knowledge engineering. Finally, this
chapter discusses the usage of these three domains within the thesis.



1 Context and motivation

Through the power of new sensing technologies, we are increasingly digitizing the
real world. However, instruments produce unstructured data, mainly in the form
of point clouds for 3D data and images for 2D data. Nevertheless, many applica-
tions (e.g. navigation or as-built documentation) need structured data containing
objects and their geometry. Structuring data requires to interpret its content. This
interpretation corresponds to the identification of objects and their geometries con-
tained in the data. The application determines the objects and their geometries.

Moreover, an application requires a data quality, which depends on the needs and
constraints of the application. Data quality is determined by data characteristics (e.
g. density, texture, color, noise, resolution, regularity, completeness) that satisfy the
application’s requirements. The data characteristics depend on the sensing process.
Application guides the choice of sensing process corresponding to the choice of
methodologies (e.g. set up and measurement strategy), technologies of acquisition
(such as instruments) and the acquisition context (e.g. object, scene, environmen-
tal conditions). For example, in archaeology, the acquisition of a virtual copy of
an object may require a data resolution of 0.01 mm, while for excavations, a few
millimeters may be sufficient. In this example, the acquisition technology is cho-
sen based on its ability to provide appropriate data resolution. Other applications
require the preservation of the color and texture of the acquired scene. In these
cases, 2D acquisition combined with photogrammetry, which builds a 3D point
cloud exclusively from several 2D images, is generally preferred to laser-scanner
technologies due to its performance in preserving textures. In the industrial field,
autonomous cars or urban infrastructure planning, require the acquisition of large
scenes. Therefore a laser scanner (as Lidar scanner) is mainly used for this appli-
cation to acquire 3D scenes from very long distances.

However, the sensing process often produces lower data quality than required by
the application. Compromises between the choice of methodologies and technolo-
gies on the one hand, and the constraints of the acquisition context, on the other
hand, produces such difference. Therefore, it is necessary to compensate for the
difference between the data quality obtained by the sensing process and the ex-
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pected quality. This compensation can be achieved by integrating information on
the sensing process (acquisition technologies, acquisition methodology, and acqui-
sition context) to adapt the interpretation of the data content to its quality.

Several Computer Vision approaches aim to interpret the data content and try to
compensate for the lower quality of the data. These approaches are mainly context-
dependent, that means they are specific to the data to be processed and to the
objects to the detected. Some approaches (called Model-Driven) mainly consider
part of the information on the scene context and on the objects contained in the
data. These approaches use information about the geometry and shape of objects
to build corresponding models. These approaches examine the data to identify
sections that are similar to the models constructed. The identified sections allow
the interpretation of objects and their geometry to structure the data. However,
these approaches use only part of the information on the acquisition context and do
not exploit information on acquisition methodologies or acquisition technologies.
These approaches are, therefore, not able to compensate for weaknesses in data
quality. The results of these approaches depend directly on the quality of the data.

Other approaches (called Data-driven approaches) do not directly exploit informa-
tion on acquisition methodologies and acquisition technologies but focus on the
resulting data quality. These approaches are mainly composed of three main steps.
The first step is to prepare the data to compensate for weaknesses in data quality
(such as noise) by removing elements whose information is irrelevant or which
may mislead processing. The second step consists in segmenting the data into sub-
regions by ad hoc algorithms or combinations of algorithms. This step is intended
to facilitate the interpretation of the data by dividing its complexity. Each sub-
region provides clues to interpret the content of the data. The last step is to classify
each sub-region to interpret the data content. However, these approaches do not di-
rectly use the information on the acquisition context, acquisition methodologies, or
acquisition technologies. Thus, they cannot understand the fundamentals of data
quality and must, therefore, compensate for any weaknesses in data quality. Com-
pensating for all data quality weaknesses is often too tedious in some applications
to be successful.

Therefore, it is logical to explore opportunities to use the information on acquisi-
tion methodologies and acquisition technologies to adapt data interpretation to the
data quality. Therefore, it is necessary to know the quality of the data to guide
the interpretation of the data. Thus, it is necessary to use the information on the
methodologies and acquisition technologies to estimate data quality. Finally, it has
to use the information on the acquisition context (mainly scenes and their com-
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ponents) to interpret the content of the data. This interpretation is carried out
by classifying the data sections. Considering all of this information allows for a
more robust interpretation of data content than other approaches (Model-driven
and Data-driven). Moreover, understanding this information allows adaptation to
different types of data contexts. However, the quality estimated may differ from the
quality obtained. This difference creates unpredictable problems for the interpre-
tation of data content. It is necessary to solve the unpredictable problems caused
by the difference between the estimated data quality and the data quality obtained
by the sensing process. One approach to compensate for this quality difference is
to understand the derivation between the estimated data quality and the obtained
data quality. This understanding allows for the adaptation of the data quality esti-
mation. Thus, this adaptation allows for the interpretation of the data content to be
adapted. Besides, it is difficult to anticipate the deviations between the estimated
and the obtained quality. Therefore, these deviations need to be observed and then
analyzed for the entire data. This treatment requires a local assessment of the data
quality obtained. Moreover, the results produced by interpreting the data content
provide clues to the obtained data quality. Thus, the analysis of these results allows
deducing new information on the obtained data quality. This new information al-
lows the interpretation of the data content to be adapted. This adaptation allows
for better structuring of data according to their quality.



2 Scope of the thesis

2.1 Use cases

In this thesis, we focused on four different applications cases to illustrate the dif-
ferent complexities that can exist in the major fields of object detection. These
application cases come from different application domains (e.g. cultural heritage,
as-built documentation) in different contexts (e.g. ruins excavation, indoor build-
ing, urban outdoor, indoor room). They have unstructured 3D data, in the form of a
point cloud and require the detection of various objects (e.g. wall, floor, ceiling, car,
chair table, watermill, tree) to structure their data. In this thesis, we focus on data
structuring. Therefore we focus on the detection of the elements that constitute the
data. This task involves the main scientific difficulties.

2.1.1 Indoor use case

The first application case consists of documenting a building by reconstructing a 3D
model of it. To this end, it is necessary to identify each of the rooms that make up
the building. The identification of rooms requires the identification of walls, floors,
and ceilings. These elements are large objects whose colors can be highly variable.
In modern buildings, these elements have mainly a regular and rectangular shape.

The building chosen for this application case is digitized by laser-scanner in in-
door context, producing an unstructured 3D point cloud [Armeni et al., 2017]. Thus
several factors influence the representation of floors, walls, and ceilings.

The use of laser scanners does not allow to acquire objects made of glass or having a
highly reflective surface. Thus, some parts of the digitized walls are missing when
the walls are composed of windows or reflective surfaces. Also, the acquisition
method consists in moving the scanner inside the building following a path, which
generates occlusions. Thus, this data set contains many discontinuities, mainly for
walls and ground due to their occlusions by elements inside rooms. Moreover,
among the main external factors, the artificial color of the light and the variations
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in light from one room to another influence the acquisition process by generating
noise and influences the colors of the digitized elements respectively. Figure 2.1
illustrates the dataset of this application case.

Figure 2.1: Presentation of the Stanford 3D Large-Scale Indoor Spaces Dataset in
point cloud [Armeni et al., 2017].

The main challenge for Computer Vision approaches in this application case is
the segmentation of rooms that have common characteristics and elements. For
example, two different rooms may share some ceiling, floor, or walls.

This data set is open access allowing the comparison of the proposed approach in
this thesis with other approaches existing in the literature.

2.1.2 Cultural heritage use case

The second application case comes from the domain of cultural heritage and repre-
sents a terrace house partially destroyed in Turkey. The purpose of this application
is to support archeological interpretation through knowledge-based object detec-
tion.

The main object sought in this application case is a watermill. This object is de-
scribed as being composed of two main parts (a big room and a narrow room), one
of which contained the mill wheel and the other the mechanism.

In this application case, a scene of ruins excavation is digitized by Terrestrial
laser scanner (TLS) [Lemmens, 2011], producing an unstructured 3D point cloud
[Wefers, 2015]. However, in the context of ruins excavations, the watermill did not
endure the time, and only the structure of some of its rooms was preserved. The
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ceiling and a large part of the walls are missing, which increases the difficulty of
detecting the watermill. Also, the use of laser-scanner on this point cloud produces
some irregular shapes related to the ground structure and walls that are not planar,
complicating the use and configurations of algorithms.

Figure 2.2 shows the acquired point cloud and a model of the watermill. The main

(a) The terrace house acquired in point cloud.
(b) Drawing of the water-
mill expected.

Figure 2.2: Presentation of the terrace house with watermill.

challenge in this application case is to adapt the detection process to the context of
ruin excavation, which considerably transforms the characteristics of the objects.

2.1.3 Urban outdoor use cases

The third application case is the acquisition of a scene in a context of urban outdoor
acquired by a laser-scanner. This acquisition technology produces an unstructured
3D point cloud. The point cloud is obtained by sequentially scanning the scene
with the laser moving on a car along the road. In this application, many factors
(variation in brightness, the vibration of the measuring instrument, meteorological
condition) influence the acquisition process. Thus, they influence the characteristics
(e.g. noise, density, regularity) of the generated point cloud. Besides, the sequen-
tial scan acquisition method causes data acquisition in the form of "steps" on the
one hand and generates occlusion areas (without information) on the other hand.
Moreover, the different materials (e.g. metal, glass, stone) and the distance be-
tween the objects and the laser-scanner at the time of acquisition greatly influence
the acquisition process. Thus, portions of data can be dense and continuous, and
others can be discontinuous with low density. Furthermore, the complexity of the
different factors influencing the acquisition process leads to the generation of un-
predictable situations and problems where the characteristics of the data obtained
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differ significantly from the expected characteristics.

The main challenge in this application case is to address problems arising from
unpredictable changes in data characteristics. Two interesting point clouds address
this application case.

The first point cloud comes from the industrial domain and aims at documenting
parts of the city of Freiburg in Germany. Parts of the city are digitized by Fraun-
hofer IPM1 using Lidar laser-scanner.

Figure 2.3 illustrates a part of this data set.

Figure 2.3: Presentation of the part of Freiburg in point cloud (fictively colored to
increase visibility).

The other point cloud corresponds to the dataset "Paris-rue-Madame database:
MINES ParisTech 3D mobile laser scanner dataset from Madame street in Paris"
2 [Serna et al., 2014]. It represents rue Madame, a street in the 6th Parisian district
in France. This street is digitized by a Mobile Laser Scanning (MLS) system from
the Robotics laboratory (CAOR) at MINES ParisTech (Paris, France). Figure 2.4
illustrates this dataset.

The main objects to detect in this application case of urban outdoor are cars, traffic
signs, walls (sometimes also called facade in this context), floor, and motorcycle. In
the context of urban outdoor scenes, these objects have diverse shapes and charac-
teristics.

1Fraunhofer IPM: https://www.ipm.fraunhofer.de/de/presse_publikationen/
Presseinformationen/messfahrzeug-3D-Daten-breitbandausbau.html

2MINES ParisTech c© copyright. MINES ParisTech created this special set of 3D MLS data for the
purpose of detection-segmentation-classification research activities, but does not endorse the way
they are used in this project or the conclusions put forward.
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Figure 2.4: Illustration of "Paris-rue-Madame database: MINES ParisTech 3D mo-
bile laser scanner dataset from Madame street in Paris".

2.1.4 Time-of-flight use case

The fourth application case aims to locate specific objects in different indoor scenes
for monitoring. In this use case, the objects sought are furniture such as chairs and
tables, whose shape and color differ from one scene to another. Thus the geometric
and physical characteristics of objects are diverse.

The scenes chosen for this application case are digitized by [Lai et al., 2011] using
Microsoft’s Kinect that produces 3D point clouds, as shown in Figure 2.5. Each
point cloud is composed of more than 1 million points.

The use of Microsoft’s Kinect produces low-quality of the data set with mostly
irregular surfaces. Moreover, the acquisition process of these point clouds produces
many missing parts due to occlusions and sparse acquisition. These characteristics
increase the difficulty of object detection. The main challenge, in this application
case, is to detect objects even if their characteristics and shapes change considerably
(e.g. round table, square table, office chair, wooden chair).
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(a) First scene in point cloud. (b) Second scene in point cloud.

(c) Third scene in point cloud. (d) Fourth scene in point cloud.

Figure 2.5: Presentation of the four scenes [Lai et al., 2011].

2.1. USE CASES
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2.2 Problem statement

Understanding unstructured data is a real challenge. It requires detecting the rep-
resentations in the data of the objects and geometries of the digitized scene. The de-
tection of objects and geometries depends on their characteristics (e.g. size, shape)
on the one hand, and the characteristics of the data on the other hand (e.g. density,
noise, occlusion, roughness). The characteristics of the data depend on the acqui-
sition process (e.g. technology and methodology used) that generates them. The
characteristics of the digitized objects (e.g. material, reflectance, roughness, size),
the context of the scene (e.g. urban outdoor, indoor building, ruin excavation), and
various other factors external to the acquisition process (e.g. ambient light, light
intensity, weather conditions, movement of the measuring instrument or digitized
objects) influence the acquisition process. Small variations in one of these factors
can strongly influence the characteristics of the data. These variations in character-
istics generate divergences between the expected and obtained characteristics.

The approaches based on Machine Learning (such as deep-learning, continuous
learning) substitutes the lack of understanding of these factors through the identi-
fication of reliable patterns. These patterns have to be learned in a training stage.
That is why "reliable" Machine Learning requires a vast amount of data. However,
in some application domains, such as cultural heritage (see application case 2.1.2),
annotated data are not available or are not sufficient. Thus, approaches based on
Machine Learning are irrelevant for detecting the object in such data set. Moreover,
Machine Learning approaches work as long as the data considered is representa-
tive of the content to be understood. The more variation in object or appearance
occur, the more data is required for training. Machine learning approaches remain
unflexible and are unable to detect the object or the geometry for which they are
not trained. Furthermore, just a small change of the acquisition process or exter-
nal factors that influence the data can result in a change for which the Machine
learning approaches are not trained.

On the contrary, other approaches based on semantic technologies try to integrate
some knowledge on object or sensing process to drive the data understanding pro-
cess. Nevertheless, these approaches are unable to formulate knowledge in a way
that represents all cases.

Thus, current approaches are not robust, flexible, and generalizable enough to
overcome these differences. Their lack of robustness limits the understanding of
the data (e.g. inadequately identified or unidentified portions of data). Moreover,
these approaches are context-dependent that means they are specific to the data to
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be processed and to the objects to the detected. Therefore, the issue of this thesis is
how to provide a robust object detection process in the face of data characteristics
variations and no context-dependent.

Dealing with variations in data characteristics requires an understanding of their
origin and their impact on the data understanding process. Understanding is based
on knowledge, itself based on connecting information. Therefore, an approach,
based on knowledge about the source and impact of data characteristics variations,
is needed to guide the process of data understanding. Solving this problem us-
ing a knowledge-based approach requires solving three sub-problems. The first
sub-problem is how to represent knowledge about the source and impacts of data
variations. The second sub-problem is how to provide the missing flexibility in
other knowledge-based approaches to provide a detection process adapted to vari-
ations. The third sub-problem, also related to flexibility, is how to provide dynamic
and adapted knowledge enrichment to overcome the lack of knowledge about the
diversity of cases represented in the data.

2.3 Solution proposed

That is why the approach proposed in this thesis first addresses the first sub-
problem by considering the data acquisition process and the different factors influ-
encing it. This approach attempts to understand the origin of data characteristics
by understanding the influences of the characteristics of the acquisition process and
the different factors influencing it. Such an understanding allows for the anticipa-
tion of data characteristics. This understanding requires explicit knowledge of the
domains of data, scene, and data processing, as well as knowledge of the influence
between these domains.

Data domain: The data domain is composed of knowledge about the character-
istics of the data and knowledge about the acquisition process (e.g. acquisition
methodology, acquisition technology, acquisition instrument).

Scene domain: The domain of the digitalized scene is composed of knowledge
about objects, their distribution in the scene, the scene context, and external factors.

Data processing domain: Finally, knowledge of algorithms (e.g. conditions of
use, purpose of the algorithm, configuration, preferred usage conditions) to be
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used to process the data constitutes the data processing domain.

The knowledge about these domains and their influences allows for establishing
an efficient reasoning base.

Therefore the presented approach uses this explicit knowledge to guide data
processing. Computer Vision algorithms from various libraries (such as PCL
[Rusu and Cousins, 2011], OpenCV3) are used to process the data. Similarly, Seman-
tic Web technologies allow knowledge management. The approach presented then
responds to the second sub-problem by combining these two paradigms through
both a technical and a conceptual bridge. This bridge allows knowledge to fully
drive the data processing process step by step, through a continuous exchange be-
tween the two paradigms. This continuous exchange allows the object and geome-
try detection process to be adapted according to the newly acquired knowledge at
each step of the data processing.

The proposed approach begins by combining data and scene knowledge to infer
and anticipate data characteristics (such as roughness, density, occlusion) and thus
enrich data knowledge. This combination of knowledge also increases knowledge
about the possible representations of objects in the data. For example, laser scanner
technology does not acquire glass material correctly. Thus, a table with wooden
legs and glass tray will only be represented in the data by these legs.

Then, the approach combines knowledge on the three domains to automatically
and adequately select and configure algorithms according to this knowledge, and
thus according to the application case under consideration. Algorithms must be
selected and configured according to the results already obtained by previously
executed algorithms to obtain efficient data processing. That is why the proposed
approach automatically interprets the data resulting from the execution of algo-
rithms to enrich the knowledge. Thus the algorithms are dynamically selected and
configured according to the evolution of data processing.

The approach then combines the knowledge from the algorithms results with
knowledge about how objects are represented in the data to understand and struc-
ture it.

Although such an understanding may be sufficient to structure the data in some
cases entirely, it may not be sufficient in others. Thus, the data structuring may
be of insufficient quality for the application in question. This case occurs when
knowledge about object representations differs from the real representations of
objects in the data. In this case, it is necessary to increase knowledge about the

3Laganière, R. (2014). OpenCV Computer Vision Application Programming Programming Cook-
book Second Edition. Packt Publishing Ltd.
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representation of objects according to the data characteristics.

That is why we propose to integrate a new method of automatic knowledge gen-
eration, answering the third sub-problem. This method consists of using exist-
ing knowledge as a learning base to build and test new knowledge. This self-
learning process consists of gathering and combining the information contained in
the knowledge to formulate new hypotheses. These hypotheses are then tested by
verifying that their integration into the original knowledge does not create incon-
sistency. In other words, the knowledge does not include a counter-example to this
hypothesis. If a hypothesis does not create inconsistency, then it is considered co-
herent and integrated with existing knowledge. The integration of new knowledge
enriches knowledge about object representations and changes the behavior of the
detection process.

Consider, for example, a part of the data representing a table. If this part was badly
acquired, and no knowledge was available to anticipate this bad acquisition, then
the knowledge about the table representations may not correspond to the table
representation in the data. In this case, the table would not be detected. In this
case, the knowledge-based self-Learning process would collect all the information
it has about the other table representations that have been detected. Suppose that
chairs surround all the other tables detected. Then the process would formulate
the hypothesis that "if chairs surround an object, then that object is a table." He
will then verify that the knowledge does not contain a counter-examination to this
hypothesis. In this case, the verification consists of verifying; there is no object
surrounded by a chair that is not a table in the knowledge. If the hypothesis is
validated, then this new knowledge is integrated with existing knowledge. Now
suppose that detected chairs surround the portion of the data corresponding to the
undetected table. Then the new knowledge added would identify this portion of
data as a table.

The self-learning process aims to adapt knowledge about object representations to
match the real representations of objects in the data. In this way, it improves the
understanding of unstructured data.
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3 Contributions and thesis overview

The work presented in this thesis aims at producing an object detection process
that is robust to the variation of 3D data quality and can be used whatever the
application field. In other words, this process has to stay efficient, regardless of
the data or object specificities. The achievement of this purpose is done by using
human knowledge and by dynamically adapting this knowledge during the object
detection process. Therefore our main contributions are in the Artificial Intelligence
domain with the creation of a knowledge-based self-learning process, and also in
the Semantic Web domain and Computer Vision domain.

3.1 Contributions

3.1.1 Semantic Web

We have three main contributions in the Semantic Web domain. The first contribu-
tion is an automatic integration of information (such as meta-data within datafile
or geographic information) into the Semantic Web. This work has been published
in [Prudhomme et al., 2017] and in [Prudhomme et al., 2019].

The second contribution is an extension of SPARQL, which is a standard technol-
ogy in the Semantic Web. This extension consists of SPARQL built-ins for data
processing in Computer Vision.

The third contribution is the automatic interpretation of OWL-restriction and OWL2-
restriction into SPARQL queries.

These three contributions are combined into a framework that executes Computer
Vision algorithms through only SPARQL queries automatically from reasoning pro-
cesses. This reasoning process is applied to the ontology that contains all the nec-
essary descriptions. Thus, we create a bridge between Semantic Web knowledge
engineering and Computer Vision algorithms.
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3.1.2 Computer Vision

Beyond proposing a comprehensive state of the art of the different Computer Vision
approaches to detect objects in a 3D point cloud, we have three main contributions
in the Computer Vision domain.

Firstly, we propose an automatic adaptation of the objects detection process accord-
ing to the context (i.e., application case, acquisition process, and data characteris-
tics) and objects sought. This approach considers the data acquisition and context
to identify objects whose geometric characteristics are not sufficient or usable to
recognize them. This work has been applied in the field of cultural heritage and
has resulted in the publication [Ponciano et al., 2019b].

Secondly, we propose a system that automatically selects and configures algorithms
for 3D object detection through the use of a knowledge base and a reasoning mech-
anism. This system selects and parameterizes algorithms according to the objects
sought, the data used, and the algorithms prerequisites. This work has been pub-
lished in [Ponciano et al., 2017].

Thirdly, we propose a process for detecting objects, which is prioritized according
to the size of the objects and their topological relationships. The hierarchical de-
tection reduces the area of an object search to locations where the object can be.
This detection strategy improves the performance of algorithms applied to local-
ized portions of the data rather than to the entire data. These works have been
published in [Ponciano et al., 2019a].

The combination of these three contributions produces a robust and powerful object
detection system. This system obtains excellent results for different application
domains and objects sought.

3.1.3 Artificial Intelligence

The main contribution to the Artificial intelligence domain is a knowledge-based
self-learning process. We create a system able to adapt its knowledge according to
the experience obtained from a first detection process. This system formulates as-
sumptions and then validates these assumptions by an analysis of the consequences
produced by their applications. Such behavior allows the system for growing by
itself without any prerequisites, even if the integration of human knowledge im-
proves its progression. These works have been published in [Ponciano et al., 2019c].
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3.2 Thesis overview

This thesis begins by explaining, in Chapter 4, all the necessary knowledge for the
understanding of the thesis. This knowledge covers the Data Acquisition domain,
the Data Processing domain, and the Knowledge Engineering domain. The thesis
works are then, presented through four parts: the literature review (Part II), the
methodology (Part III), the implementation (Part IV), and the conclusion (Part V).

Part II provides an overview of the literature on 3D Object Detection. This part is
composed of four chapters. Each of the three first chapters presents a category of
3D object detection. The last one discusses the comparison of the three categories.
Chapter 5 presents the first category corresponding to model-driven approaches.
The approaches strategy in this category is to create models for each object sought
and compare them to each data region.
Chapter 6 sets out the second category corresponding to data-driven approaches.
Unlike model-driven approaches, approaches in this category aim at characterizing
data to isolate portions of it and classify these portions according to the objects
sought.
Chapter 7 introduces the last category of approaches, which are Knowledge-driven
approaches. Approaches in this category use knowledge about objects and data to
adapt to the detection process.
Finally, Chapter 8 compares these categories of approach according to the criteria
of quality, ambiguity, robustness, flexibility, and generalizability.

Part III explains the approach proposed by this thesis. This part begins with an
overview of the system. Then, it explains the knowledge engineering used by the
system. Finally, it presents the Knowledge-driven approach applied by the system
for the detection of 3D objects.
Chapter 9 provides an overview of the system. It recalls the problems related to
the detection of 3D objects. Then it presents the system components and their
interactions.
Chapter 10 explains knowledge engineering. This one allows the modeling of the
knowledge of the domains of data, the scene, and data processing. The purpose of
this knowledge is to guide the object detection process.
Chapter 11 presents knowledge-driven object detection. This detection is, first of
all, made up of an algorithm management phase which consists in selecting, con-
figuring, and executing the relevant algorithms for processing the application case.
A classification phase follows this management of algorithms. These two phases
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allow object detection to be performed according to explicitly defined knowledge.
This detection is then followed by a self-learning step aimed at enriching the
knowledge base in order to re-execute a more accurate object detection.

Part IV describes the implementation of the processing architecture and provides
an overview of use cases modeling and processing. It finally presents the results
obtained by the implemented approach.
Chapter 12 presents the architecture implemented for the proposed approach.
Chapter 13 presents knowledge modeling for application cases.
Chapter 14 describes the hierarchical object detection process for these application
cases.
Chapter 15 presents the results obtained for each of the four studied use cases.
It also compares the results obtained by the proposed approach with approaches
from the literature.
Chapter 16 discusses the implementation choices and the results obtained to
conclude on the efficiency of the proposed approach.

Finally, Part V with Chapter 17 summarizes the contributions brought by this thesis
and discusses the advantages and limits of the proposed approach. It concludes by
suggesting future works.

3.3 Publications

The works of this thesis have been published through the following publications:

[Ponciano et al., 2017] Ponciano, J.-J., Boochs, F., and Trémeau, A. (2017).
Knowledge-based object recognition in point clouds and image data sets.
gis.Science - Die Zeitschrift für Geoinformatik.

[Ponciano et al., 2019a] Ponciano, J.-J., Boochs, F., and Tremeau, A. (2019a). Identifi-
cation and classification of objects in 3d point clouds based on a semantic concept.
In 3D-Tage, Oldenburger, Germany.

[Ponciano et al., 2019b] Ponciano, J.-J., Karmacharya, A., Wefers, S., Atorf, P., and
Boochs, F. (2019b). Connected semantic concepts as a base for optimal recording
and computer-based modelling of cultural heritage objects. In Aguilar, R., Torre-
alva, D., Moreira, S., Pando, M. A., and Ramos, L. F., editors, Structural Analysis of
Historical Constructions, pages 297–304, Cham. Springer International Publishing.

[Ponciano et al., 2019c] Ponciano, Jean-Jacques, Trémeau, Alain, and Boochs, Frank.
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Automatic detection of objects in 3d point clouds based on exclusively semantic
guided processes. ISPRS International Journal of Geo-Information, 8(10) (2019c).
ISSN 2220-9964. URL http://dx.doi.org/10.3390/ijgi8100442.

[Prudhomme et al., 2017] Prudhomme, C., Homburg, T., Ponciano, J.-J., Boochs,
F., Roxin, A., and Cruz, C. (2017). Automatic integration of spatial data into the
semantic web. In WebIST 2017 , Porto, Portugal.

[Prudhomme et al., 2019] Prudhomme, C., Homburg, T., Ponciano, J.-J., Boochs,
F., Cruz, C., and Roxin, A.-M. (2019). Interpretation and automatic integration of
geospatial data into the semantic web. Computing, pages 1–27

[Ponciano et al., 2019a ] concerns chapters 11, 14, and 15.

[Ponciano et al., 2019b ] concerns chapters 10, 13, and 15.

[Ponciano et al., 2019c ] concerns chapters 9, 10 and 11 of Part III (Methodology)
and chapters 12, 13, 14 and 15 of Part IV (Implementation).

[Ponciano et al., 2017 ] concerns chapters 9 and 10 .

[Prudhomme et al., 2017 ] and [Prudhomme et al., 2019] concern chapters 4 and
12.
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4 Background

This chapter presents the main aspects constituting the background of this thesis.
Section 4.1 explains the data acquisition process and the different factors that in-
fluence the data characteristics. Section 4.2 presents data processing through the
use of algorithms and explains the general knowledge that defines each algorithm.
Finally, Section 4.3 presents how the information relevant to understand unstruc-
tured data is modeled as formal knowledge. It presents the leading technologies
that allow the exploitation of this knowledge.

4.1 Data acquisition

Different applications such as robotic control [Liu, 2015], as-built documen-
tation [Giel and Issa, 2011], site modelling [Farjas et al., 2003], quality control
[Habib et al., 2008], payload monitoring [Bewley et al., 2011] need to acquire scenes
as 3D data and structure this data to exploit them. The needs of the application de-
termine the choice of technologies and acquisition methods that generate the data.
However, the acquired scene, as well as external factors, influence the acquisition
process. Therefore, each of these aspects influences the characteristics of the data.
This section presents the influence of these different aspects on data characteristics
through a sample of data characteristics. This sample contains data characteristics
that frequently impact the understanding of the data: density, noise, occlusion,
roughness, color. Density and noise characteristics cause many problems in un-
derstanding the content of the data as highlighted by [Velizhev et al., 2012], and
[Hackel et al., 2016a]. In addition to problems due to density and noise, the work
[Nguyen and Le, 2013] also highlights problems caused by occlusions. Meanwhile,
the work [Lague et al., 2013] highlights problems linked to the roughness. Another
characteristic of data that is important in the data understanding is the color as
shown by works of [Zhan et al., 2009] and [Strom et al., 2010].
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4.1.1 Acquisition process

The evolution of applications requiring the acquisition of 3D data has led to
the development of various acquisition techniques. The works [Aboali et al., 2017]
presents a review of the different acquisition techniques. Among these ac-
quisition techniques, the 3D Laser Scanner [Jecić and Drvar, 2003] and Light
Detection and Ranging (LIDAR) [Reutebuch et al., 2005], the photogramme-
try [Remondino et al., 2008] [Hartley and Mundy, 1993], and Time-of-flight camera
[Fürsattel et al., 2015] are the most commonly used.

The use of these techniques depends on the purpose and the needs of each ap-
plication. Let us take, for example, two main methods of remote sensing: the
"active" method and the "passive" method. The "active" acquisition methods con-
sist of projecting light onto the area to be digitized. These methods are mainly
used with laser scanner technologies such as Lidar. "Passive" acquisition methods
use photogrammetry. They consist of calculating a 3D representation in the form
of a point cloud of an area to be digitized, based on other data such as images.
Photogrammetry methods require the use of algorithms to match the pixels of the
stereo images used to produce the point cloud. The algorithms that perform this
matching are based on the comparison of the texture of stereo images. Thus, when
scenes have few or uniform textures (such as dense drills, blacktop parking lot),
algorithms are not able to match the textures. Thus, these techniques cannot cor-
rectly digitize the elements. On the other hand, using "active" techniques are less
affected by the textures of the elements to be digitized. Thus, such techniques as
scanning by Lidar scanner are more efficient than photogrammetry techniques for
digitizing scenes with low or uniform texture.

One of the primary data characteristics that depend on the acquisition process
is color. In photogrammetry, the information on the color of the elements comes
from the images and can be directly calculated for the point cloud obtained. On the
contrary, acquisition techniques using laser scanners (such as Lidar) first provide
a colorless point cloud. Then, these techniques add color to the point cloud if
necessary, using information from images. The colors and textures calculated in
this way may be less accurate than those obtained by photogrammetry.

The pipeline used in the acquisition process also plays an essential role in the
characterization of the generated data. The works [Bernardini and Rushmeier, 2002],
[Son et al., 2015], [Pauly et al., 2005] and [Vrubel et al., 2009] present the pipeline of
3D data acquisition in different fields.

One data characteristic that is highly dependent on the pipeline of the acquisition
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process is the data density. The data density is mainly defined according to the
resolution provided by the acquisition technology and decreases with distance of
the elements from the acquisition instrument. Thus, the acquisition made by a
single scan of an area will cause discrepancies in density, while an acquisition
made by multiple scans will provide a more homogeneous density. Therefore, the
acquisition pipeline used greatly influences the characteristics of the data obtained.
Besides, some acquisition technologies such as 3D Lidar scanners produce discrete
"foot pulse" data depending on the type of scanning performed by the scanner
(linear or circular). This discretization also affects the density of the data.

To illustrate these influences, let us take the acquisition examples of two urban
scenes and an interior scene. A 3D laser scanner acquires these three scenes. Figure
4.1 shows the influence of the acquisition process on the density and occlusions of
the data. These point clouds are colored according to the density of the points
going from red for the densest areas, to blue for the less dense areas.

(a) Point cloud acquired by laser-scanner with circular scanning (pro-
vided by [De Deuge et al., 2013]).

(b) Point cloud acquired by laser-scanner
with linear scanning.

(c) Point cloud acquired by recursive
scanning (provided by NavVis company
[Wu et al., 2018]).

Figure 4.1: Comparison of the density of point clouds acquired by 3D laser scanner
with three different acquisition methods.

The urban scenes in Figure 4.1(a) and in Figure 4.1(b) are digitized by circular
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and sequential scanning, respectively,. They follow a linear path. This method
of movement combined with the acquisition technique causes a lot of occlusions
(illustrated by red arrows and lines in Figure 4.1(a)). Besides, the data density
decreases gradually with the distance of the digitized elements from the measuring
instrument. Thus the data have a high variation in density.

On the contrary, the indoor scene (Figure 4.1(c)) is acquired by recursive scanning.
In other words, the measuring instrument is moved inside the room, scanning the
same areas several times. This method reduces the occlusion occurrence on the one
hand, and unifies the data density, on the other hand, as shown in Figure 4.1.

Moreover, the data may be more or less noisy, depending on the technologies used.
Generally, data from Time-of-flight technology produces more noise than data from
other technologies such as 3D laser scanners.

In 3D point clouds, noise corresponds to points that do not coincide with any
digitized element. Therefore, they do not provide any information on the data but
can lead to misinterpretation.

4.1.2 Factors of influence

Several factors influence the acquisition process. These factors are grouped into
two categories: internal and external factors.

Internal factors

The internal factors are related to the digitized scene, the objects it contains, their
distributions, the geometries, and the materials of these objects. The distribution
and geometry of the objects influence the acquisition process by affecting the dif-
ficulty of to digitize a scene. When the scene to digitize is composed of a single
object, the acquisition process is not congested, and the generated data does not
include occlusions. On the contrary, when the scene is composed of several objects,
it becomes more complex to digitize the scene, which leads to more occlusions. The
more objects the scene is composed of, the more difficult it is to digitize completely,
and the higher the risk that the generated data will have occlusions. Moreover, the
more complex the geometry of an object is, the more difficult it is to digitize it
accurately. This difficulty can lead to a wide variety of data characteristics. Figure
4.2 shows the deformation of an object whose original geometry is mainly cubic
while the geometry obtained in the point cloud is spherical.

The characteristics of the objects belonging to the digitized scene, such as color, tex-

4.1. DATA ACQUISITION



CHAPTER 4. BACKGROUND 55

(a) Data acquired by a 3D laser scanner. (b) Picture of the digitized object.

Figure 4.2: Illustration of the geometric deformation of an object during its digiti-
zation by a 3D laser scanner.

ture, and material, can influence the acquisition process. These influences depend
on the type of technique used by the detection process.

For example, the texture of objects (see Section 4.1.1) strongly influences the acqui-
sition techniques based on photogrammetry. While the materials of objects pro-
foundly influence technologies using "active" acquisition methods such as laser
scanners. More precisely, the reflectivity and transparency of the objects impact
the light projected on them by these acquisition techniques. Thus they affect the
objects digitization. Figure 4.3 shows the digitization by laser scanner techniques
of a glass table surrounded by chairs. In this case, the data generated for the dig-
itization of the table has a very low density compared to the density obtained for
the chairs (in black in Figure 4.3).

Figure 4.3: Point cloud of a glass table and chairs, acquired by a laser scanner.

The object type contained in the scene also influences the acquisition process. In-
deed, digitized objects can have smooth or rough surfaces, which will influence the
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acquisition process and change the roughness characteristics of the generated data.
For example, Figure 4.4 illustrates the difference in roughness between a table and
a tree. In this example, a table has a smoother surface than a tree. Thus the table in
Figure 4.4 (a) has a low roughness (represented in blue). On the contrary, in Figure
4.4) (b), the tree and the bushes are a high roughness (represented in green and
red).

(a) Point cloud representing a table
and chairs. (b) Point cloud reprenting a tree and brushes.

Figure 4.4: Comparison of the roughness of two point clouds. Point clouds are
colored according to the roughness computed (from blue to low roughness to red
for hight roughness).

Finally, the context of the scene acquisition has a significant influence on the rough-
ness characteristic of the data. For example, a wall digitized by a 3D laser scanner,
in the context of the 3D reconstruction of a modern building, does not have the
same roughness as a digitized wall in the context of an archaeological ruin excava-
tion.

Figure 4.5 illustrates the difference in roughness between digitized point clouds in
the context of archaeological ruin excavation and the context of the 3D reconstruc-
tion of a modern building.
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(a) Roughness of the point cloud in the
context of archaeological ruin excava-
tion.

(b) Roughness of the point cloud in the
context of the 3D reconstruction of a
modern building.

Figure 4.5: Comparison of the roughness of two point clouds acquiring by a laser
scanner.

External factors

External factors influencing the acquisition process can be related to diverse ele-
ments such as the weather condition, the vibrations of the measuring instrument,
or the movement of the elements being digitized, the light intensity, or the color of
the light.

These factors can sufficiently influence the acquisition process to transform the
characteristics of the data completely.

Figure 4.6 shows the digitization by laser scanner techniques of an interior part.
In this case, a large part of the data (surrounded in red in Figure 4.6) is missing.
This problem is probably due to the influence of light, which must have been too
strong and which no longer allowed the digitization of this area by laser scanner
technologies.

Figure 4.6: Point cloud of a room with a missing part due to the influences of
external factors.

Similarly, weather conditions can influence the acquisition process when it is car-
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ried out in an external context. These influences result in more noise and lower
density in the acquired data. Figure 4.7 shows the noise produced by 3D laser
scanner techniques when digitizing an urban scene outdoors.

Figure 4.7: Point cloud of an urban scene acquired by a laser scanner technique.

The acquisition of 3D data can produce unstructured data with a wide variety of
characteristics. The data acquisition process is responsible for data characteristics.
However, the acquisition process is influenced by technique, methodology, and
various internal (such as the scene and the objects that compose it) and external
(such as light, weather conditions) factors. Thus these factors influence the char-
acteristics of the data indirectly. These influences can lead to very different scene
representations that can be not expected.

Table 4.1 summarizes the influence of acquisition techniques, acquisition method-
ology, internal and external factors in acquisition processes according to density,
noise, occlusion, roughness, and color characteristics.

Characteristiques Techniques Methodology Internal factor External factor
Noise high low medium high
Occlusion low high medium low
Density high high high medium
Roughness medium low high low
Color high low medium medium

Table 4.1: Table of characteristics influences.

Many applications need structured data. Therefore, the data must be structured. It
is necessary to understand the data in order to structure 3D data.
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4.2 Data processing

Understanding the content of the data requires identifying the objects that consti-
tute the data. The identification of objects requires processing data through algo-
rithms, as explained in the work [Walsh et al., 2013].

The scene characteristics, the objects it contains, and the geometry of these objects,
guide the choice of algorithms. For example, data representing a scene composed
of planar objects, such as tables, guides the choice of algorithms towards plane
detection algorithms. These algorithms allow detecting the planar geometry of
each table. Thus, algorithms allow the detection of each table among the planar
geometries having the size and other characteristics of a table.

4.2.1 Algorithms

Algorithms are used to perform various tasks such as noise cancelling
([Zeng et al., 2018]), filtering the data ([Han et al., 2017]), segmenting the data
([Vosselman, 2013]), describing the data ([Hana et al., 2018]), and classifying the data
([Griffiths and Boehm, 2019]) .

These tasks are determined according to the needs of the application (quality of
data structuring), the data and objects characteristics, acquisition process, and data
processing used.

Several libraries dedicated to data processing in Computer Vision (such as PCL
[Rusu and Cousins, 2011], OpenCV1) provide algorithms to perform multiple tasks
essential to data processing.

Generally, each algorithm is defined by these inputs, outputs, parameters, and pre-
requisites.

The inputs of the algorithms correspond to the data that the algorithms have to pro-
cess. The outputs of the algorithms correspond to the types of results they produce.
For example, a plane detection algorithm (such as [Deschaud and Goulette, 2010],
[Hulik et al., 2014], [Oehler et al., 2011], and [Limberger and Oliveira, 2015]) can detect
planes in a 3D point cloud. It, therefore, has a point cloud as its input, and
planes (which can be represented by an equation or a set of points) as its out-
put. Similarly, sphere detection algorithms (such as [Abuzaina et al., 2013], and
[Camurri et al., 2014]) can detect spheres in a 3D point cloud. It has a point cloud
as its input, and spheres as its output (which can be represented by an equation or

1Laganière, R. (2014). OpenCV Computer Vision Application Programming Programming Cook-
book Second Edition. Packt Publishing Ltd.
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a set of points).

Algorithm parameters are mostly values that influence the behavior of the algo-
rithm. Let us take, for example, the region growing algorithms (as used in the
approaches [Vo et al., 2015], [Ackermann and Troisi, 2010], and [Klasing et al., 2009]).
These algorithms segment the data and produce homogeneous regions according
to a criterion (such as color, roughness, or orientation, and proximity). These al-
gorithms require two main parameters: a "tolerance threshold" and a "distance
threshold". The "tolerance threshold" is a value used to determine whether two
points belong to the same region. In other words, if points are a similarity value
under this threshold value, then they can belong to the same region. This similarity
value is evaluated according to criteria (such as color, roughness, orientation). The
"distance threshold" is a value used to determine whether two points are adjacent.
In other words, if the distance (often Euclidean) between two points is less than this
threshold, then the points are adjacent. Parameter values of algorithms are often
defined according to the characteristics of the data. For example, the value of the
"distance threshold" can be chosen according to the point cloud density on which
the algorithm is executed. Furthermore, the parameters of the algorithms can have
interdependent interactions. In this example, the two threshold values are used to
determine which points belong to the same regions. The interactions between the
parameters of an algorithm can be complicated. It is necessary to understand their
interactions in order to choose their values according to the application case, as
explained in [Deb and Agrawal, 1998].

The prerequisites of algorithms are the "sine qua non" conditions for the execu-
tion of algorithms. These conditions mainly concern data characteristics of the
algorithms input data, must have. For example, color segmentation algorithms (as
used in the [Sareen et al., 2010] approach) require the data to be colored. Similarly,
normal segmentation algorithms (as used in the approaches [Woo et al., 2002]) re-
quire the estimation the normal of each point constituting the point cloud. These
normals can be estimated before by algorithms as proposed by the approaches
[Zhang et al., 2013] and [OuYang and Feng, 2005].

4.2.2 Processing

It is necessary to choose the best algorithms to process data efficiently. To this
end, it is necessary to understand in which situations (data characteristics, task
performed) each algorithm is the most effective. Similarly, it is necessary to under-
stand in which situations the algorithms are not usable.
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For example, segmentation algorithms based on normals estimation, are useful for
segmenting point clouds, when they are composed of regular shapes objects (such
as tables, walls, floor, ceilings, boxes). On the contrary, such algorithms are not
very useful in segmenting data to detect elements (such as vegetation) with non-
regularly shape.

Such an understanding of algorithms requires understanding the data characteris-
tics and therefore understanding the different factors influencing these characteris-
tics (see Section 4.1).

Algorithms sequence

Depending on the tasks to perform and the elements to detect, it may be nec-
essary to combine several algorithms. For example, to detect cars in data rep-
resenting an urban scene, it is interesting first to use algorithms to detect the
floor. Then, to use other algorithms to detect cars (as proposed in the approach
[Hernandez and Marcotegui, 2009]). These algorithms constitute a sequence to detect
the elements.

The combination of algorithms is also used to change (transform or add) data
characteristics when they do not satisfy the requirements of the algorithms. For
example, it may be necessary to use a sampling algorithm (as proposed in the
[Puttonen et al., 2013] approach), or a simplifying algorithm (as proposed in the
[Pauly et al., 2002] approach) to reduce the size of a point cloud. Such needs ap-
pear if an algorithm requires small data sizes to work on it (as in the case of the
[Cao et al., 2010] approach).

The algorithms may be combined according to their inputs and outputs. In other
words, the results produced at the output of one algorithm can be used at the input
of another algorithm (if the prerequisites of the latter are satisfied).

For example, a "normal estimation" algorithm takes a point cloud as input and pro-
vides as output, a point cloud for which, the "normal" of each point is estimated.
This last point cloud can be taken as the input of a "normal segmentation" algo-
rithm that provides output segments (data portion). Then, such segments can be
analyzed to understand the data content.

The combination of algorithms should be guided by the objects and geometry con-
tained in the digitized scene, and which must be detected in the data.

The configuration of each algorithm should depend on the characteristics of the
data that are impacted by multiple factors (as explained in Section 4.1). Therefore
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it is necessary to link the knowledge from the digitized scene, the data domain
whose acquisition process, with the knowledge from the algorithm domain to well
process the data. The following section 4.3 presents the technologies for managing
such knowledge.

4.3 Knowledge engineering

Knowledge enables humans to understand the world around them as a coherent
and structured whole. Therefore, it is interesting to look for ways to integrate and
use knowledge through computer processes to understand unstructured data.

This section first shows how knowledge can be expressed. Then it shows the tech-
nologies for modeling and using knowledge.

4.3.1 Knowledge design

The works of [Davenport et al., 1998] and [Ahsan and Shah, 2006] define data, infor-
mation, knowledge, and their interconnection.

Data are raw values that can be of various types (such as numeric, textual, boolean,
symbols). The data has no meaning in itself and is not organized. For example, the
values "128", "54.4", "14.4", "0", "-89.4", "0" are data. On their own, it only represents
values.

However, when organized according to an objective, the data can be interpreted as
information.

According to the authors of [Davenport et al., 1998], converting data into informa-
tion requires several steps. First, it is necessary to collect the data for a known
purpose. Second, the data should be organized into categories. Third, errors in the
data should be deleted. For example, noise in point clouds is an error to delete.
Fourth, the data should be summarized and should not contain any duplication.
Finally, data must be aggregated and unified to form information.

For example, if the values in the previous example are aggregated into two ordered
groups such as the group "128,0,0" and the group "54.4,14.4,-89.4" then they can be
interpreted as information. In this example, the first group may be interpreted
as the brown color in RGB format and the second group may be interpreted as
a position in a 3D Cartesian coordinate system (X, Y, Z). Thus, such data may be
converted as the information of a localized brown point ("54.4,14.4,-89.4" in the
Cartesian coordinate).
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When information is grouped and described as a logical and coherent whole related
to a domain, then it becomes knowledge. For example, the information that forms
the knowledge of a 3D digitized table tray is as follows: a set of brown points
aligned in the same horizontal plane. They are located at the height of 70 cm,
and their total area is at least 0.3 m2. The grouping of this information is logical,
coherent, and related to the Object domain.

Similarly, information on the inputs, outputs, prerequisites, and parameters of an
algorithm (as explained in Section 4.2) forms knowledge of this algorithm, in the
Data processing domain.

4.3.2 Ontology

The domain needs to be represented through concepts understandable both by
human and machine. An ontology is "a formal, explicit specification of a shared
conceptualization " [Studer et al., 1998]. That is why this thesis uses an ontology to
represent the knowledge used to guide the process of data understanding.

The ontology provides several advantages. Ontologies allow defining a precise
vocabulary for the domain they describe through a set of concepts and properties.
These properties describe relationships between concepts by an interlinking. This
interlinking allows a vast and complete description of a domain.

Different applications can share this vocabulary. This sharing allows a better ex-
tension of knowledge. Indeed, the extension of ontologies is possible through the
linking of different ontologies.

The emergence of the Semantic Web [Berners-Lee et al., 2001] has led to a sig-
nificant evolution of semantic technologies. Among these developments, there
are two standards to model an ontology, which are the Resource Descrip-
tion Framework (RDF)[Miller, 1998] and the Web ontology language (OWL)
[McGuinness et al., 2004]. RDF allows the creation of knowledge graph based on
concepts and properties, whereas OWL allows the logic description of the knowl-
edge, thanks to restrictions on concepts and properties.

This language has then been improved to form an OWL2 [Hitzler et al., 2009] in-
creasing the variety of description to describe concepts more precisely.

The knowledge that guides the process presented in this thesis is represented in an
ontology through the OWL2 language. This knowledge can be described in OWL2
by tools such as "PROTEGE" [Musen et al., 2015] through the Manchester syntax
[Horridge and Patel-Schneider, 2009].
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Table 4.2 highlights the conversion of the main owl-restriction of property to
Manchester syntax.

OWL-restriction Manchester syntax
owl:allValuesFrom only
owl:someValuesFrom some
owl:hasValue value
owl:maxCardinality max
owl:minCardinality min
owl:Q cardinality exactly
owl:complementOf not
owl:intersectionOf and
owl:unionOf or

Table 4.2: Conversion table of OWL-restriction to Manchester syntax.

In order to illustrate the description logic through the Manchester syntax, let us
consider a description of a floor which is a simple and common element to textit-
many application cases. Its description is as follows: The floor is a "Segment" that
has a planar geometry, which is horizontal. It can be composed of various colors, can be
rough or smooth, and is not above any other object (e.g. wall or roof).

Code 4.1 shows the description of the floor in OWL2, according to this example
and through the Manchester syntax.

1 Floor:
2 Segment
3 and (hasGeometry some (PlanarSurface and hasOrientation only Horizontal))
4 and hasColor some Color
5 and hasShape some (Rough or Smooth)
6 and not (isAbove some Object)

Code 4.1: Description logic of a Floor through Manchester syntax

The ontology allows for designing a knowledge base. A knowledge-base is com-
posed of a set of terminologies (representing the concepts and properties) and a set
of assertions (representing the aggregated information according to the terminol-
ogy). Information is called represented by individuals. This information becomes
knowledge when it is linked to other information and concepts. For example, C (an
individual) is a Coordinate (a concept) and has value (a property) "54.4, 14.4, -89.4"
(data).
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4.3.3 Knowledge management through SPARQL

The SPARQL Protocol And RDF Query Language (SPARQL)
[Prud’hommeaux and Seaborne, 2008] has become a standard for accessing and
modifying knowledge. Various approaches of knowledge-based segmentation
such as [Meditskos et al., 2014] and [Triboan et al., 2017], or semantic annotation
such as [Kanimozhi and Christy, 2013] uses SPARQL.

Three main types of queries compose the language SPARQL : "Select", "Update",
and "Construct". The "select" query allows for retrieving information. The "up-
date" query allows for adding, deleting, and modifying information. Finally, the
"construct" query allows for adding new relationships between the information
contained in the triplestore. These queries can be used to retrieve, update, add,
or delete knowledge. For example, the [Kumar et al., 2008] approach uses SPARQL
queries to analyze knowledge on large biomedical image datasets.

Select query

"Select" queries are used to select individuals from an ontology. These individuals
are selected based on the properties specifying the relationships they have or not
(e.g. the property "is not connected to"). These queries allow for the selection of
individuals with great flexibility and efficiency.

Code 4.2 presents the SPARQL query to select all segments (elements resulting from
a segmentation process) that have planar and horizontal geometry, and are below
all other individuals (i.e. the floor).

1

2 SELECT ?seg WHERE{
3 ?seg rdf:type ComputerVision:Segment.
4 ?seg ComputerVision:hasGeometry ?plane.
5 ?plane rdf:type ComputerVision:Planar.
6 ?plane ComputerVision:hasOrientation ?hori.
7 ?hori rdf:type ComputerVision:Horizontal.
8 FILTER NOT EXIST(
9 ?object rdf:type ComputerVision:Object.

10 ?seg ComputerVision:isAbove ?object.
11 ).
12 }

Code 4.2: Example of SPARQL select query
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Update query

"Update" queries allow to add, delete, or modify knowledge about individuals in
ontologies.

Code 4.3 presents the SPARQL update query that allows adding an individual
called "pointcloud-c7" representing an RGB colored point cloud and loaded from a
file called "cloudFile".

1 INSERT DATA { ComputerVision:pointCloud-c7 rdf:type PointCloud.
2 ComputerVision:pointCloud-c7 ComputerVision:readFrom ComputerVision:File.
3 ComputerVision:pointCloud-c7 ComputerVision:hasColor ComputerVision:RGB.
4 }

Code 4.3: Example of SPARQL update query

The adding of knowledge is done through the keyword INSERT following by the
assertion to add, whereas, deleting knowledge used the keyword DELETE followed
by assertion to delete. The update of knowledge consists in deleting the knowledge
to update and add the new knowledge corresponding to the updated knowledge.
It combines thus, the two keywords INSERT and DELETE.

Construct query

"Construct" queries are a kind of combination between the "insert" and "select"
queries. They thus allow for modifying the properties of selected individuals. Code
4.4 presents a SPARQL construct query that classifies the segments that have planar
and horizontal geometry, and are below all other individuals, as being a floor.

1

2 CONSTRUCT ?seg rdf:type ComputerVision:Floor WHERE{
3 ?seg rdf:type ComputerVision:Segment.
4 ?seg ComputerVision:hasGeometry ?plane.
5 ?plane rdf:type ComputerVision:Planar.
6 ?plane ComputerVision:hasOrientation ?hori.
7 ?hori rdf:type ComputerVision:Horizontal.
8 FILTER NOT EXIST(
9 ?object rdf:type ComputerVision:Object.

10 ?seg ComputerVision:isAbove ?object.
11 ).
12 }

Code 4.4: Example of SPARQL construct query
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4.3.4 Inference

The expression of knowledge in the form of a description logic in an ontology al-
lows reasoning mechanisms for inferring new knowledge on the one hand, and for
verifying the coherence of the set of knowledge on the other hand. These infer-
ence processes are performed by reasoners such as "Pellet" [Sirin et al., 2007], "Her-
miT" [Shearer et al., 2008], "FaCt++" [Tsarkov and Horrocks, 2006], , Karlsruhe ontology
2 (KAON2) [Motik and Studer, 2005], or "Jena reasoner" [Carroll et al., 2004]. The au-
thors of [Bock et al., 2008] presents a benchmark the main reasoners used. They
conclude that the reasoner should be chosen according to the type of task they have
to perform. In the context of this thesis, the ontology involves a high level of lan-
guage complexity and a large number of assertions. According to[Bock et al., 2008],
KAON2 is the most adapted reasoner for such ontology.

Two main methods are used to infer knowledge: inference through reasoning on
description logics of concepts and inference through the application of logic rules.

Inference through reasoning on description logics

The reasoning on description logics ensures the consistency of the ontology
by checking it on the definition of the concepts (as explained in the approach
[Wang et al., 2007]). Let us take the example of the conceptual description of the
floor; this one is described as being connected to walls.

Besides, the reasoner allows inferring new knowledge from reasoning on the de-
scription logic of each concept. Let us take the example of an element belonging
to the floor concept as described in the previous example. The description logic
of the floor concept allows inferring that it is below all other elements described
in the ontology. Thus a property "isBelow" is added to link the element belong-
ing to the floor concept to all other elements. Such reasoning is use in various
approaches of computer vision such as [Hwang et al., 2006], [Tongphu et al., 2012],
[Choi et al., 2008], [Günther et al., 2011], and [Johnston et al., 2008] to recognized ob-
jects.

Rule of inference

The rule of inference allows for describing the influences that concepts can have
on each other on the one hand, and for gathering information and knowledge
to form new knowledge on the other hand. Rules of inference are used in
various approaches of Computer Vision, mainly to classify elements and iden-
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tify data content. For this purpose, approaches such as [Marroquin et al., 2018],
[Gómez-Romero et al., 2016] and [Othmani et al., 2010] collect and organize informa-
tion on data segments and then use rules of inference that describe concepts to
classify these elements and understand the content of the data.

The primary language used to formalize rules of inference is "Semantic Web Rule
Language (SWRL)" presented in the work [Horrocks et al., 2004]. SWRL is a lan-
guage that combines OWL and RuleML [Boley et al., 2010]. Let us take a simple and
famous example of rule illustrated by Equation 4.1 to assert that the combination
of the hasParent and hasBrother properties implies the hasUncle property.

hasParent(?x1, ?x2) ∧ hasBrother(?x2, ?x3)⇒ hasUncle(?x1, ?x3) (4.1)

Code 4.5 shows the abstract syntax corresponding to the SWRL rule.

1 Implies(Antecedent(hasParent(I-variable(x1) I-variable(x2))
2 hasBrother(I-variable(x2) I-variable(x3)))
3 Consequent(hasUncle(I-variable(x1) I-variable(x3))))
4 }

Code 4.5: Example of the abstract syntax of a SWRL rule

From this rule, if Alan (x1) has Julius (x2) as a parent and Julius is the brother of Har-
vey(x3) then Alan has Harvey as an uncle.

The work [Cregan et al., 2005] studies the limits of the rules SWRL. They highlight
the difficulty related to the expressiveness of the rules SWRL, which can become
very complicated and lead to inappropriate reasoning. Furthermore, the rules
SWRL require a complete ontology analysis for each rule execution, which can
become a problem if the ontologies have many concepts.

These limitations have led to the development of alternative technolo-
gies to use rules of inference across SPARQL, which provides greater ef-
ficiency. Among these technologies, SPARQL Inferencing Notation (SPIN)
[Knublauch et al., 2011] is increasingly used thanks to its effectiveness (such as
in the works [Järvenpää et al., 2018], [Fürber and Hepp, 2010], [Tomaszuk, 2016], and
[O’Riain et al., 2015]). The works [Bassiliades, 2018] shows how to convert logic rules
SWRL to SPIN.

An alternative to the use of SPIN is the use of "Shapes Constraint Language"
(SHACL) [Knublauch and Kontokostas, 2017] which is a World Wide Web Consor-
tium (W3C) recommendation. The authors of [Corman et al., 2018] describe SHACL
as "One of the most promising schema languages". It also exists other promis-
ing approaches such as "Alternative Shapes Constraint Language" (ASHACL)
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[Patel-Schneider, 2017]. All of these approaches are too recent, and it is not yet
possible to estimate which ones are most relevant or efficient.

4.4 Discussion

The characteristics of 3D data depend on their acquisition process. The acquisition
process is a combination of techniques, methodology, and is influenced by many
internal and external factors. More precisely, the acquisition technique has a high
influence on density, noise, and color, but also a medium influence on roughness.
The methodology highly influences the density and occlusions in the data. The
internal factors impact the data characteristics intensively since they have a high
impact on density and roughness, as well as a medium impact on noise, color, and
occlusion. Finally, external factors have a high impact on noise and medium impact
on color and density. Besides, these individual impacts are combined through the
acquisition process. Thus, the unstructured data resulting from the acquisition
process can have a large variety of characteristics. Some applications (such as
robotics, navigation, monument documentation) require this data to be structured.
Structuring data requires processing and understanding the data through the use
of algorithms. Algorithms are mainly chosen according to the characteristics of the
digitized scene (such as object distribution, context), as well as the characteristics
of the objects (material, texture, roughness, size). However, these algorithms are
combined and configured according to the data characteristics. Thus, it is necessary
to know and understand the data characteristics in order to configure and combine
algorithms properly.

The understanding of data characteristics can be directly provided by the knowl-
edge about data or indirectly from the knowledge of the acquisition process by
deducing data characteristics from this knowledge. It depends on the knowledge
provided by the user.

Such an understanding requires to collect and organize information on different
domains in order to build knowledge. Then this knowledge should be used to drive
the data processing. This knowledge constitutes concepts within three domains:
Data processing domain, Data domain (including acquisition process), and Scene
domain. The exploitation of this knowledge should drive the data processing in
order to obtain better data understanding, and thus, obtain better data structuring.

Technologies from the Semantic Web allow for explaining, modeling, and using
such knowledge. The language OWL2 allows specifying the knowledge in the form
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of a description logic whose consistency can be checked automatically. Knowledge
can be managed and used through the query language SPARQL. Finally, the use
of reasoning and rules of inference enriches explicit knowledge by inferring new
knowledge.

Therefore, the approach proposed in this thesis is based on technologies from the
Semantic Web. These technologies are first, used to model the knowledge on data,
scene, and data processing domain. They are then used to guide the data process-
ing and enrich the knowledge, according to the specificities of the application case.
This specific enrichment of knowledge allows for adapting the data processing
specifically to the application case. This adaptation leads to a better understanding
of the data.
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This part presents a review of the different 3D data processing techniques
classified into three main categories according to their paradigms. The review
[Grilli et al., 2017] presents the most popular methodologies for object detection in
3D point clouds.

Chapter 5 sets out the first category corresponding to model-driven approaches.
The approaches strategy in this category is to create models for each object sought
and compare them to each data region.
Chapter 6 presents the second category corresponding to data-driven approaches.
Unlike model-driven approaches, approaches in this category aim at characterizing
data to isolate portions of it and classify these portions according to the objects
sought.
Chapter 7 introduces the last category of approaches, which are Knowledge-driven
approaches. Approaches in this category use knowledge about objects and data to
adapt to the detection process.
Finally, Chapter 8 discusses the evaluation of these different approach categories
according to the following criteria:

Quality: The quality of object detection depends on correctly detected objects and
forgotten objects, as well as on the accuracy of their detection.

Ambiguity: The ambiguity depends on correctly detected objects and incorrectly
classified (classify into separate categories).

Robustness: The robustness refers to the effectiveness of approaches when the
context of object detection is challenging. Context is considered challenging
when the data have a wide variation in density, are noisy and composed of
occlusions. This type of context requires the detection of objects when their
representation in the data differs from their expected form, which means
solving unpredictable problems.

Flexibility: The flexibility refers to the ability to adapt to the detection of different
objects in different data with different characteristics.

Generalizability: Generalizability refers to the ability to improve the results ob-
tained.



5 Model-driven approaches

Model-driven approaches are based entirely on the characteristics of the objects.
Indeed, model-driven approaches consist in creating a model for each object based
on their geometric characteristics such as their shape. Then, these approaches scan
the data sequentially and compare each scanned portion to the models created for
each object to detect them. Figure 5.1 presents the workflow of these approaches
that are mainly used to solve specific object detection problems.

Figure 5.1: Common workflow of model-driven approaches.

This chapter details the most used model-driven approaches divided into three
sub-categories according to their general methodology. The first sub-category is
projection detection approaches that reduce the complexity of 3D data by projecting
points onto a defined plane. The second sub-category is the approximation of the
3D mathematical model that allows effective detection of primary shapes. Finally,
the last sub-category is a sophisticated and free 3D shape detection approaches,
which allows detecting objects of complex and free shapes. The two previous sub-
categories can not detect these objects.

5.1 Projection detection approaches

Widespread model-driven approaches, in the field of detection of large 3D objects
(such as building elements), consist in making a two-dimensional projection of the
points of the cloud. Such projection is on a plane (mainly the XY plane) or in vox-
els as performed by [Qian et al., 1992]. Such projection aims to simplify object de-
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tection. The [Diaz-Vilarino et al., 2015] approach proposes the development of two
simple two-dimensional mathematical models (a circular model, and a rectangular
model) to detect two different types of columns. He then proposes to project the
points of the cloud on the XY plane and to perform shape recognition based on the
Hough transform [Ballard, 1981]. Similarly, the approach [Adan and Huber, 2011]
proposes a detection of walls by projecting the point cloud on the XY plane and
then uses the Hough transform to detect the walls. Figure 5.2 illustrates the com-
mon workflow of projection detection approach. This type of model-driven ap-
proach is suitable for detecting objects that are regular and large enough to cause
negligible variation in noise or data quality.

Figure 5.2: Common workflow of projection detection approaches.

However, these approaches do not exploit the three-dimensional spatial character-
istics of the data. This lack does not allow the detection of complex objects (such
as a car) nor the dissociation of objects with a similar surface, nor the detection
of small objects that are not composed of a significant number of points (such as
a traffic sign). Moreover, these approaches do not allow for dissociating overlap-
ping objects (such as an object on a table) which decreases the detection quality of
objects.

5.2 3D mathematical model approximation

In order to exploit three-dimensional spatial information and improve de-
tection quality (separation of superposed elements), approaches such as
[Vosselman et al., 2001] and [Overby et al., 2004] use a Hough transform adapted to
3D [Borrmann et al., 2011] to detect planes. Such detection allows for identifying
the ground and buildings through their different facades and then, extracting the
3D model of the identified object. The disadvantage of these approaches is the
sensitivity to noise, outliers, and variations in data density.

In order to obtain a more noise-resistant and outlier-resistant detection of objects,
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approaches such as [Anagnostopoulos et al., 2016] use RANdom SAmple Consen-
sus (RANSAC) [Schnabel et al., 2007] to detect shapes (such as planes, spheres, and
cylinders) that are more resistant to noise and outliers than methods based on
Hough’s transforms.

However, these methods present much erroneous detection due to the wrong sep-
aration of the shapes detected by RANSAC. Indeed, if two objects are close and
coplanar, RANSAC detects only one shape encompassing the two objects. The ap-
proaches [Tarsha-Kurdi et al., 2008] and [Xu et al., 2016] overcome this issue by im-
proving RANSAC to increase the accuracy of detection. However, despite these
improvements, data pre-processing steps must be performed and supervised by
the users. Although the approaches of this sub-category are efficient for detecting
large plans, they do not detect small elements or buildings. Besides, their efficiency
decreases significantly as a function of the ratio between data density and object
size. Indeed, lower the data density is, and more significant the object is; worse is
the detection. These approaches have thus also difficulties in detecting large objects
in data with a low density.

These different approaches are based in general on the thresholding technique to
determine whether or not the studied portion corresponds to the geometric model
of the object. The user chooses the threshold value for the overall process that
makes the threshold setting static and does not adapt to variations in data charac-
teristics. Figure 5.3 shows the common workflow of these approaches.

Figure 5.3: Common workflow of 3D mathematical model approximation ap-
proaches.

This system is also sensitive, and source of many classification errors. In order to
solve these classification errors, model-driven approaches such as [Henn et al., 2013]
combine RANSAC shape detection with supervised machine learning methods,
thus giving more classification flexibility.

Although the addition of machine learning solves classification problems, de-
tectable objects are limited by the detectable geometric shapes (e.g. plane, cylinder,

5.2. 3D MATHEMATICAL MODEL APPROXIMATION



76 CHAPTER 5. MODEL-DRIVEN APPROACHES

sphere, line) by algorithms like RANSAC or transformed Hough. However, some
objects are composed of free or very complex shapes. When this type of object
is isolated and surrounded only by objects in regular and straightforward shape,
approaches such as [Hu et al., 2018], combine simple representations and complex
meshes to isolate and describe this kind of objects. However, when different com-
plex objects are part of the same scene, their dissociation and detection are more
complicated.

5.3 3D complex and free shape detection approaches

In order to be able to detect complex or free shapes of objects, some ad hoc describe
the shape of the objects to be detected from arbitrarily chosen key points and seek
to match these key points with the data. Figure 5.4 presents the common workflow
of 3D complex and free shape detection approaches.

Figure 5.4: Common workflow of 3D complex and free shape detection approaches.

In the field of railway track detection in point clouds acquired by LiDar scanner, the
[Ponciano et al., 2015] approach uses a model of railway track representation by key
points to automatically detect them. This approach linearly scans the data to iden-
tify railway track, portion by portion. Each portion is then compared to the railway
track model, and the detection process computes a correspondence between the
points in the model and the point cloud to detect the tracks by thresholding.

Other, more sophisticated approaches use 3D object descriptors to describe
complex or freely shaped objects automatically. The comparative study
[Alexandre, 2012] compares the most famous 3D object descriptors. Among the dif-
ferent approaches based on 3D object descriptors, the approach [Tombari et al., 2011]
proposes to describe an object both by its shape and by its texture, which allows for
better detection in the context of colored objects. However, this approach is very
sensitive to data variations and noise that compromises the matching of key points
chosen with the data and therefore, compromises object detection. Also, these
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approaches have the disadvantage of not being able to detect partially occluded
objects and require a local model of each portion of the objects.

The [Drost et al., 2010] approach proposes to overcome this issue by detecting oc-
cluded objects with a single description of the objects. Its quality of detection
depends on the complexity and uniqueness of each object, according to others.
This quality also depends on the density of the data. However, the description of
these objects does not take into account variations in data quality. Thus, these ap-
proaches remain very sensitive to density variation in the data and noise. They are
suitable for object recognition in clouds composed of few objects but are ineffective
in detecting objects in large point clouds composed of various objects and scenes.

5.4 Discussion

Model-driven approaches based on projection are adapted to detect large objects
in dense data. However, they are limited by problems of objects overlap related
to the projection. These overlaps imply firstly, a weak detection quality due to the
impossibility to detect some overlapped objects. It implies then, an ambiguity due
to the loss of spatial information (e.g. two superposed objects considered as one
object). They are robust to noise in dense data context but are very sensitive to
decreased data density. They do also not detect unexpected cases. Furthermore,
these approaches do not detect objects with small or complex shapes and are not
effective in clouds with low-density of points. They are, therefore, not flexible
enough. Finally, the results obtained by these approaches can only be slightly
improved by the parametric modification of the algorithms used, but cannot be
significantly extended.

Mathematical model approximation approaches allow the detection of regular and
straightforward objects that can be approximated by a mathematical model (mainly
spheric, linear, and planar objects). The detection quality of these approaches is
weak due to similar shape separation errors. Despite the use of 3D spatial data,
two objects side by side composed of a similar planar surface are often detected
as one planar surface. These approaches generally produce many ambiguities,
mainly when objects are decomposed as a result of occlusion. They are sensitive
to variations in data density and do not allow the detection of unexpected cases.
These approaches do not detect objects with complex or free shapes and do not
automatically adapt to variations in data quality. They are, therefore, not very
flexible. Finally, the improvement of the results obtained is only possible by the
adaptation of the parametric values of the algorithms and the addition of pre-
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processing algorithms. The extension of these approaches is thus, limited. These
approaches are insufficient in most application cases using large datasets.

Finally, the last sub-category of Model-driven approaches developed to detect com-
plex, or free 3D shapes of objects are efficient for detecting objects in scenes com-
posed of few objects. The quality of detection of these approaches is very high
when the execution context is adapted. However, they have detection ambiguities
when objects do not have sufficiently complex and unique shapes. Some of these
approaches (such as [Drost et al., 2010]) can quickly and efficiently detect complex
objects, even if these objects are partially occluded. However, they require dense
data and the compound of only a few objects (of the order of ten). However, they
remain sensitive to noise and density variations within the data. Besides, they
cannot deal with unforeseen cases. They, therefore, have rather poor robustness.
Moreover, these approaches do not adapt to the detection of objects with differ-
ent possible representations and require a specific model for each of the possible
representations. Furthermore, they cannot adapt to large data sets composed of
various objects and scenes. They are, therefore, not flexible enough. Finally, the
improvement in detection is limited to refining the description of the object model,
which may not be sufficient to detect some object representations.

Table 5.1 summarizes the advantages and disadvantages of the different types of
model-driven approach.

Approach Quality Ambiguity Robustness Flexibility Generalizability
Projection - - - - = - - - -
Mathematical - - - - - - - - -
model
Complexe/ + - - - - -
free shape

Table 5.1: Comparative table of the different types of model-driven approaches.

Model-driven approaches are not adapted to the use cases presented in chapter 2.1.
Indeed, their lack of flexibility, robustness and low improvement capacity make
them unsuitable for detecting different objects in different point clouds, especially
those with a high variation in quality (such as use case 2.1.3 and 2.1.4). How-
ever, these approaches can be combined with other approaches for solving specific
problems (such as detecting a specific traffic sign).

5.4. DISCUSSION



6 Data-driven approaches

Data-driven approaches have the particularity of detecting objects only by process-
ing data without any prior knowledge. The approaches in this category extract
characteristics from the data. The characteristics can be geometric (such as orien-
tation, size, shape) or physical characteristics (such as color). These characteristics
are then grouped to form different non-predefined models of elements in the data.
These approaches then classify these models according to their characteristics, in
different classes representing the objects to detect. Figure 6.1 shows the workflow
of these approaches.

Figure 6.1: Common workflow of data-driven approaches.

These approaches are conceptually more flexible than model-based approaches.

This section presents the three most used sub-categories of data-driven approaches
gathered according to their principal methodology.

The first sub-category is feature-based object recognition approaches. These ap-
proaches extract characteristics from the data by a segmentation process. This
process takes into account one or more characteristics of the objects to be detected.
Then, they classify the segments into different elements and finally group them and
identify the objects. The second sub-category is Machine Learning approaches.
These approaches use large annotated datasets containing the objects to be de-
tected, to automatically learn their characteristics and recognize them in the de-
sired data. Finally, the last sub-category is data-driven approaches using semantic
that improve the classification process by using knowledge representations.
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6.1 Features-based object recognition approaches

The approaches based on feature-based object recognition often use model-driven
approaches to extract geometric features such as plans or lines. Unlike model-
driven approaches, this sub-category of data-driven does not use predefined
knowledge about the objects to detect. They do not seek to detect objects directly.
First, they apply a segmentation process to the data. Then, they characterize each
segment to group them into entities according to criteria. Entities are finally classi-
fied to recognize objects. Figure 6.2 presents this workflow.

Figure 6.2: Common workflow of features-based object recognition approaches.

Step 1: Segmentation Segmentation aims to divide data into sub-element to facil-
itate the extraction of their features. This process is especially necessary for object
detection in large data sets representing a scene composed of several elements, for
example, a building composed of walls, ground, and a roof. In this case, one of the
most common approaches of segmentation consists of segmenting the ground to
extract and remove it from the remaining data. The ground extraction is intended
to facilitate the segmentation of other elements.

The authors of [Himmelsbach et al., 2010] present a segmentation approach in two
steps based on model-driven approaches. First, they perform ground extraction
to facilitate the segmentation of other elements. The seek of the most extensive
horizontal plane allows the authors for ground segmentation. Then, they reduce
the data complexity by rasterizing the point cloud with a 3D voxel grid. This
rasterization corresponds to the projection of the data without the ground on a 2D
plane inside voxels. The advantage of this approach is its speed of processing. Fast
processing is essential in the context of extensive data. The use of model-driven
approaches also has similar disadvantages. However, this approach is limited to
objects with a simple shape. The shapes of objects also need to be radically different
from one another to avoid the ambiguity of classification. Besides, this approach is
very sensitive to noise and occlusion in 3D point clouds. This approach is designed
for a specific application to detect ground and cars. It works only on flat grounds.

Unlike this first approach, the authors of [Moosmann et al., 2009] focus their research
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on segmentation of no-flat ground. This approach studies the local convexity of
elements to segment them. The authors propose to project and transform 3D data
into a 2D graph to segment elements according to the computation of their local
convexity.

However, these two approaches ([Moosmann et al., 2009], [Himmelsbach et al., 2010])
do not use a priori information about the shape and surface of objects to identify
them. This lack produces a loss of accuracy. Besides, they are not usable to segment
a large variety of different object types. They also depend on the detection context
(here, object detection in an urban environment) and the data quality (e.g. noise
density, occlusion).

In the domain of building information modeling (BIM), the approaches presented
in [Macher et al., 2015] and [Macher et al., 2015] present segmentation approaches
based on model-driven approaches. These approaches are designed only to de-
tect walls, floors, ceilings, and rooms on 3D point clouds. They are mainly based
on the definition of thresholds that determine the results obtained. Thus their
adaptability is relatively limited.

The detection of objects not specific to an application context is a challenge. The au-
thors of [Khaloo and Lattanzi, 2017] address this challenge. They propose a strategy
based on a robust normal estimation next, segment the data through an algorithm
of region growing [Pauling et al., 2009]. The region growing process uses the dis-
tance of Mahalanobis [De Maesschalck et al., 2000] for each point rather than the Eu-
clidean distance. This adaptation of region growing is more accurate than region-
growing based on "Minimum Volume Ellipsoid" [Van Aelst and Rousseeuw, 2009],
"Minimum Covariance Determinant" [Rousseeuw and Driessen, 1999], or based on
"Maximum Likelihood Sample Consensus" [Torr and Zisserman, 2000]. The normal
estimation used in this strategy is based on the estimation of a plane tangent to
the point. Although the computation of this distance takes time due to the com-
putation of the covariance matrix, the estimation allows for obtaining more accu-
rate values. Thanks to this accuracy, this approach allows for detecting various
curves of, both large and small amplitude. Objects composed of sharp features
are thus easily detectable. This approach estimates the points outliers through an
adaptation of MM-estimators of regression [Yohai et al., 1987]. The authors call this
adapted version "Deterministic MM-estimator". However, this approach has two
main disadvantage: long processing time and accuracy of segmentation. The high
degree of derivation used by this approach produces an over-segmentation. Due
to this over-segmentation, objects are divided into several parts that complicate the
use of a model to identify them.

6.1. FEATURES-BASED OBJECT RECOGNITION APPROACHES



82 CHAPTER 6. DATA-DRIVEN APPROACHES

The over-segmentation is the main problem in the segmentation process of 3D
point clouds. The authors [Rabbani et al., 2006] present a methodology to avoid
over-segmentation. The methodology proposed is based on a segmentation related
to smoothness constraints. They study the surfaces locally inside the data through
normal estimation. Points are then, gathered into areas according to their normal
and their connectivity. Finally, areas being smoothly connected between them, are
gathered to constitute a model that can be classified to identify objects. Although
this methodology solves the over-segmentation problem in the majority of cases,
it is not adapted in the case of objects to detect are mainly planar. Besides, this
methodology has long time processing, which is a problem for the processing of
extensive data.

Step 2: Classification The most trivial methodology to classify elements extracted
from data is the use of a decision tree containing all the predefined possible classes
of objects. The set of objects features constitutes the branches of the decision tree.
The authors of [Aijazi et al., 2013] present an approach based on this methodology.
This approach consists of segmenting data into super-voxels [Lin et al., 2018] and
then grouping super-voxels to create object models. Algorithms of feature extrac-
tion characterize then these models. This approach considers characteristics such
as surface normals, barycentre, geometric center, color, intensity, and overall shape
of the model. The classification by decision-tree uses the feature description of the
sought objects to classify each model according to their features.

Another approach presented in [Ochmann et al., 2016] segments the data by detect-
ing planes through the RANSAC algorithm. Then it classifies the segments ob-
tained according to the characteristics defined for walls and floors. For example,
a segment that is a vertical plane and has an area greater than 1.5 m2 is classified
as a wall. This classification is based entirely on the characteristics of the data.
However, many factors (e.g. sensing process, measuring instrument, acquisition
context, external factors) influences the characteristics of the data. Small variations
in one of these factors can lead to significant variations in the characteristics of
the data. Thus the characteristics of the segments to be classified may differ from
the characteristics expected to identify objects. This divergence (e.g. area less than
1.5 m2, non-planar surface) leads to the failure of segment identification.

This classification strategy is very rigid and does not allow for adaptation to a wide
variety of objects. It also requires that the objects have significantly different char-
acteristics. This strategy uses implicit knowledge provided by experts that designs
decisions. However, the lack of flexibility in the decision-making made by tree
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generates ambiguity of classification. Moreover, the decision-tree must cover all
the possible models to obtain a proper classification. The description of all models
in the tree is unadapted for the detection of various objects. It is also not adapted to
process data with many variations. These variations impact object representations,
creating thus, a lot of different models for the same object. Therefore, this strategy
is not adapted to process large point clouds. That is why this strategy is more and
more replaced by classification strategies based on machine learning or semantic
approach.

6.2 Machine Learning approaches

Machine Learning is a field of research that in general, allow obtaining more ef-
fective results than feature-based approaches using artificial intelligence. That is
why it is more and more used. Indeed, Machine Learning approaches improve
the detection process through learning approaches specialized in the sought object.
This learning system requires a so-called "annotated" data set where each object
in this set is annotated through a label that characterizes the object type (e.g. car,
tree, or chair). These labels allow the learning mechanism to identify objects associ-
ated with their representation in the data. Among approaches to machine learning,
there are two sub-categories to process object detection. The first sub-category aims
at improving feature-based object recognition approaches through a more flexible
and robust classification based on the learning. The second sub-category represents
the object recognition approaches entirely based on machine learning technologies.

6.2.1 Machine Learning classifiers

Among the first sub-category of Machine Learning, called Machine Learning clas-
sifier, three main types of approaches emerge. The first type of approach is based
on "Markov random fields" [Rue and Held, 2005]. The second type is based on "Ran-
dom Forest" [Breiman, 2001]. Finally, the last and the most used type is based on
"Support-Vector Machine" [Cortes and Vapnik, 1995]. These three types of Machine
Learning classifier follow the workflow presented in Figure 6.3.

Markov random fields The approaches based on Markov random fields aim
at creating a no-oriented graph between a set of random field verifying
the Markov property through active learning. Different approaches such as
[Niemeyer et al., 2011], and [Lu et al., 2009], use then, the Markov random fields to
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Figure 6.3: Common workflow of Machine Learning classifiers.

classify objects in point clouds acquired by Lidar scanner in an urban context. The
authors of [Husain et al., 2014] use this strategy to classify objects like books, ta-
bles, chairs, and walls in point clouds representing an indoor context. These two
different contexts of application illustrate the flexibility of this strategy.

The authors of [Luo et al., 2018] present another approach using this strategy com-
bined with human supervision and classification. This approach begins with seg-
mentation using super-voxels. User labeling follows the segmentation. This la-
beling provides stable and reliable support for the use of Markov random fields
to label the rest of the elements efficiently. Although its efficiency, this type of
Markov random fields requires much human supervision, moreover it has a high
cost to process an extensive set of data. That is why this strategy is qualified as
lazy.

Random Forest Random Forest-based approaches consist of creating a multitude
of decision trees. Each decision tree is trained on a portion of data that dif-
fers slightly from the others. This training allows for improving the efficiency
and adaptability of the classification used in feature-based object recognition ap-
proaches. Among the different approaches based on Random forest, the authors
of [Sun et al., 2018] present an efficient approach, but this one requires human in-
tervention. This approach makes a segmentation by voxel, then groups the voxels
according to their local convexity. When data allows it, the extraction of geomet-
ric features [Weinmann et al., 2015a], height-features [Maas, 1999], spacial features
[Rabbani et al., 2006], and radiometric features [Aijazi et al., 2013] enrich each set. A
user must perform and parameterize this extraction of features, but also the selec-
tion of neighborhood distance. This neighborhood distance allows for the study
of local convexity and the creation of a voxel adjacency graph. This human su-
pervision is static and cannot be adapted to the variations of the data quality (e.g.
variations of noise and density). However, the classification is automatic thanks
to the creation of decision-tree forest during the training phase. Nevertheless, this
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classification does not allow for solving ambiguity problems. This type of approach
has difficulty in differentiating the small objects having similar geometric features.

Support-vector machines (SVM) The classifiers based on Support-vector ma-
chines (SVM) are designed to solve classification and regression problems. These
classifiers are generic that allows a more flexible application in different contexts.

The authors of [Serna and Marcotegui, 2014] use such classifier after a segmenta-
tion. Their segmentation consists of generating a 3D data elevation image to seg-
ment the ground using a 2D model-driven approach. Points that do not belong to
the ground are then gathered into segments according to the Watershed approach
[Couprie et al., 2011]. The authors extract then, the contextual features of every seg-
ment. Morphological filtering allows for removing small and isolated segments.
Finally, an SVM classifier is applied to the segments keeping by the filtering. The
disadvantage of this approach is to consider only spacial information and not infor-
mation about the texture or shape of the elements. Besides, the used segmentation
is sensitive to occlusions that conduct to an over-segmentation for close objects, and
a sub-segmentation for objects with a complex shape.

The authors of [Lehtomäki et al., 2016] generate a histogram based on local descrip-
tors and point repartition of every segment from the data segmentation. An SVM
classifier uses then, the histogram to classify the models and identify objects. How-
ever, this approach fails to differentiate close objects, which are considered as one
object. This failure is due to the limit of segmentation. The sub-segmentation leads
to obtain one histogram for a set of elements that have been considered as one ele-
ment. Therefore, SVM classifier cannot detect these elements. This problem shows
that a proper segmentation is crucial to obtain proper histograms for the learning
phase.

Therefore, the authors of [Yang et al., 2017] propose to improve the approach of
[Lehtomäki et al., 2016] through finer segmentation. These authors propose a seg-
mentation in four steps to segment elements of an urban scene. Firstly, the segmen-
tation aims at extracting the ground by classifying points between two categories:
"in-ground" and "out-ground". Secondly, the approach gathers points (from the
category "out ground") into elements based on their proximity. Thirdly, it extracts
features of every segment by using geometrical information and the redundant in-
formation (e.g. a mast that appears every 100m). Finally, it gathers all segments
according to their similitude to build a model and compute a histogram of these
objects. Nevertheless, this approach can only detect object defined by an accurate
histogram. The approach requires to have one histogram for every different repre-
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sentation of an object in data, but also every variation of object feature. Therefore
it leads to an exhaustive set of histograms for proper detection.

Although SVM classifier can be adapted to different approaches of segmentation,
they are based on statistical information to perform the classification. That is why
they cannot integrate the complexity of shapes or the object texture to improve the
efficiency of the classification.

Combining classifiers The authors of [Li et al., 2016] propose to face the limits of
the different classifiers based on machine learning by combining them to improve
the quality of results. The authors combine an SVM classifier with a multi-label
graph cut ([Sedlacek and Zara, 2009]) to firstly segment elements having a simple
texture and shape. They classify then the other elements by using a decision tree
defined for sought objects. Results obtained by classifiers combination have bet-
ter quality than results obtained by a single classifier. However, approaches that
combine classifier have a lengthy processing time.

The approach [Xiang et al., 2018] presents an object detection in three steps in urban
scenes. This approach applies firstly, a P-linkage segmentation ([Lu et al., 2016]).
This segmentation performs first a region growing according to a hierarchical struc-
ture. It is an approximative segmentation, but fast. The approach [Xiang et al., 2018]
characterizes and classifies then, the obtained segments through the use of three
different classifiers: Support Vector Machine, Random Forest, and Extreme Learn-
ing Machine. Finally, the approach refines the first classification through an energy
minimization via graph cuts [Boykov et al., 1999]. It uses the context around the
classified objects to correct the first classification and improve the accuracy of clas-
sification. This approach illustrates the importance of the context for proper object
recognition. Despite this improvement, this approach has difficulties in recognizing
objects with similar geometric features (e.g. distinguish fences and buildings that
have both a planar and vertical geometry, which is perpendicular to the ground).

6.2.2 Convolutional neuronal network (CNN)

The second category of data-driven approaches using machine-learning follows the
workflow presented in Figure 6.4.

Among the Machine Learning approaches, the convolutional neuronal network
(CNN) allows to excellent results. It experiences a great effervescence in computer
vision, especially for 2D images as shown by the approach [Krizhevsky et al., 2012a]
that uses high definition images. Nevertheless, all approaches based CNN require a
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Figure 6.4: Common workflow of Machine Learning detection approaches.

broad set of training data. The approach of deep learning presented by the authors
of [Dong et al., 2014] is based on CNN and allows for obtaining excellent results on
high-resolution images. It applies the training on a large dataset of high-resolution
images. However, the training is long and challenging to parameterize to obtain
proper results. "Resnets" [He et al., 2016] improves the learning by allowing a more
straightforward and faster training.

For object detection in 3D point clouds, the approach [Du et al., 2018] presents a
general pipeline to extract the features of 3D data through the use of model-fitting.
This approach reduces then, the complexity of data by a 2D projection that al-
lows for using CNN directly. The authors of [Meyer et al., 2019b] presents an ap-
proach using CNN to predict the location of objects in point clouds by transpos-
ing the point cloud into images. If the point cloud is designed from 2D images,
this conversion from point cloud into images is not necessary, and the approach
[Meyer et al., 2019a] can use the 2D images directly to improve the detection pro-
cess. These approaches require complete data (without occlusion) and objects with
very different features to obtain excellent results.

Several approaches use mechanisms of 3D data projection into 2D images to apply
then a CNN approach. Due to the long processing time, some approaches focus
their research on the speed improvement of CNN processing. Indeed the authors
of [He et al., 2015] improve CNN with an approach called "SPPnet". This approach
uses a spatial pyramid to reduce the complexity of images and increase the pro-
cessing time. The approach, called "Fast R-CNN" [Girshick, 2015], adapts CNN, by
proposing several improvements that reduce its processing time significantly. The
authors of [Ren et al., 2015] also propose improvements to process data in real-time
through CNN. Although these approaches improve the CNN processing time, they
execute more than 100 test iterations to compute each region of the sub-networks.
That is why the authors of [Dai et al., 2016] presents the "R-FCN" approach that
shares the computation on the whole image through a fully convolutional neuronal
network. The authors explain they integrate "ResNet" and claim their approach is
faster than the fast R-CNN.
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Among approaches working on 3D data, the approach [Ku et al., 2018] proposes
an aggregate view object detection based on region proposal network. This ap-
proach builds a 3D oriented bounding box to wrap objects after a segmentation.
This approach aims at solving problems linked to the object orientation. The geo-
metrical features of an object change according to its orientation creating classifi-
cation ambiguities. The objects contained in this oriented bounding box are then
characterized by feature descriptor from model-driven approaches. The extracted
features are then used by CNN. Although this approach is efficient on the specific
use case (self-driving car), it is inefficient on images with deformation. The authors
of [Ouyang et al., 2015] address the problem of object detection in images with de-
formation. They increase the robustness of detection in this context through a deep
convolutional neural network adapted to images with deformation.

These different approaches based on CNN require that data are organized in a
tensor structure. As 3D point clouds are not intrinsically structured in that way,
the use of spacial and geometric object features for their identification is limited.
Due to this limit, the authors of [Li, 2017] focus their research on the direct use
of 3D data to detect vehicles in point clouds. They address this issue through
an adaptation of fully convolutional network (FCN). This adaptation is based on
FCN used in 2D like the approach [Long et al., 2015] that trains a CNN pixels-
to-pixels to obtain better results both for segmentation and classification. This
2D FCN approach is itself an adaptation of the approaches [Szegedy et al., 2015],
[Simonyan and Zisserman, 2014] and [Krizhevsky et al., 2012b].

CNN applied voxel-grid The object detection in variable 3D data is challenging
and hardly manageable by CNN approach. Process irregular data through CNN
requires to take into account all possible representations of an object that can ap-
pear in these data, to train the system. In this case, it requires a dataset containing
the different shapes and representations of an object exhaustively. Such intensive
training has the risk to lead the CNN to overlearning that reduce its global effi-
ciency among others by increasing problems of detection ambiguity. That is why
a pre-processing step is applied to use approaches based on Region Proposal Net-
work (RPN). The most widespread is the transformation of 3D point clouds into a
voxel-grid.

The approach [Tchapmi et al., 2017] uses an FCN combined with a Conditional ran-
dom field (explained in [Dobruschin, 1968]) to increase the efficiency of object detec-
tion. This approach simplifies the point cloud through a voxel-grid pre-processing.
It uses then the FCN adapted to 3D to classify each voxel and projects the result of
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FCN in the original point cloud through a trilinear interpolation. This approach al-
lows for obtaining proper results both in indoor and outdoor scenes. These results
are significantly better than CNN applied on 2D images or the different classifiers
of machine learning (SVN, random forest).

The approach called Voxelnet [Zhou and Tuzel, 2018] segments the point cloud in
voxels having the same size. It characterizes then each voxel to group them accord-
ing to their shared features. The authors call this voxels gathering according to
their features a "voxel feature encoding" (VFE). The VFE is then connected to RPN
to predict the bounding box that locates the sought objects.

This approach obtains proper results to detect a set of objects that have not signif-
icant variations of size. Similarly, the authors of [Maturana and Scherer, 2015] use
a "3D convolutional neural network" such as the approach [Ji et al., 2012] to detect
objects based on the relative location of elements between them and their different
sizes. They realize such a process through the study of repartition in voxel-grid.
This approach highlights the importance of topological relationships between the
different elements. It also highlights the importance of the size in the identification
process. However, it has difficulty to differentiate objects with a similar size. This
limit is a critical limit because many scenes contain objects with similar size.

CNN applied to points The transformation of a point cloud into a voxel-grid
simplifies the point cloud. Nevertheless, it limits the functionalities of the point
cloud usage and also limits the quality of object detection. That is why the ap-
proach "Pointnet" [Qi et al., 2017a] allows an object detection without steps of point
cloud simplification by working directly on the points. The authors of this ap-
proach present a deep-learning framework that computes normals of point, and
points according to their neighbors (the closest points). This approach aggregates
then, points information locally and globally, to gather points into elements that
can be identified as an object.

The authors of [Qi et al., 2017b] improve this approach through an approach called
"Pointnet++". This improved approach uses a hierarchical structure of neuronal
networks, which is applied to each required network parts recursively. The mea-
sure of space distance is the base to learn the local object features and improve the
contextual information of models that represent objects to detect.

Finally, the approach called "IPOD" of [Yang et al., 2018] improves "Pointnet++" by
using a CNN directly on each point of the cloud. This methodology keeps informa-
tion about the precise location of points and reduces the ambiguities of detection.
It uses the backbone network of "Pointnet ++" and predicts the box that bounds the
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sought or located objects.

Despite the improvements, "Pointnet", "Pointnet++" and "IPOD" cannot recognize
elements having a rather subtle and precise pattern. They do not work well on
complex scenes composed of many different objects. These approaches are sensitive
to noise and variations of data density, like the others CNN based approaches
presented in [Ouyang et al., 2015] and [Wirges et al., 2018].

6.3 Semantic data-driven approaches

From the evolution of Web semantic and its technologies, many knowledge-based
approaches emerged, which also constitute a significative branch of artificial intel-
ligence. These approaches use Semantic Web technologies to represent explicitly
and process human knowledge. It allows inference of new facts from the defined
knowledge and a base of fact. In computer vision, the integration of knowledge
about objects allows for obtaining a robust classification based on logical reason-
ing verifiable by humans. The knowledge is modeled by description logic, mainly
through the language OWL2 and by logical rules, mainly through the language
SWRL. Thanks to knowledge representation, these approaches do not require train-
ing data.

The first step of these approaches consists of extracting information from sought
objects to generate knowledge. The type of extracted knowledge varies according
to the used approach. The authors of [Anguelov et al., 2005] use a description of the
object detection context corresponding to the scene that contains them. They use
Markov Random Fields to extract this description. The approach [Triebel et al., 2007]
extracts the object geometry in 2D or in 3D through various techniques, to facilitate
object recognition.

The semantic technologies are mainly used in data-driven approaches to extract
features and to build an object representation or to improve the process of machine
learning-based classification.

Semantic in features extraction and object building model Figure 6.5 presents
the workflow of semantic feature extraction and object building model. The ap-
proach [Pu et al., 2011] uses the semantic to improve the extraction process of data
features. This approach performs first segmentation of the ground, in an urban
context. It organizes then elements hierarchically and classifies them into two
categories: "on the ground" and off the ground". It applies a second segmen-
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Figure 6.5: Common workflow of approaches using semantic feature extraction and
object building model.

tation phase on the classified elements. These segmentations use model-driven
approaches of geometry fitting. They aim at extracting features and detecting pla-
nar surfaces with Hough transform, allowing the detection of the ground as the
largest horizontal plane. This approach uses a rule-based system to deduce knowl-
edge from the segmented elements. This rule-based system uses information about
point coordinates and their bounding structure (e.g. plane, line) to gather elements
into shapes. The authors exploit then, the spatial relationship between the differ-
ent created shapes. The disadvantage of this approach is its sensitivity to data
variations and the choice of the threshold(s) used by the different algorithms. For
example, this approach does not allow the detection of an object with low den-
sity. This lack is a problem with data acquired by a laser scanner and containing
objects with high reflectance. The high reflectance of an object produces an object
representation with a low density.

Semantic in classification process Figure 6.6 presents the workflow of ap-
proaches using a semantic classification to solve problems of machine learning
ambiguities. The approach [Torralba et al., 2010] presents a shape-based recognition

Figure 6.6: Common workflow of approaches using a semantic classification.

using a prestructured knowledge to identify both semantic and geometric classes
for objects. In this approach, the semantic techniques are used to represent the
content of the 3D model resulting from the identification system of classes.

The authors of [Yang et al., 2015] use the semantic technologies to identify objects
after the segmentation. The segmentation used is based on attributes of each point
to group them into super-voxel. The authors create then a graph of super-voxels
and compute the saliency of each super-voxel. Next, they merge the adjacent seg-
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ments through the use of the rule-based semantic system (like SWRL). These rules
build a logical representation of the merging results in the knowledge base. This
logical representation in the knowledge base allows then for detecting objects with-
out ambiguity.

Similarly, the authors of [Babahajiani et al., 2017] apply a segmentation by super-
voxels and use a hybrid strategy to detect the objects. This hybrid strategy is
based on a rule-based semantic detection for the detection of objects having a sim-
ple shape or representing a large structure like facades or roads. It also contains
an enriched methodology for the detection of objects with a more complex shape
like trees, cars, or pedestrians. This enriched methodology begins with a boosted
decision tree to classify the first elements in different models. It continues by a
template matching to identify objects. Voxels are then classified in a supervised
manner. This approach is high-speed compared to other approaches using seman-
tic technologies. However, this approach requires many templates that must be
adapted to the variations of data. The disadvantage of this approach is its sensitiv-
ity to variations of data quality and its difficulty to detect small objects or building
parts when the data density decreases.

The data-driven approaches using the semantic apply the segmentation steps with
threshold values chosen arbitrarily. These approaches have difficulties in detecting
objects with free shapes. Some of these approaches have the advantage to solve
the problem of detection ambiguity between objects that have slightly different
geometrical features through reasoning. For example, they can apply reasoning on
topological relationship to differentiate similar objects.

6.4 Discussion

The feature-based approaches for object recognition allow for solving problems in
a precise context. They have the advantage to obtain a high quality of detection and
precision due to a selection of ad hoc algorithms adapted to the data. However, the
configuration of each algorithm must be done manually and empirically for each
type of data. Therefore, this parameterization limits their flexibility. Thus these
approaches are not generalizable. Moreover, the used algorithms do not adapt au-
tomatically to the variations of data quality (e.g. a variation of noise, a variation
of density). These approaches depend entirely on object representation in data.
The final result of detection depends on the quality of the algorithm output results.
Thus, errors or default of results produced by an algorithm accumulates when sev-
eral algorithms are combined. Moreover, they do not take into account the different
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characteristics of the data. Therefore, the quality of their results decreases propor-
tionally with the decreasing data quality (e.g. an increase in noise, a decrease in
density).

These approaches are not very robust, and their classification system is rigid.
Therefore, the classification step is often replaced by the use of classifiers based
on machine learning or semantic approaches. The relevance of these approaches
depends mainly on the object’s characteristics. Furthermore, such objects must be
different enough to be well classified and to decrease the ambiguity, which is not
managed.

Finally, the potential improvement of the results obtained is limited to an empirical
improvement of the combination of algorithms and an empirical parameterization
of each algorithm. Besides, the detection strategy must be adapted empirically to
each specific context of detection. This adaptation capability is thus limited and
insufficient to detect objects in heterogeneous data with wide variations of density
and noise.

On the other hand, the machine learning approaches are efficient to solve problems
of classification and regression but require a large dataset of training. They allow
for obtaining proper results in various types of data as long as a sufficient dataset
similar to the data to process is available for the training. However, they have
a low precision of detection. Indeed, the different machine learning approaches
cannot intrinsically adapt their approach to the sought objects. This lack of adap-
tation leads to problems of over-segmentation or sub-segmentation. Besides, the
approaches based CNN do not provide a precise detection (point by point), but
rather an extraction and location of objects through a bounding box.
Moreover, they do not solve the ambiguity problem of object classification gener-
ated by the variations in the data.

The machine learning approaches lose efficiency when data are noisy or incom-
plete. Various factors cause this incompleteness: for example, occlusions and re-
flectance decrease the density. Furthermore, the results of these approaches are
entirely dependant on the annotated dataset used during the training. Thus, the
approaches lose in quality and robustness when the representation of objects in the
data to process, is not or few present in the training dataset.
The main disadvantage of machine learning approaches is their flexibility.

Indeed, machine learning approaches require adapting all training data to provide
relevant results. The training data must contain the objects sought with character-
istics that are similar to the characteristics of the data to be processed. However,

6.4. DISCUSSION



94 CHAPTER 6. DATA-DRIVEN APPROACHES

multiple factors influence data characteristics. These approaches do not consider
these factor. Thus, they cannot compensate for data characteristics variations that
are too large for these approaches. Moreover, the improvement of their results is
hardly manageable due to their dependence on the training phase. The increase in
training data leads to overlearning that reduces the quality of results by increasing
ambiguity of detection. That is why the training phase is hardly changeable.

The main difficulty of data-driven approaches using semantic is to structure well
the relationships that objects have between them. The semantic approaches require
an accurate knowledge representation of objects in the knowledge base. This rep-
resentation solves the ambiguity problems of classification and provides a decent
quality only if all algorithms are correctly parameterized. However, all possible
representations of an object in the data must be described exhaustively by experts,
and that for each type of data used. That is why these approaches are not adapted
for the process of different types of data or data with a variety of quality (e.g. a
variation of noise or density).
These approaches use semantic technologies only to address the part of the recog-
nition process. Therefore, the obtained results depend entirely from intermediate
results obtained by the segmentation phase and the feature extraction phase. These
two intermediate phases are not guided by semantic; therefore they are conducive
to error propagation.
Finally, the flexibility of the semantic approaches depends on the choice and the
parameterization of the algorithm. This dependence limits the improvement of re-
sults because the algorithms are not adapted automatically to the variations of data
quality.

Table 6.1 summarizes the advantages (+ or ++) and disadvantages (- or –) of the
different types of data-driven approaches.

Approach Quality Ambiguity Robustness Flexibility Generalizability
Features-based ++ - - - - - -
object
Machine = - - + - - - -
learning
Semantic + ++ - - - =
data-driven

Table 6.1: Comparative table of the different types of model-driven approaches.

The approaches based on feature-based object recognition are not robust enough
and cannot be improved enough to work efficiently on point clouds with a high
variation of quality (such as use case 2.1.3 and 2.1.4).
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The approaches based on machine learning have higher robustness that allow
them to work on use cases 2.1.3 and 2.1.4. However, they have not sufficient
quality and cannot solve the problem of ambiguity to work on the use cases 2.1.2
and 2.1.1. Moreover, these approaches cannot be generalized.

Machine Learning approaches remains unflexible and are unable to detect the ob-
ject or the geometry for which they are not trained. Moreover, some data char-
acteristics variation can jeopardize the results of Machine Learning approaches.
Furthermore, just a small change of the acquisition process or extern factor may
produce such data characteristics variation. The approaches based on semantic
data-driven apply logical reasoning on knowledge representation to recognize ob-
jects. Thanks to this advantage, these approaches are efficient on use cases 2.1.2
et 2.1.1. Nevertheless, they are not robust enough to work on use cases 2.1.3 and
2.1.4.

6.4. DISCUSSION



7 Knowledge-based approaches

As explained in chapter 6, data-driven approaches fail in their detection when
the data are incomplete (occlusion) or have too much discontinuity. Indeed, data-
driven approaches do not use prior knowledge about objects or data. These ap-
proaches cannot, therefore, be adapted to the multitude of configurations corre-
sponding to different variation combinations of data characteristics and objects
features. Therefore knowledge-driven approaches are more adapted to perform
object detection from data in accordance with human knowledge about both ob-
jects and data characteristics. To this end, these approaches structure and repre-
sent knowledge about objects and data into ontologies, mainly through languages
(OWL2). These approaches then use rule-based systems such as (SWRL) to support
decision-making in the object detection process.

The success of these approaches depends on understanding the relationship be-
tween different objects and between objects and data. These approaches require
the implementation of a strategy to understand the scenes which compose the data
and in which the objects are represented, to achieve a more robust, generalizable,
and flexible object detection.

These approaches fall into two subcategories. The first subcategory includes ap-
proaches using a detection process and a predefined knowledge about objects and
data adapted to each application case. They use the predefined knowledge to iden-
tify objects through the use of logical reasoning. The second subcategory includes
approaches that use predefined knowledge to adapt to the object detection process,
both in the choice of algorithms to be used and in the identification of objects.

7.1 Knowledge-based object detection approaches

The knowledge-based object detection approaches design a detection system based
on a predefined knowledge of objects and data. Figure 7.1 presents the workflow
of approaches belonging to this category.

In the field of object detection in data from archaeological sites, the book
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Figure 7.1: Common workflow of knowledge-based object detection approaches.

[Poux et al., 2017] presents a detection process entirely designed to perform a clas-
sification of elements that is knowledge-based and uses semantic techniques. In
the study cases reported in this book, the objects to be detected are "quasi-planar".
The knowledge of these objects is expressed in OWL in an ontology. The detection
process segments the point cloud then estimates the properties of each segment
and stores these properties in an ontology. These properties relate to the color of
each element, the material of the element, and the "light property". The descrip-
tion of the element links the material property to the "property of light", mainly
concerning reflectivity. For example, a "matt rock" is related to the "non-reflective"
"light property", and a "matt silver" is related to the "reflective" "light property".
The combination of this information allows a better understanding of colors. In-
deed, the color of an element is influenced by the light and material of the element.
Thus, an element could have the same RGB color value than another element even
if it should not be the case due to the light and material. The detection process
can better understand the color of an element and therefore better detect objects,
through knowledge of these characteristics and their relationships. The detection
process classifies the elements by reasoning on the description logics expressed
OWL2 within the ontology. This reasoning is performed by OWL reasoner such as
Hermit [Shearer et al., 2008].

The previous example highlights the power of knowledge management to improve
the object detection process by better-exploiting feature information. This knowl-
edge of the characteristics and their relationships can be extended to other ap-
proaches. However, this approach is limited to each application case and does not
allow the classification of objects with complex shapes. In addition, this approach
requires much-predefined information about light and materials, which is not gen-
erally known for many applications.

The work presented in [Hmida et al., 2013] proposes a detection system using pre-
defined knowledge of objects (e.g. mast, signals) and data (e.g. Lidar point cloud)
in the railway context. The detection process, presented in this work, consists in de-
tecting mainly linear elements (mast, signals). To do this, the authors use different
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combinations of model-driven approaches, such as RANSAC to extract geometric
shapes from the data (line). They then group the lines close to each other in a
box to form a "domain concept" to be classified. The classification is based on the
definition of an ontology and the application of the SWRL rule. Knowledge of
algorithms, geometries, characteristics, domain concepts, and scenes make up this
ontology. Properties are used to link this knowledge together to form a consistent
set that is conducive to the application of logical reasoning. Indeed, algorithms
are defined as "designed for" a geometry. Geometry is defined as "has topologi-
cal relation" with itself and "has characteristics" according to characteristics. The
characteristics are used with the geometries to classify the "domain concept" via
SWRL rule. Indeed, the "domain concept" "has topological relation" with itself,
"has geometry" and "has characteristics". Scenes are defined as containing "domain
concept".

The conceptual relationships defined in the ontology then allow the approach to
defining objects to be detected through these relationships. One of the most com-
monly used topological relationships in this work is the spacing distance between
two "domain concepts" and especially the recurrence of this spacing. Indeed, this
work uses the recurrence of spacing between the "mast" sought in a rail point
cloud, which remains constant. Thus, the detection of an object (mast) using these
geometric criteria allows the detection of other objects that would not have been
identified by their geometric characteristic.

The use of knowledge and more particularly, the exploitation of the topological and
geometric characteristics of objects by semantic technologies significantly improve
the robustness of approaches and solve ambiguity problems. The structuring of
knowledge in the form of ontology also facilitates the adaptation of the approach
to other fields. However, this approach does not allow to detect complex objects
when there is not enough topological link between them (no recurrence). Besides,
the quality of detection is quite poor due to the use of inclusive boxes to identify
objects rather than the use of precise segmentation of objects.

The work presented in [Poux et al., 2018] uses semantic technologies and knowl-
edge management to generate a "knowledge-based point cloud infrastructure with
multiple Levelling Of Details" that significantly improves detection quality. They
are applied for the detection of chairs of various types (garden, living room, office).
The knowledge of geometry and the topological relationship of each of these types
is predefined in a knowledge-based. The authors propose to enrich the point cloud
by characterizing it with semantic characteristics. To begin, they apply a point
cloud voxelization to describe each voxel using a distribution histogram and shape

7.1. KNOWLEDGE-BASED OBJECT DETECTION APPROACHES



CHAPTER 7. KNOWLEDGE-BASED APPROACHES 99

descriptor. SWRL rules then extract the layout from the voxels to form elements. A
representation in muti level of detail is then generated for each element. Element
recognition is carried out by models-fitting created from predefined knowledge
about each element constituting the objects to be detected (foot, site, and back
are elements of chair). The detection process studies the relationships between
elements to group/aggregate them and form an object. This work uses SPARQL
queries to retrieve information about the detected objects.

This approach requires creating a model knowledge of each possible representation
of each object to be detected. However, the representation of an object is impacted
by data quality. Moreover, this approach does not provide management of data
quality variation. Therefore this approach cannot be used effectively on heteroge-
neous (variable quality) data.

7.2 Knowledge-driven approaches

Knowledge-driven approaches use the knowledge to guide the detection process by
selecting sequences of algorithms adapted to the characteristics of data and objects.
Figure 7.2 presents the workflow of approaches belonging to this category.

Figure 7.2: Common workflow of knowledge-driven approaches.

The work [Dietenbeck et al., 2017] creates an expert system using a decision tree
to select the best algorithm for the segmentation process. This decision applies
only once to the overall segmentation process. For such a selection, the reasoner
searches for compatible algorithms through a process of reasoning applied to the
ontology that contains knowledge about algorithms and objects. All possible exe-
cutable algorithms are instantiated. This work provides rules designed to remove
incompatible algorithms by linking the output of each algorithm with the charac-
teristics of each object (geometry, color, and topology) expressed in the ontology.
Then reasoning on these rules removes all incompatible algorithms. Thanks to this
process, the segmentation is adapted to the characteristics of the object. Algorithms
can be selected and executed to perform object detection. The algorithms used in
this work are mainly algorithmic models. The results of the execution of the al-
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gorithms are hand-parsed into semantic information to be incorporated into the
ontology. Then, the application of rules and reasoning classify the segments pro-
vided by the segmentation process into the object. This work produces an adapted
detection process that is flexible and capable of resolving ambiguity through a
knowledge-managed classification process. However, the results obtained depend
on the first decision taken and the result of each algorithm executed. Thus, the
resulting detection cannot be adapted to variations in data quality that have an
impact on algorithm results. Only objects composed of a primitive shape can be
detected. Besides, a single decision made for the segmentation process does not
take into account the experience gained from the results of the algorithms on the
data. Thus, the detection process has low robustness.

Robustness to noisy data or variations in data density is one of the most challenging
aspects in the Computer Vision domain, especially in object detection domain. The
work [Karmacharya et al., 2015] selects algorithms based on noise or data density
and object characteristics. This selection is based on an Expert knowledge frame-
work consisting of knowledge representation and an algorithm selection module.
The approach [Hmida et al., 2013] adds characteristics that influence the algorithms
in order to improve knowledge about the algorithms, the "domain concept", the
data, and the scene. These improvements allow the creation of a graph of algo-
rithms’ dependency and input-output dependency. The selection of algorithms is
made by creating a graph of all possible combinations of algorithms. These com-
binations are created by connecting the input and output of the algorithm. Thus
the graph of the possibilities start of the data and ends with the characteristics
of the objects. The graph is composed of several possible uses of each algorithm.
Indeed, the ontology used to construct the graph contains many combinations of
parameter values for each algorithm. For a single algorithm, many sub algorithms
are created with different parameter values, and each of them is linked to data
characteristics. For example, for the RANSAC line detection algorithm, two sub
algorithms are created. One is intended for the detection of irregular lines in low-
density data and the other for the detection of high-density lines. Both algorithms
are described in the ontology and are located inside the graph. Then, the algorithm
called "Dijkstra" [Dijkstra, 1959] is used to navigate through the graph and find the
best path in the graph. The path is interpreted as a sequence of algorithms that are
executed. Then, reasoning on the SWRL rules classifies the results of the sequence
of algorithms. These rules use topological characteristics to improve the classifi-
cation of objects and solve many ambiguity problems. Besides, the approach of
[Karmacharya et al., 2015] allows the detection of multiple objects ordered by their
size. Thus, the detection process first detects the most massive object described,
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and finally, the smallest object described. Finally, this work has demonstrated its
flexibility by detecting objects in the indoor and outdoor point cloud. Indeed, this
work detects noise-canceling walls in the context of railway point clouds, even if
the walls have curves. Moreover, it also detects chairs in interior-point clouds, even
if some chairs have a low density.

However, the algorithm parameters are fixed and are not dynamically adapted
to the data characteristics or object characteristics. Furthermore, creating sub algo-
rithms with different parameter values increases the number of algorithms, and the
parameters are often imprecise. Besides, the selection of the algorithm sequence is
applied only once. Meanwhile, the algorithm sequences are fully executed, even
if some algorithms in the sequence fail or produce unexpected results. Thus, the
detection process does not take into account the results of the intermediate algo-
rithms. Similarly, the classification process is not iterated with the segmentation
process. Thus, the detection process may fail when the geometric and topological
characteristics are not sufficient to detect an object. Finally, this approach requires
modeling of all possible objects and geometric characteristics according to the vari-
ation in data quality (e. g. lowercase line modeling, high density). Otherwise, the
detection process fails to detect an object if its representation within the data differs
from its expected form, modeled in the knowledge-based.

7.3 Discussion

Knowledge-based approaches mainly use knowledge about objects, data, and al-
gorithms to strengthen the detection process. These approaches may solve many
ambiguity problems by using topological knowledge between objects to improve
the classification process.

Knowledge-based object detection approaches to design their detection process to
use knowledge through semantic techniques. This knowledge is modeled within
the ontology by the OWL2 language, which increases the flexibility of these ap-
proaches. However, this strategy used for the detection process is not dynamically
adapted to the characteristics of the data. Thus, flexibility is limited by this strat-
egy. The result obtained by these approaches can be improved by adding some
knowledge within the limits of the results of the algorithms that have an impact on
the final result. Indeed, these approaches do not manage variations in data qual-
ity and are mainly sensitive to noise. Thus, they are of moderate robustness. The
accuracy of objects detection in these approaches depends on the strategy used. If
the strategy is based on the location of boundary boxes, the quality of the detection
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is less accurate than the strategy based on a multi-resolution detection.

Knowledge-driven approaches also use knowledge to drive the detection process
by selecting the algorithms that make up the detection processing. These ap-
proaches are, therefore, flexible. Indeed, the use of semantic technologies to select
algorithms and perform classification allows these approaches to work on data that
may have different characteristics. The quality of the results obtained by these ap-
proaches suffers mainly from a lack of parameterization of the algorithms. Indeed,
algorithms have predefined parameter values that limit the quality of their results.

Table 7.1 summarizes the advantages and disadvantages of the both types of
knowledge-based approaches.

Approach Quality Ambiguity Robustness Flexibility Generalizability
Based on = ++ - = =
Knowledge
Driven by = ++ = + +
Knowledge

Table 7.1: Comparative table of the both types of knowledge-based approaches.

Knowledge-based object detection approaches are not adapted to use cases 2.1.3
and 2.1.4 because of their lack of robustness. Knowledge-driven approaches are
more robust and can be applied to all cases presented in Section 2.1. However,
these approaches are limited in quality by the parametrization of their algorithms.
Moreover, these approaches do not consider the quality of the results obtained
by the algorithms at each step of their execution, to adapt the detection process.
Similarly, the process of segmentation and characterization of the data does not
take into account the results obtained by the classification. Therefore the results
are determined by the quality of the execution of each algorithms composing the
sequence. Thus, these approaches fail to detect many objects representations, espe-
cially when this representation in the data differs from the model described in the
knowledge-based.
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8 Discussion

The literature review for object detection highlights several advantages of combin-
ing different approaches. Table 8.1 summarizes the advantages and disadvantages
of the different approaches reviewed in the previous sections and compared to the
approach presented in this thesis.

Method Quality Ambiguity Robustness Flexibility Generalizability
Driven by + - - - - -
Model
Driven by + ++ - - - -
Data
Driven by = ++ = + +
Knowledge
Presented + ++ ++ ++ ++
Approach

Table 8.1: Comparative table of the different types of approaches surveyed.

Model-driven approaches are not usable in the application cases presented in
Section 2.1. Their real interest lies in their integration into other data-driven or
knowledge-based approaches.

Indeed, among the data-driven approaches, the most effective features based object
recognition approaches integrate model-driven approaches. However, this type of
approaches does not automatically adapt the detection process to the data used
or to the different types of objects sought. The user chooses and configures the
algorithm sequences, and each individual algorithm empirically. Besides, each of
these elements must be readjusted for any different use case. On the other hand,
these approaches use in general classification system, which is static and often
quite not efficient. Most recent approaches use a classification based on machine
learning. Machine learning is increasingly used because of its autonomy to detect
objects in data. However, they require annotated data for their training stage. This
training stage must be focused on the detection of specific objects present in both
the data to be processed and the training data. Moreover, each object must have
similar representations in these two data sets.
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Although more and more annotated data are available in different sectors of activ-
ity (e.g. autonomous car, BIM), the fast evolution of 3D acquisition technologies
causes significant changes in data characteristics (e.g. resolution, noise, density,
roughness). The evolution of these characteristics often compromises the relevance
of old training data sets, requiring the creation of new sets. Indeed, the training
data sets must have similar characteristics to the data used. The main limitations
of machine learning approaches are their flexibility and their dependence on their
learning phase, which can lead to overtraining if the learning phase is too exten-
sive. The objective of this phase is to generate implicit knowledge from experience
acquired through training. Indeed, machine learning approaches are intrinsically
limited both for the point of view of object modeling (detection limited to repre-
sentations sufficiently present in training sets) and data evolution (new acquisition
technology). Finally, Machine Learning approaches are not able to detect objects
or geometries for which they have not been trained. Therefore, they cannot un-
derstand the data, when the data characteristics differ from those on which these
approaches were trained. For these reasons, other approaches propose to exploit
some knowledge about objects and data to eliminate learning needs thus and con-
siders more situations.

These approaches use technologies from the Semantic Web to manage human
knowledge. This human knowledge can be used to improve existing data-driven
approaches but is much more powerful and effective when used to drive the detec-
tion process. In knowledge-based approaches, knowledge is used to guide the se-
lection of algorithms and the classification of objects. These two knowledge-based
processes allow for having a detection system adapted to both the characteristics of
the data and the characteristics of the objects sought. These approaches highlight
the importance of using semantic technologies to manage knowledge to drive the
detection process. Indeed, these approaches use the power of semantic technolo-
gies to be able to adapt the detection process to the object sought and global data
characteristics (such as the average noise and average density in the overall data).
These approaches use knowledge to generate a sequence of algorithms to segment
and characterize each segment extracted from the data. The results of the execu-
tion of this sequence are then analyzed by logic reasoning to identify the objects.
These approaches have the most considerable advantages for object detection in
application cases such as the ones presented in Section 2.1.

The approaches studied show that the combination of geometric and topological
characteristics on objects, allows ambiguity problems to be solved. Thus it allows
for better dissociates objects. Primarily when used through OWL reasoner seman-
tic classification technology, which allows geometric and topological characteris-
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tics to be linked while ensuring overall consistency through consistency checking.
The combination of these characteristics allows for classifying an object through
its topological relationship when the geometric information did not allow alone
the classification. Thus, such a combination strengthens the classification process.
However, it requires that the objects be strongly related to each other. These ap-
proaches have also shown that the use of knowledge to link objects, data, and
algorithms together allows for the efficient creation of algorithm segmentation. Be-
sides, the use of semantic technologies allows for managing vast knowledge about
algorithms, objects, and data. This use allows for great flexibility and scalability of
these approaches.

However, several capacities are lacking in these approaches to allow them to be
more generic and effective, particularly on all the application cases presented in
Section 2.1. Indeed, these approaches do not take into account the local charac-
teristics of the data, especially when part of the data is already segmented. More
precisely, the segmentation process may divide the data into unexpected segments
if the data has different characteristics (such as high-density segments with low
noise, or low-density segments with high noise). Besides, the execution of algo-
rithms may run outside the control of semantic technologies. The detection process
cannot be adapted to the results of each algorithm (and intermediate algorithms in
an algorithms chain) that cannot be dynamically integrated. Therefore, segmenta-
tion and feature detection are performed only once, regardless of the needs of the
classification process (more precise or specific features). Indeed, after the selection
of algorithms and execution, the data are no longer enriched by other processes.
As a result, the classification process cannot have more precise or context-specific
information to identify objects. This is a limitation of the classification process.
Finally, the main limitation of these approaches is their inability to adapt prede-
fined knowledge about objects and data to specific application cases. Indeed, the
description of the data provides useful information for the selection of algorithms.
However, in the context of object detection in 3D point clouds, characteristics such
as the resolution of the acquisition system, provide information on the potential
density of the data. However, this expected density may be very different from the
density found in some parts of the data. Similarly, predefined knowledge about
objects allows the creation of a conceptual model of these objects, to guide their
detection. Nevertheless, such a conceptual model can strongly differ from the ob-
served representation of objects in the data, especially when the quality of the data
is variable. When these discrepancies occur, the approaches previously studied fail
in their detection process. This problem is called "indirect realism problem" in the
rest of this manuscript.
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Therefore we propose in this thesis a system of automatic detection of objects in
3D point clouds addressing these limits. Unlike knowledge-based approaches, the
new solution we propose uses semantic techniques to drive processes and not just
a few processing steps thoroughly. It integrates model-driven and data-driven ap-
proaches to characterize object geometry and topology through the use of algo-
rithms, which significantly facilitates system scalability. Besides, this system also
integrates semantic classification mechanisms. Such mechanisms aim at avoiding
ambiguities and allowing fast and secure control and improvement through reason-
ing and consistency verification. The quality of the results obtained allows identify-
ing objects in point clouds and those for different types of objects in heterogeneous
data with variations in quality (variation in noise, occlusion, and density).

Besides, this system overcomes the problem of robustness of literature approaches
and more particularly, the "indirect realism problem" by creating a self-learning
process module based on semantic analysis and statistics. This semantic self-
learning process allows to directly adapt the knowledge by integrating the experi-
ence acquired by the object detection process.



Part III

Methodology
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The approaches reported in the literature part only use data characteristics or
objects information that constitutes the data. Unlike these approaches, the pro-
posed approach, presented in this methodology part, also uses information from
the sensing process, which generates data. The characteristics of the data depend
on the sensing process (e.g. instrument, acquisition method) and many external
factors (e.g. ambient brightness, acquisition condition, motion); Small variations
incurring during the sensing process by external factors can completely change the
characteristics of the data. This methodology presents a knowledge-driven object
detection that adapts step-by-step the detection process according to the processed
data, the objects to detect and the performed processing. It also describes a
self-learning process that improves object detection through the knowledge base
enrichment by knowledge more specific to the processed application case.

Chapter 9 provides an overview of the system. It recalls the problems related to
the detection of 3D objects. Then it presents the system components and their in-
teractions.
Chapter 10 explains knowledge engineering. This one allows the modeling of the
knowledge of the domains of data, the scene, and data processing. The purpose of
this knowledge is to guide the object detection process.
Chapter 11 presents knowledge-driven object detection. This detection is, first of
all, made up of an algorithm management phase which consists in selecting, con-
figuring, and executing the relevant algorithms for processing the application case.
A classification phase follows this management of algorithms. These two phases
allow object detection to be performed according to explicitly defined knowledge.
This detection is then followed by a self-learning process step aimed at enriching
the knowledge base in order to re-execute a more accurate object detection.



9 System overview

This chapter explains the structure, the components, and the operation of the ar-
tificial intelligence system proposed, dedicated to object detection in unstructured
3D data.

9.1 Limits and problems of the 3D object detection

The digitization of data mainly produces 3D point clouds. The representation of
objects to be detected is thus a point cloud. Acquisition systems discretize the in-
formation of the digitized scene, reducing then the information available to detect
objects. Besides, different factors influence the acquisition conditions such as light,
sensor sensitivity, object materials, acquisition context, and the variation in distance
between sensors and digitized objects. These factors influence the representation
of objects by transforming their geometric characteristics such as shape, size, ori-
entation, and color. Thus, for a single object, there may be a multitude of different
representations in the data. Moreover, more the scene to acquire is extensive, in
the sense of composed of different object types, more its acquisition is complicated.
More a scene acquisition is complicated, and higher is the probability of having
characteristics variation inside the resulting data. This difference of characteristics
corresponds mainly to a variation in noise, regularity, occlusion, and density. Such
variations also amplify the diversity of representation for the same object in the
same data.

The literature review shows that knowledge-driven approaches are the most appro-
priate solution to manage the different representations of objects. These approaches
use expert knowledge to adapt the detection process according to the type of object
sought and the quality of the data representing these objects. However, these ex-
isting approaches only take into account a few characteristics of the data. They are
not able to adapt the detection process to some variations produce by the sensing
process and external factors. Moreover, they combine several algorithms to cre-
ate a sequence that extracts information from the data to identify objects. Besides
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the algorithms are greatly influenced by the data characteristics. Thus their effec-
tiveness decreases sharply when the characteristics of the data vary. Furthermore,
these approaches cannot take into account each of the possible representations of
objects. Although these approaches use predefined knowledge of the different pos-
sible representations of objects, they fail to detect objects when the representation
of an object, observed in the data, differs from its semantic descriptions. This "in-
direct realism problem " is common in the 3D point cloud.

Solving these problems and limitations requires the creation of a detection sys-
tem that incorporates a form of "intelligence". This "intelligence" must allow the
adaptation to the different object representations and the variation of data qual-
ity. Such adaptations require the management of several aspects. An intelligent
process must firstly use knowledge to drive the entire detection process. Leading
the knowledge-based detection process requires techniques to formulate, integrate,
and use this knowledge. Then, the intelligent process needs algorithms to perform
the processing. It must automatically evaluate the relevance of each algorithm. This
relevance estimation depends on the processed data features and the sought objects
features. The study of the significance of the algorithms should allow selecting the
most appropriate algorithms to execute to detect the desired objects. A knowledge-
driven detection process that executes algorithms step by step requires an under-
standing of each parameter of the algorithms to adapt their parameterization to
the detection context. Therefore, the knowledge base must contain a link between
the value of algorithm parameters and features values of the sought objects or the
processed data. Then, the process must use these defined relationships to configure
the algorithms. Furthermore, the detection process must dynamically adapt to the
intermediate results of the executed algorithms. To do this, it needs to execute the
algorithms dynamically and transform their results into knowledge. Such a result
is a fundamental value (e. g. String, Integer, Boolean) or memory pointer, repre-
senting an object. The integration of memory pointer inside the knowledge base
allows the algorithm execution on results of other algorithms previously executed.
Then, the analysis of the results is necessary to update the knowledge of the data.
Such interactions between knowledge representation and algorithms execution re-
quire a technical and conceptual connection between the knowledge management
paradigm and the algorithmic paradigm. Finally, the results obtained must allow
concluding. These conclusions should not only serve to identify the objects but also
to guide the detection process to increase its effectiveness. Indeed, the analysis of
these conclusions must be carried out to draw lessons from the experiments from
which they come. Learning from unsupervised experiments requires the ability to
formulate hypotheses to improve the detection process, to apply these hypotheses,
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and to draw new conclusions that will validate or invalidate these hypotheses.

9.2 Solution proposed

The system proposed in this thesis is based on the automatic detection of objects
in 3D point clouds exclusively guided by semantic processes.

Figure 9.1 shows the main components of the system that addresses these require-
ments.

Figure 9.1: System Overview.

The system presented is composed of two main modules, a module for knowl-
edge management and a module for algorithmic management. These two modules
communicate using queries.

Knowledge is organized in a knowledge-base using a triplestore to store knowl-
edge provided by experts, and knowledge dynamically created during the detec-
tion process. Chapter 10 explains this organization. The knowledge base contains
knowledge about objects, data, and algorithms. The modeling of these three com-
ponents is detailed in chapter 10. This knowledge is used and managed to guide
the entire object detection process and adapt it to the data provided and the objects
sought (explained in Chapter 11). The algorithmic management module is com-
posed of three distinct components. These components are a library of algorithms,
an Algorithm Execution Engine (AEE), and a submodule of memory sharing. The
library of algorithms allows for covering the processing of different 3D data. The
main component of this module is the Algorithm Execution Engine (AEE). The
AEE uses the information contained in the received query to execute the algorithm
related to this one. It then interprets the result to be returned by the query to enrich
the knowledge base. The execution of algorithms by the AEE is under the control
of a memory sharing submodule. This submodule allows algorithms to share their
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inputs and results while allowing access through knowledge management tools.
The functioning of the algorithmic management module is detailed in Section 11.1.

The adaptation of the detection process begins with the selection of the most rele-
vant algorithms. It selects these algorithms from among all the algorithms available
in the algorithm library. The estimation of this relevance depends on the charac-
teristics of the objects sought and the data considered. Figure 9.2 highlights the
algorithm selection process in red. The selected algorithms are then automatically

Figure 9.2: System Overview.

configured according to their execution context. Figure 9.3 highlights in red this
step of algorithm configuration. In addition to the characteristics of sought objects
and the processed data, the context of algorithms execution depends on the results
obtained from already executed algorithms. The enrichment of the knowledge base

Figure 9.3: System Overview.

(in green in Figure 9.4), provided after the algorithms execution (process in red in
Figure 9.4), allows to draw conclusions and identify objects by classification (pro-
cess in orange in Figure 9.4). This step is followed by an analysis of the results to
learn dynamically from experience, which they provide. This learning improves
knowledge explicitly about objects and data, depending on the specific context of
the application. Figure 9.5 highlights in red the learning process. The repetition of

9.2. SOLUTION PROPOSED



CHAPTER 9. SYSTEM OVERVIEW 113

Figure 9.4: System Overview.

Figure 9.5: System Overview.

this strategy continues throughout the detection process until there is no more in-
ference of new information. These iterations allow the system to become more and
more efficient as object detection progresses. The adaptation and dynamic enrich-
ment of knowledge through self-learning process from experience not only solves
the "indirect realism problem" but also extends its application to a wide range of
data sets and different application cases.

9.2. SOLUTION PROPOSED



10 Knowledge engineering

This chapter explains how knowledge is structured and modeled to analyze and
understand data content. Section 10.1 provides an overview of knowledge model-
ing to understand data content.

Section 10.2 explains data modeling and the impact of the Scene and various ex-
ternal factors on the acquisition process that generates the data and determines the
characteristics that the data has.

Section 10.3 explains how to model objects, the geometry they have, and the Scene
that contains them. These elements allow for adapting the process of data under-
standing, according to the geometric complexity of the objects, their topological
relationships, their specific characteristics (e. g. colour, material, size) and the con-
text in which they are located (e. g. ruin excavation, city street, modern building).

Finally, Section 10.4 explains the modeling of algorithms to detect objects and ge-
ometry in the data. Algorithm modeling allows algorithms to be selected, com-
bined, and configured according to each application case. The algorithms are
adapted according to the representation of objects in the data. The representa-
tion of an object depends on its geometry, its arrangement in the Scene, and also
on the characteristics of the data. Moreover, data characteristics are impacted by
the acquisition process, which is impacted by other external factors. The adaptation
of algorithms considers all these factors.

10.1 Knowledge modeling overview

Knowledge is structured and modeled to guide the understanding of data content.
Figure 10.1 shows the organization of knowledge.

It is necessary for understanding the data content to locate and identify the objects
which constitute the data. These objects can be diverse (e.g. car, floor, wall, water
mill, tree, table) and are characterized by their geometry (e.g. shape, surface,) and
their topological links (e.g. the distance between objects, parallel, perpendicular).
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Figure 10.1: Overview of the knowledge structure.

Locating and identifying objects requires the use of algorithms. Algorithms are
designed to identify geometries (e.g. plane, line, sphere, segments, orientation) in
data to allow the detection of objects. They produce new data (e.g. normalized
data, sampled data, filtered data) or new data characteristics (e.g. segments, local
density, homogeneous regions). As an illustration, consider an algorithm designed
to detect plans (such as RANSAC or Hough’s transform). It generates segments
(point groups) from data where each segment represents a plane. Thus, it allows
the detection of different objects whose geometry is composed of planes (e.g. table,
desk, chair, wall, ceiling, floor, wardrobe, door). The behavior of algorithms de-
pends mainly on the characteristics of the data (e. g. size, density). Furthermore,
since they produce data characteristics, and their behavior depends on these char-
acteristics, the behavior of algorithms depends on the results produced by other
algorithms. Therefore, they are interdependent.

The characteristics of the data depend on the acquisition process that generates the
data. However, the acquisition process is influenced by the Scene which contains
the objects to digitize (e.g. one object may occlude another), and by various exter-
nal factors (e.g. the light intensity, the light color, the vibration of the measuring
instrument, the artificial or natural light).

Besides, knowledge is organized hierarchically. In other words, one element can
be a subset of another. For example, a horizontal plane is a kind of plane that is
a kind of geometry. So a plane can be linked to an object since an object can be
linked to geometries.

10.1. KNOWLEDGE MODELING OVERVIEW
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10.2 Data domain

The data have many characteristics (density, noise, resolution, dimension, size, oc-
clusion), which impacts the process of understanding the data content. These char-
acteristics must be considered to guide the process of understanding. The acqui-
sition process generates data and significantly influences the data characteristics.
This influence is mainly related to the instruments used and the methods used for
the acquisition. Furthermore, the acquisition process itself is influenced by exter-
nal factors and by the Scene that is represented in the data. Figure 10.2 shows the
generic semantic description of any data and any acquisition process.

Figure 10.2: Semantic description of the data domain.

The semantic description of the data and the acquisition process, allows informa-
tion to be correlated with each other. Such a correlation aims to infer data char-
acteristics (e.g. each part of an object which was separated due to occlusion must
be associated with the same object). Let us take as an example an external scene
acquired by laser scanner Lidar, illustrated by Figure 10.3.

In this example, the data is acquired by scanning horizontally (shown by the brown
arrows in Figure 10.3) along a linear path (shown by the red arrow in Figure
10.3). This acquisition methodology, combined with the instrument used (Lidar
laser scanner) systematically generates a lack of local information caused by the
occlusion of parts of the Scene by objects. This lack of information often leads
to an over-segmentation of objects (the same object cut into several parts) or to a
failure of the object’s detection.

10.2. DATA DOMAIN
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Figure 10.3: Illustration of occlusions inference.

However, the lack of local information can be anticipated and compensated by rea-
soning. In this example, the detection of an object (shown by the red rectangle in
Figure 10.3) in the data can be correlated with the position of the measuring instru-
ment to infer the location of the area possibly occluded by the object (shown by the
red dotted rectangle in Figure 10.3). Thus, reasoning on the acquisition method,
the measuring instrument used, and the information of the Scene represented in
the data, allow the anticipation and localization of the occluded areas. The location
of these areas allows, for example, the reconstruction of an object segmented into
several sections. Moreover, it constitutes essential information to guide the choice
and adaptation of algorithms.

10.3 Scene domain

The semantic description of the objects present in the digitized Scene is essential
to understand the data content effectively. The object detection strategy must be
adapted to the different characteristics of the objects. Indeed, the simpler an object
is, the simpler the strategy used to detect it can be. On the contrary, objects with
complex characteristics require more elaborate detection strategies.

The semantic description of objects is separated into three main parts to facilitate
the adaptation of detection strategies. Figure 10.4 shows the generic semantic de-
scription of an object.

10.3. SCENE DOMAIN



118 CHAPTER 10. KNOWLEDGE ENGINEERING

Figure 10.4: Semantic description of any object.

10.3.1 Object characteristics

The first part of the object description is composed of the characteristics specific to
the objects that influence the acquisition process (e.g. color, material). Let us take
as an example a highly reflective metal object such as a traffic sign. The acquisition
of such an object by laser scanner technologies generates insufficient density data,
as shown in Figure 10.5. On the contrary, a matt object such as an asphalt sidewalk
acquired by this technology generates data of proper density.

The formal rules of inference shows in Equation 10.1 automatically infers the vari-
ation in density of a data (?d) by comparing the characteristics (?c) of the object (?o)
with the acquisition technologies (?t).

Data(?d) ∧Object(?o) ∧ LaserScanner(?t) ∧MetalMaterial(?c)

∧isContainedIn(?o, ?d) ∧ hasCharacteristics(?o, ?c)

∧generates(?t, ?d))⇒ hasLowDensityFor(?d, ?o)

(10.1)

This deduction allows adaptation of the algorithms used to detect objects. Similarly,
the color of an object can be related to external factors impacting the acquisition
process, such as ambient light, to automatically infer the color acquired in the data.
For example, a blue pen acquired under yellow light generates black data. The
deduction of such characteristics is essential for the detection of objects.

10.3. SCENE DOMAIN



CHAPTER 10. KNOWLEDGE ENGINEERING 119

Figure 10.5: Illustration of the influence of the object material on the acquisition
(asphalt sidewalk in the lower part of the image and a metal traffic sign in the
upper part of the image).

10.3.2 Geometry

The second part of the object description is the description of the geometries rep-
resenting the objects in the data. The shape defines the geometry of an object (e.
g. rectangular, triangular, cubic, cylindrical, spherical, free), an orientation (e. g.
vertical, horizontal, oblique) and a surface (e. g. regular, irregular, planar, linear).
Besides, objects can be represented as a compound of other objects.

Let us take as an example of the semantic description of a room. A room is com-
posed (mainly) of at least three walls, a floor, and a ceiling. The geometry of a
wall is commonly defined as a planar surface, vertical and of rectangular paral-
lelepipedic shape. The floor and ceiling are commonly defined as a planar surface,
horizontal, with a rectangular parallelepipedic shape. This information helps to
guide the choice of algorithms and to detect geometry and allow the identification
of objects.

However, the geometrical object’s description may not be sufficient to differentiate
objects (the ceiling and floor have the same geometrical definition) or to detect
objects in complex contexts (ruin excavation). That is why descriptions of the Scene
are necessary.

10.3. SCENE DOMAIN
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10.3.3 Scene

The Scene is the third part of the description of the objects. The Scene describes the
topological links of the objects (in contact, parallel, perpendicular, above, below,
on, inside, next to), and the context in which objects are found (archaeological
excavation, modern building, street, outside, inside).

Topological link

Topological links allow objects to be more easily detected in the data or to deduce
the position of an object by detecting another. Let us take as an example of the
street light detection illustrated by Figure 10.6. Street lights are described as being
spaced about 30 meters apart in a city. If the acquisition context is a city having
this property, then this information can be used to infer the position of street lights
automatically. In Figure 10.6, the green street light is detected by this geometric
description, while the position of the red street light is deduced by reasoning on
the position of the green street light, and the distance of 30 meters separating them.

Figure 10.6: Illustration of the inference of the position of a street light (in red)
thanks to the detection of another street light (in green) and its topological link (in
blue).

The description of the topological links of the objects allows facilitating the de-
tection of the objects. It also allows objects to be located when the acquisition
conditions are not optimal, and thus, when the data generated are not sufficiently
characterized to detect the object (e. g. lack of density, occlusion, shape distortion).

10.3. SCENE DOMAIN
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Scene context

The context of the scene dramatically influences the geometric characteristics of the
objects. Therefore the semantic description of the context of the Scene is essential.

Let us take as an example, the following geometric description of a wall: A wall
has a rectangular shape and a height greater than two meters (the description is
simplified for the example). The context in which the wall is located will strongly
influence these characteristics. Let us take two walls illustrated by Figure 10.7, from
two different scene contexts.

Figure 10.7: Illustration of two walls from two different scene contexts: a) wall in
ruin excavation context, b) wall in modern building context.

The wall shown in Figure 10.7(a) is in the context of a ruined excavation and the
wall shown in Figure 10.7(b) is in the context of a modern building. These walls
theoretically have the same semantic definition. However, the walls located in the
ruin excavation are here partially destroyed, and their geometries can be signifi-
cantly altered by time and excavation methods used. Thus, the wall located in a
modern building (Figure 10.7(b)) has a uniform shape and height, while the wall
located in the ruin excavation (Figure 10.7(a)) has a variable height (possibly less
than one meter) and an irregular shape.

The geometry obtained for the wall located in a ruin excavation (Figure 10.7(a))
differs significantly from the geometric description of a wall. This difference is too
significant to allow the wall to be detected. The geometric description of the wall
must, therefore, be adapted to the context. This adaptation is mainly carried out
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by the application of rules of inference that materialize the influence of the context
on the geometry of objects.

Let us take as an example, the rule shown by Equation 10.2.

Object(?o) ∧ Scene(?s) ∧ belongsTo(?o, ?s)

∧DestroyedObject(?d) ∧ hasCharacteristics(?s, ?d)

⇒ IrregularShape(?i) ∧ hasShape(?o, ?i) ∧ hasHeigh(?o,> 0m)

(10.2)

This rule formalizes that if an object (?o) belongs to a scene (?s), and the scene
has objects destroyed (?d), then the shape of the object can be irregular (?i), and
its height (?h) can be uncertain. Such rules allow the geometric and object-specific
characteristics to be adapted to the context of the Scene.

10.4 Data processing domain

The purpose of algorithms is to allow the detection of objects in the data. They
generate data or data characteristics to give clues about the geometries and objects
that the data contains. They are therefore semantically described as generating
data, detecting objects and adapted to geometries. Figure 10.8 shows the generic
semantic description of any algorithm.

Figure 10.8: Semantic description of any algorithm.

The semantic description of each algorithm allows for selecting algorithms accord-
ing to their relevance to detect objects. Their relevance is estimated through their
"is suitable for" link with the geometries of the objects.

10.4. DATA PROCESSING DOMAIN
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Some algorithms also have data prerequisites to be taken into account. Moreover,
algorithms produce data characteristics. Thus, algorithms can produce data char-
acteristics that satisfy the prerequisites of other algorithms. These algorithms are
interdependent. These interdependence relationships are established by automatic
inference (illustrated by the dotted arrow in Figure 10.8). Let us take as an example
region growing algorithms. These algorithms require that the data is not noisy, so
as not to cause over-segmentation, and that the data is small in size, as these algo-
rithms are mostly exorbitantly in time execution. Beside, denoising algorithms can
satisfy the prerequisite on data noise, meanwhile filtering or sampling algorithms
can reduce the size of the data. Therefore, by inference, it is possible to deduce
interdependences relationships between region growing algorithms and denoising,
filtering, and sampling algorithms. These interdependencies allow algorithms to
be efficiently combined.

Most algorithms require parameters that value influences its behavior. These pa-
rameters are generally primitive values (integer, double) and are very often used to
perform basic task such as thresholding. Experts traditionally choose these values
based on the characteristics of data and objects, and optimized, through the use of
Machine Learning, for specific cases. However, the choice of parameters set by ex-
perts i is not adapted to the object or data characteristics variations. Moreover, the
more variation there is in the application case, the more they need for training data
increases for the use of Machine Learning. Also, the use of Machine learning does
not allow adapting parameters to situations for which they have not been trained.
However, the variations are multiple and can occur during the acquisition process
(change of measurement instrument or methodology), or produced by external fac-
tors, or by the arrangement of objects in the Scene, or by changes in the geometry
or material of the objects. Small variations can thus jeopardize the detection of
objects by algorithms.

Therefore, we propose to adapt the algorithm parameters according to the charac-
teristics of the objects and their geometry, as well as to the characteristics of the
data, including the different factors impacting the data (acquisition process, exter-
nal factors, Scene). This adaptation is made by using equations that relate different
characteristics to calculate an element. For example, the calculation of a parameter
used to threshold a minimum distance between two neighbors can be defined ac-
cording to the object size and the density of the point cloud. Appendix A illustrates
the modelling of various algorithms.

10.4. DATA PROCESSING DOMAIN
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10.5 Discussion

The structuring and modeling of knowledge allow the analysis and understand-
ing of data content to be adapted according to multiple factors. These factors
are mainly the acquisition technology used (e.g. laser scanner, photogrammetry,
Kinect), external factors impacting the acquisition process (e.g. intensity of ambi-
ent light, color of light, vibration of the measuring instrument), the structure of the
Scene (e.g. occlusion of objects), the type of context (e.g. ruins excavation, modern
building), as well as the geometry (e. g, surface, shape) and the topological links of
the objects contained (e.g. traffic sign, car, water mill, street light). Adapting data
understanding requires to consider the variations of all these factors to provide
appropriate and robust solutions. The adaptation of the content understanding is
achieved by adapting the algorithms used. The following chapter explains how
these algorithms are automatically adapted.

10.5. DISCUSSION



11 Knowledge-driven object
detection

Understanding the data content requires analyzing the data. The purpose of data
analysis is to identify objects and geometry. It requires the use of algorithms to
obtain clues about the data content. Then reasoning processes use these clues to
identify the objects and geometries that constitute the data. The reasoning is based
on knowledge. The previous chapter (Chapter 10), has presented the modeling of
the primary knowledge needed to guide the detection of objects and geometry in
the data. The application of reasoning on this knowledge enables not only to man-
age the algorithms to use but also to identify the elements that constitute the data.
This chapter shows how this knowledge is used to detect objects and geometries
in data. Section 11.1 presents the management of algorithms by the different rea-
soning processes. Section 11.2 presents how the application of rules and reasoning
enable to identify objects and geometries in data. Finally, Section 11.3 presents
how knowledge is automatically adapted to the application case to compensate for
unexpected variations and give more flexibility to the detection approach.

Appendix B provides an overview of the main mechanisms essential for detection
processes.

11.1 Algorithms management

Algorithm management requires a high degree of flexibility to effectively adapt
each algorithm to the application case (e.g. data, object, acquisition context) as well
as to the results obtained by the other algorithms. Algorithms must also be "in-
telligently" selected and configured. To provide such "intelligence", we propose to
fully manage the algorithms by applying reasoning on the global modeled knowl-
edge to understand the content of the data. The purpose of this reasoning is first
to automatically select the "best" algorithms among the set of algorithms available,
for a given application case, secondly to configure these algorithms according to
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the situation and finally to execute them and integrate their results.

11.1.1 Algorithms selection

The selection of algorithms is carried out by reasoning on the entire knowledge
modeled for an application case. The reasoning identifies the most appropriate
algorithms to detect objects and geometry in the data.

This identification is carried out in three steps. First, the reasoning process evalu-
ates the relevance of each algorithm to detect the objects and geometries defined.
Second, it assesses the relevance of each algorithm specifically to the data contain-
ing the objects and geometries being searched. Finally, it assesses the relevance of
each algorithm to algorithms that have already been found to be relevant.

Each algorithm is considered relevant firstly to the data, which it produces or on
which it is applicable, and secondly to the objects, which it detects and the geome-
tries for which it is suitable.

Let us take as an example the case of the detection of a green object in a colored
point cloud. Region growing algorithms with color as an aggregation criterion are
adapted to segment data according to color. They are therefore considered relevant
for detecting the object being sought. However, among the different algorithms for
region growing, only algorithms designed for 3D data will be considered relevant
for processing a colored point cloud. Thus a limited set of algorithms is relevant
both to detect such object and to work on such data.

Among this set of algorithms, the algorithms constitute a list of "candidates", if all
of their prerequisites are satisfied. It is necessary to have a set of pre-processing
algorithms to satisfy the prerequisites of algorithms. Thus, each algorithm that
satisfies one of the preconditions of an algorithm is part of this set of pre-processing
algorithms.

Let us take again the previous example where some region growing algorithms
were selected as "candidates". These algorithms require that the data are not noised
and small. Denoising and sampling algorithms can satisfy the requirements of
the region growing algorithms. Thus, these algorithms are considered relevant for
region growing algorithms and integrated into the set of pre-processing algorithms.

Since the reasoning mechanism is continuous (repeated until nothing changes), the
relevance of the algorithms is evaluated recursively.

Finally, the last selection is carried out on all the "candidates". This selection con-
sists of retaining among the "candidates" only those whose all prerequisites are
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satisfied. Thus all algorithms relevant and adapted to the application case are se-
lected to be configured and used.

This selection is concretized in the knowledge by linking the algorithms to the
objects, geometry, and data defined for the application case, by the property "is
relevant for". This selection allows the configuration and execution of only those
algorithms that may be relevant to the application case. Moreover, it allows linking
the application case data and objects with the algorithms. These links are essential
to configure the algorithms.

11.1.2 Algorithms configuration

Each algorithm that is selected for execution is automatically configured according
to the application case. This configuration is carried out directly in the knowledge
base by adding properties such as the parametric values necessary to run the algo-
rithm. It is necessary to understand the needs of the algorithm in order to configure
each algorithm. Moreover, the configuration of the algorithms determines their ex-
ecution. It is therefore essential to configure the algorithms according to the results
already obtained, in order to optimize their use. Considering the results already
obtained requires a link between the inputs and outputs of algorithms. Therefore,
a property defining by the algorithm links its inputs and outputs (e.g. property
"comes from", "is a segment of"). The configuration of each algorithm is done first
by setting up its inputs, then by setting its parameters.

Algorithms inputs

In the knowledge modeling presented in the previous chapter (Chapter 10), the
"works on" property links the inputs of each algorithm to the data. Besides, each
algorithm can have prerequisites on the data (expressed by the "has prerequisite"
property). Finally, the "produces" property links the algorithm to its output, which
is data or characteristics.

A rule of inference structuring these properties configures the algorithm inputs.
Figure 11.1 illustrates this rule.

This rule stipulates that a data is considered as an input of an algorithm (rep-
resented by the "has input" link in Figure 11.1) if this data is of the same type
(represented by the "rdf:type" link in Figure 11.1) than the one on which the algo-
rithm can work (represented by the "works on" link in Figure 11.1) and that it is
not already linked by the algorithm to an data or a characteristic (represented by
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Figure 11.1: Illustration of the process that sets up algorithm inputs.

the dotted link in Figure 11.1). This ensures that the same algorithm is not config-
ured several times. Besides, this data must satisfy all the characteristics defined as
prerequisites for the algorithm (represented by the red links in Figure 11.1).

Let us take as an example a segmentation algorithm defined as working on 3D
point clouds, producing homogeneous colored segments, and having as a prerequi-
site that the data have a color. Thus this algorithm produces segments from a point
cloud. This information allows for considering that the segments "come from" the
point cloud. The knowledge on the segment origin allows knowing if a point cloud
has already been processed or not by the algorithm considered. In this example,
if some homogeneous colored segments already come from the considered point
cloud, then the algorithm will not take this point cloud as an input. Thus, the al-
gorithm takes data as input if and only if the data is a point cloud with colors (i.e.
satisfy the two algorithm prerequisites) and it does not exits homogeneous colored
segment that comes from this data.

Algorithms parameters

The parameters of algorithms determine their behavior. In general, the value of
each parameter of an algorithm is assigned according to the application case (data
characteristics) and the objective that the algorithm must achieve (detecting an ob-
ject, characteristic or geometry).

For example, a parameter used as a threshold to determine the maximum distance
between two entities so that they can be considered as neighboring is determined
according to the density of the data. Similarly, an algorithm for detection of planes
is influenced by the occlusion or non-occlusion in the data that will determine the
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type of plane sought (e.g. tiny plane, full plane). Finally, let us take as an example
the case of a stone wall which is a rather rough object, and the case of a modern
wall which is a smooth object, to illustrate the influence of the choice of parameters
on the execution of the task that the algorithm must accomplish. The estimation of
the normals of these two objects, therefore, differs significantly. Figure 11.2 shows
the difference between the estimation of the normals on a stone wall (a) and a
smooth wall (b), performed by the same algorithm without parameter variations.

(a) Stone wall. (b) Modern wall.

Figure 11.2: Illustration of the normal estimation. The value of the normal is con-
verted in RGB format for the visualisation.

The stone wall has highly heterogeneous normals (displayed in green) while the
smooth wall is composed of homogeneous normals (displayed in red). The seg-
mentation of these objects based on the estimation of normals requires a so-called
tolerance parameter to determine if the difference between two neighboring nor-
mals is small enough to belong to the same segment. In this case, the tolerance
parameter must be adapted to the roughness. Thus its value must be higher in the
case of the stone wall than in the case of the smooth wall. Otherwise, it would cause
an over-segmentation in the case of the stone wall, which would be detrimental to
its detection.

The selection of algorithms explained in the previous section (Section 11.1.1) allows
establishing links between the algorithms and the data and the objects they contain.
These links allow the retrieval of the necessary information to configure each algo-
rithm. This information can be used to set the value of a parameter (such as the
density for a thresholding parameter) or to set a set of linked parameters. There-
fore, the "depends on" property links each parameter of an algorithm to "types" of
characteristics on which it depends. Similarly, when necessary, the "has equation"
property links a parameter to an equation that formalizes the dependencies of the
parameter. This equation aims at combining different information to calculate the
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value of a parameter in a way that is adapted to the application case. The equa-
tion variables correspond to the type of characteristics on which the parameters are
dependent.

For example, the "RANSAC" algorithm whose modeling is described in Appendix
A.3, requires a number of iterations as a parameter to detect the best plane in the
point cloud. This number of iterations depends on the size characteristic (number
of points) of the data. Thus the number of iterations of this algorithm is defined as
depending on the size of the data.

Thus the dependency relationship between the "Iteration Number" parameter of the
algorithm and the "Data Size" type characteristics is defined as a constraint of the
algorithm (see Equation 11.1). This constraint means that the algorithm parameter
must have the "depends on" link with the "Data Size" type characteristics owned by
a data. The dependency relationship between the parameter of an algorithm and a
characteristic is satisfied by a rule of inference.

IterationNumber = 10%× DataSize (11.1)

This rule stipulates that if a parameter of an algorithm depends on a type of char-
acteristic of an object, data or geometry for which this algorithm is "is suitable",
"detects" or "is relevant for" respectively, then the parameter dependency is as-
signed to the characteristic that the object, data or geometry has.

When all the dependencies of a parameter are satisfied, the algorithm parameteri-
zation process uses the equation assigned to the parameter to calculate the param-
eter value. This assignment is carried out through the "has value" property that
links the value to the parameter.

11.1.3 Algorithms execution

Once the algorithms have been selected and configured, they can be executed. In-
formation about the algorithm are stored in the semantic knowledge base. How-
ever, the algorithms are executed using an algorithmic paradigm that differs from
the semantic paradigm used to model knowledge. Therefore, it is necessary to cre-
ate a conceptual and technical bridge between the algorithmic paradigm and the
semantic paradigm.

This conceptual bridge requires retrieving and transcribing the information con-
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tained in the knowledge base (in the semantic paradigm) into a value that can be
used by algorithms (e.g. string, integer, double, float, point). It then requires to
dynamically instantiate each algorithm to be executed and set them with these val-
ues and then execute them. Finally, the results produced by the algorithms must
be interpreted in semantic form and integrated into the knowledge base to enrich
it with new information.

Among the different technologies resulting from the Semantic Web, SPARQL
stands out as a standard by the W3C to allow the selection and dynamic modi-
fication of knowledge through queries (see Section 4.3.3). Therefore, we propose a
framework based on SPARQL to provide a bridge between the two paradigms. This
framework allows algorithms to be automatically executed according to the infor-
mation on their parameterization, contained in the knowledge base. It then allows
the enrichment of the knowledge base by the integration of the results obtained by
the execution of algorithms. Figure 11.3 shows the structure of this framework.

Figure 11.3: Overview of the algorithms execution framework.

This framework translates into a SPARQL query the information on the algorithms
contained in the knowledge base (yellow arrow in Figure 11.3). The algorithms are
then instantiated and executed using the SPARQL query (orange arrow in Figure
11.3). The execution of the algorithms (in blue in Figure 11.3) is performed through
shared memory. This memory allows the sharing of information between the algo-
rithms. Finally, the results of the algorithms are interpreted (green arrow in Figure
11.3) in the semantic paradigm and are integrated into the knowledge base (red
arrow in Figure 11.3) through the SPARQL query.
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Design of SPARQL query

We have extended the functionalities of SPARQL to the Computer Vision domain
by creating SPARQL built-in from the most commonly used algorithms in this
domain.

These built-ins have the objective of triggering the execution of each algorithm and
integrating its result into the knowledge base.

The execution of the algorithms is performed using the call of a SPARQL built-in
specific to each algorithm. It is necessary to collect all information firstly from each
algorithm. The information required to create the SPARQL built-ins is the name of
the algorithm class and a set of pairs consisting of a field name and a field value
for each algorithm parameter.

The name of the algorithm class is assigned to the name of the SPARQL built-
in to call the appropriate algorithm. The set of pairs is used to reconstruct the
algorithm parameters. The name of the field is obtained by retrieving the type of
the parameter. Similarly, the value of the field is obtained by retrieving the value
of the parameter (linked by the "has value" property).

Let us take as an example the "RANSAC" algorithm applying to the point cloud
"pc1" of type "Point cloud" and having a parameter of type "Tolerance" of a value
of "0.2" and a parameter of type "Iteration Number" of a value of "10". The name
of the first field for the SPARQL built-in is "pointcloud", the name of the second
field is "tolerance" and the name of the last field is "iterationNumber". The value
associated with the field name "tolerance" is "0.2", the value associated with the
field name "iterationNumber" is "10" and the value associated with the field name
"pointcloud" is "pc1". Finally, the name of the SPARQL built-in corresponds to the
name of the type of the algorithm. In this example, the name of the built-in is
"ransac".

The SPARQL built-ins are linked to a return variable to integrate the results pro-
vided by the execution of each algorithm. On the other hand, each result is firstly
linked to the input of the algorithm. This link depends on the type of the result.

If the result is a value with a specific Datatype (e.g. "string", "integer", "double"),
the result is linked to the input of the algorithm by property specific to the algo-
rithm. For example, an algorithm to estimate the height of a segment generates a
"double" value as a result and takes a segment as entered. Thus the input segment
is defined to be linked to the double type value by the property corresponding to
the algorithm, which in this case is "has a height". Thus the height of the segment
is defined by the result of the algorithm.

11.1. ALGORITHMS MANAGEMENT



CHAPTER 11. KNOWLEDGE-DRIVEN OBJECT DETECTION 133

If the result is a complex element like a "plane", the SPARQL query firstly, attributes
it the adapted type thanks to the definition of the output constraint on the algo-
rithm. For example, the "RANSAC "algorithm is defined as generating elements of
"Plane" type. Thus the results of the algorithm can be automatically considered as
plane.

Then, the query retrieves every restriction on this type, which is useful to ensure
the consistency of the knowledge base. These restrictions define the characteris-
tics that the results must have and allow for defining new information related to
the result through the adding of new relationships. Moreover, these characteristics
correspond to information coming from the inputs, parameter, or prerequisite of
algorithms. For example, each plane is constrained to "come from" a point cloud
and to have a "precision" of the same type as a tolerance parameter. Thus the
planes generated by the RANSAC algorithms are linked by the "come from" prop-
erty to the input data of the algorithm and these planes will have as "precision"
characteristics the value of the "tolerance" parameter of the algorithm.

To summarize the conversion of "class construct" into SPARQL query, let us take the
example of the RANSAC algorithm whose "class construct" is presented in Code
11.1 under the Manchester syntax (explained in Section 4.3.2).

1 RANSAC:
2 Algorithm
3 and (worksOn some (PointCloud) )
4 and (hasParameter exactly 1 Tolerance)
5 and (hasParameter exactly 1 IterationNumber)
6 and (generates some (Plane that comesfrom exactly 1 Pointcloud
7 and hasFeature exactly 1 Precision)

Code 11.1: Example of RANSAC algorithm modeling

Thus in this simplified example, the "class construct" of the "RANSAC" algorithm
is translated into the following SPARQL query illustrated by Code 11.2:

1 CONSTRUCT {
2 ?planes rdf:type Plane.
3 ?planes comesFrom ?input.
4 ?planes hasPrecision ?p1
5 } WHERE {
6 ?input rdf:type PointCloud.
7 ?p1 rdf:type Tolerance.
8 ?p2 rdf:type IterationNumber.
9 ?a rdf:type RANSAC.
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10 ?a hasParameter ?p1.
11 ?a hasParameter ?p2.
12 ?a worksOn ?input.
13 ?plane ransac("pointcloud=?input" "tolerance=?p1" "iterationNumber=?pc2")
14 }

Code 11.2: Example of SPARQL query translated from RANSAC class construct

The execution of this query not only calls the execution of an algorithm and pro-
vides the information to define its result but also integrates the results of the al-
gorithm and their definition (after they are translated into the semantic paradigm)
into the knowledge base in a consistent way.

Execution though SPARQL

The different field names and their associated field values provided as parame-
ters of the SPARQL built-in, allow for instantiating a programming instance of the
corresponding algorithm class with the values of its variables.

For this purpose, the fundamental values (e.g. "xsd:string", "xsd:integer",
"xsd:double") resulting from the semantic paradigm are translated into fundamen-
tal values in the programming paradigm (e.g. string, integer, double). When the
parameters or input of an algorithm are compound elements (e.g. point cloud,
image), it means that they are the result of another algorithm previously executed.

Even if the SPARQL functionalities can be extended through built-ins, these built-
ins are executed independently without sharing memory. Thus algorithms cannot
directly share their results. This implies that the results of the algorithms should
be saved in files or databases and reloaded when an algorithm needs it. In the
context of massive data processing, the lack of memory sharing drastically slows
down the execution process. Therefore SPARQL built-ins are combined with an ex-
ternal execution engine that completely manages the execution of algorithms and
shares the memory between them. The execution engine manages the memory
between different algorithms by linking individuals inside the ontology with their
corresponding pointers inside the memory. The execution engine executes the al-
gorithm called in the SPARQL query and matches the URI of "owl:individual" with
the address of the memory pointer.

This memory management provides us a flexible use of the algorithms alignment
by linking data or the result of an algorithm, to other algorithms by their pointer
inside the memory.

This allows the algorithms to be dynamically instantiated and configured. This
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dynamic instantiation is possible through the use of reflection APIs such as the
"reflect" API in "Java". The algorithms can then be executed, and their results
collected.

The results of an algorithm is a fundamental value (e.g. string, integer, double)
or a compound element (e.g. point cloud, image). Whatever the result type, this
result must be semantically interpreted to be returned to the SPARQL query that
will add the semantic representation of the result into the knowledge base.

The results of algorithms that are fundamental value(s) aim at improving the
knowledge about an object or data. This type of result is interpreted as a semantic
node.

For example, an algorithm for detecting the height of an object produces a funda-
mental value in the form of a "double" that corresponds to the height of the data to
which it has been applied.

The results of algorithms, which are compounds elements, aims at improving the
knowledge base by adding new individuals representing the same information
type. Therefore, a semantic node representing an "individual" is created for each
result. The creation of an "individual" requires the creation of a URI specific to
it. The URI created allows for accessing to its semantic representation into the
knowledge base and for accessing its programming representation into the memory
system. All semantic nodes representing the result of the algorithm execution is
returned to the SPARQL query.

11.2 Classification

The structuring of the data is carried out by identifying objects or geometry. The
execution of algorithms allows enriching the knowledge base by adding informa-
tion about the data and their content. This information provides clues to identify
objects and geometries.

For example, the execution of several segmentation and extraction algorithms pro-
vide information that a portion of the data (segment) is cylindrical, has a height of
180 cm, a width of 20 cm, and is vertical. Figure 11.4 shows an example of such a
segment in the 3D point cloud considered.

This segment represents the trunk of a tree. The process of segment identification is
based on the semantic descriptions of objects. It checks whether the characteristics
of a segment corresponding to the geometric or topological description of an object.
Semantics, in this case, is based on geometry and topology, it could also be based
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Figure 11.4: Example of a point cloud segment representing a trunk.

on other characteristics (e.g. color).

Our objective is not to be exhaustive as to the possible characteristics but to explain
how the approach works through two of the most commonly used characteristics
in Computer Vision.

11.2.1 Geometric classification

The classification, according to the object’s geometry, is based on objects described
in the knowledge base. The description of each object is automatically interpreted
as a rule of inference to allow the classification of segments into objects.

In the example illustrated in Figure 11.4. Let us consider a class called "Trunk"
defined as being composed of a vertical cylinder, with a height greater than 170 cm
and a width greater than 15 cm. Code 11.3 shows its description in the Manchester
syntax.
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1 Trunk:
2 Object
3 and (isComposedOf exactly 1
4 (Cylinder and (hasOrientation only Vertical))
5 and (hasWidth exactly 1 xsd:double[> "15"^^xsd:double])
6 and (hasHeight exactly 1 xsd:double[> "170"^^xsd:double])

Code 11.3: Example of Trunk modeling

Equation 11.2 shows the rule of inference for the description of this object.

Segment(?s) ∧ isComposedO f (?s, ?c) ∧ Cylinder(?c) ∧ hasOrientation(?c, ?o)∧
Vertical(?o) ∧ hasHeight(?c, ?h) ∧ GreaterThan(?h, 170) ∧ hasWidth(?c, ?w)∧

GreaterThan(?w, 15)⇒ Trunk(?c)
(11.2)

Thus the segment illustrated by Figure 11.4 checks if each condition of the rule of
inference is satisfied and is therefore classified as a "Trunk".

11.2.2 Topological classification

The geometric description of an object is not always sufficient to identify objects,
although it can be adapted to different contexts (as explained in Section 10.3.3).

For example, the geometry of the segment shown in red in Figure 11.5 differs
radically from the geometry of a car.

This difference may be due to multiple unpredictable factors, such as acquisition
errors or due to material reflectance.

Moreover, some objects are defined as the composition of other objects. For exam-
ple, a tree is defined as composed of a trunk and leaves. The study of the topolog-
ical relationships between objects is, therefore sometimes necessary to reconstruct
these objects.

Classification based on the topological descriptions of objects consists in classifying
a segment according to the topological links it has. As with classification based on
geometry, the topological description of each object is interpreted into a rule of
inference. Thus, if a segment satisfies all the topological links described for a given
object, it is classified as belonging to this object class. Moreover, topological links
can be described directly in the class of the object (e.g. composition, parallelism)
or inferred by reasoning on knowledge.

11.2. CLASSIFICATION



138 CHAPTER 11. KNOWLEDGE-DRIVEN OBJECT DETECTION

Figure 11.5: Example of a point cloud segment (in red) representing a car.

Let us take the example of detecting a tree. If the technology and acquisition
process lead to occlusion, the presence of localized occlusion between the leaves
and the trunk of the tree can be inferred (as explained in Section 10.2). These
occlusions can cause the absence of connection information between the trunk and
the leaves of the tree. However, the detected occlusion is considered as a topological
connection link between the different segments located around the occlusion. This
topological link allows considering the leaves and trunk as connected. Thus the
tree can be identified by the composition of the trunk and leaves.

Similarly, in Figure 11.6, the wall is divided into several segments, which are all
identified as independent walls.

The occlusions of trees causes this division. However, through the prediction of the
occlusion presence (in red in Figure 11.6), walls are defined as having a topological
"occlusion" relationship (in green in Figure 11.6). Let us consider that the descrip-
tion of a wall specifies that if two walls have the same geometry and are connected,
then they form a single wall. This description, therefore, allows unifying the walls
into a single wall.

However, some segments are not detected because their geometry differs from the
description of the object on the one hand, and the description of topological links is
not sufficient on the other. This is particularly the case for detecting the car shown
in red in Figure 11.5.
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Figure 11.6: Recomposition of a wall using occlusions deduction (in red) and in-
ferred topological link (in green).

11.3 Knowledge-based self-learning process

The objective of Knowledge-based self-learning process is to improve the under-
standing of data content by generating new knowledge or by compensating for
any deviation between the knowledge and the information obtained. This learn-
ing is based on the experience gained during the detection process. Its generates
or adapts global knowledge by studying the results obtained on each application
case. This new knowledge is therefore specific to each application case, and thus, it
is more precise than the general knowledge previously used. The addition of new
and more precise knowledge on case studies makes it possible, on the one hand, to
adapt the selection and configuration of algorithms better and, on the other hand,
to make the classification more efficient and robust. In particular, it solves problems
such as the one illustrated in Figure 11.5 where global knowledge of the objects is
not sufficient to detect them. Indeed, the more precise the knowledge is, the more
effective the object detection is.

It is necessary to understand how data is structured in order to infer new knowl-
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edge such as new relationships between objects or to modify knowledge such as
object geometries. The information extracted by the algorithms and the results
obtained after the classification step provides clues to understand and make as-
sumptions about the structure of the data. The analysis of cues obtained must
contain a form of "intelligence" that allows to make hypotheses about the structure
of the data and draw conclusions that generate new knowledge.

That is why we propose a knowledge-based self-learning process system consisting
of three steps. First, it enriches the knowledge base with new information on the
topological relationships of objects and the geometry already inferred. Secondly,
it analyses the information obtained so far to formulate new hypotheses on the
structuring of the data. Third, it checks the consistency of the hypothesis from
study-cases, and it integrates the validated hypotheses in the form of knowledge
or reformulates the invalidated hypotheses.

11.3.1 Knowledge enrichment

The objective of enriching knowledge is to generate more clues on the topological
links between the different objects detected and on their geometry. This enrichment
depends on the diversity of algorithms available. Thus, the addition of algorithms
improves the enrichment of knowledge when the application case requires it. En-
richment is carried out by queries requesting the execution of algorithms to add
characteristics, on segments that do not yet have these characteristics.

Let us take as an example the scene illustrated by Figure 11.7

Cars have been identified (in yellow in Figure 11.7) but some segments also repre-
senting cars (in blue in Figure 11.7), have not been identified. The knowledge used
to detect cars has no topological link. Thus no topological link has been studied to
detect cars. The enrichment of knowledge through the execution of algorithms al-
lows the establishment of topological links between objects by adding information.
Among this information, the minimum distance between each car is added as well
as the alignment link between the cars. Thus, these new links provide information
relevant to the analysis.

11.3.2 Hypothesis formulation

The automatic formulation of hypotheses is based on the analysis of the character-
istics common to the segments identified as objects of the same type (e.g. segments
identified as cars). More precisely, hypothesis formulation consists of grouping the
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Figure 11.7: Example of a point cloud containing cars that have been detected
(yellow) and not detected (blue) before the learning process.

common points of segments of the same type, for each type of object.

Let us take the previous example illustrated in Figure 11.7. In this example, the
detected cars are aligned and close to each other (no elements are between them).
They also all have estimated dimensions (height, width, length). Each of these
characteristics forms a group that characterizes the studied set (such as "object
aligned with a car", "object close to a car").

Each characteristic grouping is a sub-set (or sub-class) of an object type. These
groups are based on an aggregation rule related to the characteristics used to create
it. This rule allows the assessment of the belonging of an element to a group. For
groups formed from non-numerical characteristics (such as topological links), their
aggregation rule is directly linked to their characteristics.

In the previous example, let us call the group based on the alignment criterion
"AlignedWithCar". Equation 11.3 shows the aggregation rule.
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Segment(?s) ∧ Car(?c) ∧ alignedWith(?s, ?c)⇒ AlignedWithCar(?s) (11.3)

It states that if a segment has a link "aligned with" to an object identified as a car,
then it belongs to that group.

For groups formed from numerical characteristics, their aggregation rules are
linked to an interval of values. Each value interval is intended to provide more
flexibility than a thresholding method to assess the integration of a value. The
calculation of a value interval requires a statistical study of the values of the char-
acteristics that this interval represents. However, the characteristics studied are part
of a set of objects that is identified as belonging to a given object type, but does not
include all the objects of that type. Therefore, each value interval calculated from
a confidence interval [Kalinowski, 2010], which allows calculating an interval from
a set of value samples. The calculation of this interval provides a confidence level
corresponding to the percentage of belonging to this interval, of the complete set
of values. The confidence interval is defined by Equation 11.4 with x̄ the mean of
the values, δ the standard deviation, η the number of values and tα the confidence
coefficient.

Ic =

[
x̄− tα

δ
√

η
; x̄ + tα

δ
√

η

]
(11.4)

In the previous example, let us call the group based on the proximity criterion
"NearCar". This group is based on the proximity characteristic, which has a nu-
merical value corresponding to the distance between two elementary elements.
Thus the distances between the cars enables to compute a set of values used to cal-
culate the confidence interval. In this example, the calculated confidence interval
is [1.2; 2.4]. It means that for a segment to be in this group, it must have a distance
value with a segment identified as a car between 1.2m and 2.4m. This process of
grouping is similarly applied for the height, width, and length of cars.

These groups are combined to formulate hypotheses about the characteristics of an
object. Thus if a segment belongs to every group composing the hypothesis, then
it is classified as belonging to the set of objects corresponding to the hypothesis.

Let us reiterate the previous examples by considering the hypothesis that if a seg-
ment belongs to the "NearCar" and "AlignedWithCar" groups, then it is a car. In
this example, the hypothesis is composed of two groups and is translated into the
rule of inference presented in Equation 11.5.
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Segment(?s) ∧ AlignedWithCar(?s) ∧ NearCar(?s)⇒ Car(?s) (11.5)

The formulation of hypotheses by combining groups allows a precise formulation
of complex hypotheses. Besides, the more groups a hypothesis combines, the more
specialized the hypothesis is on the whole studied. However, if a hypothesis is too
specialized, it would not allow for identifying a new segment because the only seg-
ments that will validate this hypothesis are those used in the study and therefore
those that are used to formulate the hypothesis. Conversely, if a hypothesis does
not include enough groups, it may be too general and invalid.

Therefore, the formulation of hypotheses must be hierarchically ordered to improve
identification as much as possible. It begins with the automatic formulation of a
general hypothesis composed of a single group, and then. Then, if this hypothesis
is invalidated, it is automatically combined with other groups to make a more
complex hypothesis. Such a strategy is often providing more precise results.

11.3.3 Hypothesis verification

The object detection approach we propose is knowledge-driven. The hypotheses
formulated produce new knowledge, which has the effect of changing the behavior
of the detection approach for each application case considered. However, each
hypothesis may be incorrect, and the knowledge it adds may lead to a regression
in the quality of the detection obtained. Therefore it is necessary to verify the
hypotheses.

Verification of a hypothesis requires measuring the consequences of changing or
adding knowledge on the result of object detection to ensure that the detection is at
least equivalent in quality. The hypothesis verification can, therefore, be performed
by comparing the results obtained before the integration of hypothetic knowledge
with the results obtained by integrating the new knowledge.

Thus, to validate a hypothesis, the results obtained with the addition of the new
knowledge must not cause any inconsistency with the results previously obtained.
Knowledge modeling is done in the form of constraints and rules of inference.
Thus, checking the consistency of the knowledge base ensures the validation of
hypotheses.

Let us take the example used in Section 11.3.2 and illustrated in Figure 11.7. In
this example, several groups of characteristics are used to formulate hypotheses,
including the "NearCar" and "AlignedWithCar" groups. Let us consider that the
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first hypothesis is based only on the "NearCar" group, which groups together the
elements that must have a distance between 1.2m and 2.4m from a segment iden-
tified as a car. In this case, the hypothetic is that any element located at a distance
between 1.2m and 2.4m from a car is a car. This hypothesis leads to the classi-
fication as a car of segments previously classified as trees. However, since these
objects (such as trees) are defined as "disjoint" groups of cars, the result obtained
by integrating this hypothesis is considered as being inconsistent. Consequently,
the results obtained with the integration of this new knowledge are deleted, and
the hypothesis is reformulated.

As explained in Section 11.3.2, the reformulation of a hypothesis consists in inte-
grating more groups of characteristics.

In the previous example, the hypothesis can be reformulated by integrating the
characteristic group called "AlignedWithCar". In this case, the assumption would
be that any segment aligned with a segment identified as a car and located at a
distance between 1.2m and 2.4m from that segment, is a car. This hypothesis is
reformulated to become more and more specific, until the results induced by it are
coherent, or it is no longer possible to enrich it. In the latter case, the reformulation
process is over.

In this example, the reformulated assumption by integrating the two groups of
characteristics allows the identification of segments that were not previously iden-
tified correctly (in blue in Figure 11.7).

The integration of new knowledge resulting from learning allows increasing the
robustness and quality of the interpretation of data content by performing object
detection that adapts to the specificity of each application case.

11.4 Discussion

The object detection presented in this chapter is fully driven by Knowledge. This
process is based on a data processing step and a learning step.

Two phases compose the data processing: firstly a phase of algorithm management,
secondly a phase of classification.

The algorithm management is itself divided into three steps. The first step is se-
lecting algorithm relevant for the data and objects automatically. The second step
is configuring the inputs and parameters of the algorithm automatically. These
two first steps are applied by reasoning on the Knowledge-base. The last step is
the automatic execution of algorithms through SPARQL queries that makes a con-
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ceptual and technical bridge between the semantic paradigm and the algorithmic
paradigm. The SPARQL query parses information from the knowledge base to ex-
ecute algorithms. Then, it interprets the algorithm results to integrate them into
the knowledge base.

The phase of classification is based on the automatic integration of algorithm re-
sults inside the Knowledge-base. The information provided by these results allows
for identifying objects and geometry through a geometric classification (e.g. the
definition of shape, size) and topological classification (e.g. proximity, parallel,
perpendicular).

Finally, the self-learning process step is composed of three phases to ensure its
robustness: firstly, the knowledge enrichment, secondly the hypothesis formula-
tion and thirdly, the hypothesis verification. The stage of knowledge enrichment
aims at adding information about detected elements of the same type (e.g. cars)
to identify further common characteristics between elements of this type. Based
on the automatic identification of common characteristics, the process of learning
creates new types defined from common specifical characteristics automatically.
These new types are created through rules based on specific properties or values
belonging to a confidence interval. These types are then used in a hierarchical or-
der to formulate hypothesis aiming at improving the detection automatically. The
step of hypothesis verification applies the hypothesis formulation automatically in
the hierarchical order to ensure the improvement of the detection.

This process of self-learning process allows for adapting the detection process accu-
rately and efficiently to the specificity of each application case automatically. Such
adaptation is provided through the combination of knowledge-driven data pro-
cessing and each self-learning process. This combination allows, for adapting the
data processing according to the knowledge base, and for refining the knowledge
according to each application case. Thus, this combination allows for more efficient
data processing. The next chapter illustrates this automatic adaptation mechanism
by presenting the implementation of some use cases .

11.4. DISCUSSION
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The implementation part presents the choice made to implement the methodology
presented in the previous part.
The methodology uses explicit knowledge to understand the data characteristics
better and adapt the detection strategy to it and objects to detect. Furthermore, the
proposed approach learns from the experience it acquires during the detection of
objects, thanks to its ability to both formulate and validate hypotheses designed to
understand the data characteristics better. This capability allows for compensating
the lack of knowledge or precision in the description of knowledge.
This implementation part aims at illustrating the genericity, robustness, and
portability of this approach, by showing its potential on four different application
cases (presented in Section 2.1). These application cases have a common objective,
to locate the elements (objects and geometries) contained in the data to structure
them. The role of this part is not to be exhaustive by giving the modeling of all
knowledge base components or by showing all steps followed by the process. Its
role is to illustrate and explain the main steps of the proposed approach.

Chapter 12 presents the architecture implemented for the proposed approach.
Chapter 13 presents knowledge modeling for application cases.
Chapter 14 describes the object detection process for these application cases.
Chapter 15 presents the results obtained for the four considered application cases.
It also compares the results obtained by the proposed approach with approaches
from the literature.
Finally, Chapter 16 discusses the implementation choices and the results obtained
by the proposed solution.



12 Processing architecture

Knowledge guides the object detection process by determining the suitable combi-
nation of algorithms to execute them. Object detection through algorithms execu-
tion from knowledge requires two main processes: knowledge management and al-
gorithm management. The implementation processes depends on the requirements
of knowledge processing and algorithm execution. Therefore this part presents the
requirements of these two processes and compares processing supports to finally
presents the architecture of the system.

12.1 Processing requirements

The knowledge processing is composed of two main functionalities that are the
knowledge management for the detection process and the knowledge integration
to enrich the system.

Software environment for knowledge management in the detection process re-
quires the manipulation of OWL (c.f. Section 4.3.2). Moreover, it must allow rea-
soning on the model to apply the expert knowledge on the detection process. The
system has been designed to be able to process a large variety of use cases, im-
plying a large variety of knowledge, that is why this knowledge is stored in a
triplestore. However, the use of a triplestore implies also the use of SPARQL to
access and manage knowledge inside.

The extension of the system implies a functionality for the integration of new
knowledge to enrich the knowledge base according to the enrichment of algorithm
libraries. The system must be able to read and load RDF/XML files to enrich the
semantic model.

Concerning the algorithm execution, processing vast point cloud requires fast al-
gorithms executions, whose efficiency depends on the chosen programming lan-
guage. This is why low-level programming languages like C are the most suitable.
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12.2 Comparison of processing software environment

Among the different interfaces used to manage semantic technologies, two inter-
faces are emerging: the interface JENA for the language JAVA and OWLCPP for the
language C/C++ . Table 12.1 compares the two interfaces according to the system
requirements previously presented.

Ability OWLCPP Jena
Manipulation of RDF yes yes
Manipulation of OWL yes yes

Use reasoner yes yes
Support SPARQL no yes

Serialize RDF/XML no yes
Load RDF/XML yes yes

Load/Write Turtle file no yes

Table 12.1: Comparative table between OWLCPP and JENA.

The interface JENA for the language JAVA is more suitable for knowledge man-
agement than OWLCPP for the language C/C++. Nevertheless, the language
JAVA runs through a virtual machine (JVM), which makes it slower than lan-
guages like C/C++. On the other hand, C/C++ has outstanding libraries such as
[Rusu and Cousins, 2011] for point cloud processing. It is, therefore, more relevant
to use the language C/C++ to execute algorithms than to use the language JAVA.
Choosing JAVA to implement the system would affect the efficiency of algorithm
execution, whereas choosing C/C++ would affect the efficiency of knowledge man-
agement. That is why the optimized implementation is to use JAVA for the knowl-
edge management and C/C++ for algorithm execution.

12.3 Software architecture

The comparison of processing software environment shows the optimal implemen-
tation of the system is based on a combination of JAVA and C/C++. However such
architecture requires a JAVA interface to perform functions in C/C++. Thanks to
the interface JNI of JAVA, it is possible to combine the two languages and take ad-
vantages of each other. Thus the architecture of our processing system is based
on the interface JENA and JNI of the language JAVA to interface respectively with
the knowledge base (described in OWL and using SPARQL) and the algorithms
implemented in the language C/C++, as shown in Figure 12.1.

The use of the two interfaces (JNI and JENA) allows bidirectional management of

12.2. COMPARISON OF PROCESSING SOFTWARE ENVIRONMENT
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Figure 12.1: System processing architecture.

processing algorithms and knowledge by the processing system. Indeed, JNI allows
the call and execution of processing algorithms in C++. It also allows for retrieving
the results of the algorithms and transferring them to the processing systems. The
processing system can then interpret these results as a bold semantic node in the
JENA interface and then integrate them into the knowledge base.

This bi-directional architecture provides a high degree of flexibility in the detection
process. Indeed, JAVA with the interface JENA enables for performing tasks like
the choice of algorithms, their inputs, and their parameters. Each algorithm is then
dynamically executed by the JNI interface. The results of these executions are then
retrieved by the JNI interface and interpreted in JAVA to enrich the knowledge base
using the JENA interface. The process can then be iterated to adapt the next task to
be performed based on the new information acquired. This architecture provides
a fully dynamic detection process, linking both the algorithmic paradigm and the
semantic paradigm.

12.3. SOFTWARE ARCHITECTURE



13 Knowledge modeling

The knowledge in the domain of Data, Scene, and Data Processing is required to
handle each application case in an adapted way.

This knowledge is modeled in "OWL2" in an ontology. The knowledge about the
Data Processing domain is common to all application cases, whereas the knowl-
edge about the other domains (Data and Scene) contains specificities from the ap-
plication cases. Nevertheless, application cases may share information. This is
particularly the case for the knowledge of elementary objects (for example, walls,
floors, rooms).

The application cases discussed in this thesis have been chosen to illustrate the
adaptability of the approach presented and to show its robustness to changing
characteristics. Therefore, the data for each use case were acquired using a different
sensing process and contain contextual information that is different from the others.

13.1 Data processing knowledge

This section presents the knowledge modeling in the data processing domain.

The data processing is applied through algorithms. Thus, the knowledge of data
processing concerns algorithms. These algorithms are modeled according to their
inputs (by the property "works on"), parameters (by the property "has parameter"),
prerequisites (by the property "has prerequisite"), and outputs (by the property "pro-
duces"). Algorithms used for the data processing and describing its knowledge
domain are presented in Appendix A.

Let us here take the example of the normal region growing algorithm to describe
the modeling of an algorithm that constitutes the knowledge of data processing.
Figure 13.1 illustrates the knowledge modeling of this algorithm.

This normal region growing algorithm works on a point cloud to produce segments. It
has two prerequisites. It requires that the point cloud has a normal for each point
and has less than one million points. It also has two parameters that are the normal

151



152 CHAPTER 13. KNOWLEDGE MODELING

Figure 13.1: The knowledge data processing modeling for the region growing al-
gorithm.

tolerance and the radius. The normal tolerance is computed from the roughness and
the density of the data (see Equation 13.1).

NomalTolerance =
Roughness2

Density
(13.1)

The radius is computed from the density of the data and the dimension (height,
width, and length) of the object to detect (see Equation 13.2).

Radius =

√
H2 + W2 + L2

Density
(13.2)

The value of these parameters is computed during the configuration step of the
detection process according to the sought object.

13.2 Data knowledge

This section presents the data knowledge. This knowledge comes from its mod-
eling, but also from inference on the modeling that enriches the knowledge base.
Therefore, a first part describes the data knowledge modeling, and a second part
presents the deduced knowledge.

13.2. DATA KNOWLEDGE
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13.2.1 Data knowledge modeling

The knowledge about data consists of the knowledge about its acquisition, its char-
acteristics, and objects that it contains. The knowledge of the acquisition process
is information about the acquisition process as well as external factors that can
influence the characteristics of the data.

Some data characteristics are stored as metadata (e.g. resolution, size, and dimen-
sion). The other characteristics of the data can be automatically deduced from
the knowledge of the acquisition process (e.g. occlusion, density). In contrast,
the other knowledge (acquisition process, external factors, objects, and geometries
contained) must be specified by the user.

For the application cases studied here, only six data characteristics are sufficient
and necessary: density, resolution, size, dimension (e.g. 2D, 3D), occlusion, and
noise. Some of these characteristics are more decisive than others. In particular,
the occlusion, noise, and density characteristics which have a significant influence
on the choice and configuration of algorithms (c.f. Chapter 4). Besides, these
characteristics often vary within the same dataset. For example, one portion of the
data may be very dense and low-noise, while another portion may be low-density
and high-noise. This information can be defined by the user but is mainly inferred
from the knowledge of the acquisition process. In other cases of application, other
characteristics must be taken into account.

Let us take the example of the application case 2.1.3. Figure 13.2 illustrates the
knowledge modeling for the data related to this application case.

Figure 13.2: Data knowledge modeling for the use case 2.1.3.

13.2. DATA KNOWLEDGE
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In this application case, the data is acquired by a laser scanner that performs a
sequential scanning of the scene following a straight trajectory. The natural light
and the mobility of both the scanner and acquired objects (e.g. pedestrian, car) are
external factors that influence the acquisition process. The objects that compose
the data are objects that belong to an urban scene. They can, therefore, be trees,
cars, pedestrians, facades, vegetation, traffic signs, or streetlights. This information
allows for modeling several concepts. The central concept is the "data" that con-
tains objects concepts (shown in purple in Figure 13.2). These concepts correspond
to the objects sought. Then the concept of "SequentialScanning" (shown in blue in
Figure 13.2) is defined as a kind of "Acquisition technique". It uses a "laserScanner",
defined as a kind of "Acquisition technology" and follows a "path". The concept of
"laserScanner" influences the density characteristic of the data, while the concept of
"SequentialScanning" influences the noise and occlusion characteristics of the data.
The other concepts "NaturalLight", "VariableIntensity", "ScannerTrembling", and "Ob-
jectMoving" (shown in green in Figure 13.2) are defined as "ExternalFactor" which
influences the concept "SequentialScanning". The influences between the concepts
are described using SPARQL queries.

Finally, information on the resolution, size and dimension of the data is dynam-
ically translated into a description logic (shown in red in Figure 13.2) by linking
their value to the data by properties ("hasResolution","hasSize", and "hasDimension").

13.2.2 Data knowledge inference

SPARQL queries correlate contexts information and execute algorithms to infer new
knowledge. It is through these queries that the occlusion, density variation, and
noise characteristics can be identified. It is necessary to understand the causes that
produce these characteristics in order to transcribe them into a rule of inference or
SPARQL query.

In the continuity of the previous example (i.e. the application case 2.1.3), the con-
cept "SequentialScanning" generates occlusions in the data.

Code 13.1 shows the SPARQL query that characterizes the influence of the "Occlu-
sion" concept on the data.

1 CONSTRUCT {
2 ?occlusion rdf:type OccludedArea.
3 ?data hasOccludedArea ?occlusion.
4 } WHERE {
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5 ?data rdf:type PointCloud.
6 ?data ?hasAcquisitionMethodology ?sec.
7 ?sec rdf:type SequentialScanning.
8 ?sec follows ?p.
9 ?object rdf:type Object.

10 ?object hasHeight ?h.
11 ?object hasWidth ?w.
12 ?object hasLenght ?l.
13 ?object hasLocalization ?local.
14 ?occlusion getOcclusions(
15 "pointcloud=?data" "path=?p" "height=?h" "width=?w" "lenght=?l" "localization=?

local"
16 )
17 }

Code 13.1: SPARQL query for occlusions identification

The query states that if the method used to acquire the data ("?data") is a sequential
scan ("?sec") following a path ("?p"), then the presence of an object ("?object") causes
occlusions ("?occlusion"). These occlusions are then calculated according to the ac-
quisition path ("?p"), the position ("?local") and the size of the object ("?h",?w",?l")
by calling an algorithm ("getOcclusions"). The occlusions calculated by the algo-
rithm are then assigned to the data by a property ("hasOccludedArea"). This query is
designed only once and will be automatically applied to all data that is acquired by
sequential scanning along a path. Besides, it is based on the detection of elements.
Thus, the more the object detection process locates objects (without necessary iden-
tify them), the more precisely the data can be characterized.

The location of the occlusion areas provides essential information for the classifica-
tion step (as explained in Section 14.1.2).

Similarly, the influence of the instrument on data density is described in the form
of queries using built-in algorithms. In the case of a laser scanner, the scanner
remoteness from the acquired objects reduces the density of the points. Thus the
corresponding query states that the further away the scanner is from the objects,
the less dense the acquired data is. This query is used to characterize areas of low,
medium, or high density. Figure 13.3 shows the characterization of the data of the
application case 2.1.3 characterized by density areas.

The density areas provide relevant information for selecting and configuring algo-
rithms (as shown in Section 13.1).

Finally, external factors such as the characteristic of "Variable Intensity" of light,
"ScannerTrembling", and "ObjectMoving" influence both the noise and the regularity
of the shapes that the data may contain. In this case, these factors provide global
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Figure 13.3: Density computation results based on the knowledge of the sensing
process: high density in red and yellow, medium density in green, and low density
in blue.
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and additional information about the data. This information cannot be located un-
less the user mentions it. However, it does indicate that the data may be noisy
and may have irregular shapes. The notion of "possibility" is modeled in "OWL2"
by "owl:someValuesFrom" type constraints. This information allows for the addi-
tion of denoising algorithms in the detection process as well as providing more
understanding of the content to classify and identify segments (portions of data).

The knowledge about data characteristics and the acquisition process provides an
essential basis for understanding and structuring data. Data characteristics are
used to guide the choice and configuration of algorithms. The knowledge about
the acquisition process and the external factors influencing it can be combined
with other knowledge. For example, the knowledge about light and the measuring
instrument is combined with the knowledge about digitized objects to locate better
areas of low or high density (as shown in Section 13.3.1).

13.3 Scene knowledge

The scene knowledge is represented through the modeling of objects and the scene.
The object modeling is defined through its characteristics, its geometric compo-
sition or objects composition and its topological relationship with other objects.
These topological relationships allow for describing the location of an object to the
other in the scene. The scene is thus represented through topological relationships,
and context that impacts the representation of the objects.

13.3.1 Object modeling

In the proposed approach, all the elements that compose the data are defined as
"objects". The application cases considered in this thesis have some objects in com-
mon (e.g. floor and walls) and some specific objects according to the context (e.g.
the watermill, bowls, tables, cars, traffic signs, trees). The knowledge on each of
these objects must be modeled, as explained in Section 10.3.

On the one hand, an object is modeled through its characteristics, its geometry
or object composition, and its topological relationships. This modeling allows for
identifying segments (portions of data) that correspond to the definition of an ob-
ject and classify them in this object category. On the other hand, object model-
ing describes object characteristics that can influence the acquisition of data (e.g.
roughness, color, materials, height, length, width).

13.3. SCENE KNOWLEDGE
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Description logics for identification

Let us take the example of the knowledge modeling about the floor and walls (i.e.
portions of data having a specific particularity), which are common to our appli-
cation cases. The geometry of the walls corresponds to a vertical planar surface.
They have the specific characteristic of having a height greater than 2m. Finally,
their topological characteristics are to be perpendicular to the floor and on the floor.
Code 13.2 shows their semantic description in the Manchester syntax.

1 Wall:
2 Object
3 and (hasGeometry some
4 (Plane
5 and (hasOrientation only Vertical)))
6 and (isPerpendicular min 1 Floor)
7 and (on min 1 Floor)
8 and (hasHeight exactly 1 xsd:double[> "2.0"^^xsd:double])

Code 13.2: Wall modeling

Similarly, the geometry of the floors corresponds to a horizontal planar surface.
Their specific characteristics are that they have a surface area greater than 1 m2.
Finally, their topological characteristics are that they can be perpendicular to walls.
Code 13.3 shows their semantic description in the Manchester syntax.

1 Floor:
2 Object
3 and (hasGeometry some
4 (Plane
5 and (hasOrientation only Horizontal)))
6 and (isPerpendicular some Wall)
7 and (hasSurface exactly 1 xsd:double[> "1.0"^^xsd:double])

Code 13.3: Floor modeling

Objects can also be defined as being composed of several other objects. For exam-
ple, a room is defined as composed of a floor parallel to a ceiling, and both are
connected to at least two common walls.

Code 13.4 shows the semantic description of a room in the Manchester syntax.

1 Room:
2 Object
3 and (isComposedOf exactly 1
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4 Floor that isParallel exactly 1 Ceiling
5 and isConnectedTo min 2 Wall)

Code 13.4: Room modeling

Similarly, the watermill, which is the main element required in the case of applica-
tion 2.1.2, is defined as being composed of two connected rooms, each with its own
dimensions.

Description logics for inference

The knowledge about objects such as material and color can be combined with the
knowledge of the acquisition process and external factors to refine the characteris-
tics of the objects. For example, the rule of inference shown in Equation 13.3 allows
to deduce that if an object ("?o") is made of glass ("?m") and that the instrument
used ("?i") in the acquisition process ("?a") is a laser scanner, then the object will be
represented with a low density ("?l").

Object(?o) ∧ hasMaterial(?o, ?m) ∧ Glass(?m)∧
Data(?d) ∧ Contains(?d, ?o) ∧ Acquisition(?a)∧

hasInstrument(?a, ?i) ∧ LaserScanner(?i) ∧ Generates(?a, ?d)

⇒ LowDensity(?l) ∧ hasDensity(?o, ?l)

(13.3)

Moreover, data with low density or containing occlusions would generally produce
over-segmentation of an object. This knowledge means that an object occluded
or with low density can be represented by several segments after the data seg-
mentation instead of a single segment. The knowledgebase contains a class called
SegmentsSet, defined as composed of several similar segments (having similar char-
acteristics). Therefore, if an object is represented with a low density or occluded,
then it is represented through a set of segments. The rule of inference in Equation
13.4 represents this knowledge.

Object(?o) ∧ (LowDensity(?l) ∧ hasDensity(?o, ?l))

∨(Occlusion(?oc) ∧ hasOcclusion(?o, ?oc))⇒ SegmentsSet(?o)
(13.4)

Such rule facilitates the search for objects in the data and their classification (see
Section 14.1.1. Figure 13.4 shows the example of glass tables in a point cloud
acquired by laser scanning from the company NavVis and the density of the point
cloud. This figure illustrates the relationship described by the rule.
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(a) A glass table from
NavVis point cloud.

(b) Density of a point cloud NavVis (medium density in
green, low density in blue).

Figure 13.4: Example of glass tables in a point cloud acquired by laser scanning
from the company NavVis.

Knowing a glass table has a low density in this point cloud allows for searching it
in areas with a low density (in Figure 13.4).

13.3.2 Scene modeling

The scene modeling is composed of its context that impacts the object represen-
tation in the acquired data. The scene content is represented by objects modeling
and their topological relationships between each other.

Scene context

It exists diverse representations of an object. Searching to model all representa-
tions of an object would be a long time-consuming task not to provide a significant
improvement. However, adapting the description logics of an object according to
its context, would provide a more adapted description to search the object. There-
fore, the scene modeling describes its context, but also its impact on objects in such
context. Thus, the reasoning on the scene context modeling and standard descrip-
tion logics of an object, adds automatically a new concept describing objects in this
context, in a better way.

Let us take the example of a wall representation in the data for the application
cases studied. Figure 13.5 shows the difference in the representation of the walls
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between these different application cases.

(a) Walls representation in the use case
2.1.4.

(b) Walls representation in the use case
2.1.2.

(c) Walls representation in the use case 2.1.1.
(d) Walls representation in the use case
2.1.3.

Figure 13.5: Different walls representation in the study cases considered.

In these different cases of applications, the walls do not have the same dimension
(height, width, length) and do not have the same geometry (planar for cases 2.1.1,
2.1.4, 2.1.3 and non-planar for 2.1.2). They may also not have the same topological
links (e.g. case walls 2.1.3 are not perpendicular to a floor).

Consequently, due to the variance of objects and the many factors influencing ob-
jects appearance, it is not possible to model the knowledge of objects in such a way
as to describe all possible representations of objects. Thus, it is necessary to un-
derstand and model the reasons that cause these various representations of objects.
That is why the knowledge on the scene context and its impact on objects repre-
sentation is modeled through rules of inference allowing to adapt the description
of the objects significantly (as explained in Section 10.3.3).

Let us pursue the example of the wall description logics, which is an object common
to the different application cases studied. The context of the digitized scenes of the
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application cases 2.1.4 and 2.1.1 does not influence the description of the walls. In
contrast, the context of the digitized scene in the application case 2.1.2 influences
the description of the size, geometry, and roughness of the walls. This impact is
modeled through the rule presented in Equation 13.5.

Object(?o) ∧ Scene(?s) ∧ belongsTo(?o, ?s)∧
DestroyedObject(?d) ∧ hasCharacteristics(?s, ?d)

⇒ IrregularShape(?i) ∧ hasShape(?o, ?i) ∧ hasHeigh(?o,> 0m)

(13.5)

The interpretation of this rule through a SPARQL update query on the standard
wall description (c.f. Code 13.2) results in the definition shown in Code 13.5 of a
wall for the use case 2.1.2 according to the Manchester syntax.

1 WallCH:
2 Object
3 and (hasGeometry some
4 (IrregularShape
5 and (hasOrientation only Vertical)))
6 and (isPerpendicular min 1 Floor)
7 and (on min 1 Floor)
8 and (hasHeight exactly 1 xsd:double[> "0.0"^^xsd:double])

Code 13.5: Wall modeling in cultural heritage use case (2.1.2)

Similarly, the context of the digitized scene in the application case 2.1.3 influences
the description of the wall height and enables to remove the obligation of the topo-
logical link between the floor and the walls. This impact is modeled through the
rule presented in Equation 13.6.

Wall(?w) ∧UrbanScene(?s) ∧OutdoorScene(?s) ∧ belongsTo(?o, ?s)

⇒ hasArea(?w,> 17m2) ∧ hasHeigh(?w,> 10m)
(13.6)

The wall description for the use case 2.1.3 is impacted by the previous rule (Equa-
tion 13.6) on the scene context, but also, by rules defining the impact of the ac-
quisition process on its definition. All of these impacts result in the following
description logic for the Wall in use case 2.1.3. This description is presented in
Code 13.6 according to the Manchester syntax.

1 UrbanWall:
2 (Object or SegmentsSet)
3 and (hasGeometry some
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4 (Plane
5 and (hasOrientation only Vertical)))
6 and (isPerpendicular some Floor)
7 and (on some Floor)
8 and (hasHeight exactly 1 xsd:double[> "10.0"^^xsd:double])
9 and (hasArea exactly 1 xsd:double[> "17.0"^^xsd:double])

Code 13.6: Wall modeling in urban outdoor use case (2.1.3)

Topological hierarchy

The topological relationships between objects, contained in their modeling, allows
for describing the scene. The topological relationships can provide geometric re-
lationships (as perpendicular, parallel, connected, composition) or relative location
(as distance, under, on). These relationships allow for identifying the research area
of an object or determining a logical order of detection. For example, a room,
which is composed of a floor and walls, requires the detection of walls and floors
before to be detected. Another example is the property on used in all use cases
to guide the logical order of detection. Figure 13.6 illustrates the modeling of the
topological relationship on for the different use cases.

Figure 13.6: Illustration of topological hierarchy between objects.
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13.4 Discussion

The user provides the knowledge modeling on data processing, data, and scene do-
main as description logics in an ontology. This knowledge base is at first enriching
through the linking of information about the different domains. The knowledge
about the factors that influence the data characteristics is described using rules of
inference and queries. Such rules and queries allow the system to deduce the dif-
ferent possible representations of objects or to delimit the search field of this type
of object. This enrichment of the knowledge base aims at providing a knowledge
description more adapted to the processed application case. Then, the knowledge
base is used to guide the process of detection. The more precise the description of
objects is, the better their detection in the data is. That is why the first enrichment
of the knowledge base is essential to provide an optimal knowledge model to give
a maximum of information for guiding the detection process, presented in the next
chapter 14.

13.4. DISCUSSION



14 Data processing

The knowledge explained in the previous chapter 13 fully drives the detections
process. The selection of algorithms is made according to the characteristics of the
objects and data (explained in Sections 11.1.1 and 11.1.2). Besides, the characteris-
tics of objects and data are adapted to each application case by knowledge of the
sensing process, external factors, acquisition context, and scene. Thus the selection
algorithms for processing data and supporting object detection are adapted to each
application case.

The complete processing to identify objects in the data and thus structure the data,
start by selecting the relevant algorithms to process the data (as explained in Section
11.1.1). Then the selected algorithms are configured (as explained in Section 11.1.2)
and executed (as explained in Section 11.1.3). The results of their execution enrich
the knowledge on objects, geometries, and data and allow the classification of data
portions (as explained in Section 11.2). Finally, the classification of objects and
geometry in the data allows a self-learning process. The self-learning process uses
how objects are represented in the data as well as how the data is structured. This
self-learning process allows for "intelligent" reasoning capable of formulating and
testing hypotheses designed to improve the accuracy of knowledge (as explained
in Section 11.3).

This chapter shows these different steps through the results they produce when
used to detect different objects in the application cases studied.

14.1 Detection process

The detection process is a cycle composed of a data processing step and a classifica-
tion step. The data processing step consists in selecting, configuring, and executing
algorithms. If an algorithm detects a characteristic of an object (e.g. size, shape, ori-
entation), and all its prerequisites are met (e.g. normal estimated, data denoised),
then it is selected for the application case considered. Moreover, algorithms that
meet the prerequisites (e.g. size, normal estimation, denoising) of a selected al-
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gorithm are also selected. The selected algorithms are configured based on the
knowledge available on their parameters. They are then executed through queries,
as explained in Section 11.1.3. Algorithms are adapted according to the knowledge
learned from their inputs, outputs, and prerequisites. Thus an algorithm satisfying
the prerequisites of another is executed before it.

The hierarchical strategy of detection depends on the topological links between the
objects and their size. The topological relationship provides information about the
location of an object according to others. This information allows for reducing the
area of object search, and the size determines the priority of object detection (i.e.
the biggest objects obtains the highest priority). For example, a can is defined as
"being on a table," and a table is defined as "being on the floor". A can is smaller
than a table and a table smaller than the floor; the detection process begins by
detecting the floor, then the table, and finally the can. In addition to this com-
bination of size and topological relationship to prioritize the object detection, the
relationship of composition describes a specific hierarchy relation. The meaning
of the composition relationship between objects translates a requirement to detect
the parts of an object before to be itself detected. Therefore, this composition rela-
tionship defines by itself a detection hierarchy. For example, the identification of a
room requires firstly, to detect walls and floors.

According to the description of knowledge of the application cases, the detection
process begins with the floor detection. Then it detects objects on the floor such as
walls, tables, chairs, cars, motorcycles, and traffic signs. Among these objects on
the floor, the walls are the biggest objects. Therefore they are detected in priority.
Finally, it detects objects located on a table for the application case 2.1.4 such as
cans, bowls, cereal boxes, and cups.

14.1.1 Detection of floors

The main steps of the floor detection are illustrated in this section. Firstly, the data
processing step selects and configures algorithms according to the definition of a
floor, and then execute them.

Data processing for the floor detection

Figure 14.1 shows the algorithms graph for the floor detection. The modeling of
the algorithms used is provided in Appendix A.

The floor has a geometry defined by a horizontal orientation that is common to the
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Figure 14.1: Algorithms graph for the floor detection.

application cases studied. This orientation implies that the normals at each point
of the data of the application cases are estimated. That is why the first algorithm
executed is a normal estimation algorithm ("Normal Estimation" in Figure 14.1).

The second algorithm executed for the application cases 2.1.2, 2.1.3, and 2.1.1 is a
sampling algorithm. This algorithm is selected to reduce the size of the data. It
satisfies the prerequisite of the segmentation algorithm ("Normal Region Growing"
in Figure 14.1) chosen to segment the data. Indeed, this segmentation algorithm
requires that the data be as small as possible. Contrary to the data in the application
case 2.1.4, which is small (less than one million points), the three application cases
2.1.2, 2.1.3, and 2.1.1 have large data sizes (several million points) that require to be
reduced before applying the algorithm of "Normal Region Growing".

The sampling algorithm is configured according to the minimum dimensions of the
objects to be detected. Therefore, for the application cases 2.1.3, 2.1.1, and 2.1.2, its
execution produces a dataset sampled according to the minimum floor size. Figure
14.2 shows the results of the sampling algorithm for the three application cases
concerned.

Floors are defined as having a single orientation (horizontal), in the case of the
applications studied. That is why the third algorithm to execute is a filtering al-
gorithm ("Normal Filtering" in Figure 14.1) that filters the data according to the
orientation of the objects sought. This algorithm allows reducing the search field
of objects. It is configured according to the orientation of the searched objects
and produces new data composed only of the portions having an orientation cor-
responding to the searched objects. Figure 14.3 shows the results of the "Normal
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(a) Results of the sampling algorithm on
the use case 2.1.2.

(b) Results of the sampling algorithm on
the use case 2.1.1.

(c) Results of the sampling algorithm on
the use case 2.1.3.

Figure 14.2: Results of the sampling algorithm for the three application cases con-
cerned.
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Filtering" algorithm on the four application cases studied.

(a) Results of the horizontal filtering al-
gorithm on the use case 2.1.4.

(b) Results of the horizontal filtering al-
gorithm on the use case 2.1.2.

(c) Results of the horizontal filtering al-
gorithm on the use case 2.1.1.

(d) Results of the horizontal filtering al-
gorithm on the use case 2.1.3.

Figure 14.3: Results of the "Normal Filtering" algorithm for the floor detection in
application cases studied.

Floors are defined as segments (data portion), so it is necessary to use segmentation
algorithms to divide the data into segments. Moreover, floors are defined mainly
by their orientation. Thus a "Normal Region Growing algorithm" ("Normal Region
Growing" in Figure 14.1) is more relevant for detecting segments in agreement with
object characteristics, than segmentation algorithms based on other characteristics
such as color. That is why this algorithm is executed on the application cases
studied. Figure 14.4 shows the results of the "Normal Region Growing" algorithm on
the application cases studied.

Floors are defined by a planar geometric shape for application cases 2.1.3, 2.1.4,
and 2.1.1. A plane detection algorithm is therefore relevant to detect such objects
for application cases 2.1.3, 2.1.4, and 2.1.1.

Knowledge of the context and the data acquisition process of the application case
2.1.2 enables to adapt the shape of floors defined as a planar surface in defining
them as irregular.
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(a) Results of the segmentation applied
to the horizontally filtered data of the use
case 2.1.4.

(b) Results of the segmentation applied
to the horizontally filtered data of the use
case 2.1.2.

(c) Results of the segmentation applied
to the horizontally filtered data of the use
case 2.1.1.

(d) Results of the segmentation applied
to the horizontally filtered data of the use
case 2.1.3.

Figure 14.4: Results of the "Normal Region Growing" algorithm for the floor detection
in the application cases studied. A single color is assigned to each segment.
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Similarly, various algorithms for estimating characteristics such as dimensions
(height, width, length), volume, area or topological relationships (e.g. parallel,
perpendicular, in contact) are applied to the segments.

The results of the algorithms are integrated into the knowledge that describes the
segments.

The knowledge about the segments is then analyzed in the classification process to
identify objects in the data.

Classification

The OWL2 formalism in which knowledge is modeled allows classifying a segment
by the application of automatic logical reasoning. A segment is classified as an
object if it satisfies the constraints defined for this object. A segment satisfies the
constraints on an object geometry if it has all geometrical characteristics defined
for this object.

However, the logical reasoning mechanisms used until now by reasoners do not
allow to work with reasonable execution times (several hours or even several days
to perform reasoning). This problem is aggravated by the fact that the classification
process must be repeated several times.

That is why we propose to translate the description logics of objects and geometry
into a rule of inference which is then interpreted into SPARQL queries. The ap-
plication of SPARQL queries is performed in a few seconds on the ontology used
for the application case compared to the application of rules of inference such as
SWRL or inference reasoning that both take several hours to apply. The classifi-
cation of segments into objects is based on a semantic description of the objects,
which is composed of geometric characteristics, object-specific characteristics, and
topological links.

According to the definition of a floor presented in Section 13.3.1, a floor is a hori-
zontal plane with a surface area greater than 1 square meter. After the execution of
the normal region growing, the horizontal segments resulting from this algorithm
are classified as horizontally oriented planes. After the execution of the feature
extraction algorithms (e.g. getHeight, getWidth), each of these segments is character-
ized. The surface and volume characteristics are automatically calculated from the
segment dimensions. Thus, among the segments identified as horizontal planes,
those with an area greater than 1 square meter are identified as floors. Figure 14.5
shows the floor classification results for each application case.
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(a) Results of floors detection (in green)
on the use case 2.1.4.

(b) Results of floors detection on the use
case 2.1.2. A single color is assigned to
each floor.

(c) Results of floors detection on the use
case 2.1.1.

(d) Results of floors detection on the use
case 2.1.3.

Figure 14.5: Results of floors detection on application cases studied.
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14.1.2 Detection of objects on the floor

Among the different use cases, several objects require floor detection to be detected.
In all cases, there are walls. In the urban outdoor environment, there are cars, traffic
signs, trees, motorcycles, and street lights. In the indoor environment, the Kinect
application case (2.1.4) aims at detecting table, chair, and computer on the floor.
This section illustrates at first the detection of walls as common to all cases and
particularly required for the room detection in use cases 2.1.2 and 2.1.1. Then, it
presents the light street detection in the urban outdoor application case 2.1.3 due
to its specificities of geometric and topological relationships. Finally, it shows the
table detection in the Kinect use case (2.1.4) to follow the topological hierarchy of
detection presented in Section 13.3.2, which is pursued in the next section through
the detection of objects on the table.

Objects on the floor are searched among all points above the floor.

Walls detection

The algorithm selection of the wall is similar to the algorithm selection of floors (c.f.
Figure 14.1). The steps of pre-processing being similar and yet executed, there are
not executed again. The difference of processing is in the algorithm configuration
for the segmentation and the feature extraction, due to the difference of description
between a floor and a wall. For example, the parameter of normal filtering for a
wall is horizontal normal, whereas the configuration of this algorithm for the floor
is vertical normal. Figure 14.6 shows the results of the "Normal Filtering" algorithm
on the four application cases studied.

Then, another normal region growing is executed on the results from the normal
filtering configurated for wall detection. Figure 14.7 shows the results of the "Nor-
mal Region Growing" algorithm on the application cases studied.

Finally, feature extraction is executed on the results of the normal region growing
configurated for wall detection.

Walls classification The classification is executed after each enrichment of the
knowledge base. Thus, when all segments are characterized, those respecting the
description logic of a wall are classified as a wall. Wall detection in an outdoor
environment is impacted by occlusions that divide a wall into several walls. As ex-
plained previously, the occlusion areas are detected by inference on the acquisition
process knowledge and the knowledge of the scene. The knowledge of the scene
includes the description of segments and objects such as their location and size.
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(a) Results of the vertical filtering algo-
rithm on the use case 2.1.4.

(b) Results of the vertical filtering algo-
rithm on the use case 2.1.2.

(c) Results of the vertical filtering algo-
rithm on the use case 2.1.1.

(d) Results of the vertical filtering algo-
rithm on the use case 2.1.3.

Figure 14.6: Results of the "Normal Filtering" algorithm for walls detection in appli-
cation cases studied.
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(a) Results of the segmentation applied
to the vertically filtered data of the use
case 2.1.4.

(b) Results of the segmentation applied
to the vertically filtered data of the use
case 2.1.2.

(c) Results of the segmentation applied
to the vertically filtered data of the use
case 2.1.1.

(d) Results of the segmentation applied
to the vertically filtered data of the use
case 2.1.3.

Figure 14.7: Results of the "Normal Region Growing" algorithm for walls detection
in the application cases studied. A single color is assigned to each segment.
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Detection of occlusion areas allows for establishing a topological connection link
between the adjacent segments, as explained in Section 11.2.2. Moreover, the
knowledge describing the segments stipulates that two segments are considered
to belong to the same set of segments if they both have the same geometry and are
connected by a topological link. Thus, the unification of the segments is carried out
by logical reasoning on the knowledge of the segments.

This unification allows for the reconstruction of objects that have been segmented
into several distinct segments. Figure 14.8 shows the rebuilding of a wall, which
was initially segmented into several parts due to occlusion, in the case of an appli-
cation 2.1.3.

(a) Detection of a wall before the infer-
ence on the occluded areas.

(b) Detection of a wall after the inference
that allows to unify segments.

Figure 14.8: Detection of a wall from occluded areas for the applications case 2.1.3.

Similarly to the floor detection process, each algorithm execution generates an en-
richment of knowledge from its results. This enrichment is followed by a classifi-
cation that increases the data understanding at each step of the detection process.
Thus, in the case of the wall detection process, the segments are first classified as
vertical planes. After the characteristics and topological links enrichment of these
vertical planes, those respecting the definition of walls as presented in Section 13.3
are identified as walls. Figure 14.9 shows the results of the wall detection in the
four application cases considered.
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(a) Results of walls detection on the use
case 2.1.4.

(b) Results of walls detection on the use
case 2.1.2 A single color is assigned to
each wall.

(c) Results of walls detection on the use
case 2.1.1.

(d) Results of walls detection on the use
case 2.1.3.

Figure 14.9: Results of walls detection on application cases studied.
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Rooms classification

The application cases 2.1.2 and 2.1.1 aim at detecting rooms. Rooms are described
as composed of walls and floors, as discussed in Section 10.3.2. More precisely, a
room consists of a floor connected to at least three walls. Thus, after the classi-
fication of floors and walls, and the enrichment of their topological relationships,
the rooms are automatically classified based on their detection of floors and walls.
Figure 14.10 shows the results of the rooms classification on the application cases
2.1.1 and 2.1.2.

(a) Results of the rooms classification
on the application case 2.1.1.

(b) Results of the rooms classification on the ap-
plication case 2.1.2.

Figure 14.10: Results of the rooms classification.

Watermill classification in use case 2.1.2

Finally, in the application case 2.1.2, the room detection aims at detecting a water
mill, which is composed of a large room and a small room whose dimensions are
specified and that share the same wall. Figure 14.11 shows several representations
of the watermill on the application case 2.1.2.

The semantic description of the watermill allows its identification in the data from
the rooms detection and their relationships identification. Figure 14.12 shows the
segmentation results of the watermill for the application case 2.1.2.

Street lights detection

Among objects on the floor, the application case 2.1.3 contains urban street lights.
The street lights are described as objects that have a vertical line (as this corre-
sponds to their main shape) and have a height between 4 m and 8 m. They are also
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Figure 14.11: Descriptions of the watermill for the application case 2.1.2 (a) Point
cloud with watermill (room illustrated in yellow); (b) Floor plot of the watermill;
(c) Schematic geometric descriptions; (d) Schematic knowledge representation.

Figure 14.12: Results of watermill recognition (in red) on the application case 2.1.2.
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described as having a distance spacing of about 30 m (between 29m and 31m).

The segmentation step for the detection of the street lights is a Euclidean segmen-
tation followed by a RANSAC line recognition algorithm, applied to results of the
segmentation.

Then, feature extraction algorithms such as getHeight and getDistance are executed
to characterize the vertical line segments. Several segments have a height corre-
sponding to the height of an urban street light and have as geometry a vertical
line. However, only some of these segments are spaced about 30 m from each other
and are thus, identified as urban street lights. Figure 14.13 shows the results of the
urban street lights detection for the application case 2.1.3.

(a) Global view of the results of the ur-
ban street lights detection (in red).

(b) Isolate view of the results of the ur-
ban street lights detection (in red).

Figure 14.13: Results of the urban street lights detection (in red) on the application
case 2.1.3.

Tables detection

Among objects on the floor in the application case 2.1.4, tables are themself re-
quired for the detection of kitchen elements. A table is semantically described as
composed of a tray, which is a horizontal plane at a distance between 50 cm and 70
cm from the floor and having an area superior to 0.20 m2.

Therefore, the process selects firstly, normal filtering, and normal region growing
as suitable for the detection of each table. These both algorithms requiring the same
configuration than the configuration used for floor detection, these algorithms with
such configurations are yet executed and do not need to be re-executed. Their
results can be directly used for the continuation of the table detection. Then, the
process selects Ransac plane recognition is suitable for table detection. This one is
executed on segments above the floor resulting from the normal region growing
configurated for horizontal plane detection.

Finally, features as area (through getArea) and the distance (through getDistance),
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whose the distance to the floor are estimated for each segments resulting from the
Ransac plane recognition algorithm. Thanks to these data processing and knowl-
edge that it provides, the process classifies the segments corresponding to the de-
scription of a table.

Figure 14.14 shows the results of table detection in point clouds acquired by Kinect
(c.f. use case in Section 2.1.4).

(a) Point cloud of the first scene. (b) Point cloud of the second scene.

(c) Point cloud of the third scene. (d) Point cloud on the fourth scene.

Figure 14.14: Tables detection in point clouds of the use case 2.1.4.

14.1.3 Detection of objects on tables

In the application case 2.1.4, there are kitchen elements as bowls, cans, cups, and
cereal boxes that are on tables. Therefore, their detection is facilitated by table
detection. Let us take the example of the can detection to illustrate the impact of
table detection on the kitchen elements detection process. Firstly, a set of points is
created by retrieving all points above the table.
Then, a Euclidean segmentation algorithm is selected. Its parameter of distance
tolerance is configurated according to the point density and the size (height, length,
and width) of the object. This segmentation is followed by the execution of Ransac
cylinder recognition algorithm.
Finally, the width (through getWidth), the height (through getHeight), and the length
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(through getLength) are estimated for each cylinder. Thanks to the identification of
cylinders and their characterization, cylinders respecting the can description are
classified as can.

Figure 14.15 shows the results of the cans detection obtained from the four point
clouds of the application case presented in Section 2.1.4.

(a) Results of cans detection on the first
scene.

(b) Results of cans detection on the sec-
ond scene.

(c) Results of cans detection on the third
scene.

(d) Results of cans detection on the
fourth scene.

Figure 14.15: Results of cans detection on the scenes of the application case 2.1.4.

14.1.4 Discussion

The detection process considers all objects to be detected in the processed data
and uses their topological relationships to determine a logical order of detection
between the objects. The knowledge of the objects and data processed allows the
algorithms to be selected and configured according to their characteristics to exe-
cute them. The execution of an algorithm enriches the knowledge base based on
these results. The reasoning based on this enrichment classifies the information
coming from the data processing. Data processing, followed by knowledge base
enrichment and classification provides a step-by-step understanding of the data.
The data processing takes into account this understanding. It allows reducing
the search areas of some objects. It uses the results of the previous executions to
continue the detection process for each of the objects. Thus it allows minimizing
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the processing by not executing algorithms that would provide a result already
obtained. Thus the detection process is tailor-made according to the knowledge of
the data processed, the objects to be detected, and the processing performed. How-
ever, the knowledge used is limited to known factors and information. As a result,
unknown factors and missing information can create unpredictable situations that
make it difficult to understand the data. The proposed approach is composed of
a self-learning process step based on the knowledge acquired during the first de-
tection process to overcome this lack of knowledge. The self-learning process aims
at enriching the knowledge base by a more precise knowledge of each application
case to re-execute the detection process. Its objective is to improve the detection
process by a more precise knowledge. Next section presents this self-learning pro-
cess.

14.2 Knowledge-based self-learning process

Following the classification step, some objects have been identified. The analysis
of these identified objects by the Knowledge-based self-learning process (explained
in Section 11.3) allows improving the characteristics of the objects to identify them
better.

This analysis consists first of all in enriching the information on the objects detected
by using algorithms designed for the extraction of characteristic (e.g. size, shape,
orientation, volume, area).

In the case of application 2.1.1 and 2.1.2, the enrichment of the characteristics allows
to establish parallelism links between the walls and calculate the distance of each
wall from the other.

The self-learning process then brings together recurring and common characteris-
tics of a set of objects of the same type to formulate hypotheses.

Thus in the case of applications, 2.1.1 and 2.1.2, groups of walls have as recurring
characteristics to have the same length or width, being parallel to each other and
being connected to the same wall. The hypothesis shows in Equation 14.1, repre-
sented as a rule of inference, is therefore automatically formulated based on these
characteristics.
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Segment(?s) ∧Wall(?w) ∧ areParallel(?s, ?w) ∧ (

(hasLenght(?s, ?l) ∧ hasLenght(?w, ?l2) ∧ equals(?l, ?l2))∨
(hasWidth(?s, ?wd) ∧ hasWidth(?w, ?wd2) ∧ equals(?wd, ?wd2)))∧

Wall(?w2) ∧ arePerpendicular(?s, ?w2) ∧ arePerpendicular(?w, ?w2)⇒Wall(?s)
(14.1)

The new rule defines that if a segment ("?s") is parallel to a wall ("?w") and both
have the same length ("?l" and ?l2") or the same width ("?wd" and "?wd2"), and that
a same wall ("?w2") is perpendicular with both elements (the segment "?s" and the
wall "?w") then the segment is a wall.

This hypothesis is then validated automatically if its application does not produce
any inconsistency in the knowledge (segment identified as corresponding to two
different types of an object). If it is validated, then the knowledge it produces
enriches the knowledge base. This enrichment of knowledge about objects impacts
the entire detection process.

Hypothesis formulation allows objects to be detected even when their geometric
representation in the data differs significantly from the geometry expected and
defined in the knowledge.

In the case of application 2.1.1, several hypotheses in addition to the hypothesis
illustrated in Equation 14.1, allow improving the classification of objects. First,
in this application case, every ceiling is upper than 2.15 m. Meanwhile, all other
objects defined in the knowledge base are lower than this value. Therefore, a new
hypothesis is formulated and specify that every element upper than 2.15 m in the
data of the case studied 2.1.1 is a ceiling. The same type of analysis is also applied
for the ground description. The description of grounds, ceilings, and walls are thus
improved.

Figure 14.16 shows the results of rooms detection before (a) and after (b) the itera-
tion of new knowledge provided by such hypotheses.

The analysis process of the learning process enables to adapt the description of
objects to the data dynamically and thus, significantly improves the object detection
process. The rooms are better-segmented thanks to the improved knowledge of the
walls, grounds, and ceilings. The relationships that unify them as rooms are also
better controlled.

The higher the recurrence of the objects to be detected (number of objects of the
same type) for an application case is, the more effective and relevant the learning
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(a) Results of rooms detection before
the learning.

(b) Results of rooms detection after
the learning.

Figure 14.16: Results of rooms detection on the application case 2.1.1.

is.

For example, in the application case 2.1.4, only one representation of each object
type is defined. Thus there is no learning possible on the specific object types.
However, general knowledge can be deduced by some hypothesis. For example, in
this application case, all objects that have a small volume (less than 0.3m3) are on
a table. Thus the assumption that "if an object has a small volume, it is placed on
a table", can be applied to all application cases that are defined as similar to the
application case 2.1.4. Thus this hypothesis allows faster detection of these objects
in the other application cases.

Unlike the application case 2.1.4, the application case 2.1.3 object to detect present
high recurrences, in particular for different types of objects such as cars, trees,
street lights. Thus, the formulation of hypotheses is varied, and their validation is
reinforced by the multiple situations tested.

Among the different hypotheses formulated, the hypothesis discussed earlier in
Section 11.3 allows identifying cars (in Frauhhofer’s dataset, c.f. Section 2.1.3) even
if the segments that compose them are not representative of the geometry defined
for cars. This assumption states that if a segment is close to a car and is aligned
with a car, then this segment is a car.

Figure 14.17 shows the results of car detection before (a) and after (b) the iteration
of new knowledge provided by such a hypothesis.

In the case of the application based on the Paris-Rue Madame dataset, the self-
learning process has validated the following assumption: "If a segment is close to
a car and does not belong to any other element then it is a car." The integration
of this kind of assumption into the knowledge base has improved the accuracy of
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(a) Results of cars detection before the
self-learning process.

(b) Results of cars detection after the self-
learning process.

Figure 14.17: Results of cars detection on the application case 2.1.3.

the cars detection process. Figure 14.18 illustrates the difference of accuracy for
car detection on the Paris-Rue-Madame dataset before and after the self-learning
process.

(a) Results of cars detection before the
self-learning process.

(b) Results of cars detection after the self-
learning process.

Figure 14.18: Comparison of cars detection results without and with the self-
learning process on Paris-Rue Madame dataset.

Other hypotheses can only concern the geometry of an object. For example, facades
could be defined as walls with a height greater than 13m in the case of application
2.1.3. However, facades were not identified because they are too far away and often
isolated (no connection with objects). The characteristics common to the facades
have been grouped during the analysis process (see Section 11.3.2) to detect these
facades better. Grouping the common characteristics allows statistical analysis use-
ful for hypothesis formulation, such as the calculation of confidence intervals for
each value. In this example, the confidence interval was calculated for the value
of the facade height. Its values are Ic = [12.3; 15.6]. This interval allows to for-
mulate a hypothesis that a segment is a facade if its height is within this interval,
i.e. between [12.3;15.6]. If a segment already classified as an object (such as a tree)
has such a height, then the hypothesis would be invalidated and would be refor-
mulated by integrating other characteristics (such as length, or width). Validation
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of this hypothesis allows for the adaptation of knowledge on façades and thus for
better detection.

Figure 14.19 shows the results of facade detection before (a) and after (b) the itera-
tion of new knowledge provided by such hypothesis.

(a) Results of facades detection before
the self-learning process.

(b) Results of facades detection after the
self-learning process.

Figure 14.19: Results of facades detection on the application case 2.1.3.

As shown in Figure 14.19, all facades present in the case of application 2.1.3 are
now detected.

Similarly to facades and cars, the self-learning process improves the semantic de-
scription of most of the objects described in a scene (such as vegetation, trees,
pedestrians, walls, facades, street lights, traffic signs). The improvement of this
knowledge leads to better detection of objects.

14.3 Discussion

The data processing presented in chapter 11 and illustrated in this chapter through
the use cases consists of a detection process and knowledge-based self-Learning.
The detection process is built step by step according to the knowledge of the objects,
data, and processing already performed. Its role is to adapt to each application case
according to the explicitly defined knowledge of that application case. Its objective
is to understand the data.
This understanding of the data, therefore, depends on explicitly defined knowl-
edge. Inaccuracies or lack of information in the definition of this knowledge is
often the limit to the performance of knowledge-based approaches. The role of
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self-learning process is to overcome this limitation by enriching the knowledge
base with knowledge specific to the addressed application case.
This learning requires an analytical basis on which to formulate hypotheses. The
first execution of the detection process using the initial knowledge base provides a
basis for understanding the data. This one is then enriched by an in-depth analy-
sis of the objects detected through the extraction of characteristics and topological
relationships between these objects. The initial knowledge base enriched by the
detection process and an analysis of the detected objects provides the necessary
support for the self-learning process. This self-learning process is based on the cre-
ation and verification of hypotheses. The validated assumptions are used to update
the knowledge base according to the addressed application case.
The self-learning process thus provides a more specialized and accurate knowledge
base for the addressed application case. This new, more specific knowledge base
allows creating a detection process more adapted to the data processed and thus to
improve the quality of its understanding. Next chapter presents an analysis of the
results obtained for the considered application cases as well as an evaluation of the
self-learning process effectiveness.
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15 Results

This chapter aims at presenting the results of the approach proposed in this thesis.
A first section presents the results obtained for each application case presented in
Section 2.1. A second section compares results obtained by this approach with
other approaches. This comparison is applied through the indoor application case
2.1.1 and the outdoor application case 2.1.3.

15.1 Use cases results

This section presents the results obtained for each of the four application cases
studied. Their explanation begins with the type of application case and a descrip-
tion of objects searched in the data (means objects described semantically into the
knowledge base). Then, results are presented firstly visually and then, through an
assessment of the detection. Finally, the strength and weakness of the approach are
discussed.

15.1.1 Results on time-of-flight use case

The use case 2.1.4 is a point cloud composed of four indoor scenes representing a
workroom and three lounging rooms. Figure 15.1 presents for each of these scenes,
its original part of the point cloud and the visual results of its understanding.
In these scenes, three main categories of objects are described in the knowledge
base. The first category of objects are objects defining a room as floors (in green
in Figure 15.1) and walls (in blue in Figure 15.1). The second category of objects
are desk furnitures as seats (in bright green in Figure 15.1), chairs (in dark green
in Figure 15.1), tables (in orange in Figure 15.1), computer tower (in pink in Figure
15.1), and boxes (in bright purple in Figure 15.1). The last category of objects are
kitchen elements, which are on tables, as cereal boxes (in blue-purple in Figure
15.1), cups (in purple in Figure 15.1), cans (in brown in Figure 15.1), and bowls (in
grey in Figure 15.1). Not classified points, which do not belong to noise, appears
in black in Figure 15.1), and also in red in Figure 15.1(b).
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(a) Original point cloud of the first scene. (b) Results on the first scene.

(c) Original point cloud of the second
scene. (d) Results on the second scene.

(e) Original point cloud of the third
scene. (f) Results on the third scene.

(g) Original point cloud of the fourth
scene. (h) Results on the fourth scene.

Figure 15.1: Results on the application case 2.1.4: each object classified as belonging
to the same type are represented by the same color, elements colored in black and
red are unclassified elements.
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Visually, two sources of unclassified points can be observed. Figure 15.1(b) high-
lights the two different sources of not classified points. The first source resulting
in black points corresponds to segments that the approach has not classified due
to a lack of knowledge description of these objects. For example, on the right of
Figure 15.1(b), a backpack appears as a black shape. The ununderstanding of this
segment is due to the absence of a semantic description of a backpack. The second
source of classification lack that is highlighted in red corresponds to ambiguous
segments, which could be classified into two object types, and are therefore not
classified neither in both types to avoid inconsistency of the knowledge base,
neither in one type to avoid arbitrary choice that conducts to wrong classification.
This red segments can also be not classified because they do not fit with the
semantic description. For example, a table tray is described semantically as a
horizontal plane; however, in the example illustrated by Figure 15.2, the table has
round edges. Therefore, the process detects the table by considering only the plane
surface of the tray and not the round edges. This red segments can be considered
as errors because they should be classified into an object type. Thus, these results
illustrate that the approach produces "edge effects" in the data understanding
process.

Figure 15.2: Illustration of round edge in red of the table.

Table 15.1 provides three information about the results. Firstly, it provides the
number of objects classified according to objects present in the scene. Secondly, it
gives the distribution of points between points representing noise, classified, and
unclassified points. Finally, it shows an estimation of success and fails percent-
age according to the proportion of classified and unclassified points respectively,
without considering points belonging to noise.

The number of classified objects shows that all considered objects (in a sense, se-
mantically described in the knowledge base) have been detected in all scenes. The
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percentage of noisy points in each scene highlights variations of noise among the
different scenes. Scene 4 is particularly noisy, with around 15% of noisy points.
This noise can impact the result of the approach since the approach obtains its
higher fail percentage in this scene. However, despite the noise, the approach suc-
ceeds to detect all objects of this scene, and this with an accuracy of 94% of points
successfully classified. Moreover, the approach shows good robustness to the noise
around 5%, by obtaining an accuracy of around 99% for the understanding of scene
2 and 3. Finally, the approach obtains an average accuracy of 97.66% for the under-
standing of this application case, and thus, a lack of 2.23% of data understanding.
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Objects/Scene Scene 1 Scene 2 Scene 3 Scene 4 All scene

Wall present 1 4 1 1 7
classified 1 4 1 1 7

Floor present 1 1 1 1 4
classified 1 1 1 1 4

Seat present 0 3 0 2 5
classified 0 3 0 2 5

Chair present 0 0 2 0 2
classified 0 0 2 0 2

Table present 1 1 1 1 4
classified 1 1 1 1 4

Computer present 1 0 0 0 1
classified 1 0 0 0 1

Box present 1 0 0 0 1
classified 1 0 0 0 1

Cereal box present 1 1 0 1 3
classified 1 1 0 1 3

Cup present 1 0 1 1 3
classified 1 0 1 1 3

Can present 1 1 2 1 5
classified 1 1 2 1 5

Bowl present 1 1 2 2 6
classified 1 1 2 2 6

Total present 9 12 10 10 41
classified 9 12 10 10 41

Percentage of 0.57% 5.43% 4.90% 14.98% 6.47%noise
Percentage of 97.12% 93.50% 94.91% 80.16% 91.42%classified points

Success (without 97.67% 98.87% 99.8% 94.3% 97.66%considering noise)
Percentage of 2.31% 1.07% 0.19% 4.86% 2.11%not classified points
Fail (without 2.33% 1.13% 0.2% 5.7% 2.34%considering noise)

Table 15.1: Results of objects detection in scenes of the use case 2.1.4.
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15.1.2 Results on cultural heritage use case

The application case 2.1.2 is a point cloud coming from a context of ruin excavation.
The processing of this application case aims at detecting a watermill as described
in Section 2.1.2. This watermill is semantically described as a composition of two
rooms, which are themselves composed of a floor and walls. Figure 15.3 shows the
detection results obtained for this application case.

(a) Original point cloud.
(b) Results of walls and floors detec-
tion.

(c) Results of rooms detection.
(d) Results of the watermill detec-
tion.

Figure 15.3: Results of objects detection on the application case 2.1.2.

One unclassified wall (UC 1 area on the bottom right part in Figure 15.3(c)) is due
to the vertical position of the wall that is partially under the floor and thus not
fulfilling the topological relationship with the floor and with other walls. However,
the missed classification of this wall does not impact the correct classification of the
room related to this wall thanks to the flexibility of the semantics that combined
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different kinds of information provided by the data description, and thus all rooms
are correctly classified. Thanks to the proper detection of each room, the semantic
classification identifies the watermill.

The main benefit of the proposed approach on this application case is the adapta-
tion of general knowledge to the complex context of a ruin excavation. This case
shows that the proposed approach is able to detect a wall that has been partially
destroyed. Although only a majority of data points have been labeled with an ob-
ject name, the results show a proper detection of objects. This fact highlights a
limit in the detection accuracy. Despite the significant irregularity of shape, the
omission of a part of the 3D data during processing and analysis still enables the
recognition of the semantically defined objects. The proposed approach, therefore,
provides the necessary flexibility needed, especially for cultural heritage objects.
On the one hand, similar cultural heritage objects varying in shape and arrange-
ment could also be automatically recognized across varying data sets as soon as a
sound semantic description exists. On the other hand, existing semantic descrip-
tions of cultural heritage objects could be adapted or reused for the recognition of
other, more complex objects.

15.1.3 Results on indoor modern building use case

The proposed approach firstly detects and classifies walls, ceilings, and grounds.
Secondly, the approach builds rooms according to the links between walls, ceilings,
and grounds. Figure 15.4 shows the detection results obtained with the application
case 2.1.1.

(a) Original point cloud. (b) Results of rooms detection.

Figure 15.4: Results on the application case 2.1.1.

In this application case, all expected rooms are detected. Nevertheless, some parts
of rooms (small parts in room 13 as illustrated in Figure 15.11) are not classified due
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to their specific characteristics. As illustrated in Figure 15.5 (in red), two exterior
elements are associated to the room 13 in Figure 15.11.

Figure 15.5: a) Illustration of rooms parts not classified in red and a wrong classi-
fied in purple, b) Zoom on the representation of these three room parts.

Due to their different features (e.g. ceiling not at the same height than the room),
these elements are not correctly classified. An addition of knowledge about this
type of elements would solve this classification problem. In this application case,
the classification of these elements is considered as not relevant since they do not
impact the overall classification of rooms and semantically, these elements are not
themselves a room and are outside all detected rooms. It is thus logical to not
detect as a part of the room. On the other hand, the center element (illustrated in
purple in Figure 15.5) classified as another room has the same characteristics than
room 1 shown in Figure 15.11. Thus it is correct to detect it as another room (see
Figure 15.11(d)).

However, the reasoning process considers that all points classified in more than
one room are inconsistent. Thus, all points at the border of two rooms cannot be
classified in any room (illustrated by the white gap between rooms in Figure 15.11
(d)) that produces "edge effects" in the detection results. Indeed, the decision to
classify these points depends on the goal of the application case. Considering the
flexibility and the automatic adaptation of the knowledge module, the addition of
further knowledge about building elements could improve the detection process
already implemented.

To go further in the analysis of the results, an estimation of the detection quality has
been computed for this application case according to the metric of Recall, Precision,
and F1-score (as explained in [Zheng et al., 2019]):
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• Recall: represents the proportion of points considered as negatively well clas-
sified. It is computed from the number of points similarly classified in the
assessed set and the reference set divided by the number of all points from
the assessed set.

• Precision: represents the proportion of points considered as positively well
classified. It is computed from the number of points similarly classified in the
assessed set and the reference set divided by the number of all points from
the reference set.

• F1-score: represents the harmonic average between the precision and recall
(with the best value at 1, and the worst at 0). It is computed from the precision
and the recall scores.

Figure 15.6 illustrates the point cloud used as reference for the computation of
metric scores.

Figure 15.6: Ground truth of the point cloud used as reference.

Table 15.2 presents the three metric scores for each room represented in the point
cloud.

This metrics assessment shows that the proposed approach has a good recall glob-
ally with an average of 0.889, but a medium precision with an average of 0.633.
This proposed approach obtains a correct average F1-score of 0.722. Although
a medium precision, the proposed approach has the advantage to detect all the
rooms automatically.
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Room Recall Precision F1-score
Room 1 0.602 0.843 0.702
Room 2 0.964 0.820 0.886
Room 3 0.940 0.820 0.875
Room 4 0.925 0.722 0.811
Room 5 0.915 0.503 0.649
Room 6 0.974 0.707 0.819
Room 7 0.706 0.591 0.643
Room 8 0.887 0.779 0.829
Room 9 0.963 0.453 0.616
Room 10 0.898 0.768 0.828
Room 11 0.634 0.840 0.723
Room 12 0.976 0.542 0.697
Room 13 0.958 0.666 0.785
Room 14 0.639 0.545 0.588
Room 15 0.970 0.434 0.600
Room 16 0.956 0.464 0.624
Room 17 0.921 0.594 0.722
Room 18 0.768 0.819 0.793
Room 19 0.980 0.565 0.717
Room 20 0.968 0.520 0.677
Room 21 0.965 0.461 0.624
Room 22 0.962 0.576 0.720
Room 23 0.985 0.527 0.687
Average 0.889 0.633 0.722

Table 15.2: Quality of room detection in use case 2.1.1.

15.1.4 Results on outdoor urban use cases

The application case of the urban outdoor environment is composed of two test
point clouds acquired by laser-scanner: the point cloud from Fraunhofer GmbH
and the point cloud from "Paris-rue-Madame database: MINES ParisTech 3D
mobile laser scanner dataset from Madame street in Paris"1 ([Serna et al., 2014]).
Objects to detect in this application case are mainly cars, traffic signs, walls
(sometimes also called facade in this context), floor, and vegetation.

1MINES ParisTech c© copyright. MINES ParisTech created this special set of 3D MLS data for the
purpose of detection-segmentation-classification research activities, but does not endorse the way
they are used in this project or the conclusions put forward.
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Frauhhofer’s point cloud

Figure 15.7 shows the results of the detection applied to two parts of Frauhhofer’s
point cloud.

(a) First part of original point cloud from
Fraunhofer GmbH. (b) Results of detection on the first part.

(c) Second part of original point cloud
from Fraunhofer GmbH.

(d) Results of detection on the second
part.

Figure 15.7: Results on the application case 2.1.3: facades in red, walls in dark blue,
building elements in purple, the floor in bright green, cars in yellow, traffic signs
in magenta, and trees in bright blue.

The application of the proposed approach on this point cloud allows for detecting
a wide variety of different objects regardless of their size (such as very large walls
or smaller traffic signs), geometric complexity (such as cars) or different represen-
tations (such as trees). This capability to detect such a variety of objects shows the
flexibility of the approach.

Moreover, this application case contains several challenging situations of detection
as a divergence of the object representations inside the data (e.g. cars and trees),
objects occluded by others or having a low point density due to the acquisition
process (scanner too far from the object for example). Yet, even in these challenging
situations, objects are correctly detected that shows the robustness and efficiency
of the proposed approach.

Nevertheless, 3.62% of the data is still not understood. The reasons for this lack are
similar than for the previous use case (e.g. ambiguity limits, object representation
too far from their semantic description or absence of semantic description).
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To assess more accurately, the precision and the efficiency of the proposed ap-
proach, the next results on Paris-rue-Madame dataset in a similar application case
are assessed through metric values.

Paris-rue-Madame dataset

Figure 15.8 shows the results of the detection applied to "Paris-rue-Madame
database: MINES ParisTech 3D mobile laser scanner dataset from Madame street
in Paris"2 ([Serna et al., 2014]).

(a) Original point cloud from Paris-rue-Madame
dataset, MINES ParisTech.[Serna et al., 2014].

(b) Annotated dataset used as the reference for the
computation of metrics [Serna et al., 2014].

(c) Results of detection.

Figure 15.8: Results on the application case 2.1.3 from "Paris-rue-Madame database:
MINES ParisTech 3D mobile laser scanner dataset from Madame street in Paris".

From visual observations, similar conclusions than that obtained from the previous
application on Fraunhofer’s point cloud can be deduced. That is why to go fur-

2MINES ParisTech c© copyright. MINES ParisTech created this special set of 3D MLS data for the
purpose of detection-segmentation-classification research activities, but does not endorse the way
they are used in this project or the conclusions put forward.
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ther in the analysis of the results, an estimation of the detection quality has been
computed for this application case according to the metric of Recall, Precision, and
F1-score (as explained in Section 15.1.3).

Table 15.3 shows the metric values obtained for these three metrics and for each of
the following object types: Facade, Ground, Car, Motorcycle, and Traffic sign.

Metrics/Objects Facade Ground Car Motorcycle Traffic sign
Recall 0.923 0.9978 0.935 0.737 0.8806

Precision 0.834 0.964 0.94 0.6405 0.7253
F1-score 0.8765 0.9806 0.939 0.685 0.7955

Table 15.3: Results of metric values obtained for each considered object type.

These metric values show that the approach is globally efficient and precise with
an average F1-score of 0.8552, an average precision value of 0.82076 and an average
recall value of 0.89468. The most efficiency and precision of the approach is ob-
tained at first for the object ground, and then for the object car. The efficiency in
car detection shows the robustness of the approach for managing the detection of
objects having a diversity of representation in the data. The object facade has effi-
ciency and precision near to the average efficiency and precision of the approach.
However, a loss of efficiency and precision is observed for smaller objects as motor-
cycle and traffic sign. This loss of efficiency is due to the smallest objects provide
a lower quantity of information that makes their detection more challenging than
big objects as the ground. Moreover, the comparison of these results with other
approaches in Section 15.2.2 will show these results are good results for such small
objects since the proposed approach obtains the better results in their detection.

15.1.5 Discussion on the efficiency of the self-learning process

The results obtained by the proposed approach on the different use cases highlight
its ability to provide good detection results for different objects and in different
contexts. This approach uses explicit knowledge to guide the detection process, as
well as a self-learning process. The learning objective is to improve the knowledge
according to each application case so that it is more precise. Obtaining accurate
knowledge is intended to improve the detection process. As it is guided by knowl-
edge, it is directly impacted by its accuracy. A comparison of results obtained
before and after the self-learning process was carried out. This comparison aims
at estimating the benefit of this learning. This comparison was made on the two
application cases for which the metrics Recall, Precision, and F1-score were evalu-
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ated. The application cases are the application cases on Stanford (c.f. Section 2.1.1)
and Paris-Rue-Madame dataset (c.f. Section 2.1.3).

Efficiency of the self-learning process applied to Stanford dataset

Figure 15.9 presents the results obtained on Stanford dataset before and after the
self-learning process.

(a) Ground truth point cloud.
(b) Results obtained before the self-
learning process.

(c) Results obtained after the self-learning
process: green circles highlight the data un-
derstanding improvement and orange circles
highlight the loss of data understanding.

Figure 15.9: Results of detection on Stanford dataset.

This Figure highlights the improvements (c.f. green circles in Figure (c)) and losses
(c.f. orange circles in Figure (c)) generated by the self-learning process. The im-
provements have resolved the problems of non-detection on the one hand, and
misclassification on the other hand. The losses related to this process correspond

15.1. USE CASES RESULTS



CHAPTER 15. RESULTS 203

to an accuracy loss for some rooms, whose some points have not been classified.
The quality difference of results obtained by the detection processes before and
after the self-learning process has been evaluated according to the recall, precision,
and F1-score metrics. Table 15.4 presents the three metric scores before and after
the self-learning process execution for each room of the dataset.

Room Recall Precision F1-score
Before After Before After Before After

Room 1 0.100 0.602 0.838 0.843 0.179 0.702
Room 2 0.989 0.964 0.815 0.820 0.894 0.886
Room 3 0.888 0.940 0.757 0.820 0.817 0.875
Room 4 0.985 0.925 0.517 0.722 0.678 0.811
Room 5 0.816 0.915 0.798 0.503 0.807 0.649
Room 6 0.187 0.974 0.559 0.707 0.280 0.819
Room 7 0.395 0.706 0.376 0.591 0.385 0.643
Room 8 0.489 0.887 0.845 0.779 0.619 0.829
Room 9 0.977 0.963 0.696 0.453 0.813 0.616

Room 10 0.664 0.898 0.588 0.768 0.624 0.828
Room 11 0.519 0.634 0.606 0.840 0.559 0.723
Room 12 0.984 0.976 0.226 0.542 0.367 0.697
Room 13 0.888 0.958 0.672 0.666 0.765 0.785
Room 14 0.505 0.639 0.122 0.545 0.197 0.588
Room 15 0.825 0.970 0.813 0.434 0.819 0.600
Room 16 0.498 0.956 0.763 0.464 0.603 0.624
Room 17 0.907 0.921 0.636 0.594 0.748 0.722
Room 18 0.932 0.768 0.640 0.819 0.760 0.793
Room 19 0.983 0.980 0.165 0.565 0.282 0.717
Room 20 0.535 0.968 0.798 0.520 0.641 0.677
Room 21 0.455 0.965 0.697 0.461 0.551 0.624
Room 22 0.564 0.962 0.837 0.576 0.674 0.720
Room 23 0.996 0.985 0.713 0.527 0.831 0.687
Average 0.699 0.889 0.629 0.633 0.605 0.722

Table 15.4: Comparison of metrics obtained before and after the self-learning pro-
cess on Stanford dataset.

The average evaluation of the metrics showed little overall improvement in accu-
racy (with an increase of only 0.004), but slightly greater improvement in recall
with an increase of 0.190. The self-learning process thus obtains an overall aver-
age increase of 0.117 on its F1-score. The room-by-room observation of the results
shows a significant increase (about 0.5) in the F1-score for rooms 1, 6, 14, and 19.
Rooms 4, 7, 8, 10, 11, 12, and 21 also benefit from an increase (about 0.2) in the
F1-score. The self-learning process has little impact on rooms 2, 3, 13, 16, 17, 18,
20, and 22. Rooms 5, 9, 15, and 23 suffer a loss of about 0.2 of the F1-score. This
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decrease in quality is due to a loss of accuracy. However, this loss of accuracy on
these four rooms remains low compared to the benefits provided on the eleven
parts that obtained a quality increase between 0.2 and 0.6.

Efficiency of the self-learning process applied to Paris-Rue-Madame dataset

Figure 15.10 shows the results obtained on Paris-Rue-Madame dataset before and
after the self-learning process.

(a) Results obtained before the self-
learning process.

(b) Results obtained after the self-
learning process.

Figure 15.10: Results on Paris-Rue-Madame dataset [Serna et al., 2014].

Table 15.5 presents the three metric scores before and after the self-learning process
execution for each considered objects of the dataset.

Metrics/Objects Facade Ground Car Motorcycle Traffic sign

Recall Before S-L 0.923 0.997 0.565 0.403 0.880
After S-L 0.923 0.998 0.935 0.737 0.881

Precision Before S-L 0.834 0.964 0.498 0.282 0.725
After S-L 0.834 0.964 0.94 0.641 0.725

F1-score Before S-L 0.876 0.980 0.530 0.332 0.795
After S-L 0.877 0.981 0.939 0.685 0.796

Table 15.5: Comparison of metrics obtained before and after Self-Learning process
(S-L) on Paris-Rue-Madame dataset.
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The comparison of the detection scores before and after the self-learning process
application, presented in the table 15.5, shows that self-learning process has no
impact on the detection of facades, ground and traffic signs. However, the self-
learning process allows for a significant improvement in the detection of cars and
motorcycles. The recall, precision, and F1-scores averaged double for the detection
of these two objects after the self-learning process. This detection improvement for
cars and motorcycles is also visible in Figure 15.10.

Discussion

The evaluation of the self-learning process on the Stanford and Paris-Rue-Madame
datasets allows for identifying its limitations and benefits. The main limitation ob-
served on the Stanford dataset is a slight loss of accuracy related to the previously
discussed "edge effects" (see Sections 15.1.1 and 15.1.3).
The benefit of the self-learning process lies in its ability to solve non-detection prob-
lems as well as to correct misclassifications. This benefit was observed both on the
cars and motorcycles detection in the Paris-Rue-Madame dataset and on half of the
rooms in the Stanford dataset. Although the detection of some objects (e.g. wall
and floor) is not significantly affected by the self-learning process, the detection of
some other objects is significantly improved.

15.2 Comparison with other approaches

15.2.1 Approaches comparison on indoor environment

The comparison of different approaches results in the indoor environment is ap-
plied to the use case 2.1.1. [Armeni et al., 2017] makes available some data enabling
comparisons. These data correspond to the third rooms shown in Figure 15.11 (a)
of a bigger point cloud composed of more than 22 millions of points. For this
use case, the approach results of this thesis are compared with the approaches of
[Armeni et al., 2016] and [Bobkov et al., 2017] to demonstrate the potential and the
efficiency of the proposed approach. These two approaches come from Machine
learning approaches and have been described earlier in the related work.

Figure 15.11 visually compares the results of these two approaches with the ap-
proach presented in this thesis.

The approach [Armeni et al., 2016] badly detects the room 19 and room 22, whose
a part of the room room 19 is detected as the room 22. Moreover, this approach
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Figure 15.11: Illustration of the results comparison, the black color represents
rooms wrongly detected; other colors represent rooms well detected: a) the ground
truth, b) the reconstruction results of [Armeni et al., 2016], c) the reconstruction re-
sult of [Bobkov et al., 2017], d) the result of the presented approach.

does not detect the room room 1. Further problem of over-segmentation have been
observed with this approach for room 2, room 4, and room 14. Finally, the rooms
room 9, room 10, room 13, and room 18 are detected as the same room. Figure 15.11
(b) shows in black every room, which is not well detected by this approach.

This last problem of rooms segmentation is also observed with the approach
[Bobkov et al., 2017] that detects six rooms (room 1, room 3, room 8, room 10, room
13, and room 18) as a same room. Furthermore, two other (room 5, and room 6) are
also detected as a same room. Figure 15.11 (c) shows in black every room, which is
not well detected by this approach.

Table 15.6 compares numerically the results of the two approaches with the ap-
proach presented in this thesis. The approach proposed detects 22 rooms and
wrongly classify only one room (room 13 in Figure 15.11 (d)) while the approaches
[Armeni et al., 2016] and [Bobkov et al., 2017] respectively wrongly detect 10 and 8
rooms.

Approach Correctly classified room (max 22) Sucess(%)
Presented approach 21 95%
[Armeni et al., 2016] 12 55%
[Bobkov et al., 2017] 14 63%

Table 15.6: Results comparison between the presented approach and two other
approaches on the point cloud corresponding to the use case 2.1.1.

According to the results obtained, we can claim that our approach is more robust
(95% of rooms are detected) than the two other approaches (55% and 63% of rooms
are detected). This higher performance comes from full management by semantic
technologies and dynamical knowledge adaptation. The knowledge used by se-
mantics technologies allows for adapting the process to all variations encountered
during the sensing process included external factor, acquisition context, and scene
characteristics. Moreover, knowledge used to drive the detection process fully is
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dynamically enriched by the knowledge-based self-learning process. Thus, this ap-
proach ensures proper object detection through a safe and smart detection process
that uses reasoning and consistency checking to avoid any wrong detection.

15.2.2 Approaches comparison on outdoor environment

Two assessments of the approach efficiency on the outdoor environment have been
done through the comparison with other approaches. The first comparison is based
on the results obtained for the point cloud from Fraunhofer. These results have
been presented in 3D Tag conference [Ponciano et al., 2019a]. The second compari-
son is based on results obtained for "Paris-rue-Madame database: MINES ParisTech
3D mobile laser scanner dataset from Madame street in Paris"3 ([Serna et al., 2014]).

Comparison of walls and ground detection on Fraunhofer’s point cloud

The presented approach is compared to two other approaches specialized in
the detection of walls and ground. The three approaches have been applied
to the same test point cloud to obtain comparable results. In the paper
[Anagnostopoulos et al., 2016], the authors proposed a method, which exclusively
detects walls and floors in point cloud through the combination of linear algo-
rithms. This method well detects the ground but fails to detect some walls due to
many missing parts in it. In the paper [Xing et al., 2018], the authors proposed a
method of feature recognition based on the application of SWRL-rules to classify
walls and ground in an urban context. This method proposes to apply a planar seg-
mentation and uses then the semantic to classify planar segments. Unfortunately,
this approach depends on the planar segmentation results and thus, fails to detect
walls which are primarily composed of vegetation. The results of this comparison
is illustrated in Table 15.7.

Approach Correctly classified (%) Wrongly classified (%)
Presented approach 96.38% 3.62%

[Anagnostopoulos et al., 2016] 90.18% 9.82%
[Xing et al., 2018] 86.06% 13.94%

Table 15.7: Results comparison between the presented approach and two other
approaches on the same point cloud part.

3MINES ParisTech c© copyright. MINES ParisTech created this special set of 3D MLS data for the
purpose of detection-segmentation-classification research activities, but does not endorse the way
they are used in this project or the conclusions put forward.
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Generally, generic object detection approaches are less accurate than detection ap-
proaches dedicated to the detection of one or two objects. However, in this com-
parison study, our approach is more precise (more than 96%) than the two other
approaches (90% and 86.06%) that are specialized in ground and wall detection.
The proposed approach thus shows that it is both generic and more robust than
the two other approaches.

Comparison of detection approaches on Paris-rue-Madame dataset

The application case of urban outdoor point clouds is one that has the biggest
number of 3D annotated datasets. Therefore, these annotated datasets allow the
training of machine learning approaches. Moreover, among the different ap-
proaches to structure data in an urban context, approaches using Neighborhood
approximation, and a feature extraction followed by a classification using ma-
chine learning classifier have stood out for their effectiveness. That is why the
efficiency of the proposed approach is compared with three approaches of this
type, which are the approaches [Hackel et al., 2016b], [Weinmann et al., 2015b], and
[Weinmann et al., 2014]. The approach [Hackel et al., 2016b] uses descriptors such
as Shape Context 3D (SC3D) ([Frome et al., 2004]) and Signature of Histogram of
Orientations (SHOT) ([Tombari et al., 2010]) to extract the characteristics. The ap-
proach [Weinmann et al., 2014] uses a supervised classification, whereas the ap-
proaches [Weinmann et al., 2014] and [Hackel et al., 2016b] use a machine learning
classifier, which is Random Forest classifier to identify data elements. These ap-
proaches provide excellent results on the application case "Paris-rue-Madame."
This application case has the advantage to have an open annotated dataset of
reference (illustrated in Figure 15.8(b)), provided by "Paris-rue-Madame database:
MINES ParisTech 3D mobile laser scanner dataset from Madame street in Paris"4

([Serna et al., 2014]), which allows the computation of the Recall, Precision, and F1-
score metrics ([Zheng et al., 2019], explained in Section 15.1.4). That is why this
application case is used to assess the proposed approach through these three
metrics and to compare its efficiency with the approaches [Hackel et al., 2016b],
[Weinmann et al., 2015b], and [Weinmann et al., 2014]. Table 15.8 shows the values
obtained by each approach for the three metrics and for each following object type:
Facade (F), Ground (G), Car (C), Motorcycle (M), and Traffic sign (T).

The comparison of results on the three metrics between the different approaches

4MINES ParisTech c© copyright. MINES ParisTech created this special set of 3D MLS data for the
purpose of detection-segmentation-classification research activities, but does not endorse the way
they are used in this project or the conclusions put forward.
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Objects/Approaches F G C M T

[Hackel et al., 2016b]
Recall 0.9799 0.9692 0.9786 0.9796 0.9939

Precision 0.9902 0.9934 0.9086 0.4792 0.3403
F1-score 0.9851 0.9811 0.9423 0.6435 0.5070

[Weinmann et al., 2015b]
Recall 0.9527 0.8650 0.6476 0.7198 0.9485

Precision 0.9620 0.9782 0.7948 0.0980 0.0491
F1-score 0.9573 0.9182 0.7137 0.0934 0.5070

[Weinmann et al., 2014]
Recall 0.958 0.911 0.603 0.657 0.978

Precision 0.964 0.960 0.768 0.136 0.058
F1-score 0.961 0.935 0.676 0.225 0.109

Proposed approach
Recall 0.923 0.9978 0.935 0.737 0.8806

Precision 0.834 0.964 0.94 0.6405 0.7253
F1-score 0.8765 0.9806 0.939 0.685 0.7955

Table 15.8: Results of metric values obtained by each approach for each consid-
ered object class: the best score by metric and object is highlighted by a green
background, whereas the worst score is highlighted in red.

shows the strength and weakness of the proposed approach. The weakness of the
proposed approach for this application case appears in facade detection, where the
proposed approach obtains the worst values of recall, precision, and F1-score. This
low quality of the proposed approach is due to many points behind the facade
that are not considered as a facade part by this approach, contrary to the other
approaches, whose reference dataset.

The strength of the proposed approach appears in the detection of small objects
as motorcycles, traffic signs, and cars. Although a lower recall value, the pro-
posed approach obtains the best value of precision and F1-score for the detection
of motorcycle and traffic sign. This strength comes from the use of topological re-
lationship that provides further information, which improves their detection. The
worst recall value obtained for the detection of traffic signs is certainly due to the
integration of segments having similar characteristics than the traffic sign and that
are thus, integrated as one of them.

Finally, the proposed approach obtains the best recall value and F1-score (slightly
highlighted in green in Table 15.8), quasi equivalent to the best F1-score for the
object ground. It also obtains the best precision value for the detection of cars. It
loses some quality in the car detection due to some overlap between floor and cars,
whose the boundaries are sometimes not accurate enough. However, although the
proposed approach does not obtain the best results for the detection of the ground
and cars, their results are excellent and very near to the best results values.

Therefore, the proposed approach is one of the most efficient approaches to process
this application case.
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16 Discussion

This implementation part has presented the choices of implementation and results
obtained by the implemented approach.

16.1 Implementation choices

The implementation choices concern firstly, the implementation of the processing
architecture and then, the implementation of the studied application cases.

The choice of implementation techniques for the processing depends on their
capacity to satisfy the requirements of the proposed solution and on their per-
formances. That is why the data processing is realized in C++, whereas the
knowledge management is realized in Java, through the use of Jena that allows
among others, the manipulation of OWL knowledge model and the use of SPARQL
query. Moreover, the conceptual bridge for the exchange between knowledge and
data processing paradigms is realized technically in Java through the combination
of Jena and JNI libraries. The communication between the two paradigms is done
through SPARQL that uses the library JNI to execute the data processing in C++,
and retrieve its result.

The choices on application cases implementation cannot exhaustively be shown
due to the number of objects modeled for the four application case. That is why
the knowledge modeling and processing chapters provide an overview of these
choices and their impact on the processing through examples from the studied
application case.
Concerning the data modeling, the modeling example of the application case 2.1.3
shows the influence of diverse external factors on the acquisition technique. It also
illustrates the influence of the acquisition techniques and technologies on the data
characteristics (e.g. occlusion and density). These influences are expressed through
SPARQL queries construct to compute the data characteristics (as occluded areas)
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of the processed data automatically.
Examples of object modeling based on the description of geometry, characteristic,
and topological relationships are given through the semantic description of a wall
and a floor. These examples are interesting firstly because they are shared between
the different application cases, and secondly, because their representation varies
according to the context of the application. Thus, they allow the illustration of the
adaptation of generic characteristics of an object type according to the application
case.

The steps of data processing (algorithm selection, configuration, and execution
followed by the classification) are applied for detecting all objects according to
their characteristics. That is why some objects must be detected before the others.
These elements are called elementary objects and are identified according to their
topological relationship with others, their relationship of composition, and their
size. The others are called secondary objects. The detection of secondary objects is
facilitated by the detection of elementary objects that reduces their area of research
on some point clouds portions. The identification of secondary objects can also
require the identification of elementary objects in case of composition relation (e.g.
a room is a secondary object because it requires the identification of walls and
floors that are elementary objects to be identified). Thanks to the illustration of
data processing through diverse examples of elementary and secondary objects,
the chapter 14 also illustrates the adaptation of algorithm selection according to
objects description, as well as, a dynamic and continuous classification according
to results of each data processing steps. Thus, the chapter 13 and chapter 14
show the approach flexibility through the adaptation capability of both the model
and the processing according to object types and context diversity. Finally, the
role and performance of the self-learning process illustrated on the enrichment
of wall description and the improvement of the application case 2.1.1, shows
the generalizability of the approach through its capability to improve both the
knowledge model and the data processing according to each application case.

16.2 Results discussion

The study of final results on each application case allows for identifying the
strengths and weaknesses of the approach. The main strengths of the approach
identified through the analysis of the results are its flexibility (e.g. the capability to
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be applied to four different application cases) and its robustness to detect objects in
complex situation (e.g. detection of watermill in a point cloud of ruin excavation,
or detection of all searched objects in a point cloud composed of 15% of noise).
The main weakness of the approach is the ambiguity that creates "edge effects" in
the data understanding (c.f. results on application cases 15.1.1 and 15.1.3). To con-
clude in more detail on the strengths and weaknesses of the proposed approach,
let us take the criteria used to analyze the related work to analyze in its turn the
proposed approach.

Quality

The quality of data understanding has two aspects. The first aspect is the quan-
titative quality represented, for example, by the percentage of detected objects or
the percentage of data understand (equivalent to the percentage of well-classified
points). The approach has good quantitative quality since:

1. Data processing in Section 15.1.1 results in recognition of all searched objects,
and an average of 97.66% of the data is understood.

2. Data processing in Section 15.1.2 results in recognition of all rooms and the
watermill.

3. Data processing in Section 15.1.3 results in recognition of all rooms. The com-
parison with other approaches to this application case shows this approach
brings better results of data understanding.

The second aspect of quality is the accuracy of object detection. It can be assessed
through the number of elements wrongly classified or not classified, but also by
the detected proportion of an object. The advantage of the proposed approach in
accuracy is not to produce the wrong classification. Moreover, the application case
section 15.1.4 shows the approach has globally a good efficiency and precision,
and even one of the best efficiency among existing approaches (c.f. comparison in
Section 15.2.2). However, some weakness lies in the unclassified element. Indeed,
some elements as the wall in results 15.1.2 or the round edges of the table in Figure
15.2 have representation too far from the semantic description or as the backpack
in Figure 15.1, have no description inside the knowledge base to be identified.
Nevertheless, the major weakness that results in unclassified elements is ambiguity.
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Ambiguity

Indeed, the proposed approach does not manage ambiguities. An element that
could be classified into two disjoint object types would create an inconsistency of
the knowledge. That is why such an object would not be classified in the two object
types. It would also not be classified arbitrarily in one of the object types to avoid
the wrong classification, and would thus stay as unclassified. The choice of pre-
ferred an unclassified element to wrongly classified elements is due to the impact
of the wrong classification on the self-learning process. An unclassified element
could be later be classified through the self-learning process, whereas a wrong
classified element would provide wrong information on an object type as a base
for the learning. Therefore, this "no management" of the ambiguities conducts the
approach at producing "edge effects" as observed in results 15.1.3 between rooms
and shown by red elements of Figure 15.1(b). These "edge effects" illustrate the
lack of accuracy quality of the approach. This accuracy weakness is a compromise
that guarantees the proper work of the self-learning process and benefits to the
robustness and the generalizability of the approach.

Robustness

The robustness of this approach is shown through the good quantitative quality
obtained for each application case; even for challenging situations. For example,
results in 15.1.2 show the approach is able to detect rooms even if their walls are
partially destroyed. Moreover, in the urban application case, many factors conduct
to variations of data characteristics as differences of density or occluded area. How-
ever, the approach succeeds to gather parts of the same wall split by an occluded
area. Urban application case also provides a broad diversity of representation for
an object type as cars; the approach also succeeds to detect this variety of represen-
tations.

Flexibility

As proved by the application of this approach on four very different cases, this one
is flexible. This approach can adapt face to:

1. noisy point cloud as scene 4 in 15.1.1,

2. point cloud with strong roughness as the application case of cultural heritage,
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3. variations of object representation, density variations, occluded areas, and
other variations of data characteristics as in urban application case.

Generalizability

Finally, the approach can be improved both by itself and by extensions from the
user. The improvement capability, by itself, is provided by the self-learning pro-
cess that improves both the knowledge and the data understanding process. The
improvement of the approach by users is possible through the adding of new algo-
rithms into the algorithm library and their semantic description into the knowledge
base. Moreover, the user can also enrich the knowledge base by knowledge about
the different domain represented by the ontology.
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17 Conclusion and future work

Although we know of many solutions for the processing of different kind of data,
they are generally based on an implicit understanding of the data and are inflexible
and not robust to face and manage variations in data characteristics, which requires
an adaptation of the way of processing. This lack of flexibility and robustness
limits current performance to analyze unstructured data sets in changing contexts
automatically.

17.1 Main contribution

This thesis addresses this limit by a new knowledge-based approach. The knowl-
edge described through an ontology aims at representing the source of data charac-
teristics variations and their impact on the data understanding process to manage
these variations of data characteristics. The role of the knowledge is to guide the
process of data understanding step by step through a continuous exchange of in-
formation between the knowledge base and the data processing. This continuous
exchange is provided by a conceptual and technical bridge that allows the knowl-
edge to guide the data processing and allows the data processing to enrich the
knowledge. This bridge provides the expected flexibility of the approach by allow-
ing a data understanding process that adapts according to the knowledge (dynam-
ically enriched by the data processing). However, the content of the knowledge
base cannot predict all cases of object representation variations to understand the
data wholly. Therefore, the approach completes the data understanding through a
self-learning process based on knowledge and using hypothesis formulation. This
self-learning process aims at guaranty the robustness of the approach by enriching
the knowledge base according to each use case specificity. This learning process
is based on an analysis of the first results of the data understanding process to
improve its result through a second data understanding process based on more
specific knowledge.
Therefore, this new knowledge-based approach provides three key contributions,
which are an ontology describing the domains of data, scene, and data processing,
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a technical and conceptual bridge between knowledge and data processing, and a
self-learning process.

Ontology describing the domains of data, scene, and data processing The on-
tology provides a knowledge model that allows users to describe scenes and data,
which they have to process. The knowledge model also allows users to enrich the
data processing by describing algorithms that can be added to the libraries of algo-
rithms.
The knowledge provided by users about scenes and data, whose acquisition pro-
cess, produces a base of reasoning that enables to deduce and anticipate data char-
acteristics, as well as to object representation inside the data. Since the knowledge
aims at guiding the data understanding process, this deduced knowledge allows
for adapting the data understanding process more precisely to each processed use
case.

Technical and conceptual bridge between knowledge management and data pro-
cessing Contrary to other knowledge-based approaches, the approach presented
in this thesis uses a continuous bi-directional exchange of information between the
knowledge and the data processing. This continuous bi-directional exchange of
information allows the knowledge to guide the data processing step by step, by
taking into account the results of data processing at each step. At each step of the
data understanding process, the knowledge guides the selection, configuration, and
execution of algorithms according to the processed use case and the current step of
data understanding. At each of these steps, the knowledge base interprets the re-
sults of executed algorithms automatically and combines the different knowledge
available to understand and structure the data. Thus, the selection, the configu-
ration, and the execution of algorithms are managed in line with the evolution of
data processing and understanding.

Knowledge-based self-learning process using hypothesis formulation The
described process based on a bridge between knowledge and processing allows
for a data understanding based on a knowledge base content. The purpose of this
content is not to describe the scene and data in detail, but to provide a base of
knowledge sufficient to recognize objects. Such knowledge base has so, a lack of
specific knowledge about the processed data that does not allow for recognizing
objects, whose representation varies from their description in the knowledge base.
The knowledge-based self-learning process proposed in this approach aims at en-
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riching the knowledge base through a knowledge specific to each use case. It uses
the data understanding process based on the sufficient knowledge provided by
users as a learning base. This base of data understanding is analyzed to generate
hypotheses automatically to improve the knowledge description. The formulation
of a hypothesis depends firstly on an enrichment about scene knowledge (e.g.
identification of object size, identification of topological relationships between
objects), and secondly, on gathering common characteristics of objects belonging
to the same type. The identified characteristics common to an object type are
combined to formulate hypotheses to define a better description of this object type
in the knowledge base. These hypotheses are tested to verify that their integration
to the original knowledge base does not create any inconsistency. A hypothesis
that does not create inconsistency is considered as coherent and consequently,
integrated into the knowledge base. The adding of validated hypothesis into
the knowledge base changes the behavior of the data processing, which is more
adapted to the processed use case. This adaptation to the processed use case
through a more specific knowledge provides a better data understanding.

The robustness and flexibility of the approach have been validated from four ap-
plication cases with different characteristics, contexts, and objectives. This study
shows that the proposed approach provides relevant results in terms of data under-
standing even in challenging situations such as data portions with low density. Its
comparison with other existing approaches that have dealt with two of the four use
cases results obtained shows that the approach proposed in this thesis significantly
improves the understanding of unstructured data.

17.2 Advantages and limits

The particularity of this approach lies in the automatic enrichment of the knowl-
edge according to each application case. First, knowledge about the representations
of objects in the data is enriched by the reasoning process applied to the knowledge
of the acquisition process, the digitalized scene, and the context. Then, self-learning
process enriches the knowledge base by identifying new object characteristics and
more specialized object descriptions for each application case.

These enrichments allow for the assumption of data characteristics and the adapta-
tion of the knowledge on object representations to different application cases. For
the knowledge-based approach, this leads to an adaptation of the data understand-
ing process according to each application case. This flexibility of adaptation allows
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the approach to be applied to different application cases with different contexts
(such as archaeological excavations, urban outdoor environments or indoor build-
ing environments), but also different acquisition processes (such as laser scanning,
or time-of-flight scanning of a Microsoft Kinect).

Finally, the proposed approach is easily extensible by adding algorithms and
knowledge to expand its intrinsic capabilities and to various fields of application.

The main limitation of this approach is the accuracy of elements detection. This
limitation is mainly due to the management of identification ambiguities. Indeed,
the approach considers as inconsistent any element that may belong to two dis-
joint classes. Thus, portions of data located at the boundary between two objects
and which can, therefore, be classified either in one or the other, are not classified.
This behavior causes "edge effects" on objects detection. However, this limit can
also be an advantage in some application cases, since it avoids misclassifications.
This lack of precision is also due to the sensitivity of the approach to variations in
the algorithm parameterization. The parameterization of algorithms is performed
automatically based on the knowledge of the characteristics of data, objects, and
algorithms. Knowledge of algorithms requires a good understanding of its behav-
ior and the impact of changing parameter values on its behavior. It is not always
easy to formulate with high precision the knowledge on the configuration of algo-
rithms. These difficulties may lead in some cases to a description of the knowledge
of the algorithm that is insufficiently precise. This insufficient precision leads to a
correct configuration of the algorithm but not sufficiently precise according to the
sensitivity of the algorithm. Thus, the accuracy of detection depends above all on
the description of the knowledge about object types and algorithm configuration.

17.3 Future work

This section proposes future work based on the results of this thesis. This future
work is presented according to short, medium, and long-term planning. Short-term
planning proposes possible but not necessary improvements to prove the effective-
ness of the thesis work. The medium-term planning proposes possible extensions
to enrich the current version of the work. Finally, long-term planning proposes a
research problem based on the work of this thesis, allowing us to go further in the
context of this work.

17.3. FUTURE WORK
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17.3.1 Short term

In the short term, it would be interesting to extend the analysis of the behaviour of
various objects in different data sets in order to improve the understanding of their
interactions, and thus to extend and improve the knowledge base. Such improve-
ment would aim at obtaining a better accuracy for application cases that would
require greater detection accuracy. We did not make these improvements because
the applications on which the proposed approach has been tested do not require
greater precision of results as the main objective of this study was to establish the
proof of concept of the proposed approach.
Furthermore, it would be interesting to extend the approach to integrating image
data. This extension would require the addition of image processing algorithms
to the algorithm library and the addition of their representation to the knowledge
base. Image data provides additional content that extends the base provided for
detection. Such an improvement would simplify the detection process, make de-
tection more robust, and increase the quality of the detection process.

17.3.2 Middle term

In the medium term, it would be interesting to integrate "free form" detection algo-
rithms and point cloud descriptors to extend the efficiency of the currently imple-
mented approach and to identify more quickly objects that would be very difficult
to describe in the form of the current knowledge-based on classical geometries.
The addition of these algorithms would require investigations to understand how
to configure and use them, but also research to formalize this knowledge in the
ontology.
Another interesting extension would be to process video data. This type of data
would require extending knowledge modeling to the temporal domain. It would
also allow for the exploration of learning opportunities based on the evolution of
images within the video.

17.3.3 Long term

Finally, it would be interesting in the long term to automatically integrate knowl-
edge from the Semantic Web in order to enrich the ontology with descriptions of
objects and scenes that can be identified in data. The Semantic Web is a source
that can provide various knowledge such as various descriptions of objects and
geometries. However, the object modeling in the Semantic Web depends on the
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designers who contribute to its development. Therefore, there are many different
models, both for modeling objects, and for modeling the same object. Thus, the in-
tegration of knowledge from the semantic web to enrich the knowledge base used
by the approach proposed in this thesis should satisfy several needs. First, it would
require retrieving the relevant knowledge to be integrated, and then adapting its
modeling to the model used in this approach for data understanding. Besides, the
great diversity of possible descriptions of an object could serve as a basis for the
knowledge-based self-learning process to infer new knowledge. Indeed, the self-
learning collects information from knowledge about individual objects to describe
knowledge about the type of an object. Thus, it could collect information common
to all descriptions for an object type, in order to generate new knowledge on the
possible representations of these objects in the data. Moreover, these representa-
tions could be automatically adapted to each application case through reasoning
on the knowledge domains described in the ontology.
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Conclusion et travaux futurs

Bien que nous connaissions de nombreuses solutions pour le traitement de dif-
férents types de données, elles reposent généralement sur une compréhension im-
plicite des données. Elles sont également inflexibles et peu robustes pour appréhen-
der et gérer les variations des caractéristiques des données, qui nécessitent une
adaptation des méthodes de traitement. Ce manque de flexibilité et de robustesse
limite les performances actuelles pour analyser automatiquement des ensembles
de données non structurées dans des contextes changeants.

Contribution principale

Cette thèse aborde cette limite par une nouvelle approche basée sur la connais-
sance. Les connaissances décrites à travers une ontologie visent à représenter la
source des variations des caractéristiques des données et leur impact sur le pro-
cessus de compréhension des données pour gérer ces variations. Le rôle de la
connaissance est de guider pas à pas le processus de compréhension des données
à travers un échange continu d’informations entre la base de connaissances et le
traitement des données. Cet échange continu est assuré par un pont conceptuel
et technique qui permet aux connaissances de guider le traitement des données et
permet au traitement des données d’enrichir les connaissances. Ce pont apporte
la flexibilité attendue de l’approche en permettant un processus de compréhension
des données qui s’adapte en fonction des connaissances (dynamiquement enrichi
par le traitement des données). Cependant, le contenu de la base de connaissances
ne peut pas prédire tous les cas de variations dans la représentation des objets pour
comprendre les données dans leur intégralité. Par conséquent, l’approche complète
la compréhension des données par un processus d’auto-apprentissage basé sur la
connaissance et la formulation d’hypothèses. Ce processus d’auto-apprentissage
vise à garantir la robustesse de l’approche en enrichissant la base de connaissances
en fonction de chaque cas d’utilisation spécifique. Ce processus d’apprentissage
est basé sur une analyse des premiers résultats du processus de compréhension
des données afin d’améliorer son résultat par un second processus de compréhen-

223



224 CHAPTER 17. CONCLUSION AND FUTURE WORK

sion des données basé sur des connaissances plus spécifiques. Par conséquent, cette
nouvelle approche fondée sur le savoir apporte trois contributions clés : une ontolo-
gie décrivant les domaines des données, de la scène et du traitement des données,
un pont technique et conceptuel entre le savoir et le traitement des données, et un
processus d’auto-apprentissage.

Ontologie décrivant les domaines des données, de la scène et du traitement des
données L’ontologie fournit un modèle de connaissance qui permet aux utilisa-
teurs de décrire des scènes et des données qu’ils doivent traiter. Le modèle de con-
naissance permet également aux utilisateurs d’enrichir le traitement des données en
décrivant les algorithmes qui peuvent être ajoutés aux bibliothèques d’algorithmes.
Les connaissances fournies par les utilisateurs sur les scènes et les données, dont le
processus d’acquisition produit une base de raisonnement qui permet de déduire et
d’anticiper les caractéristiques des données, ainsi que de représenter les objets dans
les données. Puisque la connaissance vise à guider le processus de compréhension
des données, cette connaissance déduite permet d’adapter plus précisément le pro-
cessus de compréhension des données à chaque cas d’utilisation traité.

Pont technique et conceptuelle entre la gestion des connaissances et le traite-
ment des données Contrairement à d’autres approches basées sur la connais-
sance, l’approche présentée dans cette thèse utilise un échange continu bidirection-
nel d’informations entre la connaissance et le traitement des données. Cet échange
d’informations bidirectionnel continu permet de guider le traitement des données
étape par étape, en prenant en compte les résultats du traitement des données à
chaque étape. À chaque étape du processus de compréhension des données, les
connaissances guident la sélection, la configuration et l’exécution des algorithmes
en fonction du cas d’utilisation traité et de l’étape actuelle de compréhension des
données. À chacune de ces étapes, la base de connaissances interprète automa-
tiquement les résultats des algorithmes exécutés et combine les différentes connais-
sances disponibles pour comprendre et structurer les données. Ainsi, la sélection, la
configuration et l’exécution des algorithmes sont gérées en fonction de l’évolution
du traitement et de la compréhension des données.

Processus d’auto-apprentissage basé sur les connaissances et la formulation
d’hypothèses Le processus décrit, basé sur un pont entre la connaissance et le
traitement, permet une compréhension des données basée sur le contenu d’une
base de connaissances. Le but de ce contenu n’est pas de décrire la scène et les
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données en détail, mais de fournir une base de connaissances suffisante pour
reconnaître les objets. Une telle base de connaissances a donc, un manque de
connaissances spécifiques sur les données traitées qui ne permet pas de reconnaître
les objets, dont leur représentation dans les données diffère de leur description
dans la base de connaissances. Le processus d’auto-apprentissage basé sur la
connaissance proposé dans cette approche vise à enrichir la base de connaissances
par une connaissance spécifique à chaque cas d’utilisation. Il utilise comme
base d’apprentissage le processus de compréhension des données basé sur les
connaissances suffisantes fournies par les utilisateurs. Cette base de données
est analysée pour générer automatiquement des hypothèses afin d’améliorer la
description des connaissances. La formulation d’une hypothèse dépend d’une part
d’un enrichissement de la connaissance de la scène (ex : identification de la taille
de l’objet, identification des relations topologiques entre objets), et d’autre part de
la collecte des caractéristiques communes d’objets appartenant au même type. Les
caractéristiques identifiées qui sont communes à un type d’objet sont combinées
pour formuler des hypothèses afin de définir une meilleure description de ce type
d’objet dans la base de connaissances. Ces hypothèses sont testées pour vérifier
que leur intégration à la base de connaissances d’origine ne crée pas d’incohérence.
Une hypothèse qui ne crée pas d’incohérence est considérée comme cohérente
et, par conséquent, elle est intégrée dans la base de connaissances. L’ajout
d’hypothèses validées dans la base de connaissances modifie le comportement
du traitement des données, qui est plus adapté au cas d’utilisation traité. Cette
adaptation au cas d’utilisation traité par une connaissance plus spécifique permet
une meilleure compréhension des données.

La robustesse et la flexibilité de l’approche ont été validées à partir de quatre
cas d’application aux caractéristiques, contextes et objectifs différents. Cette étude
montre que l’approche proposée fournit des résultats pertinents en termes de com-
préhension des données, même dans des situations difficiles telles que des portions
de données à faible densité. Sa comparaison avec d’autres approches existantes qui
ont traité deux des quatre cas d’utilisation obtenus montre que l’approche pro-
posée dans cette thèse améliore considérablement la compréhension des données
non structurées.
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Avantages et limites

La particularité de cette approche réside dans l’enrichissement automatique des
connaissances en fonction de chaque cas d’application. Premièrement, la connais-
sance des représentations des objets dans les données est enrichie par le processus
de raisonnement appliqué à la connaissance du processus d’acquisition, de la scène
numérisée et du contexte. Ensuite, le processus d’auto-apprentissage enrichit la
base de connaissances en identifiant de nouvelles caractéristiques d’objets et des
descriptions d’objets plus spécialisées pour chaque cas d’application.

Ces enrichissements permettent de prédire les caractéristiques des données et
d’adapter les connaissances sur les représentations des objets aux différents cas
d’application. Dans le cas de l’approche fondée sur la connaissance, cela conduit à
une adaptation du processus de compréhension des données en fonction de chaque
cas d’application. Cette souplesse d’adaptation permet d’appliquer l’approche à
différents cas d’application dans différents contextes (fouilles archéologiques, en-
vironnements urbains extérieurs ou environnements intérieurs de bâtiments), mais
aussi à différents processus d’acquisition (comme le balayage laser ou le balayage
à temps de vol d’un instrument tel que Microsoft Kinect).

Enfin, l’approche proposée est facilement extensible par l’ajout d’algorithmes et
de connaissances afin d’étendre ses capacités intrinsèques et à divers domaines
d’application.

La principale limite de cette approche est la précision de la détection des éléments.
Cette limitation est principalement due à la gestion des ambiguïtés de reconnais-
sance d’objets. En effet, l’approche considère comme incohérent tout élément pou-
vant appartenir à deux classes disjointes. Ainsi, les parties de données situées à la
frontière entre deux objets et qui peuvent donc être classées dans l’un ou l’autre ne
sont pas classées. Ce comportement provoque des "effets de bord" sur la détection
d’objets. Toutefois, cette limite peut également être un avantage dans certains cas
d’application, car elle permet d’éviter les erreurs de classification. Ce manque de
précision est également dû à la sensibilité de l’approche aux variations du paramé-
trage des algorithmes. Le paramétrage des algorithmes s’effectue automatiquement
en fonction de la connaissance des caractéristiques des données, des objets et des
algorithmes. La connaissance des algorithmes nécessite une bonne compréhension
de leur comportement et de l’impact de l’évolution des valeurs des paramètres
sur leur comportement. Il n’est pas toujours facile de formuler avec une grande
précision les connaissances sur la configuration des algorithmes. Ces difficultés
peuvent conduire dans certains cas à une description insuffisamment précise de la
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connaissance de l’algorithme. Cette précision insuffisante conduit à une configura-
tion correcte de l’algorithme mais pas suffisamment précise selon la sensibilité de
l’algorithme. Ainsi, la précision de la détection dépend avant tout de la description
des connaissances sur les types d’objets et la configuration des algorithmes.

Travaux futurs

Cette section propose des travaux futurs basés sur les résultats de cette thèse. Ce
travail futur est présenté selon une planification à court, moyen et long terme. La
planification à court terme propose des améliorations possibles mais non néces-
saires pour prouver l’efficacité du travail de thèse. La planification à moyen terme
propose des prolongements possibles pour enrichir la version actuelle de l’ouvrage.
Enfin, la planification à long terme propose une problématique de recherche basée
sur les travaux de cette thèse, permettant d’aller plus loin dans le cadre de ces
travaux.

Court terme

À court terme, il serait intéressant d’étendre l’analyse du comportement des
différents objets dans différents ensembles de données afin d’améliorer la com-
préhension de leurs interactions et donc de développer et améliorer la base de
connaissances. Une telle amélioration viserait à obtenir une meilleure précision
pour les cas d’application qui nécessitent une plus grande précision de détec-
tion. Nous n’avons pas apporté ces améliorations puisque les applications sur
lesquelles l’approche proposée a été testée ne nécessitent pas une plus grande
précision des résultats étant donné que l’objectif principal de cette étude était
d’établir la preuve du concept de l’approche proposée. De plus, il serait intéressant
d’étendre l’approche à l’intégration d’image. Cette extension nécessiterait l’ajout
d’algorithmes de traitement d’images à la bibliothèque d’algorithmes et l’ajout de
leur représentation à la base de connaissances. Les images fournissent un contenu
supplémentaire qui élargit la base fournie pour la détection. Une telle améliora-
tion simplifierait le processus de détection, rendrait la détection plus robuste et
améliorerait la qualité du processus de détection.
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Moyen terme

À moyen terme, il serait intéressant d’intégrer des algorithmes de détection de
"forme libre" et des descripteurs de nuages de points pour étendre l’efficacité de
l’approche actuellement mise en œuvre. Cela permettrait d’identifier plus rapide-
ment des objets qui seraient très difficiles à décrire sous la forme des connaissances
actuelles basées sur des géométries classiques. L’ajout de ces algorithmes néces-
siterait des investigations pour comprendre comment les configurer et les utiliser,
mais aussi des recherches pour formaliser ces connaissances dans l’ontologie. Une
autre extension intéressante serait de traiter les données vidéo. Ce type de données
nécessiterait d’étendre la modélisation des connaissances au domaine temporel.
Cela permettrait également d’explorer les possibilités d’apprentissage en fonction
de l’évolution des images de la vidéo.

Long terme

Enfin, il serait intéressant à long terme d’intégrer automatiquement les con-
naissances issues du Web sémantique afin d’enrichir l’ontologie des descriptions
d’objets et de scènes identifiables dans les données. Le Web sémantique est une
source de connaissances diverses qui peut fournir des descriptions variées d’objets
et de géométries. Cependant, la modélisation d’objets dans le Web sémantique
dépend des concepteurs qui contribuent à son développement. Il existe donc de
nombreux modèles différents, tant pour la modélisation de différents objets que
pour la modélisation d’un même objet. Ainsi, l’intégration des connaissances issues
du web sémantique pour enrichir la base de connaissances utilisée par l’approche
proposée dans cette thèse devrait satisfaire plusieurs besoins. Tout d’abord, il
faudrait récupérer les connaissances pertinentes à intégrer, puis adapter leurs mod-
élisations au modèle utilisé dans cette approche pour comprendre les données. En
outre, la grande diversité des descriptions possibles d’un objet pourrait servir de
base au processus d’auto-apprentissage basé sur la connaissance pour déduire de
nouvelles connaissances. En effet, l’auto-apprentissage recueille des informations
à partir de connaissances sur des objets individuels pour décrire la connaissance
du type d’objet. Ainsi, il pourrait collecter des informations communes à toutes les
descriptions d’un type d’objet, afin de générer de nouvelles connaissances sur les
représentations possibles de ces objets dans les données. De plus, ces représenta-
tions pourraient être automatiquement adaptées à chaque cas d’application par un
raisonnement sur les domaines de connaissance décrits dans l’ontologie.
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A Algorithms processing

The structuring of algorithm knowledge explained in Section (10.4) allows the easy
integration of specialized computer vision libraries (such as PCL or openCV). These
libraries provide a wide variety of algorithms for processing data.

There are three essential aspects considered in the modeling of algorithms: The
first aspect is the role that each parameter fulfills for the algorithm. The second
aspect is the influence on the result of each parameter. Finally, the last aspect is the
influence of one parameter on another, the latter being the most complicated aspect
to understand. It is modelled using equations to relate the various influences of a
parameter.

The main algorithms described to handle most application cases, and in particular,
those presented in Section 2.1, are divided into three categories: preprocessing, seg-
mentation, and feature extraction. Preprocessing algorithms prepare the data for
the processing. Segmentation algorithms isolate and detect elements. Finally, the
algorithms for extracting features allow characterizing portions of data (segments)
for the identification of objects by classification (explained in Section 11.2).

In the following sections, we will describe with the same formalism the different
algorithms that we have implemented in our work in order to process the study
cases presented in Section 2.1.

The objective of this Section is not to be exhaustive but to illustrate the generic
nature of the modeling implemented.

A.1 Data preprocessing

Data loader

Files in different formats allow for storing 3D point clouds. Depending on the
format, the file data is encoded either in binary or Ascii. Among the different
formats, the most commonly used are as follows: PCD, PLY, XYZ, XYZRGB, and
XYZRGBNxNyNyNz.
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For each of these formats, specialized algorithms, called "data loader", are required
to extract the information from the files and load the point cloud into memory.
These algorithms sequentially read the information contained in a file to create a
representation of this information as a 3D point cloud that can contain color or
orientation. This representation is accessible in memory through a pointer.

These algorithms work on a file to produce a point cloud. To do this, they use the
path of the data file to load (the data source) as input. Furthermore, each algorithm
supports a format. This format is a prerequisite for the algorithm. The format and
source, which are data features, allow linking the processed data to the suitable
data loader algorithm.

Structuring

The treatment of large point clouds requires subdividing it into subsets with
smaller size. Indeed, the larger is point cloud used by algorithms, the more time-
consuming is the execution of the algorithms. Therefore, dividing a cloud into
small subsets reduces the complexity of algorithms execution. The most common
method for subdividing a point cloud is to use an octree. Indeed, an octree allows
dividing several times a point cloud into subsets until reaching the desired size of
the subsets. Thanks to its usage, the size of the subsets used by the algorithms can
be effectively controlled and optimized for each algorithm. Figure A.1 shows the
structure of an octree.

The process to build an octree consists in dividing each node into eight sub-nodes.
Initially, a volume defines the maximum size of a tree leaf. This volume is the only
parameter of an octree building algorithm. As long as the tree has at least one leaf
bigger than this volume, it continues to divide these leaves into eight.

The generation of an octree has a logarithmic complexity, which allows it to per-
form even on large point clouds (several million points).

Sampling

When the point clouds are massive, the subdivision of this cloud into subsets is
not always sufficient. Handling massive point clouds may require reducing the
complexity of the point cloud by performing a sampling or compression of the
point cloud.

A commonly used sampling algorithm consists of using an octree to sampling
the point cloud according to a specific volume. Thus, the algorithm, called "Metric

A.1. DATA PREPROCESSING



APPENDIX A. ALGORITHMS PROCESSING 261

Figure A.1: Diagram of an Octree.

Sampling" subdivides the point cloud into subsets and then calculate for each subset
a single point representing it. This compression of a subset into a single point
allows an efficient reduction of the point cloud. However, the subdivision of the
point cloud into a subset can separate an object into several distinct subsets. A too
intensive subdivision can lead to an over-segmentation of the object.

Therefore, the maximum volume defined as a parameter of the algorithm must be
determined according to the object to be detected. Figure A.2 shows the choice of
the size of the volume (in red) for the detection of a sidewalk.

The volume computation depends on the size of the object (H for height, W for
width, L for length). Its computation follows Equation A.1.

DataVolume =
H × L×W

100
(A.1)

Equation A.1 has been empirically determined by tests performed on the different
application cases presented in Section 2.1.

Figure A.3 shows the sampling of a point cloud by the "Metric Sampling" algorithm.

This algorithm works on an octree, which is a type of data and produces a sampled
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Figure A.2: Illustration of the volume choice in red for a sidewalk.

(a) Origin point cloud. (b) Point cloud after sampling.

Figure A.3: Illustration of the sampling process (point clouds are colored for better
viewing)
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point cloud, corresponding to a point cloud with a reduced number of point.

A.2 Segmentation

The purpose of segmentation algorithms is to characterize the data and divide
them into segments describing a particular geometry of an object.

Normal estimation

The surface of an object is one of the most important features for identifying the
geometry of an object. In 3D point clouds, the surface of an object is described by
the normal of each point composing the surface. Thus it is necessary to estimate the
normals at each point if the original cloud has not one. Commonly the calculation
of the normal of a point is done according to these two nearest neighbors. However,
calculating the normal of a point based only on its two nearest neighbors does not
provide a segmentation with high quality.

This problem of quality can be solved by performing plane detection algorithms
around the point to describe. The plane detection, as explained in Section A.3,
aims at determining its tangent at the point whose, the normal must be calculated.
These results are compared in Figure A.4.

(a) Normal estimation by taking the two
closest neighbors of each point.

(b) Normal estimation using RANSAC to
detect planes.

Figure A.4: Comparison of the results of the normal estimation. Normals are
colored in red, green, and blue, according to their X,Y,Z values respectively.

The implementation of this type of algorithm called "Normal Estimation" requires
having a radius to select the neighbors of each point to form subsets. These subsets
are then used to detect the tangent plane at the investigated point. The radius is
calculated according to both the dimensions of the object searched and the resolu-
tion of the data acquisition system. This radius corresponds to the calculation of
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the diagonal of a rectangular parallelepiped formed by the maximum dimensions
(H for height, W for width, L for length) of the object divided by the density of the
data. Equation A.2 is the computation of the radius.

Radius =

√
H2 + W2 + L2

Density
(A.2)

Thus, the smaller the object sought is, and the higher the density of the data is,
the smaller the radius is. The respect of this proportion allows a more accurate
estimation of the normals for each point.

Moreover, the determination of the tangent plane requires a precision value to
define whether or not a point belongs to a plane (as explained in Section A.3). This
precision value is called "Tolerance" and is computed by Equation A.3.

Tolerance =
∑i=n

i=1 min(∑
j=n
j=1

√
(pi.x− pj.x)2 + (pi.y− pj.y)2 + (pi.z− pj.z)2)

n
(A.3)

Thus, the "Normal Estimation" algorithm works on a point cloud to produce a point
cloud with normals, and it requires a radius and a tolerance as a parameter.

Filtering

Although some objects can have complex shapes, most objects, especially large ob-
jects such as floors, walls, and ceilings, have a regular surface. Indeed, the surfaces
of these objects are composed only of a limited set of points with a different nor-
mal. Thus, filtering the point cloud to keep only the points with the same normal
characterizing the surface simplifies the detection process. Therefore, filtering the
point cloud according to a normal allows for detecting such type of object. A sig-
nificant number of these object types are present in the application cases presented
in Section 2.1.

Thus, the algorithm called "Normal Filtering" aims at filtering the data by keeping
only points which have a possible orientation of the object. It can thus produce a
filtered point cloud, from a point cloud whose the normals are estimated.
The estimation of normals at each point of the point cloud is a prerequisite for
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"Normal Filtering". Figure A.5 shows the result of filtering a point cloud that only
keeps points with a horizontal normal.

(a) Origin point cloud.
(b) Point cloud after filtering retaining
only vertical points.

Figure A.5: Illustration of the filtering of a point cloud.

The "Normal Filtering" algorithm requires a "normal set" as a parameter to be able to
filter the points to be collected. The prerequisite of the algorithm is, thus, the esti-
mation of normals of the point cloud. It also requires a "normal tolerance" parameter
to determine if the normal of a point belongs or not to the set of normals provided.
Its calculation depends on the roughness of the object and the density of the point
cloud by Equation A.4.

NormalTolerance =
Roughness2

Density
(A.4)

Region growing

The segmentation of data to detect objects composed of various surfaces (e.g. traffic
signs, car, tree) can be carried out in different ways, as presented in the literature
review in Section 6.1. Among the different segmentation algorithms, algorithms
based on growing regions have the advantage of being quite flexible. They can be
used in different application cases and can be adapted to detect different objects.
These algorithms use a gregarious criterion to form regions and segment the data.
Among the different possible criteria, color and the normal at a point are proper
representative criteria of objects in most cases.

These algorithms work on small point clouds to produce segments. Figure A.6
shows the application of a region growing to segment the different surfaces of a
data.
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(a) Origin point cloud.
(b) Point cloud after segmentation (a
unique color is assigned to each segment.

Figure A.6: Results of a segmentation by a region growing algorithm.

They require a point cloud with a small size (e.g. not exceed one million points)
and without noise. They also need a "radius" as a parameter. This parameter corre-
sponds to the maximum distance between a point and the other points constituting
a region for the point considered as being in the region. It is calculated according
to Equation A.2.

They also need a "tolerance" parameter, which is the maximum deviation between
the criteria (used for the segmentation) of two points to be considered in the same
region. Tolerance depends on the type of criteria used.

Two versions of this type of algorithm are implemented to consider two essential
characteristics of objects: their surface and their color. Thus an algorithm called
"Normal Region Growing" aims to segment the data according to the normal of each
point. It is a prerequisite that the normals at each point of the point cloud are
estimated. The tolerance of this algorithm is calculated by Equation A.4.

The second algorithm, called "Color Region Growing," aims at segmenting the data
according to the color of each point. It is a prerequisite to apply it on the colored
point clouds. The "color tolerance" is directly related to the "color variation" charac-
teristic of the object. The light of the scene does not impact the color variation but
only the colors.

A.3 Features extraction

Features are a crucial concept that guides the process of detection through selecting
and parameterizing algorithms. The algorithm features are linked to objects and
data features. An expert can firstly provide some feature of the data. However, the
more precise the data have characteristics, the more efficiently the detection system
can select, parameterize, and execute algorithms. That is why the system requires
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extraction algorithms for characterizing data. Secondly, the segments resulting
from the segmentation must be characterized to identify the object represented by
this segment. Therefore, the system requires also extraction algorithms for char-
acterizing these segments according to object features. Thus the feature extraction
algorithms must allow detecting the characteristics of the data described in Sec-
tion 10.2 and the objects described in Section 10.3. Therefore, two main types of
algorithms are necessary, "getter algorithm" and "Shape recognition algorithm".

Getter algorithm: Getter algorithms extract a specific feature from the data. They
do not take any parameters and work on data or specific data, which is a segment
(created by data segmentation processes).

The list of the main getter algorithms are as follows:

GetHeight : characterizes the height of a segment.

GetWidth : characterizes the width of a segment.

GetLength : characterizes the length of a segment.

GetVolume : characterizes the volume of a segment.

GetArea : characterizes the area of a segment.

GetLocation : characterizes the location of a segment.

GetPointCount : characterizes the point number of a point cloud.

GetMeanColor : characterizes the mean color of a segment.

GetMeanNormal : characterizes the mean normal of a segment.

GetResolution : characterizes the resolution of a point cloud.

GetDistance : characterizes the euclidean distance between two segments.

Shape recognition algorithm

There is a multitude of algorithms to detect geometric shapes in 3D point clouds.
The most commonly used algorithms are the algorithms from model-driven ap-
proaches that extract characteristics on the shape of the object, as explained in chap-
ter 5. Among these different algorithms, the RANSAC algorithm discussed in Sec-
tion 5.2 is an effective method of detecting geometric shapes such as lines, planes,
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and spheres. Figure A.7 shows the organizational chart of the RANSAC algorithm.
Thus three different implementations of RANSAC is created to detect lines, planes,

Figure A.7: Organizational chart of the RANSAC algorithm.

and spheres in the data. These three algorithms work on segments. The first al-
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gorithm, called "RANSAC line detection" computes the mathematical model of a
line to produce lines that characterize the segment. The second algorithm, called
"RANSAC plane detection" computes the mathematical model of a plane to produce
planes that characterize the segment. The third algorithm, called "RANSAC sphere
detection" computes the mathematical model of a sphere to produce spheres that
characterize the segment. The mathematical models are constructed by a random
selection of points in the segment. The number of points selected depends on the
model: two points for a line, three for a plane and four for a sphere.

However, the points constituting the segment do not perfectly match the calculated
mathematical model. Therefore, these algorithms need a distance as a parameter.
This parameter aims to threshold the points of the segment and the computed
mathematical model. This distance is called "tolerance". It is calculated according
to the density of the segment by Equation A.3 previously explained. This equation
uses n the number of point of the segment and pi the ith point of the segment.

This tolerance allows effective shape detection in point clouds, even if they are
noisy. Figure A.8 shows the result of a sphere detection by RANSAC algorithm in
a noisy point cloud.

(a) Origin point cloud. (b) Point cloud after sphere detection.

Figure A.8: Results of detection of a unique sphere by the RANSAC algorithm.

Another essential parameter for these three algorithms is the number of iterations
needed to find the best mathematical models in the segment. This iteration count
is computed according to the number of points in the segment. It corresponds
to 10% of the number of points in the segment. Such parameterization provides
flexibility and efficiency in detecting geometric shapes, as illustrated in Figure A.9
that shows the detection of two planes in a point cloud composed of more than 22
Million points.

Each iteration produces a desired geometric model (plane, line, or sphere) contain-
ing points of the segments. The number of models selected is equivalent to the
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(a) Origin point cloud.
(b) Point cloud after plane detection (a
unique color is assigned at each plane).

Figure A.9: Results of detection of two planes by the RANSAC algorithm.

number of mathematical models required to detect an object. This number is a
parameter common to all three algorithms and is called "number of elements". For
example, let us take the case of a traffic sign defined as consisting of six main lines.
The RANSAC algorithm corresponding to line detection will, therefore, search for
six lines in the segments to allow their identification. Figure A.10 shows the result
of the detection of six lines by the RANSAC algorithm.

The three algorithms for line, plane and sphere detection have all the same input
("segment") and parameters ("tolerance", "iteration count", "number of element"). More-
over, they do not have any prerequisites, only what they produce (line, plane, or
sphere) differs.

A.3. FEATURES EXTRACTION



APPENDIX A. ALGORITHMS PROCESSING 271

(a) Origin point cloud.
(b) Point cloud after lines detection (a
unique color is assigned at each line).

Figure A.10: Results of lines detection obtained by the RANSAC algorithm.
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B Object detection overview

The detection of objects and geometries in the data is entirely knowledge-driven.
Thus, it provides knowledge that is then analyzed in a learning phase to generate
new and more accurate knowledge about the application case and thus improve
the effectiveness of detection. Figure B.1 shows an overview of facades detection
process in an urban point cloud.

Figure B.1: Overview for an example of facades detection process.

Data processing is performed using algorithms (illustrated by the blue arrow in
Figure B.1). These algorithms must be selected, configured and combined (shown
in the blue box in Figure B.1) according to the application case (e.g. acquisition
context, objects sought) and the prerequisites of each algorithm (e.g. low noise,
high density, estimated normal).

Let us take the example of a facade defined as a planar surface perpendicular to the
ground with a height of at least 12 meters. The detection of this facade requires al-
gorithms for plane detection, size estimation, and topological link assessment (e.g.
parallel, perpendicular). These algorithms may have prerequisites such as normal
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estimation, or whether the data is small in size or not noisy. Thus other algorithms
such as normal estimation, denoising, sampling algorithms must be in some cases
combined in a sequence to satisfy the needs of some selected algorithms.

The results provided by each executed algorithm are analyzed and correlated
(shown by orange frames in Figure B.1) to identify objects and geometries in the
data (shown by the red arrow in Figure B.1). In this case, the analysis and correla-
tion of algorithms results allow identifying ground (in green) and some facades (in
red).

The management of algorithms and the interpretation of results are entirely driven
by reasoning. This reasoning is based on the knowledge presented in chapter 10.
However, it is not possible to formulate the knowledge in such a way as to describe
all possible cases.

In the case illustrated in Figure B.1, parts of the facades are not detected because
the information on these parts (height less than 12 meters, not connected to the
ground) differs from the knowledge on the facades (height greater than 12 meters
and perpendicular to the ground). The discrepancy between the information col-
lected and the knowledge at the preliminary stage may be due to multiple factors
(e. g. sensitivity of the acquisition instrument, acquisition condition, insufficient
light, objects too far away). Therefore the knowledge needs to be adjusted accord-
ing to the application case and the information computed.

Knowledge adaptation requires understanding how objects are represented in the
data to anticipate possible variations and to compensate for the discrepancy be-
tween the information obtained and the knowledge. Understanding the represen-
tation of objects and geometries ("learning" frame in Figure B.1), requires analyzing
the objects and geometry detected to formulate hypotheses on the characteristics
allowing them to be better identified.

In the case presented by Figure B.1, the analysis of the detected facades allows
inferring that facades can have a height between 10 and 13 meters and may not be
connected to the ground that has discontinuities (areas without ground). This new
knowledge is integrated with prior knowledge and allows changing the behavior
of the detection process. Thus the detection strategy becomes specialized for the
application case, which leads to better results (shown by the purple arrow in Figure
B.1).
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