J. B. Shah, The History of Wound Care, J Am Col Certif Wound Spec, vol.3, pp.65-66, 2012.

L. Smith, A history of materials and practices for wound management

Z. Cope, The treatment of wounds through the ages, Medical History, vol.2, pp.163-174, 1958.

M. Naseri-nosar and Z. M. Ziora, Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites, Carbohydrate Polymers, vol.189, pp.379-398, 2018.

S. P. Miguel, Electrospun polymeric nanofibres as wound dressings: A review, Colloids and Surfaces B: Biointerfaces, vol.169, pp.60-71, 2018.

S. Agarwal and A. Greiner, On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning, Polymers for Advanced Technologies, vol.22, pp.372-378, 2010.

, Polysaccharides: Bioactivity and Biotechnology, 2015.

M. Kouassi, Polysaccharides fonctionnalisés par des composés d'origine naturelle aux propriétés antioxydantes et antibactériennes, 2017.

S. P. Chawla, S. R. Kanatt, A. K. Sharma, and . Chitosan, , pp.1-24, 2014.

J. Liu, S. Willför, and C. Xu, A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications, Bioactive Carbohydrates and Dietary Fibre, vol.5, pp.31-61, 2015.

Y. Ruff, Biopolymères dynamiques : Oligo-et polysaccharides, vol.1, 2008.

T. Maver, Bioactive Polysaccharide Materials for Modern Wound Healing, 2018.

J. H. Prestegard, J. Liu, G. Widmalm, and P. Oligosaccharides, Essentials of Glycobiology, 2015.

J. P. Martínez, M. P. Falomir, D. Gozalbo, and . Chitin, A Structural Biopolysaccharide with Multiple Applications. in eLS, 2014.

R. Aguda and A. Ayoub, The State of the Art: Introduction to Spinning, Polysaccharide-based Fibers and Composites, pp.1-11, 2018.

G. Bogoeva-gaceva, Natural fiber eco-composites, Polymer Composites, vol.28, pp.98-107, 2007.

Y. L. Hsieh, 1 -Chemical structure and properties of cotton, pp.3-34, 2007.

J. P. Arenas and M. J. Crocker, Recent Trends in Porous Sound-Absorbing Materials. SOUND & VIBRATION, vol.44, pp.12-17, 2010.

S. Hooshmand, Y. Aitomäki, M. Skrifvars, A. P. Mathew, and K. Oksman, All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals, Cellulose, vol.21, pp.2665-2678, 2014.

I. Brazinsky, A. G. Williams, and H. L. Lanieve, The dry spinning process: Comparison of theory with experiment, Polymer Engineering & Science, vol.15, pp.834-841, 1975.

L. Kong and G. R. Ziegler, Fabrication of ?-Carrageenan Fibers by Wet Spinning: Spinning Parameters, Materials (Basel), vol.4, pp.1805-1817, 2011.

G. C. East and Y. Qin, Wet spinning of chitosan and the acetylation of chitosan fibers, Journal of Applied Polymer Science, vol.50, pp.1773-1779, 1993.

M. Hattori, Y. Shimaya, M. Saito, and K. Okajima, Gel Spinning from Cellulose/Aqueous Calcium Thiocyanate System and the Fiber Properties, Sen'i Gakkaishi, vol.55, pp.149-154, 1999.

H. Chang, Gel Spinning of Polyacrylonitrile/Cellulose Nanocrystal Composite Fibers, ACS Biomater. Sci. Eng, vol.1, pp.610-616, 2015.

H. Homayoni, S. A. Ravandi, and M. Valizadeh, Electrospinning of chitosan nanofibers: Processing optimization, Carbohydrate Polymers, vol.77, pp.656-661, 2009.

E. K. Brenner, J. D. Schiffman, E. A. Thompson, L. J. Toth, and C. L. Schauer, Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions, Carbohydrate Polymers, vol.87, pp.926-929, 2012.

K. Sutjarittangtham, Fabrication of natural tapioca starch fibers by a modified electrospinning technique, Chiang Mai Journal of Science, vol.41, pp.213-223, 2014.

J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of Electrostatics, vol.35, pp.151-160, 1995.

N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances, vol.28, pp.325-347, 2010.

G. Taylor, Electrically Driven Jets, Proc. R. Soc. Lond, vol.313, 1969.

A. Greiner and J. H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed. Engl, vol.46, pp.5670-5703, 2007.

K. Ohkawa, D. Cha, H. Kim, A. Nishida, H. Yamamoto et al.,

, Macromolecular Rapid Communications, vol.25, pp.1600-1605, 2004.

M. R. Karim, Preparation and characterization of electrospun pullulan/montmorillonite nanofiber mats in aqueous solution, Carbohydrate Polymers, vol.78, pp.336-342, 2009.

J. D. Schiffman, C. L. Schauer, and . Review, Electrospinning of Biopolymer Nanofibers and their Applications, Polymer Reviews, vol.48, pp.317-352, 2008.

B. Min, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers, Polymer, vol.45, pp.7137-7142, 2004.

M. Pakravan, M. Heuzey, and A. Ajji, A fundamental study of chitosan/PEO electrospinning, Polymer, vol.52, pp.4813-4824, 2011.

Y. Liu, Effects of solution properties and electric field on the electrospinning of hyaluronic acid, Carbohydrate Polymers, vol.83, pp.1011-1015, 2011.

I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, Electro-Spinning and Electro-Blowing of Hyaluronic Acid, Biomacromolecules, vol.5, pp.1428-1436, 2004.

E. Mele, Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings, Journal of Materials Chemistry B, vol.4, pp.4801-4812, 2016.

K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, and W. H. Park, Electrospinning of polysaccharides for regenerative medicine, Advanced Drug Delivery Reviews, vol.61, pp.1020-1032, 2009.

M. S. Wilm, M. Mann, T. Electrospray, and . Theory, Dole's beam of macromolecules at last?, International Journal of Mass Spectrometry and Ion Processes, vol.136, pp.167-180, 1994.

A. K. Haghi and M. Akbari, Trends in electrospinning of natural nanofibers. physica status solidi (a), vol.204, pp.1830-1834, 2007.

H. Fong, I. Chun, and D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, vol.40, pp.4585-4592, 1999.

I. M. Smallwood, Handbook of Organic Solvent Properties, 1996.

M. W. Frey, Electrospinning Cellulose and Cellulose Derivatives, Polymer Reviews, vol.48, pp.378-391, 2008.

H. M. Azeredo and K. W. Waldron, Crosslinking in polysaccharide and protein films and coatings for food contact -A review, Trends in Food Science & Technology, vol.52, pp.109-122, 2016.

E. Zeiger, B. Gollapudi, and P. Spencer, Genetic toxicity and carcinogenicity studies of glutaraldehyde-a review, Mutation Research/Reviews in Mutation Research, vol.589, pp.136-151, 2005.

H. Leung, Ecotoxicology of Glutaraldehyde: Review of Environmental Fate and Effects Studies, Ecotoxicology and Environmental Safety, vol.49, pp.26-39, 2001.

L. Liu, Y. Liu, J. Li, G. Du, and J. Chen, Microbial production of hyaluronic acid: current state, challenges, and perspectives, Microb Cell Fact, vol.10, p.99, 2011.

X. Wang, Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments, Polymer, vol.46, pp.4853-4867, 2005.

A. Koski, K. Yim, and S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning, Materials Letters, vol.58, pp.493-497, 2004.

C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats, European Polymer Journal, vol.41, pp.423-432, 2005.

S. A. Theron, E. Zussman, and A. L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer, vol.45, pp.2017-2030, 2004.

T. Uyar and F. Besenbacher, Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers, European Polymer Journal, vol.45, pp.1032-1037, 2009.

J. J. Ahire, D. D. Robertson, A. J. Van-reenen, and L. M. Dicks, Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes

, Biomedicine & Pharmacotherapy, vol.86, pp.143-148, 2017.

G. Chen, J. Guo, J. Nie, and G. Ma, Preparation, characterization, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning, Polymer, vol.83, pp.12-19, 2016.

Y. Ji, Dual-Syringe Reactive Electrospinning of Cross-Linked Hyaluronic Acid Hydrogel Nanofibers for Tissue Engineering Applications, Macromolecular Bioscience, vol.6, pp.811-817, 2006.

Y. Ji, Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials, vol.27, pp.3782-3792, 2006.

I. L. Kim, S. Khetan, B. M. Baker, C. S. Chen, and J. A. Burdick, Fibrous hyaluronic acid hydrogels that direct {MSC} chondrogenesis through mechanical and adhesive cues, Biomaterials, vol.34, pp.5571-5580, 2013.

A. Chanda, Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications, International Journal of Biological Macromolecules, vol.116, pp.774-785, 2018.

B. Jankovi?, J. Pelipenko, M. ?karabot, I. Mu?evi?, and J. Kristl, The design trend in tissueengineering scaffolds based on nanomechanical properties of individual electrospun nanofibers, International Journal of Pharmaceutics, vol.455, pp.338-347, 2013.

K. Kim, Y. Akada, W. Kai, B. Kim, and I. Kim, Cells Attachment Property of PVA Hydrogel Nanofibers Incorporating Hyaluronic Acid for Tissue Engineering, Journal of Biomaterials and Nanobiotechnology, vol.02, p.353, 2011.

J. Pelipenko, J. Kristl, B. Jankovi?, S. Baumgartner, and P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, International Journal of Pharmaceutics, vol.456, pp.125-134, 2013.

K. Tomihata and Y. Ikada, Crosslinking of hyaluronic acid with water-soluble carbodiimide, J. Biomed. Mater. Res, vol.37, pp.243-251, 1997.

J. A. Burdick, C. Chung, X. Jia, M. A. Randolph, and R. Langer, Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks, Biomacromolecules, vol.6, pp.386-391, 2005.

M. Rinaudo, Chitin and chitosan: Properties and applications, Progress in Polymer Science, vol.31, pp.603-632, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305792

C. Qin, Water-solubility of chitosan and its antimicrobial activity, Carbohydrate Polymers, vol.63, pp.367-374, 2006.

I. A. Sogias, V. V. Khutoryanskiy, and A. C. Williams, Exploring the Factors Affecting the Solubility of Chitosan in Water, Macromolecular Chemistry and Physics, vol.211, pp.426-433, 2010.

K. Paipitak, T. Pornpra, P. Mongkontalang, W. Techitdheer, and W. Pecharapa, Characterization of PVA-Chitosan Nanofibers Prepared by Electrospinning, Procedia Engineering, vol.8, pp.101-105, 2011.

Y. Jia, Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method, Carbohydrate Polymers, vol.67, pp.403-409, 2007.

S. Fathollahipour, A. A. Mehrizi, A. Ghaee, and M. Koosha, Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system, Journal of Biomedical Materials Research Part A, vol.103, pp.3852-3862, 2015.

T. Lin, J. Fang, H. Wang, T. Cheng, and X. Wang, Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity, Nanotechnology, vol.17, p.3718, 2006.

S. Biranje, P. Madiwale, and R. V. Adivarekar, Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration, Journal of Polymer Research, vol.24, pp.1-10, 2017.

U. S. Sajeev, K. A. Anand, D. Menon, and S. Nair, Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning, Bull Mater Sci, vol.31, pp.343-351, 2008.

Z. Cui, Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery, Advances in Polymer Technology 1, vol.12, 2017.

S. Mengistu-lemma, F. Bossard, and M. Rinaudo, Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(ethylene oxide), International Journal of Molecular Sciences, vol.17, p.1790, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01982903

K. A. Rieger, N. P. Birch, and J. D. Schiffman, Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation, Carbohydrate Polymers, vol.139, pp.131-138, 2016.

B. Duan, C. Dong, X. Yuan, and K. Yao, Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide), Journal of Biomaterials Science, vol.15, pp.797-811, 2004.

M. Spasova, N. Manolova, D. Paneva, and I. Rashkov, Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. e-Polymers 4, 2004.

N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials, vol.26, pp.6176-6184, 2005.

H. Wei, F. Zhang, D. Zhang, Y. Liu, and J. Leng, Shape-memory behaviors of electrospun chitosan/poly(ethylene oxide) composite nanofibrous membranes, Journal of Applied Polymer Science, vol.132, 2015.

C. E. Garcia, F. A. Martínez, F. Bossard, and M. Rinaudo, Biomaterials Based on Electrospun Chitosan. Relation between Processing Conditions and Mechanical Properties. Polymers, vol.10, p.257, 2018.

S. M. Alipour, M. Nouri, J. Mokhtari, and S. H. Bahrami, Electrospinning of poly(vinyl alcohol)-water-soluble quaternized chitosan derivative blend, Carbohydrate Research, vol.344, pp.2496-2501, 2009.

D. Yang, Situ Mineralization of Hydroxyapatite on Electrospun Chitosan-Based Nanofibrous Scaffolds, vol.8, pp.239-246, 2008.

J. Du and Y. Hsieh, Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan, Nanotechnology, vol.19, p.125707, 2008.

J. Du and Y. Hsieh, PEGylation of chitosan for improved solubility and fiber formation via electrospinning, Cellulose, vol.14, pp.543-552, 2007.

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, Methacrylated glycol chitosan as a photopolymerizable biomaterial, Biomacromolecules, vol.8, pp.3758-3766, 2007.

Y. Zhou, Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration, Biomacromolecules, vol.9, pp.349-354, 2008.

R. Mincheva, N. Manolova, and I. Rashkov, Bicomponent aligned nanofibers of Ncarboxyethylchitosan and poly(vinyl alcohol), European Polymer Journal, vol.43, pp.2809-2818, 2007.

Q. Zeng, Preparation and hemocompatibility of electrospun O-carboxymethyl chitosan/PVA nanofibers, Journal of Applied Polymer Science, vol.133, 2016.

J. Han, Electrospinning of methoxy poly(ethylene glycol)-grafted chitosan and poly(ethylene oxide) blend aqueous solution, Carbohydrate Polymers, vol.83, pp.270-276, 2011.

I. Romano, Photo-polymerisable electrospun fibres of N-methacrylate glycol chitosan for biomedical applications, RSC Adv, vol.5, pp.24723-24728, 2015.

S. Xin, Carboxymethyl chitin/organic rectorite composites based nanofibrous mats and their cell compatibility, Carbohydrate Polymers, vol.90, pp.1069-1074, 2012.

K. T. Shalumon, Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications, Carbohydrate Polymers, vol.77, pp.863-869, 2009.

K. Y. Lee, D. J. Mooney, and . Alginate, Properties and biomedical applications, Progress in Polymer Science, vol.37, pp.106-126, 2012.

S. Safi, M. Morshed, S. A. Hosseini-ravandi, and M. Ghiaci, Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide), Journal of Applied Polymer Science, vol.104, pp.3245-3255, 2007.

J. Lu, Y. Zhu, Z. Guo, P. Hu, and J. Yu, Electrospinning of sodium alginate with poly(ethylene oxide), Polymer, vol.47, pp.8026-8031, 2006.

C. A. Bonino, Three-Dimensional Electrospun Alginate Nanofiber Mats via Tailored Charge Repulsions, Small, vol.8, pp.1928-1936, 2012.

C. D. Saquing, Alginate-Polyethylene Oxide Blend Nanofibers and the Role of the Carrier Polymer in Electrospinning, Industrial & Engineering Chemistry Research, vol.52, pp.8692-8704, 2013.

R. Ro?ic, The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning, European Polymer Journal, vol.48, pp.1374-1384, 2012.

H. Nie, Effect of poly(ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate, Polymer, vol.50, pp.4926-4934, 2009.

X. Chen, Synthesis of amphiphilic alginate derivatives and electrospinning blend nanofibers: a novel hydrophobic drug carrier, Polym. Bull, vol.72, pp.3097-3117, 2015.

J. M. Yang, Cell proliferation on PVA/sodium alginate and PVA/poly(?-glutamic acid) electrospun fiber, Materials Science and Engineering: C, vol.66, pp.170-177, 2016.

A. Covelo, K. K. Gómez, P. Corona-lira, A. C. Ramírez-reivich, and M. Hernández, Electrochemical characterization of PVA/SA nanofibers obtained by electrospinning processing, Surface and Interface Analysis, vol.1, issue.6, 2018.

M. S. Islam and M. R. Karim, Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.366, pp.135-140, 2010.

M. Rafiq, T. Hussain, S. Abid, A. Nazir, and R. Masood, Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils, Mater. Res. Express, vol.5, p.35007, 2018.

W. Shen and Y. Hsieh, Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking, Carbohydrate Polymers, vol.102, pp.893-900, 2014.

S. Zhang, Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration, Journal of Biomedical Materials Research Part A, vol.90, pp.671-679, 2008.

D. S. Pandya, T. Arinzeh, and G. Collins, Elevated temperature electrospinning of aqueous gelatin solution and crosslinking for tissue engineering applications, Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), pp.1-2, 2010.

C. Yang, X. Wu, Y. Zhao, L. Xu, and S. Wei, Nanofibrous scaffold prepared by electrospinning of poly(vinyl alcohol)/gelatin aqueous solutions, Journal of Applied Polymer Science, vol.121, pp.3047-3055, 2010.

S. Moon and R. J. Farris, Electrospinning of heated gelatin-sodium alginate-water solutions, Polymer Engineering & Science, vol.49, pp.1616-1620, 2009.

C. G. Lopez, S. E. Rogers, R. H. Colby, P. Graham, and J. T. Cabral, Structure of Sodium Carboxymethyl Cellulose Aqueous Solutions: A SANS and Rheology Study, J Polym Sci B Polym Phys, vol.53, pp.492-501, 2015.

F. H. Zulkifli, F. S. Hussain, M. S. Rasad, and M. Mohd-yusoff, Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering, Carbohydrate Polymers, vol.114, pp.238-245, 2014.

A. Frenot, M. W. Henriksson, and P. Walkenström, Electrospinning of cellulose-based nanofibers, Journal of Applied Polymer Science, vol.103, pp.1473-1482, 2007.

P. Basu, PEO-CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications, Materials Letters, vol.195, pp.10-13, 2017.

M. H. El-newehy, Preparation of biocompatible system based on electrospun CMC/PVA nanofibers as controlled release carrier of diclofenac sodium, Journal of Macromolecular Science, Part A, vol.53, pp.566-573, 2016.

S. Cui, Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing, Materials Science and Engineering: C, vol.59, pp.885-893, 2016.

M. Norouzi, S. M. Boroujeni, N. Omidvarkordshouli, and M. Soleimani, Advances in Skin Regeneration: Application of Electrospun Scaffolds, Advanced Healthcare Materials, vol.4, pp.1114-1133, 2015.

L. Yildirimer, N. T. Thanh, and A. M. Seifalian, Skin regeneration scaffolds: a multimodal bottomup approach, Trends in Biotechnology, vol.30, pp.638-648, 2012.

D. H. Lee, J. Oh, and J. H. Chung, Glycosaminoglycan and proteoglycan in skin aging, Journal of Dermatological Science, vol.83, pp.174-181, 2016.

G. D. Mogo?anu and A. M. Grumezescu, Natural and synthetic polymers for wounds and burns dressing, International Journal of Pharmaceutics, vol.463, pp.127-136, 2014.

P. Zahedi, I. Rezaeian, S. Ranaei-siadat, S. Jafari, and P. Supaphol, A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages, Polymers for Advanced Technologies, vol.21, pp.77-95, 2009.

R. Shechter and M. Schwartz, CNS sterile injury: just another wound healing?, Trends in Molecular Medicine, vol.19, pp.135-143, 2013.

K. A. Bielefeld, S. Amini-nik, and B. A. Alman, Cutaneous wound healing: recruiting developmental pathways for regeneration, Cell Mol Life Sci, vol.70, pp.2059-2081, 2013.

S. Guo and L. A. Dipietro, Factors Affecting Wound Healing, J Dent Res, vol.89, pp.219-229, 2010.

C. K. Field and M. D. Kerstein, Overview of wound healing in a moist environment, The American Journal of Surgery, vol.167, pp.2-6, 1994.

E. A. Kamoun, E. S. Kenawy, and X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, Journal of Advanced Research, vol.8, pp.217-233, 2017.

S. Dhivya, V. V. Padma, and E. Santhini, Wound dressings -a review, Biomedicine (Taipei), vol.5, 2015.

V. Jones, J. E. Grey, K. G. Harding, and . Wound, BMJ, vol.332, pp.777-780, 2006.

M. Ramos-e-silva and M. Ribeiro-de-castro, New dressings, including tissue-engineered living skin, Clinics in Dermatology, vol.20, pp.715-723, 2002.

J. Zhou, Tissue engineering of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization, BioMedical Engineering OnLine, vol.12, p.87, 2013.

D. W. Youngstrom, J. G. Barrett, R. R. Jose, and D. L. Kaplan, Functional Characterization of Detergent-Decellularized Equine Tendon Extracellular Matrix for Tissue Engineering Applications, PLOS ONE, vol.8, p.64151, 2013.

S. Neergaard-petersen, Fibrin Clot Structure and Platelet Aggregation in Patients with Aspirin Treatment Failure, PLOS ONE, vol.8, p.71150, 2013.

M. Abrigo, S. L. Mcarthur, and P. Kingshott, Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects, Macromolecular Bioscience, vol.14, pp.772-792, 2014.

Y. Zhang, C. T. Lim, S. Ramakrishna, and Z. Huang, Recent development of polymer nanofibers for biomedical and biotechnological applications, J Mater Sci: Mater Med, vol.16, pp.933-946, 2005.

R. Gopal, Electrospun nanofibrous filtration membrane, Journal of Membrane Science, vol.281, pp.581-586, 2006.

C. Liu, Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction, J. Mater. Chem. A, vol.5, pp.1211-1220, 2017.

M. Goldberg, R. Langer, and X. Jia, Nanostructured materials for applications in drug delivery and tissue engineering, Journal of Biomaterials Science, vol.18, pp.241-268, 2007.

H. S. Yoo, T. G. Kim, and T. G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Advanced Drug Delivery Reviews, vol.61, pp.1033-1042, 2009.

X. Hu, Electrospinning of polymeric nanofibers for drug delivery applications, Journal of Controlled Release, vol.185, pp.12-21, 2014.

Y. Yang, Z. Jia, J. Liu, L. Wang, and Z. Guan, The effects of flow rate and the distance between the nozzle and the target on the operating conditions of eectrospinning, Journal of Polymer Engineering, vol.28, pp.67-86, 2011.

R. Stern, M. J. Jedrzejas, and . Hyaluronidases, Their Genomics, Structures, and Mechanisms of Action, Chem. Rev, vol.106, pp.818-839, 2006.

K. L. Aya and R. Stern, Hyaluronan in wound healing: Rediscovering a major player, Wound Repair and Regeneration, vol.22, pp.579-593, 2014.

G. Kogan, L. ?oltés, R. Stern, and P. Gemeiner, Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications, Biotechnol Lett, vol.29, pp.17-25, 2007.

S. Kadi, Systèmes associatifs à base d'acide hyaluronique modifié : synthèse et étude des relations structure/propriétés rhéologiques, 2007.

W. Y. Chen and G. Abatangelo, Functions of hyaluronan in wound repair, Wound Repair Regen, vol.7, pp.79-89, 1999.

J. S. Frenkel, The role of hyaluronan in wound healing, International Wound Journal, vol.11, pp.159-163, 2012.

C. Longinotti, The use of hyaluronic acid based dressings to treat burns: A review, Burns & Trauma, vol.2, p.162, 2014.

E. L. Pardue, S. Ibrahim, and A. Ramamurthi, Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering, Organogenesis, vol.4, pp.203-214, 2008.

A. C. Petrey, C. A. De-la-motte, and . Hyaluronan, Crucial Regulator of Inflammation. Front Immunol, vol.5, 2014.

L. I. Moura, A. M. Dias, E. Carvalho, and H. C. De-sousa, Recent advances on the development of wound dressings for diabetic foot ulcer treatment-A review, Acta Biomaterialia, vol.9, pp.7093-7114, 2013.

W. Y. Chen and G. Abatangelo, Functions of hyaluronan in wound repair, Wound Repair and Regeneration, vol.7, pp.79-89, 1999.

B. Barrois, Efficacy and Tolerability of Hyaluronan (ialuset®) in the Treatment of Pressure Ulcers, Drugs R D, vol.8, pp.267-273, 2007.

L. Abbruzzese, Effectiveness and Safety of a Novel Gel Dressing in the Management of Neuropathic Leg Ulcers in Diabetic Patients: A Prospective Double-Blind Randomized Trial

P. J. Sánchez-soto, J. M. Ginés, M. J. Arias, C. Novák, and A. Ruiz-conde, Effect of Molecular Mass on the Melting Temperature, Enthalpy and Entropy of Hydroxy-Terminated PEO, Journal of Thermal Analysis and Calorimetry, vol.67, pp.189-197, 2002.

M. Wi?niewska, Effect of polyvinyl alcohol adsorption on the mixed alumina-silica-titania suspension stability, Journal of Industrial and Engineering Chemistry, vol.23, pp.265-272, 2015.

C. M. Hassan, P. Trakampan, and N. A. Peppas, Water Solubility Characteristics of Poly(vinyl alcohol) and Gels Prepared by Freezing/Thawing Processes, Water Soluble Polymers, pp.31-40, 2002.

P. Niamlang, T. Tongrain, P. Ekabutr, P. Chuysinuan, and P. Supaphol, Preparation, characterization and biocompatibility of poly(vinyl alcohol) films containing tetracycline hydrochloride-loaded quaternized chitosan nanoparticles, Journal of Drug Delivery Science and Technology, vol.38, pp.36-44, 2017.

V. C. Fenelon, Different strategies for cyclodextrin production: Ultrafiltration systems, CGTase immobilization and use of a complexing agent, Carbohydrate Polymers, vol.192, pp.19-27, 2018.

M. E. Brewster and T. Loftsson, Cyclodextrins as pharmaceutical solubilizers, Advanced Drug Delivery Reviews, vol.59, pp.645-666, 2007.

T. Loftsson and D. Duchêne, Cyclodextrins and their pharmaceutical applications, International Journal of Pharmaceutics, vol.329, pp.1-11, 2007.

A. Banik, P. Gogoi, and M. D. Saikia, Interaction of naproxen with ?-cyclodextrin and its derivatives/polymer: experimental and molecular modeling studies, J Incl Phenom Macrocycl Chem, vol.72, pp.449-458, 2012.

M. E. Davis and M. E. Brewster, Cyclodextrin-based pharmaceutics: past, present and future, Nat Rev Drug Discov, vol.3, pp.1023-1035, 2004.

T. Loftsson, P. Jarho, M. Másson, and T. Järvinen, Cyclodextrins in drug delivery, Expert Opinion on Drug Delivery, vol.2, pp.335-351, 2005.

N. Zafar, H. Fessi, and A. Elaissari, Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications, International Journal of Pharmaceutics, vol.461, pp.351-366, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01958036

M. Oster, Elaboration of functional cyclodextrin based nanofibres for biomedical application, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01130199

F. J. Otero-espinar, J. J. Torres-labandeira, C. Alvarez-lorenzo, and J. Blanco-méndez, Cyclodextrins in drug delivery systems, Journal of Drug Delivery Science and Technology, vol.20, pp.289-301, 2010.

G. Puglisi, C. A. Ventura, A. Spadaro, G. Campana, and S. Spampinato, Differential Effects of Modified ?-Cyclodextrins on Pharmacological Activity and Bioavailability of 4-Biphenylacetic Acid in Rats after Oral Administration, Journal of Pharmacy and Pharmacology, vol.47, pp.120-123, 1995.

L. Santucci, Placebo-controlled comparison of piroxicam-?-cyclodextrin, piroxicam, and indomethacin on gastric potential difference and mucosal injury in humans, Digest Dis Sci, vol.37, pp.1825-1832, 1992.

K. Uekama, F. Hirayama, and T. Irie, Cyclodextrin Drug Carrier Systems, Chem. Rev, vol.98, pp.2045-2076, 1998.

S. Gould and R. C. Scott, 2-Hydroxypropyl-?-cyclodextrin (HP-?-CD): A toxicology review, Food and Chemical Toxicology, vol.43, pp.1451-1459, 2005.

H. S. Woldum, K. L. Larsen, and F. Madsen, Cyclodextrin Controlled Release of Poorly Water-Soluble Drugs from Hydrogels, Drug Delivery, vol.15, pp.69-80, 2008.

R. Tabuchi, Biomaterials based on freeze dried surface-deacetylated chitin nanofibers reinforced with sulfobutyl ether ?-cyclodextrin gel in wound dressing applications, International Journal of Pharmaceutics, vol.511, pp.1080-1087, 2016.

F. Aubert-viard, Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications, Biomed. Mater, vol.10, p.15023, 2015.

N. Wathoni, Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-?-cyclodextrin in sacran hydrogel film, International Journal of Biological Macromolecules, vol.98, pp.268-276, 2017.

G. Narayanan, B. R. Ormond, B. S. Gupta, and A. E. Tonelli, Efficient wound odor removal by ?cyclodextrin functionalized poly (?-caprolactone) nanofibers, Journal of Applied Polymer Science, vol.132, 2015.

G. Narayanan, R. Boy, B. S. Gupta, and A. E. Tonelli, Functional Nanofibers Containing Cyclodextrins, Polysaccharide-based Fibers and Composites: Chemical and Engineering Fundamentals and Industrial Applications, pp.29-62, 2018.

A. Celebioglu and T. Uyar, Cyclodextrin nanofibers by electrospinning, Chem. Commun, vol.46, pp.6903-6905, 2010.

A. Celebioglu and T. Uyar, Electrospinning of Polymer-free Nanofibers from Cyclodextrin Inclusion Complexes, Langmuir, vol.27, pp.6218-6226, 2011.

A. Celebioglu and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: polymerfree nanofibers from cyclodextrin derivatives, Nanoscale, vol.621, p.631, 2012.

A. Celebioglu and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: Electrospun nanofibers from native cyclodextrins, Journal of Colloid and Interface Science, vol.404, pp.1-7, 2013.

A. Celebioglu and T. Uyar, Electrospun gamma-cyclodextrin ([gamma]-CD) nanofibers for the entrapment of volatile organic compounds, RSC Adv, vol.3, pp.22891-22895, 2013.

W. Zhang, M. Chen, and G. Diao, Electrospinning ?-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture, Carbohydrate Polymers, vol.86, pp.1410-1416, 2011.

F. Kayaci and T. Uyar, Electrospun zein nanofibers incorporating cyclodextrins, Carbohydrate Polymers, vol.90, pp.558-568, 2012.

T. Uyar, Y. Nur, J. Hacaloglu, and F. Besenbacher, Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes, Nanotechnology, vol.20, p.125703, 2009.

M. Malanga, Back to the Future": A New Look at Hydroxypropyl Beta-Cyclodextrins, Journal of Pharmaceutical Sciences, vol.105, pp.2921-2931, 2016.

A. F. Azarbayjani, H. Lin, C. W. Yap, Y. W. Chan, and S. Y. Chan, Surface tension and wettability in transdermal delivery: a study on the in-vitro permeation of haloperidol with cyclodextrin across human epidermis, J. Pharm. Pharmacol, vol.62, pp.770-778, 2010.

J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, vol.42, pp.261-272, 2001.

X. Zong, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, vol.43, pp.4403-4412, 2002.

C. Wang, Y. Wang, and T. Hashimoto, Impact of Entanglement Density on Solution Electrospinning: A Phenomenological Model for Fiber Diameter, Macromolecules, vol.49, pp.7985-7996, 2016.

L. Kong and G. R. Ziegler, Molecular Entanglement and Electrospinnability of Biopolymers, J Vis Exp, 2014.

M. G. Mckee, G. L. Wilkes, R. H. Colby, and T. E. Long, Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters, Macromolecules, vol.37, pp.1760-1767, 2004.

S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymerpolymer interaction limit, Polymer, vol.46, pp.3372-3384, 2005.

M. G. Mckee, M. T. Hunley, J. M. Layman, and T. E. Long, Solution Rheological Behavior and Electrospinning of Cationic Polyelectrolytes, Macromolecules, vol.39, pp.575-583, 2006.

J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Tan, Controlled deposition of electrospun poly(ethylene oxide) fibers, Polymer, vol.42, pp.8163-8170, 2001.

Y. Cai and M. Gevelber, The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications, J Mater Sci, vol.48, pp.7812-7826, 2013.

L. Huang, N. Bui, S. S. Manickam, and J. R. Mccutcheon, Controlling electrospun nanofiber morphology and mechanical properties using humidity, J. Polym. Sci. B Polym. Phys, vol.49, pp.1734-1744, 2011.

R. M. Nezarati, M. B. Eifert, and E. Cosgriff-hernandez, Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology, Tissue Eng Part C Methods, vol.19, pp.810-819, 2013.

S. D. Vrieze, The effect of temperature and humidity on electrospinning, J Mater Sci, vol.44, pp.1357-1362, 2008.

E. S. Medeiros, Electrospun Nanofibers of Poly(vinyl alcohol) Reinforced with Cellulose Nanofibrils, Journal of Biobased Materials and Bioenergy, vol.2, pp.1-12, 2008.

H. Fong, I. Chun, and D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, vol.40, pp.4585-4592, 1999.

T. Liang, M. Parhizkar, M. Edirisinghe, and S. Mahalingam, Effect of humidity on the generation and control of the morphology of honeycomb-like polymeric structures by electrospinning, European Polymer Journal, vol.61, pp.72-82, 2014.

C. A. Bonino, Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems, Carbohydrate Polymers, vol.85, pp.111-119, 2011.

. Nakagawa, K. Wei, K. Byoung-sulik, and K. Ick-soo, Morphology controlled electrospun poly(vinyl pyrrolidone) fibers: effects of organic solvent and relative humidity, Journal of Materials Science and Engineering with Advanced Techology, vol.2, pp.97-112, 2010.

B. Zaarour, L. Zhu, C. Huang, and X. Jin, Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity, Nanoscale Research Letters, vol.13, p.285, 2018.

E. S. Medeiros, L. H. Mattoso, R. D. Offeman, D. F. Wood, and W. J. Orts, Effect of relative humidity on the morphology of electrospun polymer fibers, Can. J. Chem, vol.86, pp.590-599, 2008.

M. N. Collins and C. Birkinshaw, Physical properties of crosslinked hyaluronic acid hydrogels, J Mater Sci: Mater Med, vol.19, pp.3335-3343, 2008.

S. Khunmanee, Y. Jeong, and H. Park, Crosslinking method of hyaluronic-based hydrogel for biomedical applications, J Tissue Eng, vol.8, 2017.

M. D. Shelby, G. A. Gutierrez-espeleta, W. M. Generoso, and A. F. Mcfee, Mouse dominant lethal and bone marrow micronucleus studies on methyl vinyl sulfone and divinyl sulfone, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.250, pp.431-437, 1991.

L. Rocca, P. T. Carlson, G. P. Fuller, and G. C. , Relationship between sulfhydryl reactivity and toxicity of vinyl sulfone molluscicidal agents, Toxicology and Applied Pharmacology, vol.31, pp.222-232, 1975.

Z. Ahmad, Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and Nhydroxysuccinimide concentrations on the mechanical and biological characteristics of crosslinked collagen fibres for tendon repair, Regen Biomater, vol.2, pp.77-85, 2015.

K. G. Cornwell, P. Lei, S. T. Andreadis, and G. D. Pins, Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions, J. Biomed. Mater. Res, vol.80, pp.362-371, 2007.

L. Buttafoco, Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials, vol.27, pp.724-734, 2006.

E. Lepvrier, C. Doigneaux, L. Moullintraffort, A. Nazabal, and C. Garnier, Optimized Protocol for Protein Macrocomplexes Stabilization Using the EDC, 1-Ethyl-3-(3-(dimethylamino)propyl)carbodiimide
URL : https://hal.archives-ouvertes.fr/hal-01116484

, , 2014.

K. Tomihata and Y. Ikada, Crosslinking of hyaluronic acid with water-soluble carbodiimide, J. Biomed. Mater. Res, vol.37, pp.243-251, 1997.

S. Park, H. J. Lee, K. H. Lee, and H. Suh, Biological characterization of EDC-crosslinked collagenhyaluronic acid matrix in dermal tissue restoration, Biomaterials, vol.24, pp.1631-1641, 2003.

G. Huerta-angeles, Synthesis of photo-crosslinkable hyaluronan with tailored degree of substitution suitable for production of water resistant nanofibers, Carbohydrate Polymers, vol.137, pp.255-263, 2016.

C. B. Shah and S. M. Barnett, Swelling behavior of hyaluronic acid gels, Journal of Applied Polymer Science, vol.45, pp.293-298, 1992.

B. A. Buhren, Hyaluronidase: from clinical applications to molecular and cellular mechanisms, European Journal of Medical Research, vol.21, 2016.

A. B. Csoka, G. I. Frost, and R. Stern, The six hyaluronidase-like genes in the human and mouse genomes, Matrix Biology, vol.20, pp.499-508, 2001.

G. I. Frost, T. B. Csóka, T. Wong, and R. Stern, Purification, Cloning, and Expression of Human Plasma Hyaluronidase, Biochemical and Biophysical Research Communications, vol.236, pp.10-15, 1997.

A. Nieuwoudt, C. E. Appleby, and S. Mukhopadhyay, Native Tissue Repair and Principles of Wound Healing: Introducing the Concept of Regenerative Surgery in Vaginal Prolapse Repair, Journal of Clinical Gynecology and Obstetrics, vol.4, pp.197-202, 2015.

E. Kenawy, Release of tetracycline hydrochloride from electrospun poly(ethylene-covinylacetate), poly(lactic acid), and a blend, Journal of Controlled Release, vol.81, pp.57-64, 2002.

S. E. Gilchrist, Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections, Journal of Controlled Release, vol.170, pp.64-73, 2013.

L. Huang, C. Branford-white, X. Shen, D. Yu, and L. Zhu, Time-engineeringed biphasic drug release by electrospun nanofiber meshes, International Journal of Pharmaceutics, vol.436, pp.88-96, 2012.

H. Jiang, L. Wang, and K. Zhu, Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents, Journal of Controlled Release, vol.193, pp.296-303, 2014.

Y. Lu, Coaxial electrospun fibers: applications in drug delivery and tissue engineering, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.8, pp.654-677, 2016.

A. Khalf and S. V. Madihally, Recent advances in multiaxial electrospinning for drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.112, pp.1-17, 2017.

X. Xu, Preparation of Core-Sheath Composite Nanofibers by Emulsion Electrospinning, Macromolecular Rapid Communications, vol.27, pp.1637-1642, 2006.

J. Hu, M. P. Prabhakaran, L. Tian, X. Ding, and S. Ramakrishna, Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility, RSC Adv, vol.5, pp.100256-100267, 2015.

G. Kim, P. Simon, J. Kim, and . Electrospun, HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity, Bioinspir. Biomim, vol.3, 2008.

Z. Zhang, Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities, Materials Science and Engineering: C, vol.69, pp.462-469, 2016.

C. Zhang and S. Yu, Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev, vol.43, pp.4423-4448, 2014.

A. Chunder, S. Sarkar, Y. Yu, and L. Zhai, Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties, Colloids and Surfaces B: Biointerfaces, vol.58, pp.172-179, 2007.

C. H. Park, K. Kim, J. Lee, and J. Lee, In-situ nanofabrication via electrohydrodynamic jetting of counterchargednozzles, Polym. Bull, vol.61, pp.521-528, 2008.

H. Dong, D. Wang, G. Sun, and J. P. Hinestroza, Assembly of Metal Nanoparticles on Electrospun Nylon 6 Nanofibers by Control of Interfacial Hydrogen-Bonding Interactions, Chem. Mater, vol.20, pp.6627-6632, 2008.

P. Rujitanaroj, N. Pimpha, and P. Supaphol, Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles, Polymer, vol.49, pp.4723-4732, 2008.

P. Zahedi, Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(?-caprolactone) blends, Journal of Applied Polymer Science, vol.124, pp.4174-4183, 2012.

K. Kim, Incorporation and controlled release of a hydrophilic antibiotic using poly(lactideco-glycolide)-based electrospun nanofibrous scaffolds, Journal of Controlled Release, vol.98, pp.47-56, 2004.

K. Semnani, M. Shams-ghahfarokhi, M. Afrashi, A. Fakhrali, and D. Semnani, Antifungal Activity of Eugenol Loaded Electrospun PAN Nanofiber Mats Against Candida Albicans, Curr Drug Deliv, vol.15, pp.860-866, 2018.

V. A. Santos, . Dos, P. V. Viera, A. M. Oliveira, . De et al., Antifungal effect of electrospun nanofibers containing cetylpyridinium chloride against Candida albicans, Braz Oral Res, vol.28, pp.1-6, 2014.

H. Jiang, D. Fang, B. Hsiao, B. Chu, and W. Chen, Preparation and characterization of ibuprofenloaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes, Journal of Biomaterials Science, vol.15, pp.279-296, 2004.

Y. Jiang, H. Mo, and D. Yu, Electrospun drug-loaded core-sheath PVP/zein nanofibers for biphasic drug release, International Journal of Pharmaceutics, vol.438, pp.232-239, 2012.

Z. X. Meng, Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system, Colloids and Surfaces B: Biointerfaces, vol.84, pp.97-102, 2011.

X. Xu, X. Chen, P. Ma, X. Wang, and X. Jing, The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning, European Journal of Pharmaceutics and Biopharmaceutics, vol.70, pp.165-170, 2008.

S. Liu, Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers, J. Mater. Chem. B, vol.1, pp.101-109, 2012.

J. Xie, R. S. Tan, and C. Wang, Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro, Journal of Biomedical Materials Research Part A, vol.85, pp.897-908, 2008.

V. Wright, Historical overview of non-steroidal anti-inflammatory drugs, Br. J. Rheumatol, vol.34

P. J. Barnes, I. Adcock, M. Spedding, and P. M. Vanhoutte, Anti-inflammatory actions of steroids: molecular mechanisms, Trends in Pharmacological Sciences, vol.14, pp.436-441, 1993.

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, The American Journal of Medicine, vol.104, pp.2-8, 1998.

J. R. Donnell and D. D. Frisbie, Use of firocoxib for the treatment of equine osteoarthritis, Veterinary Medicine: Research and Reports, vol.5, pp.159-168, 2014.

P. C. Gøtzsche, Non-steroidal anti-inflammatory drugs, BMJ, vol.320, pp.1058-1061, 2000.

T. Velnar, T. Bailey, and V. Smrkolj, The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms, J Int Med Res, vol.37, pp.1528-1542, 2009.

W. Xu and A. Larbi, Immunity and Inflammation: From Jekyll to Hyde, Experimental Gerontology, vol.107, pp.98-101, 2018.

M. R. Chen and J. L. Dragoo, The effect of nonsteroidal anti-inflammatory drugs on tissue healing, Knee Surgery, Sports Traumatology, Arthroscopy, vol.21, pp.540-549, 2013.

F. A. Lisboa, Nonsteroidal anti-inflammatory drugs may affect cytokine response and

H. E. Grandelli, B. Stickle, A. Whittington, and E. Kiran, Inclusion complex formation of ?cyclodextrin and Naproxen: a study on exothermic complex formation by differential scanning calorimetry, J Incl Phenom Macrocycl Chem, vol.77, pp.269-277, 2013.

J. Wang and I. M. Warner, Studies of the Naproxen:?-Cyclodextrin Inclusion Complex, Microchemical Journal, vol.48, pp.229-239, 1993.

F. J. Otero-espinar, S. Anguiano-igea, N. García-gonzález, J. L. Vila-jato, and J. Blanco-méndez, Interaction of naproxen with ?-cyclodextrin in solution and in the solid state, International Journal of Pharmaceutics, vol.79, pp.149-157, 1992.

M. F. Canbolat, A. Celebioglu, and T. Uyar, Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers, Colloids and Surfaces B: Biointerfaces, vol.115, pp.15-21, 2014.

S. Das and U. Subuddhi, Cyclodextrin Mediated Controlled Release of Naproxen from pH-Sensitive Chitosan/Poly(Vinyl Alcohol) Hydrogels for Colon Targeted Delivery, Ind. Eng. Chem. Res, vol.52, pp.14192-14200, 2013.

A. Ganza-gonzalez, J. L. Vila-jato, S. Anguiano-igea, F. J. Otero-espinar, and J. Blanco-méndez, A proton nuclear magnetic resonance study of the inclusion complex of naproxen with ?cyclodextrin, International Journal of Pharmaceutics, vol.106, pp.179-185, 1994.

B. Lee and J. Lee, Enhancement of solubility and dissolution rate of poorly water-soluble naproxen by complexation with 2-hydroxypropyl-?-cyclodextrin, Arch. Pharm. Res, vol.18, pp.22-26, 1995.

H. W. Frijlink, The effects of cyclodextrins on the disposition of intravenously injected drugs in the rat, Pharm. Res, vol.8, pp.380-384, 1991.

P. Mura, F. Maestrelli, and M. Cirri, Ternary systems of naproxen with hydroxypropyl-?cyclodextrin and aminoacids, International Journal of Pharmaceutics, vol.260, pp.293-302, 2003.

G. Bettinetti, A. Gazzaniga, P. Mura, F. Giordano, and M. Setti, Thermal behaviour and dissolution properties of naproxen in combinations with chemically modified ß-Cyclodextrins, Drug Development and Industrial Pharmacy, vol.18, pp.39-53, 1992.

F. J. Espinar, S. A. Igea, J. B. Méndez, and J. L. Jato, Reduction in the ulcerogenicity of naproxen by complexation with ?-cyclodextrin, International Journal of Pharmaceutics, vol.70, pp.35-41, 1991.

F. J. Otero-espinar, S. Anguiano-igea, N. García-gonzalez, J. L. Vila-jato, and J. Blanco-méndez, Oral bioavailability of naproxen-?-cyclodextrin inclusion compound, International Journal of Pharmaceutics, vol.75, pp.37-44, 1991.

S. Junco, T. Casimiro, N. Ribeiro, M. N. Ponte, and H. C. Marques, A Comparative Study of Naproxen -Beta Cyclodextrin Complexes Prepared by Conventional Methods and Using Supercritical Carbon Dioxide, Journal of Inclusion Phenomena, vol.44, pp.117-121, 2002.

S. Junco, T. Casimiro, N. Ribeiro, M. N. Ponte, and H. M. Marques, Optimisation of Supercritical Carbon Dioxide Systems for Complexation of Naproxen : Beta-Cyclodextrin, Journal of Inclusion Phenomena, vol.44, pp.69-73, 2002.

F. Kayaci, Y. Ertas, and T. Uyar, Enhanced Thermal Stability of Eugenol by Cyclodextrin Inclusion Complex Encapsulated in Electrospun Polymeric Nanofibers, J. Agric. Food Chem, vol.61, pp.8156-8165, 2013.

F. Kayaci, H. S. Sen, E. Durgun, and T. Uyar, Functional electrospun polymeric nanofibers incorporating geraniol-cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol, Food Research International, vol.62, pp.424-431, 2014.

Y. Javadzadeh, Preparation and physicochemical characterization of naproxen-PLGA nanoparticles, Colloids and Surfaces B: Biointerfaces, vol.81, pp.498-502, 2010.

P. Mura, Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: A review, Journal of Pharmaceutical and Biomedical Analysis, vol.101, pp.238-250, 2014.

O. R. Davies, Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering, Advanced Drug Delivery Reviews, vol.60, pp.373-387, 2008.

M. Champeau, J. Thomassin, T. Tassaing, and C. Jérôme, Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review, Journal of Controlled Release, vol.209, pp.248-259, 2015.

G. Brunner, Supercritical fluids: technology and application to food processing, Journal of Food Engineering, vol.67, pp.21-33, 2005.

A. R. Duarte, M. S. Costa, A. L. Simplício, M. M. Cardoso, and C. M. Duarte, Preparation of controlled release microspheres using supercritical fluid technology for delivery of antiinflammatory drugs, International Journal of Pharmaceutics, vol.308, pp.168-174, 2006.

S. G. Kazarian and G. G. Martirosyan, Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP, International Journal of Pharmaceutics, vol.232, pp.81-90, 2002.

Y. A. Hussain and C. S. Grant, Ibuprofen impregnation into submicron polymeric films in supercritical carbon dioxide, The Journal of Supercritical Fluids, vol.71, pp.127-135, 2012.

S. Ma, Z. Lu, Y. Wu, and Z. Zhang, Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO2 using quartz crystal microbalance as an in situ detector, The Journal of Supercritical Fluids, vol.54, pp.129-136, 2010.

Z. Shen, CO2-assisted fiber impregnation, Polymer, vol.49, pp.1579-1586, 2008.

A. M. Dias, Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide, International Journal of Pharmaceutics, vol.408, pp.9-19, 2011.

A. Cortesi, P. Alessi, I. Kikic, S. Kirchmayer, and F. Vecchione, Supercritical fluids chromatography for impregnation optimization, The Journal of Supercritical Fluids, vol.19, pp.61-68, 2000.

A. López-periago, Impregnation of a biocompatible polymer aided by supercritical CO2: Evaluation of drug stability and drug-matrix interactions, The Journal of Supercritical Fluids, vol.48, pp.56-63, 2009.

A. Argemí, A. López-periago, C. Domingo, and J. Saurina, Spectroscopic and chromatographic characterization of triflusal delivery systems prepared by using supercritical impregnation technologies, Journal of Pharmaceutical and Biomedical Analysis, vol.46, pp.456-462, 2008.

Y. Masmoudi, L. Ben-azzouk, O. Forzano, J. Andre, and E. Badens, Supercritical impregnation of intraocular lenses, The Journal of Supercritical Fluids, vol.60, pp.98-105, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01266171

M. V. Natu, M. H. Gil, and H. C. De-sousa, Supercritical solvent impregnation of poly(?caprolactone)/poly(oxyethylene-b-oxypropylene-b-oxyethylene) and poly(?caprolactone)/poly(ethylene-vinyl acetate) blends for controlled release applications, The Journal of Supercritical Fluids, vol.47, pp.93-102, 2008.

M. E. Braga, Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives, The Journal of Supercritical Fluids, vol.44, pp.245-257, 2008.

A. M. Dias, Wound dressings loaded with an anti-inflammatory jucá (Libidibia ferrea) extract using supercritical carbon dioxide technology, The Journal of Supercritical Fluids, vol.74, pp.34-45, 2013.

M. ?kerget, ?. Knez, and M. Knez-hrn?i?, Solubility of Solids in Sub-and Supercritical Fluids: a Review, J. Chem. Eng. Data, vol.56, pp.694-719, 2011.

X. Sun, G. R. Williams, X. Hou, and L. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications, Carbohydrate Polymers, vol.94, pp.147-153, 2013.

J. Li, J. Chen, and R. Kirsner, Pathophysiology of acute wound healing, Clinics in Dermatology, vol.25, pp.9-18, 2007.

D. I. Nesseem, S. F. Eid, and S. S. El-houseny, Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug, Life Sciences, vol.89, pp.430-438, 2011.

D. Crespy and . Chapter, Electrospinning of Nanoparticles. in Electrospinning, pp.121-135, 2015.

C. Zhang and S. Yu, Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev, vol.43, pp.4423-4448, 2014.

O. Salata, Applications of nanoparticles in biology and medicine, J Nanobiotechnology, vol.2, p.3, 2004.

J. Nam, C. S. Thaxton, and C. A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science, vol.301, pp.1884-1886, 2003.

P. Ho, Magnetic nanoparticles for pathogen detection, Pathology, vol.46, p.45, 2014.

W. Tan, Bionanotechnology based on silica nanoparticles, Medicinal Research Reviews, vol.24, pp.621-638, 2004.

P. Sharma, S. Brown, G. Walter, S. Santra, and B. Moudgil, Nanoparticles for bioimaging, Advances in Colloid and Interface Science, vol.123, pp.471-485, 2006.

P. Nasimi and M. Haidari, Medical Use of Nanoparticles: Drug Delivery and Diagnosis Diseases, International Journal of Green Nanotechnology, vol.1, p.1943089213506978, 2013.

S. A. Rizvi and A. M. Saleh, Applications of nanoparticle systems in drug delivery technology

, Saudi Pharm J, vol.26, pp.64-70, 2018.

D. S. Kohane, Microparticles and nanoparticles for drug delivery, Biotechnology and Bioengineering, vol.96, pp.203-209, 2007.

T. Delmas, Preparation and characterization of highly stable lipid nanoparticles with amorphous core of tuneable viscosity, Journal of Colloid and Interface Science, vol.360, pp.471-481, 2011.

F. P. Navarro, Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection, J Biomed Nanotechnol, vol.8, pp.730-741, 2012.

A. Lainé, Conventional versus stealth lipid nanoparticles: Formulation and in vivo fate prediction through FRET monitoring, Journal of Controlled Release, vol.188, pp.1-8, 2014.

M. Goutayer, Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging, European Journal of Pharmaceutics and Biopharmaceutics, vol.75, pp.137-147, 2010.

J. Mérian, Développement et caractérisation in vivo de nanoparticules lipidiques biocompatibles au moyen des techniques d'imagerie de fluorescence et nucléaire, vol.5, 2012.

P. Fortin, Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents, J Biomed Opt, vol.17, p.126004, 2012.

F. P. Navarro, Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy, J. Photochem. Photobiol. B, Biol, vol.130, pp.161-169, 2014.

E. Bayon, Nouveau système de délivrance d'antigènes à base de nanoparticules lipidiques (Lipidots) pour formulation vaccinale, 2018.

L. Racine, Time-Controllable Lipophilic-Drug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels, Macromol. Biosci, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01899790

J. Gravier, FRET Imaging Approaches for in Vitro and in Vivo Characterization of Synthetic Lipid Nanoparticles, Molecular Pharmaceutics, vol.11, pp.3133-3144, 2014.

A. Periasamy, Fluorescence resonance energy transfer microscopy: a mini review, JBO, vol.6, pp.287-292, 2001.

J. Gravier, FRET Imaging Approaches for in Vitro and in Vivo Characterization of Synthetic Lipid Nanoparticles, Molecular Pharmaceutics, vol.11, pp.3133-3144, 2014.

A. Jacquart, LipImage TM 815: novel dye-loaded lipid nanoparticles for long-term and sensitive in vivo near-infrared fluorescence imaging, J Biomed Opt, vol.18, p.101311, 2013.

M. Varache, M. Escudé, C. Laffont, E. Rustique, and A. Couffin, Development and validation of an HPLC-fluorescence method for the quantification of IR780-oleyl dye in lipid nanoparticles, Int J Pharm, vol.532, pp.779-789, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02202434

E. L. Pardue, S. Ibrahim, and A. Ramamurthi, Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering, Organogenesis, vol.4, pp.203-214, 2008.

S. K. Chay, Evaluation of the taste-masking effects of (2-hydroxypropyl)-?-cyclodextrin on ranitidine hydrochloride; a combined biosensor, spectroscopic and molecular modelling assessment, RSC Adv, vol.8, pp.3564-3573, 2018.

C. Huang, Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture, Journal of Nanomaterials, 2012.

Q. Zhang, Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications, Drug Discovery Today, 2017.

L. Li and Y. Hsieh, Ultra-fine polyelectrolyte fibers from electrospinning of poly

, Polymer, vol.46, pp.5133-5139, 2005.

J. Li, Electrospinning of Hyaluronic Acid (HA) and HA/Gelatin Blends, Macromolecular Rapid Communications, vol.27, pp.114-120, 2006.

A. Celebioglu and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: polymerfree nanofibers from cyclodextrin derivatives, Nanoscale, vol.621, p.631, 2012.

F. Kayaci and T. Uyar, Electrospun zein nanofibers incorporating cyclodextrins, Carbohydrate Polymers, vol.90, pp.558-568, 2012.

T. Uyar, A. Balan, L. Toppare, and F. Besenbacher, Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers, Polymer, vol.50, pp.475-480, 2009.

J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev, vol.98, pp.1743-1754, 1998.

N. Sadlej-sosnowska, L. Kozerski, E. Bednarek, and J. Sitkowski, Fluorometric and NMR Studies of the Naproxen-Cyclodextrin Inclusion Complexes in Aqueous Solutions, Journal of Inclusion Phenomena, vol.37, pp.383-394, 2000.

M. F. Canbolat, A. Celebioglu, and T. Uyar, Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers, Colloids and Surfaces B: Biointerfaces, vol.115, pp.15-21, 2014.

G. D. Krischak, P. Augat, L. Claes, L. Kinzl, and A. Beck, The effects of non-steroidal antiinflammatory drug application on incisional wound healing in rats, J Wound Care, vol.16, pp.76-78, 2007.

S. S. Ting, D. L. Tomasko, N. R. Foster, and S. J. Macnaughton, Solubility of naproxen in supercritical carbon dioxide with and without cosolvents, Ind. Eng. Chem. Res, vol.32, pp.1471-1481, 1993.

B. W. Olesen, . Thermal, and . Comfort, , pp.3-41, 1982.

J. K. Guillory, Handbook of Aqueous Solubility Data By Samuel H. Yalkowsky and Yan He, J. Med, 2003.

. Chem, , vol.46, pp.4213-4213, 2003.

X. Sun, G. R. Williams, X. Hou, and L. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications, Carbohydrate Polymers, vol.94, pp.147-153, 2013.

D. I. Nesseem, S. F. Eid, and S. S. El-houseny, Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug, Life Sciences, vol.89, pp.430-438, 2011.

M. Seon-lutz, A. Couffin, S. Vignoud, G. Schlatter, and A. Hebraud, « Electrospinning in water and in situ crosslinking of hyaluronic acid / cyclodextrin nanofibers: Towards wound dressing with controlled drug release, Carbohydr. Polym, vol.207, pp.276-287

M. Seon-lutz, A. Couffin, S. Vignoud, G. Schlatter, A. Hebraud et al., , p.2016

M. Seon-lutz, A. Couffin, S. Vignoud, G. Schlatter, and A. Hebraud, 2nd International EPNOE Junior Scientists meeting, 2016.

M. Seon-lutz, A. Couffin, S. Vignoud, G. Schlatter, A. Hebraud et al., Nanotech, 2018.

M. Seon-lutz, A. Couffin, S. Vignoud, G. Schlatter, A. Hebraud et al., Nanotech, 2019.

J. J. Ahire, D. D. Robertson, A. J. Van-reenen, and L. M. Dicks, Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes, 2017.

, Biomedicine & Pharmacotherapy, vol.86, pp.143-148

Z. Ahmad, J. H. Shepherd, D. V. Shepherd, S. Ghose, S. J. Kew et al., Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair, Regenerative Biomaterials, vol.2, issue.2, pp.77-85, 2015.

A. Banik, P. Gogoi, and M. D. Saikia, Interaction of naproxen with ?-cyclodextrin and its derivatives/polymer: experimental and molecular modeling studies, Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol.72, issue.3-4, pp.449-458, 2012.

E. K. Brenner, J. D. Schiffman, E. A. Thompson, L. J. Toth, and C. L. Schauer, Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions, Carbohydrate Polymers, vol.87, issue.1, pp.926-929, 2012.

M. F. Canbolat, A. Celebioglu, and T. Uyar, Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers, Colloids and Surfaces B: Biointerfaces, vol.115, pp.15-21, 2014.

A. Celebioglu and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: polymerfree nanofibers from cyclodextrin derivatives, pp.621-631, 2012.

M. Champeau, J. Thomassin, T. Tassaing, and C. Jérôme, Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review, Journal of Controlled Release, vol.209, pp.248-259, 2015.

G. Chen, J. Guo, J. Nie, and G. Ma, Preparation, characterization, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning, 2016.

, Polymer, vol.83, pp.12-19

M. R. Chen and J. L. Dragoo, The effect of nonsteroidal anti-inflammatory drugs on tissue healing, Knee Surgery, Sports Traumatology, Arthroscopy, vol.21, issue.3, pp.540-549, 2013.

,

W. Y. Chen and G. Abatangelo, Functions of hyaluronan in wound repair. Wound Repair and Regeneration: Official Publication of the Wound Healing Society, European Tissue Repair Society, vol.7, issue.2, pp.79-89, 1999.

K. G. Cornwell, P. Lei, S. T. Andreadis, and G. D. Pins, Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions, Journal of Biomedical Materials Research Part A, vol.80, issue.2, pp.362-371, 2007.

S. Gould and R. C. Scott, 2-Hydroxypropyl-?-cyclodextrin (HP-?-CD): A toxicology review, Food and Chemical Toxicology, vol.43, issue.10, pp.1451-1459, 2005.

J. K. Guillory, Handbook of Aqueous Solubility Data By Samuel H. Yalkowsky and Yan He, Journal of Medicinal Chemistry, vol.46, issue.19, pp.4213-4213, 2003.

G. Huerta-angeles, M. Brandejsová, K. Knotková, M. Hermannová, M. Moravcová et al., Synthesis of photo-crosslinkable hyaluronan with tailored degree of substitution suitable for production of water resistant nanofibers, Carbohydrate Polymers, vol.137, pp.255-263, 2016.

B. Jankovi?, J. Pelipenko, M. ?karabot, I. Mu?evi?, and J. Kristl, The design trend in tissueengineering scaffolds based on nanomechanical properties of individual electrospun nanofibers, International Journal of Pharmaceutics, vol.455, issue.1-2, pp.338-347, 2013.

,

Y. Ji, K. Ghosh, B. Li, J. C. Sokolov, R. A. Clark et al., Dual-Syringe Reactive Electrospinning of Cross-Linked Hyaluronic Acid Hydrogel Nanofibers for Tissue Engineering Applications, Macromolecular Bioscience, vol.6, issue.10, pp.811-817, 2006.

,

Y. Ji, K. Ghosh, X. Z. Shu, B. Li, J. C. Sokolov et al., Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials, vol.27, issue.20, pp.3782-3792, 2006.

S. Junco, T. Casimiro, N. Ribeiro, M. N. Ponte, and H. C. Marques, A Comparative Study of Naproxen -Beta Cyclodextrin Complexes Prepared by Conventional Methods and Using Supercritical Carbon Dioxide, Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol.44, issue.1, 2002.

, , pp.117-121

S. Junco, T. Casimiro, N. Ribeiro, M. N. Ponte, and H. M. Marques, Optimisation of Supercritical Carbon Dioxide Systems for Complexation of Naproxen : Beta-Cyclodextrin, Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol.44, issue.1-4, pp.69-73, 2002.

,

F. Kayaci and T. Uyar, Electrospun zein nanofibers incorporating cyclodextrins, Carbohydrate Polymers, vol.90, issue.1, pp.558-568, 2012.

I. L. Kim, S. Khetan, B. M. Baker, C. S. Chen, and J. A. Burdick, Fibrous hyaluronic acid hydrogels that direct {MSC} chondrogenesis through mechanical and adhesive cues, Biomaterials, vol.34, issue.22, pp.5571-5580, 2013.

K. Kim, Y. Akada, W. Kai, B. Kim, and I. Kim, Cells Attachment Property of PVA Hydrogel Nanofibers Incorporating Hyaluronic Acid for Tissue Engineering, Journal of Biomaterials and Nanobiotechnology, issue.04, p.353, 2011.

G. Kogan, L. ?oltés, R. Stern, and P. Gemeiner, Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications, Biotechnology Letters, vol.29, issue.1, pp.17-25, 2007.

G. D. Krischak, P. Augat, L. Claes, L. Kinzl, and A. Beck, The effects of non-steroidal antiinflammatory drug application on incisional wound healing in rats, Journal of Wound Care, vol.16, issue.2, pp.76-78, 2007.

K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, and W. H. Park, Electrospinning of polysaccharides for regenerative medicine, Advanced Drug Delivery Reviews, issue.12, pp.1020-1032, 2009.

J. Li, J. Chen, and R. Kirsner, Pathophysiology of acute wound healing, Clinics in Dermatology, vol.25, issue.1, pp.9-18, 2007.

J. Li, A. He, C. C. Han, D. Fang, B. S. Hsiao et al., Electrospinning of Hyaluronic Acid (HA) and HA/Gelatin Blends, Macromolecular Rapid Communications, vol.27, issue.2, pp.114-120, 2006.

L. Li and Y. Hsieh, Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid), Polymer, vol.46, issue.14, pp.5133-5139, 2005.

F. A. Lisboa, M. J. Bradley, M. T. Hueman, S. A. Schobel, B. J. Gaucher et al., Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds, Surgery, vol.161, issue.4, pp.1164-1173, 2017.

T. Loftsson, P. Jarho, M. Másson, and T. Järvinen, Cyclodextrins in drug delivery, Expert Opinion on Drug Delivery, vol.2, issue.2, pp.335-351, 2005.

E. Mele, Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings, Journal of Materials Chemistry B, vol.4, issue.28, pp.4801-4812, 2016.

D. I. Nesseem, S. F. Eid, and S. S. El-houseny, Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug, Life Sciences, vol.89, issue.13, pp.430-438, 2011.

A. Nieuwoudt, C. E. Appleby, and S. Mukhopadhyay, Native Tissue Repair and Principles of Wound Healing: Introducing the Concept of Regenerative Surgery in Vaginal Prolapse Repair, Journal of Clinical Gynecology and Obstetrics, vol.4, issue.2, pp.197-202, 2015.

,

B. W. Olesen, THERMAL COMFORT. Technical Review -Bruel & Kjaer English Ed, pp.3-41, 1982.

F. J. Otero-espinar, J. J. Torres-labandeira, C. Alvarez-lorenzo, and J. Blanco-méndez, Cyclodextrins in drug delivery systems, Journal of Drug Delivery Science and Technology, vol.20, issue.4, pp.50046-50053, 2010.

J. Pelipenko, J. Kristl, B. Jankovi?, S. Baumgartner, and P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, International Journal of Pharmaceutics, vol.456, issue.1, pp.125-134, 2013.

,

L. Racine, A. Guliyeva, I. Wang, V. Larreta-garde, R. Auzély-velty et al., Time-Controllable Lipophilic-Drug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels, Macromolecular Bioscience, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01899790

N. Sadlej-sosnowska, L. Kozerski, E. Bednarek, and J. Sitkowski, Fluorometric and NMR Studies of the Naproxen-Cyclodextrin Inclusion Complexes in Aqueous Solutions, Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol.37, issue.1-4, pp.383-394, 2000.

,

P. J. Sánchez-soto, J. M. Ginés, M. J. Arias, C. Novák, and A. Ruiz-conde, Effect of Molecular Mass on the Melting Temperature, Enthalpy and Entropy of Hydroxy-Terminated PEO, Journal of Thermal Analysis and Calorimetry, vol.67, issue.1, pp.189-197, 2002.

C. B. Shah and S. M. Barnett, Swelling behavior of hyaluronic acid gels, Journal of Applied Polymer Science, vol.45, issue.2, pp.293-298, 1992.

S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymerpolymer interaction limit, Polymer, vol.46, issue.10, pp.3372-3384, 2005.

,

X. Sun, G. R. Williams, X. Hou, and L. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications, Carbohydrate Polymers, vol.94, issue.1, pp.147-153, 2013.

,

J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry, Chemical Reviews, vol.98, issue.5, pp.1743-1754, 1998.

S. S. Ting, D. L. Tomasko, N. R. Foster, and S. J. Macnaughton, Solubility of naproxen in supercritical carbon dioxide with and without cosolvents, Industrial & Engineering Chemistry Research, vol.32, issue.7, pp.1471-1481, 1993.

K. Tomihata and Y. Ikada, Crosslinking of hyaluronic acid with water-soluble carbodiimide, Journal of Biomedical Materials Research, vol.37, issue.2, pp.243-251, 1997.

I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, Electro-Spinning and Electro-Blowing of Hyaluronic Acid, Biomacromolecules, vol.5, issue.4, pp.1428-1436, 2004.

T. Uyar, A. Balan, L. Toppare, and F. Besenbacher, Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers, Polymer, vol.50, issue.2, pp.475-480, 2009.

,

T. Velnar, T. Bailey, and V. Smrkolj, The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms, Journal of International Medical Research, vol.37, issue.5, pp.1528-1542, 2009.

C. Wang, Y. Wang, and T. Hashimoto, Impact of Entanglement Density on Solution Electrospinning: A Phenomenological Model for Fiber Diameter, Macromolecules, vol.49, issue.20, pp.7985-7996, 2016.

X. Wang, I. C. Um, D. Fang, A. Okamoto, B. S. Hsiao et al., Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments, 2005.

, Polymer, vol.46, issue.13, pp.4853-4867

Q. Zhang, Y. Li, Z. Y. Lin, ). William, K. K. Wong et al., Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications, Drug Discovery Today, 2017.

W. Zhang, M. Chen, and G. Diao, Electrospinning ?-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture, Carbohydrate Polymers, vol.86, issue.3, pp.1410-1416, 2011.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, vol.43, issue.16, pp.275-281, 2002.