C. K. Aidun and J. R. Clausen, Lattice-boltzmann method for complex ows, Annual Review of Fluid Mechanics, vol.42, issue.1, p.439472, 2010.

T. Al-fariss and K. L. Pinder, Flow through porous media of a shear-thinning liquid with yield stress, Can. J. Chem. Eng, vol.65, issue.3, p.391405, 1987.

A. Ambari, M. Benhamou, S. Roux, and E. Guyon, Distribution des tailles de pores d'un milieu poreux déterminée par l'écoulement d'un uide à seuil. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, vol.311, issue.11, p.12911295, 1990.

A. A. , L. M. Antonio-rodriguez-de-castro, and A. Omari, Characterizing porous media wwith the yield stress uids porosimetry method, Transport in Porous Media, vol.114, issue.1, p.213233, 2016.

G. Barenblatt, V. Entov, and V. Ryzhik, Theory of uid ows through natural rocks

D. A. Bassom and . Rees, Unsteady thermal boundary layer ows of a bingham uid in a porous medium, International journal of heat and mass transfer, vol.82, p.460467, 2015.

. Bedrikovetsky, Principles of oil and gas production, 1995.

B. Berkowitz, J. Klafter, R. Metzler, and H. Scher, Physical pictures of transport in heterogeneous media : Advection-dispersion, random-walk, and fractional derivative formulations, Water Resour. Res, vol.38, issue.10, p.1191, 2002.

H. Brinkman, A calculation of the viscous forces exerted by a owing uid on a dense swarm of particles, Appl. Sci. Res., sect, vol.1, p.2739, 1947.

G. Chase and P. Dachavijit, A correlation for yield stress uid ow through packed beds, Rheologica Acta, vol.44, issue.5, p.495501, 2005.

G. Chauveteau, Rodlike polymer solution ow through ne pores : Inuence of pore size on rheological behavior, Journal of Rheology, vol.26, issue.2, p.111142, 1982.

C. Chen and E. Meiburg, Miscible porous media displacements in the quarter ve-spot conguration. Part 2. Eects of heterogeneities, J. Fluid Mech, vol.371, p.269299, 1998.

T. Chevalier, Ecoulements de uides à seuil en milieux connés, 2013.

T. Chevalier, C. Chevalier, X. Clain, J. Dupla, J. Canou et al., Darcy's law for yield stress uid owing through a porous medium, J. Non-Newtonian Fluid Mech, vol.195, issue.0, pp.57-66, 2013.

T. Chevalier, S. Rodts, C. Chevalier, and P. Coussot, Quantitative exploitation of pfg nmr and mri velocimetry data for the rheological study of yield stress uid ows at macro-and micro-scales in complex geometries, Exp Fluids, vol.56, issue.1, p.1868, 2015.

T. Chevalier, D. Salin, L. Talon, and A. G. Yiotis, History eects on nonwetting uid residuals during desaturation ow through disordered porous media, Phys. Rev. E, vol.91, p.43015, 2015.

T. Chevalier and L. Talon, Generalization of Darcy's law for Bingham uids in porous media : From ow-eld statistics to the ow-rate regimes, Phys. Rev. E, vol.91, p.23011, 2015.

T. Chevalier and L. Talon, Moving line model and avalanche statistics of Bingham uid ow in porous media, Eur. Phys. J. E, vol.38, p.76, 2015.

S. K. Choi, Y. M. Ermel, S. L. Bryant, C. Huh, and M. M. Sharma, Transport of a ph-sensitive polymer in porous media for novel mobility-control applications. pages, 2006.

S. M. Christian-miehe, Phase eld modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of uid-saturated porous media, Computational Methods Applied to Mechanical Engineering, vol.304, p.619655, 2016.

G. Dagan, Stochastic modeling of groundwater ow by unconditional and conditional probabilities. 2. The solute transport, Water Resour. Res, vol.18, pp.835-848, 1982.

G. Dagan, Solute transport in heterogeneous porous formation, J. Fluid. Mech, vol.145, p.151177, 1984.

A. R. De-castro, A. Omari, A. Ahmadi-sénichault, and D. Bruneau, Toward a new method of porosimetry : Principles and experiments, Transp. Porous Mediaant, vol.101, issue.3, p.349364, 2014.

P. G. De-gennes, Hydrodynamic dispersion in unsaturated porous media, Journal of Fluid Mechanics, vol.136, p.189200, 1983.

D. Humières, Generalized lattice-boltzmann equations, aiaa rareed gas dynamics : theory and simulations. prog. Astronaut. Aeronaut. v59, p.450548, 1992.

D. Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. Luo, Multiplerelaxationtime lattice Boltzmann models in three dimensions, Philosophical Transactions of the Royal Society of London. Series A : Mathematical, Physical and Engineering Sciences, vol.360, p.437, 1792.

S. C. Martinez and W. H. Matthaeus, Comparison of spectral method and lattice boltzmann simulations of two-dimensional hydrodynamics, Physics of Fluids, vol.6, 1994.

L. Durlofsky and J. Brady, Analysis of the Brinkman equation as a model for ow in porous media, Phys. Fluids, vol.30, p.33293341, 1987.

V. Entov, On some two-dimensional problems of the theory of ltration with a limiting gradient, Prikl. Mat. Mekh, vol.31, p.820833, 1967.

B. J. , F. E. Felix, K. Oppong, and L. Rubatat, Microrheology and structure of a yield-stress polymer gel, Physical Review E, vol.73, 2006.

S. Gabbanelli, G. Drazer, and J. Koplik, Lattice boltzmann method for nonnewtonian (power-law) uids, Phys. Rev. E, vol.72, p.46312, 2005.

L. Gelhar and C. Axness, Three-Dimensional Stochastic Analysis of Macrodispersion in Aquifers, Water Resour. Res, vol.19, p.161180, 1983.

H. Giesche, Mercury porosimetry : A general (practical) overview. Particle and Particle Systems Characterization, vol.23, p.919, 2006.

I. Ginzburg, Consistent lattice boltzmann schemes for the brinkman model of porous ow and innite chapman-enskog expansion, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), vol.77, p.66704, 2008.

I. Ginzburg, Truncation errors, exact and heuristic stability analysis of tworelaxation-times lattice boltzmann schemes for anisotropic advection diusion equation, Comm. in Comput. Physics

I. Ginzburg, G. Silva, and L. Talon, Analysis and improvement of brinkman lattice boltzmann schemes : Bulk, boundary, interface. similarity and distinctness with nite elements in heterogeneous porous media, Phys. Rev. E, vol.91, p.23307, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01308283

I. Ginzburg, F. Verhaeghe, and D. Humières, Two-relaxation-time lattice boltzmann scheme : About parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys, vol.3, p.427478, 2008.

Z. Guo and T. Zhao, Lattice boltzmann model for incompressible ows through porous media, Phys. Rev. E, vol.66, p.36304, 2002.

E. Guyon, S. Roux, A. Hansen, D. Bideau, J. P. Troadec et al., Non-local and non-linear problems in the mechanics of disordered systems : application to granular media and rigidity problems, Reports on Progress in Physics, vol.53, issue.4, p.373, 1990.

F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhysics Letters (EPL), vol.9, issue.4, p.345349, 1989.

D. D. Ginzburg and F. Verhaeghe, Two-relaxation-time lattice boltzmann scheme : About parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys, vol.3, issue.2, p.427478, 2008.

J. R. Zhang and W. B. Standird, Stress-dependant uid ow and permeability in fractured media : from lab experiments to engineering applications, vol.40, p.321, 2007.

M. P. James and R. Rice, Some basic stress diusion solutions for uidsaturated elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, 1976.

M. Kardar and Y. Zhang, Scaling of directed polymers in random media, Phys. Rev. Lett, vol.58, p.20872090, 1987.

K. Kawagoe, G. Huber, M. Pradas, M. Wilkinson, A. Pumir et al., Aggregation-fragmentation-diusion model for trail dynamics, Phys. Rev. E, vol.96, p.12142, 2017.

A. Lavrov, Flow of truncated power-law uid between parallel walls for hydraulic fracturing applications, Journal of Non-Newtonian Fluid Mechanics, p.141146, 2015.

R. Lenormand and S. Bories, Description of a bond percolation mechanism used for the simulation of drainage with trapping in porous-media, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, vol.291, issue.12, p.279282, 1980.

T. Z. Breuer and J. Bernsdorf, Accurate computations of the laminar ow past a stquare scylinder based on two dierent methods : lattice-boltzmann and nite-volume, International Journal of Heat and Fluid Flow, vol.21, p.186196, 2000.

O. Malaspinas, N. Fiétier, and M. Deville, Lattice boltzmann method for the simulation of viscoelastic uid ows, Journal of Non-Newtonian Fluid Mechanics, vol.165, p.16371653, 2010.

G. Matheron and G. De-marsily, Is transport in porous media always diusive ? a counterexample, Water Resour. Res, vol.16, issue.5, p.901917, 1980.

A. F. Michel-fortin, A new approach for the fem simulation of viscoelastic ows, Journal of Non-Newtonian Fluid Mechanics, p.285310, 1989.

I. Neuweiler, S. Attinger, W. Kinzelbach, and P. King, Large scale mixing for immiscible displacement in heterogeneous porous media, Transport in Porous Media, vol.51, p.287314, 2003.

B. Noetinger, V. Artus, and L. Ricard, Dynamics of the water ?oil front for 129

, immiscible ow in heterogeneous porous media. 2 ? isotropic media. Transport in Porous Media, vol.56, p.305328, 2004.

H. J. Oguz and K. Basskurt, Blood rheology and hemodynamics, Semin Thromb Hemost, vol.29, issue.5, p.435450, 2003.

M. Ohta, T. Nakamura, Y. Yoshida, and Y. Matsukuma, Lattice boltzmann simulations of viscoplastic uid ows through complex ow channels, Journal of Non-Newtonian Fluid Mechanics, vol.166, issue.7-8, p.404412, 2011.

C. Pan, L. Luo, and C. T. Miller, An evaluation of lattice boltzmann schemes for porous medium ow simulation, Computers & Fluids, vol.35, pp.898-909, 2006.

T. C. Papanastasiou, Flows of materials with yield, Journal of Rheology, vol.31, issue.5, p.385404, 1987.

H. Pascal, Nonsteady folw through porous media in the presence of a threshold gradient, Acta mechanica, vol.39, p.207224, 1981.

C. R. Fryer and D. L. Pyle, Chemical Engineering for the Food Industry, 1997.

W. R. Rossen, Theory of mobilization pressure gradient of owing foams in porous media : I. incompressible foam, J. Colloid Interface Sci, vol.136, issue.1, pp.1-16, 1990.

W. R. Rossen, Theory of mobilization pressure gradient of owing foams in porous media : Ii. eect of compressibility, J. Colloid Interface Sci, vol.136, issue.1, pp.17-37, 1990.

W. R. Rossen, Theory of mobilization pressure gradient of owing foams in porous media : Iii. asymmetric lamella shapes, J. Colloid Interface Sci, vol.136, issue.1, pp.38-53, 1990.

A. Roustaei, T. Chevalier, L. Talon, and I. A. Frigaard, Non-Darcy eects in fracture ows of a yield stress uid, Journal of Fluid Mechanics, vol.805, p.222261, 2016.

S. Roux and E. Guyon, Temporal development of invasion percolation, Journal of Physics A : Mathematical and General, vol.22, issue.17, p.3693, 1989.

S. Roux and H. J. Herrmann, Disorder-induced nonlinear conductivity, Europhys. Lett, vol.4, issue.11, p.1227, 1987.

Y. Rubin, Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resour. Res, vol.26, p.133141, 1990.

M. J. Sullivan and L. F. Gladden, Simulation of power-law uid ow through porous media using lattice boltzmann techniques, CONCLUSION Fluid Mechanics, vol.133, p.9198, 2006.

M. Sahimi, Applications of percolation theory, 1994.

D. Stauer and A. Aharony, Introduction to percolation theory, 1991.

L. Talon and D. Bauer, On the determination of a generalized Darcy equation for yield-stress uid in porous media using a lattice-Boltzmann trt scheme, Eur. Phys. J. E, vol.36, issue.12, p.110, 2013.

L. Talon, J. Martin, N. Rakotomalala, and D. Salin, Stabilizing viscosity contrast eect on miscible displacement in heterogeneous porous media, using lattice BGK simulations, Phys. Fluids, vol.16, p.44084411, 2004.

L. Talon, J. Martin, N. Rakotomalala, D. Salin, and Y. Yortsos, Lattice BGK simulations of macrodispersion in heterogeneous porous media, Water Resour. Res, vol.39, p.11351142, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00192251

A. Vikhansky and I. Ginzburg, Taylor dispersion in heterogeneous porous media : Extended method of moments, theory, and modelling with tworelaxation-times lattice boltzmann scheme, Physics of Fluids, vol.26, issue.2, p.22104, 1994.

A. D. Wit and G. M. Homsy, Viscous ngering in periodically heterogeneous porous media. i. formulation and linear instability, The Journal of Chemical Physics, vol.107, issue.22, p.96099618, 1997.

A. D. Wit and G. M. Homsy, Viscous ngering in periodically heterogeneous porous media. ii. numerical simulations, The Journal of Chemical Physics, vol.107, issue.22, p.96199628, 1997.

C. L. and W. Ehlers, A phase-eld approuch embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Computational Methods Applied to Mechanical Engineering, vol.315, p.348368, 2017.

K. W. Wu and Y. Pruess, Flow and displacement of bingham nonnewtonian uids in porous media, 1990.

T. C. Yiaoyi-he and G. D. Doolen, Comparison of the lattice boltzmann method and the articial compressibility method for navier-stokes equations, Journal of Computational Physics, vol.179, p.439451, 2002.

F. Zami-pierre, R. De-loubens, M. Quintard, and Y. Davit, Transition in the ow of power-law uids through isotropic porous media, Phys. Rev. Lett, vol.117, p.74502, 2016.