E. Professor, F. R. Rutherford, and . Lxxix, the scattering of and particles by matter and the structure of the atom. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.21, issue.125, pp.669-688, 1911.

W. P. Levin, H. Kooy, J. S. Loeffler, and T. F. Delaney, Proton beam therapy, British Journal of Cancer, vol.93, issue.8, pp.849-854, 2005.

R. Kenneth, . Hogstrom, and . Peter-r-almond, Review of electron beam therapy physics, Physics in Medicine and Biology, vol.51, issue.13, pp.455-489, 2006.

R. Mohan and D. Grosshans, Radiotherapy for cancer: present and future, Advanced Drug Delivery Reviews, vol.109, issue.9, pp.26-44, 2017.

S. Duzellier, Radiation effects on electronic devices in space, Aerospace Science and Technology, vol.9, issue.1, pp.93-99, 2005.

S. Yip, Handbook of materials modeling, 2007.

H. Kraus, D. Simin, C. Kasper, Y. Suda, S. Kawabata et al., Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide, Nano Letters, vol.17, issue.5, p.10, 2017.

C. A. Volkert and A. M. Minor, Focused ion beam microscopy and micromachining, MRS Bulletin, vol.32, issue.5, pp.389-399, 2007.

. Bw-ward, A. John, N. P. Notte, and . Economou, Helium ion microscope: A new tool for nanoscale microscopy and metrology, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol.24, issue.6, p.10, 2006.

M. J. Berger, M. Inokuti, H. H. Andersen, H. Bichsel, D. Powers et al., Journal of the International Commission on Radiation Units and Measurements, vol.25, issue.2, p.11, 2016.

P. Steven and . Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles, Rev. Mod. Phys, vol.52, p.11, 1980.

J. Lindhard and H. Allan, So/rensen. Relativistic theory of stopping for heavy ions, Phys. Rev. A, vol.53, p.11, 1996.

J. Kohanoff, Electronic structure calculations for solids and molecules: theory and computational methods, p.11, 2006.

S. Pellegrino, . Trocellier, Y. Miro, . Serruys, H. Bordas et al., The jannus saclay facility: A new platform for materials irradiation, implantation and ion beam analysis. Nuclear Instruments and Methods in, Physics Research Section B: Beam Interactions with Materials and Atoms, vol.273, p.12, 2012.

L. Beck, Y. Serruys, S. Miro, P. Trocellier, E. Bordas et al., Ion irradiation and radiation effect characterization at the jannus-saclay triple beam facility, Journal of Materials Research, vol.30, issue.9, p.12, 2015.

A. A. Correa, Calculating electronic stopping power in materials from first principles, Computational Materials Science, vol.150, pp.291-303, 2018.

P. Sigmund, Particle penetration and radiation effects volume, Springer series in solid-state sciences, vol.2, p.12, 2014.

H. Bethe, Zur theorie des durchgangs schneller korpuskularstrahlen durch materie, Annalen der Physik, vol.397, issue.3, p.12, 1930.

E. Fermi and E. Teller, The capture of negative mesotrons in matter, Physical Review, vol.72, issue.5, p.12, 1947.

J. F. Zielger, J. P. Biersack, and M. D. Ziegler, SRIM The Stopping and Range of Ions in Matter

L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, and F. Garrido, Modern analysis of ion channeling data by monte carlo simulations, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.240, p.13, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024488

C. Sabathier, L. Vincent, P. Garcia, F. Garrido, G. Carlot et al., In situ tem study of temperatureinduced fission product precipitation in uo2, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, p.13, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00825672

A. Debelle, A. Boulle, F. Garrido, and L. Thomé, Strain and stress build-up in he-implanted uo2 single crystals: an x-ray diffraction study, Journal of Materials Science, vol.46, issue.13, p.13, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00596966

J. Lindhard, M. Scharff, and H. E. Schiøtt, Range concepts and heavy ion ranges. Munksgaard Copenhagen, p.13, 1963.

. Pm-echenique, J. C. Nieminen, R. H. Ashley, and . Ritchie, Nonlinear stopping power of an electron gas for slow ions, Physical Review A, vol.33, issue.2, p.13, 1986.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, p.13, 1964.

A. Arnau, M. Pealba, P. M. Echenique, F. Flores, and R. H. Ritchie, Stopping power for helium in aluminum, Phys. Rev. Lett, vol.65, p.13, 1990.

E. Runge and E. K. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett, vol.52, p.14, 1984.

M. Petersilka, U. J. Gossmann, and E. K. Gross, Excitation energies from time-dependent density-functional theory, Phys. Rev. Lett, vol.76, p.14, 1996.

I. Campillo, J. M. Pitarke, and A. G. Eguiluz, Electronic stopping power of aluminum crystal, Phys. Rev. B, vol.58, p.14, 1998.

J. Campillo, A. Pitarke, A. Eguiluz, and . García, Electronic stopping power of periodic crystals, vol.135, p.14, 1998.

J. M. Pitarke and I. Campillo, Band structure effects on the interaction of charged particles with solids, p.14, 2000.

F. Abdullah-atef-shukri, L. Bruneval, and . Reining, Ab initio electronic stopping power of protons in bulk materials, Phys. Rev. B, vol.93, p.35128, 2016.

A. Shukri, Ab initio electronic stopping power in materials, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02382352

A. Schleife, Y. Kanai, and A. A. Correa, Accurate atomistic firstprinciples calculations of electronic stopping, Physical Review B, vol.91, issue.1, p.14306, 2015.

A. Schleife, E. W. Draeger, Y. Kanai, and A. A. Correa, Planewave pseudopotential implementation of explicit integrators for time-dependent kohn-sham equations in large-scale simulations, The Journal of chemical physics, vol.137, issue.22, p.15, 2012.

A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade et al., octopus: a tool for the application of time-dependent density functional theory. physica status solidi (b), vol.243, p.15, 2006.

A. L. Miguel, A. Marques, G. F. Castro, A. Bertsch, and . Rubio, octopus: a first-principles tool for excited electron-ion dynamicse-mail: octopus@tddft.org, Computer Physics Communications, vol.151, issue.1, p.15, 2003.

J. M. Pruneda, D. Sánchez-portal, A. Arnau, J. I. Juaristi, and E. Artacho, Electronic stopping power in LiF from first principles, Physical Review Letters, vol.99, issue.23, pp.1-4, 2007.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma et al., Nwchem: A comprehensive and scalable open-source solution for large scale molecular simulations, vol.181, p.15, 2010.

J. Hutter, M. Iannuzzi, F. Schiffmann, and J. Vandevondele, Cp2k: atomistic simulations of condensed matter systems, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.4, issue.1, p.15, 2014.

F. Bruneval, T. Rangel, M. Samia, M. Hamed, C. Shao et al., molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters, Computer Physics Communications, vol.208, pp.149-161, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02389397

G. Drake, Springer Handbook of Atomic, Molecular, and Optical Physics, vol.01, p.18, 2006.

T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Communications on Pure and Applied Mathematics, vol.10, issue.2, p.22, 1957.

G. Robert, W. Parr, and . Yang, Density-functional theory of atoms and molecules, p.22, 1989.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, p.23, 1965.

C. Cramer, Essentials of computational chemistry. Theories and Models, p.27, 2002.

F. Sasaki and M. Yoshimine, Configuration-interaction study of atoms. i. correlation energies of b, c, n, o, f, and ne, Phys. Rev. A, vol.9, p.27, 1974.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.5, p.27, 1927.

A. Szabó and N. S. Ostlund, Modern quantum chemistry : introduction to advanced electronic structure theory, vol.32, p.30, 1996.

B. U-von and L. Hedin, A local exchange-correlation potential for the spin polarized case. i, Journal of Physics C: Solid State Physics, vol.5, issue.13, p.33, 1972.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, vol.23, p.33, 1981.

G. L. Oliver and J. P. Perdew, Spin-density gradient expansion for the kinetic energy, Phys. Rev. A, vol.20, p.33, 1979.

K. Burke, Perspective on density functional theory, The Journal of Chemical Physics, vol.136, issue.15, p.34, 2012.

J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional, Phys. Rev. Lett, vol.115, p.34, 2015.

D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett, vol.45, p.35, 1980.

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, p.35, 1980.

P. John, Y. Perdew, and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, vol.45, p.35, 1992.

P. Loos, M. W. Peter, and . Gill, The uniform electron gas, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.6, issue.4, p.35, 2016.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, vol.38, p.36, 1988.

C. Lee, W. Yang, and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.37, p.36, 1988.

R. Colle and O. Salvetti, Approximate calculation of the correlation energy for the closed shells, Theoretica chimica acta, vol.37, issue.4, p.36, 1975.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, p.36, 1996.

P. John and . Perdew, Electronic structure of solids' 91 ed p ziesche and h eschrig (berlin: Akademie) perdew jp, chevary ja, vosko sh, jackson ka, pederson mr, singh dj and fiolhais c 1992, Phys. Rev. B, vol.46, p.36, 1991.

J. Tao, J. P. Perdew, N. Viktor, G. E. Staroverov, and . Scuseria, Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett, vol.91, p.36, 2003.

A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, Generalized kohn-sham schemes and the band-gap problem, Phys. Rev. B, vol.53, p.37, 1996.

. Pj-stephens, . Devlin, M. J. Cfn-chabalowski, and . Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, The Journal of Physical Chemistry, vol.98, issue.45, p.37, 1994.

M. Ernzerhof and G. E. Scuseria, Assessment of the perdew-burkeernzerhof exchange-correlation functional, The Journal of chemical physics, vol.110, issue.11, p.38, 1999.

M. Bernardi, On the physical origin of the 1/4 exact exchange in density functional theory, p.38, 2018.

C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, vol.569, p.39, 2012.

G. Vignale, Real-time resolution of the causality paradox of time-dependent density-functional theory, Phys. Rev. A, vol.77, p.39, 2008.

. Robert-van-leeuwen, Mapping from densities to potentials in time-dependent densityfunctional theory, Phys. Rev. Lett, vol.82, p.41, 1999.

T. Neepa, K. Maitra, and . Burke, Demonstration of initial-state dependence in time-dependent density-functional theory, Phys. Rev. A, vol.63, p.43, 2001.

J. I. Fuks, A. Rubio, and N. T. Maitra, Charge transfer in timedependent density-functional theory via spin-symmetry breaking, Phys. Rev. A, vol.83, p.43, 2011.

J. I. Fuks and N. T. Maitra, Charge transfer in time-dependent density-functional theory: Insights from the asymmetric hubbard dimer, Phys. Rev. A, vol.89, p.43, 2014.

H. Bruus and K. Flensberg, Many-body quantum theory in condensed matter physics: An Introduction (Oxford Graduate Texts), vol.46, p.336, 2002.

G. S. Was, Fundamentals of Radiation Damage Materials Science, 2007.

J. Kohanoff and E. Artacho, Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics, PLoS ONE, vol.12, issue.3, p.49, 2017.

A. A. Correa, J. Kohanoff, E. Artacho, D. Sánchez-portal, and A. Caro, Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage, Physical Review Letters, vol.108, issue.21, p.49, 2012.

M. Caro, A. A. Correa, E. Artacho, and A. Caro, Stopping power beyond the adiabatic approximation, Scientific Reports, vol.7, issue.1, p.49, 2017.

E. E. Quashie and A. A. Correa, Electronic stopping power of protons and alpha particles in nickel, Physical Review B, vol.98, issue.23, p.50, 2018.

K. G. Reeves, Y. Yao, and Y. Kanai, Electronic stopping power in liquid water for protons and ? particles from first principles, Physical Review B, vol.94, issue.4, p.50, 2016.

M. Zeb, J. Kohanoff, D. Sánchez-portal, A. Arnau, J. I. Juaristi et al., Electronic stopping power in gold: The role of d electrons and the H/He anomaly, Physical Review Letters, vol.108, issue.22, p.50, 2012.

M. Zeb, J. Kohanoff, D. Sánchez-portal, and E. Artacho, Electronic stopping power of H and He in Al and LiF from first principles, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol.303, p.50, 2013.

C. Li, F. Mao, F. Wang, Y. L. Fu, X. P. Ouyang et al., Electronic stopping power of slow-light channeling ions in ZnTe from first principles, Physical Review A, vol.95, issue.5, p.50, 2017.

A. Ojanpera, A. V. Krasheninnikov, and M. Puska, Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization, Physical Review B -Condensed Matter and Materials Physics, vol.89, issue.3, pp.1-5, 2014.

C. Dillon, Y. Yost, and . Kanai, Electronic stopping for protons and ? particles from first-principles electron dynamics: The case of silicon carbide, Physical Review B, vol.94, issue.11, pp.1-8, 2016.

D. C. Yost, Y. Yao, and Y. Kanai, Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power, Physical Review B, vol.96, issue.11, pp.1-9, 2017.

G. Kyle, Y. Reeves, and . Kanai, Electronic Excitation Dynamics in Liquid Water under Proton Irradiation, Scientific Reports, vol.7, pp.1-8, 2016.

R. J. Magyar, L. Shulenburger, and A. D. Baczewski, Stopping of Deuterium in Warm Dense Deuterium from Ehrenfest Time-Dependent Density Functional Theory. Contributions to Plasma Physics, vol.56, p.50, 2016.

R. Ullah, E. Artacho, and A. A. Correa, Core Electrons in the Electronic Stopping of Heavy Ions, Physical Review Letters, vol.121, issue.11, p.116401, 2018.

D. Roth, C. E. Celedon, D. Goebl, E. A. Sanchez, B. Bruckner et al., Systematic analysis of different experimental approaches to measure electronic stopping of very slow hydrogen ions, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol.437, p.50, 2018.

G. Was, Fundamentals of Radiation Materials Science, p.52, 2015.

R. Ullah, F. Corsetti, D. Sánchez-portal, and E. Artacho, Electronic stopping power in a narrow band gap semiconductor from first principles, Physical Review B -Condensed Matter and Materials Physics, vol.91, issue.12, p.53, 2015.

E. A. Figueroa, E. D. Cantero, J. C. Eckardt, G. H. Lantschner, J. E. Valdés et al., Threshold effect in the energy loss of slow protons and deuterons channeled in Au crystals, Physical Review A -Atomic, Molecular, and Optical Physics, vol.75, issue.1, p.55, 2007.

J. Wang, H. Y. Symphony, C. Huang, S. A. Herrmann, F. Scott et al., Focussed helium ion channeling through Si nanomembranes, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.36, issue.2, p.55, 2018.

M. Zhongquan, L. Jiarui, and Z. Peiran, Stopping power of proton in monocrystalline, polycrystalline and amorphous silicon, Chinese Physics Letters, vol.7, issue.5, p.55, 1990.

D. S. Gemmell, Channeling and related effects in the motion of charged particles through crystals, Reviews of Modern Physics, vol.46, issue.1, p.55, 1974.

J. Lindhard, Influence of Crystal Lattice on Motion of Energetic Charged Particles. Matematisk-Fysiske Meddelelser Kongelige Danske Videnskabernes Selskab, vol.34, p.55, 1965.

E. Holm-mortensen, J. Oddershede, and J. R. Sabin, Polarization propagator calculations of generalized oscillator strengths and stopping cross sections of he, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.69, p.60, 1992.

J. A. Nobel, S. B. Trickey, J. R. Sabin, and J. Oddershede, Basis set limitations on the ab initio calculation of stopping cross-sections via generalized oscillator strengths, Honor of Notker Roesch, vol.309, p.60, 2005.

H. Thom and . Dunning, Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen, The Journal of chemical physics, vol.90, issue.2, p.60, 1989.

A. Rick, T. H. Kendall, R. Dunning, and . Harrison, Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions, The Journal of chemical physics, vol.96, issue.9, p.60, 1992.

E. David, . Woon, H. Thom, and . Dunning, Gaussian basis sets for use in correlated molecular calculations. iii. the atoms aluminum through argon, The Journal of chemical physics, vol.98, issue.2, p.60, 1993.

A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, and J. Olsen, Basis-set convergence of the energy in molecular hartree-fock calculations, Chemical Physics Letters, vol.302, issue.5, p.60, 1999.

R. A. Kirk-a-peterson and T. Kendall, Benchmark calculations with correlated molecular wave functions. ii. configuration interaction calculations on first row diatomic hydrides, The Journal of chemical physics, vol.99, issue.3, p.60, 1993.

A. Halkier, W. Klopper, T. Helgaker, and P. Rgensen, Basis-set convergence of the molecular electric dipole moment, The Journal of chemical physics, vol.111, issue.10, p.60, 1999.

P. Pulay, Improved scf convergence acceleration, Journal of Computational Chemistry, vol.3, issue.4, p.67, 1982.

S. Obara and A. Saika, Efficient recursive computation of molecular integrals over cartesian gaussian functions, The Journal of Chemical Physics, vol.84, issue.7, p.69, 1986.

. Ef and . Valeev, Libint: A library for the evaluation of molecular integrals of many-body operators over gaussian functions, p.69, 2017.

A. L. Miguel, . Marques, J. T. Micael, T. Oliveira, and . Burnus, Libxc: A library of exchange and correlation functionals for density functional theory, Computer Physics Communications, vol.183, issue.10, p.69, 2012.

F. Weigend, A fully direct ri-hf algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency, Physical Chemistry Chemical Physics, vol.4, issue.18, p.69, 2002.

K. Lopata and N. Govind, Modeling fast electron dynamics with realtime time-dependent density functional theory: application to small molecules and chromophores, Journal of chemical theory and computation, vol.7, issue.5, p.70, 2011.

W. Magnus, On the exponential solution of differential equations for a linear operator, Communications on pure and applied mathematics, vol.7, issue.4, p.73, 1954.

S. Blanes, F. Casas, and J. Ros, Improved high order integrators based on the magnus expansion, BIT Numerical Mathematics, vol.40, issue.3, p.73, 2000.

C. Cheng, J. S. Evans, and T. Van-voorhis, Simulating molecular conductance using real-time density functional theory, Physical Review B, vol.74, issue.15, p.155112, 2006.

A. Castro, A. L. Miguel, A. Marques, and . Rubio, Propagators for the timedependent kohn-sham equations, The Journal of chemical physics, vol.121, issue.8, p.75, 2004.

O. Conn and D. Bowler, Linear scaling density matrix real time tddft: Propagator unitarity and matrix truncation, The Journal of chemical physics, vol.143, issue.10, p.76, 2015.

X. Andrade, D. Strubbe, U. D. Giovannini, A. Hjorth-larsen, J. T. Micael et al., Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems, Phys. Chem. Chem. Phys, vol.17, p.84, 2015.

F. Bruneval, M. Samia, J. B. Hamed, and . Neaton, A systematic benchmark of the ab initio bethe-salpeter equation approach for low-lying optical excitations of small organic molecules, vol.142, p.86, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02389606

U. N. Nicolas-o-foglia, D. A. Morzan, D. A. Estrin, M. Scherlis, and . Lebrero, Role of core electrons in quantum dynamics using tddft, Journal of chemical theory and computation, vol.13, issue.1, p.89, 2016.

K. Lopata, M. Benjamin-e-van-kuiken, N. Khalil, and . Govind, Linearresponse and real-time time-dependent density functional theory studies of core-level near-edge x-ray absorption, Journal of chemical theory and computation, vol.8, issue.9, p.89, 2012.

K. Yabana and G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B, vol.54, p.89, 1996.

A. Tsolakidis, D. Sánchez-portal, and R. Martin, Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals, Physical Review B, vol.66, issue.23, p.90, 2002.

H. Akima, Institute for Telecommunication Sciences Boulder CO, p.100, 1969.

M. Quijada, A. G. Borisov, I. Nagy, R. D. Muiño, and P. M. Echenique, Timedependent density-functional calculation of the stopping power for protons and antiprotons in metals, Physical Review A -Atomic, Molecular, and Optical Physics, vol.75, issue.4, p.101, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00306539

J. Halliday and E. Artacho, Anisotropy of electronic stopping power in graphite, p.107, 2019.

G. J. Iafrate, J. F. Ziegler, and M. J. Nass, Application of lindhard's dielectric theory to the stopping of ions in solids, Journal of Applied Physics, vol.51, issue.2, p.107, 1980.

H. Winter, J. I. Juaristi, I. Nagy, A. Arnau, and P. M. Echenique, Energy loss of slow ions in a nonuniform electron gas, Phys. Rev. B, vol.67, p.107, 2003.

Y. Yao, C. Dillon, Y. Yost, and . Kanai, K-shell Core Electron Excitations in the Electronic Stopping of Protons in Water, vol.126, p.122

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. iv. calculation of static electrical response properties, The Journal of Chemical Physics, vol.100, issue.4, p.124, 1994.

P. Manninen and J. Vaara, Systematic Gaussian basis-set limit using completeness-optimized primitive sets. A case for magnetic properties, Journal of Computational Chemistry, vol.27, issue.4, p.124, 2006.

E. Coccia and E. Luppi, Optimal-continuum and multicentered gaussian basis sets for high-harmonic generation spectroscopy, Theoretical Chemistry Accounts, vol.135, issue.2, p.124, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480736

M. Labeye, F. Zapata, E. Coccia, V. Véniard, J. Toulouse et al., Optimal basis set for electron dynamics in strong laser fields: The case of molecular ion h2+, Journal of Chemical Theory and Computation, vol.14, issue.11, p.124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02004937

S. Lehtola, P. Manninen, M. Hakala, and K. Hämäläinen, Contraction of completeness-optimized basis sets: Application to ground-state electron momentum densities, Journal of Chemical Physics, vol.138, issue.4, p.125, 2013.

S. Lehtola, Automatic algorithms for completeness-optimization of Gaussian basis sets, Journal of Computational Chemistry, vol.36, issue.5, p.125, 2015.

M. Bader, R. E. Pixley, F. S. Mozer, and W. Whaling, Stopping cross section of solids for protons, 50-600 kev, Phys. Rev, vol.103, p.148, 1956.

. Ch, R. Eppacher, D. Muiño, A. Semrad, and . Arnau, The Interaction of Swift Particles and Electromagnetic Fields with Matter, vol.96, p.148, 1995.

C. Borschel and C. Ronning, Ion beam irradiation of nanostructures -a 3d monte carlo simulation code, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.269, p.166, 2011.

S. P. Møller, E. Uggerhøj, H. Bluhme, H. Knudsen, U. Mikkelsen et al., Direct measurements of the stopping power for antiprotons of light and heavy targets, Physical Review A -Atomic, Molecular, and Optical Physics, vol.56, issue.4, p.168, 1997.

S. P. Møller, A. Csete, T. Ichioka, H. Knudsen, U. I. Uggerhøj et al., Andersen. Antiproton Stopping at Low Energies: Confirmation of Velocity-Proportional Stopping Power, Physical Review Letters, vol.88, issue.19, p.168, 2002.

S. P. Møller, A. Csete, T. Ichioka, H. Knudsen, U. I. Uggerhøj et al., Stopping power in insulators and metals without charge exchange, Phys. Rev. Lett, vol.93, p.168, 2004.

H. Walter, J. N. Barkas, H. H. Dyer, and . Heckman, Resolution of the ? ? -mass anomaly, Phys. Rev. Lett, vol.11, p.168, 1963.

R. Vincent, J. I. Juaristi, and I. Nagy, Transport cross sections based on a screened interaction potential: Comparison of classical and quantum-mechanical results, Physical Review A -Atomic, Molecular, and Optical Physics, vol.71, issue.6, p.168, 2005.

H. Esbensen and P. Sigmund, Barkas effect in a dense medium: Stopping power and wake field, Annals of Physics, vol.201, issue.1, p.169, 1990.

E. Artacho and D. D. O'regan, Quantum mechanics in an evolving hilbert space, Phys. Rev. B, vol.95, p.174, 2017.

K. Noda, T. Furukawa, T. Fujisawa, Y. Iwata, T. Kanai et al., New Accelerator Facility for Carbon-Ion Cancer-Therapy, Journal of Radiation Research, vol.48

, Optimisation de la base Gaussienne

, Au cours de ce travail, j'ai montré que le pouvoir d'arrêt électronique est très sensible à la base et que les bases standards de la chimie quantique ne sont pas adaptées pour le problème du pouvoir d'arrêt. Cela s'explique par le fait que dans la plupart de problèmes de la chimie quantique, l'excitation du système électronique est relativement faible ce qui n'est pas le cas dans ce travail

, Cela est dû au fait qu'en augmentant la taille de la base, on améliore la qualité de la description des états occupés et, par conséquent, on ouvre plus de canaux de la dissipation de l'énergie du projectile. Donc, on peut arriver à la limite de la base complète en extrapolant le pouvoir d'arrêt en fonction de la base. Cependant, nous avons trouvé que la convergence est assez lente ce qui demande à mener des calculs avec des bases très grandes

, En prenant en compte les problèmes de l'extrapolation du pouvoir d'arrêt en utilisant des bases standards, nous avons proposé une autre solution

, Le fait que le pouvoir d'arrêt électronique croît avec la précision de la base, permet d'établir une procédure de génération de bases qui s'appuie sur la maximisation du pouvoir d'arrêt. Pour ce faire, j'ai créé des scripts qui permettent de générer les bases de façon automatique pour des cibles différentes, La génération des bases spécialement pour le problème du pouvoir d'arrêt

, Les bases obtenues dans ce travail pour lithium et aluminium ont permis de calculer le pouvoir d'arrêt électronique avec une meilleure précision et avec un coût de calculs modéré. La procédure élaborée pour le pouvoir d'arrêt pourrait être appliqué aux autres problèmes physiques où il y a des fortes excitations électroniques

I. Maliyov, J. Crocombette, and F. Bruneval, Quantitative electronic stopping power from localized basis set, Physical Review B, vol.101, p.35136, 2020.
URL : https://hal.archives-ouvertes.fr/cea-02454608

I. Maliyov, J. Crocombette, and F. Bruneval, Electronic stopping power from timedependent density-functional theory in Gaussian basis, European Physics Journal B, vol.172, p.91, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02339661

D. Li, R. Banerjee, S. Mondal, I. Maliyov, M. Romanova et al., Symmetry aspects of spin filtering in molecular junctions: Hybridization and quantum interference effects, Physical Review B, vol.99, p.115403, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02336475

M. Girych, G. Gorbenko, I. Maliyov, V. Trusova, C. Mizuguchi et al., Combined Thioflavin T -Congo Red fluorescence assay for amyloid fibril detection, Methods and Applications in Fluorescence, vol.4, p.100126, 2016.