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Abstract: 

The reawakening of volcanoes asleep since hundreds or thousands years (ex. Komagatake, 

1640; Pinatubo, 1991) is a mysterious phenomenon. Volcanic eruptions are the surface expressions 

of processes occurring in the underlying magmatic systems. Long-lived magmatic reservoirs 

located in the upper crust have been shown to result from the accumulation of intrusions of new 

magmas, and spend most of their dwelling time as mush. A mush is a magma that is cooled and 

crystallized, in which the crystals are touching each other to form a rigid framework, that inhibit 

its ability to flow. The generation of eruptible conditions requires destabilizing the force chains 

link crystals in contact. Such destabilization is often thought to be triggered by the recharge of the 

mush with new magma. A better understanding of the physical processes occurring in magmatic 

reservoirs by the emplacement of new magma is required to identify the conditions that primer in 

volcanic eruptions. The characterization of the effects of the intrusion on the physical conditions 

of the magmatic reservoir and on the associated geophysical signals is necessary to best mitigate 

volcanic hazards. 

 This thesis explores first the physical processes controlling the motions of the crystals in 

magmas and mush. Previous studies have not considered the presence of lubrication forces. These 

hydrodynamic forces are opposed to the relative motions between neighboring crystals. By 

developing scaling relationships of the importance of the forces controlling the motion of the solids, 

and numerical simulations using a Discrete Element Method coupled with a Computational Fluid 

Dynamic approach (CFD-DEM), we constrained the effects of lubrication on magmas and defined 

a dimensionless number able to predict lubrication importance. Results show that lubrication is 

opposed to the onset or the arrest of motions within the mush. Neglecting lubrication results in 

underestimating the duration of transient dynamics, but does not affect the quantification of steady-

state dynamics. 

 We then used CFD-DEM simulations to explore the emplacement mechanisms of mobile 

magmas within mush and their effects on the magmatic reservoir. Results show that the behavior 

of the intrusion is controlled by the injection velocity and by the density contrast between the two 

melt phases of the resident mush and the intruded material. Under most natural conditions, 

simulations suggest that the intruded magma is expected to pond at the base of the mush and to be 
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emplaced as a horizontal layer. This scenario does not lead to a high degree of mixing nor to 

conditions for which an eruption may be triggered rapidly. The recharge in new magmas, however, 

generates conditions propitious for the extraction of eruptible magmas from the mush. It appears 

that the unfolding of a recharge event depends on the evolution of the density contrast between the 

mush interstitial melt and the intruded melt and on the thermal exchanges following the intrusion. 

 The detection of volumes composed by eruptible magmas from seismic signals requires 

knowledge of their seismic properties, which are yet poorly constrained. We used the coupled phase 

approach to compute the propagation velocities and attenuation coefficients of seismic waves in 

magmas. This approach is based on the linearization of the continuum conservation equations that 

control the motions of the fluid and the solids. Results show that, in crystal-bearing magmas, the 

propagation velocity of compressional waves is mainly controlled by the crystal volume faction. 

The measure of the intrinsic attenuation coefficient is required to distinguish the chemical 

composition of the magmas. The joint monitoring in time of seismic waves velocities and intrinsic 

attenuation coefficients seems the most suitable method to detect the initiation of an eruption from 

a magmatic reservoir. 
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Résumé: 

Le réveil de volcans endormis depuis de nombreuses années (ex. Komagatake, 1640; 

Pinatubo, 1991) est un phénomène qui reste mystérieux. Les éruptions volcaniques sont les 

expressions de surface de processus prenant place dans le système magmatique sous-jacent. Les 

réservoirs magmatiques situés dans la croûte supérieure sont formés par des injections répétées de 

magmas mobiles, et résident la plupart du temps à l’état de mush. Un mush est un magma refroidi 

et cristallisé, où les cristaux se touchent et forment un squelette rigide qui inhibe sa capacité à 

s’écouler. Les chaines de forces liant ces cristaux en contact doivent être déstabilisées afin de 

générer des conditions pouvant mener à une éruption. Une telle déstabilisation est souvent 

considérée comme le résultat de la recharge du réservoir. Une meilleure compréhension des 

processus physiques liés à la recharge d’un mush est donc nécessaire afin d’identifier les conditions 

qui favorisent le déclenchement d’une éruption volcanique. La caractérisation de l’effet d’une 

intrusion sur les conditions physiques du réservoir et sur les signaux géophysiques associés, est 

nécessaire pour permettre la détection des dynamiques menant à une éruption, et de gérer au mieux 

les risques associés. 

 Cette thèse explore dans un premier temps les processus physiques qui contrôlent le 

mouvement des cristaux dans les magmas et les mush. Les études précédentes ne considéraient pas 

les forces de lubrification. Ces forces hydrodynamiques sont opposées au mouvement relatif entre 

deux cristaux voisins. A l’aide de lois d’échelle quantifiant l’importance des différentes forces 

contrôlant le mouvement des cristaux et de simulations numériques utilisant la méthode des 

éléments discrets, couplée à la modélisation dynamique de la phase fluide (CFD-DEM), nous avons 

contraint l’effet de la lubrification et défini un nombre sans dimension indiquant son importance. 

Les résultats montrent que la lubrification s’oppose à l’initiation ou l’arrêt de mouvements dans le 

mush. La négliger sous-estime la durée des phases transitoires mais n’affecte pas la quantification 

de l’état stationnaire de l’écoulement. 

 Nous avons utilisé des simulations CFD-DEM afin d’explorer les mécanismes 

d’emplacement de magmas mobiles dans un mush. Les résultats montrent que le comportement de 

l’intrusion est contrôlé par la vitesse d’injection et le contraste de densité entre la phase fondue du 

mush et celle du magma mis en place. Dans la plupart des conditions naturelles, les simulations 
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montrent que le magma injecté se met en place sous forme d’une couche horizontale à la base du 

mush. Cette situation ne résulte ni en un mélange efficace entre mush et intrusion, ni en des 

dynamiques permettant de générer immédiatement une éruption. En revanche, la recharge du mush 

génère des conditions qui peuvent mener à la génération et à l’extraction de volumes de magmas 

possédant une éruptivité. Il apparait que le déroulement d’un événement de recharge dépend de 

l’évolution de la densité relative entre la phase fondue du mush et celle du magma mis en place et 

de l’évolution thermique qui suit l’intrusion. 

La détection de volumes de magmas possédant une éruptivité à partir de données sismiques 

requiert une connaissance de leurs propriétés sismiques. Ces propriétés sont à ce jour mal 

contraintes. En utilisant une approche de phases couplées basée sur la linéarisation des équations 

conservatives contrôlant le mouvement des phases fluide et solide, nous avons calculé les vitesses 

de propagation et facteurs d’atténuation des ondes sismiques dans les magmas. Les résultats 

montrent que, dans les magmas chargés en cristaux, la vitesse des ondes dépend principalement du 

contenu en cristaux. Distinguer des magmas de différentes compositions chimiques nécessite de 

mesurer l’atténuation intrinsèque. Le suivi des évolutions conjointes de ces deux observables 

semble être l’approche la plus à même de détecter des dynamiques magmatiques menant à une 

éruption. 
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Modèle numérique, volcanologie, magma, géophysique 
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1 Chapter 1: General introduction 

Chapter 1: General introduction 

1.1 Motivations 

The reawakening of volcanoes that have been dormant for several hundreds or thousands 

of years (e.g. Komagatake, 1640; Tambora 1812; Krakatoa 1883; Lassen peak, 1914; Bezymianny, 

1955; Pinatubo, 1991; Chaitén 2008) remains a mysterious phenomenon challenging our ability to 

predict eruptions and mitigate volcanic hazards. Volcanoes and eruptions are the surface signatures 

of processes occurring throughout the underlying magmatic systems, including melt generation, 

crystallization, differentiation, migration, accumulation, and mixing. In this thesis manuscript, 

following terminologies given recently (e.g. Bachmann and Bergantz, 2008; Sparks et al., 2019), 

we use magma chamber to characterize a volume composed by mobile and eruptible magmas, 

which is below a critical crystallinity (~50 % crystal volume fraction). In these regions, the melt 

is the continuous phase and crystals (and possibly exsolved volatiles) are the suspended phases. 

Above this critical volume fraction in solids, the term mush is used to characterize the volumes 

dominated by the presence of the crystals, which are touching each other to form a semi-rigid 

continuous framework with interstitial and interconnected melt. The domain of rocks encompasses 

two sub-domains: the supersolidus or partially molten rocks, in which unconnected melt pocket 

are present and the subsolidus rocks characterized by the absence of a molten phase. The boundary 

between the mush and rock domains is defined as the melt connectivity transition (Sparks et al., 

2019). The boundary between the domains of mush and eruptible magmas is defined at the 

jamming transition (transition between jammed and unjammed states) which occurs either at the 

random close or loose packings, depending on the friction coefficient of the crystals (Bergantz et 

al., 2017). By combining several of these concepts, we can also define the domains of the magmatic 

reservoir that includes all the regions in which melt is present, and the magmatic system, which is 

composed by all the volumes affected by heat or mass transfers, and stress induced by the 

magmatic activity (Fig. 1.1). 
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Magmatic reservoirs are inferred to be formed by the repeated injections of small sheets of 

hot and mobile magmas within the crust (e.g. Annen et al., 2015, 2006; Annen and Sparks, 2002; 

Gelman et al., 2013; Karakas et al., 2017). The condition to generate a long-lived magma reservoir 

is to advect more heat (emplacement of new magma sheets) than the amount lost by conduction 

into the host crust (Annen et al., 2015; Sparks et al., 2019). The critical emplacement rate depends 

on the host crust temperature, intrusion geometries (which depends itself on injected material 

temperature, composition and physical properties) (Annen et al., 2015). If the advection rate is 

below the critical one, individual sheets have enough time to solidify before a new intrusion occurs 

(Fig. 1.2A). If the recharge frequency is sufficient, the incubation time needed to develop a long-

lived magmatic reservoir may be reached (Fig. 1.2B). Because the critical emplacement rate 

depends on the crust thermal structure, it is easier to form and maintain a magma reservoir in the 

hotter lower crust than in the colder upper crust (Annen et al., 2006). Most of the magma 

differentiation is likely to occur within the lower crust reservoir, leading to the accumulation of 

Figure 1.1: Schematic image of a magmatic system. The figure displays a crustal section of a magmatic system going from 

the top of the mantle to the surface. The boundaries of the magmatic system is indicated with a dashed blue curve. The 

green dashed curve indicates the limits of the magmatic reservoir in which the red dots indicate the presence of partially 

molten rocks. The rest of the magmatic system is composed by mush and magma chambers. The mush location is indicated 

with rectangular glyphs. The color within the magma chambers depends on the concentration in SiO2 of the melt phase, 

going from yellow for more primitive magmas to red for more evolved ones. Modified after Cashman et al., 2017 
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differentiated magmas in the upper crust (Annen et al., 2006). The longevity of such upper 

reservoirs depends on the maturation state of the lower crust. When the lower reservoir is relatively 

young and weakly developed, the upper crust remains cold and high advection rates are required 

to maintain temperatures above the solidus (> ~10-2 km3 yr-1) disfavoring the formation of large 

mushy reservoirs. Contrariwise, the presence of a mature and long-lived lower magmatic reservoir 

affects the thermal structure of the upper crust and favors the accumulation of large and long lived 

volumes of magmas with lower critical intrusion rates (>~10-4 km3 yr-1) (Karakas et al., 2017). The 

injection rate in the upper reservoir also have critical control on the frequency and volume of 

eruption (Caricchi et al., 2014). These reservoirs are more likely to produce eruptions and this 

manuscript will focus on the processes occurring within these upper crustal magmatic reservoirs.  

During the past decades, there were numerous pieces of evidence that upper crustal 

magmatic reservoirs spend most of their time as mush (Bachmann and Huber, 2016; Caricchi and 

Blundy, 2015a; Cashman et al., 2017; Edmonds et al., 2019). A convincing proof arises from the 

modeling of their thermal evolution. As explained above, magmatic reservoirs are likely formed 

by repeated recharge of hot and mobile magmas (Fig. 1.2), which cool and crystalize because of 

the conduction of their heat into the crust. The efficiency of conduction depends on the temperature 

gradient between the intrusion and its host, which is initially high. As the intrusion is mobile, it 

Figure 1.2: Results of numerical simulations showing how the rate of incremental building of magma bodies influences the 

size and longevity of the magmatic reservoir. Both cartoons are simulations performed with the same initial temperature 

of the host rock, in which ten 100m thick sills are emplaced with frequencies of [A] 2 kyrs and, [B] 1 kyrs. On each plot, the 

periods of sill emplacements are indicated with vertical dashed green lines. Modified after Annen et al., 2015. 
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may also convect, which tends to concentrate the temperature gradient at the intruder margins and 

enhanced its cooling rate (Bachmann and Huber, 2016). It leads to its rapid crystallization until 

the magma/mush transition is reached (Fig. 1.3). This transition induces large changes in the 

magma chemical composition and rheology (see next paragraph), which cancel convections and 

thus decrease the temperature gradients (Huber et al., 2009). This effect, in addition to the release 

of the latent heat of crystallization, decreases the cooling rate of the intruded material once this 

rheological transition is reached (Fig. 1.3) (Huber et al., 2009). Another evidence arises from the 

eruption of crystal-rich magmas such as the Fish Canyon Tuff (Bachmann et al., 2002), the AD 

1640 Hokkaido-Komagatake eruption (Takahashi and Nakagawa, 2013), the AD 1991 Mt 

Pinatubo eruption (Pallister et al., 1992), or the AD 1995 Montserrat eruption (Murphy et al., 

1998), which attests for the presence of magmatic reservoirs dominated by crystal-bearing 

magmas. Finally, seismic tomographies often show low-seismic velocity anomalies in the upper 

crust beneath volcanoes (e.g Indrastuti et al., 2019; Lees, 1992; Miller and Smith, 1999; Paulatto 

et al., 2012; Waite and Moran, 2009). These anomalies are usually interpreted as resulting from 

the presence partially melted rocks and mush, but do not evidence the presence of large 

accumulations of mobile magmas.  

As the upper magmatic reservoir is dominated by mush and crystal bearing magmas, the 

rheology of such magmatic mixtures have a critical control on their dynamics (Caricchi et al., 

Figure 1.3: Evolution of the temperature in the central and hotter part of a magmatic body function of time. The period of 

emplacement of the repeated injections that increase the temperature of the reservoir are indicated with vertical green 

dashed lines. The temperature of the hotter part of the magma body is displayed with a white dashed curve. Blue, red, and 

white thick horizontal lines correspond to the temperatures of the liquidus, solidus and magma/mush transition 

respectively. Modified after Bachmann and Huber, 2016. 
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2007; Cordonnier et al., 2012; Lavallée et al., 2007; Sparks, 2003) and may also influence eruptive 

styles (Karlstrom et al., 2012). The transition between magmas and mush is linked to profound 

changes in the rheology, with an increase of several orders of magnitude of the effective 

viscosities. It is also marked by the onset of non-Newtonian behaviors characterized by shear 

thinning (decrease of the effective viscosity with the increase of the strain rate), and possibly the 

onset of a yield stress (Caricchi et al., 2007; Costa et al., 2009; Lavallée et al., 2012; Mader et al., 

2013; Petford, 2009). These non-linear relationships between stress and strain result from the 

initiation of frictional contacts between crystals and the formation of force chains (Bergantz et al., 

2017). Force chains are interconnected networks formed by the frictional contact between the 

particles, showing regions of high and low stresses. Their strengths depend on the local 

organization of the crystals and applied stresses. Because of the lock-up generated by the force 

chains, mushes are not eruptible (Marsh, 1981) and must be rejuvenated (destabilization of the 

forces chains and inhibition of the crystals friction) prior to eruptions. Accurate modeling of these 

mush dynamics is difficult because of the complex rheologies of magmatic mixtures. First attempts 

to model magmatic reservoir dynamics where performed with a combination of laboratory and 

numerical experiments (e.g. Bergantz and Ni, 1999; Huppert et al., 1984; Jellinek et al., 1999; 

Snyder and Tait, 1996) where the magma was considered as a fluid having effective properties 

function of the crystanillity and temperature. However, rheological laws that attempt to index the 

effective viscosity as a function of the crystal volume fraction (e.g. Krieger-Dougherty law) fail to 

recover non-Newtonian effects because they only take into account the hydrodynamic effects 

related to the presence of the crystals and neglect their frictional contacts. The approach chosen in 

this work is to use advanced physical modeling of crystal-bearing magmas. The core tool used 

herein is called Computational-Fluid-Dynamic and Discrete-Element-Method (CFD-DEM) 

numerical simulations (Bergantz et al., 2015; Schleicher et al., 2016; Schleicher and Bergantz, 

2017), which will be explained in detail in Chapter 2. Despite their computational costs, CFD-

DEM numerical simulations are particularly suitable to study mush dynamics because they do not 

rely on such rheological laws, and rather solve explicitly the motions of each grain and the stresses 

generated by its frictional contacts. However, the pioneering CFD-DEM simulations have been 

carried out at relatively low melt viscosities (0.2 Pa s) that are not relevant of evolved magmas 

(>103 Pa s), which prevents the simple extrapolation of their results to long-lived and dormant 

magmatic systems.  
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The evidence of mush dominated magma bodies challenges our ability to predict eruptions, 

and mitigate volcanic hazards. It is accepted that recharge events are ubiquitous in nature and may 

trigger volcanic eruptions (see next section). Understanding in which conditions such events may 

lead, or not, to an eruption is critical. This is why the comprehension of the magmas and mush 

rheologies, their evolutions during unrest events, and their associated physical processes at the 

grain scales is important. Finally, the geophysical detection of such event, estimations of the 

eruptible volumes, and physical properties of the materials is one of the key to better comprehend 

volcanic hazard. This thesis thus aims at improving our understanding of the grain scale physics, 

time scales and dynamics of unrest event. It also targets at improving our knowledge of the seismic 

properties of eruptible magmas in order to increase our ability to interpret results of seismic 

tomography images in terms of material properties of the eruptible magmas. 

 

1.2 The physical processes of mush reawakening 

 The rejuvenation of magmatic mush prior to eruption requires the destabilization of the 

force chains and the generation of eruptible magmas. Different scenarios have been proposed in 

the literature. Some of them involved the injection of hot and mobile magma whereas others not. 

Here, we focus on mush reawakening scenarios in which the triggering event is the recharge in 

new magma, as highlighted in several eruptions (e.g. Murphy et al., 2000; Pallister et al., 1992; 

Takahashi and Nakagawa, 2013; Tomiya and Takeuchi, 2009). Thus, we do not consider scenarios 

that do not involve the input of enthalpy and momentum by new injection such as vibro-agitation 

(Davis et al., 2007), deep fragmentation (Gottsmann et al., 2009), syn-eruptive processes 

(Cashman and Giordano, 2014; Karlstrom et al., 2012), or relevant of cases where an eruptible 

magma chamber is already formed (e.g. Girona et al., 2015).  

 Bachmann and Bergantz (2006) proposed a scenario named gas sparging in which a hot 

and wet intruder emplaces at the base of the mush and reheats it without mass transfer of melt or 

crystals. The heat is transferred through conduction and advection by percolation of exsolved 

volatiles released during the second boiling of the intruded magma, which induces an upward flow 
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of the host melt (Fig 1.4A). A significant upward flux in volatiles decreases the reactivation time 

(Fig 1.4B) and increases the accumulated volume of eruptible magma. However, the effectiveness 

of this advection process is limited to a narrow range of crystallinity at which crystal repacking 

occurs and channels of exsolved volatiles may be formed (Bachmann and Huber, 2019; Parmigiani 

et al., 2016, 2014). The thermomechanical model from Huber et al., 2011, extends the gas sparging 

one and considers sequences of microfracturing of the locked mush above the remobilization front 

to release the local overpressure generated by the partial melting of the crystals. This phenomenon 

accelerates and enhances the rejuvenation of mush (Fig 1.4C) by destabilization of the force chains. 

These two models consider the progressive rejuvenation of the mush without gravitational 

Figure 1.4: The sparging rejuvenation model (Bachmann and Bergantz, 2006). [A] Conceptual model. The cartoon displays 

a section of the upper crust in which a mush body is emplaced. A mafic intrusion is stalled at the base of the mush 

transferring heat by conduction, and advection of the exsolved volatiles released by the second boiling of the intruded 

magma. The inset show a zoom of the interface between the host mush and intruder. After Bachmann and Bergantz, 2006. 

[B] Evolution of the mush rejuvenation function volatiles flux.  The abscissa is a dimensionless diffusive time and the 

ordinate is a dimensionless temperature. After Bachmann and Bergantz, 2006. [C] Evolution of the thickness of the 

remobilized layer function of the presence of absence of microfracturation. The blue curve corresponds to the case with 

fracturation and the green one without. After Huber et al., 2011. 
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instability (stable front remobilization) and require relatively long reactivation times (thousands 

of years for large systems).  

  Other models consider the occurrence of gravitational instabilities between the rejuvenated 

and locked part of the mush. The rejuvenation of the mush is also initiated by the advection of heat 

from a mobile magma stalled at the floor of the mushy reservoir (Burgisser and Bergantz, 2011; 

Couch et al., 2001). The unzipping model from Burgisser and Bergantz, 2011, and the self-mixing 

one from Couch et al. (2001), rely on the formation of a growing mobile layer at the interface 

between the host and the intruder by the melting of the crystals. This thermal boundary layer 

becomes less dense than the overlying mush and unstable. In the self-mixing model, this instability 

generates Rayleigh-Taylor instabilities that advect heat and mix with the host mush (Fig 1.5A). In 

the unzipping model, once the mobile layer reaches a critical thickness, it starts to convect 

internally. As this convective layer continues to grow, it becomes unstable and forms a larger 

buoyant instability by merging of adjacent convective cells, which leads to the overturn of the 

mush (Fig 1.5B). The two scenarios postulate the fluid-like behavior of the mush, which is 

consistent for weak mush just below the jamming transition (Bergantz et al., 2015). However, the 

scenario of unzipping appears more probable than that of self-mixing because the apparent 

viscosity contrast between the mush and mobile layer prevents the formation of  simple convection 

(Burgisser and Bergantz, 2011). The unzipping model presents a rapid mechanism to rejuvenate a 

mush on timescales ranging from several months to decades after the emplacement of the hot mush 

layer (Fig 1.5C‒D).  

All of these models concentrate on specific processes of the mush remobilization, but rely 

on the assumption that the triggering event is the emplacement of a hot magma sill at the base of 

the mush without exchange of melt or solids. However, recent CFD-DEM numerical simulations 

focused on basaltic mush dynamics have shown that when injected, a crystal-free melt may fluidize 

and ascent through the mush (Bergantz et al., 2017, 2015; Schleicher et al., 2016; Schleicher and 

Bergantz, 2017). In these mafic simulations, the presence of granular soft faults delimits a region 

called the mixing bowl, in which mechanical mixing between the host and injected melts occurs. 

It raises the question of the behavior of injections in the context of evolved magmatic mush, which 

may influence their remobilization dynamics. It shows the necessity to extend these mafic studies 

to conditions relevant of evolved magmatic reservoirs and incorporate the effects of the difference 

in compositions and temperature between the host and intruded magma, which may impose a strong 
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contrast between their apparent viscosities and densities. Understanding and predicting the 

emplacement dynamics of new magma into a mush is of critical importance for our insight of mush 

remobilization processes. 

  

Figure 1.5: Remobilization of mush with gravitational instabilities. [A] Principle of the ‘self-mixing’ model (Couch et al., 

2001). The intrusion of a mafic magma stalls at the base of the mush and reheats it, forming a mobile layer due to the 

decrease in the crystallinity. This thermal boundary layer becomes buoyant and instable, producing rising plumes within 

the mush that mix with it. After Couch et al., 2001. [B] Snapshots of a numerical experiment showing the formation of 

plumes in a fluid with a strong temperature dependent viscosity, illustrating the unzipping scenario (Ke and Solomatov, 

2004). In the three snapshots, the color of the fluid depends on its viscosity. Black colors indicate a very viscous fluid, and 

grey ones lower viscosities. The time increases to the left. In this experiment, the medium is heated by a plate located at the 

base of the tank. Modified after Ke and Solomatov, 2004. [C] Principle of the ‘unzipping’ model (Burgisser and Bergantz, 

2011). The abscissa is the time and the ordinate the thickness of the mobile layer with logarithmic scales. The occurrence of 

the gravitational instability leads to the overturn of the mush (red curve) that significantly accelerates the reawakening 

process compared to a stable front remobilization (blue curve). After Burgisser and Bergantz, 2011. [D] Results of a Monte-

Carlo simulations with the unzipping model. The axes are the mush effective viscosity in abscissa and the time in ordinate, 

both with logarithmic scales. For each simulation, three dots are displayed, indicating the onset of convections within the 

mobile layer (blue dots), the remobilization time with unzipping (green dots) and the reawakening time with a stable front 

remobilization (red dots). These results illustrate the efficiency of the unzipping to rapidly remobilize a magmatic mush. 

After Burgisser and Bergantz, 2011. 
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1.3 Imaging unrest events and seismic properties of 

eruptible magmas   

The monitoring of unrest events with seismic tomography images relies to our ability to 

detect and image fluid dominated regions across magmatic systems. This method is based on the 

inversion of seismic signals travelling through the magmatic systems from active or natural 

sources. Upper crustal magma reservoirs usually show the presence of low seismic velocity 

anomalies (e.g Indrastuti et al., 2019; Lees, 1992; Miller and Smith, 1999; Paulatto et al., 2012; 

Waite and Moran, 2009). These low velocities zones are usually interpreted as indicating the 

presence of partially molten rocks and mush (Fig 1.6). Furthermore, the presence of high ratio 

between compressional and shear waves velocities (Vp/Vs) beneath volcanoes also suggests the 

presence of a fluid phase (e.g. Chiarabba and Moretti, 2006; Kiser et al., 2016; Nakajima et al., 

2001). However, the finite values of these ratios indicate that shear waves can travel across these 

upper crustal magmatic reservoirs, which does not support the presence of large accumulation of 

eruptible magmas. If detectable, these batches of magmas must be characterized by a zero velocity 

zone for the S waves and a sharp decrease of the P wave velocity at natural frequencies (Caricchi, 

2008), as observed across the East Pacific ridge (Singh et al., 1998). The lack of evidence of melt 

dominated regions by seismic imaging can be explain by the episodically presence of magma 

chambers that rapidly reach a mushy state (Fig. 1.3), the averaging and smoothing effects of 

seismic tomography, or the fact that magma chambers may be hidden by the crystal mush because 

of the attenuation of wave in the mush. Tomographic images are computed with the first waves 

arrivals, that correspond to the fastest way between the source and the stations, which may be 

outside the magmatic system because of the low seismic velocity in magmatic system compared 

to the host crust. It results in the decrease of our ability to image magma bodies characterized by 

low velocities with such method based on wave travel times. 

During the past decades, the seismic wave attenuation tomography has shown to be a 

promising tool to image subsurface structures (e.g. Prudencio et al., 2018) and magmatic plumbing 

systems (e.g. De Siena et al., 2014; Gori et al., 2005). Two types of attenuation exist, the scattering 

one related to geometric dispersion generated by rough heterogeneities, and the intrinsic 

attenuation related to the absorption and dissipation of the seismic energy by the medium in which 

the wave is travelling. Within magmatic systems, the presence of high attenuations are usually 
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interpreted as evidencing the presence of partially molten bodies, whereas low attenuation 

anomalies are linked to the presence of fully crystallized magma bodies. Quantitative interpretation 

of these results in terms of magma physical properties bears on our poor knowledge of the seismic 

properties of eruptible magmas and especially of their intrinsic attenuation. Few theoretical works 

and experiments have been performed to study the seismic properties of magmas. Most of these 

works focused on the properties of partially molten rocks (e.g. Mavko, 1980), or measured 

experimentally the velocities of both P and S waves at high frequencies before extrapolating them 

to seismic one (e.g. Caricchi et al., 2008). Other models predict the attenuation of seismic waves 

generated by the presence of melt filled crack but have to assume an intrinsic attenuation 

coefficient of the magma contained in this cracks (e.g. Kumagai and Chouet, 2000). Thanks to 

thermodynamic models, the materials properties (bulk modulus, density, viscosity, and heat 

conductivity/capacity) of the melt, which control the velocities and attenuations of waves in pure 

melt, can be easily predicted as a function of its composition, temperature, and pressure (Ghiorso, 

2004; Ghiorso and Kress, 2004; Giordano et al., 2008). However the presence of particles in a 

suspension can greatly affect the wave velocities and attenuation as shown in experimental studies 

(e.g. Kuster and Toksoz, 1974b). Thus, it is necessary to have a physical model able to link the 

materials properties and concentration of the constituents of a magmatic mixture, to their velocities 

and attenuation coefficients in order to interpret the results of seismic tomographies with 

quantitative (amount of eruptible magma accumulated), and qualitative (physical properties of this 

magma) assessments. 

Different theoretical models were proposed to predict wave velocities and attenuation 

coefficients in suspensions as a function of the constituent properties and concentrations. Two 

main approaches are used to predict the effective elastic and anelastic properties of suspensions: 

the scattering theory (e.g. Berryman, 1980; Kuster and Toksöz, 1974a) and the coupled phase 

theory (e.g. Atkinson and Kytömaa, 1992; Evans and Attenborough, 1997; Harker and Temple, 

1988). The first approach models the scattering of an incident plane wave by immobile spherical 

inclusions and decomposes it in harmonics. This approach presents the advantage to be valid at 

any frequencies. The second is restricted to low frequencies but is able to take into account the 

relative motions between the phases and can explicitly incorporate mechanisms of momentum, 

heat and mass transfers between the constituents. Its applicability is limited to the long wavelength 
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assumption for which the seismic wavelengths have to be much larger than characteristic size of 

suspended phase. This assumption is valid at natural frequencies for magmas because the crystal 

sizes are very small compared to the seismic wavelengths, which makes this method particularly 

suitable to be applied to eruptible magmas. However, applying the coupled phase approach to 

eruptible magmas requires novel modifications of the constitutive equations in order to incorporate 

the viscous dissipation in the melt phase and the lubricated interactions between close crystals 

when approaching to the magma-mush transition. 

 

 

  

Figure 1.6 : Results and interpretations of Vp tomography at Soufriere Hill Volcano (SVH), Monsterrat Island (Paulatto 

et al., 2012). [A] Measured seismic anomalies in km s-1. [B] Computed temperatures related to the seismic anomalies 

assuming that no melt is present. [C] Estimation of the melt volume fraction assuming a constant temperature (700°C) and 

considering the melt pocket as interconnected thin lenses. [D] Estimation of the melt volume fraction assuming a constant 

temperature (700°C) and considering the melt pocket as isolated spheres. All after Paulatto et al., 2012. 
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1.4 Manuscript organization and scientific questions 

The rest of this manuscript is organized in six chapters. The first one (chapter 2) presents 

basic concepts of fluid mechanics required in the next chapters, and the theory of the software and 

code, MFIX (Multiphase Flow with Interphases eXchange), which is used in chapters 3, 4, and 5. 

In chapter 3, we constrain the importance and effects of lubrication on the dynamics of mush. 

Chapters 4 and 5 explore the dynamics of a magmatic mush and aim at determining the physical 

mechanisms that promote the reawakening of a magmatic mush. The last chapter explores the 

seismic properties of eruptible magmas. 

In more details, chapter 3 examines what are the relevant forces that control the motion of 

crystals in a mush. Contact, buoyancy, pressure and drag forces were considered in previous 

simulations (Bergantz et al., 2015; Schleicher et al., 2016; Schleicher and Bergantz, 2017). 

However, lubrication (forces arising from the relative motion between close crystals) have not been 

incorporated yet. The magnitude of these forces is proportional to the surrounding melt viscosity 

and inversely proportional to the distance between the edges of neighboring crystals. In the context 

of evolved magmas, close the rheological lock-up, the importance and effect of these forces must 

be addressed. It implies to find what are the non-dimensional numbers that are the most relevant to 

discriminate which forces controls the motion of an individual crystal. CFD-DEM numerical 

simulations that include these lubrication forces are performed to explore their effects on mush 

macroscopic dynamics. The main objectives in this chapter is to determine the effects of lubrication 

forces on the macroscopic dynamic of crystals bearing magmas and mush. For that it required to 

define the relevant dimensionless numbers that scale the importance of each force controlling the 

motion of individual mush crystals at the grain scale and implement lubrication forces in the MFIX 

CFD-DEM model. 

Chapter 4 explores the intrusion mechanisms of mobile magmas within weak mush and 

aims at identifying which conditions promote the most the rejuvenation of a magmatic mush. It 

extends studies performed during the last half decade (Bergantz et al., 2015; Schleicher et al., 2016; 

Schleicher and Bergantz, 2017) in order to study evolved mush dynamics. The effects induced by 

the presence of viscosity and buoyancy contrasts on the emplacement of new magmas must also 

be characterized before discussing the implications of the mechanics of magma intrusion on the 
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reawakening of mushy reservoirs. Here the main objective is to constrain the short-term behavior 

of an intrusion within a mush. In this way, the CFD-DEM model has to be adapted to replicate 

conditions relevant of chemically evolved magmas without unrealistic increase of the 

computational cost. It also requires to identify the relevant dimensionless parameters that are 

helpful to predict the behavior of the intruder. 

Chapter 5 aims at exploring the interactions and mixing between intruded magma and 

resident mush and the effects of the intrusion on the physical properties of the host. It uses the 

results of Chapter 4 to constrain simulations mimicking conditions that are shared by many 

magmatic reservoirs. In particular, thermal processes may play an important role in the interactions 

between the mush and the intrusion and they have to be considered in the simulations. It requires 

to implement the temperature dependence of density and viscosity of the melt and to simulate the 

dynamics of the mush after intrusion emplacement. The description of the interactions between the 

intrusion and its host also calls for the quantification of the efficiency and the localization of 

mixing. 

The sixth chapter goal is to predict the seismic properties (velocity and attenuation) of 

eruptible magmas, which are poorly understood. Chapter 6 uses the coupled phase approach, which 

presents the advantage of accounting for different physical processes and coupling between the 

phases. This allows us to explore the relative importance of different dissipative mechanisms and 

to give quantitative predictions of attenuation coefficients. However, it necessitates the 

modification of the constitutive equations in order to be applicable to magmas. The aims of this 

chapter is to predict the P waves velocities and attenuation coefficients in eruptible magma, which 

requires to adapt the couple phase approach to conditions relevant of magmas and identify the main 

attenuation mechanisms. 
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Chapter 2: CFD-DEM model 

2.1 Introduction 

Modeling multiphase flows in volcanology is challenging because of the strong feedbacks 

existing between the dynamics of the different phases. Several approaches have been used  to model 

volcanic fluid flows in which a discrete phase is present (solids here). In the Eulerian single phase 

pseudo-fluid  approach, the fluid and solids are assumed to move together and are approximated as 

a pseudo-fluid having effective properties function of the constituents individual properties and 

concentrations (e.g. Dufek and Bergantz, 2005; Kelfoun and Druitt, 2005; Longo et al., 2012, 2006; 

Montagna et al., 2015). In this approach, the multiphase flow is described with one set of 

constitutive equations. The two-fluid model (TFM) is an Eulerian-Eulerian approach that considers 

the two phases as interpenetrating continuums experiencing coupling between their respective 

motions and temperatures. The discrete phase is averaged in space and described by constitutive 

equations similar to those of the fluid phase (e.g. Bergantz, 2000; Bergantz and Ni, 1999; Dufek 

and Bachmann, 2010; Molina et al., 2012; Ruprecht et al., 2008). This approach can be extended 

to account of the presence of a gaz phase (Keller and Suckale, 2019). The Lattice-Boltzmann Model 

(LBM) can be applied to either two-phases (e.g. Huber et al. 2008) or three-phases (e.g. Parmigiani 

et al 2014). This method solve the discrete Boltzmann equation instead of the Navier-Stokes 

equations and is based on streaming and collision processes able to reproduce complex behaviors 

in fluids. The Discrete-Element-Method (DEM) approach is a Lagrangian approach that considers 

the discrete phase as particles. It was used to study different phenomena in volcanology as for 

example, mush and magma dynamics, pyroclastic density currents, or stability of volcanic edifices 

(e.g. Bergantz et al., 2017, 2015; Breard et al., 2018; Holohan et al., 2017; Lube et al., 2019; 

McIntire et al., 2019; Morgan and McGovern, 2005; Qin et al., 2019; Schleicher et al., 2016; 

Schleicher and Bergantz, 2017; Suckale et al., 2012).  

The single phase pseudo-fluid and two-fluid model present the advantage to be applicable 

to large scales and are able to model the dynamic of entire magmatic reservoirs. Continuum models 

also present the advantage to be able to account of reacting flows (e.g. Keller and Suckale 2019), 

which may play a great role on how magmatic materials evolved chemically during their transport 
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through the crust. However, they cannot fully describe the complex couplings between the 

constituents. The single phase pseudo-fluid method does not account of the relative motion between 

the particles and the fluid. The effect of the presence of solids on the mixture rheology may be 

approximated with rheological law that indexes the effective viscosity of the suspension to the solid 

volume fraction (e.g Einstein-Roscoe or Krieger-Dougherty laws). However, these laws only 

capture the hydrodynamic effects and cannot account of non-Newtonian behaviors related to 

frictional and/or collisional contacts between the solids. The TFM considers two sets of constitutive 

equations for each phase and is able to account for phase relative motions and coupling interactions. 

In this approach, the particle dynamic is averaged in space, and particle rotations are neglected. 

The particle-particle interactions are expressed in the solid stress tensor that depends on the solid 

volume fraction. At small concentrations, the stress tensor is collisional. However, it is not able to 

model complex particles flows (e.g. crossing flows; Chen and Wang, 2014) or solid–solid unmixing 

such as size and/or density segregation because of the averaging in space of the solid phase. For 

dense suspensions, the stress tensor is frictional and depends on the effective friction coefficient of 

the mixture. This coefficient may be predicted with constitutive equations based on viscous 

numbers (e.g. Boyer et al., 2011). However, this approach cannot capture local and nonlinear 

effects related to the presence of the frictional force chains. The LBM may be applied either to pore 

scale (Parmigiani et al 2011, Parmigiani et al. 2014) or reservoir scale processes (Huber et al, 2008) 

and present the advantage to be able to account of reacting flows and surface tension between the 

liquid and gas phases as well as wetting and non-wetting interactions between the solids and fluid 

phases. However, the actual LBM approaches in volcanology impose that the solid phase is 

immobile (e.g Huber et al. 2008; Parmigiani et al. 2011) which restrict their application in the 

present study. The DEM approach is able to fully capture the stresses generated by the frictional 

contacts between the solids, making it particularly suitable to study magmatic mush dynamics. It 

also presents the advantage to obtain particle trajectories, force distribution, and the organization 

of the force chains to describe and characterize the dynamics. However, this method is 

computationally expensive and is limited by the number of particles it can handle, restricting its 

application to small-scale setups. Thus, the DEM model must be used to study specific and complex 

physical processes of mush dynamics and cannot model the entire magmatic reservoir. 

When using a discrete model for the solids, two approaches exists to model the fluid. The 

Direct Numerical Simulation (DNS-DEM) is a method in which the fluid is fully resolved, which 
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means that the fluid grid cells are smaller than the size of the particles (e.g. Qin et al., 2019; Suckale 

et al., 2012). This method presents the advantage to model explicitly the flow of the fluid around 

the particles and to not rely on averaged drag laws to manage the coupling between the fluid and 

the solids. However, because of the large number of fluid elements, it is restricted in the number 

of particles it can handle, which limits it to study dynamics at the pore scale. The approach chosen 

here is Computational-Fluid-Dynamics and Discrete-Element-Method (CFD-DEM) which 

represents a compromise between the DNS-DEM model and larger scale approaches. The fluid 

grid size is larger than that of the particle (a fluid element contains a few particles), which increases 

significantly the number of particles which can be handled in the simulation. The CFD-DEM model 

is able to manage computational domains up to a few meters, allowing it to access the macroscopic 

effects of the complex coupling processes occurring at the grain scale. The modeling of the 

coupling between the solids and the fluid necessitates to average in space the particle properties, 

and interpolate the fluid properties at the particle positions. Then the drag forces are computed with 

parameterized laws. This approach is not able to capture the rotation of the spherical particles under 

fluid shear or the turbulence of the fluid between the particles. However, for magmatic mush, the 

particle Reynolds numbers are small, indicating that the fluid creeps around the solids and that the 

characteristic length scales of the mixture flow are much larger than the solid sizes. Thereby, CFD-

DEM approaches are ideal to study complex mush dynamics at the macroscopic scale.  

There is petrological (Wallace, 2005) and field (Wallace, 2001) evidences that large silicic 

magma bodies contain a free gas phase while stored at upper crustal depths. This magmatic volatile 

phase is most likely present as bubbles in melt-rich regions and as elongated channels in crystal-

rich regions (Parmigiani et al., 2014). Even in melt-rich area, it could account for as much as 10 

vol% of a magma chamber (Wallace, 2005). The presence of bubbles may affect how magmatic 

reservoirs respond mechanically to the input of new magma. Exsolved volatiles increase the 

compressibility of the materials constituting the reservoir, which dampens the increase of pressure 

associated with the injection of new magma and how the host reservoir and surrounding crust 

accommodates it. According to authors, it can drive magma mixing and significantly affect 

convective regimes (Ruprecht et al., 2008). However, magma mixing does not always involve a 

gas phase, At Vesuvius, for instance, mixing occurred with undersaturated magmas (Cioni et al., 

1995). Among others Pistone et al. (2012) have conducted exploratory experiments on the behavior 
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of crystal-bearing bubbly magmas, and found out that the three-phase magma response to shear is 

complex with a combination of shear localization, crystal breakage,and bubble migration due to 

crystal rotation. When two phases are not lumped together (Suckale et al., 2016), modeling of such 

three-phase interactions is currently only possible within small computational volumes (<102 

particles) under restricted conditions such as deformable bubbles with immobile but polyhedral 

crystals (e.g. Parmigiani et al., 2017) or mobile but spherical crystals (Qin and Suckale, 2017). 

Because these inspirational studies struggle to find appropriate validation experiments (e.g. 

Oppenheimer et al., 2015), three-phase modeling is currently a very high gain endeavor but also a 

very risky one. 

  The present chapter aims at presenting the theory and some numerical aspects of the MFIX 

CFD-DEM model used in the chapters 3, 4, and 5. These chapters focus on the controls exerted by 

the solid phase on the mush dynamics and have not required modification of the MFIX approach 

for the fluid phase. During this thesis, a particular attention was paid to the modeling of the discrete 

solid phase. Thereby, the main focus of the present chapter is dedicated to the modeling of the solid 

phase. The fluid phase conservative equations and numerical approach are quickly presented. For 

a complete presentations, see Syamlal (1998), and Syamlal et al. (1993). For a presentation of the 

derivation of the fluid phase constitutive equations, see Crowe et al. (1997), and Ishii and Hibiki 

(2011). The presentation of the DEM model covers the MFIX-2016 implementation. The changes 

implemented in the models during this thesis are presented in the corresponding chapters. For 

verifications and validations of MFIX-DEM, see Garg et al. (2012), and Li et al. (2012). In the 

present chapter, the first part introduces the fluid phase constitutive equations. The second part 

presents the solid constitutive equations and particle-particle coupling phenomena. The third part 

details the coupling interactions between the solids and the surrounding fluid. The fourth part gives 

an overview of the numerical methods. The key points of the fluid solver are presented. A 

presentation of the DEM solver follows and its stability conditions are detailed. The last part 

presents briefly the dimensionless numbers used during this thesis. 

 

Symbol (unit) Definition 

𝐶𝐷  Particle drag coefficient 

𝐶𝑝𝑓 (J K-1) Fluid heat capacity 

𝐶𝑝𝑠 (J K-1) Particle heat capacity 

𝑑𝑝 (m) Particle diameter 
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Symbol (unit) Definition 

𝐷𝑖,𝑗 (m) Distance between particle center of mass 

𝐸 (Pa) Particle young modulus 

𝑒𝑛  ;  𝑒𝑡   Normal and tangential restitution coefficients 

𝑓 (kg m s-2) Fluid body forces 

FR Froude number 

𝐹𝐵
⃗⃗⃗⃗⃗ (kg m s-2) Basset force 

𝐹𝐶
⃗⃗⃗⃗⃗ (kg m s-2) Contact force 

𝐹𝐶
𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗ (kg m s-2) Normal contact force 

𝐹𝐶
𝑡⃗⃗⃗⃗⃗⃗⃗ (kg m s-2) Tangential contact force 

𝐹𝑆
 𝑛⃗⃗ ⃗⃗ ⃗⃗  (kg m s-2) Normal contact spring force 

𝐹𝑆
 𝑡⃗⃗⃗⃗⃗⃗  (kg m s-2) Tangential contact spring force 

𝐹𝐷
⃗⃗⃗⃗ ⃗ (kg m s-2) Drag force 

𝐹𝐷
 𝑛⃗⃗ ⃗⃗ ⃗⃗  (kg m s-2) Normal contact dashpot force 

𝐹𝐷
 𝑡⃗⃗⃗⃗⃗⃗  (kg m s-2) Tangential contact dashpot force 

𝐹𝑓𝑠
⃗⃗ ⃗⃗ ⃗⃗  (kg m s-2) Fluid solid momentum transfer force 

𝐹𝑃
⃗⃗⃗⃗⃗ (kg m s-2) Pressure force force 

𝐹𝑉𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (kg m s-2) Virtual mass force 

𝐺 (Pa)  Particle shear modulus 

𝑔 (m s-2) Gravitational  acceleration vector 

𝐻𝑓𝑠 (W) Fluid-solid heat transfer  

𝐻𝑖,𝑗  (W m-2 K-1) Solid-fluid-solid effective conductance  

ℎ  (m) Distance  between particle edges 

ℎ𝑡  Coefficient of fluid-solid heat transfer 

𝐼𝑠 (kg m2)  Particle inertial moment 

𝐼𝑓𝑠
⃗⃗ ⃗⃗ ⃗ (kg m s-1) Fluid-solids momentum transfer 

𝐾𝑓 (Pa) Fluid bulk modulus 

𝐾𝜈  Generic kernel of the control volume 

𝑘𝑓 (W m-1 K-1) Fluid heat conductivity 

𝑘𝑡 (Pa) Tangential spring coeffcient 

𝑘𝑛 (Pa) Normal spring coeffcient 

𝑘𝑠 (W m-1 K-1) Particle heat conductivity 

𝑘𝑓 (W m-1 K-1) Fluid heat conductivity 

𝐿 (m) Distance between the particle center of mass and contact point 

𝐿𝑒  Leighton number 

𝑚𝑒𝑓𝑓 (kg) Particles effective mass 

𝑚𝑠 (kg) Particle mass 

𝑁𝑢  Nusselt number 

𝑃 (Pa) 

 

Fluid pressure 

𝑃∗ (Pa) Initial pressure field during the iteration 

𝑃′ (Pa) Fluid pressure correction 

𝑃𝑒   Peclet number 

𝑃𝑅    Prandtl number 

𝑄𝑓𝑠 (w m-2) Fluid-solids heat flux 
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Symbol (unit) Definition 

𝑄𝑠𝑓𝑠 (w m-2) Solids-fluid-solids heat flux 

𝑄𝑠𝑠 (w m-2) Solids-solids heat flux 

𝑅∗ (m) Contact area effective radius 

 𝑅𝑒𝑓𝑓 (m) Particles effective radius 

𝑅𝑒  Reynolds number 

𝑅𝑒𝑝  Particle Reynolds number 

ST  Stokes  number 

𝑇𝑓  (K)  Fluid temperature 

𝑇𝑠 (K)  Particle temperature 

𝑇𝐶
⃗⃗⃗⃗⃗ (kg m2 s-2) Contact Torque 

t (s) Time 

 𝑡𝑖,𝑗⃗⃗⃗⃗⃗⃗     Tangential contact unit vector 

 𝑉𝑓 (m3) Volume of fluid contain in the volume  

𝑉𝑠⃗⃗⃗ ⃗ (m s-1) Total particle relative velocity 

𝑣𝑓⃗⃗⃗⃗⃗ (m s-1) Fluid velocity 

𝑣𝑓𝑥
∗ (m s-1) Fluid uncorrected velocity in x direction 

𝑣𝑓𝑦
∗ (m s-1) Fluid uncorrected velocity in y direction 

𝑣𝑓𝑧
∗ (m s-1) Fluid uncorrected velocity in z direction 

𝑣𝑓𝑥
′ (m s-1) Fluid velocity correction in x direction 

𝑣𝑓𝑦
′ (m s-1) Fluid velocity correction in y direction 

𝑣𝑓𝑧
′ (m s-1) Fluid velocity correction in z direction 

𝑣𝑠⃗⃗⃗⃗  (m s-1) Particle velocity 

𝑋⃗ (m) Particle position vector 

 

  

𝑋𝑓
⃗⃗⃗⃗⃗ (m) Fluid grid node position 

𝛼𝑐  Contact stability coefficient 

𝛼𝑓 (K-1) Fluid thermal expansion coefficient 

𝛼𝑠𝑓𝑠 (rad) Solid-fluid-solid heat transfer effective angle 

𝛼𝑣  Viscous stability coefficient 

𝛽𝑠𝑓𝑠 (rad) Solid-solid heat transfer effective angle 

𝛽𝑓𝑠  Fluid-particle momentum transfer coefficient 

𝛾̇ (s-1) Shear rate 

∆𝜌 (kg m-3) Density contrast between fluid and particles 

∆𝑡 (s) Fluid time step 

∆𝑡𝑠𝑜𝑙𝑖𝑑 (s) Solid time step 

 ∆𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (s) Maximum contact time step 

∆𝑡𝑑𝑟𝑎𝑔 (s) Maximum drag time step 

∆𝑥 (m) Grid size in x direction 

∆𝑦 (m) Grid size in y direction 

∆𝑧 (m) Grid size in z direction 

 𝛿𝑖𝑗  Kronecker delta or Unit tensor 

 𝛿𝑡
⃗⃗ ⃗⃗ ⃗ (m)  Tangential displacement 

 𝛿𝑛 (m)  Particle overlap 

𝜖𝑓̿ (s-1) Strain rate tensor 

𝜀 (m) Particle roughness 
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Symbol (unit) Definition 

𝜁 (m) Thermal fluid lens length 

𝜂 (Pa s) Fluid dynamic viscosity 

𝜂𝑏 (Pa s) Fluid bulk viscosity 

𝜂𝑛  Normal contact damping coefficient 

𝜂𝑡  Tangential contact damping coefficient 

𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗  (Pa s) Normal vector between the particle center of mass 

𝜆 (Pa s) Fluid volume viscosity 

𝜇𝑠  Particle friction coefficient  

𝜌𝑝 (kg m-3) Particle density 

𝜌𝑓 (kg m-3) Fluid density 

 𝜎  Particle Poisson ratio 

𝜎𝑓̿̿̿ (kg m-1 s-2) Fluid stress tensor 

𝜎𝑛 (kg m-1 s-2) Normal load 

𝜎𝑣̿̿ ̿ (kg m-1 s-2) Viscous stress tensor 

𝜏𝑠 (s) Particle response time 

𝜈 (m3) Fluid cell volume 

Ф  Particle volume fraction  

𝜔𝑠⃗⃗ ⃗⃗ ⃗ (rad s-1)  Particle rotation vector 

𝜔 (rad s-1) Oscillatory flow angular frequency 

Table 2.1: List of the chapters symbols  
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2.2 Governing equations of the fluid phase 

2.2.1 Mass conservation 

The mass conservation, or equation of continuity, states that within a control volume, the 

rate of mass accumulation is balanced by the mass fluxes through its surfaces. Neglecting mass 

sources, it is expressed by a differential form as (Ishii and Hibiki, 2011): 

𝜕𝜌𝑓

𝜕𝑡
+ ∇ ∙ (𝜌𝑓 𝑣𝑓⃗⃗⃗⃗⃗) = 0, (2.1)  

where 𝜌𝑓 is the fluid density and 𝑣𝑓⃗⃗⃗⃗⃗ is the fluid velocity (see table 2.1 for a list of the chapter 

variables). The first term in Eq. (2.1) describes the rate of internal mass change in the control 

volume and the second one, the total amount of mass exchanged at its boundaries. For many 

applications, it is valid to consider the fluid as incompressible and to use the Boussinesq 

approximation (density gradient neglected excepted in the buoyancy term of the momentum 

equation). Applying these assumptions to Eq. (2.1) yields: 

∇ ∙ 𝑣𝑓⃗⃗⃗⃗⃗ = 0,  (2.2) 

which expresses that the flow of an incompressible fluid in a control volume is solenoidal. 

 

  2.2.2 Momentum conservation 

 The momentum balance or equation of motion, links the evolution of the fluid momentum 

within the control volume to the internal and external forces applied to it. In its differential form, 

it reads (Ishii and Hibiki, 2011): 

𝐷 𝜌𝑓 𝑣𝑓⃗⃗ ⃗⃗ ⃗

𝐷𝑡
= ∇ ∙ 𝜎𝑓̿̿̿ + 𝜌𝑓𝑓. (2.3)  

In equation (2.3), the left hand side is the material derivative of the product of the fluid density and 

velocity1. On the right hand side, the first term is the divergence of the fluid stress tensor, 𝜎𝑓̿, which 

corresponds to the fluid internal forces. The second term corresponds to the body forces applied to 

                                                             

1 
𝐷 𝜌𝑓 𝑣𝑓⃗⃗ ⃗⃗ ⃗ 

𝐷𝑡
=  

𝜕 𝜌𝑓 𝑣𝑓⃗⃗ ⃗⃗ ⃗

𝜕𝑡
+ ∇ ∙ (𝜌𝑓 𝑣𝑓⃗⃗⃗⃗⃗ ⊗ 𝑣𝑓⃗⃗⃗⃗⃗ ) 
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the control volume. This force may be reduced to the gravitational forces (𝑓 = 𝑔⃗). The fluid stress 

tensor can be split in pressure and viscous contributions as: 

 𝜎𝑓̿̿̿ =  −𝑃 𝛿𝑖𝑗 + 𝜎𝑣̿̿ ̿, (2.4) 

where 𝑃 is the fluid pressure, 𝛿𝑖𝑗 is the unit tensor, and 𝜎𝑣̿̿ ̿ is the viscous stress. For a Newtonian 

fluid (linear relationship between the fluid strain rate and stress), the viscous stress tensor may be 

expressed by: 

𝜎𝑣̿̿ ̿ =  2 𝜂 𝜖𝑓̿ +  𝜆 𝑡𝑟(𝜖𝑓̿) 𝛿𝑖𝑗. (2.5) 

On the right hand side of Eq. (2.5), the first term corresponds to the shear contribution to the stress 

tensor, whereas the second term refers to the volumetric part. The symbols 𝜂, 𝜆, and 𝜖𝑓̿, represent 

the fluid dynamic viscosity, volume viscosity, and strain rate tensor, respectively. Neglecting the 

rotation of the fluid, the strain rate tensor may be expressed as a function of the fluid velocity as: 

𝜖𝑓̿ = 
1

2
 (∇𝑣𝑓⃗⃗⃗⃗⃗ + (∇𝑣𝑓⃗⃗⃗⃗⃗)

𝑇
). (2.6) 

Considering the fluid as uncompressible 2 , and applying the Boussinesq approximation, the 

combination of Eqs. (2.3), (2.4), and (2.5) results in the incompressible momentum balance: 

𝜌𝑓
𝐷 𝑣𝑓⃗⃗ ⃗⃗ ⃗ 

𝐷𝑡
= −∇ ∙ 𝑃 +  2  ∇ ∙ 𝜂 (𝜖𝑓̿ −

1

3
 𝑡𝑟(𝜖𝑓̿) 𝛿𝑖𝑗) + 𝜌𝑓 𝑔⃗.  (2.7) 

 

 2.2.3 Energy balance 

 The thermal energy balance expresses that the variation of the internal thermal energy 

within a control volume depends on the heat exchanged at its boundaries. Neglecting radiative heat 

transfer, it may be expressed in its differential form as (Ishii and Hibiki, 2011): 

𝜕 𝜌𝑓 𝐶𝑝𝑓 𝑇𝑓

𝜕𝑡
+ 𝑣𝑓⃗⃗⃗⃗⃗  ∙ ∇(𝜌𝑓 𝐶𝑝𝑓  𝑇𝑓) = −∇ ∙ (𝑘𝑓 ∇𝑇𝑓),  (2.8) 

                                                             

2 𝜂𝑏 =  𝜆 +
2

3
𝜂 = 0 (𝜂𝑏= bulk viscosity) 
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where 𝐶𝑝𝑓  is the fluid heat capacity, 𝑇𝑓  is the fluid temperature, and 𝑘𝑓  is fluid the heat 

conductivity. The first term in the left hand side of Eq. (2.8) is the temporal variation of the internal 

energy within the control volume. The second one is the advection term corresponding to the 

energy transported by the fluid flow. The term in the right-hand side quantifies the amount of 

energy transferred by conduction at the control volume boundaries. Neglecting the spatial and 

temporal variations of both the fluid conductivity and heat capacity, and considering an 

uncompressible fluid under the Boussinesq approximation, Eq. (2.8) may be simplified: 

𝜌𝑓 𝐶𝑝𝑓
𝜕  𝑇𝑓

𝜕𝑡
+ 𝜌𝑓 𝐶𝑝𝑓𝑣𝑓⃗⃗⃗⃗⃗ ∙  ∇( 𝑇𝑓) = −𝑘𝑓 ∇

2𝑇𝑓.  (2.9)  

 

  2.2.4 State equations  

 In order to close the set of transport equations, a state equation is required. This equation 

links the variations of fluid temperature and pressure to its density. The fluid thermal expansion 

expresses the density variation of the fluid as a function of its temperature and allows the system 

to convect. Similarly, the bulk modulus of the fluid phase links the evolution of the fluid pressure 

to its density and controls the velocity of pressure waves. Incorporating these two effects, with the 

assumption of first order variations (no pressure and temperature dependences of the fluid bulk 

modulus and thermal expansion coefficient) the state equation may be formulated as: 

𝜕 𝜌𝑓

𝜕𝑡
= 𝐾𝑓

𝜕 𝑃

𝜕𝑡
+ 𝛼𝑓

𝜕 𝑇

𝜕𝑡
, (2.10) 

where, 𝐾𝑓 is the fluid bulk modulus, and 𝛼𝑓 is the thermal expansion coefficient of the fluid. When 

the fluid is incompressible, eq. (2.10) may be reduced to: 

𝜕 𝜌𝑓

𝜕 𝑇
= 𝛼𝑓.  (2.11) 
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  2.2.5 Effect of the presence of a solid phase 

 For multiphase systems the presence of a dispersed phase, even in small concentrations, 

may significantly modified the dynamics of fluid flow. Contrary to the DNS approach, the CFD-

DEM one requires to average the fluid properties over the control volumes. In this way, an 

averaging procedure is applied to the fluid constitutive equations to account for the presence of the 

particles. Several Eulerian averaging approaches exist, such as the area, ensemble, line, statistical, 

time, or volume averaging procedures (see Ishii and Hibiki, 2011, pp. 55-66). In MFIX, because 

of the numerical method employed to solve the fluid constitutive equations, a volume averaging is 

used. It consists in averaging the particle properties at a given time over a control volume and 

assigning these computed values to a position in the fluid field (Fig. 2.1). In the following, the 

principle of the method is described and the averaged fluid constitutive equations are introduced. 

For a more complete presentation of the averaging procedure of the fluid constitutive equations 

and the vector operators, see Crowe et al. (1997), pp 427-449.  

 

  

Figure 2.1: Concept of volume averaging. The figure displays particles in a section of a spherical control volume. The 

dashed black circle is the edge of the control volume, 𝝂, in which the volume average procedure is performed. Within this 

sphere, the white color indicates the presence the volume of fluid, 𝑽𝒇. The red cross indicates the point at which the fluid 

averaged values are assigned. Modified from Crowe et al. (1997). 
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 The volume average of the fluid constitutive equations requires to average the fluid 

properties (for example here the fluid density 𝜌𝑓) in a control volume, 𝜈, as: 

𝜌𝑓̅̅ ̅ =  
1

𝜈
  ∫ ( 𝜌𝑓 𝑑𝑣)

𝜈
,  (2.12) 

where 𝜌𝑓̅̅ ̅ is the volume-averaged fluid density. The average of the fluid density over the volume 

of fluid, 𝑉𝑓, contained in the control volume  is the fluid macroscopic density, 〈𝜌𝑓〉. Replacing the 

volume integral of the fluid density by the macroscopic fluid density and volume 𝑉𝑓 yields: 

 𝜌𝑓̅̅ ̅ =  
𝑉𝑓

𝜈
 〈𝜌

𝑓
〉.  (2.13) 

The ratio of the fluid volume other the total volume of the representative elementary element is 

expressed by the solid volume fraction, 𝛷, as: 

𝜌𝑓̅̅ ̅ = (1 − 𝛷) 〈𝜌
𝑓
〉. (2.14) 

Applying this procedure to Eqs. (2.2), (2.7), and (2.9) gives the fluid constitutive equations used in 

MFIX for the fluid phase (for simplicity, the symbols indicating the macroscopic averages are 

omitted): 

𝜕 (1−𝛷)

𝜕𝑡
+ ∇ ∙ ((1 − 𝛷) 𝑣𝑓⃗⃗⃗⃗⃗) = 0,  (2.15) 

𝜌𝑓
𝐷 (1−𝛷) 𝑣𝑓⃗⃗ ⃗⃗ ⃗ 

𝐷𝑡
= −∇ ∙ ((1 − 𝛷)𝑃) + ∇ ∙ 𝜎𝑣̿̿ ̿ + (1 − 𝛷)𝜌𝑓 𝑔⃗ + 𝐼𝑓𝑠

⃗⃗ ⃗⃗ ⃗,  (2.16) 

𝜌𝑓 𝐶𝑝𝑓 (
𝜕 (1−𝛷) 𝑇𝑓

𝜕𝑡
+ 𝑣𝑓⃗⃗⃗⃗⃗  ∙ ∇((1 − 𝛷) 𝑇𝑓)) = − 𝑘𝑓 ∙ ∇2  ((1 − 𝛷)𝑇𝑓) + 𝐻𝑓𝑠,  (2.17) 

𝜎𝑣̿̿ ̿ =  2 𝜂 (1 − 𝛷) 𝜖𝑓̿ +  𝜆 (1 − 𝛷) 𝑡𝑟(𝜖𝑓̿) 𝛿𝑖𝑗. (2.18) 

In equations 2.16 and 2.17, the symbols 𝐼𝑓𝑠
⃗⃗ ⃗⃗⃗ and 𝐻𝑓𝑠 are the coupling terms and corresponds to the 

momentum and heat transferred from solids to the fluid (see section 2.6). 
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2.3 Governing equations of the solids 

2.3.1 Constitutive equations 

  To define the constitutive equations, we consider a granular immersed medium in a jammed 

state and focus on one particle, labeled 𝑖 (Fig. 2.2).  This particle is in contact with 𝑁 neighbor 

particles and is close to, but separated from, 𝑀 particles. The equations controlling its motion are 

the Newton’s second laws of motions. For translational and rotational motions, they give: 

𝑚𝑠(𝑖)
𝑑 𝑣𝑠⃗⃗⃗⃗⃗(𝑖)

𝑑𝑡
= ∑ (𝐹𝐶

⃗⃗⃗⃗⃗ (𝑖, 𝑗))𝑁
𝑗=1 + 𝐹𝑓𝑠

⃗⃗ ⃗⃗ ⃗⃗ (𝑖) + 𝑚𝑠 𝑔⃗,  (2.19) 

𝐼𝑠(𝑖)
𝑑 𝜔𝑠⃗⃗ ⃗⃗ ⃗⃗

𝑑𝑡
= ∑ (𝑇𝐶

⃗⃗⃗⃗⃗ (𝑖, 𝑗))𝑁
𝑗=1 ,  (2.20)  

where 𝑚𝑠 is the particle mass, 𝑣𝑠⃗⃗⃗⃗  is the solid velocity vector, 𝐹𝐶
⃗⃗⃗⃗⃗, is the contact force, and 𝐹𝑓𝑠

⃗⃗ ⃗⃗ ⃗⃗  is the 

force exerted by the fluid on the particles. In Eq. (2.20à, 𝐼𝑠 moment of inertia3, is the, 𝜔𝑠⃗⃗ ⃗⃗⃗ is the 

rotation vector, and 𝑇𝐶
⃗⃗⃗⃗⃗ is the torque generated by the frictional contacts. The first term in the right 

hand side of Eq. (2.19) corresponds to the momentum coupling between the solids. It is the sum of 

all the collisional and frictional interactions formed by the particle 𝑖 with its 𝑁 neighbors. The 

second one corresponds to the momentum transferred from the fluid to the particles. The last one 

is the gravitational force. The right hand side of Eq. (2.20) is the sum of all the different contact 

torques that the particle  experienced with its 𝑁 neigbors. The torque generated by the fluid-solid 

momentum coupling is neglected. 

 The temperature evolution of the solids may be expressed in the following equation: 

𝑚𝑠(𝑖) 𝐶𝑃𝑠(𝑖) 
𝜕𝑇𝑠(𝑖)

𝜕𝑡
= 𝑄𝑓𝑠(𝑖) + ∑ (𝑄𝑠𝑠(𝑖, 𝑗) + 𝑄𝑠𝑓𝑠(𝑖, 𝑗)) 

𝑁
𝑗=1 + ∑ (𝑄𝑠𝑓𝑠(𝑖, 𝑗)) 

𝑀
𝑗=1 , (2.21) 

where 𝐶𝑃𝑠 is the particle heat capacity. 𝑄𝑓𝑠, 𝑄𝑠𝑠, and 𝑄𝑠𝑓𝑠 are the fluid-solid, solid-solid, and the 

solid-fluid-solid heat fluxes (the radiative heat transfer between the particles is neglected). The 

fluid-solid heat flux corresponds to the energy exchanged at the interface between the solid and the 

fluid. The solid-solid contribution is a conductive heat transfer between particles in contacts. The 

                                                             

3 𝐼𝑠(𝑖) =
𝜋 𝜌𝑠(𝑖) 𝑑𝑝(𝑖)3

6
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solid-fluid-solid term is a conductive heat flux between two close but separated particle edges 

through the thin fluid layer that separates them. 

 

2.3.2 Contact model  

Let’s consider the interaction between two particles in contact, labeled as 𝑖 and 𝑗 (Fig. 2.3 

A). The contacts are modeled with a soft sphere approach (Tsuji et al., 1993), which is a spring-

dashpot model, meaning that only a part of the energy is conserved whereas the rest is dissipated 

during the contact. The total contact force may be split in normal (collision), 𝐹𝐶
𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗ , and tangential 

(friction) components, 𝐹𝐶
𝑡⃗⃗⃗⃗⃗⃗⃗  (Fig 2.3 B). The total translational contact force, 𝐹𝐶

⃗⃗⃗⃗⃗ (𝑖, 𝑗) , is then 

expressed as: 

𝐹𝐶
⃗⃗⃗⃗⃗ (𝑖, 𝑗) =  𝐹𝐶

𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗ (𝑖, 𝑗) + 𝐹𝐶
𝑡⃗⃗⃗⃗⃗⃗⃗ (𝑖, 𝑗).  (2.22) 

The collisional torque involves the distance between each particle center of mass and contact point4, 

𝐿:  

𝑇𝐶
⃗⃗⃗⃗⃗ (𝑖) = 𝐿(𝑖) 𝜂

𝑖,𝑗
⃗⃗⃗⃗⃗ ∧ 𝐹𝐶

𝑡⃗⃗⃗⃗⃗⃗⃗ (𝑖, 𝑗) (2.23) 

                                                             

4 𝐿(𝑖) =
4 ‖𝑋⃗⃗(𝑗)−𝑋⃗⃗(𝑖)‖

2
+𝑑𝑝(𝑖)2−𝑑𝑝(𝑗)2

8 ‖𝑋⃗⃗(𝑗)−𝑋⃗⃗(𝑖)‖
     ;   𝐿(𝑗) = ‖𝑋⃗(𝑗) − 𝑋⃗(𝑖)‖ − 𝐿(𝑖) 

Figure 2.2: Conceptual granular medium. The considered medium is composed by discrete spherical particles in a jammed 

condition, forming a crystal framework. The force chains between particles in contact are indicated with red lines. The blue 

particle corresponds to the one considered to express the equation of motion and temperature evolution. The ones in green 

are the particles in contact with the blue one, exchanging momentum by collisional and frictional interactions. The red 

particle is separate from the blue one but is close enough to exchange heat by condition through the fluid film between them 

(particle-fluid-particle heat transfer). The dashed line between these two particles indicates this interaction. 
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𝑇𝐶
⃗⃗⃗⃗⃗ (𝑗) = 𝐿(𝑗) 𝜂

𝑖,𝑗
⃗⃗⃗⃗⃗ ∧ 𝐹𝐶

𝑡⃗⃗⃗⃗⃗⃗⃗ (𝑖, 𝑗) (2.24) 

where 𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗  is the unit vector going from the center of mass of particle 𝑖 to the one of particle 𝑗 5.  

 

2.3.2.a Collisional interactions  

 The normal contact force between the particles 𝑖 and 𝑗 may be expressed as: 

𝐹𝐶
𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑖, 𝑗) =  𝐹𝑛

𝑆
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖, 𝑗) + 𝐹𝑛

𝐷
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖, 𝑗). (2.25) 

The first term in the right hand side of Eq. (2.25) is the conservative part of the contact force 

(spring), and the second one the dissipative part (dashpot). The conservative part is function of the 

overlap distance between the two particles, 𝛿𝑛, and of the spring coefficient, 𝑘𝑛, as: 

𝐹𝑛
𝑆

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖) = −𝐹𝑛
𝑆

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑗)  = −𝑘𝑛(𝑖, 𝑗)  𝛿𝑛(𝑖, 𝑗)  𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ ,  (2.26) 

The overlap distance is computed as a function of the distance between the two particles center of 

mass, 𝐷(𝑖, 𝑗), and their respective diameters: 

                                                             

5 𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗  =  
𝑋⃗⃗(𝑗)−𝑋⃗⃗(𝑖)

‖𝑋⃗⃗(𝑗)−𝑋⃗⃗(𝑖)‖
 

Figure 2.3: The soft sphere contact model. [A] system of two particles producing a contact by overlapping. The two straight 

arrows starting from the particles centers are the velocity vectors. The curved ones indicates the rotation vectors. The red 

dot represents the theoretical contact point [B] Conceptual model used for the normal and tangential contact forces. The 

normal contact contains a spring and a dashpot. The divider indicates that no cohesive forces are accounted. The tangential 

contact model is similar to the normal one but also includes a slider to express that frictional slipping are consider. Modified 

from Garg et al., 2010. 
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𝛿𝑛(𝑖, 𝑗) =  
𝑑𝑝(𝑖)+𝑑𝑝(𝑗)

2
− 𝐷(𝑖, 𝑗).  (2.27) 

The normal dissipative contact contribution depends on the normal dashpot coefficient between the 

two particles, 𝜂𝑛, and the normal relative velocity between the particles, which is computed by 

projecting the total relative velocity between the two particles at the contact point, 𝑉𝑠⃗⃗⃗ ⃗, on the unit 

vector 𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ : 

𝐹𝑛
𝐷(𝑖, 𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝜂𝑛

(𝑖, 𝑗)  (𝑉𝑠
⃗⃗⃗⃗⃗⃗ (𝑖, 𝑗)  ∙  𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ ) 𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ .  (2.28) 

The total relative velocity at the contact point incorporates the effects of both translational and 

rotational relative motions between the particles, and may be expressed as: 

𝑉𝑠⃗⃗⃗ ⃗(𝑖, 𝑗) = 𝑣𝑠⃗⃗⃗⃗ (𝑖) − 𝑣𝑠⃗⃗⃗⃗ (𝑗) + (𝐿(𝑖) 𝜔⃗⃗⃗(𝑖) + 𝐿(𝑗) 𝜔⃗⃗⃗(𝑗)) ∧ 𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ . (2.29) 

To compute the spring and dashpot coefficients, the Hertzian contact model is used. In this model, 

the normal spring coefficient, 𝑘𝑛, is computed as a function of the particles Young modulus, 𝐸, 

Poisson ratios, , and normal overlap distance (Hertz, 1896): 

𝑘𝑛(𝑖, 𝑗) =
4

3
 

𝐸(𝑖) 𝐸(𝑗) √𝑅𝑒𝑓𝑓(𝑖,𝑗)

𝐸(𝑗) (1−𝜎(𝑖)2)+𝐸(𝑖) (1−𝜎(𝑗)2)
𝛿𝑛(𝑖, 𝑗)

 
1

2,   (2.30) 

where 𝑅𝑒𝑓𝑓  is the effective radius of the particles6. Finally, the normal dashpot coefficient is 

expressed as (Silbert et al., 2001): 

𝜂𝑛(𝑖, 𝑗) =
2 √𝑚𝑒𝑓𝑓(𝑖,𝑗) 𝑘𝑛(𝑖,𝑗) ln(𝑒𝑛) 

√𝜋2+ln(𝑒𝑛)2
 𝛿𝑛(𝑖, 𝑗)

 
1

4,  (2.31) 

where 𝑚𝑒𝑓𝑓, is the effective mass7 of the two particles, and 𝑒𝑛 is the normal restitution coefficient 

of the contact. This last parameter controls the relative importance of the conservative and 

dissipative parts of the contact force. When 𝑒𝑛 = 1, the contact is purely elastic and all the energy 

                                                             

6 𝑅𝑒𝑓𝑓(𝑖, 𝑗) =
𝑑𝑝(𝑖) 𝑑𝑝(𝑗)

2 (𝑑𝑝(𝑖)+𝑑𝑝(𝑗))
 

7 𝑚𝑒𝑓𝑓(𝑖, 𝑗) =  
𝑚(𝑖) 𝑚(𝑗)

𝑚(𝑖)+𝑚(𝑗)
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is conserved. On the contrary, when 𝑒𝑛 = 0, all the energy dissipates during the contact and no 

rebound occurs. 

 

  2.3.2.b Frictional interactions 

 Similarly to the normal contacts, the tangential force may be split into a conservative and a 

dissipative term.  

𝐹𝐶
𝑡⃗⃗⃗⃗⃗⃗⃗ =  𝐹  𝑡

𝑆
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐹 𝑡

𝐷
⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗ . (2.32) 

The first term in the right hand side of equation is the conservative part of the tangential contact 

force (spring), and the second one the dissipative part. For the tangential spring, two expressions 

exist depending on the frictional state of the particle contact, which can be either static or dynamic. 

The static friction spring term is: 

𝐹𝑡
𝑆

⃗⃗ ⃗⃗ ⃗⃗ ⃗ =  −𝑘𝑡 𝛿𝑡
⃗⃗⃗⃗ ,  (2.33) 

where  is the tangential spring coefficient, and 𝛿𝑡
⃗⃗⃗⃗  is the accumulated tangential displacement. 

The cumulated tangential displacement is computed during the ‘static’ frictional contact as: 

𝛿𝑡
⃗⃗⃗⃗ (𝑖, 𝑗) = ∫

𝜕 𝛿𝑡
⃗⃗⃗⃗⃗(𝑖,𝑗)

𝜕𝑡
𝑑𝑡

𝑠𝑡𝑎𝑡𝑖𝑐
.  (2.34) 

To track the occurrence of tangential sliding (dynamic friction), a Mohr-Coulomb criterion is used. 

It assumes that the sliding occurs when the magnitude of the static tangential forces overcomes a 

threshold, which depends on the normal contact force 𝐹𝑛⃗⃗ ⃗⃗  and particles friction coefficient, 𝜇𝑠. The 

sliding is assumed to occur when: 

‖𝐹 𝑡
𝑆

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖, 𝑗)‖ >  𝜇𝑠  ‖𝐹𝐶
𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑖, 𝑗)‖. (2.35) 

During the dynamic slide, the tangential force is given by: 

𝐹 𝑡
𝑆

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖, 𝑗) =  𝜇𝑠  ‖𝐹𝐶
𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑖, 𝑗)‖ 𝑡𝑖,𝑗⃗⃗⃗⃗⃗⃗ ,  (2.36) 
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where,  is the tangential unit vector8. When the sliding occurs, the incremental evolution of the 

tangential displacement is reset to: 

𝛿𝑡
⃗⃗⃗⃗ (𝑖, 𝑗) =  

𝜇𝑠 𝑘𝑛 𝛿𝑛

𝑘𝑡
𝑡𝑖,𝑗⃗⃗⃗⃗⃗⃗ . (2.37) 

 As for the normal contact forces, the Hertz contact model is used to compute the spring 

constant. For tangential contacts, it depends on the particles shear modulus 9 , 𝐺 , the Poisson 

coefficients and tangential displacement (Hertz, 1896): 

𝑘𝑡(𝑖, 𝑗) =
16

3
 

𝐺(𝑖) 𝐺(𝑗) √𝑅𝑒𝑓𝑓(𝑖,𝑗)

𝐺(𝑗) (2−𝜎(𝑖))+𝐺(𝑖) (2−𝜎(𝑗))
‖𝛿𝑡
⃗⃗⃗⃗ (𝑖, 𝑗)‖

 
1

2.  (2.38) 

Finally, the tangential dashpot contribution is: 

𝐹𝑡
𝐷

⃗⃗ ⃗⃗⃗⃗ ⃗⃗ (𝑖, 𝑗) =  𝜂𝑡(𝑖, 𝑗) (𝑉𝑠⃗⃗⃗ ⃗(𝑖, 𝑗) − (𝑉𝑠⃗⃗⃗ ⃗(𝑖, 𝑗)  ∙  𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ ) 𝜂𝑖,𝑗⃗⃗ ⃗⃗ ⃗⃗ ),  (2.39) 

with (Silbert et al., 2001): 

𝜂𝑡(𝑖, 𝑗) =
2 √𝑚𝑒𝑓𝑓(𝑖,𝑗) 𝑘𝑡(𝑖,𝑗) ln(𝑒𝑡) 

√𝜋2+ln(𝑒𝑡)2
 ‖𝛿𝑡(𝑖, 𝑗)‖

 
1

4,  (2.40) 

where, 𝑒𝑡 represents the tangential restitution coefficient having the same meaning as 𝑒𝑛.  

 

2.3.3 Heat transfer between solids 

In the model, two heat transfer modes occur between the solids: the conduction between 

particles in contact and heat conduction through the thin fluid lens between them (the radiative heat 

transfer is neglected). Here, two situations are considered to present the heat transfer between the 

particles (Fig 2.4). The first considers two separated particles (Fig 2.4 B). In this situation, the 

solid-fluid-solid heat transfer is the only mechanism able to transmit energy between the two 

                                                             

8 𝑡𝑖,𝑗⃗⃗⃗⃗⃗⃗ =
𝛿𝑡⃗⃗⃗ ⃗

‖𝛿𝑡⃗⃗⃗ ⃗‖
 

9 𝐺(𝑖) =
𝐸(𝑖)

2(1+𝜎(𝑖))
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particles. The second situation explores the situation where the two particles are in contact (Fig 2.4 

A) for which both solid-solid and solid-fluid-solid heat transfers occur. The two next sub-sections 

present each mechanism separately. The relative importance of these mechanisms on the overall 

particle-to-particle heat transfer within a particle bed is discussed in the third sub-section.  

 

 

 

2.3.3.a Solid-Solid conduction 

During the contact between two particles, a solid-solid conductive heat transfer may occur 

if a difference between their temperatures exists (here, the temperature is considered as uniform 

within a particle). Between two particles  and , this heat flux reads (Batchelor and O’Brien, 

1977): 

𝑄𝑠𝑠(𝑖, 𝑗) = 2 𝑘𝑠 𝑅
∗(𝑖, 𝑗) (𝑇𝑠(𝑖) − 𝑇𝑠(𝑗)),  (2.41) 

where 𝑅∗(𝑖, 𝑗) is the radius of the effective contact area between the two particles that depends on 

their radius and distance between their center of mass, 𝐷(𝑖, 𝑗), as: 

Figure 2.4: Particle-to-particle heat transfer modes. [A] The two spherical particles are in contacts. The solid circles 

correspond to the particles edges and the dashed ones to the boundary of the thermal boundary layers, ζ.  The overlapping 

volume is indicated in red. The gray color indicates the effective area where solid-fluid-solid heat conduction occurs. The 

angle indicated with green and blue curves are the angles between the particle normal vector and edge of the solid-fluid-

solid effective area and edge of the contact area. [B] Same as A for the case of two separated particles. 
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𝑅∗(𝑖, 𝑗) =
𝑑𝑝(𝑖)

2
 sin (cos−1 𝑑𝑝(𝑖)2+𝑑𝑝(𝑗)2+4𝐷(𝑖,𝑗)2

4 𝑑𝑝(𝑖) 𝐷(𝑖,𝑗)
).  (2.42) 
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 2.3.3.b Solid-Fluid-Solid conduction 

 The solid-fluid-solid heat transfer occurs as well as when the particle are separated by a 

short distance or when they are in contact (Rong and Horio, 1999). For each particle, a fluid lens 

distance, , is defined. It corresponds to a thermal boundary layer indicating the maximum distance 

at which the heat may be conducted efficiently within the fluid around the particle. As for the solid-

solid heat transfer, the solid-fluid-solid heat flux depends on the effective area on which the heat 

is exchanged. This effective area depends on the overlapping between the thermal boundary layer 

around one particle and the physical edge of the other one (Fig. 2.4 B). This effective radius is 

accounted in the effective particles conductance, 𝐻(𝑖, 𝑗). The solid-fluid-solid heat flux is given 

by: 

𝑄𝑠𝑠𝑓(𝑖, 𝑗) =  𝐻(𝑖, 𝑗) (𝑇𝑠(𝑖) − 𝑇𝑠(𝑗)). (2.43) 

The value of the effective thermal conductance depends on the particle individual heat 

conductances: 

𝐻(𝑖, 𝑗) =
𝐻(𝑖) 𝐻(𝑗)

𝐻(𝑖)+𝐻(𝑗)
. (2.44) 

If the two particles are separated (Fig 2.4 B), the values of the particle individual heat conductance 

are computed as (Rong and Horio, 1999): 

𝐻(𝑖) = −𝑘𝑓 ∫ (
𝜋 𝑑𝑝(𝑖) sin 𝜃

𝐷𝑖𝑗−𝑑𝑝(𝑖) cos 𝜃
)

𝛼𝑠𝑓𝑠

0
 𝑑 (

𝑑𝑝(𝑖)

2
sin 𝜃),  (2.45) 

where 𝑑(𝑑𝑝(𝑖) sin 𝜃 /2) is an incremental radius in the particle-fluid-particle effective area (𝜃 is a 

incremental angle related to 𝛼𝑠𝑓𝑠). 𝛼𝑠𝑓𝑠 is the angle between the particles normal vector and the 

position where the particle edge intersects the thermal boundary of its neighbor (Fig. 2.4 A‒B). 

When the particles are in contact (Fig 2.4 A), Eq. (2.45) transforms to: 

𝐻(𝑖) = −𝑘𝑓 ∫ (
𝜋 𝑑𝑝(𝑖) sin 𝜃

𝐷𝑖𝑗−𝑑𝑝(𝑖) cos 𝜃
 )

𝛼𝑠𝑓𝑠

𝛽𝑠𝑓𝑠
𝑑 (

𝑑𝑝(𝑖)

2
sin 𝜃),  (2.46) 

where 𝛽𝑠𝑓𝑠 represents the angle between the normal vector and intersection of the two particle 

physical edges (Fig. 2.4 A). 
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  2.3.3.c Relative importance of the two conduction modes 

 The relative importance of solid-solid and solid-fluid-solid modes on the amount of heat 

conducted between two particles is computed by considering the presence of two identical particles 

having a relative temperature of 10 K. Figure 2.5 displays the solid-solid, solid-fluid-solid, and 

total conductive heat fluxes as a function of the distance or overlap between the two particles. It 

shows that in a particle bed the dominant heat transfer mechanism is the solid-fluid-solid 

conduction. The relative importance of the solid-solid and solid-fluid-solid modes depends on the 

ratio between the solids and fluid heat conductivities. When this ratio is below ~100, the solid-solid 

conduction have a weak control on the particle bed macroscopic heat transfer as observed in 

experiments (Delvosalle and Vanderschuren, 1985).  

 

 

Figure 2.5: Relative contributions of the solid-solid and solids-fluid-solid heat transfers. The abscissa represents the 

overlap distance, in percent of the particles radius. The ordinate is a dimensionless conductive heat flux. Each curve is 

normalized by the value of the solid-fluid-solid heat flux when the two particles start to touch. The black thick curve is the 

total conductive heat flux between the particles. The blue dashed curve is the solid-fluid-solid heat flux. The orange dashed 

curve corresponds to the solid-solid contribution. 
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2.4 Coupling between the phases 

2.4.1 Momentum coupling 

The total force exerted by the motion of the fluid to the solids includes both steady and 

unsteady terms, and may be expressed as:  

𝐹𝑓𝑠
⃗⃗ ⃗⃗ ⃗⃗ (𝑖) = 𝐹𝑃

⃗⃗⃗⃗⃗(𝑖) + 𝐹𝐷
⃗⃗ ⃗⃗⃗(𝑖) + 𝐹𝑉𝑀

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖) + 𝐹𝐵
⃗⃗⃗⃗⃗(𝑖).  (2.47) 

where, 𝐹𝑃
⃗⃗⃗⃗⃗ is the pressure force, 𝐹𝐷

⃗⃗⃗⃗⃗ is the viscous drag force, 𝐹𝑉𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the virtual mass force, and 𝐹𝐵

⃗⃗⃗⃗⃗ 

is the Basset force. The first force describes the effect of the fluid pressure gradient. The drag 

expresses the steady viscous forces applied by the fluid on the particles (or vice versa) because of 

their relative motions. The two lasts forces are unsteady terms only important in transient dynamics 

that may be neglected for many applications. They both depend on the relative acceleration 

between the particles and the fluid. The virtual mass describes the effect of the force needed to 

move a volume of fluid when a particle is accelerating. The Basset term expresses the effect of the 

variation in the size of the viscous boundary layer (distance over which the fluid flow is affected 

by the presence of the particle). Neglecting the unsteady forces reduces the momentum transfer 

force to the drag and pressure terms and reads: 

𝐹𝐷
⃗⃗⃗⃗⃗(𝑖) = − (

𝜋

6
 𝑑𝑝(𝑖)

3)∇𝑃(𝑖)  −
𝛽(𝑖)

(1−𝛷(𝑖))
(
𝜋

6
 𝑑𝑝(𝑖)

3) (𝑣𝑠⃗⃗⃗⃗ (𝑖) − 𝑣𝑓⃗⃗⃗⃗⃗(𝑖)),  (2.48) 

where 𝛽(𝑖) is the momentum transfer coefficient, and 𝑣𝑓⃗⃗⃗⃗⃗(𝑖) is the fluid velocity at the position of 

the particle 𝑖. The pressure gradient can be decomposed in its hydrostatic and dynamic components. 

The hydrostatic pressure force is: 

𝐹𝑃 𝑠𝑡𝑎𝑡𝑖𝑐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖) = −

𝜋

6
 𝑑𝑝(𝑖)3𝜌𝑓 𝑔⃗⃗⃗,  (2.49) 

which corresponds to the Archimedes force. The drag coefficient is computed with the Gidaspow 

drag model, which presents the advantage to be valid over a wide range of concentrations in solids: 

 



 

 42 Chapter 2: CFD-DEM model 

𝛽(𝑖) = {

3

4
𝐶𝐷(𝑖) 

𝜌𝑓 𝛷(𝑖)(1−𝛷(𝑖)) ‖𝑣𝑓⃗⃗ ⃗⃗ ⃗(𝑖)−𝑣𝑠⃗⃗⃗⃗⃗(𝑖)‖

𝑑𝑝(𝑖)
(1 − 𝛷(𝑖))

−2.65
          𝑖𝑓 𝛷(𝑖) ≤ 0.2

150 𝛷(𝑖)2 𝜂 

(1−𝛷(𝑖)) 𝑑𝑝(𝑖)2 
+

1.75 𝜌𝑓 𝛷(𝑖) ‖𝑣𝑓⃗⃗ ⃗⃗ ⃗(𝑖)−𝑣𝑠⃗⃗⃗⃗⃗(𝑖)‖

𝑑𝑝(𝑖) 
                              𝑖𝑓 𝛷(𝑖) > 0.2

 .  (2.50) 

In equation (2.50), the upper line corresponds to the Wen-Yu drag coefficient and is valid for 

particle volume fractions below 0.2. Above 0.2, the Ergun law gives the coefficient of momentum 

transfer between the fluid and the particles. This last equation can be split into two terms. The first 

corresponds to the viscous part and is given by a Kozeny-Carman relationship describing the 

viscous flow at low particle Reynolds numbers, 𝑅𝑒𝑝 . The second is the inertial term, which 

depends on the relative velocity between the two phases and comes from a Burke-Plummer 

equation, describing the fluid kinetics at high 𝑅𝑒𝑝 . The Wen-Yu drag model requires to estimate 

the drag coefficient, , for which empirical relationships exist with 𝑅𝑒𝑝 . The one used here is: 

𝐶𝐷(𝑖) = {
24

𝑅𝑒𝑝(𝑖)
(1 + 0.15𝑅𝑒𝑝(𝑖)

0.687)

0.44
,  (2.51) 

𝑅𝑒𝑝 (𝑖) =
𝑑𝑝(𝑖) ‖𝑣𝑓(𝑖)−𝑣𝑠(𝑖)‖ 𝜌𝑓

𝜂
.  (2.52) 

 Because of the Newton’s third law, the drag force exerted by the fluid on the particles must 

be taken into account within the interphases momentum transfer term in Eq. (2.16). The different 

numerical representations of the phases (Eulerian and Langrangian) impose that the drag force at 

the particle scale must be averaged in space to the fluid scale. The fluid-solid momentum exchange 

term in Eq. 2.14 may be expressed as: 

𝐼𝑓𝑠
⃗⃗ ⃗⃗ ⃗(𝑘) =

1

𝜈
∑ (

𝛽(𝑖) (
𝜋

6
 𝑑𝑝(𝑖)3)

(1−𝛷(𝑖))
 (𝑣𝑓⃗⃗⃗⃗⃗(𝑘) − 𝑣𝑠(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  𝐾𝜈(𝑋⃗(𝑖), 𝑋𝑓

⃗⃗⃗⃗⃗(𝑘)))
𝑁𝑝

𝑖=1
, (2.53) 

with 𝐾𝜈 being a generic kernel indicating the contribution of a particle located at a position 𝑋⃗ to a 

fluid grid node located at the position 𝑋𝑓
⃗⃗⃗⃗⃗. 𝑁𝑝 indicates the number of particles affecting the fluid 

at the position 𝑋𝑓
⃗⃗⃗⃗⃗. 
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2.4.2 Thermal coupling 

The transfer of heat between the two phases occurs by either conduction or advection of the 

heat at the boundary between the two mediums. The efficiency of fluid-solid heat transfer is 

expressed by the Nusselt number, 𝑁𝑢 . Form the discrete particle point of view, the heat flux 

between the two phases reads: 

𝑄𝑓𝑠(𝑖) = 𝜋 𝑁𝑢(𝑖) 𝑘𝑓 (𝑇𝑠(𝑖) − 𝑇𝑓), (2.54) 

with, 

𝑁𝑢(𝑖) = 2 + 0.6 𝑅𝑒𝑝(𝑖)
1

2 𝑃𝑟
1

3.  (2.55) 

Where 𝑃𝑟  corresponds to the Prandtl number (See section 6 for details). Eq. (2.55) is a 

experimentally determined correlation of heat transfer (Ranz and Marshall, 1952; Rong and Horio, 

1999). As for the momentum, computing the heat fluxes from the solid to the fluid requires to sum 

the heat exchanged with each individual particles through the fluid volume as: 

𝐻𝑓𝑠(𝑘) = ∑ (𝑄𝑓𝑠(𝑖)𝐾𝜈(𝑋⃗(𝑖), 𝑋𝑓
⃗⃗⃗⃗⃗(𝑘)))

𝑁𝑝

𝑖=1
,  (2.56) 

Further details about the momentum transfer and heat transfer interpolation and averaging are given 

in the next section. 
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2.5 Numerical solvers 

2.5.1 Overview of the SIMPLE algorithm 

To solve the fluid constitutive equations, MFIX-DEM uses the SIMPLE (Semi-Implicit 

Method Linked Equations) algorithm (Patankar, 1980). It is an iterative method based on 

successive corrections of fluid velocities and pressure field. It uses a staggered grid in which fluid 

pressure and velocities are stored at different positions in order to avoid the convergence to 

checkerboard pressure fields (Fig 2.6). An overview of the algorithm steps is presented here. For a 

detailed presentation of the discretization of the constitutive equations and algorithm operations, 

see Patankar, 1980 and Syamlal, 1998. For each fluid time step, the algorithm operations are: 

i: Update the fluid physical properties. The Eq. (2.11) is used to compute the new densities and, in 

some runs, the fluid viscosity, according to the fluid temperature field from the previous time step. 

ii. The velocity and pressure gradients are computed from the results of the previous iteration or 

time step (for the first iteration).  

iii. The momentum equation (Eq. 2.16) is solved to compute a new velocity field (𝑣𝑓𝑥
∗, 𝑣𝑓𝑦

∗, 𝑣𝑓𝑧
∗) 

with the pressure field from the previous iteration, 𝑃∗  (or a guessed one for the first solver’s 

iteration). Note that the estimated velocity field does generally not respect the mass continuity (Eq. 

2.15). 

iv. The mass fluxes at each face of the control volumes are updated with the new fluid velocities 

field computed at step 3 (𝑣𝑓𝑥
∗, 𝑣𝑓𝑦

∗, 𝑣𝑓𝑧
∗). 

v. A fluid pressure correction 𝑃′  is computed in order to obtain a pressure field 𝑃 = 𝑃∗ + 𝑃′ 

satisfying the continuity equation (Eq. 2.15).  

vi. The fluid pressure field is updated with the pressure correction from step 5.  

vii.  A fluid velocity correction (𝑣𝑓𝑥
′, 𝑣𝑓𝑦

′, 𝑣𝑓𝑧
′) is computed from 𝑃′ and applied according to the 

new pressure field. 

viii. The temperature of the fluid is computed with Eq. (2.17) and the corrected fluid velocities 

computed at step 7. 
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ix. The total dynamic residual is computed by summing those of steps 3, 5 and the heat residual is 

obtained from step 8. 

x. If both residuals are below a threshold, the time step is considered as having converged and the 

fluid velocity, pressure, and temperature fields are used to compute the solids dynamics in the DEM 

part. If the residuals are above the threshold and converges (i.e. is smaller than that of the previous 

iteration), the algorithm restarts from step 2 with the fluid properties computed during the present 

iteration. When any residual diverges, the fluid time increment, , is reduced and the iteration is 

restarted from step 1 with the fluid properties from the previous time step. 

 

Figure 2.6: Representation of the staggered grid use to represent the fluid phase (in 2D here). The central control volume 

is indicated in gray. The dotted vertical and horizontal lines represent the edges of the neighbor control volumes. The black 

filled circles located at the centers of the cells represent the positions of the grid where the scalar quantities (volume fraction, 

pressure, density, or viscosity…) are stored. The vertical arrows represent the positions where the vertical fluid velocities 

(𝒗𝒇𝒚) are stored. Similarly, the horizontal arrows indicate where x fluid velocities (𝒗𝒇𝒚) are stored. The black filled squares 

correspond to the locations of the interpolation nodes (see section 2.4.6).  
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2.5.2 DEM solver 

Computing the particle motion requires one to integrate in time their accelerations given by 

Eqs. (2.19) and (2.20) and ensuing velocities and positions. For that, a first-order Euler time 

integration scheme is used (Gear, 1971). The integral in time of the particles acceleration is 

approximated by: 

𝑣𝑠⃗⃗⃗⃗ (𝑖) (𝑡 + ∆𝑡𝑠𝑜𝑙𝑖𝑑) = 𝑣𝑠⃗⃗⃗⃗ (𝑖) (𝑡) + 
∑ (𝐹𝐶

⃗⃗ ⃗⃗ ⃗⃗  (𝑖,𝑗))𝑁
𝑗=1 +𝐹𝑓𝑠

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑖)+𝑚𝑠 𝑔⃗⃗⃗

𝑚𝑠
∆𝑡𝑠𝑜𝑙𝑖𝑑.  (2.57) 

The positions of the particles are updated as: 

𝑋⃗(𝑖) (𝑡 + ∆𝑡𝑠𝑜𝑙𝑖𝑑) = 𝑋⃗(𝑖) (𝑡) + 𝑣𝑠⃗⃗⃗⃗ (𝑖) (𝑡 + ∆𝑡𝑠𝑜𝑙𝑖𝑑), (2.58) 

where  is the DEM time step. For the particle rotation, the Euler time integration is: 

𝜔𝑠⃗⃗ ⃗⃗ ⃗(𝑖) (𝑡 + ∆𝑡𝑠𝑜𝑙𝑖𝑑)  = 𝜔𝑠⃗⃗ ⃗⃗ ⃗(𝑖) (𝑡) +
∑ (𝑇𝐶⃗⃗⃗⃗⃗⃗  (𝑖,𝑗))𝑁

𝑗=1

𝐼𝑠(𝑖)
 ∆𝑡𝑠𝑜𝑙𝑖𝑑 . (2.59) 

Finally, the temperature evolution of the particles is computed as: 

𝑇𝑠
(𝑘)(𝑡 + ∆𝑡𝑠𝑜𝑙𝑖𝑑) = 𝑇𝑠

(𝑘)(𝑡) + ∆𝑡𝑠𝑜𝑙𝑖𝑑  
𝑄𝑓𝑠

(𝑘)
+ ∑ (𝑄𝑠𝑠

(𝑘,𝑙)(𝑡)+ 𝑄𝑠𝑓𝑠
(𝑘,𝑙)(𝑡))

𝑁
𝑙
(𝑘)

𝑙=1

𝑚(𝑘) 𝐶𝑝𝑠

 . (2.60) 

 This time integration scheme is usually preferred to higher order ones (e.g. the second order 

Adams-Bashforth scheme; Sundaram and Collins, 1996), because with the short solid time step 

used, ∆𝑡𝑠𝑜𝑙𝑖𝑑, this integration scheme is sufficient to ensure the reliability of the results with lower 

memory consumptions (Džiugys and Peters, 2001; Garg et al., 2010). The reliability and efficiency 

of the DEM approach is linked with the solid time step used. The smaller this time step is, the 

higher is the frequency at which the particle velocities are updated, and the more accurate the 

simulation is. However, the solids iterations are time consuming and too small a time step can lead 

to unrealistically long computation time. The solid time step used in the simulations has thus to be 

set to the appropriate value to ensure both the reliability and efficiency of the simulation.  

 To ensure the stability of the simulation, the time step has to be related to the duration of 

the physical processes occurring on the particles. Two phenomena must be considered here: the 

particle contacts and the drag acceleration. For each of these forces, a characteristic duration may 
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be defined. For the contact between two particles, it is its duration, defined as (here between two 

particles 𝑖 and 𝑗):  

𝑡𝑐𝑜𝑙(𝑖, 𝑗) = 𝜋√
𝑘𝑛(𝑖,𝑗)

𝑚𝑒𝑓𝑓(𝑖,𝑗)
−

𝜂𝑛(𝑖,𝑗)

4 𝑚𝑒𝑓𝑓
2(𝑖,𝑗)

 . (2.61) 

Then the stability time step related to the particle contact is: 

∆𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
min (𝑡𝑐𝑜𝑙)

𝛼𝑐
, (2.62) 

where 𝛼𝑐 is the empirical contact stability coefficient, usually set to 50. This threshold is sufficient 

to ensure the reliability of the simulation for a purely granular simulation, or when the fluid has a 

relatively low viscosity. When the fluid has a high viscosity, the stability criterion related to the 

drag force needs to be accounted for as well. The drag stability time step is related to the particle 

response time, 𝜏𝑠, which corresponds to the time for a particle to reach its terminal velocity with a 

constant acceleration. The particle response time is inversely proportional to the fluid viscosity: 

𝜏𝑠(𝑖) =
|∆𝜌| 𝑑𝑝(𝑖)2

18 𝜂
 , (2.63) 

where   represents the density contrast between the fluid and solids. The drag maximum time 

step reads: 

∆𝑡𝑑𝑟𝑎𝑔 =
min (𝜏𝑠)

𝛼𝑣
 , (2.64) 

where 𝛼𝑣 is an empirical viscous stability constant. The simulation solid time step is given by: 

∆𝑡𝑠𝑜𝑙𝑖𝑑 = min(∆𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , ∆𝑡𝑑𝑟𝑎𝑔)  (2.65) 

The imposed value 𝛼𝑐 and 𝛼𝑣 control the reliability of the simulation and have to be necessarily 

higher than one.  

To illustrate the effect of these values on the reliability and stability of the simulations, let’s 

consider an isolated particle immersed in a viscous fluid flowing in the 𝑥 direction steadily at a 

velocity 𝑣𝑓(𝑥). The particle starts at rest and accelerates because of the viscous drag imposed by 

the fluid. Neglecting the effect of gravity, the particle equation of motion can be reduced to: 
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𝑚𝑠
𝑑 𝑣𝑠(𝑥)

𝑑𝑡
= −3 𝜋 𝜂 𝑑𝑝 (𝑣𝑠(𝑥) − 𝑣𝑓𝑥), (2.66) 

where the term in the right hand side of Eq. (2.66) is the Stokes drag law. The analytical solution 

of Eq. (2.66) is: 

𝑣𝑠(𝑥)(𝑡) = 𝑣𝑓(𝑥) (1 − 𝑒
− 

3𝜋𝜂𝑑𝑝

𝑚𝑠
 𝑡
). (2.67) 

Figure 2.7 displays the comparison between the analytical solution of the particle motion (Eq. 2.67) 

and the results of a first order Euler integration with different values for the stability coefficient 

𝛼𝑣. It shows that when 𝛼𝑣 < 0.5, the particle velocity diverges. When 0.5 < 𝛼𝑣 < 1, the particle 

velocity oscillates around the expected velocity between successive time steps and converge to the 

Figure 2.7: Acceleration of an isolated particle immersed in a fluid flowing with a uniform and constant velocity. The graph 

compares analytical solution and numerical approximations with different drag stability coefficients. The abscissa is a non-

dimensional time defined as the ratio of the time and drag characteristic time. The ordinate is a non-dimensional velocity 

corresponding to the ratio of the particle velocity and fluid uniform velocity. The analytical solution of the particle equation 

of motion is indicated with a thick black curve. Dashed curves represent the numerical approximations using a first order 

Euler integration scheme. The open squares are the computed particle velocities at each time step. The blue, orange, yellow, 

purple, and green colors indicate that the drag stability coefficient used is 0.4, 0.6, 1, 2, and 10, respectively.   
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fluid velocity. At 𝛼𝑣 = 1, after one iteration the particle reaches its terminal velocity and the drag 

force is canceled. In this situation, the particle velocity terminal velocity is reproduced but the time 

to reach it is underestimated. When 𝛼𝑣 > 1, the evolution of the relative velocity between the 

particle and the surrounding fluid may be retrieved. The accuracy of the numerical solution is 

proportional to the stability coefficient. A good agreement between analytical and numerical 

solutions is generally obtained once 𝛼𝑣 > 25. For application to chemically evolved mush with 

high melt viscosity, this time step reach values of the 10-9 s, which is a strong limitation to the 

application of the CFD-DEM method with such a classical time integration scheme. This limitation 

will be lifted in section 4.2.1. 

 

2.5.3 Interpolation schemes 

An accurate description of the phase coupling in an Eulerian-Lagrangian framework 

requires one to interpolate the fluid properties at the particle locations and, conversely, the particles 

mean field to the fluid grid. This allows, for instance, the smooth calculation of the free fall of a 

single particle across several fluid cells. For that a second order accurate in space interpolation 

scheme is used (Garg et al., 2012). Here, we present the key points of the interpolation algorithms. 

For further details, readers are redirected to Garg et al., (2012 and 2007). 

 

2.5.3.a Particle side 

Because of the fluid staggered grid, the interpolation of the fluid properties at the particle 

locations is performed in two steps. Let’s consider a control volume in 2D (Fig. 2.6). The pressure 

is known at the center of the control volume, fluid velocities in the  direction are known at the 

center of the left and right faces of the volume, and the  fluid velocity at the top and bottom faces. 

The first step consists in interpolating the  and  fluid velocities at the four corners of the control 

volume (Fig 2.6). For that, linear interpolations of the fluid velocities in each direction are 

performed for all the corners. For example, with an uniformly spaced grid at the position , it 

gives: 

𝑣𝑓𝑥 (𝑖, 𝑗) =
𝑣𝑓𝑥(𝑖,𝑗+0.5)−𝑣𝑓𝑥(𝑖,𝑗−0.5)

2
 , (2.68) 
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𝑣𝑓𝑦 (𝑖, 𝑗) =
𝑣𝑓𝑦(𝑖+0.5,𝑗)−𝑣𝑓𝑦(𝑖−0.5,𝑗)

2
 . (2.69) 

In this way, each corner of the control volume is characterized by fluid velocities in all space 

directions. For the second step, we consider a particle located within the control volume at position 

(𝑖 + 𝑥, 𝑗 + 𝑦), where the spatial coordinate are given relative to the control volume reference point 

(the position (0,0) is located at the bottom left corner) (Fig. 2.8 A). The fluid properties are 

interpolated at the particle location as a function of the values previously interpolated at the control 

volume corners. This second step is a quadratic interpolation given by: 

𝑣𝑓𝑥(𝑥, 𝑦) = 𝑣𝑓𝑥(𝑖, 𝑗) +
𝑣𝑓𝑥(𝑖+1,𝑗)−𝑣𝑓𝑥(𝑖,𝑗)

∆𝑥
𝑥 +

𝑣𝑓𝑥(𝑖,𝑗+1)−𝑣𝑓𝑥(𝑖,𝑗)

∆𝑦
+

𝑣𝑓𝑥(𝑖,𝑗)+ 𝑣𝑓𝑥(𝑖+,𝑗+1)−𝑣𝑓𝑥(𝑖+1,𝑗)−𝑣𝑓𝑥(𝑖,𝑗+1)

∆𝑥 ∆𝑦
𝑥 𝑦 ,  (2.70) 

where ∆𝑥 and ∆𝑦 are the grid spaces. 

 

  

Figure 2.8: Lagrangian-Eulerian interpolation scheme (in 2D here). [A] Interpolation of the fluid properties at the particle 

location. The drawing represents a particle in a fluid cell. The black squares represent the locations where the fluid 

properties have been interpolated from the fluid staggered grid (Fig 2.6). [B] Interpolation of the particle properties on the 

fluid grid. Here, nine fluid cells are displayed. The red dot represents the point where the particle volume fraction and 

momentum exchange coefficient are interpolated and stored. The black ones are the interpolation nodes of the neighbor 

cells. The black squares indicate the positions where the particles properties are interpolated during the first step (see text). 

The interpolated properties at the red dot depends on the particles located in all the cells displayed on the drawing. 
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2.5.3.b Fluid side 

The backward approximation of the particle properties at the fluid grid nodes (particle 

volume fraction, temperature, and drag force) uses a similar approach as the forward one. This 

computation is performed in two steps. First, for each cell, the contribution of the 𝑁𝑃 particles 

contained in this volume is the sum at each corners of the cell (Fig 2.8 B). For example, the particle 

masses are summed using: 

〈𝑚𝑠〉 = ∑ 𝑚𝑠  (1 −
𝑥(𝑖)

∆𝑥
) (1 −

𝑦 (𝑖)

∆𝑦
)𝑁𝑃

𝑘=1 ,  (2.71) 

The particle concentration is then computed at the center of the cell (Fig 2.8 B) as a function of the 

value of the 8 control volume corners following:  

𝛷𝑠 =
∑ 〈𝑚𝑠〉(𝑘)8

𝑘=1

𝜈 𝜌𝑠
,  (2.72) 

where 𝑘 is the corner index. Other higher order and more expensive interpolation schemes exist 

(Garg et al., 2007). The second-order interpolation scheme is less accurate than other ones but 

presents the advantage to be less expensive. In the context of magmatic mush, the spatial variation 

of the fluid velocity and particle concentration do not varies greatly in space (low 𝑅𝑒) and this 

approach is acceptable. 

 

2.5.4 Boundary conditions   

The boundary conditions implemented in the model are the following: 

-The Non Slip Wall (NSW), where all the components of the fluid velocity are set to zero. 

-The Free Slip Wall (FSW), where the walls are frictionless. The component of the fluid velocity 

that is normal to the wall is null, whereas for tangential components, the gradients of the fluid 

velocity are null.  

-The mass flux boundary is used to impose an incoming flux of fluid in the computational domain. 

The jet is perpendicular to the boundary and can be either positive (inflow) or negative (outflow). 
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- The pressure outlet/inlet boundary corresponds to a boundary where the fluid can freely exit or 

enter into the computational domain at a constant pressure. The fluid velocity gradients are consider 

as null at this boundary.  

- The periodic boundaries are used to simulate an ‘infinite’ medium and corresponds to cyclic flow 

through the boundary surfaces. The fluid that exit the domain by one side then enter it at the 

opposed surface. 

- The fixed heat flux is a boundary condition imposed to a wall where the heat flux is fixed and 

may be set to zero to simulate an isolating surface.  

- The fixed temperature boundary can be used with either wall or inlet/outlet and imposes the 

temperature at the boundary surface. 

 

2.6 Dimensionless numbers 

Reynolds numbers: 

The Reynolds number, 𝑅𝑒, characterizes the ratio of the fluid inertia and viscous force. It 

helps to describe the intensity of turbulence in fluid flows. Its general formulation is: 

𝑅𝑒 =
𝜌𝑓 𝑣0 𝛿0

𝜂
  (2.73) 

Its sense depends on the characteristic distance, 𝛿0, and velocity, 𝑣0. If these two values are chosen 

to represent either the fluid or the mixture, it indicates the nature of the flow. At low (<1) Reynolds 

number, the fluid flow is laminar. At high Reynolds number, the fluid flow is turbulent.  

When the particle diameter and relative velocity with the surrounding fluid are used as 

characteristic distance and velocity, respectively, this number is called the particle Reynolds 

number, 𝑅𝑒𝑝 (Eq. 2.51). It indicates how the fluid flows around the particle. At low 𝑅𝑒𝑝, the fluid 

creeps around the particle. On the contrary, when 𝑅𝑒𝑝 ≫ 1, the fluid flow creates a turbulent wake 

in the lee side of the particle.  

The Reynolds number may also be used to characterize the effects of an oscillatory fluid 

flow on suspended particles. This number is given by: 
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𝑅𝑒𝛺 = √
𝜌𝑓 𝜔 𝑑𝑝

2

8 𝜂
,  (2.74) 

where  is the angular frequency of the oscillatory flow. When 𝑅𝑒𝛺 ≪ 1, particles motions are 

controlled by the steady viscous effects, whereas when 𝑅𝑒𝛺 ≫ 1 , inertial unsteady effects 

dominate. 

 

Stokes number: 

The Stokes number, 𝑆𝑇, quantifies the amount of momentum coupling between the fluid 

and solids. It corresponds to the ratio of the particle inertia over the fluid viscous force. At low 

Reynolds number, it reads: 

𝑆𝑇 =
𝜌𝑠 𝑑𝑝

2 𝑣0

18 𝜂 𝛿0
 , (2.75) 

where  is a characteristic velocity, and  is a characteristic distance. At low Stokes numbers, the 

solids follow the fluid streamlines whereas at high 𝑆𝑇 , the motion of both constituents are 

decoupled. 

 

Peclet number: 

In a fluid, the Peclet number, 𝑃𝑒, quantifies the ratio of the heat transferred by forced convection 

over conduction:  

𝑃𝑒 =  
𝐶𝑃𝑓 𝜌𝑓 𝑣0 𝛿0

𝜆𝑓
 . (2.76) 

At low 𝑃𝑒 , the heat transfer is dominated by conduction, whereas at high 𝑃𝑒 , the energy is 

transported by advection. 𝑃𝑒 corresponds to the product of the Reynolds and Prandtl numbers. 
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Nusselt number: 

The Nusselt number indicates the efficiency of heat transfer by natural convection at the 

interface between a solid and fluid. It may be expressed as: 

𝑁𝑢 =  
ℎ𝑡 𝛿0

𝑘𝑓
 , (2.77) 

where ℎ𝑡  is the coefficient of heat transfer. This number is usually computed with empirical 

relationships such as Eq. 2.55 to estimate the heat transfer coefficient.  

 

Froude number: 

The particle Froude number is used here to quantify the importance of gravitational force 

on the acceleration of a particle. It may be defined as: 

𝐹𝑟2 =
 𝜌𝑓 𝑣0

2 

∆𝜌 𝑔 𝛿0
 . (2.78) 

When the Froude number is high, gravitational forces weakly affect the particle inertia. At low 𝐹𝑟, 

the motion due to buoyancy force dominates. 

 

Prandtl number: 

The Prandtl number quantifies the competition between momentum and heat diffusivities. It is 

defined as: 

𝑃𝑟 =  
𝜂 𝐶𝑃𝑓

𝑘𝑓
.  (2.79) 

When 𝑃𝑟 ≪ 1 , it indicates that hydrodynamic phenomena are negligible compared to heat 

conduction. It is the contrary at high 𝑃𝑟 number. 
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Leighton number: 

The Leighton number,  𝐿𝑒 , characterizes the transition from frictional to lubricated flow. It 

corresponds to the ratio of the lubrication forces and frictional forces: 

𝐿𝑒 =  
𝜂 ℎ 𝛾̇ 

𝜎𝑛 𝜀
,  (2.80) 

where , is the shear rate, 𝜎𝑛 is the normal stress, and 𝜀 is the particle roughness. High 𝐿𝑒 indicates 

that the particles are separated by a viscous fluid film and have lubricated interactions. Low 𝐿𝑒 

indicates that particles are in frictional contacts.  
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Chapter 3: Effects of lubrication forces on 

mush dynamics10 

3.1. Introduction  

Magma bodies residing in the crust are formed by repeated injections of mobile magma and 

are inferred to reside in a mushy state (Bachmann and Bergantz, 2004a; Cashman et al., 2017; 

Hildreth, 2004). A mush is magma with a high concentration of crystals (also called particles here). 

The rheology of mushes is one of most critical phenomenon controlling magma transport within 

volcanic systems (Caricchi et al., 2007; Cordonnier et al., 2012; Kendrick et al., 2013; Lavallée et 

al., 2012, 2007; Ryerson et al., 1988; Sparks, 2003), sometimes influencing eruptive styles ( 

Karlstrom et al., 2012). However the transition between a mobile magma and the mush state is 

complex and poorly understood. Macroscopically, this transition is characterized by the emergence 

of non-Newtonian behaviors characterized by shear thinning and possibly continuous and/or 

discontinuous shear thickening (Lavallée et al., 2012, 2007; Petford, 2009; Mader et al., 2013 and 

references therein).  

However, attempts to index crystal-rich rheology to the volume fraction of crystals, whether 

by a Krieger-Dougherty type power law or by a viscous number scaling relation (Bergantz et al., 

2017; Deubelbeiss et al., 2011), fail to recover non-Newtonian behavior in the absence of inertia. 

These models can predict the correct volume fraction dependence at a fixed shear rate, but cannot 

capture shear rate dependence at fixed volume fraction (e.g., Mari et al., 2014). This is because 

there is only one stress scale associated with the Krieger-Dougherty relation: the one associated 

with hydrodynamics. And while the viscous number framing incudes a gravitational stress scale, it 

cannot predict the transition to discontinuous shear thickening or differentiate between jamming 

occurring from steric or frictional effects. It is now apparent that these non-Newtonian processes 

arise by the initiation of normal and frictional tangential forces from particle contact, which can 

happen at particle volume fractions of 0.3 or less. The onset of friction introduces an additional 

                                                             
10 Published as : Carrara, A., Burgisser, A., Bergantz, G.W., 2019. Lubrication effects of lubrication on magmatic 
mush dynamics. J. Volcanol. Geotherm. Res. 380, 19–30. https://doi.org/10.1016/j.jvolgeores.2019.05.008 
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stress scale into the rheology that is not resolved in the traditional framing. Hence any process that 

influences the onset of frictional contacts, such as lubrication, can have a profound effect on the 

rheology of the mush. 

Following Bergantz et al. (2017), we further develop the scaling relationships for 

lubrication with an emphasis on how lubrication influences the time-dependence of a system as it 

moves between locked or frictional states. When neighboring particles graze each other in a viscous 

fluid, the ensuing hydrodynamic interactions create tangential lubrication forces on the particles 

(Jeffrey and Onishi, 1984; Marzougui et al., 2015). Normal lubrication forces arise when particles 

approach or are separated from each other. In sheared suspensions, lubrication effects due to these 

two forces dominate over that caused by particle spinning (Marzougui et al., 2015). The relative 

motions required to squeeze or suck the fluid from the gap between their edges result in the 

dissipation of the particle kinetic energy, which depends mostly on the fluid viscosity and particle 

separation distance. The importance of lubrication forces on mush dynamics is not obvious because 

these forces can be viewed as either opposing, or promoting the fluidization of the dense suspension 

in response to the arrival of new magma (Bergantz et al., 2017). Lubrication also influences the 

path of individual crystals during remobilization and the time they have to respond to changes in 

their chemical environment. As a result, the residence time of crystals within magmatic systems is 

affected by the transient lubricated state, the effects of which cannot be ignored when 

reconstructing the thermal history of crystals (e.g., Cooper and Kent, 2014; Barboni et al., 2016). 

Here we use computational fluid dynamics with discrete element modeling (CFD-DEM) to 

explore the role of lubrication in mush systems. CFD-DEM numerical simulations have proven to 

be a powerful tool to study magmatic mush dynamics (Bergantz et al., 2017, 2015; Schleicher et 

al., 2016). In such models, the behavior of the continuous fluid phase (silicate melt) is computed 

by solving Navier-Stokes equations on an Eulerian grid. Individual crystals are represented by 

spheres, the trajectories of which are computed in a Lagrangian framework with the Newton laws 

of motion. This representation of the solid phase allows the CFD-DEM framework to explicitly 

resolve solid/solid interactions such as contact and friction and the coupling with the surrounding 

fluid. Despite high computational costs, models based on CFD-DEM have been validated (Deen et 

al., 2007) and are often employed as benchmarks to validate other numerical approaches (e.g. Chen 

and Wang, 2014). Previous CFD-DEM models used to study mush dynamics include the micro-
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scale physics of contact, drag, and buoyancy forces (Bergantz et al., 2017, 2015; McIntire et al., 

2019; Schleicher et al., 2016) but do not explicitly consider lubrication forces. 

 

Symbol (unit) Definition 

A Lubrication parameter 

C Particle shape and roughness parameter 

 (m) Particle diameter 

  Normal and tangential restitution coefficients 

FR Froude number 

 (m s-2) Gravitational acceleration 

h (m) Distance between particle edges 

 j Ratio of the distance between particle edges and their radius 

ST Stokes number 

SO Sommerfeld number 

t (s) time 

 (m s-1) Injection velocity 

 (m s-1) Minimum fluidization velocity 

 (m s-1) Particle terminal velocity 

 (m s-1) ith particle velocity 

 (m s-1) Relative velocity between two particles 

 (m s-1) Relative velocity between particle and fluid 

 (m s-1) Fluid velocity 

 (m s-1) Fluid characteristic velocity 

W (m) 3rd dimension length 

 (m) Fluid characteristic distance 

  Permeability parameter 

 (°) Incidence angle 

 (kg m-3) Density contrast between fluid and particles 

  (m) Particle roughness 

 (Pa s) Fluid viscosity 

 (kg m-3) Particle density 

 (kg m-3) Fluid density 

 ;  ;   (s) Characteristic times 

  Particle volume fraction 

  Particle maximum packing fraction 

Table 3.1: List of symbols and their meaning 
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Our objective is to address the effects and importance of lubrication forces on the dynamic 

of magmas and mushes. We first propose a scaling of the relative importance of lubrication forces 

at the particle scale with a simplified expression of lubrication. We then focus on macroscopic 

scale dynamics by investigating with CFD-DEM simulations the effects of a more complete 

description of lubrication in two canonical cases of fluid dynamics relevant to magmatic systems, 

the sedimentation and the remobilization of a dense particle bed. Finally, the effect of lubrication 

forces on magma and mushes dynamics is discussed. 

 

3.2. Method 

3.2.1. Formulation of the BBO equation with lubrication forces 

To scale the importance of lubrication forces on a dense granular suspension, we consider 

a system of smooth spheres arranged in a hexagonal lattice and immersed in a viscous fluid with a 

density contrast (i.e. ρp ≠ ρf, where ρp is the sphere density and ρf, is the fluid density) (Fig. 3.1 A; 

symbols are summarized in Table 3.1). The particles have the same diameter, dp, and they are 

separated by a small but finite distance, h. The motion of a given particle in a magmatic viscous 

fluid can be described by the truncated Lagrangian Basset-Boussinesq-Oseen (BBO) equation 

(Bergantz et al., 2017). Following Marzougui et al. (2015), we neglect lubrication effects arising 

from rolling and twisting relative motions between the particles, which only produce marginal 

effects compared to normal and tangential lubrication (Fig. 10 in Marzougui et al., 2015). There 

are different formulations of the lubrication forces. At the particle scale, we use a simplification 

proposed by Marzougui et al. (2015) of the more complete expression of Jeffrey and Onishi (1984) 

because it is amenable to algebraic manipulations. In the CFD-DEM model (section 3.2.2), we use 

the formulation of Frankel and Acrivos (1967) because it does not feature the unphysical negative 

torques at large inter-particle distance of the particle-scale expression (Marzougui et al., 2015). 

Incorporating both normal11 and tangential lubrications forces, the BBO equation can be expressed 

as: 

                                                             
11 In Bergantz et al., (2017), the normal lubrication expression should be replaced by the form used here (Eqs. (1) 

and (3) with β=0) to take into account that contacts occur between two spheres and not between a sphere and a plate 

(Andreotti et al., 2013). 
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𝑑 𝑣𝑝1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑑 𝑡
=

∆𝜌 𝑔⃗⃗

𝜌𝑝
− 

3 𝜂𝑓 𝑣𝑓⃗⃗ ⃗⃗  

2 𝛼 𝜌𝑝 𝑑𝑝
2 − 

3 𝜂𝑓 𝑣𝑝⃗⃗ ⃗⃗ ⃗ 

𝜌𝑝 𝑑𝑝
2 𝐴,  (3.1) 

where  is the particle velocity, ∆𝜌 = 𝜌𝑝 − 𝜌𝑓, 𝜌𝑓 is the fluid viscosity, 𝑡 is the time, and 𝑔⃗ is 

the gravitation acceleration.  The left-hand side of Eq. (3.1) represents the acceleration of the 

particle considered and the first term on the right-hand side is the reduced buoyancy. The second 

term corresponds to the viscous drag exerted by the fluid on the particle due to the velocity 

difference between the particle and the surrounding fluid, 𝑣𝑓⃗⃗⃗⃗⃗ = 𝑣𝑝1⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝑣𝑓𝑙𝑢𝑖𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . The coefficient  

refers to the permeability of the dense particle network, which is given by the Carman-Kozeny 

relationship (Bergantz et al., 2017): 

𝛼 =
(1−Ф)3

𝐶 Ф2
,   (3.2) 

where Ф  is the particle volume fraction and 𝐶  is a constant depending on particle shape and 

roughness (  =44.4 for smooth sphere, MacDonald et al., 1991). As pointed out by Bergantz et al. 

(2017) this drag law is only reliable for dense suspensions when α > 1/12, which corresponds to  Ф 

>~0.3. The last term on the right-hand side of Eq. (3.1) incorporates both normal and tangential 

lubrications forces due to the relative velocity between the particle and its neighbor (subscripts p1 

and p2 respectively), 𝑣𝑝⃗⃗⃗⃗⃗ = 𝑣𝑝1⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝑣𝑝2⃗⃗ ⃗⃗ ⃗⃗⃗. The relationship between normal and tangential forces is 

expressed in the 𝐴 coefficient (Marzougui et al., 2015): 

𝐴 =
3 cos (𝛽)

2𝑗
− ln(𝑗) sin(𝛽), (3.3) 

where  is the ratio of the distance between the particle edges, ℎ, over their diameter (𝑗 = 2ℎ/𝑑𝑝), 

and 𝛽 is the incidence angle that corresponds to the angle between the relative velocity and the 

vector linking the particle pair centers (Fig. 3.1 B). In an hexagonal lattice, 𝑗 can be linked to the 

ratio of the particle volume fraction over the maximum packing fraction (Ancey et al., 1999): 

𝑗 = 1 − (
Ф

Ф𝑚𝑎𝑥
)

1

3
 .  (3.4) 

The tangential lubrication force expression used in Eqs. (3.1) and (3.3) gives reliable results 

up to 𝑗 = 0.2 (Fig. 3 in Marzougui et al., 2015). As a result, Eq. (3.1) is valid from Ф/ Ф𝑚𝑎𝑥 < 1 
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down to Ф/Ф𝑚𝑎𝑥 = 0.5, which corresponds to 𝑗 = 0.2. For a system of two particles (Fig. 3.1 B), 

the meaning of the incidence angle, 𝛽, is obvious and decomposes the relative velocity vector into 

normal and tangential components. For a multi-particle system (Fig. 3.1 A), each particle pair 

displays a different relative velocity and incidence angle with respect to the central particle. The 

motion of the central particle is affected by the resultant lubrication force caused by all neighboring 

particles, which means that 𝑣⃗𝑝 and 𝛽 must be viewed as representative relative particle velocity 

and incidence angle, respectively. The meaning of these two parameters in a multiparticle system 

is explored in the supplementary section S3.1. 

 

  

Figure 3.1: Conceptual model considered to scale the importance of lubrication forces. [A] The central target particle (p1) 

is in blue. Its six neighboring particles are indicated in black and are arranged in a hexagonal lattice. The minimum distance 

between the edges of particles pairs is indicated by red dashed lines and has been exaggerated for clarity. The black dashed 

box represents the region depicted in B. [B] Zoom on a particle pair. The blue particle represents the particle p1 and the 

black one represents p2. Their velocity vectors are represented by blue and red arrows, respectively. The green arrow 

represents the relative particle velocity seen by particle p1, 𝒗𝒑⃗⃗ ⃗⃗⃗. The two dashed green arrows indicate the decomposition of 

the relative velocity in its normal, 𝒗𝒏⃗⃗ ⃗⃗ ⃗, and tangential, 𝒗⃗⃗⃗𝒕, components. The angle beween the vectors 𝒗𝒑⃗⃗ ⃗⃗⃗ and 𝒗𝒏⃗⃗ ⃗⃗ ⃗, is called the 

incidence angle β (purple). 
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3.2.2 CFD-DEM model 

We performed CFD-DEM numerical simulations by using the MFIX software 

(https://mfix.netl.doe.gov/). The equations are summarized in the supplementary section S3.2. 

Detailed explanations about the theory and implementation of the model can be found in Garg et 

al. (2010), Syamlal (1998), Syamlal et al. (1993), and validation of the DEM approaches in Garg 

et al. (2012) and Li et al. (2012). We included both normal and tangential lubrication forces into 

the model by implementing the formulas used by Marzougui et al. (2015). We emphasize that the 

drag and lubrication expressions used in the simulations are different from those used for in the 

scaling approach (i.e. the tangential lubrication force in Table A1 is the expression of Frankel and 

Acrivos (1967) and not that of Eqs. (3.1) and (3.3)) to ensure the consistency of the DEM modeling 

in dilute conditions. 

Unfortunately, no simple analytical solution of the approach of two spheres exists because 

both  and h that appear in the lubrication force vary with time. We validated instead our 

implementation of the lubrication forces by reproducing the particle bouncing experiment from 

Gondret et al. (2002). We obtain a good fit between the experimental results and our numerical 

simulation. Details and results of this validation are reported in the supplementary materials S3.3.  

 

3.3. Results 

3.3.1. Grains scale 

3.3.1.a. Scaling of the relative importance of the forces 
exerted on a particle 

To determine what parameters control most particle motion, we express the vectors 

involved in Eq. (3.1) by their magnitudes, which are always positive by definition. This allows us 

to quantify what are the dominant forces among buoyancy, viscous drag and lubrication. The 

importance of gravitational forces can be expressed by using the terminal fall velocity of the 

particle, which combines several variables involved in Eq. (3.1): 

𝑈𝑇 = 
∆𝜌 𝑔 𝑑𝑝

2

3 𝜂𝑓
. (3.5) 
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We introduce  in the drag and lubrication terms by multiplying each term by 1 = 𝑈𝑇/𝑈𝑇 =

(∆𝜌 𝑔 𝑑𝑝2 )/(3 𝜂𝑓 𝑈𝑇). After rearranging, Eq. (3.1) becomes: 

  
𝜌𝑝

∆𝜌 𝑔
 
𝑑 𝑣𝑝1

𝑑𝑡
= 1 − 

 𝑣𝑓

2 𝛼 𝑈𝑇
− 

𝐴 𝑣𝑝

𝑈𝑇
. (3.6) 

The left-hand side of Eq. (3.6) represents the non-dimensional gravitational acceleration of the 

particle (p1). The first term on the right-hand-side of Eq. (3.6) that equals unity expresses the fact 

that the gravitational acceleration of the particle is constant in time. The two last terms represents 

the non-dimensional drag and lubrication forces, respectively. The equality between drag and 

buoyancy forces occurs when 1 = 𝑣𝑓/(2 𝛼 𝑈𝑇), which implies that : 

𝑣𝑓 = 2𝛼𝑈𝑇.  (3.7) 

Similarly, the balance between buoyancy and lubrication is expressed by the equality 1 =

𝐴 𝑣𝑝/ 𝑈𝑇 , which yields: 

𝑣𝑝 = 
𝑈𝑇

𝐴
 . (3.8) 

Finally, equality between the drag and lubrication forces requires that 𝑣𝑓/(2𝛼𝑈𝑇) = 𝐴 𝑣𝑝/ 𝑈𝑇  , 

which yields the following relationship between 𝑣𝑝 and 𝑣𝑓: 

𝑣𝑓 = 2𝛼𝐴 𝑣𝑝.  (3.9) 

The three forces balance each other when 
𝑣𝑓

2𝛼 𝑈𝑇  
= 1 and 

𝐴 𝑣𝑝

𝑈𝑇  
= 1. Thus Eq. (3.7) is valid 

for 
𝐴 𝑣𝑝

𝑈𝑇  
≤ 1, Eq. (3.8) is valid for 

𝑣𝑓

2𝛼 𝑈𝑇 
≤ 1, and Eq. (3.9) is valid for 

𝐴 𝑣𝑝

𝑈𝑇  
≥ 1 and  

𝑣𝑓

2𝛼 𝑈𝑇 
≥ 1.  

The three force domains and associated boundaries are summarized in Fig. 3.2. Predicting 

which forces control the motion of a particle requires to replace that particle in the force diagram. 

Its position depends on the ratio Ф/ Ф𝑚𝑎𝑥, the angle 𝛽, and the two relative velocities 𝑣𝑝 and 𝑣𝑓. 

The two first variables form the 𝛼  and 𝐴  coefficients. The influence of lubrication forces is 

maximum when the coefficient  is maximized, which means that it is possible to define an 

optimal angle, 𝛽𝑜𝑝𝑡, that most promotes lubrication. This angle depends also on Ф/ Ф𝑚𝑎𝑥 and it 

corresponds to the point at which the derivative of 𝐴 with respect to 𝛽 is null: 
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𝛽𝑜𝑝𝑡 = tan−1 (−
2 𝑗 ln(𝑗)

3
). (3.10) 

Conversely, we found that =90° is most adverse to lubrication effects, which corresponds to pure 

tangential relative motion. 

 

3.3.1.b. Dimensionless formulation 

The dimensionless form of Eq. (3.1) is (see supplementary section S3.4): 

𝑑𝑣𝑝1̃

𝑑𝑡̃
=

1

𝐹𝑅
2 −

𝑣𝑓̃

𝑆𝑇
−

𝑣𝑝̃

𝑆𝑂
. (3.11) 

The three velocities 𝑣𝑝1̃ , 𝑣𝑓̃ , and 𝑣𝑝̃   correspond to the dimensionless forms of the velocities 

involved in Eq. (3.1) that are defined as 𝑣𝑝1̃ = 𝑣𝑝1/𝑣0 , 𝑣𝑓̃ = 𝑣𝑓/𝑣0 and 𝑣𝑝̃ = 𝑣𝑝/𝑣0, where 𝑣0 is 

the characteristic speed. The variable 𝑡̃ is the dimensionless time defined as 𝑡̃ = 𝑡/𝜏, where 𝜏 is the 

characteristic time corresponding to the ratio of the characteristics length, 𝛿, and speed, 𝑣0 (𝜏 =

𝛿/𝑣0). The three terms 𝐹𝑅 , 𝑆𝑇  and 𝑆𝑂 , are the dimensionless Froude, Stokes and Sommerfeld 

numbers, respectively. Both 𝐹𝑅  and 𝑆𝑇  were used previously by Burgisser et al. (2005) and 

Figure 3.2: Force diagram summarizing scaling results. Axes have logarithmic scales with the ratios 𝑨𝒗𝒑/𝑼𝑻 as abscissa 

and 𝒗𝒇/𝟐𝜶𝑼𝑻 as ordinate. The red, blue and green areas correspond to the domains where buoyancy, drag and lubrication 

dominate, respectively. Boundaries between the domains are reported with black lines corresponding to Eq. (3.7–3.9), 

respectively. Boundaries meet at a point where all forces have the same importance on particle motion.  
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Bergantz et al. (2017) to scale the controls of buoyancy and drag forces, respectively, and are 

expressed here as: 

𝑆𝑇 =
2𝛼 𝜌𝑝 𝑑𝑝

2 𝑣0

3 𝜂𝑓 𝛿
=

𝜏𝑑

𝜏
, (3.12a) 

𝐹𝑅
2 =

𝜌𝑝 𝑣0
2

∆𝜌 𝑔 𝛿
 .  (3.12b) 

The Stokes number characterizes the viscous drag coupling between the particle and the 

surrounding fluid, which corresponds to the ratio between the drag particle relaxation time (𝜏𝑑 =

𝑑2 𝜌𝑝 / 6 𝛼 𝜂𝑓) and the characteristic time (𝜏 = 𝛿 /  𝑣0). 

The Sommerfeld number characterizes the importance lubrication forces, and expresses the ratio 

between the lubrication particle relaxation time 𝜏𝑙 (𝜏𝑙 = 𝐴 𝑑2 𝜌𝑝 / 3 𝜂𝑓) and 𝜏: 

𝑆𝑂 =
 𝜌𝑝 𝑑𝑝

2 𝑣0

3 𝜂𝑓 𝐴 𝛿
=

𝜏𝑙

𝜏
. (3.13) 

In the context of dense suspensions, the most appropriate characteristic distance is the gap between 

the particle edges, ℎ. The relevant characteristic speed 𝑣0 depends on the nature of the external 

forcing applied to the system. It could be, for instance, an externally imposed shear rate expressed 

as 𝑣0 ℎ⁄ . 

 

3.3.2. Macroscopic scale 

3.3.2.a Experiment 1: Rayleigh-Taylor instabilities 

The first numerical experiment consists of a particle bed initially in a jammed state at the 

top of a tank filled with a viscous fluid. Simulations use non slip boundary conditions at the walls. 

The bed is initially at rest and simulations start when gravity is switched on. Due to the negative 

buoyancy of the particles, Rayleigh–Taylor-type instabilities are generated as shown by 

experimental (Michioka and Sumita, 2005) and numerical (Bergantz and Ni, 1999) experiments. 

To look at the effects of lubrication forces at the macroscopic scale of the settling bed, we 

performed the same simulation twice, once taking lubrication forces into account (simulation 1A) 

and once without lubrication forces (simulation 1B). A third simulation (simulation 1C) was run 
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without lubrication forces but mimicking lubrication by setting a low restitution coefficient (ratio 

of the kinetic energy conserved during the contact) as in Bergantz et al. (2015).  Fluid and particle 

properties are indicated in Table 3.2 and taken from Michioka and Sumita (2005).  

Figure 3.3 shows snapshots of the particle positions for the three runs 1A–C. Particle 

position maps show a clear difference between simulations 1A and 1B (Fig. 3.3). Run 1C presents 

a dynamics that is intermediate between those of 1A and 1B, so results of this approach to replicate 

lubrication forces are discussed in details in the supplementary section S3.5. Both simulations with 

(1A) and without (1B) lubrication start with the development of small Rayleigh–Taylor instabilities 

at the lower front of the particle bed, with a wavelength of ~3 mm that is consistent with that 

observed experimentally by Michioka and Sumita (2005) (Fig. 3.3 A‒C). A small time delay in 

establishing the instabilities is observed for the simulation involving lubrication, 1A, compared to 

that without lubrication, 1B. Once the initial small particle plumes are formed, a larger instability 

is generated (Fig. 3.3 C‒E). It is initiated by pure fluid that is buoyant relative to the suspended 

bed penetrating the left part of the bed. This rightward sweeping motion causes en masse bed 

sedimentation to produce a large particle plume encompassing most of the smaller plumes already 

sedimenting. We tested if the domain size controls the nature of the Rayleigh–Taylor instabilities 

observed in the experiments by varying the domain width, and observed the same kind of en masse 

bed sedimentation. It is always initiated by the opening of the particle bed in positions where the 

crystal network presents a lower particle volume fraction compared to the average random initial 

condition. 

 

 

Run  (Pa s)  (m)  (kg m-3)  (kg m-3) bed dimension (m × m)     lubrication 

1A 0.2 2.5 ± 0.2 10-4 2500 1250 0.03 × 0.005 0.7 0.35 yes 

1B 0.2 2.5 ± 0.2 10-4 2500 1250 0.03 × 0.005 0.7 0.35 no 

1C 0.2 2.5 ± 0.2 10-4 2500 1250 0.03 × 0.005 0.01 0.005 no 

Table 3.2: Parameters used for the Rayleigh–Taylor instabilities experiment. The value of normal and tangential restitutions 

coefficient is the same between simulations 1A and 1B. These two values are artificially decreased to  and 

 in simulation 1C in an attempt to reproduce the effect of lubrication forces (see supplementary section S3.5). 
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All simulations display large plumes of similar shapes (Fig. 3.3 D‒E), except that the plume 

of run 1A is slightly more narrow and of higher density than that of run 1B. The main effect of 

lubrication forces is on the duration of the development of the large instability responsible for en 

masse bed sedimentation. In run 1B, the large plume starts after 12 s (Fig. 3.3 C), and the plume 

reaches half of the tank height after 15 s (Fig. 3.3 D), whereas these steps are observed after 15 s 

and 18.8 s in run 1A, respectively (Fig. 3.3 D‒E).  

We selected in simulation 1A a group of neighboring particles within the large plume and 

tracked the time evolution of their individual relative velocities with the surrounding fluid, 𝑣𝑓, and 

of their relative velocities, 𝑣𝑝. The local particle volume fraction, Φ, is computed on the continuous 

grid (i.e. in each fluid computational cell) and is interpolated at each particle location. For each 

particle, the representative velocity relative to the neighboring particles is the magnitude of the sum 

of all the relative velocity vectors between that particle and its neighbors. The representative 

incidence angle is the average of all the pairwise angles between a given particle and its neighbors. 

Figure 3.3: Snapshots from simulations 1A-C after 0 s [A], 6 s [B], 12 s [C], 15 s [D], 18.8 s [E] and 25 s [F]. Snapshots [A]-

[C] are truncated and snapshots [D]-[F] represent the entire simulation domain. Filled and open circles represent the 

particles. Black disks represent the simulation involving lubrication forces (1A). Open red circles correspond to the 

simulation without lubrication (1B). The green open circles represent the run mimicking lubrication by reducing the 

restitution coefficients (1C).   
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Both relative velocities, β, and Φ were averaged over the group of particles and their time evolution 

was smoothed by performing a zero-phase moving average (Fig. 3.4). These smoothed parameters 

can be used to calculate the force balance, and Fig. 3.5 F shows snapshots of the locations of the 

selected particle group alongside their positions on the force diagram of Fig. 3.2. 

At the start of the simulation, the particles are in a jammed state and undergo a slow dilation, 

as highlighted by the slight decrease of the particle volume fraction and the increase of 𝑣𝑝 up to 12 

s (Fig. 3.4 B). The entire bed is falling slowly under the influence of gravity without becoming 

deformed as shown by the constant value of 𝑣𝑓 (Fig. 3.4 B) and by the pure fluid layer that forms 

atop the bed (Fig. 3.5 A). During this process, the buoyancy and drag forces felt by the particles 

are in equilibrium (Fig. 3.5 F) until the bed reaches its terminal fall velocity while keeping the same 

shape. The buoyant fluid is thus transported by porous flow through the pack of selected particles. 

At 12 s, lubrication forces become dominant (Fig. 3.5 F) because the particle relative velocity 

increases while the particle volume fraction is still close to its maximum. This point also 

corresponds to the time when the largest delay occurs between simulations 1A and 1B. After 15 s, 

when the large instability forms on the left part of the bed, 𝑣𝑓 increases again (Fig. 3.4 B) and the 

Figure 3.4: Temporal evolution of the physical parameters encountered by the group of tracked particles. [A] The graph 

has two ordinate axes. The blue axis and curve represent the local particle volume fraction averaged over the group of 

particle, Φ. The red axis and curve represent the average incidence angle, β. [B] The graph has two ordinate axes. The blue 

axis and curve represent the ratio between the particle–fluid relative velocity and the terminal fall velocity, 𝑽𝒇/𝑼𝑻. The red 

axis and curve represent the ratio between the particles edges relative velocity and the terminal fall velocity, 𝑽𝒑/𝑼𝑻. Vertical 

dashed lines represent the times at which the snapshots of Fig. 3 were taken. 
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viscous drag tends to control particles motion (Fig. 3.5 F). This suggests that the large plume is 

formed by the viscous entrainment of the fluid rather than by the net weight of the particles. During 

the large plume unfolding and sedimentation, 𝑣𝑝  and 𝑣𝑓  increase (Fig. 3.4 B) and equilibrium 

between fluid drag and lubrication occurs (Fig. 3.5 F). When the plume reaches the bottom of the 

tank, 𝑣𝑝 and 𝑣𝑓 decrease, Ф slowly increases and particle settling is controlled by their buoyancy. 

Our results show a good correlation between both relative velocities after the initial bed expansion 

(Fig. 4 B). Furthermore, 𝑣𝑓 and 𝑣𝑝 appear to be inversely proportional to the local solid volume 

fraction (Fig. 4 A), which suggests that they are not coupled directly, but that the coupling occurs 

through to the local particle concentration. Decreasing particle concentration results in a joint 

increase of the distance between particle edges and of bed permeability. As for magmas, the 

characteristic Stokes numbers of the simulation are small (10−4 < 𝑆𝑇 < 10−2), which indicates a 

strong coupling between fluid and particles. The relative velocity 𝑣𝑓 is thus strongly controlled by 

Figure 3.5: Analysis of the results of the simulation involving lubrication (1A) with the scaling summarized in Fig. 2. Plots 

[A], [B], [C], [D], and [E] represent snapshots of simulation 1A after 6 s, 12 s, 15 s, 18.8 s, and 25 s, respectively. Particles 

are represented by disks, the color of which depends on the value of the average relative velocity between a particle and its 

neighbors. The group of tracked particles is indicated by purple circles. Graph [F] displays the position of the group of 

tracked particles on the force scaling graph. The red, blue, and green areas represent the domain where buoyancy, drag, 

or lubrication dominates, respectively. The positions of the tracked particles at time steps [A]-[E] are indicated by red 

squares and depend on the average parameters reported in Fig. 4. The blue curve represents the dynamic history of the 

tracked particles. 
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fluid–particle drag. As particle volume fraction decreases, so does the drag force, and higher 

relative fluid velocities are possible within the dense suspension. The same mechanism holds for 

𝑣𝑝 because of the monotonic relationship between lubrication forces and particle concentration. At 

low concentrations, particles can achieve higher relative velocities before lubrication forces 

dissipate the particles kinetic energy. We expect that the observed correlation between  𝑣𝑓 and 𝑣𝑝 

breaks down for flows featuring high Stokes numbers, such as pyroclastic flows. 

The 2D geometry used in these simulations has been shown to affect the results obtained 

by both numerical (e.g. Li et al., 2014; Peirano et al., 2001) and experimental studies on dense 

suspension dynamics (e.g., Courrech du Pont et al., 2003). It reduces the degrees of freedom that 

particles have to move relative to each other, which can potentially increase the particle relative 

velocities compared to the 3D case. To test the influence of the 2D geometry, we ran partial 

simulations of the settling runs 1A and 1B with a 3D geometry by imposing a width to the tank, 

, of ten particle diameters ( ), with the same boundary conditions as the 2D 

simulations. Figure 3.6 displays snapshots of these simulations captured after 22s of sedimentation. 

The 3D results do not exhibit the en masse bed sedimentation associated with the formation of a 

large plume that characterizes the 2D simulations. Sedimentation is instead characterized by 

multiple thinner plumes, which is more consistent with the experimental results of Michioka and 

Sumita (2005). This is probably due to the third spatial dimension involved, which smooths the 

local particle volume fraction and hinders the emergence of the fluid-rich gaps that characterize 2D 

simulations. The time delay observed between the run involving lubrication (Fig. 3.6 A) and the 

one neglecting it (Fig. 3.6 B) is less pronounced than the lag observed with the 2D simulations. 

This suggests that the effect of lubrication forces is overestimated with a 2D geometry. 
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3.3.2.b Experiment 2: Injection of a fresh magma into a mush 

Previous studies (Bergantz et al., 2017, 2015; Schleicher et al., 2016; Schleicher and 

Bergantz, 2017) have shown that the local injection of a crystal-free magma inside a mush produces 

a localized fluidized area delimited by soft faults called the mixing bowl where mixing between 

injected and resident melts occurs within the resident crystal cargo. To test the role of lubrication 

forces in such a situation, we performed numerical simulations that keep the same particle and fluid 

properties these authors used (see Table 3.3). The dimensions of the bed and injection width were, 

however, reduced to limit computation duration. We conserved the same ratio between the injection 

velocity, 𝑈𝑖𝑛𝑗, and the minimum fluidization velocity, 𝑈𝑚𝑓, predicted by (Cui et al., 2014) as the 

one they used (𝑈𝑖𝑛𝑗 = 21.2 𝑈𝑚𝑓). We performed two simulations that are summarized in Table 

3.3. Simulation 2A took into account both normal and tangential lubrication forces. Simulation 2B 

did not involve lubrication, and thus corresponds to the original case explored by Bergantz et al. 

(2015) with higher coefficients of restitution. Two additional simulations that mimic lubrication by 

using low restitution coefficients identical to those of Bergantz et al. (2015) have a behavior 

intermediate to those of 2A and 2B and are discussed in details in the supplementary material S3.5. 

Figure 3.6: Snapshots at identical times (22 s) of the Rayleigh-Taylor simulations 1A and 1B performed in 3D. Black lines 

indicate the computational domain boundaries and blue spheres are particles. [A] Run with lubrication forces. [B] Run 

where lubrication forces are neglected. 
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Overall, simulations 2A and 2B exhibit the same kind of differences as observed in 

experiment 1. Both runs have very similar kinematics and dynamics during the ascent of the 

injected magma. They both start with the initial growth of a cavity just above the inlet. We did not 

observe any difference between the simulations up to this point. An instability then forms at the 

top of the cavity once the cavity area is large enough, and the cavity rises through the mush. Figure 

3.7 displays snapshots of the simulations after 9.8 s of injection when the cavity reaches the top of 

the bed in run 2B. Each simulation ends with the establishment of a pulsating quasi-steady chimney 

between two counter-rotating 'granular vortices'. Run 2A presents a delay compared to run 2B 

because of lubrication forces (Fig. 7 A‒B). The delay between runs 2A and 2B increases during 

the rise of the unstable cavity within the mush. An accumulated time difference of 1.1 s is observed 

between the two simulations when the injected magma reaches the top of the mush bed.  

 

Run  (Pa s)  (m)  (kg m-3)  (kg m-3) bed dimension (m × m)     Injection velocity (m s-1) lubrication 

2A 0.2 4 ± 0.2 10-3 3300 2650 0.96 × 0.040 0.7 0.35 0.023 yes 

2B 0.2 4 ± 0.2 10-3 3300 2650 0.96 × 0.040 0.7 0.35 0.023 no 

Table 3.3: Parameters used for the simulations involving the injection of crystal-free basalt inside a basaltic mush. 

 

 

 

 

 

 

 



 

 76 Chapter 3: Effects of lubrication forces on mush dynamics 

 

  

Figure 3.7: Snapshots of experiment 2 simulations. All simulations are displayed at the same time step, after 9.8 s of 

injection. The color code indicates the local particle volume fraction, which is in blue at its maximum and red when the cell 

only contains fluid. [A] Simulation involving lubrication (2A). [B] Simulation without lubrication (2B).  

Figure 3.8: Evolution of the critical relative particle concentration as functions of the angle β and the ratio . All curves 

correspond to the values of the critical concentration at which = 1.  Their colors depend of the imposed 

ratio . Each curve presents a minimum critical concentration when the relative motion of the particle is nearly normal 

(β→0), and a maximum at a relative particle concentration of ~1 when the relative motion is purely tangential (β=90°). 
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3.3.3. Interpretation 

Figure 3.2 shows that the scaling relationships we propose can discriminate under which 

conditions lubrication forces are important. Their importance in controlling the dynamics of a dense 

suspension depends on the interplay of hydrodynamic stress exerted by the carrier phase, the 

velocity fluctuations among the solids, and the local particle concentration. The importance of drag 

and lubrication forces are inversely proportional to ST and SO, respectively. In general, when ST << 

1 and SO << 1, the buoyancy force is negligible. This is usually the case for magmatic mixtures, 

which are characterized by high viscosities and small crystal sizes. The relative importance of 

lubrication forces over the drag force is expressed in the ratios ST/SO and 𝑣𝑝̃/𝑣𝑓̃. Our simulations 

show that 𝑣𝑝̃ and 𝑣𝑓̃ coevolve when ST << 1, and that ~0.1 < 𝑣𝑝̃/𝑣𝑓̃ < ~1 (Fig. 3.4 B). This ratio 

does not vary significantly with the particle volume fraction. On the contrary, the ratio ST/SO 

depends on the particle volume fraction and tends to infinity when approaching maximum packing. 

The ratio 𝑆𝑇𝑣𝑝̃ / 𝑆𝑂𝑣𝑓̃ is equal to 2𝛼𝐴 
𝑣𝑝̃

𝑣𝑓̃
, which is a function of the solid concentration and the 

incidence angle β. Figure 3.8 displays curves of critical particle concentrations at which the 

transition between dynamics dominated by the drag or lubrication forces occurs (𝑆𝑇𝑣𝑝̃ / 𝑆0𝑣𝑓̃  = 

1). Above the critical concentration, lubrication forces have a larger magnitude than the drag force, 

and produce an apparent strain hardening at the onset, or at the end, of motion within the crystal 

network. Below the critical concentration, lubrication forces have a lower magnitude than the drag 

force and have only a marginal effect on dynamics as highlighted in our simulations (Fig. 3.3). 
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3.4. Discussion 

3.4.1 Influence of crystals size and shape 

We represent crystals as spheres with a unimodal size distribution. This is not the case in 

magmatic systems, where crystal size distributions (CSD) are polydisperse and often polymodal, 

and crystals are not spherical (Higgins, 2006; Higgins and Roberge, 2003; Marsh, 1988; Picard et 

al., 2011). The particle aspect ratio affects the rheology of crystal-bearing magmas (Cimarelli et 

al., 2011; Mueller et al., 2011, 2010; Picard et al., 2011; Mader et al., 2013; Moitra and 

Gonnermann, 2015). Both drag and lubrication forces become non-uniform around the crystals and 

depend on the orientations of the elongated particles (Bergantz et al., 2017). The relationship 

between particle shape and drag also influences their terminal fall velocity (Dellino et al., 2005). 

This last effect can be added into the numerical simulations by introducing a shape factor on the 

drag expression (Dioguardi et al., 2014). Some methods also exist to incorporate the particles shape 

within lubrication expressions, but they require additional iterations to find the minimum gap 

position and principal curvature direction between two elongated particles (Claeys and Brady, 

1993; Janoschek et al., 2013). This calculation needs to be performed at each DEM time step and 

for each particle pair, which increases the computational cost of the simulations. Contact forces are 

not included within our scaling but are nevertheless present in nature and within the simulations. 

For non-spherical particles, the contact torques between non-spherical particles depend on the 

contact position and orientation (Bergantz et al., 2017). Our results and conclusions are therefore 

valid for spherical particles and are to be extended with caution to natural systems. 

We employed three distinct but close particle sizes in order to avoid artificial shape 

'crystallization'. This cannot be viewed as representative of the polydispersity present in natural 

systems. The CSD is an important parameter that controls the dynamic of the particles because 

each force and dimensionless number we considered depends on particle diameter. CSD also 

affects the maximum packing fraction that a dense suspension can reach. Maximum packing 

increases when the suspension is polydisperse, and, Apollonian packing aside, it is maximal when 

the CSD is bimodal with ~25% of fine particles and ~75% coarse particles (Ouchiyama and Tanaka, 

2002; Farr and Groot, 2009; Faroughi and Huber, 2014). The effect of polydispersity on the force 

balance is not obvious because a high degree of polydispersity decreases particle bed permeability 

but increases the coordination number and thus the number density of lubricated bridges. 
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3.4.2. Comparison with other studies 

Relationships exist to scale the competition between lubrication and friction in dense 

suspensions (Coussot and Ancey, 1999; Fernandez et al., 2013; Ness and Sun, 2015). These works 

motivated Bergantz et al. (2017) to scale the transition between dynamic regimes dominated by 

either friction or lubrication in magmas (we call here the dimensionless number characterizing the 

lubrication/friction transition the Leighton number, Le, to distinguish it from the Sommerfeld 

number we propose). At low 𝐿𝑒 , particles are in direct contact and at large 𝐿𝑒 , particles are 

separated by a lubrication film. This number is proportional to the distance between particle edges 

and fails to properly measure the importance of lubrication when particles tend to be far away from 

each other (Fernandez et al., 2013). It is thus unable to capture the transition between dynamic 

regimes where crystal motions are governed by either the lubricated film or melt motions that are 

further afield. In our formulation, however, lubrication is inversely proportional to SO and to the 

distance between the particles. It thus properly scales the transition between lubricated and 

hydrodynamic regimes but fails to predict the onset of frictional behavior. The two scaling numbers 

are thus complementary to describe all the regime transitions that can be encountered in magmatic 

mush. 

Our observations on the effect of lubrication on the macroscopic dynamics of a magmatic 

mush fit well with the results of Mutabaruka et al. (2014) on the initiation of motion in immersed 

granular avalanche. They observed the formation of a strain hardening followed by relaxation 

associated with dilation of the solid network when the initial particle concentration tends towards 

its maximum. At the initiation of the granular avalanche, they observed bed expansion when the 

initial particle concentration is higher than ~0.59. This corresponds to ratios Ф/ Ф𝑚𝑎𝑥 > 0.92 with 

Ф𝑚𝑎𝑥= 0.64. This illustrates well the importance of lubrication forces at the onset of motion of 

dense suspensions. 
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3.4.3 Implication on magma rheology and magmatic system 

dynamics 

As in our experiments, magmatic mixtures are characterized by low Stokes numbers, 𝑆𝑇 << 

1, which indicates strong coupling between crystals and melt (Burgisser et al., 2005). Because of 

this dynamic similarity, we expect that our simulations illuminate the role of lubrication forces on 

mush dynamics and rheology. The rheology of magmas and mushes is now often studied by 

shearing or uniaxial compression experiments under high temperature and high confining pressure 

(e.g. Caricchi et al., 2007; Champallier et al., 2008; Laumonier et al., 2014, 2013; Lavallée et al., 

2013, 2007). Capturing lubrication in such experiments, however, is challenging for several 

reasons. Our results show that lubrication effects appear when the crystal network is free to expand 

in response to deformation. Experiments involving water-bearing melts (e.g., Caricchi et al., 2007), 

however, feature a metal jacket that encloses the sample and prevents such dilation. This suggests 

that jacket-free experiments typical of uniaxial apparatus (e.g., Lavallée et al., 2007) have better 

chances to evidence lubrication. Bulk viscosities are determined using experimental data acquired 

when an apparent steady state is reached, which leaves out the initial transient response to the 

imposed constraint. Our results show that lubrication forces under quasi-steady state are weaker 

than other hydrodynamic micro-scale processes. It is not the case, however, when deformation is 

transient. This suggests that lubrication could be captured in shearing or compression experiments 

performed on samples near maximum packing during the initiation of shearing or during an abrupt 

change of the imposed shear rate. Initial non-linear increases in the stresses and apparent viscosities 

are well documented (Caricchi et al., 2007; Champallier et al., 2008; Lavallée et al., 2007). As 

these effects are observed for all particle concentrations (Champallier et al., 2008), they are inferred 

to reflect the combined effects of the elastic response of the experimental apparatus and of the 

initial reorganization of the particles in the pre-compacted sample (Lavallée et al., 2007). Our 

results suggest that these early non-linear stress responses and those following changes in applied 

strain rates might contain yet unexploited information on lubrication. 

To identify which degrees of freedom control lubrication under magmatic conditions, we 

performed a Monte-Carlo analysis by varying the variables present in Eq. (3.1) over possible ranges 

encountered in magmas and mushes (Table 3.4). Figure 3.9 A displays the results in a format that 

recovers the same phase-space as that of Figure 3.2. We report in Fig. 3.9 B‒F the probability 
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density distribution of the variables involved in the realizations where lubrication is the dominant 

force. Lubrication effects are expected to appear more often with small crystals rather than large 

ones (Fig. 3.9 B). It is not surprising because lubrication forces depend linearly on crystal diameter 

whereas the terminal velocity depends on the square of it (Eq. 3.5). The dependence on the melt 

viscosity shows that highly viscous melt are more likely to be in lubricated conditions (Fig. 3.9 C). 

As expected from our scaling, the two main parameters that control the importance of lubrication 

are the relative velocities between the crystals and the surrounding melt (Fig. 3.9 D and F). These 

two parameters may be very difficult to measure during experiments on magma rheology as they 

are dynamical properties. This is a reminder that the rheology of magmas and mushes depends 

greatly on such dynamic properties in addition to materials properties, which are the only ones 

often reported and used in studies treating magma rheology as a single fluid. The relative velocities 

between crystals and melt affects the time crystals have to respond to changes in chemical 

environment during mush unlocking. Owing to experimental limitations and to the strong tendency 

that multiphase suspensions have to foster particle gathering and dispersal when subjected to shear, 

such transient motions are difficult to appraise. Their understanding is nevertheless crucial to fully 

describe magma rheology and to predict the rate and duration of dynamic remobilization processes 

within magmatic systems. 

Silicic magma bodies are thought to be formed by several increments of injected magma 

(Annen and Sparks, 2002) that cool, degas, and crystallize to reach a mushy state (Bachmann and 

Bergantz, 2004). In such systems, several scenarios have been evoked to explain eruption 

triggering. One is the rejuvenation of the magmatic mush associated with the injection of crystal-

poor magmas (e.g. Pallister et al., 1992; Tomiya and Takeuchi, 2009). Another is the reactivation 

of the magmatic mush resulting from the emplacement of a hot batch of magma at the base of the 

crystal mush, which heats it up and melts the mush crystals to produce a mobile layer that 

eventually becomes unstable and ascends through the mush (Burgisser and Bergantz, 2011). Yet 

another scenario is crustal faulting that causes deep fragmentation of mush materials (Gottsmann 

et al., 2009). Each of these scenarios requires the initiation of motion within the mush. Our 

simulations have shown that lubrication forces produce strain hardening followed by softening 

during such event (Fig. 3.5). These forces likely play an important role in controlling the ascent 

rates and timescales of magmas within the crust. Neglecting them could result in underestimating 
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the resistance of the mush to the arrival of mobile magma. For instance, a magma batch ascending 

through a mush needs to continuously initiate the motion of the overlying crystals in order to open 

and penetrate the mush. Lubrication forces are opposed to this process and therefore slow down 

the ascent of the magma batch. In addition, the ascending magma batch is expected to form a 

fluidized chimney in its wake (e.g. Girard and Stix, 2009). Our results show that lubrication forces 

are important when the crystal-bearing magma is approaching jamming, a result consistent with 

other numerical and experimental results. These forces oppose the closing and clogging of the 

fluidized chimney, which tends to maintain the feeding system of the ascending batch. The overall 

effect of lubrication forces on such phenomena is thus a complex combination of both effects that 

needs further exploration because it bears on our capability to accurately predict timescales of 

magmatic mushes dynamics.  

Figure 3.9: Exploration of the importance of lubrication in magmatic context. (a). Results of the Monte-Carlo analysis. 

Results are reported on logarithmic scales with the ratios 𝑨 𝒗𝒑/𝑼𝑻 as abscissa and  𝒗𝒇/ 𝟐 𝜶 𝑼𝑻 as ordinate. We report only 

104 of the 106 total realizations for clarity. Each dot corresponds to a realization and its color depends on the force with the 

highest magnitude. Realizations dominated by buoyancy, drag, or lubrication are indicated by red, blue, or green dots, 

respectively. [B‒F] Probability density distributions (pdd) of the parameters involved in realizations where the lubrication 

forces dominate the others. We only reported the distributions of crystal diameter [B], fluid viscosity [C], particle relative 

velocity [D], the ratio of the particle volume fraction [E], and the relative velocity between the particle and the fluid [F]. 
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Table 3.4: Parameter ranges used for the Monte-Carlo analysis. Ranges were chosen to represent possible conditions 

encountered in magmatic systems while remaining in the validity domain of our analysis. 

 

3.5. Conclusion 

Using numerical simulation, we demonstrate that lubrication forces cannot be neglected 

when a magmatic mush exits or enters a jammed state. Our numerical experiments of sedimentation 

and remobilization of packed particle beds notably show that an apparent bulk strain hardening is 

produced by lubrication forces, which results in belated dynamics. We propose scaling 

relationships that highlight the dominant role of lubrication forces as the cause of the strain 

hardening and softening observed. This scaling leads us to propose a new formulation of the 

Sommerfeld number to scale the transition between hydrodynamic and lubricated regimes. Our 

formulation is complementary to that previously used in the literature aimed at capturing the 

transition between frictional and lubricated regimes. The two formulations can predict the overall 

transitions in dynamic regimes that a magmatic mush can be subjected to. Understanding 

lubrication has implications on the timescales of magmatic mush processes that control crystal 

thermal histories.  
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Supplementary Section S3.1: 

This Supplementary section discusses the meaning of the particle relative velocity, 𝑣𝑝, and 

the incidence angle, 𝛽, for a multiparticle system. 

Neither drag nor buoyancy depends directly on the topology of neighboring particles 

dynamics. The total lubrication force for a given particle, however, is the sum of all the pair 

interactions between that particle and its neighbors. Each particle pair is characterized by its own 

relative velocity, 𝑣𝑝, and incidence angle, 𝛽. The representative 𝑣𝑝 of a particle corresponds to the 

difference between the particle velocity and the average velocity of its neighbors. It represents the 

velocity unsteadiness within the solids phase and corresponds to a measure of the energy 

fluctuation within the granular phase, which is often referred to as granular temperature (Andreotti 

et al., 2013; Goldhirsch, 2008). Formally, the parameter  we use corresponds to the square root 

of the classical definition of granular temperature, which suggests that lubrication effects could be 

taken into account in continuum models based on kinetic theory. 

The physical meaning of the representative incidence angle 𝛽 is less obvious. This angle 

varies between 0° for pure normal motion to 90° for pure tangential motion. It does not indicates 

the orientation of the particle relative motion and it thus cannot be used to gather information on 

the microstructural organization of the solids like, for instance, the contact fabric tensor (e.g. 

Bergantz et al., 2017). The importance of the angle 𝛽 on the position of the point where all the 

forces are equal on the force diagram is weak except when this angle tends to be purely tangential 

(Fig. 3.8). This situation never happens in our simulations because average 𝛽  ranges from 
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approximately 55° and 8° (Fig. 3.4 A). This variation of 𝛽 had a negligible influence on the relative 

importance of lubrication forces as quantified by our scaling. 

Supplementary Section S3.2: List of the model equations 

This Supplementary section includes two tables summarizing the equation system solved 

in our numerical simulations (Tables S3.2.1–S3.2.2). 

Table S3.2.1: List of the equations implemented in the CFD-DEM model 

Equation names Equations Ref. Experiments 

Fluid constitutive equations (continuous formulation) 

Mass conservation 
𝜕𝜀𝑓

𝜕𝑡
+  𝛻 ∙ (𝜀𝑓  𝑣⃗𝑓) = 0 

1 [1, 2] 

Momentum conservation 𝜌𝑓 (
𝜕

𝜕𝑡
(𝜀𝑓  𝑣𝑓⃗⃗ ⃗⃗  ) + 𝛻 ∙ (𝜀𝑓  𝑣𝑓⃗⃗ ⃗⃗  ⊗ 𝑣𝑓⃗⃗ ⃗⃗  )) =  𝛻 ∙ ( 𝜎𝑓̿  ) + 𝜀𝑓  𝜌𝑓 𝑔⃗  + 𝐼𝑓⃗⃗ ⃗ 1 [1, 2] 

Stress tensor 𝜎𝑓̿ = 𝑃𝑓 𝛿𝑖𝑗 + 
2

3
 𝜂𝑓 𝑡𝑟(𝜖𝑓̿) 𝛿𝑖𝑗 + 2 𝜂𝑓 𝜖𝑓̿ 

1 [1, 2] 

DEM: solids time evolution integration (Discrete formulation) 

For each kth particle of the system 

Euler velocity integration 
𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡 + ∆𝑡) =  𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡) +

𝐹𝐷
⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡) + ∑ (𝐹𝐶

𝑁⃗⃗⃗⃗ ⃗⃗
(𝑘,𝑙)

(𝑡) + 𝐹𝐶
𝑇⃗⃗ ⃗⃗ ⃗
(𝑘,𝑙)

(𝑡))
𝑁𝑙

(𝑘)

𝑙=1  

𝑚(𝑘)
+ 𝑔⃗ 

2 [1, 2] 

Euler displacement 

integration 
𝑋𝑝
⃗⃗ ⃗⃗ ⃗

 (𝑘)
 (𝑡 + ∆𝑡) = 𝑋𝑝

⃗⃗ ⃗⃗ ⃗
 (𝑘)

  (𝑡) + ∆𝑡 𝑣𝑝⃗⃗⃗⃗⃗
 (𝑘)

 (𝑡 + ∆𝑡)  
2 [1, 2] 

Euler rotation 

integration 𝜔𝑝⃗⃗⃗⃗⃗⃗
 (𝑘)

 (𝑡 + ∆𝑡) = 𝜔𝑝⃗⃗⃗⃗⃗⃗
 (𝑘)

 (𝑡) + ∆𝑡

∑ (𝑇𝐶
⃗⃗⃗⃗⃗

(𝑘,𝑙)
+ 𝑇𝐿

⃗⃗ ⃗⃗
(𝑘,𝑙)

(𝑡))
𝑁𝑙

(𝑘)

𝑙=1

𝐼(𝑘)
 

2 [1, 2] 

DEM: solids-solids interactions 

Interactions considered between two particles i and j (di > dj) 

Normal contact force 𝐹𝑐𝑁⃗⃗⃗⃗⃗⃗
 (𝑖,𝑗)

(𝑡) = (−𝑘𝑛
(𝑖,𝑗)(𝑡) 𝛿𝑛

(𝑖,𝑗)(𝑡) + 𝜂𝑛
(𝑖,𝑗)(𝑡) 𝛥𝑉𝑝𝑁⃗⃗⃗⃗⃗⃗

(𝑖,𝑗)
(𝑡) ) 𝑛𝑖𝑗⃗⃗⃗⃗⃗⃗  2  5 [1, 2] 

Tangential contact force 𝐹𝑐𝑇⃗⃗ ⃗⃗ ⃗
 (𝑖,𝑗)

(𝑡) = −𝑘𝑡
(𝑖,𝑗)(𝑡)𝛿𝑡

(𝑖,𝑗)(𝑡) + 𝜂𝑡
(𝑖,𝑗)(𝑡) 𝛥𝑉𝑝𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

(𝑖,𝑗)
(𝑡) 

2  5 [1, 2] 

Collisional torque 𝑇𝑐
⃗⃗⃗⃗

 (𝑖,𝑗)
(𝑡) =  

𝑑𝑝
(𝑖)

− 𝛿𝑛
(𝑖,𝑗)

(𝑡)

2
 𝐹𝑐𝑇⃗⃗ ⃗⃗ ⃗

(𝑖,𝑗)
(𝑡)   ;  𝑇𝑐

⃗⃗⃗⃗
 (𝑗,𝑖)

(𝑡) =  
𝑑𝑝

(𝑗)
− 𝛿𝑛

(𝑖,𝑗)
(𝑡)

2
 𝐹𝑐𝑇⃗⃗ ⃗⃗ ⃗

(𝑖,𝑗)
 (𝑡) 

2 [1, 2] 
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Equation names Equations Ref. Experiments 

normal spring (Hertzian 

model) 
𝑘𝑛

(𝑖,𝑗)(𝑡) =
4

3

𝐸(𝑖)𝐸(𝑗) √𝑅𝑒𝑓𝑓
(𝑖,𝑗)

𝐸(𝑗)(1 − 𝜎(𝑖)2) + 𝐸(𝑖)(1 − 𝜎(𝑗)2)
 𝛿𝑛

(𝑖,𝑗)
1
2(𝑡) 

2 [1, 2] 

tangential spring 

(Hertzian model) 𝑘𝑡
(𝑖,𝑗)

(𝑡) =
16

3

𝐺(𝑖)𝐺(𝑗) √𝑅𝑒𝑓𝑓
(𝑖,𝑗)

𝐺(𝑗)(2 − 𝜎(𝑖)) + 𝐺(𝑖) (2 − 𝜎(𝑗))
𝛿𝑡

(𝑖,𝑗)
1
2(𝑡) 

2 [1, 2] 

Elastic modulus 𝐺 =  
𝐸

2(1 + 𝜎)
 2 [1, 2] 

Normal damping 

coefficient 𝜂𝑛
(𝑖,𝑗)

(𝑡) =
2√𝑚𝑒𝑓𝑓

(𝑖,𝑗)
 𝑘𝑛

(𝑖,𝑗)
(𝑡)|𝑙𝑛 𝑒𝑛|

√𝜋2 + 𝑙𝑛2 𝑒𝑛

 𝛿𝑛
(𝑖,𝑗)(𝑡)

1
4 

2  5 [1, 2] 

Tangential damping 

coefficient 𝜂𝑡
(𝑖,𝑗)

=
2√𝑚𝑒𝑓𝑓

(𝑖,𝑗)
 𝑘𝑡

(𝑖,𝑗)
(𝑡) |𝑙𝑛 𝑒𝑡|

√𝜋2 + 𝑙𝑛2 𝑒𝑡

 𝛿𝑡
(𝑖,𝑗)(𝑡)

1
4 

2  5 [1, 2] 

effective radius 𝑅𝑒𝑓𝑓
(𝑖,𝑗) = 

2 (𝑑𝑝
(𝑖) + 𝑑𝑝

(𝑗)
) 

𝑑𝑝
(𝑖)

𝑑𝑝
(𝑗)

 2 [1, 2] 

Effective mass 𝑚𝑒𝑓𝑓
(𝑖,𝑗) =  

 𝑚(𝑖) + 𝑚(𝑗) 

𝑚(𝑖) 𝑚(𝑗)
 

2 [1, 2] 

Normal lubrication force 

component 
𝐹𝐿

𝑁 (𝑖,𝑗)
(𝑡) =  

2 𝜋 𝜂𝑓 (𝑑
(𝑖) + 𝑑(𝑗))

2
 

32  (ℎ(𝑖,𝑗)(𝑡) +  𝜀)  
 𝑣𝑛(𝑡) 

6  

Tangential lubrication 

force component 

𝐹𝐿
𝑇 (𝑖,𝑗)

(𝑡) =  
𝜋 𝜂𝑓

2
 [−

(𝑑(𝑖) + 𝑑(𝑗))

2

+ (
(𝑑(𝑖) + 𝑑(𝑗))

2

+ (ℎ(𝑖,𝑗)(𝑡) +  𝜀)) ln(
(𝑑(𝑖) + 𝑑(𝑗) + 2(ℎ(𝑖,𝑗)(𝑡) +  𝜀))

2(ℎ(𝑖,𝑗)(𝑡) +  𝜀)
)] 𝑣𝑡(𝑡) 

6  

Total lubrication force 𝐹𝐿
𝑡𝑜𝑡 (𝑖)(𝑡) = −𝐹𝐿

𝑡𝑜𝑡 (𝑗)(𝑡) = 𝐹𝐿
𝑁 (𝑖,𝑗)

(𝑡) + 𝐹𝐿
𝑇(𝑖,𝑗)

 (𝑡) 
6  

Total lubrication torque 𝑇𝐿
(𝑖)(𝑡) = −𝑇𝐿

(𝑗)(𝑡) =  
𝑑(𝑖) + (ℎ(𝑖,𝑗)(𝑡) +  𝜀)

2
 𝐹𝑡

𝐿 (𝑖,𝑗)
(𝑡) 

6  

DEM: Fluid-solids coupling (Discrete formulation) 

For each particle of the system 

Solids/Fluid momentum 

exchange on REV 
𝐼𝑓⃗⃗ ⃗(𝑡) =  

1

𝜈𝑅𝐸𝑉
 ∑𝐹𝐷

⃗⃗⃗⃗⃗
 (𝑘)

(𝑡) 𝐾𝑅𝐸𝑉(𝑋𝑝
(𝑘)

)

𝑁𝑘

𝑘=1

 
2 [1, 2] 

Drag forces 𝐹𝐷
⃗⃗⃗⃗⃗

 (𝑘)
(𝑡) = −𝛻 𝑃𝑓(𝑡) (

𝜋

6
 𝑑𝑝

(𝑘)3
 ) +

𝛽𝑓𝑠
(𝑘)(𝑡)

(1 − 𝜀𝑓 (𝑡))
(
𝜋

6
 𝑑𝑝

(𝑘)3
)(𝑣𝑓⃗⃗ ⃗⃗ (𝑡) − 𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
(𝑡)) 2 [1, 2] 
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Equation names Equations Ref. Experiments 

Local fluid/solid 

momentum transfer 

𝛽𝑓𝑠
(𝑘)

(𝑡)

=

{
  
 

  
 3

4
𝐶𝐷

(𝑘)
(𝑡)

𝜌𝑓  𝜀𝑓(𝑡) (1 − 𝜀𝑓 ) ‖𝑣𝑓⃗⃗ ⃗⃗ − 𝑣𝑠⃗⃗⃗⃗
 (𝑘)

‖

𝑑𝑝
(𝑘)  𝜀𝑓

  −2.65                                  𝜀𝑓 ≥ 0.8

150 (1 − 𝜀𝑓 (𝑡))
2
 𝜂𝑓

𝜀𝑓 (𝑡) 𝑑𝑝
(𝑘)2

+
1.75 𝜌𝑓  (1 − 𝜀𝑓 (𝑡)) ‖𝑣𝑓⃗⃗ ⃗⃗ (𝑡) − 𝑣𝑠⃗⃗⃗⃗

 (𝑘)
(𝑡)‖

𝑑𝑝
(𝑘)

                𝜀𝑓 < 0.8

 

3  4 [1, 2] 

Drag coefficient 𝐶𝐷
(𝑘)

(𝑡) =  {

24

𝑅𝑒(𝑘)(𝑡)(1 + 0.15 𝑅𝑒(𝑘)(𝑡)0.687)
                             𝑅𝑒(𝑘)(𝑡) < 1000

0.44                                                                        𝑅𝑒(𝑘)(𝑡) ≥ 1000

 3  4 [1, 2] 

Dimensionless number 

Reynolds number 𝑅𝑒(𝑘)(𝑡) =
𝑑𝑚

(𝑘)
 ‖𝑣𝑓⃗⃗ ⃗⃗ (𝑡) − 𝑣𝑠⃗⃗⃗⃗

 (𝑘)
(𝑡)‖ 𝜌𝑓

𝜂𝑓
 

3 [1, 2] 

1  Syamlal et al., (1993) 

²  Garg et al., (2010) 

3  Benyahia et al., (2012) 

4  Gidaspow, (1986) 

5  MFIX code 

6  Marzougui et al., (2015) 

 

Symbol Definition 

  Drag coefficient of the kth particle 

  ith particle diameter 

  Particle normal restitution coefficient 

  Particle tangential restitution coefficient 

  ith particle Young modulus 

 
 Normal contact force between kth particle and its lth neighbor 

 
  Tangential contact forces between kth particle and its lth neighbor  

  Drag force on kth particle 

  Gravitational vector (m s-2) 

  kth particle shear moduli 

  Distance between ith and jth particles edges 

  Fluid-solid momentum exchange 

  kth particle moment of inertia 

  Generic kernel to determine the influence of a particle located at on the REV 

  Normal spring coefficient between ith and jth particles contact 
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  Tangential spring coefficient between ith and jth particles contact 

  Neighbors index 

  kth particle mass 

  ith and jth particles effective radius 

  Number of neighbors of the kth particle 

  Number of particles 

  Normal vector between ith and jth particles 

  Fluid pressure (Pa) 

REV  Representative elementary volume 

  ith particle Reynolds number 

  ith and jth particles effective radius 

  Contact area radius between ith and jth particles 

  Contact torque between kth particle and its lth neighbor 

  Lubrication torque between kth particle and its lth neighbor 

  Fluid velocity vector (m s-1) 

  kth particle velocity vector (m s-1) 

  kth particle position (m) 

  kth particle – fluid momentum transfer coefficient 

  Normal relative velocity between ith and jth particles 

   Tangential relative velocity between ith and jth particles 

  Kronecker tensor 

  Normal overlap between ith and jth particles 

  Tangential displacement during the contact between ith and jth particles contact 

  Roughness distance below which lubrication is ineffective (m) 

  Fluid volume fraction 

  Fluid strain rate tensor 

  Fluid viscosity (Pa s) 

  Normal damping coefficient between ith and jth particles 

  Tangential damping coefficient between ith and jth particles 

  Domain volume (m-3) 

  Fluid density (kg m-3) 

  ith particle Poisson coefficient 

 Fluid stress tensor 

  kth particle rotation vector (rad s-1) 

 Nabla operator 

 Outer product 

Table S3.2.2 : Symbols used in Table S1. 
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Supplementary Section S3.3:  

This Supplementary section presents the validation experience and results to validate our 

implementation of lubrication forces. 

The CFD-DEM approach is a parameterized method, in which the fluid cells are larger than 

particle sizes and the forces exerted by the fluid depend on fluid properties interpolated at the 

particle location. Our additions to this parameterized approach need to be validated to ensure results 

reliability. We validated our implementation of lubrication into MFIX by reproducing particle 

rebound experiments performed by Gondret et al. (2002). The experiments consisted of a sphere 

immersed in a viscous fluid and falling under the effect of gravity until it rebounds on a flat surface. 

The authors calculated the effective restitution coefficient of each rebound, which corresponds to 

the ratio of the particle velocity just before and after the contact occurring in wet condition 

normalized by the dry restitution coefficient. Results are sorted as a function of the collisional 

Stokes number used by the authors, . When St>1, the particle motion is 

controlled by its inertia whereas for St<1, the surrounding fluid tends to dominate particle trajectory 

and behavior (Burgisser et al., 2005). Experimental results of Gondret et al. (2002) show that the 

effective restitution coefficient is affected by the presence of fluid when St<103 (Fig. S1). When 

St<10, the fluid effect is so important that no rebound was measurable. We performed numerical 

experiments with the particles and fluid properties from Gondret et al. (2002). Each case was run 

twice, the first one with lubrication and the second one without. Results show that our model 

outputs match the experimental data (Fig. S3.3.1). This validates our implementation of lubrication 

forces and shows that the model reproduces realistic contacts between particles immerged in a 

fluid. 
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Supplementary Section S3.4: 

This Supplementary section presents the steps to transform Eq. (3.1) to Eq. (3.11) 

The dimensional Lagrangian BBO equation, which describes the motion of a particle in a 

dense suspension, is expressed in Eq. (3.1). We introduce in it the following dimensionless 

quantities: 

𝑣𝑝1̃ =
𝑣𝑝1

𝑣0
 ;  𝑣𝑓̃ =

𝑣𝑓

𝑣0
 ;  𝑣𝑝̃ =

𝑣𝑝

𝑣0
 ;  ∆𝜌̃ =

∆𝜌

𝜌0
 ;  𝜌𝑝̃ =

𝜌𝑝

𝜌0
 ; 𝑡̃ =

𝑡

𝜏
 ; 𝑑𝑝̃ =

𝑑𝑝

𝛿
 ;  𝜂𝑓̃ =

𝜂𝑓

𝜂0
 ; 𝑔̃ =

𝑔

𝑔0
  (S3.4.1) 

where 𝑣𝑝1̃, 𝑣𝑓̃ and 𝑣𝑝̃ correspond to the dimensionless forms of the velocities involved in Eq. (3.1). 

Variables ∆𝜌̃, 𝜌𝑝̃, 𝑡̃, 𝑑𝑝̃ , 𝜂𝑓̃ , and 𝑔̃ are the dimensionless density contrast, particle density, time, 

particle diameter, fluid viscosity and gravitational acceleration, respectively. Variables 𝑣0, 𝜌0, 𝛿, 𝜏, 

𝜂0, and 𝑔0 represent the characteristic speed, density, distance, time, viscosity and gravitational 

acceleration, respectively. Introducing the dimensionless variables into Eq. (3.1) yields: 

𝑣0² 

𝛿

𝑑 𝑣𝑝1̃

𝑑 𝑡̃
=

∆𝜌̃ 𝜌0 𝑔̃ 𝑔0

𝜌𝑝̃ 𝜌0
− 

3 𝜂𝑓̃ 𝜂0 𝑣𝑓̃ 𝑣0

2 𝛼 𝜌𝑝̃ 𝜌0 𝑑𝑝̃
2
 𝛿2

−
3 𝜂𝑓̃ 𝜂0 𝑣𝑝̃ 𝑣0 𝐴

𝜌𝑝̃ 𝜌0 𝑑𝑝̃
2
 𝛿2

 . (S3.4.2) 

Figure S3.3.1:  Validation of the lubrication forces implementation by reproducing experiments from Gondret et al. (2002). 

The abscissa is the decimal logarithm of the collisional Stokes number. The ordinate is the effective restitution coefficient 

defined as the ratio of the measured restitution coefficient in wet condition over the dry restitution coefficient. Each glyph 

represents a numerical simulation. The symbol shape depends on the sphere material, the black filling indicates the run with 

lubrication and the white filling the run without. A fit of the experimental results obtained by Gondret et al., (2002) is 

displayed as a dashed curve. 
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Defining 𝜌0 = 𝜌𝑝, 𝜏 =  𝛿/𝑣0, 𝜂0 = 𝜂𝑓, and 𝑔0 = 𝑔, gives: 

 ∆𝜌̃ =
∆𝜌

𝜌𝑝
 ;  𝜌𝑝̃ = 1 ; 𝑡̃ =

𝑡 𝑣0

𝛿
  ;  𝜂𝑓̃ = 1 ; 𝑔̃ = 1,  (S3.4.3) 

and 

𝑣0² 

𝛿

𝑑 𝑣𝑝1̃

𝑑 𝑡̃
=

∆𝜌 𝑔 

𝜌𝑝 
− 

3 𝜂𝑓 𝑣𝑓̃ 𝑣0

2 𝛼 𝜌𝑝  𝑑𝑝̃
2
 𝛿2 

−
3 𝜂𝑓 𝑣𝑝̃  𝑣0 𝐴

𝜌𝑝  𝑑𝑝̃
2
 𝛿2 

 . (S3.4.4) 

Replacing 𝑑𝑝̃
2
 𝛿2 by 𝑑𝑝² and moving the term 𝑣0²/ 𝛿 from the right-hand side to the left-hand side 

yields: 

𝑑 𝑣𝑝1̃

𝑑 𝑡̃
=

∆𝜌 𝑔 𝛿

𝜌𝑝 𝑣0
2 − 

3 𝜂𝑓 𝑣𝑓̃ 𝛿

2 𝛼 𝜌𝑝 𝑑𝑝
2 𝑣0

−
3 𝜂𝑓 𝑣𝑝̃ 𝛿 𝐴

𝜌𝑝 𝑑𝑝
2 𝑣0

 . (S3.4.5) 

Equation (S3.4.5) can also be expressed as: 

𝑑 𝑣𝑝1̃

𝑑 𝑡̃
=

1

𝐹𝑅
2 − 

 𝑣𝑓̃ 

𝑆𝑇
−

 𝑣𝑝̃ 

𝑆𝑂
,  (S3.4.6) 

with: 

𝐹𝑅
2 =

𝜌𝑝 𝑣0
2

∆𝜌 𝑔 𝛿
 ,   (S3.4.7a) 

𝑆𝑇 =
2 𝛼 𝜌𝑝 𝑑𝑝

2 𝑣0

3 𝜂𝑓 𝛿
 , (S3.4.7b) 

𝑆𝑂 =
 𝜌𝑝 𝑑𝑝

2 𝑣0

3 𝜂𝑓 𝐴 𝛿
 . (S3.4.7c) 
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Supplementary Section S3.5: 

This Supplementary section explores the possibility to resolve implicitly lubrication 

interactions in CFD-DEM models. 

Previous CFD-DEM works involving dense suspensions have taken lubrication effects into 

account by artificially decreasing the dry contact restitution coefficients (i.e. the proportion of the 

kinetic energy conserved during contact) between particles to unrealistic low values (typical below 

0.1) (Bergantz et al., 2015; Schleicher et al., 2016; Schleicher and Bergantz, 2017). Our results 

indicate that lubrication forces affect the simulation dynamics when the solids are close to 

jamming. The strongest lubrication effects are produced by the resistance of the carrier phase to 

the expansion of the discrete solid phase. This process does not involve any contacts, so one can 

expect that lowering the contact restitution coefficients would poorly mimic the effect of having 

explicit lubrication forces. We tested this assumption by running both experiments 1 and 2 with 

low restitution coefficients. Surprisingly, results show that time delays of bed sedimentation and 

bed remobilization caused by the presence of lubrication forces are also present with low restitution 

coefficients (Fig. 3.3 and S3.5.1). We tested the relationship between delay and restitution 

coefficients by running two simulations similar to simulation 2A except that lubrications forces 

were mimicked by two distinct low restitution coefficients (Table S3.1). The delays are inversely 

proportional to the value of the restitution coefficients (Fig. S3.5.1 B‒C). 

The initial expansion produced by either the injection (experiment 1) or the return flow of 

the fluid (experiment 2) imposes an additional stress on the surrounding particle bed. We observed 

that this stress is distributed within the particle bed thanks to particle contacts and the loading of 

contact force chains (Fig S3.5.2). When restitution coefficients are decreased, contact durations are 

longer, and force chains can accommodate more stress before any strain occurs. This mechanism 

is the most likely cause of the delays observed in the runs with low restitutions coefficients. Our 

results indicate that, in the case explored herein, lowering restitution coefficients is a valid approach 

to mimic the belated initiation of motion of the particle bed caused by lubrication. The generality 

of this approach must be tested for other applications. 

 

 



 

 

 
95 Chapter 3: Effects of lubrication forces on mush dynamics 

 

 

Run  (Pa s)  

(m) 

 

(kg m-3) 

 

(kg m-3) 

bed  size 

(m × m) 

  injection width 

(m) 

injection 

velocity (m s-1) 

lubricatio

n 

2A 0.2 4 ± 0.2 10-3 3300 2650 0.96 × 0.40 0.7 0.35 0.16 0.023 yes 

SEA 0.2 4 ± 0.2 10-3 3300 2650 0.96 × 0.40 0.01 0.005 0.16 0.023 No 

SEB 0.2 4 ± 0.2 10-3 3300 2650 0.96 × 0.40 0.1 0.05 0.16 0.023 No 

Table S3: Parameters used for the simulations involving the injection of a crystal-free basalt inside a basaltic mush. 

 

 

 

 

 

Figure S3.5.1: Snapshots of experiment 2A simulations with lubrication and two simulations that mimic it. All simulations 

are displayed at the same time step after 9.8 s of injection. The color code indicates the local particle volume fraction. [A] 

Simulation involving lubrication (2A)  [B] – [C] Simulations that mimic lubrication by reducing restitution coefficients to 

𝒆𝒏 = 𝟎. 𝟎𝟏 (run SEA) and 𝒆𝒏 = 𝟎. 𝟏 (run SEB), respectively. 
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Figure S3.5.2: Evolution of the particle overlaps. Each disk represents a particle on run 1A. The color depends on the 

maximum overlap between the particle and its neighbors. The maximum overlap percentage indicates the loading applied 

to the particles force chains. For each particle the percentage of overlap is taken as the maximum overlap distance between 

the particle and its neighbors divided by the particle diameter (= 𝟏𝟎𝟎 (𝐦𝐚𝐱(𝜹𝒏)/ 𝒅𝒑)). 

 

Additional references: 

Benyahia, S., Syamlal, M., O’Brien, T.J., 2012. Summary of MFIX equations 2012-1. URL 

https://mfix.netl.doe.gov/download/mfix/mfix_current_documentation/MFIXEquations2012-1.pdf. Accessed 31 August 
2018. 

Gidaspow, D., 1986. Hydrodynamics of Fiuidizatlon and Heat Transfer: Supercomputer Modeling. Appl. Mech. Rev. 39, 1–23. 

https://doi.org/10.1115/1.3143702 

Goldhirsch, I., 2008. Introduction to granular temperature. Powder Technol., Granular Temperature 182, 130–136. 
https://doi.org/10.1016/j.powtec.2007.12.002 
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Chapter 4: CFD-DEM modeling of recharge 

events within mush12 

4.1. Introduction 

Injections of new magmas, also called recharge events, are ubiquitous in magmatic systems. 

They are inferred to cause the formation of long-lived, supersolidus magmatic reservoirs located 

in the upper crust (Annen et al., 2006; Annen and Sparks, 2002; Karakas et al., 2017). The injection 

of hotter magma into a cooler resident system is also identified as a common scenario to trigger 

volcanic eruptions. Caricchi et al. (2014) showed that the long-term supply rate in new magma and 

time between successive recharge events control the sizes and frequency of eruptions. The 

associated eruptive products show that the host and the injected materials can either completely 

mix (e.g. Nakagawa et al., 2002; Pallister et al., 1992), or only display limited or absent mixing 

(e.g. Bachmann et al., 2002;  Eichelberger and Izbekov, 2000; Takahashi and Nakagawa, 2013). 

The ubiquity of recharge events and the large diversity of possible outcomes raise questions about 

the link between the dynamic behavior of an intrusion and its ability to trigger a volcanic eruption. 

 A number of evidences show that shallow silicic reservoirs reside most time in a mush state 

because of the rapid cooling and crystallization of the emplaced magma (e.g. Bachmann and Huber, 

2016; Cashman et al., 2017, and reference therein). A magmatic mush is a crystal-rich magma in 

which crystals are in frictional contacts, forming a semi-rigid framework that supports force chains 

(Bergantz et al., 2017), which inhibit the ability of the magma to erupt. Together with the thermal 

structure of the upper crust and the frequency of recharges, the geometry and mode of emplacement 

of the intruded magma were identified as having a crucial effect on its cooling rate, which in turn 

controls the long-term evolution of igneous bodies (Annen et al., 2015). The rock record shows 

that parts of magmatic systems are regularly fed by both mafic and silicic magmas (e.g. Wiebe, 

2016). Intrusion style also has a fundamental role in the way mush rejuvenates (process of recycling 

the mush to generate an eruptible magma) prior to eruption (Parmigiani et al., 2014, and references 

                                                             
12 This chapter is currently prepared for submission as a research article to Earth and Planetary Science Letters as: 
Carrara, A., Burgisser, A., Bergantz, G.W., CFD-DEM modeling of recharge event within mush. 
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therein). Several rejuvenation scenarios assume that the intruder is emplaced as sills at the base of 

the mush, and rejuvenate it by suppling heat, and possibly exsolved volatiles, without penetration 

of the intruded material within the mush except bubbles (Bachmann and Bergantz, 2006; Bergantz, 

1989; Burgisser and Bergantz, 2011; Couch et al., 2001; Huber et al., 2011). Other scenarios 

consider that the injected magma may penetrate the mush, producing various degrees of mixing 

with the resident mush depending on its buoyant acceleration (e.g. Bergantz and Breidenthal, 2001; 

Koyaguchi and Kaneko, 2000; Weinberg and Leitch, 1998). 

An essential physical process is that the melt and crystals constituting a mush may decouple 

from each other. Pioneering numerical simulations explicitly accounting for such decoupling as 

well as the building and destruction of force chains between crystals focused on basaltic mush 

dynamics (Bergantz et al., 2015; Schleicher et al., 2016; Schleicher and Bergantz, 2017). They 

have revealed that the local injection of pure melt of the same density and viscosity as the mush 

interstitial melt may fluidize, penetrate, and mix with the overlying mush. This is restricting the 

scope of the rejuvenation scenarios based on the emplacement of an underlying mafic gravity 

current (Snyder and Tait, 1995) by suggesting that underplating may require contrasts in melt 

densities and/or viscosities to hinder fluidization. As mush dynamics differs from that of pure 

fluids, previous explorations of the controls of underplating and rejuvenation (e.g. Turner and 

Campbell, 1986) cannot be directly used to determine the dynamical regimes fostering. It is thus 

important to identify the parameters controlling the unfolding of an intrusion event in order to 

improve our understanding of how mush processes are linked to the evolution of magmatic 

systems. 

 To constraint the short-term behavior of a recharge event, we performed numerical 

simulations using a combination of fluid mechanics and discrete elements (Bergantz et al., 2015; 

Schleicher et al., 2016; Schleicher and Bergantz, 2017) and explored different parameters 

controlling the dynamics of the intruded material when injected into a mush. We first introduce the 

numerical model and the modifications we implemented to be able to replicate conditions 

prevailing in chemically evolved magmas. We define the dimensionless parameters controlling 

recharge dynamics that are varied in the simulations. Successive runs were performed by varying 

the contrasts between the physical properties of the two magmas (viscosity and density of the two 

melts), and injection rate of the intruder. Results of the numerical simulations are then presented 

in the framework of the dimensionless parameters. Finally, we discuss the assumptions made in 
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our model and their expected influences on our results as well as the implications of our results on 

the dynamics of magmatic reservoir and mush rejuvenation. 

Symbol (unit) Definition 

𝑑𝑝 (m) Particle diameter 

𝐸 (Pa) Particle Young modulus 

𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (N) Gravity-Pressure-Drag force 

𝑔 (m s-2) Gravity acceleration vector 

𝐻𝑏𝑒𝑑 (m) Particle bed thickness 

𝐻𝑚𝑎𝑥 (m) Intruded layer maximum height above the inlet 

𝐻∗  Dimensionless height of the intruded volume 

𝑚𝑝 (kg) Particle mass 

𝑃 (Pa) Fluid pressure 

𝑅 (m) Intruder batch radius 

𝑡∗  Reduced time 

𝑈𝑖𝑛𝑗 (m s-1)  Injection superficial velocity 

𝑼𝒎𝒇 (m s-1) Minimum fluidization superficial velocity 

𝑼∗  Dimensionless injection velocity 

𝑣𝑓⃗⃗⃗⃗⃗ (m s-1) Fluid velocity vector 

𝑣𝑝⃗⃗⃗⃗⃗ (m s-1) Particle velocity vector 

𝑊𝑖𝑛𝑗 (m) Injection width 

𝜌𝑓  (kg m-3) Fluid density 

𝜂 (Pa s) Fluid dynamic viscosity 

𝜏𝑣 (s) Particle viscous response time 

𝛽 (kg s-1) Momentum transfer coefficient 

∆𝑡 (s) DEM time step 

𝜂 (Pa s) Fluid dynamic viscosity 

𝜂𝑖 (Pa s) Intruder melt dynamic viscosity 

𝜂ℎ (Pa s) Host melt dynamic viscosity 

𝜂∗  Melts dynamic viscosity ratio 

𝜇  Particle friction coefficient 

𝜌ℎ (kg m-3) Host melt density 

𝜌𝑖 (kg m-3) Intruder melt density 

𝜌𝑝 (kg m-3) Average density of the particles 

𝜌∗  Melts reduced buoyancy 

𝜌𝑏
∗   Melts bulk reduced buoyancy 

𝜎  Poisson coefficient 

𝜏𝑣 (s) Particle viscous response time 

𝛷  Solid volume fraction 

Table 4.1: List of symbols and their meaning  
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4.2 Method 

  4.2.1 Numerical method 

We performed Computational-Fluid-Dynamic and Discrete-Element-Method (CFD-DEM) 

numerical simulations by using the MFIX-DEM software (https://mfix.netl.doe.gov/). The 

equations used in this chapter are summarized in the supplementary section S4.1. Details about the 

theory and implementation of the model can be found in Garg et al. (2010), Syamlal (1998), 

Syamlal et al. (1993), and validation of the DEM approaches in Garg et al. (2012) and Li et al. 

(2012). To ensure stability of the simulations, the classical DEM integration scheme imposes to 

use time steps shorter than the characteristic durations of the physical processes controlling the 

crystal motions, which are here contact durations and drag characteristic time. When increasing 

melt viscosity, the particle viscous response time, 𝜏𝑣 (time for the particle to adapt to changes in 

the fluid velocity) decreases, which results in short DEM time steps and impractically long 

computations. As the flows simulated are in the laminar regime and the particle Reynolds numbers 

are also well below the transition to turbulence (Furuichi and Nishiura, 2014), the drag force 

exerted by the fluid on the particles as well as gravity and pressure forces were calculated using an 

alternative approach instead of the usual numerical evaluation (Garg et al., 2012). 

 In the absence of particle contacts, the equation of motion for the solids reads: 

 
𝑑 𝑣𝑝⃗⃗ ⃗⃗ ⃗

𝑑𝑡
= −

∇𝑃

𝜌𝑝
+ 𝑔⃗ +

𝛽

𝛷 𝜌𝑝
(𝑣𝑓⃗⃗⃗⃗⃗ − 𝑣𝑝⃗⃗⃗⃗⃗),  (4.1) 

where  𝑣𝑝⃗⃗⃗⃗⃗ is the particle velocity vector, 𝑃 is the fluid pressure, 𝜌𝑝 is the crystal density, 𝛷 is the 

particle volume fraction,  𝛽 is the momentum exchange coefficent, 𝑣𝑓⃗⃗⃗⃗⃗ is the fluid velocity vector, 

and 𝑔⃗ is the gravitational acceleration vector. The first term in the right hand side of Eq. (4.1) is 

the pressure force, which includes the particle buoyancy. The last term expresses the drag force 

that depends on the relative motions of the particles compared to the fluid, and on the momentum 

transfer coefficient, which is parameterized using the Gidaspow drag model (Gidaspow, 1994). For 

mushy conditions, inertial effects may be neglected, and 𝛽  reduces to the Kozeny-Carman 

relationship: 

𝛽 =
150 𝛷2 𝜂

(1−𝛷) 𝑑𝑝
2,  (4.2) 
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where 𝜂 is the fluid dynamic viscosity, and 𝑑𝑝 is the particle diameter. Similarly to Bergantz et al. 

(2017), the particle response time is defined as 𝜏𝑣 =  𝛷𝜌𝑝/𝛽 . At low Reynolds and Stokes 

numbers, 𝜏𝑣 is shorter than the fluid characteristic time, which means that the fluid velocity and 

pressure gradient within Eq. (4.1) may be considered constant during the acceleration of the particle 

in response to a change in its environment. Consequently, equation (4.1) reduces to a first order 

ordinary differential equation having as solution: 

 𝑣𝑝⃗⃗⃗⃗⃗(𝑡) = 𝑣𝑝0⃗⃗ ⃗⃗ ⃗⃗⃗ 𝑒
−

𝑡

𝜏𝑣 + (𝑣𝑓⃗⃗⃗⃗⃗ + 𝜏𝑣 (𝑔⃗ −
∇𝑃

𝜌𝑝
))(1 − 𝑒

−
𝑡

𝜏𝑣) , (4.3) 

where 𝑣𝑝0⃗⃗ ⃗⃗ ⃗⃗⃗ is an initial particle velocity vector. The effective force, 𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , needed to get from the 

velocity at time 𝑡0 to that a DEM time step, ∆𝑡, later is: 

𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡0) =

𝑚𝑝

∆𝑡
(𝑣𝑝⃗⃗⃗⃗⃗(𝑡0 + ∆𝑡) − 𝑣𝑝⃗⃗⃗⃗⃗(𝑡0)),  (4.4) 

where 𝑚𝑝 is the mass of the particle. Setting 𝑣𝑝0⃗⃗ ⃗⃗ ⃗⃗⃗ =  𝑣𝑝⃗⃗⃗⃗⃗(𝑡) in Eq. (4.3), 𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡0) becomes:  

𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡0) =

𝑚𝑝

∆𝑡
 (𝑣𝑓⃗⃗⃗⃗⃗(𝑡0) + 𝜏𝑣 (𝑔⃗ −

∇𝑃(𝑡0)

𝜌𝑝
) − 𝑣𝑝⃗⃗⃗⃗⃗(𝑡0)) (1 − 𝑒

−
∆𝑡

𝜏𝑣).  (4.5) 

Equation (4.5) presents the advantage to depend on the DEM time step instead of on a stability 

criterion. The DEM time steps are far larger than those stemming from the classical numerical 

integration of Eq. (4.1), which significantly decreases the computational costs. Our approach 

represents a compromise between the usual DEM approach that resolves the particles acceleration 

in time and the approach given in Furuichi and Nishiura, (2014), which assumes that the particles 

jump to their terminal velocities at the next time step. When ∆𝑡 ≫  𝜏𝑣, Eq. (4.5) returns the force 

needed for the particle to jump its terminal velocity at the next time step. When ∆𝑡 < 𝜏𝑣, Eq (4.5) 

is able to recover the evolution of the particle velocity in time. We implemented Eq. (4.5) in place 

of MFIX’s classical evaluations of the gravitational, pressure and drag forces, and left unchanged 

the computations of the contact forces and of the averaging of the drag forces exerted by the 

particles on the fluid. 
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  4.2.2 Numerical setup and experiments 

The computational domain is a 3D medium of 1.6 × 0.8 × 0.05 m (length × height × width) 

filled with a resident melt (Fig. 4.1). We created a mush layer of ~0.3 m height with an initial 

crystal content of ~0.64 by simulating the settling of the particles in a vacuum and positioning them 

at the base of the domain. We used the same density for all particles (𝜌𝑝 = 3300 kg m-3) and three 

different diameters (4.5, 5, and 5.5 mm) to avoid artificial clustering. All simulations use the same 

initial particle bed. A crystal-free magma is injected at the base of the mush layer with a superficial 

vertical velocity, 𝑈𝑖𝑛𝑗, through an inlet having a width, 𝑊𝑖𝑛𝑗. The density and the viscosity of the 

injected melt are kept constant between all the simulations (𝜌𝑖 = 2500 kg m-3; 𝜂𝑖 = 1 Pa s, see 

table 4.2 for the list of the parameters kept constant in the chapter). We used a conduit of 3.2 cm 

in height to supply the inlet to ensure that the intruder enters the mush as a Poiseuille flow. At the 

top of the domain, we used a pressure outflow boundary conditions to ensure the overall mass 

conservation within the entire domain. The boundary conditions at the front and back of the domain 

are cyclical, which means that the intruder corresponds to a dyke having one infinite dimension. 

All the other boundary conditions are non-slip walls (Fig 4.1). For simplicity, thermal effects are 

ignored.   

We performed two sets of numerical simulations to explore the influence of the host melt 

density, the host melt viscosity, and the injection velocity on the dynamics of a melt intrusion in a 

mush (See Table 4.3 for a list of all the simulations and the corresponding parameters). The first 

set of 25 simulations (A1‒A25, Table 4.3) explores the influence of the density and the viscosity 

contrasts between the two magmas. For these simulations, the injection velocities are such that the 

ratio with the respective minimum fluidization velocity, 𝑈𝑚𝑓, remains constant at 𝑈𝑖𝑛𝑗/𝑈𝑚𝑓=21.2. 

This ratio is chosen to match that used previously in similar works (Schleicher et al., 2016; 

Schleicher and Bergantz, 2017) according to the formula presented in the supplementary section 

S4.2. The second set of experiments encompasses 4 simulations and explores the influence of the 

injection velocity on the intrusion dynamics by varying the ratio 𝑈𝑖𝑛𝑗/𝑈𝑚𝑓 while keeping the same 

host and intruded materials. We used run A25 as a reference for the physical properties of the host, 

which is the simulation that presents the largest density and viscosity contrasts between the two 

melts. 
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4.2.3 Dimensionless parameters 

In order to compare simulations, we used dimensionless quantities to scale the effects of 

the contrasts in densities and viscosities, and injection velocities. The injection velocity and melt 

viscosity control the stress applied by the input of new materials to the mush. These parameters 

enter the minimum fluidization velocity, 𝑈𝑚𝑓 (Schleicher et al., 2016, see supplementary material 

S4.2 for derivation of Umf), which expresses the minimum superficial velocity required for the 

injection to entrain the host solids and generate the fluidization of the particle bed (Cui et al., 2014; 

Shi et al., 1984). As the injected melt differs from the host melt, two minimum fluidization 

velocities can be calculated depending on which melt is considered. For all simulations, we used 

the minimum of these two velocities, which here always corresponds to that using the host melt 

properties. The dimensionless injection velocity, 𝑈∗, is defined as: 

Figure 4.1: Numerical setup. [A] The drawing represents the computational domain viewed from the front. The medium 

is composed by a rectangular box, which is fed by a conduit at its base. Particles are settled to generate a particle bed 

having a thickness 𝑯𝒃𝒆𝒅. The background colors indicates which fluid is present initially in the computational domain. The 

blue color corresponds to the host melt and the green color to the intruded melt. The red arrows below the conduit 

represent the velocity profile of the injected fluid (Poiseuille flow). The arrows atop the domain indicate that the boundary 

condition is a fixed pressure outflow. The hatched walls indicate non-slip boundary conditions. [B] Side view of the 

computational domain. The green dashed lines indicate that cyclical boundary conditions are used for these walls. The 

dotted circles indicate particles overlapping with one of the two cyclical boundary conditions and that are also considered 

to be present on the opposite side. 
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𝑈∗ =
𝑈𝑖𝑛𝑗

𝑈𝑚𝑓
.  (4.5) 

In simulations having identical 𝑈∗, the injection imposes the same stress to the overlying mush. 

However, the time needed to inject the same new melt volume changes between simulations 

because 𝑈𝑚𝑓 varies. We thus used a dimensionless time, 𝑡∗, to scale the simulation time (Bergantz 

et al., 2017): 

𝑡∗ = 
𝑡 𝑈𝑖𝑛𝑗

 𝐻𝑏𝑒𝑑
,  (4.6) 

where  is the simulation time. In this way, for identical 𝑡∗, the same volumes of intruder are 

injected and simulation results can be compared directly. 

The density contrast between the two materials is scaled using the reduced buoyancy of the 

intruder. A negative reduced buoyancy indicates that the intruder is buoyant compared to the mush, 

whereas a positive one indicates a tendency to sink. Two reduced buoyancies may be defined. The 

first one, 𝜌∗, expresses the buoyancy contrast between the two melts: 

𝜌∗ = 
𝜌𝑖 − 𝜌ℎ

𝜌𝑖
, (4.7) 

where 𝜌𝑖 is the density of the intruded melt, and 𝜌ℎ is the host melt density. The second one, 𝜌𝑏
∗, 

takes the presence of crystals in the host material into account and scales the bulk densities: 

𝜌𝑏
∗ = 

𝜌𝑖 − (𝜌ℎ (1−𝛷) + 𝜌𝑝  𝛷)

 𝜌𝑖 
, (4.8) 

Parameter  Value or range 

𝜌𝑝  3300 kg m-3 

𝑑𝑝  4.5-5.5 mm 

Nb crystals 208495 

𝐻𝑏𝑒𝑑  0.3 m 

𝑊𝑖𝑛𝑗  0.1 m 

𝜌𝑖  2500 kg m-3 

𝜂𝑖  1 Pa s 

𝐸  2 107 Pa 

𝜎  0.32  

𝜇  0.3 

Table 4.2: Parameters kept constant during the parametric study 
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where 𝜌𝑝 is the density of the host solids, and 𝛷 is the particle volume fraction. The viscosity 

contrast, 𝜂∗, between the two melts is expressed as: 

𝜂∗ =
𝜂ℎ

𝜂𝑖
, (4.9) 

where   𝜂ℎ is the host dynamic viscosity and  is that of the injected melt.  

 

Run nb.  (kg m-3) 𝝆  (kg m-3)         (m s-1)  (m s-1) 

A1 2500 3012 0 -0.2048 1 2.956 10-4 6.268 10-3 

A2 2500 3012 0 -0.2048 5 5.913 10-5 1.254 10-3 

A3 2500 3012 0 -0.2048 10 2.957 10-5 6.268 10-4 

A4 2500 3012 0 -0.2048 50 5.913 10-6 1.254 10-4 

A5 2500 3012 0 -0.2048 100 2.957 10-6 6.268 10-5 

A6 2450 2994 0.02 -0.1976 1 3.141 10-4 6.660 10-3 

A7 2450 2994 0.02 -0.1976 5 6.283 10-5 1.332 10-3 

A8 2450 2994 0.02 -0.1976 10 3.141 10-5 6.660 10-4 

A9 2450 2994 0.02 -0.1976 50 6.283 10-6 1.332 10-4 

A10 2450 2994 0.02 -0.1976 100 3.141 10-6 6.660 10-5 

A11 2550 3030 -0.02 -0.212 1 2.772 10-4 5.876 10-3 

A12 2550 3030 -0.02 -0.212 5 5.544 10-5 1.175 10-3 

A13 2550 3030 -0.02 -0.212 10 2.772 10-5 5.876 10-4 

A14 2550 3030 -0.02 -0.212 50 5.544 10-6 1.175 10-4 

A15 2550 3030 -0.02 -0.212 100 2.772 10-6 5.876 10-5 

A16 2200 2904 0.12 -0.1616 1 4.065 10-4 8.618 10-3 

A17 2200 2904 0.12 -0.1616 5 8.130 10-5 1.724 10-3 

A18 2200 2904 0.12 -0.1616 10 4.065 10-5 8.618 10-4 

A19 2200 2904 0.12 -0.1616 50 8.130 10-6 1.724 10-4 

A20 2200 2904 0.12 -0.1616 100 4.065 10-6 8.618 10-5 

A21 2150 2886 0.14 -0.1544 1 4.250 10-4 9.010 10-3 

A22 2150 2886 0.14 -0.1544 5 8.500 10-4 1.802 10-3 

A23 2150 2886 0.14 -0.1544 10 4.250 10-5 9.010 10-4 

A24 2150 2886 0.14 -0.1544 50 8.500 10-6 1.802 10-4 

A25 2150 2886 0.14 -0.1544 100 4.250 10-6 9.010 10-5 

B1 2150 2886 0.14 -0.1544 100 4.250 10-6 4.250 10-3 

B2 2150 2886 0.14 -0.1544 100 4.250 10-6 4.250 10-2 

B3 2150 2886 0.14 -0.1544 100 4.250 10-6 4.250 10-1 

B4 2150 2886 0.14 -0.1544 100 4.250 10-6 4.250 100 

Table 4.3: List of the simulation performed for this chapter and corresponding variables. 
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4.3 Results 

  4.3.1 Effect of buoyancy and viscosity contrasts 

We observed three intrusion regimes at 𝑈∗=21.2, depending on the host physical properties. 

The fluidization regime was observed in the simulations A1‒5, and consists in the development of 

a fluidized area above the inlet in which the intruded melt rises through the mush (Fig. 4.2), as 

described previously (Bergantz et al., 2015; Schleicher et al., 2016, Chapter 3). The fluidization of 

the mush is initiated by the initial overpressure at the inlet that destabilizes locally the forces chains 

and separates the crystals in contact (dark blue regions in Fig. 4.2 that represent small to no particle 

overlap). The fluidized volume grows vertically above the inlet because of two mechanisms. The 

first is the upward entrainment of the particles localized above the fluidized cavity, which results 

in bulging the top surface of the mush layer (Fig. 4.2). The second mechanism is the progressive 

erosion of the crystals jammed at the boundary between the mush and the fluidized volume, which 

progressively destabilizes the overlying force chains. Once separated, the crystals start to settle in 

the fluidized area. Because of this process of mush erosion, the fluidized area ascends faster than 

the intruded melt (green outline in Fig 4.2). The intruder flows mainly vertically with a minor 

lateral porous flow. When the fluidized cavity reaches the top of the particles bed, its width 

progressively decreases to stabilize in the shape of a vertical chimney. At steady state, when t*>1, 

the crystals located within the chimney show both upward and downward motions whereas the 

ones located around the chimney flow slowly in the direction of the inlet, forming a ‘mixing bowl’ 

as a whole (Bergantz et al., 2015). 
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Figure 4.2 Snapshots of simulation A1 illustrating the fluidization regime. Each section represents the particles at different 

reduced times. For each particle, the color depends on the maximum overlap distance with its neighbors. The green curves 

represent the boundary between injected and host melts. 
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Figure 4.3 Snapshots of simulation A6 illustrating the lateral spreading regime with the same conventions as Fig. 4.2. 
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Figure 4.4: Snapshots of simulation A11 illustrating the rising regime with the same conventions as Fig. 4.2.  
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The spreading regime, which prevails in simulations A6‒10 and A16‒25, is characterized 

by the lateral spreading of the injected melt similarly to a gravity current hugging the floor of the 

host reservoir (Fig. 4.3). The flow of the intruded melt is able to entrain laterally the host particles, 

creating two counter rotating granular vortexes with downward motions above the inlet. The initial 

overpressure at the inlet and the Reynolds dilatancy (dilation of a granular material when strained; 

Andreotti et al., 2013, pp 130-131) initiated by the lateral flow of the intruder are both able to 

destabilize the force chains in the overlying mush (dark blue regions in Fig. 4.3 that represent small 

to no particle overlap). The fluidized volume grows either predominantly laterally or vertically, 

depending on the relative importance between the lateral entrainment of the host solids by the 

intruder and the vertical settling of the mush crystals. 

The rising regime, or tunneling (Bergantz and Breidenthal, 2001), is characterized by the 

ascent of the intruded melt within the mush that occurred in simulations A11‒15 (Fig. 4.4). Runs 

start with the initial growth above the inlet of a cavity filled with the intruded fluid. The cavity 

becomes gravitationally unstable and ascends within the mush. The ascent of the intruder continues 

above the particle bed, entraining solids from the host. A small fluidized volume is present around 

the head of the ascending batch (Fig. 4.4). The dimensionless time at which the intrusion reaches 

the mush top (t*~0.3) is shorter than that of the two other regimes because of the gravitational 

instability that significantly accelerates the transport of the intruder.  

Figure 4.5 plots the simulations with 𝑈∗ = 21.2  as functions of the dimensionless 

quantities 𝜌∗, 𝜌𝑏
∗, and 𝜂∗. It shows that the three intrusion regimes can be classified uniquely as a 

function of the reduced buoyancy between the two melts, 𝜌∗ . When 𝜌𝑖 = 𝜌ℎ , the fluidization 

regime is observed. If 𝜌𝑖 > 𝜌ℎ, the spreading regime occurs, whereas if 𝜌𝑖 < 𝜌ℎ, the rising regime 

occurs. Perhaps surprisingly, the bulk buoyancy contrast is not helpful to predict the behavior of 

the intruder (Fig. 4.5). The amount of viscosity contrasts does not control the intrusion flowing 

regime, but strengthens its influence on the mush dynamics. Figure 4.6 illustrates how viscosity 

influences the flow patterns. In the fluidization regime, the increase of the host viscosity enhances 

the formation of crystal-poor batches at the top of the intruded volume (Fig. 4.6 A‒C). Because the 

minimum fluidization velocity within the intruded melt is lower than for the host, the crystals are 

not fluidized and sediment in the intruded melt to accumulate atop the inlet (Fig 4.6 A‒C). 

However, in this regime, the increase in the host melt viscosity do not affect the volume of mush 

showing a decrease in crystal volume faction and distortion of the forces chains. In the spreading 
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regime, the viscosity contrast enhances the lateral spreading of the intruder and the entrainment of 

the host crystals in the two counter rotating vortexes (Fig 4.6 D‒F). Large host melt viscosity causes 

the lateral entrainment of the solids to be more efficient than particle settling, which results in the 

elongation of the fluidized volume in the horizontal direction (Fig 4.6 D‒F). In the rising regime, 

increasing the viscosity contrast enlarges the vortexes sizes and the separation distance between 

their centers (Fig 4.6 G‒I). The dimensionless time, 𝑡∗, at which the intruder instability occurs 

decreases with the viscosity of the host. However, the volume of the mush remobilized by the 

intruder flow does not significantly vary with the host melt viscosity (Fig 4.6 G‒I).  

Figure 4.5: Regime diagram of intrusion behavior for low U*. The diagram represents the positions of the simulations A 

1‒25 as functions of the reduced buoyancy (abscissa) and viscosity ratios (ordinate). Each square represents a simulation. 

Square colors depend on the observed regime (blue=rising; black=fluidization; red=lateral spreading). Similarly, the 

background color interpolates the observed regimes (blue= rising; red=lateral spreading) and the vertical dashed line 

interpolates where the fluidization is expected to prevail. 
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  4.3.2 Injection velocity 

Figure 4.7 displays snapshots of simulations B1‒3 for varying 𝑡∗ and U*. It shows that at 𝑡∗ = 0.1, 

all simulations display similar results where the intruder cavities expands mainly vertically (Fig 

4.7 A‒C). At 𝑡∗ = 0.25, the injection at the lower rate (B1) has started to spread laterally (Fig 4.7 

D), whereas the two others rates (B2–B3) grow radially in a similar fashion (Fig 4.7 E‒F). 

Simulations B2 and B3 start to differentiate when 𝑡∗ > 0.5. From this point on, the intruder spreads 

laterally in simulation B2, which stops its vertical propagation (Fig 4.7 H, K, and N). On the 

contrary, simulation B3 continues to grow radially without significant lateral spreading (Fig 4.7 I, 

L, and O). In simulations B1‒B2, the maximum height reached by the intruded volume, 𝐻𝑚𝑎𝑥, 

remains constant once the lateral spreading is fully established (Fig 4.7). Despite the fact that all 

the simulations share the same intruder shape before the lateral spreading takes place, the sizes of 

Figure 4.6: Comparison of the effects of buoyancy and viscosity contrasts. Each section represents the advancement of the 

simulation at t*=1 (or when the rising instability is above the particle bed). The injected melt contours are indicated with 

green curves. The dashed black arrows indicate the presence and direction of granular flows. The thin white curves indicate 

the fluid streamlines with small arrowheads indicating flow direction.  
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the regions affected by dilatancy (shown as grey halos surrounding the intruder volume on Fig. 

4.7) increase with 𝑈∗ (Fig. 4.7 A‒C and E‒F).  

 When the simulation is dominated by the injection rate, the theoretical maximum height 

reached by the intruded volume, 𝐻𝑚𝑎𝑥, may be predicted analytically as a function of time. We 

consider two end-members for the growth of the intrusion volume (vertical or radial). The first end 

member considers the vertical ascent (dyking) of the intruded melt above the inlet over a width, 

Figure 4.7: Effect of injection velocity on the behavior of the intruder.  Snapshots are from simulations B 1‒3 (U*=103, 104, 

and 105, respectively) at different t*. Discrete particles are not represented; colors indicate instead the averaged 

crystallinity of each fluid cell.  Green curves indicate the contour of the intruded melt. 



 

 114 Chapter 4: CFD-DEM modeling of recharge events within mush 

𝑊𝑖𝑛𝑗. In this case, the ratio, 𝐻∗, between 𝐻𝑚𝑎𝑥 and the initial particle bed thickness, 𝐻𝑏𝑒𝑑 (𝐻∗ =

𝐻𝑚𝑎𝑥/𝐻𝑏𝑒𝑑), reads: 

𝐻∗  = 𝑡∗.  (4.9) 

For a purely radial growth, 𝐻𝑚𝑎𝑥 may be computed as a function of 𝑡∗ by solving the following 

system of nonlinear equations (See supplementary section S4.3 for derivation of Eq. 4.10): 

{
0 = 𝑊𝑖𝑛𝑗 𝐻𝑏𝑒𝑑 𝑡

∗ +
2

3
𝑊𝑖𝑛𝑗(2𝑅 − 𝐻𝑚𝑎𝑥) +

(2𝑅−𝐻𝑚𝑎𝑥)3

2 𝑊𝑖𝑛𝑗
− 𝜋𝑅2

0 = (𝐻𝑚𝑎𝑥  − 𝑅)2 +
𝑊𝑖𝑛𝑗

2

4
− 𝑅2                                              

 ,  (4.10) 

where 𝑅  is the unknown radius of the spherical batch (note that 2𝑅 ≠ 𝐻𝑚𝑎𝑥  because of the 

presence of the inlet). 

Figure 4.8 displays the comparison between the temporal evolution of the theoretical 𝐻∗ 

for the two end-member growth scenarios alongside the results of simulations A25 and B1‒4. For 

𝑡∗ < 0.25 , the four simulations B1‒4 collapse with the predicted 𝐻∗  for a vertical intrusion, 

whereas the simulation A25 spreads purely laterally. Simulation B1 starts to differentiate from B2‒

4 at 𝑡∗ = ~0.25 and its height stalls at  𝐻∗ ≈ 0.2. Simulation B2 follows a different trend from that 

of B3‒4 after 𝑡∗ ≈ 0.4 and its intrusion height stabilizes at 𝐻∗ ≈ 0.45. In simulations B3‒4, the 

measured 𝐻∗ collapse on the same curve as the prediction for a radial growth after 𝑡∗ ≈ 0.5. After 

𝑡∗ = 1.5, measured and predicted maximum heights start to separate in simulation B3 because of 

the adverse effect of buoyancy. However, the intrusion is able to reach 𝐻∗ = 1 at 𝑡∗ ≈ 3.5. This is 

unlike simulation B4, which strictly follows the theoretical curve for a radial growth and reaches 

𝐻∗ = 1 at 𝑡∗ ≈ 2.5, as predicted by Eq. (4.10). 
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 4.3.3 Results summary 

 Our results are helpful to predict the behavior of an intrusion within a mush. The 

dimensionless quantities 𝑈∗  and 𝜌∗  are the main controls of injection dynamics. When 𝑈∗ <

~105, buoyancy effects dominate the intruder flow (Fig 4.8). The reduced buoyancy between the 

two melts, 𝜌∗, is the key parameters that controls if the intrusion spreads laterally at the base of the 

mush, or rises through it. On the contrary, the commonly used (e.g. Huppert et al., 1986; Snyder 

and Tait, 1995) bulk reduced buoyancy results in incorrect predictions of the intruder behavior 

(Fig. 4.6). This result illustrates that the relative motion existing between the solids and surrounding 

Figure 4.8: Evolution of the height, H*, of the intruded volume as a function of the dimensionless time t*. Each square 

represents the height of the top of the intruded volume measured in the simulations. Square colors depend on the injection 

rate. Dashed lines indicate the theoretical intruder front height evolution in the case of vertical propagation. The black 

curve is the theoretical front height for a radial growth, and the horizontal dotted lines indicate the front height evolution 

during lateral spreading. The three insets illustrate intrusion behaviors.  
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melt is of primary importance when studying mush processes. The viscosity contrast, 𝜂∗, is found 

to be a weak control of the intrusion regime. Large viscosity contrasts tend to exacerbate the 

dynamics present at low viscosity contrasts, such as the formation of crystal-poor batches atop the 

intrusion or the lateral spreading of the intruder  (Fig 4.6). 

 When 𝑈∗ > ~105, the behavior of the intruder is dominated by the injection rate, which 

causes the radial growth of the cavity filled with the intruded melt (Fig. 4.7). At this injection rate 

and higher, simulations show similar intruder shapes at identical 𝑡∗. Even when 𝑈∗ < ~105, the 

injection velocity remains an important parameter that controls the thickness of the intruder layer 

and its lateral spreading rate. It also controls the incorporation of the host solids within the injected 

melt. When the injection velocity is far above the minimum fluidization velocity computed with 

the injected melt properties instead of 𝑈𝑚𝑓, which is computed with the host melt properties, the 

intruded melt is emplaced as a crystal-free layer, whereas a significant incorporation of host 

particles and porous flow occur otherwise. 

 

4.4 Discussion 

  4.4.1 Model limitations 

 Our model focuses on some aspects of mush dynamics but neglects others and their possible 

importance on the dynamics of the intrusion must be discussed. The presence of exsolved volatiles 

in the melt as isolated bubble or connected channels is beyond the scope of the present model but 

may exert a strong control on the rejuvenation process because the percolation of exsolved gases 

in the mush advects heat and buoyant materials (Bachmann and Bergantz, 2006; Parmigiani et al., 

2014). The ascent of bubbles, nucleated in the intruder by cooling, within the mush may also advect 

melt from the intruder into the mush (Wiesmaier et al., 2015), leading to mingling and mixing 

between the two melts. Similarly, we neglected the chemical reaction and melting of the crystals, 

which may affect the density of the surrounding melt. Setting thermal exchanges aside means that 

our simulations focus on the short-term evolution of the intrusion within a mush until steady state 

is reached but before significant effects of gas percolation and crystal melting can be felt. 

Alternatively, our simulations may represent the interaction of two magmas that have retained 

distinct melt properties and crystal contents after having thermally equilibrated (Sparks and 



 

 

 
117 Chapter 4: CFD-DEM modeling of recharge events within mush 

Marshall, 1986). The presence of crystals within the intruded layer is also not explored here. 

However, our results highlight the ubiquity and importance of the relative motions between the 

solids and the fluid. Thus, we do not expect that the crystal content of the intruder result in 

significant differences with our simulations. The melt reduced buoyancy and injection rate still 

control the behavior of the intruder and location of the boundary between the intruded and host 

melt.   

 We do not account for the presence of cohesive forces between crystals. Thereby, the 

presence of the associated yield stress is neglected here, although the yield stress caused by inter-

crystal frictional contacts is present in our simulations. The presence of a bulk yield stress (i.e. due 

to a combination of friction, anisometric crystal interlocking, and synneusis) was identified as 

having a control on eruptive style (Karlstrom et al., 2012), and may increase the importance of the 

mush elasticity. With a significant elastic component in the mush rheology, the transport of the 

intruder may be modified and controlled by the orientation of the principal stress and overpressure 

(Pinel et al., 2017), rather than by the injection velocity and buoyancy contrast between the two 

melts. Thus, our results are valid for a weakly cohesive (frictional) mush with crystallinity close to 

the jamming transition, but may not be applied to magma transport within partially melted rocks 

or solidified mush where the elasticity of the solid framework cannot be neglected. 

Our results are useful to predict the initial behavior and geometry of the intrusion in the 

mush and we proposed a simple relationship describing the height evolution of the intruded layer 

when the injection rate dominates the dynamics. However, these predictions cannot be used to 

predict the time between the intrusion and chamber-wide overturn or eruption because our 

simulations represent an open system where the host melt may freely exit the reservoir. When 

considering natural and closed systems, our results are only relevant for the short-term evolution 

of the intrusion. Otherwise, the accommodation of the intrusion by the host mush and surrounding 

crust and geometry of the reservoir has to be accounted for.  

Experiments that mimic the replenishment of a felsic reservoir by a more mafic magma 

show that when a denser fluid is injected in a lighter fluid, it pounds and spread laterally at the base 

of the reservoir (e.g. Jellinek and Kerr, 1999; Koyaguchi and Kaneko, 2000; Snyder and Tait, 

1995), which is in good agreement with our results. Despite the absence of particles, these 

experiments are able to reproduce the fingering of the intruder and presence of ribbon of felsic 
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magma (Perugini and Poli, 2005; Snyder et al., 1997; Snyder and Tait, 1995, 1998; Wiebe, 2016a). 

This contamination of the intruded material by the host results from the interaction between two 

features generated at the front of the gravity currents. First, a thin layer of host and buoyant material 

is trapped below the intruded layer that results in the formation of ribbons where the trapped mush 

percolate the injected layer. The fingering also develop at the front of the gravity current when the 

intruded fluid is less viscous than the host one because of Saffman-Taylor instabilities. According 

to Saffman and Taylor (1958), and Snyder et al. (1997), such front instabilities may occurred in all 

of our simulations holding in lateral spreading regime. However, the minimum theoretical 

wavelength of the instability is close or larger than the thickness of the intruded layer. Moreover, 

the thickness of the ribbons and trapped layer of host material are much smaller than the dimension 

of the fluid lattice. Thereby our model is not able to capture such front instabilities.  

 

4.4.2 Implications on mush dynamics and on the modeling of 

crystal-bearing magmas 

 Our results have implications on the processes leading to the rejuvenation of a mush. Many 

of the current reawakening scenarios involve the emplacement of an intruder sill or gravity current 

at the base of the mush, supplying heat without mass exchange (Bachmann and Bergantz, 2006; 

Burgisser and Bergantz, 2011; Couch et al., 2001; Huber et al., 2011). This assumption is consistent 

with the results obtained when 𝑈∗ < 105 and 𝜌∗ > 0. In nature, the intruded melt is often the 

denser because of the chemical evolution and crystallization of the host material (Snyder, 2000). 

Thereby, the intruders predominantly stall at the floor of the mush. This situation maximizes the 

remobilized volume of host and entrainment by the intruder. The associated fluidization of the 

overlying mush decreases the crystal content at range where melt extraction is optimal (Bachmann 

and Huber, 2019) and exsolved volatiles channels may be formed (Parmigiani et al., 2017). The 

initial conditions impose that the host crystals and melt are at thermal equilibrium, and the fast 

processes we simulate results in the incorporation of cold solids within the hotter intrusion that 

accelerates its cooling and may foster volatile exsolution by second boiling. This result is consistent 

with geological observations that crystal from the host mush are commonly found in the layer of 

more mafic magma (Snyder et al., 1997). This particle settling may also incorporate host melt into 

the intruded material  (Laumonier et al., 2015; Renggli et al., 2016; Ubide et al., 2014), inducing 
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mingling and affecting the cooling rate of the intruder. The lateral spreading of the intruder may 

generate conditions favorable to the mush reawakening by gas sparging (Bachmann and Bergantz, 

2006) by increasing the surface area that may release volatiles. The fluidization of the mush and 

formation of a mixing bowl/chimney above the inlet (Bergantz et al., 2015; Schleicher et al., 2016; 

Schleicher and Bergantz, 2017) occurs when no density contrast exist between the host and 

intruded melts.  

Our results show that when the intruder melt is lighter than that of the host, it results in a 

gravitational instability showing the rise of the injected material through the mush. On the contrary 

to injection, overturn starts from the absence of momentum and affect the entire mush volume. It  

results from the presence of small perturbations at the interface between the two magmas that 

initiate gravitational instabilities forming buoyant Rayleigh-Taylor blobs (Bain et al., 2013). 

Despite these differences, our results have also implication on the conditions required for 

overturning. The occurrence of gravitational instabilities in magmatic reservoirs may accelerate its 

remobilization, and is often addressed by the difference in the bulk density contrast that may exist 

between the mush and intruder (e.g. Bergantz and Breidenthal, 2001) or between the mush and a 

thermal boundary layer (e.g. Burgisser and Bergantz, 2011; Couch et al., 2001). However, our 

results demonstrate that the melt densities control gravitational instabilities rather than the bulk 

densities. The melting of crystals in a thermal boundary layer, between the intruder and host mush, 

resulting from the rejuvenation process is expected to increase the density of the surrounding melt, 

which thereby remains gravitationally stable. The presence of dissolved H2O and CO2 have a strong 

controls on the melt density because its partial specific density is much smaller than for the other 

constituents (Lesher and Spera, 2015). The amount of dissolved volatiles and their diffusion may 

thus play a critical role on the occurrence of gravitational instability in magmatic reservoirs. 

Our simulations also shed light on the importance of the relative motion between the 

different phases constituting the magmatic reservoirs. Our results indicates that experiments, or 

numerical simulations, that account of the presence of the solids or exsolved volatiles as discrete 

entities (e.g. Barth et al., 2019; Bergantz et al., 2015; Girard and Stix, 2009; Hodge et al., 2012; 

McIntire et al., 2019; Michioka and Sumita, 2005; Schleicher et al., 2016; Schleicher and Bergantz, 

2017) are the most likely to faithfully reproduce mush dynamics. Neglecting phase decoupling by 

considering the magma as a single-phase fluid having effective properties such as bulk density or 
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bulk viscosity will not capture the blending of crystal contents between host and intruder and the 

simultaneous but independent evolution of the melt–melt interface (Fig. 4.6). 

 

4.5 Conclusion 

 Our simulations show that when the injection velocity is high (𝑈∗ > ~105), intrusion 

dynamics is dominated by the injection momentum. In such conditions, the intruded cavities show 

radial growth. On the contrary, when the injection velocity is below this threshold, the density 

contrast between the host and intruded melt phases controls the behavior of the intruder. When the 

intruded melt is lighter than the host one, it raise through the mush, whereas the contrary shows the 

lateral spreading of the intruded material. When the two densities are identical, the intruder fluidize 

the mush and generate a mixing bowl. Bulk buoyancy contrasts appear to have no control on the 

way the intruder flows. The lateral spreading of the intruder generates two counter rotating granular 

vortexes showing downward motion above the inlet, which maximizes the volume of the mush 

entrained by the gravity current. The combined effects of initial overpressure at the inlet and 

Reynolds dilatancy, resulting from the lateral spreading of the intruder, are able to fluidize the 

overlying mush. In the nature, the melt density of the intruder is often expected to be higher than 

in the host, leading to the lateral spreading of the injected materials at the floor of the mushy 

reservoir, which are conditions favoring mush remobilization. Our results also highlights the 

importance of considering the crystals or bubbles as discrete entities to mimic faithfully mush 

dynamics with analogue experiments or numerical simulations. 

  



 

 

 
121 Chapter 4: CFD-DEM modeling of recharge events within mush 

References: 
Andreotti, B., Forterre, Y., Pouliquen, O., 2013. Granular Media: Between Fluid and Solid. Cambridge University Press. 

Annen, C., Blundy, J.D., Leuthold, J., Sparks, R.S.J., 2015. Construction and evolution of igneous bodies: Towards an integrated 
perspective of crustal magmatism. Lithos 230, 206–221. https://doi.org/10.1016/j.lithos.2015.05.008 

Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. J. 

Petrol. 47, 505–539. https://doi.org/10.1093/petrology/egi084 

Annen, C., Sparks, R.S.J., 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation 
in the crust. Earth Planet. Sci. Lett. 203, 937–955. https://doi.org/10.1016/S0012-821X(02)00929-9 

Bachmann, O., Bergantz, G.W., 2006. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat 

advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102. 

https://doi.org/10.1016/j.jvolgeores.2005.06.002 
Bachmann, O., Dungan, M.A., Lipman, P.W., 2002. The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: 

Rejuvenation and Eruption of an Upper-Crustal Batholith. J. Petrol. 43, 1469–1503. 

https://doi.org/10.1093/petrology/43.8.1469 

Bachmann, O., Huber, C., 2019. The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates 
Controlling Phase Separation in Silicic Magma Reservoirs. J. Petrol. 60, 3–18. https://doi.org/10.1093/petrology/egy103 

Bachmann, O., Huber, C., 2016. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404. 

https://doi.org/10.2138/am-2016-5675 

Bain, A.A., Jellinek, A.M., Wiebe, R.A., 2013. Quantitative field constraints on the dynamics of silicic magma chamber 
rejuvenation and overturn. Contrib. Mineral. Petrol. 165, 1275–1294. https://doi.org/10.1007/s00410-013-0858-5 

Barth, A., Edmonds, M., Woods, A., 2019. Valve-like dynamics of gas flow through a packed crystal mush and cyclic strombolian 

explosions. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-018-37013-8 

Bergantz, G.W., 1989. Underplating and Partial Melting: Implications for Melt Generation and Extraction. Science 245, 1093–
1095. https://doi.org/10.1126/science.245.4922.1093 

Bergantz, G.W., Breidenthal, R.E., 2001. Non-stationary entrainment and tunneling eruptions: A dynamic link between eruption 

processes and magma mixing. Geophys. Res. Lett. 28, 3075–3078. https://doi.org/10.1029/2001GL013304 
Bergantz, G.W., Schleicher, J.M., Burgisser, A., 2017. On the kinematics and dynamics of crystal-rich systems. J. Geophys. Res. 

Solid Earth 122, 2017JB014218. https://doi.org/10.1002/2017JB014218 

Bergantz, G.W., Schleicher, J.M., Burgisser, A., 2015. Open-system dynamics and mixing in magma mushes. Nat. Geosci. 8, 793–

796. https://doi.org/10.1038/ngeo2534 
Burgisser, A., Bergantz, G.W., 2011. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 

471, 212–215. https://doi.org/10.1038/nature09799 

Caricchi, L., Annen, C., Blundy, J., Simpson, G., Pinel, V., 2014. Frequency and magnitude of volcanic eruptions controlled by 

magma injection and buoyancy. Nat. Geosci. 7, 126–130. https://doi.org/10.1038/ngeo2041 
Cashman, K.V., Sparks, R.S.J., Blundy, J.D., 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous 

processes. Science 355, eaag3055. https://doi.org/10.1126/science.aag3055 

Couch, S., Sparks, R.S.J., Carroll, M.R., 2001. Mineral disequilibrium in lavas explained by convective self-mixing in open magma 

chambers. Nature 411, 1037–1039. https://doi.org/10.1038/35082540 
Cui, X., Li, J., Chan, A., Chapman, D., 2014. Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe. 

Powder Technol. 254, 299–306. https://doi.org/10.1016/j.powtec.2014.01.048 

Eichelberger, J.C., Izbekov, P.E., 2000. Eruption of andesite triggered by dyke injection: contrasting cases at Karymsky Volcano, 

Kamchatka and Mt Katmai, Alaska. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 358, 1465–1485. 

Furuichi, M., Nishiura, D., 2014. Robust coupled fluid‐particle simulation scheme in Stokes‐flow regime: Toward the geodynamic 

simulation including granular media. Geochem. Geophys. Geosystems 15, 2865–2882. 

https://doi.org/10.1002/2014GC005281 

Garg, R., Galvin, J., Li, T., Pannala, S., 2012. Open-source MFIX-DEM software for gas–solids flows: Part I—Verification studies. 

Powder Technol. 220, 122–137. 

Garg, R., Galvin, J., Li, T., Pannala, S., 2010. Documentation of open-source MFIX–DEM software for gas-solids flows. URL 

Httpsmfix Netl Doe Govdocumentationdemdoc2012-1 PdfAccessed 31 March 2014. 

Gidaspow, D., 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press. 
Girard, G., Stix, J., 2009. Buoyant replenishment in silicic magma reservoirs: Experimental approach and implications for magma 

dynamics, crystal mush remobilization, and eruption. J. Geophys. Res. Solid Earth 114, B08203. 

https://doi.org/10.1029/2008JB005791 

Hodge, K.F., Carazzo, G., Jellinek, A.M., 2012. Experimental constraints on the deformation and breakup of injected magma. Earth 
Planet. Sci. Lett. 325–326, 52–62. https://doi.org/10.1016/j.epsl.2012.01.031 

Huber, C., Bachmann, O., Dufek, J., 2011. Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal 

fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454. 

https://doi.org/10.1016/j.epsl.2011.02.022 



 

 122 Chapter 4: CFD-DEM modeling of recharge events within mush 

Huppert, H.E., Sparks, R.S.J., Whitehead, J.A., Hallworth, M.A., 1986. Replenishment of magma chambers by light inputs. J. 

Geophys. Res. Solid Earth 6113–6122. https://doi.org/10.1029/JB091iB06p06113@10.1002/(ISSN)2169-
9356.OPENSYS1 

Jellinek, A.M., Kerr, R.C., 1999. Mixing and compositional stratification produced by natural convection: 2. Applications to the 

differentiation of basaltic and silicic magma chambers and komatiite lava flows. J. Geophys. Res. Solid Earth 104, 7203–

7218. https://doi.org/10.1029/1998JB900117 
Karakas, O., Degruyter, W., Bachmann, O., Dufek, J., 2017. Lifetime and size of shallow magma bodies controlled by crustal-scale 

magmatism. Nat. Geosci. 10, 446–450. https://doi.org/10.1038/ngeo2959 

Karlstrom, L., Rudolph, M.L., Manga, M., 2012. Caldera size modulated by the yield stress within a crystal-rich magma reservoir. 

Nat. Geosci. 5, 402–405. https://doi.org/10.1038/ngeo1453 
Koyaguchi, T., Kaneko, K., 2000. Thermal evolution of silicic magma chambers after basalt replenishments. Earth Environ. Sci. 

Trans. R. Soc. Edinb. 91, 47–60. https://doi.org/10.1017/S0263593300007288 

Laumonier, M., Scaillet, B., Arbaret, L., Andújar, J., Champallier, R., 2015. Experimental mixing of hydrous magmas. Chem. Geol. 

418, 158–170. https://doi.org/10.1016/j.chemgeo.2015.10.031 
Lesher, C.E., Spera, F.J., 2015. Chapter 5 - Thermodynamic and Transport Properties of Silicate Melts and Magma, in: Sigurdsson, 

H. (Ed.), The Encyclopedia of Volcanoes (Second Edition). Academic Press, Amsterdam, pp. 113–141. 

https://doi.org/10.1016/B978-0-12-385938-9.00005-5 

Li, T., Garg, R., Galvin, J., Pannala, S., 2012. Open-source MFIX-DEM software for gas-solids flows: Part II—Validation studies. 

Powder Technol. 220, 138–150. 

McIntire, M.Z., Bergantz George W., Schleicher Jillian M., 2019. On the hydrodynamics of crystal clustering. Philos. Trans. R. 

Soc. Math. Phys. Eng. Sci. 377, 20180015. https://doi.org/10.1098/rsta.2018.0015 

Michioka, H., Sumita, 2005. Rayleigh‐Taylor instability of a particle packed viscous fluid: Implications for a solidifying magma. 
Geophys. Res. Lett. 32. https://doi.org/10.1029/2004GL021827 

Nakagawa, M., Wada, K., Wood, C.P., 2002. Mixed Magmas, Mush Chambers and Eruption Triggers: Evidence from Zoned 

Clinopyroxene Phenocrysts in Andesitic Scoria from the 1995 Eruptions of Ruapehu Volcano, New Zealand. J. Petrol. 

43, 2279–2303. https://doi.org/10.1093/petrology/43.12.2279 
Pallister, J.S., Hoblitt, R.P., Reyes, A.G., 1992. A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356, 426–428. 

https://doi.org/10.1038/356426a0 

Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C., Bachmann, O., 2017. The mechanics of shallow magma reservoir outgassing. 

Geochem. Geophys. Geosystems 18, 2887–2905. https://doi.org/10.1002/2017GC006912 
Parmigiani, A., Huber, C., Bachmann, O., 2014. Mush microphysics and the reactivation of crystal-rich magma reservoirs. J. 

Geophys. Res. Solid Earth 119, 6308–6322. https://doi.org/10.1002/2014JB011124 

Perugini, D., Poli, G., 2005. Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic 

magmas: Field evidence and fluid-mechanics experiments. Geology 33, 5–8. https://doi.org/10.1130/G21075.1 
Pinel, V., Carrara, A., Maccaferri, F., Rivalta, E., Corbi, F., 2017. A two-step model for dynamical dike propagation in two 

dimensions: Application to the July 2001 Etna eruption. J. Geophys. Res. Solid Earth 122, 1107–1125. 

https://doi.org/10.1002/2016JB013630 

Renggli, C.J., Wiesmaier, S., De Campos, C.P., Hess, K.-U., Dingwell, D.B., 2016. Magma mixing induced by particle settling. 
Contrib. Mineral. Petrol. 171, 96. https://doi.org/10.1007/s00410-016-1305-1 

Saffman, P.G., Taylor, G.I., 1958. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous 

liquid. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 245, 312–329. https://doi.org/10.1098/rspa.1958.0085 

Schleicher, J.M., Bergantz, G.W., 2017. The Mechanics and Temporal Evolution of an Open-system Magmatic Intrusion into a 
Crystal-rich Magma. J. Petrol. 58, 1059–1072. https://doi.org/10.1093/petrology/egx045 

Schleicher, J.M., Bergantz, G.W., Breidenthal, R.E., Burgisser, A., 2016. Time scales of crystal mixing in magma mushes. Geophys. 

Res. Lett. 43, 1543–1550. https://doi.org/10.1002/2015GL067372 

Shi, Y.F., Yu, Y.S., Fan, L.T., 1984. Incipient fluidization condition for a tapered fluidized bed. 484–489. 
Snyder, D., 2000. Thermal effects of the intrusion of basaltic magma into a more silicic magma chamber and implications for 

eruption triggering. Earth Planet. Sci. Lett. 175, 257–273. https://doi.org/10.1016/S0012-821X(99)00301-5 

Snyder, D., Crambes, C., Tait, S., Wiebe, R.A., 1997. Magma Mingling in Dikes and Sills. J. Geol. 105, 75–86. 

https://doi.org/10.1086/606148 
Snyder, D., Tait, S., 1998. The imprint of basalt on the geochemistry of silicic magmas. Earth Planet. Sci. Lett. 160, 433–445. 

https://doi.org/10.1016/S0012-821X(98)00102-2 

Snyder, D., Tait, S., 1995. Replenishment of magma chambers: comparison of fluid-mechanic experiments with field relations. 

Contrib. Mineral. Petrol. 122, 230–240. https://doi.org/10.1007/s004100050123 
Sparks, R.S.J., Marshall, L.A., 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J. Volcanol. 

Geotherm. Res. 29, 99–124. https://doi.org/10.1016/0377-0273(86)90041-7 

Syamlal, M., 1998. MFIX documentation numerical technique. EG and G Technical Services of West Virginia, Inc., Morgantown, 

WV (United States). 
Syamlal, M., Rogers, W., OBrien, T.J., 1993. MFIX documentation theory guide. USDOE Morgantown Energy Technology Center, 

WV (United States). 

Takahashi, R., Nakagawa, M., 2013. Formation of a Compositionally Reverse Zoned Magma Chamber: Petrology of the ad 1640 
and 1694 Eruptions of Hokkaido-Komagatake Volcano, Japan. J. Petrol. 54, 815–838. 

https://doi.org/10.1093/petrology/egs087 



 

 

 
123 Chapter 4: CFD-DEM modeling of recharge events within mush 

Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255–352. 

https://doi.org/10.1016/0012-8252(86)90015-2 
Ubide, T., Galé, C., Larrea, P., Arranz, E., Lago, M., Tierz, P., 2014. The Relevance of Crystal Transfer to Magma Mixing: a Case 

Study in Composite Dykes from the Central Pyrenees. J. Petrol. 55, 1535–1559. https://doi.org/10.1093/petrology/egu033 

Weinberg, R.F., Leitch, A.M., 1998. Mingling in mafic magma chambers replenished by light felsic inputs: fluid dynamical 

experiments. Earth Planet. Sci. Lett. 157, 41–56. https://doi.org/10.1016/S0012-821X(98)00025-9 
Wiebe, R.A., 2016. Mafic replenishments into floored silicic magma chambers. Am. Mineral. 101, 297–310. 

https://doi.org/10.2138/am-2016-5429 

Wiesmaier, S., Morgavi, D., Renggli, C.J., Perugini, D., Campos, C.P. de, Hess, K.-U., Ertel-Ingrisch, W., Lavallée, Y., Dingwell, 

D.B., 2015. Magma mixing enhanced by bubble segregation. Solid Earth 1007–1023. https://doi.org/10.5194/se-6-1007-
2015 

 

Supplementary Section S4.1: List of the model equations 

This Supplementary section includes two tables summarizing the equation system solved in 

our numerical simulations (Tables S4.1.1–S4.1.2). 

 

Equation names Equations Ref. 

Mass conservation 
𝜕𝜀𝑓
𝜕𝑡

+  𝛻 ∙ (𝜀𝑓  𝑣⃗𝑓) = 0 1 

Momentum conservation 𝜌𝑓 (
𝜕

𝜕𝑡
(𝜀𝑓  𝑣𝑓⃗⃗ ⃗⃗  ) + 𝛻 ∙ (𝜀𝑓  𝑣𝑓⃗⃗ ⃗⃗  ⊗  𝑣𝑓⃗⃗ ⃗⃗  )) =  𝛻 ∙ ( 𝜎𝑓̿  ) + 𝜀𝑓  𝜌𝑓  𝑔⃗  + 𝐼𝑓⃗⃗ ⃗ 

1 

Stress tensor 𝜎𝑓̿ = 𝑃𝑓 𝛿𝑖𝑗 + 
2

3
 𝜂𝑓  𝑡𝑟(𝜖𝑓̿) 𝛿𝑖𝑗 + 2 𝜂𝑓 𝜖𝑓̿ 1 

Euler velocity integration 
𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡 + ∆𝑡) =  𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡) + 𝑡

𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗

 (𝑘)
 (𝑡) + ∑ (𝐹𝐶

𝑁⃗⃗⃗⃗ ⃗⃗
(𝑘,𝑙)

(𝑡) + 𝐹𝐶
𝑇⃗⃗ ⃗⃗ ⃗
(𝑘,𝑙)

(𝑡))
𝑁𝑙

(𝑘)

𝑙=1  

𝑚(𝑘)
 

Eq. 

(4.4) 

Euler displacement 
integration 𝑋𝑝

⃗⃗ ⃗⃗ ⃗
 (𝑘)

 (𝑡 + ∆𝑡) = 𝑋𝑝
⃗⃗ ⃗⃗ ⃗

 (𝑘)
  (𝑡) +  ∆𝑡 𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡 + ∆𝑡)  

2 

Euler rotation integration 
𝜔𝑝⃗⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡 + ∆𝑡) = 𝜔𝑝⃗⃗⃗⃗⃗⃗

 (𝑘)
 (𝑡) + ∆𝑡

∑ (𝑇𝐶
⃗⃗⃗⃗⃗

(𝑘,𝑙)
+ 𝑇𝐿

⃗⃗ ⃗⃗
(𝑘,𝑙)

(𝑡))
𝑁𝑙

(𝑘)

𝑙=1

𝐼(𝑘)
 

2 

Normal contact force 𝐹𝑐𝑁⃗⃗⃗⃗⃗⃗
 (𝑖,𝑗)

(𝑡) = (−𝑘𝑛
(𝑖,𝑗)(𝑡) 𝛿𝑛

(𝑖,𝑗)(𝑡) + 𝜂𝑛
(𝑖,𝑗)(𝑡) 𝛥𝑉𝑝𝑁⃗⃗⃗⃗⃗⃗

(𝑖,𝑗)
(𝑡) ) 𝑛𝑖𝑗⃗⃗⃗⃗⃗⃗  2  5 

Tangential contact force 𝐹𝑐𝑇⃗⃗ ⃗⃗ ⃗
 (𝑖,𝑗)

(𝑡) = −𝑘𝑡
(𝑖,𝑗)(𝑡)𝛿𝑡

(𝑖,𝑗)(𝑡) + 𝜂𝑡
(𝑖,𝑗)(𝑡) 𝛥𝑉𝑝𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

(𝑖,𝑗)
(𝑡) 

2  5 

Collisional torque 𝑇𝑐
⃗⃗⃗⃗

 (𝑖,𝑗)
(𝑡) =  

𝑑𝑝
(𝑖)

− 𝛿𝑛
(𝑖,𝑗)

(𝑡)

2
 𝐹𝑐𝑇⃗⃗ ⃗⃗ ⃗

(𝑖,𝑗)
(𝑡)   ;  𝑇𝑐

⃗⃗⃗⃗
 (𝑗,𝑖)

(𝑡) =  
𝑑𝑝

(𝑗)
− 𝛿𝑛

(𝑖,𝑗)
(𝑡)

2
 𝐹𝑐𝑇⃗⃗ ⃗⃗ ⃗

(𝑖,𝑗)
 (𝑡) 

2 

normal spring (Hertzian 
model) 𝑘𝑛

(𝑖,𝑗)(𝑡) =
4

3

𝐸(𝑖)𝐸(𝑗) √𝑅𝑒𝑓𝑓
(𝑖,𝑗)

𝐸(𝑗)(1 − 𝜎(𝑖)2) + 𝐸(𝑖)(1 − 𝜎(𝑗)2)
 𝛿𝑛

(𝑖,𝑗)
1
2(𝑡) 

2 

tangential spring 
(Hertzian model) 𝑘𝑡

(𝑖,𝑗)
(𝑡) =

16

3

𝐺(𝑖)𝐺(𝑗) √𝑅𝑒𝑓𝑓
(𝑖,𝑗)

𝐺(𝑗)(2 − 𝜎(𝑖)) + 𝐺(𝑖) (2 −  𝜎(𝑗))
𝛿𝑡

(𝑖,𝑗)
1
2(𝑡) 

2 
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Equation names Equations Ref. 

Elastic modulus 𝐺 = 
𝐸

2(1 + 𝜎)
 2 

Normal damping 
coefficient 𝜂𝑛

(𝑖,𝑗)
(𝑡) =

2√𝑚𝑒𝑓𝑓
(𝑖,𝑗)

 𝑘𝑛
(𝑖,𝑗)

(𝑡)|𝑙𝑛 𝑒𝑛|

√𝜋2 + 𝑙𝑛2 𝑒𝑛

 𝛿𝑛
(𝑖,𝑗)(𝑡)

1
4 

2  5 

Tangential damping 
coefficient 𝜂𝑡

(𝑖,𝑗)
=

2√𝑚𝑒𝑓𝑓
(𝑖,𝑗)

 𝑘𝑡
(𝑖,𝑗)

(𝑡) |𝑙𝑛 𝑒𝑡|

√𝜋2 + 𝑙𝑛2 𝑒𝑡

 𝛿𝑡
(𝑖,𝑗)(𝑡)

1
4 

2  5 

effective radius 𝑅𝑒𝑓𝑓
(𝑖,𝑗) =  

2 (𝑑𝑝
(𝑖) + 𝑑𝑝

(𝑗)
) 

𝑑𝑝
(𝑖)𝑑𝑝

(𝑗)
 2 

Effective mass 𝑚𝑒𝑓𝑓
(𝑖,𝑗) = 

 𝑚(𝑖) + 𝑚(𝑗) 

𝑚(𝑖) 𝑚(𝑗)
 

2 

Solids/Fluid momentum 
exchange on REV 𝐼𝑓⃗⃗ ⃗(𝑡) =  

1

𝜈𝑅𝐸𝑉
 ∑𝐹𝐷

⃗⃗⃗⃗⃗
 (𝑘)

(𝑡) 𝐾𝑅𝐸𝑉(𝑋𝑝
(𝑘)

)

𝑁𝑘

𝑘=1

 2 

Drag forces (for the fluid) 𝐹𝐷
⃗⃗⃗⃗⃗

 (𝑘)
(𝑡) = −𝛻 𝑃𝑓(𝑡) (

𝜋

6
 𝑑𝑝

(𝑘)3
 ) +

𝛽𝑓𝑠
(𝑘)(𝑡)

(1 − 𝜀𝑓 (𝑡))
(
𝜋

6
 𝑑𝑝

(𝑘)3
)(𝑣𝑓⃗⃗ ⃗⃗ (𝑡) − 𝑣𝑝⃗⃗⃗⃗⃗

 (𝑘)
(𝑡)) 2 

Local fluid/solid 
momentum transfer 

𝛽𝑓𝑠
(𝑘)

(𝑡)

=

{
  
 

  
 3

4
𝐶𝐷

(𝑘)
(𝑡)

𝜌𝑓  𝜀𝑓(𝑡) (1 − 𝜀𝑓 ) ‖𝑣𝑓⃗⃗ ⃗⃗ − 𝑣𝑠⃗⃗⃗⃗
 (𝑘)

‖

𝑑𝑝
(𝑘)  𝜀𝑓

  −2.65                                  𝜀𝑓 ≥ 0.8

150 (1 − 𝜀𝑓 (𝑡))
2
 𝜂𝑓

𝜀𝑓 (𝑡) 𝑑𝑝
(𝑘)2

+
1.75 𝜌𝑓  (1 − 𝜀𝑓 (𝑡)) ‖𝑣𝑓⃗⃗ ⃗⃗ (𝑡) − 𝑣𝑠⃗⃗⃗⃗

 (𝑘)
(𝑡)‖

𝑑𝑝
(𝑘)

                𝜀𝑓 < 0.8

 
3  4 

Drag coefficient 𝐶𝐷
(𝑘)

(𝑡) =  {

24

𝑅𝑒(𝑘)(𝑡)(1 + 0.15 𝑅𝑒(𝑘)(𝑡)0.687)
                             𝑅𝑒(𝑘)(𝑡) < 1000

0.44                                                                        𝑅𝑒(𝑘)(𝑡) ≥ 1000

 3  4 

Particle Gravity-Drag-
Pressure force 

𝐹𝐺𝑃𝐷
⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ (𝑡) =

𝑚𝑝

∆𝑡
 (𝑣𝑓⃗⃗ ⃗⃗ + 𝜏𝑣 (𝑔⃗ −

∇𝑃

𝜌𝑝

) − 𝑣𝑝⃗⃗⃗⃗⃗(𝑡))(1 − 𝑒
−

𝑡
𝜏𝑣) 

Eq. 

(4.5) 

Reynolds number 𝑅𝑒(𝑘)(𝑡) =
𝑑𝑚

(𝑘)
 ‖𝑣𝑓⃗⃗ ⃗⃗ (𝑡) − 𝑣𝑠⃗⃗⃗⃗

 (𝑘)
(𝑡)‖ 𝜌𝑓

𝜂𝑓
 

3 

Table S4.1.1: List of the equations implemented in the CFD-DEM model 

1  Syamlal et al., (1993) 

²  Garg et al., (2010) 

3  Benyahia et al., (2012) 

4  Gidaspow, (1986) 
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Symbol Definition 

𝑪𝑫
(𝒌)

  Drag coefficient of the kth particle 

𝒅𝒑
(𝒊)

  ith particle diameter 

𝒆𝒏  Particle normal restitution coefficient 
𝒆𝒕  Particle tangential restitution coefficient 
𝑬(𝒊)  ith particle Young modulus 

𝑭𝑪
𝑵⃗⃗⃗⃗⃗⃗

(𝒌,𝒍)

 
 Normal contact force between kth particle and its lth neighbor 

𝑭𝑪
𝑻⃗⃗ ⃗⃗ ⃗
(𝒌,𝒍)

 
  Tangential contact forces between kth particle and its lth neighbor  

𝑭𝑫
⃗⃗⃗⃗⃗⃗

 (𝒌)
  Drag force on kth particle 

𝐠⃗⃗  Gravitational vector (m s-2) 
𝑮(𝒌)  kth particle shear moduli 

𝒉(𝒊,𝒋)  Distance between ith and jth particles edges 

𝑰𝒇
⃗⃗⃗⃗   Fluid-solid momentum exchange 

𝑰(𝒌)  kth particle moment of inertia 
𝑲𝑹𝑬𝑴  Generic kernel to determine the influence of a particle located at 𝑋𝑝

⃗⃗ ⃗⃗ ⃗
 (𝑘)

on the REV 

𝒌𝒏
(𝒊,𝒋)

  Normal spring coefficient between ith and jth particles contact 

𝒌𝒕
(𝒊,𝒋)

  Tangential spring coefficient between ith and jth particles contact 

𝒍  Neighbors index 
𝒎(𝒌)  kth particle mass 

𝒎𝒆𝒇𝒇
(𝒊,𝒋)

  ith and jth particles effective radius 

𝑵𝒍
(𝒌)

  Number of neighbors of the kth particle 

𝑵𝒌  Number of particles 
𝒏𝒊𝒋⃗⃗⃗⃗⃗⃗   Normal vector between ith and jth particles 

𝑷𝒇  Fluid pressure (Pa) 

REV  Representative elementary volume 

𝑹𝒆(𝒌)  ith particle Reynolds number 

𝑹𝒆𝒇𝒇
(𝒊,𝒋)

  ith and jth particles effective radius 

𝑹∗
(𝒊,𝒋)

  Contact area radius between ith and jth particles 

𝑻𝑪
⃗⃗ ⃗⃗ ⃗

(𝒌,𝒍)
  Contact torque between kth particle and its lth neighbor 

𝑻𝑳
⃗⃗⃗⃗⃗

(𝒌,𝒍)
  Lubrication torque between kth particle and its lth neighbor 

𝐯⃗⃗𝐟  Fluid velocity vector (m s-1) 

𝒗𝒑⃗⃗⃗⃗ ⃗
 (𝒌)

  kth particle velocity vector (m s-1) 

𝑿𝒑
⃗⃗⃗⃗⃗⃗

 (𝒌)
  kth particle position (m) 

𝜷𝒇𝒔
(𝒌)

  kth particle – fluid momentum transfer coefficient 

𝜟𝑽𝒑
𝑵(𝒊,𝒋)

  Normal relative velocity between ith and jth particles 

𝜟𝑽𝒑
𝑻(𝒊,𝒋)

   Tangential relative velocity between ith and jth particles 

𝜹𝒊𝒋  Kronecker tensor 

𝜹𝒏
(𝒊,𝒋)

  Normal overlap between ith and jth particles 

𝜹𝒕
(𝒊,𝒋)

  Tangential displacement during the contact between ith and jth particles contact 

𝛆  Roughness distance below which lubrication is ineffective (m) 
𝛆𝐟  Fluid volume fraction 
𝝐𝒇̿  Fluid strain rate tensor 

𝛈𝐟  Fluid viscosity (Pa s) 

𝜼𝒏
(𝒊,𝒋)

  Normal damping coefficient between ith and jth particles 

𝜼𝒕
(𝒊,𝒋)

  Tangential damping coefficient between ith and jth particles 

𝝂  Domain volume (m-3) 
𝛒𝐟  Fluid density (kg m-3) 

𝝈(𝒊)  ith particle Poisson coefficient 
𝛔𝐟̿̿̿ Fluid stress tensor 

𝝎𝒑⃗⃗ ⃗⃗ ⃗⃗
 (𝒌)

  kth particle rotation vector (rad s-1) 

𝜵 Nabla operator 
⊗ Outer product 

Table S4.1.2 : Symbols used in Table S4.1.1. 
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Supplementary Section S4.2: Derivation of the minimum 

fluidization velocity 

 This supplementary section presents an updated derivation of the minimum fluidization 

velocity compared to those used in the literature. 

The onset of fluidization of a crystal bed occurs when the upward drag force exerted by the 

injected fluid exceed its net weight. Shi et al. (1984) proposed a formula to predict the minimum 

fluidization velocity of a random packed bed due to a localized injection of fluid. These authors 

made the assumption that the fluid velocity is only vertical and uniformly distributed on horizontal 

cross-sectional area (Fig. S4.2.1). The total upward drag force is computed with the Ergun’s 

formula (Ergun, 1952) for a bed fluidized uniformly. Later, Cui et al. (2014) adapted this formula 

by considering the fluid velocity uniform along a semi-circular cross sectional area. Here, we 

modify the approach of Cui et al. (2014) to predict the minimum fluidization velocity in the 

experimental apparatus geometry because the original derivation incorrectly assumed the distance 

between the injection point and center of the inlet, 𝑟0 , and the boundaries of the integral in their 

Eq. (13).  

The total upward drag force applied by the inlet on the particle bed is computed as: 

𝐹𝐷 = ∫ (𝐴𝑈𝑟 +  𝐵𝑈𝑟
2) 𝑆(𝑟)

𝐻+𝑟0
𝑟0

 𝑑𝑟,  (S4.2.1) 

where 𝑟0  correspond of the vertical coordinates of the bottom and 𝐻 + 𝑟0 is the position of the top 

of the particle bed. The variable  corresponds to the radial distance from a hypothetic injection 

point (Fig. S4.2.1). 𝐴 and 𝐵 are given by Ergun (1952): 

𝐴 = 150
𝜙2

(1−𝜙)3 

𝜂𝑓

𝑑𝑝
2,   (S4.2.2) 

𝐵 = 1.75 
𝜙

(1−𝜙)3

𝜌𝑓

𝑑𝑝
.   (S4.2.3) 

𝑆(𝑟) represents the area of the curved surface on which the fluid velocity is uniform, and it is 

computed as a function of  as: 

𝑆(𝑟) = 2𝛼(𝑟 + 𝑟0)𝑊𝑙. (S4.2.4) 
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𝑈𝑟 is the fluid velocity at a radial distance 𝑟. 𝑈𝑟 may be computed by considering that the injected 

flux is conserved through the particle bed height, which yields: 

𝑄𝑖𝑛𝑗 = 𝑈𝑟  𝑆(𝑟),  (S4.2.5) 

and, with (S4.2.4): 

𝑈𝑟 =
𝑄𝑖𝑛𝑗

2𝛼(𝑟+𝑟0)𝑊𝑙
  (S4.2.6) 

Substituting Eqs. (S4.2.6) and (S4.2.4) into Eq. (S4.2.1) yields: 

𝐹 = 𝐴𝑄𝑖𝑛𝑗𝐻0 + 
𝐵 𝑄𝑖𝑛𝑗

2

2𝛼𝑊𝑙
ln (

𝐻0+2𝑟0

2𝑟0
)  (S4.2.7) 

In this geometry, the net weight of the bed, 𝑊, is given by: 

Figure S4.2.1: Conceptual framework to derive the minimum fluidization velocity. The top draw is a view from the top. 

The bottom draw is a front view. On both draws, the thick black lines represent the boundaries of the volume of the particle 

bed, which is fluidized. The red dashed curves indicate the cross sectional areas where the magnitude of the fluid velocity 

is uniform.  The arrows represent the direction of the fluid flow. The black dots represent the positions of the theoretical 

injections point and intersections between the cross sectional areas where the fluid velocity is uniform and the vertical 

boundary of the fluidized particle bed. 
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𝑊 = [(𝑟0 + 𝐻0)
2 tan 𝛼 −

𝑊𝑖𝑛𝑗 𝑟0

2
] 𝑊𝑙 (𝜌𝑝 − 𝜌𝑓)𝑔 𝜙.   (S4.2.8) 

Introducing 𝑟0 = 𝑊𝑖𝑛𝑗/ (2 tan 𝛼), the onset of fluidization occurred when 𝐹 = 𝑊, which yields: 

𝐴𝑄𝑖𝑛𝑗𝐻0 + 
𝐵 𝑄𝑖𝑛𝑗

2

2𝛼𝑊𝑙
ln (

2tan𝛼

𝑊𝑖𝑛𝑗
+ 1) − [𝐻0(𝑊𝑖𝑛𝑗 + 𝐻0 tan 𝛼) ] 𝑊𝑙 (𝜌𝑝 − 𝜌𝑓)𝑔 𝜙 = 0  (S4.2.9) 

Figure S4.2.2 displays comparison of the minimum fluidization velocities computed with 

formulas from Ergun (1952), Shi et al. (1984), Cui et al., (2014), and Eq. (S4.2.9), function of the 

particle bed height. It shows that Eq (S4.2.9) is closer to the result predicted with the formulas from 

Ergun (1952) and Shi et al. (1984). The incorrect formula derived by Cui et al., (2014) results in 

the significant overestimations of the minimum fluidization velocity.  

 

  

Figure S4.2.2: Comparison of the minimum fluidization velocities function of the initial particle bed height. The curves 

represent the minimum fluidization velocities derived by authors and the one given here. 
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Supplementary Section S4.3: Approximation of the intruder 

height during a spherical growth 

This supplementary section presents the derivation of the equations used to compute the maximum 

height of a magma batch that grows radially above the inlet. 

We consider as spherical intrusion having a unknown radius, 𝑅, and fed by an inlet of width 

𝑊𝑖𝑛𝑗 (Fig. S4.3.1). The inlet truncates the sphere at a vertical distance, ℎ, which depends on both 

𝑅 and 𝑊𝑖𝑛𝑗. The objective is to compute the distance from the inlet to the top of the sphere, 𝐻, 

knowing the area 𝐴 and injection width 𝑊𝑖𝑛𝑗. The total area, 𝐴𝑡𝑜𝑡, of the sphere is the sum of the 

area 𝐴, where the intruded fluid is present and the truncated area 𝐵 as: 

𝐴𝑡𝑜𝑡 = 𝐴 + 𝐵.  (S4.3.1) 

The area 𝐴 depends on injection velocity and time. The area 𝐴𝑡𝑜𝑡  may be expressed using the 

sphere radius 𝑅. Replacing 𝐴 and 𝐴𝑡𝑜𝑡  in equation (S4.3.1) and rearranging yields: 

𝜋𝑅2 = 𝑊𝑖𝑛𝑗 𝐻𝑏𝑒𝑑 𝑡
∗ + 𝐴𝐵.  (S4.3.2) 

The area 𝐵 may be approximated with a good accuracy as (Harris and Stöcker, 1998, pp 92-93): 

𝐴𝐵 ≈
2

3
𝑊𝑖𝑛𝑗ℎ +

ℎ3

2 𝑊𝑖𝑛𝑗
 . (S4.3.3) 

Inserting Eq. (S4.3.3) in Eq. (S4.3.2) gives: 

0 = 𝑊𝑖𝑛𝑗 𝐻𝑏𝑒𝑑 𝑡
∗ +

2

3
𝑊𝑖𝑛𝑗ℎ +

ℎ3

2 𝑊𝑖𝑛𝑗
− 𝜋𝑅2.  (S4.3.4) 

Equation (S4.3.4) contains two unknowns, 𝑅 and ℎ, which can be related to each other tanks to 

geometry: 

 0 =  
𝑊𝑖𝑛𝑗

2

4
+ (𝑅 − ℎ)2 −𝑅2.  (S4.3.5) 

Finally, 𝐻 reads: 

𝐻 = 2𝑅 − ℎ  (S4.3.6) 
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Figure S4.3.1: Schematics of the geometrical setup. The drawing represents a vertical section of the intrusion. The area 

covered by the injected melt is in gray and the area truncated from the circle of radius R is in red. 
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Chapter 5: Numerical simulations of the 

mixing caused by a magma intruding a 

resident mush13 

5.1 Introduction 

The replenishments of magmatic reservoirs with hotter and more mobile magmas are 

ubiquitous in nature. These events may trigger volcanic eruptions (Bachmann and Bergantz, 2006; 

Burgisser and Bergantz, 2011; Huber et al., 2011), and their repetitions are inferred to result in 

forming mushy magmatic reservoirs in the upper crust (Annen et al., 2015, 2006; Karakas et al., 

2017). The products of eruptions triggered by a recharge in new magma evidence either significant 

(e.g., Murphy et al., 2000; Nakagawa et al., 2002; Pallister et al., 1992; Pichavant et al., 2018), or 

limited (e.g., Bachmann et al., 2014, 2002; Eichelberger and Izbekov, 2000; Hildreth, 1979; 

Takahashi and Nakagawa, 2013) mixing between the two end members involved. In chapter 4, we 

have shown that, when intruded at a gentle rate, a denser melt spreads laterally at the base of the 

mush, whereas it flows radially from the inlet at high injection velocities. The lateral spreading of 

the intrusion appears to be common in long-lived magmatic systems as exemplified by silicic-mafic 

layers complexes observed at the root of plutons (e.g. Bain et al., 2013; Wiebe, 2016). The 

efficiency of mixing in such a scenario was previously explored with experiments mimicking the 

mush and intruded magma as pure fluids having equivalent effective properties (e.g. Jellinek and 

Kerr, 1999; Snyder and Tait, 1996, 1995). This approach neglects the relative motion between 

crystals and the surrounding melt, and relies on the bulk densities of the constituents, which may 

result in discrepancies compared to the expected behavior of real magmas (Chapter 4). The 

efficiency of mixing accounting for granular dynamics was explored previously in the context of 

mush fluidization with both injected and resident melts having equal density and viscosity 

(Bergantz et al., 2015; Schleicher et al., 2016; Schleicher and Bergantz, 2017). It now requires to 

                                                             
13 This chapter is currently prepared for submission as a research article to Geology as: 
Carrara, A., Burgisser, A., Bergantz, G.W., Numerical simulations of the mixing caused by a magma intruding a 
resident mush 
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be constrained in the context of the injection of a denser melt with a different viscosity to extend 

our understanding of the magma reservoir processes that may result in eruptions. 

 The mixing between two materials having different viscosities has been addressed by 

imposing the stirring with the more viscous materials on inclusions or intrusions of less viscous 

ones (e.g. Bergantz and Breidenthal, 2001; Couch et al., 2001; Manga, 1996). As a result, the 

convective nature of the host material is the key parameter controlling the efficiency of the 

hybridization between the two magmas. The thermal interactions between the host mush and the 

intruder are able to generate thermal and compositional convections and greatly impact the mixing 

and hybridizations between the two end-member materials (Bain et al., 2013; Jellinek and Kerr, 

1999; Snyder and Tait, 1996; Tait and Jaupart, 1992). In chapter 4, we focused on the short-term 

behavior of the injection and neglected thermal effects. A description of mixing requires accounting 

for the heat exchange between the magmas and for the dependence of the melts properties (density 

and viscosity) on temperature (e.g. Montagna et al., 2017). It also requires modeling the dynamics 

of the magmatic reservoir after the injection ceases (Schleicher and Bergantz, 2017) to account for 

the thermal interactions that take place over durations longer than that of injection. 

 In the present chapter, we performed Computational Fluid Dynamics and Discrete Element 

Method (CFD-DEM) simulations to explore the thermal effects and evolution of the interactions 

between a host mush and an intruded magma of different composition. First, we present the 

modifications made on the numerical model with respect to chapter 4 and the initial conditions and 

compositions of the magmas. Then, we describe the results of the simulations and the differences 

resulting from including thermal effects. One simulation is then used to explore the evolution of 

the interactions between the host and intruder materials after the injection shuts off. Finally, we 

discuss the limitations and implications of our results. 
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Symbol (unit) Definition 

𝜌𝑓 (kg m-3) Fluid density 

𝑇 (K) Fluid temperature 

𝐶𝑝𝑓 (J K-1) Isobar heat capacity of the fluid 

𝑘𝑓 (W m-1 K-1) Fluid heat conductivity 

𝛼𝑓 (K-1) Fluid expansion coefficient 

𝜂 (Pa s) Fluid dynamic viscosity 

𝜌𝑠 (kg m-3) Particle density 

𝑡∗  Reduced time 

𝑈𝑖𝑛𝑗 (m s-1)  Injection superficial velocity 

𝑼𝒎𝒇 (m s-1) Minimum fluidization superficial velocity 

𝑼∗  Dimensionless injection velocity 

𝑄𝑓𝑠 (w m-2) Fluid-solid heat transfer 

𝑄𝑠𝑠 (w m-2) Solid-solid heat transfer 

𝑄𝑠𝑓𝑠 (w m-2) Solid-fluid-solid heat transfer 

𝐶𝑝𝑓 (J K-1) Isobar heat capacity of the solids 

𝑘𝑓 (W m-1 K-1) Solids heat conductivity 

Table 5.1: List of symbols and their meaning 

 

5.2 Method 

 We performed CFD-DEM numerical simulations by using the MFIX-DEM software 

(https://mfix.netl.doe.gov/), with the modifications introduced in the chapter 4 that allowed us to 

use viscosities relevant for magmatic melts. As thermal effects are accounted for, we consider the 

energy equations of the two phases in the set of conservation equations. For the fluid, the energy 

equation reads (see chapter 2): 

(1 − 𝛷)𝜌𝑓 𝐶𝑝𝑓 (
𝜕  𝑇𝑓

𝜕𝑡
+ 𝑣𝑓⃗⃗⃗⃗⃗  ∙ ∇ 𝑇𝑓) + 𝑘𝑓 ∇ ∙ ((1 − 𝛷) ∙  ∇ 𝑇𝑓) − 𝑄𝑓𝑠 = 0,  (5.1) 

where 𝜌𝑓 is the fluid density, 𝐶𝑝𝑓 is the isobar heat capacity of the fluid, 𝛷 is the volume fraction 

of solids, 𝑇𝑓 is the fluid temperature, 𝑣𝑓⃗⃗⃗⃗⃗ is the fluid velocity vector, 𝑘𝑓 is the heat conductivity in 

the fluid, and 𝑄𝑓𝑠 is the heat flux between the solids and the fluid. For the solids, the discrete 

equation that controls the evolution of temperature is (see chapter 2): 

𝑚𝑠(𝑖) 𝐶𝑃𝑠(𝑖) 
𝜕𝑇𝑠(𝑖)

𝜕𝑡
= 𝑄𝑓𝑠(𝑖) + ∑ (𝑄𝑠𝑠(𝑖, 𝑗) + 𝑄𝑠𝑓𝑠(𝑖, 𝑗)) 

𝑁
𝑗=1 + ∑ 𝑄𝑠𝑓𝑠(𝑖, 𝑗)

𝑀
𝑗=1 ,  (5.2) 

where 𝑚𝑠  is the mass of the ith particle, 𝐶𝑃𝑠  is the isobar heat capacity of the solid, 𝑇𝑠  is the 

temperature of the solid, 𝑄𝑠𝑠(𝑖, 𝑗)  is the heat flux between particles i and j in contact, and 𝑄𝑠𝑓𝑠(𝑖, 𝑗) 
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is the heat flux between particles i and j through the thin fluid layer located between them (Rong 

and Horio, 1999). In the bounds of the sums in Eq. (5.2), the index 𝑁 indicates the number of 

particles that are in contact with particle , and the index 𝑀 is the number of neighboring particles 

that are close to but separated from the 𝑖𝑡ℎ particle. In a mush, the heat transfer between close solids 

through the fluid film separating them, 𝑄𝑠𝑓𝑠, is the dominant heat transfer mode (see chapter 2). 

The overall heat transfer in magmas and mush is mainly controlled by the fluid conductivity 

(Delvosalle and Vanderschuren, 1985). We do not account of the melting and crystallization of the 

solids here. 

 Changes in fluid temperature induce thermal dilatation and contraction and affect the fluid 

dynamic viscosity. The thermal expansion of the fluid causes density changes, which may induce 

convection. The equation of state linking the temperature of the melt phase to its density is: 

𝜕 𝜌𝑓

𝜕 𝑇𝑓
= 𝛼𝑓,  (5.3) 

where 𝛼𝑓 is the thermal expansion of the melt. The characteristic thermal expansion of crystals is 

much smaller than that of the melt, which allowed us to neglect the effects of the solids dilatations 

and contractions. The viscosity of a magmatic melt depends on its chemical composition, dissolved 

water content, and temperature as (Giordano et al., 2008): 

𝐿𝑜𝑔10 𝜂 =  −4.55 +
𝐵

𝐶+𝑇𝑓
  (5.4) 

where B and C are constants that depend on the chemical composition of the melt phase. Because 

we consider two melts having different chemical compositions that mix during the simulations, we 

used the chemical composition of the two end-member magmas and an ideal mixture relationship 

to compute the local coefficients B and C.  

 To account for the diversity in chemical compositions of magmas and mush that are 

encountered in arc magmatism, we explored two different scenarios. The first one (A) considers 

the presence of a basaltic mush in which a hotter basaltic melt is injected. The second scenario (B) 

mimics the replenishment of a dacitic reservoir by a basaltic melt. For simulation A, we computed 

the physical properties of the melts and solid contents by computing the cooling and crystallization 

of a basaltic magma using the MELTS model (Ghiorso, 2004; Ghiorso and Kress, 2004) in the 

software PELE (Boudreau, 1999), at a pressure of 250 MPa using the QFM buffer. The initial 
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chemical compositions of the basaltic melt is taken from Dufek and Bachmann (2010) (see Table 

5.2 for the initial composition and physical properties of the constituents). For simulation B, the 

chemical compositions and crystal contents of the end-member materials were taken from Caricchi 

and Blundy (2015) and Melekhova et al. (2013). 

 We employed the same 3D computational domain, thickness of the mush layer, and 

boundary conditions as used previously in chapter 4. The crystal-free melt is injected at the base 

of the mush layers through an inlet. We scale the injection velocity by computing the minimum 

fluidization velocities as in chapter 4. The two simulations use the same dimensionless injection 

velocity for which the injection momentum is dominant (see chapter 4). In both simulations, the 

density contrasts between the two melts are such that the intruded material will spread laterally if 

the injection momentum is negligible. The two simulations are compared for the same 

dimensionless time, 𝑡∗  (chapter 4), for which the same volumes are injected. The short 

computational duration (~ 1.5h on 128 cores) required to reach this dimensionless time in 

simulation A allows us to continue the simulation and explore the evolution of the interaction 

between host and intruded materials. In this way, we turn off the injection after t*=1.17 (t=7 s) and 

continue the simulation until t*=83.9 (t=527 s). Reaching the same dimensionless duration in 

simulation B would have required a calculation time too costly to be easily performed (t=~14h and 

approximatively 1.5 year of computation on 128 cores). 

 To quantify the mixing efficiency in the discrete phase, we computed the Initial Neighbor 

Distance (IND) mixing index employed by Schleicher et al. (2016). The IND is computed as the 

ratio of the sum of the distances that separates each particles with its initial nearest neighbor over 

the sum of the distances separating each particle and a random one (Schleicher et al., 2016). The 

IND is close to zero when particles remains ordered and close to unity when they are fully mixed. 
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Parameter Host Sim. A2 Intrusion Sim. A2 Host Sim. B1 Intrusion Sim. B3 

SiO2 (% wt) 54.69 48.39 74.97 45.37 

TiO2 (% wt) 0.6 0.98 0.14 0.7 

Al2O3 (% wt) 18.85 16.93 14.23 13.88 

FeO(T) (% wt) 5.41 10.07 0.93 7.30 

MnO (% wt) 0.48 0.18 0.08 0.34 

MgO (% wt) 1.12 5.96 0.24 13.63 

CaO (% wt) 4.77 10.46 1.29 10.30 

Na2O (% wt) 4.78 2.67 2.68 2.23 

K2O (% wt) 3.32 1.20 5.44 0.14 

P2O5 (% wt) 0.59 0.22 0 0.08 

H2O (% wt) 5.39 1.95 6.08 4.5 

T (°C) 925 1150 800  1200 

  0.64 0.0 0.64 0.0 

Mineral phases (%vol cryst.) 53-20-27 (pl-ol-cpx) - 75–17–8  (pl-bi-cpx) - 

 (kg m-3) 2305.1 2570.0 2036.97 2429.96 

 (kg m-3) 2700-3300-3400 (pl-ol-cpx) - 2700-3500-3400 (pl-bi-cpx) - 

B 7005.9 5460 9690.5 4913.8 

C 213.4 448.1 33.6 452.3 

 (Pa s) 366.52 11.21 5.912 104  1.835  

 (K-1) 1 10-4 1 10-4 1 10-4 1 10-4 

 (W m2 K-1) 1.5286 1.5286 1.5286 1.5286 

 (J kg-1 K-1) 1367.4 1367.4 1367.4 1367.4 

 (W m2 K-1) 2.4863 - 2.4863 - 

 (J kg-1 K-1) 11146 - 11146 - 

 (m s-1) - 4.839 10-2 m s-1 - 5 10-4 m s-1 

  - 93470 - 93470 

Table 5.2: Chemical compositions and physical properties of the magmas considered. Abbreviations pl, ol, cpx, and bi 

represent the plagioclase, olivine, clinopyroxene, and biotite mineral groups, respectively. Initial compositions were taken 

from 1Caricchi and Blundy (2015), 2Dufek and Bachmann (2010), and 3Melekhova et al. (2013). 
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5.3 Results 

 Figure 5.1 displays snapshots of simulation A at a dimensionless time t*=1.17 (t=7s). The 

intruded volume growth radially (Fig. 5.1 B) as expected with the dimensionless superficial 

injection velocity we imposed. The relaxation of the initial overpressure imposed by the initiation 

of mass inflow at the inlet (~1000 Pa above the injected material, after 1s of injection) results in 

the dilation of the crystal framework in a halo surrounding the injected volume (Fig. 5.1 A). The 

fluid flow is radial with velocities that are maximum above the inlet and that decrease away from 

it (Fig. 5.1 C). The intruded material diffuses its heat to the host and cools down. The temperature 

of the melt decreases radially from the inlet and shows a diffusive pattern (Fig. 5.1 D). Except near 

the interface between the intruded and host melts at the floor of the tank, no host crystals where 

present in the intruded volume at that time (Fig. 5.1 E). The solids located above the intruded 

volume have upward motions in their vertical component, whereas the ones located on the side of 

this volume do not show significant vertical motion.  

 Simulation B with the dacitic mush presents a similar radial growth of the intruded volume 

(Fig. 5.2). The location of the intruded material is similar to the one observed in simulation A. The 

shape of the dacitic mush intruder is nevertheless a little more elongated  horizontally (Fig. 5.2 B) 

than the basaltic mush intruder (Fig. 5.1 B). The flow pattern of the melts is significantly different 

from that of the basaltic mush (Fig 5.2 C). The intruded material starts to convect once t*>0.5. The 

convective cells are restricted to the intruded volume and are not able to stir the overlying mush. 

Within the mush, the flow pattern of the melt is radial from the boundary between the host and 

intruded materials and it is similar to the one observed in simulation A. The distribution of 

temperature within the intrusion is affected by thermal convection. It shows the ascent of hot 

material and the downward flow of colder melt above the left bound of the inlet (Fig 5.2 D). 

Thermal convection also concentrates the temperature gradients at the margin of the intruded 

volume. Host particles are found within the intruded melt (Fig. 5.2 F). The host solids are 

introduced because of the progressive erosion of the crystal framework above the intruded volume. 

The crystals located in the intruder have downward motions and tend to accumulate at the inlet. 

Around the intruded volume, the granular flow shows either upward or negligible vertical motions, 

as observed in simulation A. 
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Figure 5.1: Results of simulation A at t*=1.17 (t=7 s) viewed from the front of the tank. In A and C‒E, the green curves 

represent the boundary between the host and intruded melts given by snapshot B.  [A] Distribution of crystal content. [B] 

Chemical composition of the melt. The white dashed curve is the location of the top of the mush layer, taken at Φ=0.4 in 

snapshot A. [C] Velocity field of the melt phase. The black arrows indicate the direction of the flow and are unscaled. The 

magnitude of the flow velocity is given by the background color with a logarithm scale. [D] Difference of the local 

temperature with respect to the intrusion temperature. Note that the scale is logarithmic and chosen to reflect the evolution 

of the temperature in the intrusion. The diffusion of the heat of the host into the mush is not visible here. [E] Vertical 

velocity of the crystals. Each disc represents a particle. Particles colored in beige move upward and particles displayed in 

black have negligible vertical velocities. No particle having a downward motion is present. 
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Figure 5.3 displays snapshots of the evolution of the distribution of crystal content, 

chemical composition, and temperature of simulation A after stopping the injection and until 

t*=83.9 (t=527 s). It shows that once the injection stops, the evolution of the intruded layer is 

controlled by the buoyancy contrast between the host and introduced melts. The intruded volume 

starts to pond at the base of the mush (Fig. 5.3 B, H, and N). The thickness of the intruded layer 

decreases as the lateral spreading progresses (Fig. 5.3 A‒F). Importantly, materials (crystals and 

melt) from the host are trapped below the intrusion. The host melt that is trapped is buoyant with 

respect to the intrusion and forms Rayleigh-Taylor instabilities, entraining the solids through the 

ponding intrusion and sometimes forming isolated crystal-rich pockets (Fig. 5.3 C‒F). Once the 

lateral spreading becomes slower, host crystals surrounding the intrusion may settle and penetrate 

the intruder. At t*=83.9, the intruder crystal volume fraction range from 5% to 15% at the fronts, 

and between 0% and 2-3% in the body, on a width of approximatively 3 times the inlet centered 

around the inlet (Fig. 5.3 F). The crystal content in the rising blobs of host materials is characterized 

by higher volume fraction in solids (~30‒40%). 

We observe the progressive decrease of the crystals content of the entire mush layer once 

injection stops. At t*=1.12, the crystal content of the mush is typically >60%, whereas at t*=83.9, 

the maximum concentrations in solids are <60% (at most ~58%). The overlap distances, which are 

proxies for the force chains strength, show a significant decrease in their magnitude (from ~3.5% 

particle diameters at the end of the injection phase to ~0.1% at t*=83.9). A strong decrease in 

crystal content is observed in the mush above the inlet. It artificially results from the finite size of 

the particle bed that cannot supply the downward granular motions above the inlet with crystals. 

Above the body of the intruded layer away from the inlet, the mush has a region of lower crystal 

content (~40% vol. fraction in solids) that tends to grow vertically with time (Fig. 5.3 D‒F). 

The distribution of the chemical composition shows the progressive hybridization of the 

melt located in the body of intruded layer away from the inlet (Fig. 5.3 G‒L). On the contrary, the 

composition of the intruded melt located above the inlet remains unchanged. The progressive 

cooling of the intrusion (Fig. 5.3 M‒R) results from the diffusion of heat into the mush, the 

incorporation of crystals at thermal equilibrium with the host melt, and the advection of the colder 

material trapped below the intruder (Fig. 5.3 O‒R). 



 

 140 Chapter 5: Numerical simulations of the mixing caused by a magma intruding a resident mush 
  

Figure 5.2: Results of simulation B at t*=1.17 (t=699 s) viewed from the front. In snapshots A and C‒E, the green curves 

represent the boundary between the host and intruded melts given by snapshot B. [A] Distribution of crystal content. [B] 

Chemical composition of the melt. The withe dashed curve is the location of the top of the mush layer, taken at Φ=0.4 in 

snapshot A. [C] Velocity field of the melt phase. Black arrows indicate the directions of the flow and are unscaled. The 

magnitude of the flow velocity is given by the background color with a logarithm scale. [D] Difference of the local 

temperature with respect to the intrusion temperature. Note that the scale is logarithmic and chosen to reflect the evolution 

of the temperature in the intrusion. The diffusion of the heat of the host into the mush is not visible here. [E] Vertical 

velocity of the crystals. Each disc represents a particle. Particles colored in beige and cyan move upward and downward, 

respectively. Particles displayed in black have negligible vertical velocities. 

 



 

 

 
141 Chapter 5: Numerical simulations of the mixing caused by a magma intruding a resident mush 

 

Figure 5.3: Interactions between the intruded and host materials after shutting off the injection. The solid green curve and 

dashed white curves have the same meanings as in Fig. 5.2. [A]‒[F] Distribution of the content in crystals. The background 

color indicates the crystal volume fraction. The green curves correspond to the boundary where the melt is composed by 

equal parts of the host and introduced melts. [G]‒[L] Chemical composition of the melt phase. [M]‒[R] Evolution of the 

difference of local temperature compared to the host initial temperature. Note that the temperature scale is logarithmic 

and chosen to highlight the evolution of temperature of the host melt. The cooling of the host melt is visible after t*=60. 
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Figure 5.4 displays snapshots of the granular dynamics at t*=83.9. It shows that two 

counter-rotating granular vortexes are present within the mush overlying the intrusion (Fig. 5.4 A‒

B), resulting from the lateral spreading of the intruder (see chapter 4). Even if the lateral spreading 

rate of the intruder is weak at t*=83.9, the granular vortexes of the solids are still present. Despite 

the decrease of volume fraction in solids, contacts are still present within the mush and restricted 

to two regions near the top of the mush layer (Fig. 5.4 C). We also observe the presence of contacts 

between the particles in the host material that is rising through the intrusion. In the volumes located 

above the intrusion where the crystal contents decrease to ~40% (Fig. 5.3 F), most solid–solid 

contacts vanished. Some force chains are present in these volumes, but their strength (proportional 

to the square root of the particle overlap) are negligible compared to the ones at t*=1.17 when the 

injection stops. The Initial Neighbor Distance at t*=83.9 is 0.0114 for the entire bed. However, the 

spatial distribution of the initial neighbor separation shows that most of the mixing in the solids 

occurs in the intruded layer (Fig. 5.4 D). In the mush layer that surrounds the intruded layer, the 

two granular vortexes are not able to mix the host crystals. Restricting the computation of the IND 

to the crystals located in the intruded melt (where the composition index is above or equal to 0.5) 

is 0.106, while the IND of the crystals in the mush is 0.0083. Even deformed and entrained by the 

granular vortexes, mush crystals remain poorly mixed.  

 

5.4 Discussion 

The IND is useful to quantify the overall amount of crystal mixing, and the initial closest 

neighbor separation distance is useful to visualize where the mixing is located. During the lateral 

spreading of intruder, the efficiency of the solids mixing is small compared to the case of 

fluidization explored in Schleicher et al. (2016). Even when computed only into the intruded layer, 

the IND remains low, indicating the low efficiency of the spreading layer in generating mixing. 

This result is in agreement with the experimental observations from Jellinek and Kerr (1999), who 

have addressed mixing using pure fluids of contrasting densities and viscosities. Ideally, one should 

consider separately the mixing of the solids and that of the melts. Quantifying the mixing between 

the host and injected melts in our simulations is challenging because of numerical diffusion. The 

thickness of the spreading layer encompasses only 3 grid cells that are visibly affected by numerical  
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Figure 5.4: Dynamics of the granular phase at t*=83.9 for simulation A. [A] Velocity field of the crystals in the x direction. 

Note that the color scale saturates for the solids located in the intruded layer. [B] Velocity of the crystals in the y direction. 

[C] Percentage of the overlap distance with respect to particle diameter. [D] Dimensionless initial neighbor separation. For 

each particle, it is the distance that separates it from its closest neighbor at the beginning of the simulation. 
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diffusion near the intrusion fronts (Fig. 5.3 L). Chemical diffusion, which is ignored in our 

simulations, exists in magmas but each element (e.g., SiO2, Al2O3, H2O) has a different diffusivity 

coefficient (Morgavi et al., 2013). Therefore, a reliable quantification of the hybridization between 

two melts requires performing simulations on a larger scale to increase the number of fluid cells 

composing the intruded layer, and to track the diffusion of the each element with a 

transport/diffusion equation.  

Although we considered the difference in temperature between the two melts, it does not 

have significant effects on the behavior of the injection of simulation A, which could have been 

deduced from the results of chapter 4. This is because the growth of the intruded volume is too fast 

for the intruder to convect and because the injection shut-off stops the heat supply. During the 

lateral spreading, the thinning of the intruded layer and ensuing heat diffusion into the overlying 

and underlying mush reduces the likelihood of convection. Because simulation B takes a longer 

time to reach t*=1.17 (699 s) and because of the lower viscosity of the injected melt, simulation B 

features convection within the intruded volume, a result that none of the simulations of chapter 4 

shows. The excessive computation duration of this simulation did not allow us to explore the effects 

of this convection on the evolution of the mush–intrusion interaction. Convection within the 

intruder is expected to increase mixing efficiency between the two magmas because the goodness 

of mixing is a function of the vigor of convection (Bergantz and Ni, 1999; Jellinek and Kerr, 1999). 

The convective cells tend to homogenize the temperature of the melt with the intruded volume and 

to concentrate the temperature gradient to the margin of this volume, which both increase the 

cooling rate of the intrusion (Huber et al., 2009b). The rapid cooling of the host accelerates the 

crystallization process, which, to first order, increases the effective viscosity of the magma, 

possibly hindering convection. We thus expect that the presence of convection within the intruder 

will initially enhance granular mixing after the intrusion is turned off, before eventually hindering 

convection. In neither simulations is the heat supplied by the intruder able to generate convection 

in the host mush. The Rayleigh number in the host thermal boundary layer that surrounds the 

intrusion (i.e. the mush that is affected by heat diffusion) is on the order of 10 -2, far below the 

critical Rayleigh number at which convection starts (~103). According to the scaling relationship 

given in Snyder (2000) for a continuous heat supply, the activation time of convection in the host 

material of simulation A is ~1150s, which is longer than the full duration of our simulations and 

much longer than the time at which injection interruption cancels heat supply. We thus do not 
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expect convection in the host for t*>83.9, nor the vertical entrainment of intruded material by 

convection as observed in the experiments of Snyder and Tait (1996). It follows that the triggering 

of mush convection requires the injection of a sufficiently large volume of magma to supply enough 

heat to the mush.  

Because of the cooling of the intruded material and the heating of the overlying mush, 

crystallization and melting of the solids may occur. In this study, we do not consider these 

processes. According to the crystal growth rate considered in Ruprecht et al. (2008), the maximum 

growth or melting in our simulations represents ~10-4 % of the crystal diameter, which suggests 

that neglecting crystallization and melting of crystals is valid in our case. Over longer times, the 

formation and growth of crystals in the basalt withdraws the ferromagnesian elements from the 

surrounding melt, reducing its density and possibly generating compositional convection (Tait and 

Jaupart, 1992). 

  Even if the injection of the hot basalt was not able to induce host convection in our 

simulations, the injection generated important dynamical effects that affected the physical state of 

the surrounding mush. In chapter 4, we have shown that the lateral spreading of the intrusion 

entrained the formation of granular vortexes in the overlying mush. Here, the joint effects of the 

settling of the host crystals and Reynolds dilatancy (see chapter 4) are able to decrease locally the 

solid volume fraction of the overlying mush. In simulation A, the average crystal volume fraction 

in the mush layer decreases from 0.64 at the end of the injection to 0.58 at t*=83.9 (the mush 

immediately surrounding the intruded volume was not taken into account in this averaging) (Fig. 

5.3 A‒F). The initial stress generated by the on-going intrusion is accommodated by both the 

bulging of the particle bed and the loading of forces chains throughout the mush. Once the injection 

stops, the stress relaxes by the progressive dilation of the mush layer. The accommodation done by 

bulging is not expected to occur when the magmatic reservoir is entirely composed of mush. The 

elastic loading of the force chains, however, is expected. Thus, in a mush-filled reservoir, the 

combined effects of the relaxation of the injection stress, Reynolds dilatancy, and settling of the 

host particle in the intruder decrease the solid volume fraction of the host to a range at which the 

extraction of the interstitial melt by repacking of the crystals framework is optimal (Bachmann and 

Huber, 2019). 
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In simulation A, once the lateral spreading of the intruded volume becomes negligible, the 

two regions of the mush with a lowered crystallinity of 40% propagate upward (Fig. 5.3 E‒F). We 

thus expect that if simulation A were run further in time, these more dilute volumes would continue 

to progress upward, maybe in the fashion described experimentally by Shibano et al. (2012). The 

injection of a denser magma in an open mush thus appears to be an efficient trigger for the 

extraction of the mush interstitial melt. The decrease of the crystal content also affects the behavior 

of exsolved volatiles if present. Whereas in mushy conditions, the gas phase may channelize and 

ascends effectively through the mush, at the crystal contents we obtained, the exsolved volatiles 

are likely to be found as isolated bubbles (Parmigiani et al., 2017, 2014), which reduces their ability 

to advect heat through the overlying mush and to rejuvenate the mush by gas sparging (Bachmann 

and Bergantz, 2006). 

Our simulations are able to reproduce some features observed in plutons where the 

interactions between the host mush and injected material can be observed. Well-preserved mafic-

felsic interfaces often present gravitational instabilities and mingling features (e.g. Bain et al., 

2013; Wiebe, 2016, and references therein) (Fig 5.5 A). These outcrops show sharp transitions 

between the two lithologies (Bain et al., 2013), which suggests that chemical diffusion has a weak 

effect prior to the solidification and the preservation of the mafic-felsic complex. The instabilities 

are inferred to be generated by the buoyant rise of the underlying felsic mush within a layer of 

basalt. The presence of the felsic mush below the intruder has been interpreted to be the result of a 

yield stress within the mush that then supports the vertical flow of basalt (Jellinek and Kerr, 1999). 

In this scenario, the negatively buoyant intrusion spreads laterally when a weaker region of the 

magmatic reservoir is encountered. The underlying strong mush is progressively weakened because 

of the warming imposed by the intruder. It results in gravitationally instabilities at the basal silicic-

mafic interface, and in the rise of buoyant felsic magma through the newly emplaced mafic magma, 

sometimes forming pipes (Bain et al., 2013). Experiments mimicking the replenishment of a 

reservoir with a denser fluid showed that resident materials may be trapped beneath such a laterally 

spreading layer (Snyder and Tait, 1995).  
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Under low injection rates, the trapped layer is very thin (see chapter 4) and has probably a 

negligible effect on the intruder. Simulation A has shown that when the injection of the basalt is 

short and dies off rapidly, a significant thickness of the host mush may be trapped below the 

intrusion (Fig. 5.3). The trapped layer is weak enough to flow and rise through the spreading layer. 

Our results suggest that the rise of buoyant mush through the intruded layer may also be initiated 

by an alternative scenario to the one proposed by Bain et al. (2013) and Jellinek and Kerr (1999) 

because the occurrence of instabilities does not necessarily implies a thermal origin but a contrast 

in melt densities (Snyder and Tait, 1998) and a short but intense injection event. In our scenario, 

the rise of the host mush occurs while the intruder spread. The rising blobs of mush are 

progressively tilted and deformed along the flow direction (Fig. 5.3 D–F). In some of the outcrops 

reported in Bain et al. (2013), the mafic-felsic interfaces show a preferential orientation in the tilt 

of the rising blobs of resident mush (Fig. 5.5 B). We speculate that the preferential lateral 

deformation of the rising blobs may reflect the direction of the intrusion flow. Analyzing the spatial 

distribution of such deformations may help to locate the feeding point of the intrusion. Some 

outcrops displayed in Bain et al. (2013) do not show significant lateral deformation of the rising 

blobs (Fig. 5.5 C), suggesting either that the mafic layer was at rest during the rise of the mush, or 

that the direction of the flow was perpendicular to the outcrop. 

 

Figure 5.5: Silicic-mafic interfaces, redrawn from Bain et al. (2013). [A] Example of unstable silicic-mafic interface 

observed at the Coastal Maine Magmatic Province. [B] Outcrop from the Pleasant Bay, Ray point, Maine USA. [C] Outcrop 

from Mount Desert Island, Stewart Head, Maine, USA. Each red curve indicates the silicic-mafic interface and was drawn 

by Bain et al. (2013). 
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5.5 Conclusions 

 In this chapter, we modeled the injection of a hot and mobile magma into a mush and their 

interactions during and after emplacement while accounting for the heat exchange and thermal 

effects on the melts physical properties. We implemented the thermal expansion and viscosity 

variations of the melts with respect to temperature in the CFD-DEM model employed in chapter 4. 

Two cases were explored, the intrusions of two basaltic melts in a basaltic mush and a dacitic mush, 

respectively. The two simulations used the same dimensionless intrusion speed for which the 

injection momentum controls the intruder behavior. During the injections, the shape of the two 

intruded volumes had similar shapes but the dynamics of the intruded melts were different. With 

the basaltic mush (simulation A), melts flows were radial from the inlet and the temperature was 

transferred by conduction to the mush. The higher viscosity of the dacitic mush (simulation B) 

lengthens the duration of the injection, enhancing the cooling of the intruded volume compared to 

simulation A for the same dimensionless time. The temperature contrast between the margin of the 

intrusion and the inlet causes convection in the intrusion. Because of the rheological contrast 

between the host and intruded materials, convection was restricted to the intrusion. 

In simulation A, when the injection was stopped, the intruded material ponded to the base 

of the mush and spread laterally, trapping host material below it. The buoyant underlying melt 

ascended through the intruded layer, entraining host crystals. Other crystals from the overlying 

mush also penetrated the intrusion by settling. Crystals mixing was restricted within the intruded 

layer and in its vicinity. The presence of convection in the intruded volume increased the efficiency 

of mixing in the intrusion, but the overall mixing efficiency was lower than in the fluidization 

regime explored by Schleicher et al., (2016, 2017). The amount of heat injected in the mush was 

not able to trigger mush convection. Overall, our simulations replicate most of the textures of 

magma mixing and mingling observed in rocks (e.g., enclaves, isolated crystals in disequilibrium 

with their host) despite strong density and viscosity contrasts, which suggests that magma mixing 

is a fundamentally two-phase process that can be captured by CFD-DEM simulations. More 

specifically, our results also reproduce the gravitational instabilities observed in outcrops featuring 

silicic-mafic interfaces, which suggests that the rise of the host mush in an intruded layer does not 

necessarily require thermal activation and may be triggered instead by a rapid and short injection 

event. 
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Chapter 6: The seismic properties of 

eruptible magmas14 

6.1 Introduction 

The ubiquity of replenishment of the magmatic reservoir with mobile magma (see chapter 

4), the crystal contents of eruptive products (e.g. Takahashi and Nakagawa, 2013), and the 

occurrence of mechanisms that lead to the extraction of melt from a mush (e.g. Bachmann and 

Huber, 2019) indicate the episodic presence in upper crustal magmatic reservoirs of volumes 

dominated by melt. These magma bodies correspond to the eruptible volume of a magmatic 

reservoir. The rheology of eruptible magmas has a strong control on eruptive style (e.g. Cassidy et 

al., 2018; Karlstrom et al., 2012). The detection of melt-dominated volumes and the estimation of 

their physical properties are of paramount importance to enhance our ability to predict eruptive 

styles and to best assess volcanic hazards. The presence of eruptible magma is expected to cause 

the sharp decrease of the compressional wave velocity and to suppress shear waves (Caricchi et al., 

2008). Tomographic images of seismic wave velocities and attenuations show the presence of 

partially molten rocks and crystal mush, but they have never evidenced the presence of melt-

dominated bodies (e.g. De Siena et al., 2014; Kiser et al., 2016; Paulatto et al., 2012; Waite and 

Moran, 2009). Tomographic images are computed with the first wave arrivals at the stations, which 

corresponds to the fastest travel from the source. Because of the lower velocities of the 

compressional waves in magmas, the ray paths of the first arrivals may avoid melt volume, which 

undersample them in the resulting image, effectively hiding them. The spatial averaging of the 

seismic properties resulting from tomography may also smooth the effects of the presence of small 

melt-dominated bodies, which are then interpreted as partially molten rocks. Finally, it is possible 

that seismic waves are attenuated during their propagation across magmatic systems. 

A comprehensive interpretation of the results of seismic velocities and attenuation tomography 

requires a good knowledge of the acoustic properties of the materials constituting the magmatic 

system. Models exist to compute the compressional and shear waves velocities and attenuation 

                                                             
14 This chapter is currently prepared for submission as a research article to Acoustical Society of America as: 
Carrara, A., , Lesage, P., Burgisser, A., The seismic properties of eruptible magmas 
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coefficients in partially molten rocks (e.g. Mavko, 2012), in pure melts (e.g. Kress and Carmichael, 

1991), or in bubbly melts (e.g. Collier et al., 2006; Neuberg and O’Gorman, 2002). Caricchi et al. 

(2008) studied experimentally the velocities of P and S waves in eruptible magmas. Some seismic 

properties of crystal-bearing magmas remain, however, poorly constrained. It is the case of intrinsic 

attenuation, which is one focus of this chapter. 

 In the acoustic literature, the acoustic properties of suspensions of solids in fluids have been 

widely studied because of industrial interests (Challis et al., 2005). Authors used two main 

approaches. The scattering approach is based on the harmonic decomposition of the waves radiated 

by the solids in the suspension, and presents the advantage to be reliable at any frequency, but is 

not able to account for the relative motion between the constituents (Berryman, 1980; Kuster and 

Toksöz, 1974; Kuster and Toksoz, 1974; Valier-Brasier et al., 2015). On the contrary, the coupled 

phase approach is based on the constitutive equations that control the dynamic of the carrier and 

suspended phases. It is limited to the long wavelength regime (seismic wavelengths much larger 

than the solid sizes), but it can take into account complex physical phenomena such as the relative 

motions that exist between the constituents (Atkinson and Kytömaa, 1992; Evans and 

Attenborough, 2002, 1997; Gibson and Toksöz, 1989; Hacker et al., 2003; Valier-Brasier et al., 

2015). Application of the coupled phase approach to constrain the seismic properties of magmas at 

seismic frequencies is promising because the long wavelength assumption is always valid. 

However, some modifications of the coupled phase method are required in order to be applied for 

magmas. The large viscosities of magmatic melt imply that the viscous stress tensor of the fluid 

cannot be discarded. Moreover, the effect of lubrication forces may become significant in crystal-

bearing magmas during transient dynamics and oscillatory motions (see chapter 2). These two 

effects have never been considered before in the coupled phase approach. 

 The aim of this chapter is to adapt and use the coupled phase approach to constrain the 

acoustic properties of crystal-bearing magmas. We first describe the assumptions made on the 

considered suspensions. Then we introduce the coupled phase method used to compute the seismic 

properties of magmas as a function of the chemical compositions of the considered magmas. The 

third part presents the modifications made to the equation system to compute the velocities and 

attenuation coefficients of seismic waves. The model is then applied to a representative suspension 

and to typical magmas in order to estimate the mechanical wave velocities and attenuation 

coefficients. In the last part, we discuss about the validation and limitations of the model to mimic 
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real magmas, before exploring the implications of our results on the detection of melt dominated 

volumes. 

Symbol (unit) Definition 

𝐴  Lubrication geometrical parameter 

𝑑𝑝 (m) Particle diameter 

𝐹𝐷
⃗⃗⃗⃗ ⃗ (kg m-1 s-2) Drag force 

𝐹𝑉𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (kg m-1 s-2) Virtual mass force 

𝐹𝐵
⃗⃗⃗⃗⃗ (kg m-1 s-2) Basset force 

𝐹𝑙𝑢𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (kg m-1 s-2) Lubrication force 

𝑓 (Hz) Frequency 

𝑔 (m s-2) Gravitational acceleration 

𝐼𝑓𝑠
⃗⃗ ⃗⃗ ⃗ (kg m s-1) Momentum exchange coefficient 

𝐼𝑠𝑠⃗⃗⃗⃗ ⃗ (kg m s-1) Solid-Solid momentum transfer 

𝐼𝑠𝑓𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗ (kg m s-1) Solid-Fluid-Solid momentum transfer 

𝑗  Lubrication dimensionless separation distance 

𝐾𝑓  (Pa) Fluid bulk modulus 

𝐾𝑠  (Pa) Solid bulk modulus 

𝐾∗ (Pa) Effective bulk modulus of the suspension 

𝑘𝑝 (m-1) Compressional wave wavenumber 

𝑃 (Pa) Pressure 

𝑅𝑒𝛺   Oscillatory Reynolds number 

𝑉𝑃 (m s-1) Compressional wave velocity 

𝑣𝑓⃗⃗⃗⃗⃗  (m s-1) Fluid velocity 

 
𝑣𝑠⃗⃗⃗⃗   (m s-1) Solids velocity 

𝛼𝑃 (Np m-1) Attenuation coefficient of the compressional waves 

𝛽 (rad) Incidence angle 

𝛽𝑓𝑠  Momentum exchange coefficient 

∆𝑥 (m) Distance between the particle center of mass in the x direction 

𝜂 (Pa s) Fluid dynamic viscosity 

𝜌𝑓  (kg m-3) Fluid density 

𝜌𝑠  (kg m-3) Solids density 

𝜌∗ (kg m-3) Effective density of the suspension 

𝜎𝑓̿̿̿ (kg m-1 s-2) Fluid stress tensor 

𝛷  Solid volume fraction 

𝛷𝑚𝑎𝑥  Maximum packing fraction 

𝜔 (rad s-1) Angular frequency 

Table 6.1: List of symbols and their meaning 
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6.2 Theoretical assumptions 

 We consider an infinite 3D suspension of spheres in a viscous fluid. Particles are organized 

regularly in space, forming a 3D lattice of face-centered cubic structure (Fig. 6.1), in which all 

particles are separated by the same distance. Particles are organized as imbricated layers aligned 

along the  direction. The particle densities are identical and the fluid density and viscosity are 

uniform in space. The medium is initially static before the propagation of the acoustic perturbation. 

We only consider the translational motions of the constituents and neglected rotations. Mechanical 

(small amplitude) plane waves (compressional and shear waves) are propagating along the  

direction. The long wavelength approximation allow us to neglect the resonance of the waves in 

the solids. For simplicity, we do not include thermal effects and the direct contacts between 

neighboring particles, which restrict the scope of the present study to fluidized suspension and 

eruptible magmas. 

 

  

Figure 6.1: Conceptual medium considered in the present study viewed parallel to the x direction. The medium is composed 

by a suspension of spheres organized regularly in a cubic face-centered 3D lattice. 3 layers of particles along the x axis are 

represented in the drawing. The first layer is displayed as shaded spheres. The particles located on the second layer (above 

layer 1) are indicated with red open circles. The particles located on the third layer (above layer 2) are plotted with open 

and blue dashed circles. 
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6.3 Method 

  6.3.1 Conservative equations of the phases 

The propagation of acoustic perturbation in suspension may be described with the 

continuum conservation equation of both the melt and the particulate phase (e.g. Atkinson and 

Kytömaa, 1992; Harker and Temple, 1988; Valier-Brasier et al., 2015). Contrary to chapters 3 and 

4, the present approach requires to use a Two-Fluids model in which the two phases are considered 

as two interpenetrating continuums (e.g. Dufek and Bachmann, 2010; Molina et al., 2012). The 

conservation equations for the solid phase have to be derived in Eulerian formulations rather than 

in discrete notations. The mass conservation for the carrier compressible fluid reads (Ishii and 

Hibiki, 2011): 

𝜕 (1−𝜙) 𝜌𝑓

𝜕 𝑡
+ ∇ ∙ ((1 − 𝜙) 𝜌𝑓 𝑣𝑓⃗⃗⃗⃗⃗) = 0

𝜙 𝜌𝑓 𝑣𝑓⃗⃗⃗⃗⃗

𝜕 𝜙 𝜌𝑠

𝜕 𝑡
+ ∇ ∙ (𝜙 𝜌𝑠 𝑣𝑠⃗⃗⃗⃗ ) = 0

𝜌𝑠 𝑣𝑠⃗⃗⃗⃗

𝐷 ((1−𝜙) 𝜌𝑓 𝑣𝑓⃗⃗ ⃗⃗ ⃗)

𝐷 𝑡
+ (1 − 𝜙) ∙ ∇𝑃 − ∇ ∙ 𝜎𝑓̿̿̿ + 𝐼𝑓𝑠

⃗⃗ ⃗⃗ ⃗ −  𝜌𝑓𝑔⃗ = 0

𝑃 𝜎𝑓̿

𝐼𝑓𝑠
⃗⃗ ⃗⃗⃗

𝑔⃗
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𝐷 (𝜙 𝜌𝑠 𝑣𝑠⃗⃗⃗⃗⃗)

𝐷 𝑡
+ 𝜙 ∙ ∇𝑃 − 𝐼𝑓𝑠

⃗⃗ ⃗⃗ ⃗ − 𝐼𝑠𝑠⃗⃗⃗⃗ ⃗ −  𝜌𝑠𝑔⃗ = 0,  (6.4) 

where 𝐼𝑠𝑠⃗⃗⃗⃗⃗ is the solid-solid momentum coupling term. As we neglected the collisional and frictional 

contacts between the particles, we do not include the granular phase stress tensor usually used in a 

two fluid model (e.g. Molina et al., 2012; Syamlal and O’Brien, 1988). To close the equation 

system, we used the equation of state of both phases that describe the coupling between the pressure 

and density oscillations (Harker and Temple, 1988): 

𝜕𝜌𝑓

𝜕𝑃
=

𝜌𝑓

𝐾𝑓
  (6.5a) 

𝜕𝜌𝑠

𝜕𝑃
=

𝜌𝑠

𝐾𝑠
  (6.5b) 

where 𝐾𝑓 is the bulk modulus of the fluid, and 𝐾𝑠 is the bulk modulus of the solids. 

 

6.3.2 Fluid-solid and solid-solid momentum couplings 

The momentum transfer term between the solids and the surrounding fluid generally 

includes both the effects of steady and unsteady relative motions between the phases, and is 

expressed as: 

𝐼𝑓𝑠
⃗⃗ ⃗⃗ ⃗ = 𝐹𝐷

⃗⃗ ⃗⃗⃗ + 𝐹𝑉𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐹𝐵

⃗⃗⃗⃗⃗,  (6.6) 

where  is the drag force,  is the virtual mass force, and  is the Basset force. The drag 

expresses the steady viscous forces applied by the fluid on the particles (or vice versa) because of 

their relative motions. The virtual mass and Basset forces are the inertial terms and both depend on 

the relative acceleration between the particles and the fluid. The virtual mass describes the effect 

of the force needed to move a volume of fluid when a particle is accelerating. The Basset term 

expresses the effect of the variation in the size of the viscous boundary layers that surround the 

particles. The relative importance between the viscous and inertial effects may be expressed as a 

function of the oscillatory Reynold number (Atkinson and Kytömaa, 1992): 

𝑅𝑒𝛺 = √
𝜌𝑓 𝜔 𝑑𝑝

2

8 𝜂
,  (6.7)  
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where  is the angular frequency of the plane wave, dp is the particle diameter, and  is the fluid 

dynamic viscosity. The transition between viscously to inertially dominated momentum exchanges 

occurs when (Atkinson and Kytömaa, 1992): 

𝜔 =
16 𝜂

𝑑𝑝
2 𝜌𝑓

(
(𝛷/𝛷𝑚𝑎𝑥)2/3

(1−(𝛷/𝛷𝑚𝑎𝑥)1/3)2 
),  (6.8) 

where  is the maximum solid volume fraction at which crystals touch each other. Combining 

equation (6.7) and (6.8) gives the critical oscillatory Reynolds number at which the transition 

between viscous and inertial interactions occurs: 

𝑅𝑒𝛺
𝑐𝑟𝑖𝑡 = √2(

(𝛷/𝛷𝑚𝑎𝑥)2/3

(1−(𝛷/𝛷𝑚𝑎𝑥)1/3)2 
).  (6.9) 

The incorporation of the drag force in the two-fluid model requires to identify the forces that may 

be neglected and to determine the appropriate momentum transfer term for the present application. 

In the absence of contacts between the solids, the momentum exchange coefficient is 

reduced to the lubrication forces. In a Lagrangian framework, both normal and tangential 

lubrication forces (rolling and twisting motions may be neglected, Marzougui et al., 2015) may be 

expressed as (see chapter 3): 

𝐹𝑙𝑢𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  −

3 𝜂 ∆𝑣𝑠⃗⃗⃗⃗⃗

𝜌𝑝 𝑑𝑝
2 𝐴,  (6.10) 

where ∆𝑣𝑠⃗⃗⃗⃗  is the relative velocity vector between the particles. The coefficient 𝐴 is a geometrical 

parameter that relates to the normal and tangential components of the lubrication force: 

𝐴 =  
3cos(𝛽)

2 𝑗
− ln(𝑗) sin(𝛽),  (6.11) 

where 𝛽 is an incidence angle representing the angle between the direction that links the particle 

centers of mass and the relative velocity vector (see chapter 3). The index 𝑗 is the ratio of the 

distance separating the particle and their radius, which may be approximated as a function of the 

solid volume fraction and maximum packing fraction (𝛷𝑚𝑎𝑥 ≈ 0.64 here) as (Ancey et al., 1999): 

𝑗 = 1 − (
𝛷

𝛷𝑚𝑎𝑥
)
1/3

.  (6.12) 
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The incorporation of the lubrication forces in Eq. (6.4) requires expressing the lubrication forces 

in a continuous formulation. 

 

 

6.3.3 Calculation of the acoustical properties of the 

suspension 

 Once the conservative equations of the constituents are expressed, we compute the 

velocities and attenuation coefficients of compressional and shear waves with the coupled phase 

approach, using the same mathematical steps as in previous works (Atkinson and Kytömaa, 1992; 

Evans and Attenborough, 1997; Harker and Temple, 1988; Kytömaa, 1995; Margulies and 

Schwarz, 1994; Valier-Brasier et al., 2015). This requires to linearize the conservative equations 

(Eq 6.1‒6.4) and to impose perturbations around the static conditions of the variables that are 

affected by the wave propagation (here the pressure and the constituent densities, velocities and 

concentrations) with wave-like solutions (here for a quantity 𝒜  : 𝒜 𝒜̅ ). These 

oscillatory terms depend on the angular frequency and the complex wavenumber, 𝑘 (noted here for 

compressional waves, P): 

𝑘𝑃 =
𝜔

𝑉𝑃
 +  𝑖 𝛼𝑃  (6.13) 

where 𝑉𝑃  is the compressional wave velocity and 𝛼𝑃  the attenuation coefficient. The method 

consists in finding 𝑘𝑃 that satisfies Eqs. (6.1‒6.4), knowing 𝜔 and the physical properties of the 

constituents. Then, the propagation velocities and attenuation coefficients of the suspension may 

be deduced from the real and imaginary parts of 𝑘𝑃, respectively. 
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Species (wt%) Basalt Andesite Dacite 

SiO2 48.854 60.231 67.652 

TiO2 0.985 1.152 0.448 

Al2O3 17.145 16.950 15.550 

Fe2O3 1.416 1.166 0.706 

FeO 8.737 4.549 2.677 

MnO 0.177 0.098 0.070 

MgO 6.017 1.211 0.925 

CaO 10.557 4.361 2.965 

Na2O 2.698 4.114 3.761 

K2O 1.211 3.593 4.079 

P2O5 0.217 0.600 0.189 

H2O 1.970 1.969 0.977 

Pressure 250 MPa 250 MPa 250 MPa 

Initial temperature 1250 °C 1200 °C 1100 °C 

Table 6.2: Initial composition, pressure and temperature of the three magmas used in the present study 

 

6.3.4 Magmas under consideration 

 We consider three magmas representative of the different compositions that may be 

encountered in arc magmatic systems (basalt, andesite, and dacite). We simulated the isobaric 

cooling and crystallization of magmas using the MELTS model (Ghiorso, 2004; Ghiorso and Kress, 

2004) in the software PELE (Boudreau, 1999) at a pressure of 250 MPa using the Ni-NiO buffer 

for the andesitic and dacitic magmas and the QFM (Quartz-Fayalite-Magnetite) buffer for the 

basaltic melt. The initial melt compositions are taken from Dufek and Bachmann (2010) (see table 

6.2). However, we decreased the initial content in dissolved H2O to ensure that the concentration 

in dissolved water remains below the saturation threshold, and avoid bubble exsolution by second 

boiling. To compute the compressional wave velocities and attenuation coefficients in our model, 

we used the melt density and bulk modulus computed during these crystallization simulations. The 

melt viscosities were determined using the model from Giordano et al. (2008), with the chemical 

compositions and temperatures of the residual melts computed  
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Mineral species   (GPa) 

Olivine 132 

Pyroxene 114.2 

Plagioclase 75 

Feldspar 58.3 

Quartz  57 

Table 6.3: Bulk modulus of the mineral phases. Data from Hacker et al. (2003). 

 

during the crystallization simulations. For the solids, we used the averaged densities of the crystals 

that is output during the simulations. The average bulk modulus of the solids is computed with the 

relative proportions of the mineral species and the representative values reported by Hacker et al. 

(2003) (see table 6.3). 

 

6.4 Results 

The physical properties of the magmas are required to develop the wave model because 

they justify simplifying assumptions a priori. Thereby, this section first presents the results of the 

simulation of the cooling and crystallization of the magma before describing the model and its 

application. 

  6.4.1 Magmas physical properties 

Figure 6.2 displays the evolution of the properties of the basaltic, andesitic and dacitic 

magmas with temperature and crystal content. During cooling, the melt densities and bulk moduli 

decrease with the decrease in temperature (Fig 6.2 A‒B), and increase in crystal content (Fig. 6.2 

G‒H), whereas melt viscosities decrease with temperature (Fig 6.2 C). The dacitic and andesitic 

melts show similar bulk modulus in a wide range of temperature and crystal content (Fig 6.2 B and 

H). The density of the basaltic melt changes more steeply with temperature or crystal content than 

the andesitic and dacitic melts because olivine plus pyroxene crystallization withdraws Fe from the 

melt. 

  



 

 

 
161 Chapter 6: The seismic properties of eruptible magmas 

 

Figure 6.2: Modeling of the cooling and crystallization of the three magmas using the PELE software. [A] Evolution of the 

melt densities as a function of temperature. [B] Melt bulk moduli with temperature. [C] Dynamic viscosities of the melts 

as a function of temperature. Graphs [D], [E] and [F] represent the proportions of melt and crystal species during the 

cooling of the basalt (D), andesite (E), and dacite (F). [G] Evolution of the melt density respect to the crystal volume 

fraction. [H] Melt bulk moduli as a function of the crystals content. [I] Density of the solids computed with PELE as a 

function of crystal content. In the graphs [A]‒[C] and [G]‒[I], the squares represent the PELE simulation outputs that are 

used to compute the velocities and attenuation coefficient of compressional waves.  
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6.4.2 Fluid-solid momentum coupling 

Figure 6.3 displays the oscillatory Reynolds numbers computed during the cooling of the 

magmas as functions of crystal content and frequency. Except for the basalt below 10% volume 

fraction of crystals, it shows that at seismic frequencies (<100 Hz) 𝑅𝑒𝛺 ≪ 𝑅𝑒𝛺
𝑐𝑟𝑖𝑡, which means 

that for most magmatic conditions, the unsteady inertial forces may be neglected compared to the 

steady viscous term (Atkinson and Kytömaa, 1992). Thereby, the momentum exchange term is 

simply expressed as: 

𝐼𝑓𝑠
⃗⃗ ⃗⃗⃗ = 𝛽𝑓𝑠 (𝑣𝑓⃗⃗⃗⃗⃗ − 𝑣𝑠⃗⃗⃗⃗ ),  (6.14) 

where 𝛽𝑓𝑠  is the momentum exchange coefficient. To compute 𝛽𝑓𝑠 , the Gidaspow’s drag 

correlation, which is widely used in multiphase flow modeling, may be simplified for the present 

application by combining a Stokes drag law at low particle volume fraction and a Kozeny-Carman 

relationship for high concentrations in solids (see supplementary section 6.1):  

𝛽𝑓𝑠 = {

18 𝜂 𝛷

 𝑑𝑝
2                𝛷 ≤

3

28

150 𝛷2 𝜂

(1−𝛷) 𝑑𝑝
2           𝛷 >

3

28

.   (6.15) 

Equation (6.15) is suitable for a coupled phase approach because both the Stokes and Kozeny-

Carman relationships depend linearly on the relative velocity between the particles and the fluid. 
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6.4.3 Solids-solids momentum coupling 

To incorporate lubrication forces into the solids momentum equation, we focus on one 

particle of the system (displayed with a red boundary on layer 2 in Fig. 6.4 A). All the particles 

located on the same layer have the same velocity because the oscillations are perpendicular to the 

particle layers. The oscillating nature of the flow imposes that a velocity gradient exists in space 

within the solids phase. Thereby, the particle of interest experiences relative motions and lubricated 

interactions with its neighbors located in layers 1 and 3: 𝑣𝑠⃗⃗⃗⃗ (1) > 𝑣𝑠⃗⃗⃗⃗ (2) > 𝑣𝑠⃗⃗⃗⃗ (3) (Fig. 6.4 B). The 

total lubrication force experienced by the target particle is the sum of all the individual lubricated 

forces with its neighbors:  

𝐹𝑙𝑢𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (2) =

9 𝜂𝑓 𝐴 

𝜌𝑝 𝑑𝑝
2 (𝑣𝑠⃗⃗⃗⃗ (1) + 𝑣𝑠⃗⃗⃗⃗ (3) − 2 𝑣𝑠⃗⃗⃗⃗ (2)), (6.16) 

The sum in the parenthesis of Eq. (6.16) may be approximated by the second derivative in space 

of the solids velocity as: 

∆𝑥2 𝜕2 𝑣𝑠⃗⃗⃗⃗⃗

𝜕 𝑥2 ≅ 𝑣𝑠⃗⃗⃗⃗ (1) + 𝑣𝑠⃗⃗⃗⃗ (3) − 2 𝑣𝑠⃗⃗⃗⃗ (2), (6.17) 

Figure 6.3: Oscillatory Reynolds numbers as a function of crystal content and perturbation frequency. In each graph, the 

solid black curve is the critical Reynolds number that separates inertial conditions (above the curve) from viscous  

conditions (below the curve). The three graphs represent the cooling of a basalt [A], an andesite [B], and a dacite [C]. In 

each graph, the squares represent the PELE outputs. 



 

 164 Chapter 6: The seismic properties of eruptible magmas 

where ∆𝑥 is the distance in the  direction between the center of mass of particles located in 

successive layers. By geometrical relationship, this distance can be expressed as: 

∆𝑥 = √
2

3
 (𝑑𝑝 (1 +

𝑗

2
)).  (6.18) 

Combining Eqs. (6.16), (6.17), and (6.18) gives the momentum exchange term between the solids: 

𝐼𝑠𝑠⃗⃗⃗⃗⃗ = 𝐹𝑙𝑢𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

6 𝜂𝑓 (1+
𝑗

2
)
2
 𝐴 

𝜌𝑝 
 
𝜕2 𝑣𝑝⃗⃗ ⃗⃗ ⃗

𝜕 𝑥2 .  (6.19) 

From geometrical arguments, the incidence angle  may be deduced and gives 𝛽 = cos−1(√2/3) 

for compressional waves (relative motion in the  direction), and 𝛽 = 𝜋/2− cos−1(√2/3) for 

shear waves (relative motion in the  direction). 

 

 

  

Figure 6.4. Conceptual model used to derive the solids-solids momentum transfer term. [A] Schematic representation of 

the particle organization around a target particle (indicated with a red boundary), viewed from the side. [B] Schematic 

zoom on the lubricated interactions between the target particles and its neighbors (For a compressional wave propagating 

in the x direction here). The color of the particle boundaries depend on the layer in which the particles are located (green 

for layer 1, red for layer 2 and target particle, and blue for layer 3). Arrows represent the particle velocity vectors. The 

incidence angle β is represented in purple. 
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6.4.4 Wave velocities and attenuation coefficients in suspensions 

   6.4.4.a Compressional waves 

According to Dingwell and Webb (1989), the melt volume viscosity, 𝜆, may be assumed as 

equal to a third of the shear viscosity, 𝜂. Thereby, for a plane wave travelling in the 𝑥 direction, the 

viscous stress tensor of the fluid phase may be expressed for a compressional wave as: 

 𝜎𝑓̿ = 
7

3
 (1 − 𝜙) 𝜂 

𝜕 𝑣𝑓𝑥

𝜕 𝑥
,  (6.20) 

Following the common derivation of the acoustical properties of a suspension (e.g. 

Atkinson and Kytömaa, 1992; Harker and Temple, 1988), the propagation of a compressional wave 

in a material imposes the oscillation of variables around their static values. The dynamic variables 

are defined as: 

𝜌𝑓 = 𝜌𝑓0
+ 𝜌𝑓′,  (6.21a) 

𝜌𝑠 = 𝜌𝑠0
+ 𝜌𝑠′,  (6.21b) 

𝑣𝑓𝑥
= 𝑣𝑓𝑥

′,  (6.21c) 

𝑣𝑠𝑥 =  𝑣𝑠𝑥′,  (6.21d) 

𝑃 =  𝑃0 + 𝑃′ ,  (6.21e) 

𝜙 = 𝜙0 + 𝜙′,  (6.21f) 

where 𝜌𝑓0
, 𝜌𝑠0

, 𝑃0, and 𝜙0, are the static fluid density, solid density, pressure, and crystal content, 

respectively. Variables 𝜌𝑓′, 𝜌𝑠′, 𝑣𝑓′, 𝑣𝑠′, 𝑃
′, and 𝜙′  are the oscillation of the fluid density, solids 

density, fluid velocity, solids velocity, pressure, and crystal content (the indices 𝑥 in the velocity 

symbols indicate flow directions). Incorporating Eqs. (6.14), (6.19), (6.20), and (6.21a‒f) into Eqs. 

(6.1)‒(6.6) and linearizing the resulting equations yields to the following system that describes the 

motion of a two-phase compressible flow imposed by a compressional wave propagating in the 𝑥 

direction: 

(1 − 𝜙0)
𝜕 𝜌𝑓

′

𝜕 𝑡
− 𝜌𝑓0

 
𝜕 𝜙′

𝜕 𝑡
+ (1 − 𝜙0) 𝜌𝑓0

 ∇ ∙ (𝑣𝑓𝑥
′) = 0,   (6.22a) 
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𝜙0
𝜕 𝜌𝑠

′

𝜕 𝑡
+ 𝜌𝑠0

 
𝜕 𝜙′

𝜕 𝑡
+ 𝜙0 𝜌𝑠0

 ∇ ∙ (𝑣𝑠𝑥′) = 0,  (6.22b) 

(1 − 𝜙0) 𝜌𝑓0

𝜕 𝑣𝑓𝑥
′

𝜕 𝑡
+ (1 − 𝜙0) ∇ ∙ 𝑃′ − 𝐵 ∇ ∙ (

𝜕 𝑣𝑓𝑥
′

𝜕 𝑥
) + 𝛽𝑓𝑠 (𝑣𝑓𝑥

′ − 𝑣𝑠𝑥
′) = 0,  (6.22c) 

𝜙0 𝜌𝑠0

𝜕 𝑣𝑠𝑥
′

𝜕 𝑡
+ 𝜙0 ∇ ∙ 𝑃′ − 𝐶 

𝜕2 𝑣𝑓𝑥
′

𝜕 𝑥2 − 𝛽𝑓𝑠  (𝑣𝑓𝑥
′ − 𝑣𝑠𝑥′) = 0,  (6.22d) 

𝜕 𝜌𝑓′

𝜕 𝑃′ −
𝜌𝑓0

𝐾𝑓
= 0,  (6.22e) 

𝜕 𝜌𝑠′

𝜕 𝑃′ −
𝜌𝑠0

𝐾𝑠
= 0,  (6.22f) 

with, 

𝐵 =
7

3
 (1 − 𝜙) 𝜂, (6.23) 

𝐶 =
6 𝜂𝑓 (1+

𝑗

2
)
2
 𝐴 

𝜌𝑝 
. (6.24) 

Each oscillating term is replaced by a wave like solution following: 

𝜌𝑓
′ = 𝜌𝑓̅̅ ̅ 𝑒𝑖(𝑘𝑃𝑥−𝜔𝑡),  (6.25a) 

𝜌𝑠′ =  𝜌𝑠̅ 𝑒
𝑖(𝑘𝑃𝑥−𝜔𝑡),  (6.25b) 

𝑣𝑓𝑥
′ =  𝑣𝑓̅̅ ̅ 𝑒

𝑖(𝑘𝑃𝑥−𝜔𝑡),  (6.25c) 

𝑣𝑠𝑥′ =  𝑣𝑠̅ 𝑒
𝑖(𝑘𝑃𝑥−𝜔𝑡),  (6.25d) 

𝑃 ′ =  𝑃̅ 𝑒𝑖(𝑘𝑃𝑥−𝜔𝑡),  (6.25e) 

𝜙′ =  𝜙̅ 𝑒𝑖(𝑘𝑃𝑥−𝜔𝑡),  (6.25f) 

where 𝜌𝑓̅̅ ̅, 𝜌𝑠̅, 𝑣𝑓𝑥
̅̅ ̅̅̅, 𝑣𝑠𝑥̅̅ ̅̅ , 𝑃̅, and 𝜙̅ are the amplitudes of the oscillations of the fluid density, solid 

density, fluid velocity, solid velocity, pressure, and particle volume fraction, respectively. Merging 

Eqs (6.25a‒f) and Eqs (6.22a‒f) gives the following matrix equation: 

𝑀𝑃

[
 
 
 
 
 
 
𝜌𝑓̅̅ ̅

𝜌𝑠̅

𝑣𝑓𝑥
̅̅ ̅̅̅

𝑣𝑠𝑥
̅̅ ̅̅

𝜙̅

𝑃̅ ]
 
 
 
 
 
 

= 0  (6.26) 
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with 

𝑀𝑃 =

[
 
 
 
 
 
 
 
 
−𝑖 𝜔 (1 − 𝜙0) 0 𝑖 𝑘𝑝 (1 − 𝜙0) 𝜌𝑓0

0 𝑖 𝜔 𝜌𝑓0
0

0 −𝑖 𝜔 𝜙0 0 𝑖 𝑘𝑝 𝜙0 𝜌𝑠0
−𝑖 𝜔 𝜌𝑠0

0

0 0 (𝛽𝑓𝑠 − 𝑖𝜔(1 − 𝜙0) 𝜌𝑓0
+ 𝑘𝑝

2 𝐵) −𝛽 0 𝑖 𝑘𝑝 (1 − 𝜙0)

0 0 −𝛽 (𝛽𝑓𝑠 − 𝑖𝜔𝜙0 𝜌𝑠0
+ 𝑘𝑝

2 𝐶) 0 𝑖𝑘𝑝𝜙0

1 0 0 0 0 −
𝜌𝑓0

𝐾𝑓

0 1 0 0 0 −
𝜌𝑠0

𝐾𝑠 ]
 
 
 
 
 
 
 
 

  

 (6.27) 

The non-trivial solution of Eq. (6.26) implies to find the complex wavenumbers, 𝑘𝑝, for which 

det‖𝑀𝑝‖ = 0 as functions of the angular frequency, the proportions of each constituent, and their 

material properties. Then the compressional wave velocity and attenuation coefficient, 𝛼𝑝 , are 

deduced from the real and imaginary parts of 𝑘𝑝, respectively. 

 

6.4.4.b Shear waves 

For a shear wave, no compression of the constituents occurs and the effect of volume 

viscosity vanish because the trace of the strain rate tensor of the fluid is null. The viscous stress 

tensor may be expressed as: 

𝜎𝑓̿ = (1 − 𝜙) 𝜂 
𝜕 𝑣𝑓𝑦

𝜕 𝑥
.  (6.28) 

The absence of compression also reduces the number of oscillating variables to the two constituent 

velocities: 

𝑣𝑓 = 𝑣𝑓′,  (6.29a) 

𝑣𝑠 = 𝑣𝑠′,  (6.29b) 

For the same reason, the two remaining conservative equations are: 

(1 − 𝜙0) 𝜌𝑓0

𝜕 𝑣𝑓𝑦
′

𝜕 𝑡
− 𝐵 ∇ ∙ (

𝜕 𝑣𝑓𝑦
′

𝜕 𝑥
) + 𝛽𝑓𝑠 (𝑣𝑓𝑦

′ − 𝑣𝑠𝑦
′) = 0  (6.30a) 
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𝜙0 𝜌𝑠0

𝜕 𝑣𝑠𝑦
′

𝜕 𝑡
− 𝐶 

𝜕2 𝑣𝑓𝑦
′

𝜕 𝑥2 − 𝛽𝑓𝑠  (𝑣𝑓𝑦
′ − 𝑣𝑠𝑦′) = 0  (6.30b) 

As for compressional waves, the oscillatory terms in Eqs. (6.29a‒b) are replaced by: 

𝑣𝑓𝑦
′ =  𝑣𝑓𝑦

̅̅ ̅̅̅ 𝑒𝑖(𝑘𝑠𝑥−𝜔𝑡),  (6.31a) 

𝑣𝑠𝑦′ =  𝑣𝑠𝑦̅̅ ̅̅  𝑒𝑖(𝑘𝑠𝑥−𝜔𝑡),  (6.31b) 

Plugging Eqs (6.31a‒b) into Eqs (6.30a‒b) yields: 

𝑀𝑆  [
𝑣𝑓𝑦
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑣𝑠𝑦
⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗

] =0, (6.32) 

with 

𝑀𝑆 = [
𝛽𝑓𝑠 +𝑘𝑠

2
 (1−𝛷0)𝜂− 𝑖𝜔(1−𝛷0)𝜌𝑓0

−𝛽𝑓𝑠

−𝛽𝑓𝑠 𝛽𝑓𝑠 +𝑘𝑠
2
 𝐶− 𝑖 𝜔 𝛷0 𝜌𝑠0

]  (6.33) 

After finding 𝑘𝑠  so that det‖𝑀𝑠‖ = 0, the shear wave velocity and attenuation coefficient are 

deduced from the real and imaginary part of 𝑘𝑠, respectively. 

 

6.4.5 Compressional waves in suspensions 

 To explore the effect of each physical parameter of the suspension on the seismic wave 

velocities and attenuation coefficients, we define reference conditions for which the densities and 

bulk moduli of the constituents are identical. Then each parameter is varied in turn independently 

from the others. Figure 6.5 displays the velocities of compressional waves in a suspension as 

functions of the concentration, density, and bulk modulus of the solids. The velocities of 

compressional waves computed by solving Eq. (6.26) are identical to the low frequency limit and 

may be computed with the Reuss bound  (Reuss, 1929), in which the compressional wave velocity 

is 𝑉𝑃 = √𝐾∗/𝜌∗, where 𝐾∗ and 𝜌∗ are the effective bulk modulus and density of the suspension 

given by: 

1

𝐾∗ = 
(1−𝛷0)

𝐾𝑓
+

𝛷0

𝐾𝑝
, (6.34) 
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and: 

𝜌∗ = (1 − 𝛷0) 𝜌𝑓0
+ 𝛷0 𝜌𝑠0

.  (6.35)  

 

 

 

Parameter  Value 

𝜌𝑓  2500 kg m-3 

𝜌𝑠  2500 kg m-3 

𝐾𝑓  10 Gpa 

 
𝐾𝑠  10 Gpa 

𝑑𝑝  1 mm 

𝜂  1000 Pa s 

𝑓  100 Hz 

Table 6.4: Reference parameters used to compute the seismic properties of the suspension. 

  

Figure 6.5: Compressional wave velocity as a function of the solid volume fraction. [A] Effect of the ratio between the solid 

and fluid densities. [B] Effect of the ratio between the solid and fluid bulk moduli. For the two graphs, the constant physical 

parameters used were 𝝆𝒔𝟎 = 𝟐𝟓𝟎𝟎 kg m-3, 𝝆𝒇𝟎
= 𝟐𝟓𝟎𝟎 kg m-3, 𝑲𝒇 = 𝟏𝟎 𝑮𝑷𝒂, 𝑲𝒔 = 𝟏𝟎 𝑮𝑷𝒂, 𝒇 = 𝟏𝟎𝟎 𝑯𝒛, 𝒅𝒑 = 𝟏 𝒎𝒎, 

𝜼 = 𝟏𝟎𝟎𝟎 Pa s. We varied 𝝆𝒔𝟎 in (A) and 𝑲𝒔 in (B). 
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Figure 6.6 displays the variations of compressional wave attenuation as a function of the 

crystal volume fraction by varying separately different physical parameters of the suspension. The 

wave frequency, fluid viscosity, and contrast between the bulk modulus of the carrier and 

suspended phases are the main parameters that control the attenuation coefficients (Fig 6.6 A and 

C‒D). The attenuation coefficient increases as the square of the frequency and linearly with the 

melt viscosity because of the dissipation imposed by the viscous stress tensor. The contrast between 

the bulk modulus of the constituents greatly increases 𝛼𝑝  when the suspended phase is more 

compressible than the carrier (Fig 6.6 D). The attenuation is minimum when 𝐾𝑠 > 100 𝐾𝑓. The 

difference between the density of the fluid and that of the suspended phase has a weaker effect on 

the attenuation coefficients, which are minimized when the density ratio approaches unity (Fig. 6.6 

E). In the range of magmatic crystal sizes, particle diameter has no effect on 𝛼𝑝 (Fig. 6.6 B). All 

the curves display a sharp increase in attenuation when the concentration in solids approaches the 

maximum packing fraction (0.64) because of the short-range lubrication forces.  

 Figure 6.7 displays the relative importance of the three main dissipation mechanisms (the 

relative motion between the constituents, the viscous dissipation, and the lubrication forces) in 

magmas as functions of melt viscosity and crystal content. The other physical properties of the 

constituents are kept at representative values (Table 6.5). At low viscosity (𝜂 = 10 Pa s), the 

attenuation of compressional waves is dominated by the relative motion between the solids and the 

fluid. Both viscous dissipation and lubrication have negligible effects on the attenuation coefficient. 

At a viscosity of 100 Pa s, while the effect of relative motion is still dominant, the viscous and 

lubrication effects are significant (Fig. 6.7 B). The amount of dissipation resulting from lubrication 

reaches 10% in the vicinity of the maximum packing fraction (~0.64). At the maximum viscosity 

(𝜂 = 1000 Pa s), viscous dissipation dominates the effects of the relative motion between the two 

phases and of the lubrication forces (Fig. 6.7 C). The dissipation resulting from lubrication reaches 

15% of the total attenuation close to the maximum packing fraction of the solids. 
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Figure 6.6: Compressional wave velocity as functions of solid volume fraction and physical properties of the constituents. 

For all graphs, the constant physical parameters used were 𝝆𝒔𝟎 = 𝟐𝟓𝟎𝟎 kg m-3, 𝝆𝒇𝟎
= 𝟐𝟓𝟎𝟎 kg m-3,  𝑲𝒇 = 𝟏𝟎 𝑮𝑷𝒂, 𝑲𝒔 = 𝟏𝟎 𝑮𝑷𝒂, 

𝒇 = 𝟏𝟎𝟎 𝑯𝒛 , 𝒅𝒑 = 𝟏 𝒎𝒎 , 𝜼 = 𝟏𝟎𝟎𝟎  Pa s. Each parameter was varied independently from the others. The effect of the 

perturbation frequency [A], particle diameter [B], fluid viscosity [C], bulk modulus contrast [D], and density contrast [E] 

were explored. Results are presented in neper per meter, which is the natural logarithm between the initial amplitude and 

amplitude after 1 m of propagation. 
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Figure 6.7: Relative importance of dissipation mechanisms of compressional waves in suspensions as a function of the solid 

volume fraction. For all graphs, the constant physical parameters used were 𝝆𝒔𝟎 = 𝟑𝟑𝟎𝟎 kg m-3, 𝝆𝒇𝟎
= 𝟐𝟓𝟎𝟎 kg m-3,  𝑲𝒇 =

𝟏𝟎 𝑮𝑷𝒂, 𝑲𝒔 = 𝟏𝟎𝟎 𝑮𝑷𝒂, 𝒇 = 𝟏𝟎𝟎 𝑯𝒛, 𝒅𝒑 = 𝟏 𝒎𝒎. The viscosities used were 𝜼 = 𝟏𝟎 Pa s [A], 𝜼 = 𝟏𝟎𝟎 Pa s [B], 𝜼 = 𝟏𝟎𝟎𝟎 Pa s [C]. 

Note the logarithmic scale of the ordinate axis of (A) 

Figure 6.8: Attenuation coefficient of shear wave in suspensions as a function of the solid volume fraction. [A] Effect of 

the density difference between the solids and the fluid. [B] Effect of the particle diameter.  
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Parameter  Value 

𝜌𝑓  2500 kg m-3 

𝜌𝑠  3300 kg m-3 

𝐾𝑓  10 Gpa 

 
𝐾𝑠  100 Gpa 

𝑑𝑝  1 mm 

𝜂  10-1000-1000 Pa s 

𝑓  100 Hz 

Table 6.5: Physical parameters used to discriminate the relative importance of each dissipation mechanism. 

 

6.4.6 Shear waves in suspensions  

 Figure 6.8 displays the evolution of the attenuation coefficient for a shear wave as a function 

of the solid volume fraction for the two parameters that affect 𝛼𝑆: the density ratio between the two 

constituents and the particle diameter. The attenuation increases with the density ratio and 

decreases with the particle diameter. The attenuation coefficient for S waves is very large, which 

means that shear waves rapidly vanish. Unlike compressional waves, the lubrication forces 

decrease the attenuation of S waves close to the maximum packing fraction. 

 

6.4.7 Application to magmas 

 We used the simulations of the cooling and crystallizations of the basalt, andesite, and 

dacite, to compute the compressional wave velocities (Fig. 6.9). The solids densities are set to the 

averaged densities computed during the PELE simulations (Fig. 6.2 I). The solids bulk moduli are 

set to the weighted averages computed with the proportions of different mineral species and their 

individual bulk modulus (see Table 6.3; Hacker et al., 2003). The dacitic and andesitic magmas 

have similar compressional wave velocities at a given temperature, whereas the basalt has higher 

velocities (Fig. 6.9 A). When the compressional wave velocities in the magmas are compared as a 

function of the respective crystal contents, the three curves merge (Fig. 6.9 B). 

 Contrary to the velocities, the intrinsic attenuation coefficients of compressional waves 

depend on the chemical composition of the magmas (Fig. 6.10). The dacite has the highest 

attenuations and the basalt the smallest. The curves computed for the andesitic and dacitic magmas 

have the same trends, showing an increase of the compressional wave attenuation coefficients with 
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a decrease in temperature and the concurrent increase in crystal content. On the contrary, the basalt 

shows initially a decrease in attenuation at the beginning of crystallization before an attenuation 

increase as crystallization progresses. The trends of the curves are opposed to the ones computed 

in Fig 6.6 because of the increase in the melt viscosities resulting from cooling and the ensuing 

chemical evolution during crystallization. For each composition, the increase in frequency causes 

a vertical translation of the curves. At a given frequency, the attenuation coefficients of the three 

magmas are different because of the differences in melt viscosities.  

 

 

 

 

  

Figure 6.9: Compressional wave velocities in three magmas. [A] Comparison of the velocities of P waves in the basaltic, 

andesitic and dacitic magmas as a function of temperature. [B] Comparison of the compressional wave velocities in the 

three magmas as a function of the solid volume fraction. 
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6.5 Discussion 

  6.5.1 Limitations 

 To compute the acoustical properties of magmas, we used a conceptual suspension in which 

smooth spheres of identical diameters are organized regularly in space. In magmas, the crystal size 

distribution is often polydisperse and polymodal, and crystals are not spherical  (Higgins, 2006; 

Higgins and Roberge, 2003; Marsh, 1988; Picard et al., 2011). Particle shape affects both the solids 

Poisson coefficient and Young modulus, which depend on the orientation of the elongated axes 

(Ahuja and Hendee, 1978; Banks-Sills et al., 1997). It also affects the drag between the carrier and 

suspended phases, which also becomes non uniform and dependent on the elongated axis 

orientation (Bergantz et al., 2017; Dellino et al., 2005; Dioguardi et al., 2014). Similarly, the shape 

and curvature of particles affect lubrication forces (Bergantz et al., 2017; Claeys and Brady, 1993; 

Janoschek et al., 2013). Both particle size distribution and particle shapes affect the solid volume 

fraction at which solids begin to touch each other (Bergantz et al., 2017; Faroughi and Huber, 

2014b; Robert S. Farr and Groot, 2009; Nolan and Kavanagh, 1995; Ouchiyama and Tanaka, 2002; 

Figure 6.10: Attenuation coefficients as functions of magma composition, temperature and crystallinity. [A] Evolution of 

the attenuation coefficients with respect to the temperature. The colors of the curves indicate the compositions of the 

magmas (blue, yellow, and orange for the basalt, andesite, and dacite, respectively). The dash patterns depend on the 

frequency of the perturbation. [B] Same as A) as a function of the crystal content, 𝜱𝟎.  
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Zou and Yu, 1996), controlling the critical crystallinity above which the suspension has a rigidity 

modulus and can transmit shear waves. All these effects may break the isotropic nature of both 

acoustic wave velocities and attenuation coefficients, depending on the preferential orientation of 

the crystals. Strong preferential orientations may be induced by strain localization when magma 

are strained (Picard et al., 2011). The length scales of the bands of strain localization, however, are 

smaller than the perturbation wavelengths, and the randomness of the crystal orientation over the 

wave length scales averages out and reduces these anisotropic effects.  

The chemical composition of the crystals affects their bulk modulus (Hacker et al., 2003). 

For simplicity, we considered each mineral species as having a constant bulk modulus that is 

independent from the solid state solution exact compositions, which are computed as the averaged 

composition of each species during the simulation. For example, the relative proportion between 

anortite (An) and albite (Ab) minerals composing the plagioclases group is not constant. For the 

basalt, the relative content between An and Ab of the plagioclases group varies from 0.87-0.13, at 

the beginning of the crystallization, to 0.67-0.32 near the end of the simulation. For a given group 

of minerals, however, the difference inherent to a given solid state solution is small compared to 

their averaged values (Hacker et al., 2003). Thus, we do not expect that the evolution of the 

chemical composition of the precipitated minerals has a significant impact on the seismic velocities 

we predict (Fig. 6.9). Also, the ratio between the bulk modulus of the solids and the fluid has a 

weak effect on the attenuation coefficients once the solids have a bulk modulus larger than that of 

the fluid (Fig. 6.6 D). We thus do not expect noticeable differences in the attenuation coefficients 

we estimated in Fig. 6.10 if the evolution of the chemical composition of the mineral phases were 

accounted for. 

 In our model, the fluid phase is characterized by its dynamic viscosity, bulk modulus and 

density, and is considered to behave as a Newtonian fluid. This assumption is perfectly valid at low 

frequency, in a relaxed state (Dingwell and Webb, 1990). When the frequency of the perturbation 

increases, however, a transition occurs in the response of the melt phase to stress, which behaves 

as an elastic material in unrelaxed conditions (Caricchi et al., 2008). At low frequency, the melt 

phase presents a vanishing shear modulus, whereas at high frequency, its shear modulus is no more 

null and its viscosity decreases with frequency (Bagdassarov et al., 1994; Caricchi et al., 2008; 

Dingwell and Webb, 1990, 1989). This transition changes the velocities of compressional and shear 

waves in the suspension (Caricchi et al., 2008; Kress and Carmichael, 1991). Because of the 
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decrease in melt viscosity, the relaxed/unrelaxed nature of the melt also influences the attenuation 

of perturbations. According to a Maxwell model, the transition between relaxed and unrelaxed 

behavior occurs when the product of the angular frequency and relaxation time is close to one 

(Dingwell and Webb, 1990, 1989). Thereby, the transition between the relaxed and unrelaxed states 

is proportional to the frequency of the perturbation and to the inverse of fluid viscosity. In our 

computations, we ensured that the melt phases were in a relaxed state in which melt viscosity and 

bulk modulus remain constant. Applying this model to experimental data obtained on magmas with 

ultrasounds (e.g. Caricchi et al., 2008; Kress and Carmichael, 1991), however, requires the addition 

of the increase in bulk and rigidity moduli and the decrease of melt viscosity caused by an increase 

in frequency to give reliable estimations of velocity and attenuation. 

 Our model neglects the thermal dissipation of acoustic energy. Even if the two phases are 

in thermal equilibrium before the perturbation propagates, the contrasts in heat conductivities, heat 

capacities, and thermal expansion coefficients of the constituents result in thermal dissipation of 

the energy of the wave and heat transfer between the phases. The cycle of heating and cooling of 

the materials during the compression and decompression results in a thermal wave that decays 

rapidly and that has a velocity depending on the thermal diffusivity of the constituents (Challis et 

al., 2005). The difference in thermal expansion coefficients results in the relative compression and 

extension of the particles compared to the fluid, which behave as secondary perturbation sources 

(Challis et al., 2005). The thermal dissipation resulting from the cyclical heating and cooling of the 

constituents may be incorporated in our model by adding the energy equations of both phases and 

by adding thermal expansion terms in the two equations of state (Eqs. 6.5a‒b) (Evans and 

Attenborough, 2002, 1997). Because of the typically high viscosities of magmatic melts, we 

considered that viscous dissipations were dominant over thermal ones. Neglecting thermal 

dissipations result in slightly underestimating the attenuation coefficients in magmas. Similarly to 

thermal effects, the contrast between the bulk moduli of the suspended and carrier phases may also 

result in the relative contraction and dilatation of the particles with respect to the fluid, which results 

in the re-radiation of the acoustic perturbation. These effects are induced by the dynamic oscillation 

of the diameter of the suspended particles. Such behavior may be accounted for in a coupled phase 

approach (Valier-Brasier et al., 2015) but it is neglected here. When the discrete phase is less 
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compressible than the carrier, however, these effects may be neglected (Challis et al., 2005; Valier-

Brasier et al., 2015; Fig 6.6 D). 

 Our aim was to compute the seismic properties of magmas in which crystal are suspended. 

However, both petrological (Wallace, 2005) and field (Wallace, 2001) evidences showed that 

magma bodies may contain a significant proportion (~10% tot vol.; Wallace et al., 1999) of 

exsolved volatiles even at upper crustal depths (up to ~20km). For the crystal contents we consider 

here, the gas phase is most likely to be present as isolated bubbles (Parmigiani et al., 2017, 2014). 

Models exist to predict the compressional wave velocities and attenuation coefficients in bubbly 

magmas (e.g. Collier et al., 2006; Neuberg and O’Gorman, 2002). Treating a mixture of three 

phases is, however, beyond the scope of the coupled phase approach. The compressional wave 

velocities of three-phase magmas may be computed accurately using the mixture equation and the 

Reuss bound (Eqs. 6.34 and 6.35). To compute the attenuation coefficient, however, it is doubtful 

that the gas and solid suspended phases may be lumped together as a single discrete phase having 

effective properties depending on the two constituents properties and the gas–solid ratio. The effect 

of the oscillation of the radius of gas bubbles, for instance, may contribute significantly to the 

attenuation coefficient of the suspension. Considering solids and bubbles as one single, discrete 

phase having averaged properties would thus probably underestimate this phenomenon and the 

attenuation coefficients. 

In summary, despite the differences between our conceptual framework of suspensions and 

real magmas, we expect that our model is suitable to predict the seismic velocities of compressional 

waves and gives correct estimates of the order of magnitude of the attenuation coefficient in gas-

free eruptible magmas. The presence of exsolved gas may significantly increase the attenuation 

factors. The estimations given with the present model must thus be viewed as lower bounds of the 

intrinsic attenuation coefficient in bubbly magmas because the presence of exsolved volatiles 

increases attenuation. 
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  6.5.2 Model validation  

Few experiments have been performed to measure acoustic wave velocities and attenuation 

coefficients within suspensions in conditions relevant for magmas. Because of the industrial 

interest in characterizing suspension properties with ultrasound, most experiments use frequencies 

and particle sizes for which assumptions made in our model do not hold (e.g. Atkinson and 

Kytömaa, 1992; Kuster and Toksoz, 1974). The experiments performed by Hampton (1967) on the 

suspension of kaolinite in water with moderate frequencies (100 kHz) and small particle sizes 

(~1.13 μm), are an exception because they fulfill the long wavelength approximation. The 

comparison of our model results with these experimental results shows good agreement in both the 

propagation velocities and attenuation coefficients (Fig. 6.11). The sharp changes in the variation 

of the attenuation close to 𝛷0 = 0.1 results from the drag model we used (Fig. 6.11 B). With a 

more accurate drag model (e.g. Gidaspow, 1994), the slope change is smoother but the same bound 

is reached at 𝛷0 = 0 (see supplementary Fig. S6.1). Sadly, the viscosity of the fluid and the range 

of particle content explored experimentally do not allow us to validate our implementation of the 

lubrication forces or the way we account for the viscous attenuation imposed by the fluid.  

Caricchi et al. (2008) performed wave propagation experiments on synthetic magmas. Their 

results, however, may not be directly compared with our model because the frequency used (3 

MHz) causes the melt phase to be unrelaxed (Caricchi et al., 2008), and put the suspensions in 

conditions where the long wavelength approximation is not valid (the wavelength, 𝜆𝑃 = ~1 𝑚𝑚, 

and 𝑑𝑝 = ~0.1 𝑚𝑚 ). Performing experiments on magmas at seismic frequencies is very 

challenging because the size of the sample has to be as large as one seismic wavelength. At seismic 

frequencies (< 50 Hz), wavelengths are comprised between hundreds of meters to several 

kilometers. Our model thus has to be modified to handle high frequencies and unrelaxed melts so 

that its outputs can be compared with experiments.  
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6.5.3 Implications for magmas 

 Our model is aimed at predicting seismic wave velocities and attenuation coefficients in 

magmas where crystals are not in contact. Our theoretical results have shown that for the three 

magmas, the velocities depended only on the crystal contents and not on the chemical composition 

of the magmas. At a pressure of 250 MPa, the seismic velocities of the magmas range from 2550 

m s-1 to 3250 m s-1 (Fig 6.9 B). The attenuation coefficients we computed may be used to estimate 

the distance after which the compressional waves are fully attenuated (Fig. 6.12). For instance, a 

compressional wave having a frequency of 50 Hz is totally attenuated after 1 km in a dacite having 

50 vol.% crystals. A wave travelling in basalt at the same frequency, however, is not fully 

attenuated after 100 km. Below 1 Hz, P waves are weakly attenuated in all magmas. The presence 

of exsolved volatiles in the magma result in an increased attenuation (Neuberg and O’Gorman, 

2002), which highly depends on bubble size (Collier et al., 2006).  

Experiments performed on magmas have shown that a sharp change occurs in the velocities 

of compressional waves once solids are in contact (Caricchi et al., 2008). This transition is also 

associated with the vanishing of the shear waves once particles are separated. These changes were 

Figure 6.11: Comparison of the estimations of the model and experimental results from Hampton (1967) for a suspension 

of kaolinite ( 𝒅𝒑 = 𝟏. 𝟏𝟑 𝝁𝒎, 𝑲𝒑 = 𝟏𝟐. 𝟓 𝑮𝒑𝒂; 𝝆𝒔 = 𝟐𝟑𝟔𝟎 𝒌𝒈 𝒎−𝟑) in water at 100 kHz. The physical parameters of the 

constituents are reported in Gibson and Toksöz (1989). [A] Evolution of the p hase velocity as a function of the 

concentration in solids. [B] Evolution of the attenuation coefficient s as a function of the solid volume fraction.  The 

ordinate scale is in dB m -1  (1 Np=8.67 dB). Black curves correspond to the results of our model and the dots to the 

experimental results from Hampton (1967).   
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observed along mid-ocean ridges (Singh et al., 1998). Our results also predict the rapid attenuation 

of shear waves in magmas when crystals are not in contact, which is consistent with these 

observations. The attenuation coefficient we computed for shear waves (Fig 6.8) indicates that the 

maximum penetration distance of shear waves in magma is ~10 cm (Fig 6.12). The lubrication 

force may reduce the attenuation of shear waves but are not able to maintain a rigidity modulus of 

the suspension when particles are at close but finite distance of each other.  

  The rejuvenation of a mushy magmatic reservoir is expected to result from the 

emplacement of horizontal layer of a hot and crystal-poor magma that destabilizes the force chains 

and dilates the overlying mush (see chapter 4 and 5). The velocity of a compressional wave depends 

mainly on the crystal content of the magma (Fig. 6.9) and presents a sharp decrease once crystals 

are separated. The rejuvenation of a mush is thus expected to result in the rapid attenuation of shear 

waves in the freshly eruptible magma. However, because of the presumably small size of such 

eruptible volumes with respect to the seismic wavelengths and to the vertical resolution of 

tomographic images, we expect that the detection of the rejuvenation of a mush would be difficult 

to perform with one velocity tomographic image because of smoothing effects. Even if a volume 

dominated by the presence of melt is accurately detected, to interpret it in terms of the physical 

properties of the constituents requires the knowledge of the temperature at which the magma is 

stored. Storage temperatures in the upper crust depend on several parameters such as the frequency 

of the recharge in new magmas, the volume and shape of the intrusion, and the presence of a mature 

reservoir in the lower crust (Annen et al., 2015, 2006; Karakas et al., 2017). When the temperature 

in unknown, the joint interpretation of velocity and attenuation tomographic images (e.g. De Siena 

et al., 2014) may help to estimate the physical properties of the magmas. One more difficulty is 

that the total attenuation coefficient measured in seismic signals is the sum of the intrinsic and 

scattering contributions (e.g. Lesage and Surono, 1995; Prudencio et al., 2018). The two may be 

discriminated by using a diffusion model (e.g. Sato et al., 2012). While the intrinsic attenuation 

coefficient may be computed with our model, it is not the case of the scattering coefficient although 

it generally represents the main part of the total attenuation (Prudencio et al., 2018). Thus, 

estimating the physical properties of the magma from a single snapshot of subsurface total 

attenuation is very challenging. 
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Unlike intrinsic attenuations, the scattering attenuations are not expected to vary greatly 

during the rejuvenation process. This opens a promising way to detect an unrest event by measuring 

the time evolution of the tomographic images of wave velocity (e.g. Patanè et al., 2006) and 

attenuation. While our model adds to the existing models addressing seismic properties of eruptible 

magmas and partially molten rocks (Collier et al., 2006; Mavko, 1980), the seismic signatures of 

magmatic mush remains poorly known. This is an issue because interpreting the evolution of wave 

attenuation in magmatic systems requires the ability to address the full spectrum of crystallinity, 

from liquidus to solidus. The seismic properties of mushes depends on the strength of the force 

chains, and the non-linear effects arising from the frictional contacts contribute to wave attenuation 

(Brunet et al., 2008). These effects require further considerations.  

  

  

Figure 6.12: Dimensionless decay of the acoustic wave amplitude as a function of distance. Each curve represents the decay 

in amplitude of an acoustic wave for a given attenuation coefficient.  
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6.6 Conclusions 

In this study, we computed the velocities and attenuation coefficients of seismic waves in 

crystal-bearing magmas. We employed and modified the coupled-phase approach. We notably 

incorporated the effects of the viscous dissipation in the melt phase and lubrication forces. Our 

model reproduces experimental results of wave velocities and attenuation that fulfill the long 

wavelength approximation. To our knowledge, there are no experimental data to test our model 

predictions on the role of lubrication forces or that of the fluid viscous attenuation. Our results 

suggest that for low frequencies, the velocities of compressional wave depend on the bulk modulus, 

densities and respective concentration between the carrier and discrete phases, and are independent 

of frequency in the seismic range. The attenuation coefficients of compressional waves depend 

mainly on the viscosity of the fluid, the frequency of the perturbation, and the ratio between the 

bulk moduli of the constituents. 

 We applied this model to eruptible magmas using input data from simulations mimicking 

magma cooling and crystallization and showed that, for three magma compositions (basalt, 

andesite, and dacite), the velocity of compressional waves are functions of the crystallinity. The 

chemical composition of the magmas has no effect on wave velocity other that controlling the 

temperature at which these crystallinities are reached. Differences in chemical compositions, 

however, result in orders of magnitude of differences in the attenuation coefficients of 

compressional waves. Despite the simplifications compared to real magma, our model produces 

the first results in predicting the attenuation coefficients of compressional waves in crystal-bearing 

magmas. We neglected thermal effect and the presence of bubble. Both may result in an excess of 

attenuation compared to our results. Therefor our results must be viewed as lower-bound estimates 

of wave attenuation in magmas. 
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Supplementary section 6.1: 

This supplementary section presents the drag law used in chater 6.  

The momentum transfer term (Eqs. 6.14) includes a momentum exchange coefficient, 𝛽𝑓𝑠. 

Several formulations were proposed by authors based on either experimental or theoretical results. 

The simplest formulation is the Stokes drag, which considers isolated spheres. After a procedure 

of volume averaging, it yields: 

𝛽𝑠𝑡𝑜𝑘𝑒𝑠 = 
18 𝜂 𝛷

 𝑑𝑝
2    (S6.1.1) 

The presence of neighboring particles influences the fluid flow around a given particle and may be 

captured by the Gidaspow drag model (Gidaspow, 1994), which combines a Wen-Yu’s drag law 

at low concentrations in solids, and an Ergun’s relationship (Ergun, 1952) at high particle volume 

fraction. The Gidaspow momentum exchange coefficient, 𝛽𝑔𝑖𝑑𝑎𝑠𝑝𝑜𝑤, is: 

𝛽𝑔𝑖𝑑𝑎𝑠𝑝𝑜𝑤 = {

3

4
 𝐶𝐷  

𝜌𝑓 𝛷 (1−𝛷) ‖𝑣𝑓⃗⃗ ⃗⃗ ⃗−𝑣𝑠⃗⃗⃗⃗⃗‖ 

𝑑𝑝
(1 − 𝛷)−2.65         𝛷 < 0.2 

150 𝛷2 𝜂

(1−𝛷) 𝑑𝑝
2 +

1.75 𝛷 𝜌𝑓‖𝑣𝑓⃗⃗ ⃗⃗ ⃗−𝑣𝑠⃗⃗⃗⃗⃗‖

𝑑𝑝
                         𝛷 ≥ 0.2

  (S6.1.2) 

where 𝐶𝐷 is the drag coefficient that depends on the particle Reynolds number, 𝑅𝑒𝑝, as: 

𝐶𝐷 = {

24

𝑅𝑒𝑝
(1 + 0.15 𝑅𝑒𝑝

0.687)              𝑅𝑒𝑝 < 1000

0.44                                               𝑅𝑒𝑝 ≥ 1000
  (S6.1.3) 

The first line of Eq. (6.1.2) is the Wen-Yu momentum coefficient. The second line is the Ergun 

drag law, in which the first term is a Kozeny-Karman relationship capturing the viscous effects, 

and the second term is a Burk-Plummer equation including the inertial effects. Alternatively, 

simpler momentum coupling terms exist but are only valid over a certain range of concentrations 

in particles (e.g., Bergantz et al., 2017).  

Comparison of the magnitude of the different drag laws shows that for magmatic 

conditions, the Ergun law may be reduced to the Kozeny-Carman relationship by neglecting inertial 

effects (Fig. S6.1). At very low particle volume fraction (Φ<~0.05), the Wen-Yu and Stokes drag 

merge. The Stokes and Kozeny-Carman laws present the advantage to be linearly dependent on the 
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relative velocity between the solids and the fluid, and are thus suitable for a coupled phase 

approach. Thereby, we decided to combine a Stokes law at low concentrations in solids and a 

Kozeny-Carman relationship at higher concentrations to keep a linear dependence over the whole 

range of particle volume fraction. The momentum transfer coefficient 𝛽𝑓𝑠 is thus: 

𝛽𝑓𝑠 = {

18 𝜂 𝛷

 𝑑𝑝
2                𝛷 ≤ 0.10715

150 𝛷2 𝜂

(1−𝛷) 𝑑𝑝
2           𝛷 > 0.10715

   (S6.1.4) 

 

 

  

Figure S6.1: Comparison of drag laws as function of the solid volume fraction. [A] 𝒅𝒑  =  𝟎. 𝟎𝟏 𝒎, ∆𝒗 = 𝟎.𝟎𝟏 𝒎 𝒔−𝟏,𝝆𝒇 =

 𝟐𝟓𝟓𝟎 𝒌𝒈 𝒎−𝟑, 𝜼 = 𝟏 𝑷𝒂 𝒔. [B] 𝒅𝒑  =  𝟎. 𝟎𝟎𝟎𝟏 𝒎, ∆𝒗 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 𝒎 𝒔−𝟏,𝝆𝒇 =  𝟐𝟐𝟓𝟎 𝒌𝒈 𝒎−𝟑, 𝜼 = 𝟏𝟎𝟎𝟎 𝑷𝒂 𝒔.   
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Chapter 7: General conclusions  
This thesis, which is based on CFD-DEM numerical modeling and fluid mechanics, aimed 

at improving our understanding of the physical processes leading to the reawakening of a magmatic 

reservoir and the associated effects on geophysical signals. We explored the rheology of mush and 

crystal-bearing magmas to identify and quantify the relevant physical processes that control the 

motion of the crystals. Our investigation focused on the importance and effects of lubrication 

forces, which were not explicitly considered in previous models. We then performed series of 

numerical simulations of injection of a mobile magma into a mush. Once the expected behaviors 

of intrusions in natural conditions were identified, we focused our modeling on the interactions 

between the mush and the intruded magma and on how the intrusion affects the physical properties 

of the materials located in the magmatic reservoir. Finally, to explore the effect of magma input on 

seismic signals, we computed the seismic wave velocities and attenuation coefficients in eruptible 

magmas by improving the coupled phase approach for wave propagation.  

 The rheologies of mush and crystal-bearing magmas are complex and their description 

requires to account for several physical processes such as the viscous drag exerted by the melt and 

the presence of frictional forces chains (Bergantz et al., 2017). The influence and effects of the 

lubrication forces, however, were not fully constrained in previous works. We developed in 

Chapter 3 scaling relationships and performed CFD-DEM numerical simulations to address the 

importance and effects of lubrication in mush dynamics. Our results showed that lubrication is 

important at the initiation or dying-off of motion in the mush, and protracts the duration of these 

transient dynamics. Lubrication, however, has a negligible importance in steady-state conditions. 

This is why lubrication was weakly visible in experiments aimed at constraining the rheology of 

magma and mush (e.g. Caricchi et al., 2007; Lavallée et al., 2007; Mueller et al., 2010). These 

studies used measurements acquired during the steady-state straining of magmas, for which 

lubrication may be neglected. Highlighting experimentally lubrication is thus challenging using 

steady shearing experiments. Oscillatory rheometry seems the most promising approach to 

evidence the influence of lubrication forces and study transient dynamics in magmas. 

 CFD-DEM numerical simulations exploring the intrusion of magmas in mush (Bergantz et 

al., 2015; Schleicher et al., 2016; Schleicher and Bergantz, 2017) have revealed many interesting 
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features and highlighted the importance of the dynamics of the granular phase. In these studies, the 

differences existing between the physical properties of the mush and those of the intruded magma 

were restricted to the crystal content. The contrasts between the densities and viscosities of the two 

melt phases expected to occur in nature required further considerations. This CFD-DEM model 

required modifications to be able to simulate the dynamics of chemically evolved mush (i.e. with 

high melt viscosity). After implementing modifications to the CFD-DEM model that allowed us to 

address the dynamics of any magma, we performed in Chapter 4 series of numerical simulations 

by varying the physical properties of the resident melt. Our results show that, for gentle injection 

velocities, three regimes exist depending on the density contrast between the two melts. When the 

two melts have the same density, the formation of a mixing bowl occurs as described in Bergantz 

et al. (2015), Schleicher et al. (2016), and Schleicher and Bergantz (2017). When the intruded melt 

is lighter than the resident one, the injection rises through the mush as described in Girard and Stix 

(2009). On the contrary, when the intruded melt is the densest, the intrusion ponds at the base of 

the mush in the same fashion as presented in Jellinek and Kerr (1999) and Snyder and Tait (1995). 

At high injection rate, the effect of the density contrast between the two melts is dominated by the 

injection momentum and the intrusion grows radially. We found that, under most natural 

conditions, the intrusion is expected to spread at the base of the mush and to be emplaced as a 

horizontal layer. The relevant parameter controlling the behavior of the intrusion is the density 

contrast between the melts of the mush and intruded materials, contrary to the assumptions made 

in many studies, which considered the bulk density contrast as being the relevant parameter (e.g. 

Bain et al., 2013; Jellinek and Kerr, 1999; Snyder, 2000; Snyder and Tait, 1995). This result also 

suggests that mimicking mush and magma dynamics in experiments or numerical modeling 

requires solids to be accounted for explicitly as a discrete phase. 

This thesis highlights the importance of accounting for the relative motion between melt 

and crystals. The role of the exsolved volatiles was not explored in this work and remains unclear. 

Some authors consider that the upward motion of bubbles may drive the ascent of the overlying 

magma (e.g. Ruprecht et al. 2008). Identify the parameters that control the motion of a magma in 

which liquid, solid, and gas phases coexist requires to account for the complex physics of exsolved 

volatiles (Parmigiani et al., 2017, 2014) as well as the dynamics of the granular phase. Such 

exploration is only beginning. 
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 The interactions and mixing between the intruded magma and resident mush was previously 

explored using a CFD-DEM approach in the context of mush fluidization (Schleicher et al., 2016; 

Schleicher and Bergantz, 2017) and required further considerations for scenarios where the 

intrusion ponds at the base of the mush. Improving the description of the interactions between the 

two materials required to account for the thermal exchanges between them and for their effects on 

the density and viscosity of the melts. Using the results of Chapter 4, we built in Chapter 5 two 

simulations in which the intrusion is expected to spread at the base of the mush and for which the 

dimensionless injection velocities are identical. The initial injection velocities were chosen to 

impose the initial radial growth of the intrusion volumes. The two simulations reproduced the 

intrusion of a basaltic melt in a basaltic mush and the injection of a basaltic melt in a dacitic mush, 

respectively. We took advantage of the short computational time of the first simulation to explore 

the dynamics of the intrusion after shutting off the injection. Our results show that during the 

growth of the intruded volumes, thermal effects may significantly affect the dynamics of the 

intruded magma. For the simulation mimicking a basaltic mush, the melt flowed radially from the 

inlet, whereas it convected in that using a dacitic mush. This difference resulted mainly from the 

longer duration required in the second simulation to inject the same volume as in the first one. 

After stopping the injection, the intrusion ponded at the base of the reservoir, trapping a 

layer of the resident basaltic mush beneath it. The trapped resident melt was buoyant compared to 

that of the intruder and rose through the intrusion, forming Rayleigh-Taylor instabilities and 

entraining trapped mush crystals. Some crystals from the overlying host invaded the intrusion by 

settling. These two features are commonly observed in plutonic rocks (e.g. Bain et al., 2013; Wiebe, 

2016). Our results suggest that these processes do not need a thermal activation, as often considered 

(Bain et al., 2013; Jellinek and Kerr, 1999), and may instead result from a short, but intense, 

injection. Crystal mixing was restricted to the intrusion layer and it was less efficient than for the 

fluidization regime described in Schleicher et al. (2016). The amount of heat supplied by the 

injection was not able to trigger convection in the mush, which is in agreement with the theoretical 

predictions of Snyder (2000). The injection, however, generated conditions for which repacking 

occurs within the mush, which may trigger the extraction of the interstitial melt (Bachmann and 

Huber, 2019). Fully describing mixing between the intrusion and the host requires to perform 
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simulations on a larger scale with a resolution that allows to capture front instabilities such as those 

described in Snyder and Tait (1995), and accounting of the chemical diffusion. 

 The detection of mush reawakening in seismic signals requires constraining the seismic 

properties of eruptible magmas. We used and adapted the coupled-phase approach to compute the 

seismic wave velocities and attenuation coefficients in magmas where crystals are not in contact. 

Results show that the velocity of compressional waves in eruptible magmas depends on their crystal 

content. This decouples any link between wave velocity and magma composition because magma 

chemical composition and ambient pressure affect the temperature at which these crystallinities are 

reached. A given crystal content (and thus wave velocity) can be shared by magmas of different 

compositions and temperatures. A sharp increase of the compressional waves velocity and 

appearance of shear waves is expected once crystals are in contact, as highlighted in Caricchi et al. 

(2008). On the contrary, the intrinsic attenuation coefficients depend greatly on the chemical 

compositions of the magmas in a way that is not uniquely related to crystal content. The joint 

interpretation of the wave velocities and damping coefficients is thus necessary to estimate the 

physical properties of the eruptible magmas. It follows that the monitoring of the joint evolution of 

seismic velocities and attenuation seems the most suitable method to detect the unrest of a 

magmatic reservoir. 

Magmatic reservoirs spend most of their time as mush. Therefore, the understanding of the 

seismic properties of mush where the crystals are in contact is also required to identify the best 

method to detect unrest events. CFD-DEM simulations could be an appropriate tool to that end, 

but it requires to couple the DEM and fluid phase numerical solvers in an iterative way for each 

time step so that the motions of the two phases are solved jointly. The actual implementation of the 

CFD-DEM model solves for each phase motion successively by considering the velocity of the 

other phase as constant during the time step of one phase. Such assumption is not valid for modeling 

wave propagation because of the wave rapid and transient dynamics. 
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Perspectives 

 Our results have shed light on the physical processes that may initiate the reawakening of 

a mush. These results allow us to sketch a large-scale picture of mush reawakening (Fig. 7.1)  that 

highlight scenarios that are supported by these newly established physical processes and scenarios 

that our findings hint at but that need to be explored further. In many natural conditions, the melt 

phase of the injected magma is denser than that of the mush. Our results show that, in such situation, 

the intruder is expected to be emplaced as a horizontal layer (Fig. 7.1 A‒B). The contamination of 

the intrusion occurs because of the settling of host crystals from the overlying mush and because 

buoyant host materials beneath the intrusion rise through it (Fig. 7.1 C). The presence material 

having the ability to flow beneath the emplaced layer may result from the thermal reactivation of a 

strong mush presenting initially a yield stress (Bain et al., 2013; Jellinek and Kerr, 1999), or from 

a short but intense injection trapping a layer of weak mush that does not need thermal reactivation 

(Chapter 5). 

We speculate that this situation may evolve in two distinct ways. We have shown that the 

occurrence of gravitational instabilities in a magmatic system is dominated by the density contrast 

of the melt phases involved. Thereby, the evolution of the densities of the intruded and host melts 

during the thermal evolution that follows emplacement has a critical importance on the initiation 

of a large-scale instability of the intruded material. In the simulations of the cooling and 

crystallization of the magmas in Chapter 6, the density of the basaltic melt is smaller than the 

andesitic and dacitic ones once the temperature is below 1050°C (Fig. 6.2). We expect that the 

cooling and crystallization of a basaltic intrusion in a dacitic mush may lead to the density inversion 

of the two melts. The same process as observed at small scale between the trapped mush and the 

intrusion (Fig 7.1 C) may then occur at large scale, causing the rise of this intrusion from the floor 

of the reservoir (Fig 7.1 D). If an eruption ensues, the large-scale rise of this material will entrain 

uncontaminated host mush in the eruption. The eruptive sequence of such an eruption is expected 

to start with the deposition of materials showing the mingling or mixing between the basalt and 

host materials, and then the emission of mush material. This eruptive sequence is in agreement 

with observed ones (e.g., Pinatubo 1991, Pallister et al., 1992). 

Because it requires to be thermally activated (i.e. the intruded material needs to cool 

sufficiently to cause density inversion), the scenario depicted in Fig. 7.1 D does not explain the 
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rapid transport of basalt through the magmatic reservoir with limited hybridization with the host 

material (e.g. Komagatake, 1640; Takahashi and Nakagawa, 2013). Such a rapid transport must 

result from an intense injection or from the presence of a yield stress in the mush that then supports 

the vertical ascent of the basalt (Fig 7.1 E). When the cooling of the intrusion does not lead to 

unstable conditions, the intruder is expected to stay near the base of the mush. This situation may 

initiate the extraction of the mush interstitial melt by repacking (Chapter 5, Bachmann and Huber, 

2019), possibly leading to its eventual accumulation at the top of the reservoir (Fig 7.1 F) 

(Bachmann and Bergantz, 2004). An accurate prediction of the occurrence of a large-scale 

instability of the intrusion thus requires exploring further the consequences of the evolution of the 

host and intruded melt densities after an intrusive event while accounting for chemical diffusion, 

melting, and crystallization.  
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Figure 7.1: Scenarios of mush reawakening. [A] Initial conditions. The drawing represents a crustal section in which a 

mushy reservoir is present. A basalt arriving from below is introducing the mush. [B] The intrusion is emplaced as a 

horizontal layer. [C] Zoom on the interfaces at the top and bottom of the intrusion layer. White arrows represent the 

crystals settling from the top of the intrusion, and the black ones the upward migration of the host mush from the 

trapped layer of mush below the intrusion. [D] Large-scale instability of the intrusion in which mingling and mixing 

with the resident material occurs. Black arrows indicate the entrainment of the mush in the eruption. [E] Rapid 

transport of the intrusion within the mush. [F] Melt extraction induced by the emplacement of an intrusion. Wiggling 

arrows indicate the processes of melt extraction. 
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